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Abstract

A projection method for computing the minimal eigenvalue of a symmetric and

positive de�nite Toeplitz matrix is presented� It generalizes and accelerates
the algorithm considered in ����� Global and cubic convergence is proved�

Randomly generated test problems up to dimension ���� demonstrate the
methods good global behaviour�
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� Introduction

In this paper we present a projection method for computing the smallest eigenvalue
�� of a symmetric and positive de�nite Toeplitz matrix T 
 This problem is of consid�
erable interest in signal processing
 Given the covariance sequence of the observed
data� Pisarenko 
��� suggested a method which determines the sinusoidal frequen�
cies from the eigenvector of the covariance matrix associated with the minimum
eigenvalue of T 


Several approaches have been reported in the literature for computing the minimal
eigenvalue of a real symmetric Toeplitz matrix
 Cybenko and Van Loan 
�� intro�
duced an algorithm which is a combination of a bisection method and Newton�s
method for the secular equation� and which was generalized to the computation of
the complete spectrum by Trench 
��� and by Noor and Morgera 
�	�
 Hu and Kung

�� considered a safeguarded inverse iteration with shifts and Huckle 
���� 
��� studied
the spectral transformation Lanczos method
 In a recent paper 
���� 
��� the authors
presented a generalization of Cybenko and Van Loan�s approach where the Newton
method is replaced by a root �nding method based on rational Hermitian interpo�
lation of the secular equation
 For randomly generated test matrices of dimension

�



up to ���� this method reduced the cost of Cybenko and Van Loan�s algorithm by
approximately ���


In this paper we show that the method considered in 
��� is equivalent to a projection
method where in every step the eigenvalue problem is projected to a two dimensional
space spanned by �T��jI���e�� j � �� �� where the parameters �j are determined in
the course of the algorithm
 This result suggests generalizations of the method where
the problem is projected to subspaces of the same type of increasing dimension
 We
consider two variants of equal cost per step that are shown to be at least cubically
convergent
 The increase of the dimension of the projected problem by one requires
the same cost as one step of the algorithm in 
���� The solution of one Yule�Walker
system and the evaluation of two inner products


Our paper is organized as follows
 In section � we brie�y sketch the method intro�
duced in 
���
 Section 	 interprets the rational Hermitian interpolation as a projec�
tion method to a particular two dimensional space and generalizes the method to
higher dimensional spaces
 In Section � we prove that the originating method is at
least cubically convergent� Section � contains a MATLAB program and in Section
� we discuss its numerical behaviour
 The paper closes with concluding remarks
concerning the use of super fast Toeplitz solvers


� A method based on rational Hermitian

interpolation

In this section we brie�y review an approach to the computation of the minimum
eigenvalue of a real symmetric� positive de�nite Toeplitz matrix which was presented
in 
��� and which is a generalization of a method of Cybenko and Van Loan 
��


Let T � IR�n�n� be a symmetric positive de�nite Toeplitz matrix
 We assume that
its diagonal is normalized� and we consider the following partition�

T �

�
� tT

t G

�
�

It is well known that the eigenvalues of T and of G are real and positive and that
they satisfy the interlacing property �� � �� � �� � � � � � �n�� � �n where �j and
�j is the jth smallest eigenvalue of T and G� respectively


We assume that �� � ��
 Then �� is the smallest root of the secular equation

f��� �� �� � � � tT �G� �I���t � �� ���

It is easily seen that f is strictly monotonely increasing and strictly convex in the
interval ��� ���� and therefore for every initial value �� � ���� ��� Newton�s method
converges monotonely decreasing and quadratically to ��
 Cybenko and Van Loan

�� combined Newton�s method with a bisection method �to be sketched below� to
design a method for the computation of the minimum eigenvalue of T 


�



Since
f ���� � � � k�G� �I���tk�� ���

a Newton step can be performed in the following way�

Solve �G� �kI�w � �t for w�

and set �k�� �� �k �
�� � �k �wT t

� � kwk��

where the Yule�Walker system

�G� �I�w � �t �	�

can be solved by Durbin�s algorithm �cf
 
��� p
 ��� �� requiring �n� �ops


The global convergence behaviour of Newton�s method usually is not satisfactory
since the smallest root �� and the smallest pole �� of the rational function f can be
very close to each other
 In this situation the initial steps of Newton�s method are
extremely slow


The convergence can be improved considerably if an iteration method is based on
a better model of the rational function f than its tangent in Newton�s method
 In
terms of condensation methods �cf
 
��� the secular equation f can be interpreted
as the exact condensation of the eigenvalue problem Tx � �x where x�� � � � � xn are
chosen to be slaves and x� is the only master
 Using spectral informations of the
slave problem �G� �I�v � � the function f can be written as �cf
 
���

f��� � f��� � f ����� � ��
n��X
j��

��
j

�j � �

where �j� j � �� � � � � n� �� are real numbers depending on the eigenvectors of G


If we are given an approximation � � ��� ��� we therefore approximate f by a
rational function

g����� �� f��� � f ������ ��
b

c� �

where b and c are determined by the Hermitian interpolation conditions

g����� � f��� and g������ � f ����

and base a method on this approximation
 Theorem � from 
��� contains the basic
properties of g�����


Theorem ��
Let � � ��� ��� and let

g����� �� f��� � f ����� � ��
b

c� �
�

where b and c are determined such that the interpolation conditions g����� � f���
and g������ � f ���� are satis�ed�

Then it holds that

	



�i� b � � and c � ��

�ii� g������ � � for � �� ���

From Theorem � we deduce the following improvement of the method of Cybenko
and Van Loan�
Let �n � ���� ��� be a given approximation to ��� then the function g����n� is strictly
convex in the interval ��� �n�
 Since

g�����n� � � � f���� � f��n� � g��n��n��

g����n� has exactly one zero �n�� � ���� �n�


From the convexity of g����n� we obtain

g����n� � g��n��n� � g���n��n���� �n� � f��n� � f ���n���� �n�

for every � � ���� �n�� and thus �n�� always is a better approximation to �� than
the Newton iterate with initial guess �n
 Hence� for �� � ���� ��� the method which
de�nes �n�� as the unique root of the rational Hermitian interpolation g����n� in
��� �n� converges monotonely decreasing to ��� and it is guaranteed to be faster than
Newton�s method


Notice that the cost of Newton�s method and of the method de�ned above are nearly
identical
 One has to solve one Yule�Walker system ��n� �ops� and to evaluate two
inner products to obtain f��n� and f ���n�
 The determination of b and c and the
solution of a quadratic equation to obtain �n�� require only O��� �ops and can be
neglected


An initial value �� � ���� ��� can be obtained by the bisection process that was
introduced by Cybenko and Van Loan
 If � is not in the spectrum of any of the
principal submatrices of T ��I then Durbin�s algorithm applied to �T ��I�	�����
determines a lower triangular matrix

L �

�
B�

� � � � � �

�� � � � � �
� � � � � � � � � � � � � � �

n� 
n� � � � �

�
CA

such that
�

�� �
L�T � �I�LT �D �� diagf�� E�� � � � � En��g� ���

If �L is obtained from L by dropping the last row and last column then obviously

�

� � �
�L�G � �I��L

T
� �D �� diagf�� E�� � � � � En��g

Hence� from Sylvester�s law of inertia one gets

�i� � � ��� if Ej � � for j � �� � � � � n� ��

�



�ii� � � 
��� ���� if Ej � � for j � �� � � � � n� � and En�� � ��

�iii� and � � ��� if Ej � � for some j � f�� � � � � n� �g


An upper bound of �� to start the bisection process can be obtained in the following
way
 Let w �� �G��t be the solution of the Yule�Walker system
 Then

q ��
�

� � tTw

�
�
w

�
� T��e�

is the �rst iterate of the inverse iteration with shift parameter � starting with the
unit vector e� which can be expected to be not too bad an approximation of the
eigenvector corresponding to the smallest eigenvalue ��
 The Rayleigh quotient

R�q� ��
qTTq

qTq
�

� � tTw

� � kwk��
���

is an upper bound of �� which should be not too bad either


� Rational Hermitian interpolation and

projection

The root �nding method based on rational Hermitian interpolation of the last section
can be interpreted as a projection method
 To see this we �rst prove the following

Lemma ��
Let e� be the unit vector containing a � in its �rst component� and for � not in the
spectrum of T and of G let

q��� �� �f����T � �I���e��

Then

q��� �
�

�
w���

�
� where w��� �� ��G� �I���t� ���

and it holds that

q���TTq��� �

�		

		�
�f��� � �f ���� for � � �

�f��� � �f���

� � �
for � �� �

and

q���Tq��� �

�		

		�

f ���� for � � �

f��� � f���

�� �
for � �� ��

�



Proof� Equation ��� follows immediately from

�
� � � tT

t G � �I

� �
�

w���

�
�
�

� � �� tTw���
t� �G� �I�w���

�
� �f���

�
�
�

�
�

If � and � are not in the spectrum of T then

q���TTq��� � �f���q���T �T � �I � �I��T � �I���e�

� �f���q���Te� � �f���q���T �T � �I���e�

� �f��� � �q���Tq����

From the symmetry of T we obtain

q���TTq��� � �f��� � �q���Tq���� ���

Therefore for � �� � we get

q���Tq��� �
f��� � f���

�� �

and substituting this expression into equation ��� yields

q���TTq��� �
�f��� � �f���

�� �
�

Moreover� for � � � we get from ��� and ���

kq���k�� � � � kw���k�� � � � k�G� �I�tk�� � f ����

and from equation ���

q���TTq��� � �f��� � �kq���k�� � �f��� � �f �����

Theorem ��
For � � ��� ���� � �� ��� let g����� be the rational Hermitian interpolation of f
considered in Theorem � and denote by �� the unique root of g����� � � in ���� c��

Then �� is the smallest eigenvalue of the projected eigenvalue problem

QTTQ� � �QTQ�� ���

where
Q � �q����q���� � IR�n���

and q��� � IRn is de�ned as in Lemma ��

Proof� From Lemma � with � � � we immediately get

QTTQ �
�
�f��� �f���
�f��� �f��� � �f ����

�
�QTQ �

�
f ���� �

�
�f��� � f����

�
�
�f��� � f���� f ����

�
�

�



from which we obtain the characteristic polynomial of the projected eigenvalue prob�
lem ��� to be

���� � f����f��� � �f ����� f����

��
�
f���f ���� � f ����f��� � �f ����f ���� �

�

�
f����f��� � f����




���
�
f ����f �����

�

��
�f��� � f�����



�

The interpolation conditions on g yield

b �
�

��
�f���� f��� � �f ������

f ���� � f ����� �
�
�f��� � f����

� c �
f��� � f��� � �f ����

f ���� � f ����� �
�
�f��� � f����

�

and an easy calculation shows that the equation g��� � � is equivalent to ���� � �


Theorem � suggests the following generalization of the method introduced in 
����

�i� Choose parameters ��� � � � � �k �which are not in the spectrum of T and of G�
and solve the linear systems

�T � �kI�qk � �f��k�e� for qk�

�ii� Determine the smallest eigenvalue of the projected problem

QT
k TQk� � �QT

kQk�

where
Qk � �q�� � � � �qk� � IR�n�k��

From Lemma � the entries of the projected matrices Ak �� QT
k TQk and Bk ��

QT
kQk are found to be

aij �

�		

		�
�f��i� � �if

���i� for i � j

�if��j�� �jf��i�

�j � �i
for i �� j

���

and

bij �

�		

		�

f ���i� for i � j

f��i�� f��j�

�i � �j
for i �� j

����

By ��� and ���� increasing the dimension of the projected problem by one essentially
requires the same cost as one step of the algorithm in 
���� The solution of one
Yule�Walker system �	�� and the evaluation of the two scalar products kwkk�� and
tTwk


In the next section the parameters �k in the projection method are chosen such that
we get safe and fast convergence to the minimum eigenvalue of T 


�



� A model projection method of global and cubic

convergence

We �rst consider a model algorithm for computing the smallest eigenvalue of the
Toeplitz matrix T 


Let �� �� � and �� � � ��� denotes the currently best known lower bound of ���

Determine the solution w of the linear systemGw � �t� compute f��� � ���tTw
and f ���� � � �wTw� and set

A� �� ��f���� � IR����� and B� �� �f ����� � IR�����

and

�u ��
�f���

f ����
�

Since �u is the value of the Rayleigh quotient of T at q� �� �f���T��e� it is an
upper bound of ��

Choose any �� � ��� �u� and set k �� �


Repeat the following steps until convergence of the sequence f�kg�

�i� Solve
�G � �kI�w � �t

�e
g
 by Durbin�s algorithm� and determine �e
g
 in the course of Durbin�s
algorithm� which of the intervals ��� ���� ���� ��� and ������� respectively�
contains the parameter �k �We do not take into account the very unlikely
situation that �k � f��� ��g� in the �rst case a lucky break down would have
occurred� and the algorithm could be stopped� in the latter case �k would be
perturbed and the algorithm would be continued�


�ii� If �k � �� then set

�u �� minf�u � �kg and �k �� ������ � �u�

else

compute f��k� � �� � �k � tTw and f ���k� � � � wTw� update
the matrices Ak and Bk and compute the smallest eigenvalue �k��
of the projected problem

Ak� � �Bk�� ����

If �k � �� then set �� �� �k

k �� k � �


Convergence of the sequence f�kg to �� is obtained by comparison with the method
of section �


�



Theorem �� The model algorithm converges eventually monotonely decreasing to ���
and the convergence is eventually faster than that of the algorithm based on rational
Hermitian interpolation �cf� Section ��� i�e� there exists m � IN such that �k�� � �k
for every k � m and if ��k�� � ��� �k� denotes the unique root of g����k� � � where
g is the rational function considered in Theorem � then it holds that

�� � �k�� � ��k���

Proof� Obviously� after a �nite number of initial steps we obtain �� � ��
 Moreover�
since the minimal eigenvalue of any projected problem is an upper bound of �� after
a �nite number of steps we arrive at �m � ���� ���


For k � m let �k � ���� ���
 By Theorem 	 ��k�� is the minimal eigenvalue of the
projected eigenvalue problem

�Q
T

kT
�Qk� � ��Q

T

k
�Qk�

where �Qk � �q����q��k�� � IR�n���
 Since the columns of �Qk are columns of Qk� too�
we obtain from Rayleigh�s principle

�� � �k�� � ��k���

From Theorem � and 
��� we obtain that the model algorithm converges at least
quadratically to ��
 Comparing it to the Rayleigh quotient iteration one even gets
at least cubic convergence


Theorem �� The sequence f�kg constructed by the model algorithm converges at
least cubically to ���

Proof� We �rst note that for �� �� � �� �� which are not in the spectrum of T

�

�� �

�
�T � �I��� � �T � �I���



� �T � �I����T � �I���� ����

To prove this equation just multiply it by T ��I from the left and by T ��I from
the right


Let Vk �� spanfq�� � � � �qkg where qj � �T � �jI���e�� and denote the Rayleigh
quotient of T at x � IRn n f�g by R�x�


By construction �k � minfR�x� � x � Vk��g
 Let xk � Vk�� such that R�xk� � �k
and denote by

uk �� �T � �kI�
��xk

the result of � step of the Rayleigh quotient iteration with initial guess xk
 From
the cubic convergence of the Rayleigh quotient iteration �cf
 Parlett 
���� p
 �� ��
we get the existence of some C � � such that

� � R�uk�� �� � C��k � ���
�� ��	�

�



From

xk ��
k��X
j��

�j�T � �jI�
��e� � Vk��

and equation ���� we obtain

uk � �T � �kI�
��xk �

k��X
j��

�j�T � �kI�
���T � �jI�

��e�

�
k��X
j��

�j

�

�k � �j

�
�T � �kI�

�� � �T � �jI�
��


e� � Vk�

Hence
�k�� � minfR�x� � x � Vkg � R�uk��

and inequality ��	� yields

�k�� � �� � R�uk�� �� � C��k � ���
��

i
e
 the sequence f�kg converges at least cubically to ��

� An implementable projection method

In our �nal algorithmwe introduce twomodi�cations which improve the performance
of the method


Especially if the dimension n of the problem is very large the gap between the small�
est eigenvalue �� of T and the smallest eigenvalue �� of the submatrix G can be
very small
 In this situation it may happen that the model algorithm bounces be�
tween upper bounds �k � �� which are obtained from projected problems and lower
bounds �k�� � �� from bisection steps several times before entering the interval
���� ��� and then converging monotonely to ��


To break a tie like this we introduced the following modi�cation� Updating the
matricesAk and Bk we have already evaluated f��k� and f ���k�
 Hence� along with
the minimal eigenvalue �k�� of the projected problem ���� we can obtain the Newton
iterate ��k�� of f��� � � with initial guess �k at negligible cost
 �k�� and ��k�� are
approximations to �� with errors

��k�� � �� � O�j�� � �kj
�� � �k�� � �� � O�j�� � �kj

���

Hence the relative di�erence ���k�� � �k���	�k�� estimates the relative error of a
Newton step with initial guess �k� and therefore is an indicator whether �k is close
to �� or not
 For

��k�� � �k��
�k��

� ���

we continue the projection method with the parameter �k�� otherwise we choose
�k�� �� ����k � ����k��


��



In some examples it happened that the projected mass matrix QT
kQk from ����

was not positive de�nite �at least numerically�
 This situation occurred when the
current parameter �k was already a very accurate approximation to ��
 It was due
to the fact that some parameters �j in use were close to each other
 Hence the angle
between the corresponding columns qj of Qk was very small and Qk was very badly
conditioned


One way out was the direct calculation of the inner products �qj�Tqi
 We preferred to
replace the projection to Vk � spanfq�� � � � �qkg by a projection to the ��dimensional
space �Vk � spanfq��qkg� where q� � �f�����T � �����e� and �� is the maximal
lower bound of �� produced in the algorithm
 This modi�cation clearly destroys
the cubic convergence of the method
 Notice however� that in all examples that we
considered after a modi�ed step our accuracy requirement �relative error of �k less
than ���	� was satis�ed


In the following we give a MATLAB program for the determination of the small�
est eigenvalue of a symmetric and positive de�nite Toeplitz matrix based on the
considerations above


Therein 
w�where� � durbin��� denotes a function which for a given test parameter
� returns the integer variable

where �

�	

	�

� � if � � ��� ���
� � if � � 
��� ���
� � if � � ������

and for � � ��� ��� additionally the solution w of the Yule�Walker system �G �
�I�w � t
 Notice that in the case � � �� the Durbin algorithm is terminated as
soon as a negative diagonal element Ej is detected
 Hence� for � � ��� ��� a call of
durbin needs �n� �ops� for � � �� it needs less than �n� �ops


The procedure 
a� b�min ev� boole� � pro ev�a� b�mu� f� df� k�nu� updates the pro�
jected matrices a and b� and it returns the minimal eigenvalue min ev of the pro�
jected problem ����
 If the projected mass matrix b is positive de�nite� then the
boolean variable boole is set to �� otherwise it is set to �
 In the latter case min ev
is the smallest eigenvalue of the two dimensional projected problem corresponding
to the modi�cation explained above


� � quadroot��k��� 
� returns the unique root in ���� �k��� of the quadratic poly�
nomial p satisfying the Hermitian interpolation conditions

p��� � � f��� � � p
����� � f ����� � p��k��� � f��k����

It was shown in 
��� that � is a lower bound of �� if �� � ��� � �k���


��



�w�where��durbin����

mu�	����

f�	��
	
t��w�

df�	��	
w��w�

a�	�	��
f�	��

b�	�	��df�	��

nu�	� �mu�nu� is the maximal lower bound of lambda�	

lau�a�	�	��b�	�	�� �lau holds the minimal upper bound of lambda�	

mu����lau���
�����n�� �for the choice of mu��� see �	��

k�	�

h�	�

while h � mu�k
	��	�e
�

�y�where��durbin�mu�k
	���

if where �� �

lau�min�lau�mu�k
	���

mu�k
	�������lau
mu�nu���

else

k�k
	�

f�k��
	
mu�k�
y��t�

df�k��	
y��y�

�a�b�min�ev�boole��pro�ev�a�b�mu�f�df�k�nu��

lau�min�lau�min�ev��

mu�k
	��lau�

if where �� �

h�lau
mu�k��

if boole �� 	

nu�k�

end

la�newt�mu�k�
f�k��df�k��

if �la�newt
lau����	�lau

mu�k
	������lau
��	�mu�k��

end�

else

ga�quadroot�mu�k
	��nu�

h�mu�k
	�
ga�

end�

if boole �� �

mu�k��mu�k
	��

k�k
	�

end�

end�

end�

��



Notice that we include a vector q��k� � �f��k��T � �kI���e� into the basis of the
subspace we are projecting on only if �k � ��� ���
 For these parameters the Toeplitz
matrixG��kI is positive de�nite and by 
�� Durbin�s algorithm for the solution of
�G� �kI�w � �t is stable


We also experimented with a modi�cation where all vectors that were produced by
Durbin�s algorithm were included into the basis
 Although for parameters �k � ��
Durbin�s algorithm is unstable �cf
 
��� 
	�� we did not observe any stability problems


� Numerical Experiments

To test the projection methods we considered Toeplitz matrices

T � m
nX

k��

�kT ���k ����

where m is chosen such that T has normalized diagonal�

T � � �tij� � �cos���i� j���

and �k and �k are uniformly distributed random numbers taken from 
�� �� �cf
 Cy�
benko� Van Loan 
���


Table � contains the number of �ops needed for ��� test problems with each of
the dimensions n � ��� ���� ���� ��� and ���� for three methods� The method
based on rational Hermitian interpolation� the projection method where the vector
q��j� was included into the basis of Vk only if �j � 
�� ��� �stable projection� and
the projection method where every q��j� was considered �complete projection�

Although in the last case stability of Durbin�s algorithm is not guaranteed we did
not observe unstable behaviour
 The iteration was terminated if the relative error
was less than ���	


dimension rational stable complete
approximation projection projection

�� ���� E� ���� E� ������� 	��� E� �������
��� ���� E� ���� E� ������� ���� E� ����	��
��� ��	� E� ���� E� ����	�� ���	 E� ����	��
��� 	��� E� ���� E� ������� ���	 E� �������
���� ��		 E� ���� E� ������� ���� E� �������

Tab� �� number of �ops for ��� test examples

� Concluding remarks

We have presented an algorithm for the computation of the minimum eigenvalue
of a symmetric and positive de�nite Toeplitz matrix which improves the method of

�	



Cybenko and Van Loan considerably
 Realistic and rigorous error bounds are ob�
tained at negligible cost
 In our numerical tests we used Durbin�s algorithm to solve
Yule�Walker systems and to determine the diagonal matrix in the decomposition ���

These informations can be gained from superfast Toeplitz solvers �cf
 
��� 
��� 
��� as
well
 Hence� the computational complexity can be reduced to O�n log� n� operations
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