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Abstract

In ��� and ��� W� Mackens and the present author presented two generaliza�

tions of a method of Cybenko and Van Loan ��� for computing the smallest
eigenvalue of a symmetric� positive de	nite Toeplitz matrix� Taking advan�

tage of the symmetry or skew symmetry of the corresponding eigenvector
both methods are improved considerably�
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� Introduction

Several approaches have been reported in the literature for computing the small�
est eigenvalue of a real symmetric� positive de�nite Toeplitz matrix �RSPDT�� This
problem is of considerable interest in signal processing� Given the covariance se�
quence of the observed data� Pisarenko 	
�� suggested a method which determines
the sinusoidal frequencies from the eigenvector of the covariance matrix associated
with its minimum eigenvalue�

Cybenko and Van Loan 	�� presented an algorithm which is a combination of bisec�
tion and Newtons method for the secular equation� Replacing Newtons method by
a root �nding method based on rational Hermitian interpolation of the secular equa�
tion Mackens and the present author in 	�� improved this approach substantially� In
	�� it was shown that the algorithm from 	�� is equivalent to a projection method
where in every step the eigenvalue problem is projected to a two dimensional space�
This interpretation suggested a further enhancement of Cybenko and Van Loans
method�






If Tn � IR�n�n� is a RSPDT matrix and En denotes the �n� n� �ipmatrix with ones in
its secondary diagonal and zeros elsewhere� then E�

n � I and Tn � EnTnEn� Hence
Tnx � �x if and only if

Tn�Enx� � EnTnE
�
nx � �Enx�

and x is an eigenvector of Tn if and only if Enx is� If � is a simple eigenvalue of
Tn then from kxk� � kEnxk� we obtain x � Enx or x � �Enx� We say that an
eigenvector x is symmetric and the corresponding eigenvalue � is even if x � Enx�
and x is called skew�symmetric and � is odd if x � �Enx�

One disadvantage of the approximation schemes in 	�� and 	�� is that they do not
re�ect the symmetry properties of the eigenvector corresponding to the minimum
eigenvalue� In this paper we present variants which take advantage of the symmetry
of the eigenvector and which essentially are of equal cost as the methods considered
in 	�� and 	���

The symmetry class of the principal eigenvector is known in advance only for a small
class of Toeplitz matrices� The following result was given by Trench 	

��

Theorem ��
Let

Tn � �tji�jj�i�j�������n� tj ��



�

�Z
�

F ��� cos�j�� d�� j � �� 
� �� � � � � n� 
�

where F � ��� ��� IR is nonincreasing and F ���� �� M � m �� F ����� Then for
every n the matrix Tn has n distinct eigenvalues in �m�M�� its even and odd spectra
are interlaced� and its largest eigenvalue is even


If Tn satis�es the conditions of Theorem 
 then for even n the principal eigenvector is
odd and vice versa� For general Toeplitz matrices Tn the symmetry class is detected
by the algorithm at negligible cost�

The paper is organized as follows� In Section � we brie�y sketch the algorithms from
	�� and 	��� Sections � and � describe their generalizations if the symmetry class of
the principal eigenvector is taken into account� Finally� some concluding remarks
are made in Section ��

� Nonsymmetric methods

In this section we brie�y review the approach to the computation of the smallest
eigenvalue of a RSPDT matrix which was presented in 	�� and 	���

Let
Tn � �tji�jj�i�j�������n � IR�n�n�

be a RSPDT matrix� We denote by Tj � IR�j�j� its j�th principal submatrix� and we

assume that its diagonal is normalized by t� � 
� If ��j�� � �
�j�
� � � � � � �

�j�
j are the

�



eigenvalues of Tj then the interlacing property �
�k�
j�� � �

�k���
j�� � �

�k�
j � � � j � k � n�

holds�

Eliminating the variables x�� � � � � xn from the system�

� � � tT

t � Tn�� � �I

�
x � �

that characterizes the eigenvalue of Tn one obtains

�
 � � � tT �Tn�� � �I���t�x� � ��

We assume that �
�n�
� � �

�n���
� � Then x� �� �� and �

�n�
� is the smallest root of the

secular equation
f��� �� �
 � � � tT �Tn�� � �I���t � �� �
�

f is strictly monotonely increasing and strictly convex in the interval ��� �
�n���
� ��

Therefore for every initial guess �� � ��
�n�
� � �

�n���
� � Newtons method converges

monotonely decreasing and quadratically to �
�n�
� � Since

f ���� � 
 � k�Tn�� � �I���tk��

a Newton step can be performed in the following way�

Solve �Tn�� � �kI�y � �t for y� and set �k�� � �k �
�
 � �k � yT t


 � kyk��

where the Yule � Walker system �Tn�� � �I�y � �t can be solved by Durbins
algorithm �cf� 	��� p� 
��� requiring �n� �ops�

An initial guess �� for Newtons method can be obtained by a bisection process� If
� is not in the spectrum of any of the submatrices Tj � �I then Durbins algorithm
for �T � �I�	�
� �� determines a lower triangular matrix L such that





 � �
L�T � �I�LT � diagf
� 
�� � � � � 
n��g�

Hence� from Sylvesters law of inertia we obtain that

�i� � � �
�n�
� if 
j � � for j � 
� � � � � n� 
�

�ii� � � ��
�n�
� � �

�n���
� � if 
j � � for j � 
� � � � � n� � and 
n�� � �

�iii� � � �
�n���
� if 
j � � for some j � f
� � � � � n� �g�

Cybenko and Van Loan combined a bisection method with Newtons method for
computing the minimum eigenvalue of Tn�

Since the smallest root ��n�� and the smallest pole ��n���� of the rational function f
can be very close to each other usually a large number of bisection steps is needed

�



to get a suitable initial approximation of Newtons method� Moreover� the global
convergence behaviour of Newtons method can be quite unsatisfactory� In 	�� the
approach of Cybenko and Van Loan was improved substantially using a root �nding
method which is based on a rational model

g����� �� f��� � f ����� � ��
b

c� �
�

where � is the current approximation of ��n�� � and b and c are determined such that

g����� � f���� g������ � f �����

It is shown that for �k � ��
�n�
� � �

�n���
� � the function g����k� has exactly one zero

�k�� � ��� �k� and that

�
�n�
� � �k�� � �k � f��k�	f

���k��

Hence� the sequence f�kg converges monotonely decreasing to �
�n�
� � the convergence

is quadratic and faster than the convergence of Newtons method� The essential cost
of one step are the same as for one Newton step�

In 	�� it was shown that the smallest root of g����� is the smallest eigenvalue of the
projected eigenvalue problem

QTTnQ� � �QTQ� ���

where
Q � �q���� q���� � IR�n���

and q��� �� �Tn � �I���e�� e� � �
� �� � � � � ��T � This interpretation suggests general�
izations of the method where the problem is projected to subspaces

spanfq����� � � � � q��k�g

of the same type of increasing order k where the parameters �j are constructed in
the course of the algorithm� The resulting method was shown to be at least cubically
convergent�

The representation in ��� clearly demonstrates a weakness of the approaches in 	��

and 	��� Although the eigenvector corresponding to �
�n�
� is known to be symmetric

or skew�symmetric the trial vectors in the projection method have neither of these
properties�

�



� Exploiting symmetry in rational interpolation

In this section we discuss a variant of the approximation scheme from 	�� that exploits
the symmetry and skew�symmetry of the corresponding eigenvector� respectively�

To take into account the symmetry properties of the eigenvector we eliminate the
variables x�� � � � � xn�� from the system

�
B� 
 � � � �tT � tn��

�t � Tn�� � �I � En���t
tn�� � �tTEn�� � 
 � �

�
CA x � � ���

where �t � �t�� � � � � tn���
T �

Then every eigenvalue � of Tn which is not in the spectrum of Tn�� is an eigenvalue
of the two dimensional nonlinear eigenvalue problem

�

� �� �tT �Tn�� � �I����t � tn�� � �tT �Tn�� � �I���En���t

tn�� � �tTEn���Tn�� � �I����t � 
� �� �tT �Tn�� � �I����t

��
x�
xn

�
� ��

���
Moreover� if such a � is an even eigenvalue of Tn� then �
� 
�T is the corresponding
eigenvector of problem ���� and if � is an odd eigenvalue of Tn then �
��
�T is the
corresponding eigenvector of system ����

Hence� if the smallest eigenvalue �
�n�
� is even� then it is the smallest root of the

rational function

g���� �� �
� tn�� � � � �tT �Tn�� � �I�����t� En���t�� ���

and if ��n�� is an odd eigenvalue of Tn then it is the smallest root of

g���� �� �
 � tn�� � � � �tT �Tn�� � �I�����t�En���t�� ���

If the symmetry class of the principal eigenvector is known in advance then a straight
forward generalization of the scheme in 	�� can be based on ��� or ���� respectively�
In the general case it is the minimum of the smallest roots of g� and g�� and the
symmetry class must be detected by the method itself�

The elimination of x�� � � � � xn�� is nothing else but exact condensation of the eigen�
value problem Tx � �x where x� and xn are chosen to be masters and x�� � � � � xn��

are the slaves� If �� � � � � n�� denotes an orthonormal set of eigenvectors of the slave
problem

Tn��
j � �

�n���
j j� j � 
� � � � � n� ��

then the functions g� and g� can be written as �cf� 	���

g���� � g���� � g������ � ��
n��X
j��

��
��j

�
�n���
j � �

���

�
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� Graphs of f � g� and g�

where
g���� � �
� tn�� � �tTT��

n����t� En���t��

g����� � 
 � �tTT��
n����t� En���t� � 
 � ���kT��

n����t� En���t�k
�
��

and

���j �



�
�n���
j

�j�T ��t� En���t��

Hence� the zeros of g� and g� are the even and odd eigenvalues of Tn� and the poles
of g� and g� are the even and odd eigenvalues of Tn��� respectively� Figure 
 shows
the graphs of the functions f � g� and g� for a Toeplitz matrix of dimension ���

If we are given an approximation � of ��n�� then equation ��� suggests the following
rational Hermitian approximation of g�����

h������ � g���� � g������ � ��
b�

c� � �
���

where the parameters b� and c� are determined from the Hermitian interpolation
conditions

h������ � g����� h
�
������ � g������ ���

Following the lines of the proof of Theorem 
 in 	�� one gets the basic properties of
h��

Theorem ��
Let �� be the smallest pole of g�� let � � 	�� ���� and let h� be de�ned by equations
�� and ���
 Then it holds that

�



�i� b� � � and c� � ��
whence h� is strictly monotonely increasing and strictly convex in 	�� c��


�ii� h���
�n�
� � � �


From Theorem � we deduce the following method for computing the smallest eigen�
value of a RSPDT matrix Tn� Set � � � as a lower bound of the smallest eigenvalue
and let the variable � monitor whether �

�n�
� is even or odd or the type of �

�n�
� is not

yet known�

� �

����
��	
�
 if ��n�� is odd

� if the type of ��n�� is unknown


 if �
�n�
� is even

�
��

To obtain an upper bound of �
�n�
� solve the Yule � Walker system Tn��z � ��t� and

let z� �� z � En��z and z� �� z � En��z� Then

g���� � �
� tn�� � �tTz�� g
�
���� � 
 � ���kz�k

�
��

and from the monotonicity and convexity of g� and g� in 	�� ��n�� � it follows that

� �� minf�g����	g
�
������g����	g

�
����g

is an upper bound of ��n�� �

Choose �� � ��� ��� set k �� �� and do the following steps until convergence of the
sequence f�kg�


� Solve �Tn�� � �kI�y � ��t using Durbins algorithm and determine whether

�k 	 �
�n���
� or not�

�� If �k 	 �
�n���
� then do a bisection step�

� �� �k� �k�� �� ����� � ��

otherwise obtain new bounds of �
�n�
� in the following way�

� if � � �
 then determine g���k�� If � � 
 and g���k� � � then � �� �k

is an improved lower bound

� if � � 
 then determine g���k�� If � � �
 and g���k� � � then � �� �k

is an improved lower bound

� If � � � and g���k� � � and g���k� � � then � �� �k is an improved

lower bound of ��n��

� if � � � and g���k� � � � g���k� then �
�n�
� � �k is the smallest root of

g�� Set � �� 


� if � � � and g���k� � � � g���k� then �
�n�
� � �k is the smallest root of

g�� Set � �� �


�



� if � � �
 compute g����k� and determine the smallest root �� of g�����k��
else set �� � 
�

� if � � 
 compute g����k� and determine the smallest root �� of g�����k��
else set �� � 
�

� �k�� �� minf��� ��� �g

�iii� k��k�


To check the convergence we use the following lower bound of ��n�� of 	���

Lemma �

Let � � � � �
�n�
� � � � �

�n���
� � and let ��n�� be the smallest positive root of g��


 � f���g
 Let p be the quadratic polynomial satisfying the interpolation conditions

p��� � g����� p
���� � g������ p��� � g�����

Then p has a unique root � � ��� �� and � � �
�n�
� 


The convergence behaviour is the same as for the nonsymmetric method� �k� �

��
�n�
� � �

�n���
� � for some k�� For k 	 k� the sequence f�kg converges quadratically and

monotonely decreasing to �
�n�
� � and it converges faster than Newtons method for g��

where 
 � f���g such that g���
�n�
� � � �� Notice that ��n���� � �

�n���
� � Hence� the

symmetric method usually will need a smaller number of bisection steps to reach its
monotonely decreasing phase than its nonsymmetric counterpart�

To test the improvement upon the nonsymmetric method we considered Toeplitz
matrices

T � m
nX

k��

�kT���k �

�

where m is chosen such that the diagonal of T is normalized to 
�

T� � �tij� � �cos���i� j���

and �k and �k are uniformly distributed random numbers taken from 	�� 
� �cf� Cy�
benko� Van Loan 	����

Table 
 contains the average number of �ops and the average number of Durbin steps
needed to determine the smallest eigenvalue in 
�� test problems with each of the
dimensions n � ��� ��� 
��� ���� �
� and n � 
��� for the methods based on rational
Hermitian interpolation� The iteration was terminated if Lemma � guaranteed the
relative error to be less than 
����

�



dimension non�symmetric method from 	�� symmetric method
�ops steps �ops steps

�� 
���
 E�� ���� ����� E�� ������� ����
�� ����� E�� ��
� ����� E�� ������� ��
�

�� 
���� E�� ���
 
���� E�� ������� ��
�
��� ���
� E�� ���� ����� E�� ������� ����
�
� ����� E�� ���� ����� E�� ������� ����

��� 
���� E�� �� �� 
���� E�� ������� ����

Tab� �� Rational Hermitian interpolation

� A symmetric projection method

The root �nding method of the last section can be interpreted as a projection method
where in each step the eigenvalue problem is projected to a � dimensional space�
Similarly as in 	�� this follows easily from

Theorem ��
Let e� and en be the unit vector containing a 
 in its �rst and last component�
respectively� and for � not in the spectrum of Tn and Tn�� let

p���� �� �g�����Tn � �I����e� � en��

Then

p���� �

�
B�



z����
�


�
CA � where z���� �� ��Tn�� � �I�����t� En���t�� �
��

and it holds that

p����
TTp���� � �

����
��	

�g���� � �g����� for � � ��

�g���� � �
g���� � g����

� � �
for � �� ��

and

p����
Tp���� � �

����
��	

g����� for � � ��

g���� � g����

� � �
for � �� ��

Proof� Equation �
�� follows immediately from�
B� 
 � � �tT tn��

�t Tn�� � �I En���t
tn�� �tTEn�� 
 � �

�
CA
�
B� 


z����
�


�
CA

�

�
B�


� �� �tTz����� tn��
�t� �Tn�� � �I�z����� En���t
tn�� � �tTEn��z���� � 
� �

�
CA � �g����

�
B�



�
�


�
CA �

�



If � is not in the spectrum of Tn then

p����
TTnp���� � �g����p����

T �Tn � �I � �I��Tn � �I����e� � en�

� �g����p����
T �e� � en� � �p����

Tp����

� ��g���� � �p����
Tp�����

and for � not in the spectrum of Tn the symmetry of Tn yields

p����
TTnp���� � ��g���� � �p����

Tp����� �
��

Hence for � �� �

p����
Tp���� � �

g���� � g����

� � �

and from eqn� �
�� we get

p����
TTnp���� � ��g���� � �

g���� � g����

� � �
��

Finally� for � � � one obtains from eqns� �
��� ��� and ���

kp����k
�
� � � � kz����k

�
� � �g�����

and from eqn� �
��

p����
TTnp���� � ��g���� � ��g������ �

Theorem � suggests the following type of projection method for computing the
smallest eigenvalue of a RSPDT matrix Tn�

�i� Choose parameters ��� � � � � �k �not in the spectrum of Tn� and solve the linear
systems

�Tn � �kI�p���k� � �g���k��e
� � en�

�ii� Determine the smallest eigenvalues �� of the projected problems

�Q�
k �

TTnQ
�
k y � ��Q�

k �
TQ�

k y �
��

where
Q�

k �� �p������ � � � � p���k�� � IR�n�k��

�iii� � � minf��� ��g

By Theorem � the entries of the projected matrices A�
k �� �Q�

k �
TTnQ

�
k and B�

k ��
�Q�

k �
TQ�

k are given by �we divided all entries by ��

a�ij �

����
��	

�g���i� � �ig
�
���i� if i � j�

�g���i� �
g���i�� g���j�

�i � �j

�i if i �� j�
�
��


�



and

b�ij �

����
��	

g����i� if i � j�

g���i�� g���j�

�i � �j

if i �� j�
�
��

In the algorithm to follow we will construct the parameters �j in the course of
the method� Increasing the dimension of the projected problem by one �adding one
parameter� essentially requires the solution of one Yule � Walker system and a small
number of level one operations to compute g���k� and g���k�� Then the matrices
A�

k and B�
k can be updated easily from the matrices of the previous step�

Symmetric projection method�
Let � � �� �� � �� and de�ne � as in eqn� �
��� Solve the linear system Tn��z � ��t�
and set z� �� z � En��z� Compute

g���� � �
� tn�� � �tTz�� g
�
���� � 
 � ���kz�k

�
��

set
A�
� �� ��g����� � IR����� and B�

� �� �g������ � IR������

and
� �� minf�g����	g

�
������g����	g

�
����g�

Choose any �� � ��� �� and set k �� ��

Repeat the following steps until convergence of the sequence f�kg�

�i� Solve the system
�Tn�� � �kI�z � ��t

by Durbins algorithm and determine whether �k � �
�n���
� or �k 	 �

�n���
� �

�ii� If �k 	 �
�n���
� then set

� �� minf�� �kg and �k �� ������ ��

else

� if � � �
 then determine g���k�� If � � 
 and g���k� � � then � �� �k

is an improved lower bound

� if � � 
 then determine g���k�� If � � �
 and g���k� � � then � �� �k

is an improved lower bound

� If � � � and g���k� � � and g���k� � � then � �� �k is an improved

lower bound of ��n��

� if � � � and g���k� � � � g���k� then �
�n�
� � �k is the smallest root of

g�� Set � �� 


� if � � � and g���k� � � � g���k� then �
�n�
� � �k is the smallest root of

g�� Set � �� �








� if � � �
 compute g����k�� update the matricesA�
k and B�

k and determine
the smallest eigenvalue �� of the k dimensional projected problem� else
set �� � 
�

� if � � 
 compute g����k�� update the matrices A�
k and B�

k and determine
the smallest eigenvalue �� of the k dimensional projected problem� else
set �� � 
�

� �k�� �� minf��� ��� �g

� test for convergence using Lemma �

� k �� k � 


The convergence properties are obtained in the same way as in 	��� Since for � �

��� ��n���� � the smallest positive root of g������ is the smallest eigenvalue of the
projected problem �
�� �for k � �� �� � � and �� � �� the symmetric projection
method converges eventually monotonely decreasing and faster than the symmetric
method from Section �� Comparing it to the Rayleigh quotient iteration it can even
be shown to be cubically convergent �cf� 	��� Theorem ���

We tested the symmetric projection method using the RSPDT matrices from �

��

In the algorithm above we took into account only vectors p���j� if �j � �
�n���
� �

In this case Durbins algorithm is known to be stable �cf� 	���� Additionally we
considered a projection method �complete projection� where p���j� was included

into the projection scheme even if a bisection step was performed since �j � �
�n���
� �

Although in the latter case Durbins algorithm is not guaranteed to be stable we
did not observe unstable behaviour� We compared the methods to the nonsymmetric
counterpart of the method from Section � based on rational Hermitian interpolation�

dimension stable projection complete projection
�ops steps �ops steps

�� 
�
�� E�� �
������ ���� 
�

� E�� �
������ ����
�� ����� E�� ����
�� ���� ����� E�� ������� ����

�� 
���� E�� ������� ���� 
���� E�� ������� ���

��� ����� E�� ������� ���� ����� E�� ������� ����
�
� ���
� E�� ����
�� ���� ����� E�� ������� ��
�

��� ����� E�� ������� ���� ����� E�� ������� ���


Tab� �� Symmetric projection method

� Concluding remarks

We have presented symmetric versions of the methods introduced in 	�� and 	�� for
computing the smallest eigenvalue of a real symmetric and positive de�nite Toeplitz
matrix which improve their nonsymmetric counterparts considerably� In our numeri�
cal tests we used Durbins algorithm to solve Yule � Walker systems and to determine


�



the location of parameters in the spectrum of Tn��� This information can be gained
from superfast Toeplitz solvers �cf� 	
�� 	��� 	��� as well� Hence the computational
complexity can be reduced to O�n log� n� operations�
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