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Abstract

In [8] and [9] W. Mackens and the present author presented two generaliza-
tions of a method of Cybenko and Van Loan [4] for computing the smallest
eigenvalue of a symmetric, positive definite Toeplitz matrix. Taking advan-
tage of the symmetry or skew symmetry of the corresponding eigenvector
both methods are improved considerably.
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1 Introduction

Several approaches have been reported in the literature for computing the small-
est eigenvalue of a real symmetric, positive definite Toeplitz matrix (RSPDT). This
problem is of considerable interest in signal processing. Given the covariance se-
quence of the observed data, Pisarenko [10] suggested a method which determines
the sinusoidal frequencies from the eigenvector of the covariance matrix associated
with its minimum eigenvalue.

Cybenko and Van Loan [4] presented an algorithm which is a combination of bisec-
tion and Newton’s method for the secular equation. Replacing Newton’s method by
a root finding method based on rational Hermitian interpolation of the secular equa-
tion Mackens and the present author in [8] improved this approach substantially. In
[9] it was shown that the algorithm from [8] is equivalent to a projection method
where in every step the eigenvalue problem is projected to a two dimensional space.
This interpretation suggested a further enhancement of Cybenko and Van Loan’s
method.



If 7, ¢ R"™" is a RSPDT matrix and E,, denotes the (n,n) flipmatrix with ones in
its secondary diagonal and zeros elsewhere, then £ = [ and T, = E,T,FE,. Hence
T,r = Az if and only if

T (Eyz) = E, T, Ex = \E, v,

and x is an eigenvector of T, if and only if £,z is. If A is a simple eigenvalue of

T, then from |[z||2 = ||Fnx|]2 we obtain @ = E,x or + = —F,x. We say that an
eigenvector = is symmetric and the corresponding eigenvalue A is even if + = F, z,
and z is called skew-symmetric and A is odd if ¢ = —F,x.

One disadvantage of the approximation schemes in [8] and [9] is that they do not
reflect the symmetry properties of the eigenvector corresponding to the minimum
eigenvalue. In this paper we present variants which take advantage of the symmetry
of the eigenvector and which essentially are of equal cost as the methods considered

in [8] and [9].

The symmetry class of the principal eigenvector is known in advance only for a small
class of Toeplitz matrices. The following result was given by Trench [11]:

Theorem 1:
Let

is

1
T = (i ismtens 3= — [ F(O)cos(j0)d0, 5 =0,1,2,0on =1,
0

where F' @ (0,7) — IR is noninereasing and F(0+) =: M > m := F(n—). Then for
every n the matriz T, has n distinct eigenvalues in (m, M), its even and odd spectra
are interlaced, and its largest eigenvalue is even.

If T,, satisfies the conditions of Theorem 1 then for even n the principal eigenvector is
odd and vice versa. For general Toeplitz matrices T,, the symmetry class is detected
by the algorithm at negligible cost.

The paper is organized as follows. In Section 2 we briefly sketch the algorithms from
[8] and [9]. Sections 3 and 4 describe their generalizations if the symmetry class of
the principal eigenvector is taken into account. Finally, some concluding remarks
are made in Section 5.

2 Nonsymmetric methods

In this section we briefly review the approach to the computation of the smallest
eigenvalue of a RSPDT matrix which was presented in [8] and [9].

Let
T, = (ti)ij=t1.... € R

be a RSPDT matrix. We denote by T} € IRV its j-th principal submatrix, and we
assume that its diagonal is normalized by o = 1. If )\(1]) < )\(2]) <...< AY) are the
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eigenvalues of T} then the interlacing property )\;k_)l < )\gk__ll) < )\gk)
holds.

Eliminating the variables z, ..., z, from the system

1—X T 0
t o, T =X T

that characterizes the eigenvalue of T, one obtains
(1 — A= tT(Tn_l — A[)_lt)l'l =0.

We assume that )\(ln) < )\(ln_l). Then x; # 0, and )\(ln) is the smallest root of the
secular equation
T = =1+ X+ 15Ty =AM = 0. (1)
(n—1)

f is strictly monotonely increasing and strictly convex in the interval (0, ;" /).

(n—1)

Therefore for every initial guess uo € ()\(ln),)\l ) Newton’s method converges

(n)

monotonely decreasing and quadratically to A;"’. Since

F'O) =1L+ [(Tamy = M) 73

a Newton step can be performed in the following way:

-1 —yTt
Solve (T,—1 — pr 1)y = —t for y, and set ppr1 = p, — + 2y
T+ lyliz
where the Yule — Walker system (7,,-y — pul)y = —t can be solved by Durbin’s

algorithm (cf. [6], p. 195) requiring 2n? flops.

An initial guess o for Newton’s method can be obtained by a bisection process. If
ft is not in the spectrum of any of the submatrices T; — I then Durbin’s algorithm
for (T — pl)/(1 — p) determines a lower triangular matrix L such that

%L(T —u)LT = diag{1,6y,...,6,_1}.
— 1

Hence, from Sylvester’s law of inertia we obtain that

() p< A ifd;, >0forj=1,...,n—1,

(i) pe A A, > 0forj=1,...,n—2and 6,_; <0
(iii) g > A" S, < 0 for some j € {1,...,n — 2},

Cybenko and Van Loan combined a bisection method with Newton’s method for
computing the minimum eigenvalue of T;,.

(n) (n—1)

Since the smallest root A"’ and the smallest pole A; of the rational function f
can be very close to each other usually a large number of bisection steps is needed
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to get a suitable initial approximation of Newton’s method. Moreover, the global
convergence behaviour of Newton’s method can be quite unsatisfactory. In [8] the
approach of Cybenko and Van Loan was improved substantially using a root finding
method which is based on a rational model

90 p) = (0) + PO+ X

(n)

where 1 is the current approximation of A}, and b and ¢ are determined such that
9l ) = f(p), o'(ps ) = f'(w).

It is shown that for u, € ()\(ln),)\(ln_l)) the function ¢(-; ur) has exactly one zero
trt1 € (0, py) and that

MY < pn < g — Fl) [ ()
(n)

Hence, the sequence {py} converges monotonely decreasing to A}, the convergence
is quadratic and faster than the convergence of Newton’s method. The essential cost
of one step are the same as for one Newton step.

In [9] it was shown that the smallest root of ¢g(+; 1) is the smallest eigenvalue of the
projected eigenvalue problem

QTT.Q¢ = XQT Q¢ (2)

where
Q = (q(0),q(n)) € R

and ¢(v) := (T, — vI)~e!, e = (1,0,...,0)T. This interpretation suggests general-
izations of the method where the problem is projected to subspaces

span{q(tt), - -, q(px)}

of the same type of increasing order k where the parameters p; are constructed in
the course of the algorithm. The resulting method was shown to be at least cubically
convergent.

The representation in (2) clearly demonstrates a weakness of the approaches in [§]
and [9]: Although the eigenvector corresponding to )\(ln) is known to be symmetric
or skew-symmetric the trial vectors in the projection method have neither of these

properties.



3 Exploiting symmetry in rational interpolation

In this section we discuss a variant of the approximation scheme from [8] that exploits
the symmetry and skew-symmetry of the corresponding eigenvector, respectively.

To take into account the symmetry properties of the eigenvector we eliminate the

variables x,,...,x,_1 from the system
1—X T .ty
tN 5 Tn—2 — A 5 En_QtN r=20 (3)
ther , tTE,, 1 —2X

where ¢ = (t1, ..y tna)t.

Then every eigenvalue A of T;, which is not in the spectrum of 7,_5 is an eigenvalue
of the two dimensional nonlinear eigenvalue problem

1—X— {T(Tn_z — )\[)_1{ 5 tn—l — {T(Tn_z — A])_lEn_QtN 1 —0
tny — By y(Taey — A 1= A= iT(Ty_y — A)~Y Te )
(4)

Moreover, if such a X is an even eigenvalue of T,,, then (1,1)T is the corresponding
eigenvector of problem (4), and if A is an odd eigenvalue of T, then (1,—1)7 is the
corresponding eigenvector of system (4).

Hence, if the smallest eigenvalue )\(ln) is even, then it is the smallest root of the
rational function

Gr(N) = =1 =ty F A T(Thy = X)) 7Y 4 E,_ol), (5)
and if )\(ln) is an odd eigenvalue of T, then it is the smallest root of

Go(N) = =1+t + A+ I Ty — AN = Boad). (6)

If the symmetry class of the principal eigenvector is known in advance then a straight
forward generalization of the scheme in [8] can be based on (5) or (6), respectively.
In the general case it is the minimum of the smallest roots of g4 and ¢g_, and the
symmetry class must be detected by the method itself.

The elimination of x3,...,x,_1 is nothing else but exact condensation of the eigen-
value problem T'x = Ax where a1 and z, are chosen to be masters and x,,..., 2, 1
are the slaves. If ', ..., ¢"7% denotes an orthonormal set of eigenvectors of the slave
problem

Tood?d =Nl =102,
then the functions g4 and g_ can be written as (cf. [7])
n—2 2

g2() = g5(0) + b (00N + N7 Y0 TR (7)
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Fig 1: Graphs of f, g4 and g_

where
g:l:(o) =-1 Flpor + tNTTn__IQ(th: En—ZtN)a
gi(0) = L+ T2 (1 £ Eoal) = 1405|125 (F £ Eaad)3,
and
1 T .
oy = NG (¢’) (t + F,_at).

J
Hence, the zeros of g, and ¢g_ are the even and odd eigenvalues of T,,, and the poles
of g4 and g_ are the even and odd eigenvalues of T),_, respectively. Figure 1 shows
the graphs of the functions f, g and ¢g_ for a Toeplitz matrix of dimension 32.

(n)

If we are given an approximation g of Aj"’ then equation (7) suggests the following
rational Hermitian approximation of g4 ()):

b
ha(X; 1) = 95(0) + g (0)A + 22— (8)
C4 — A
where the parameters by and ¢4 are determined from the Hermitian interpolation
conditions

ha (g5 10) = g (pe), Wy (ps ) = gl(p). (9)

Following the lines of the proof of Theorem 1 in [8] one gets the basic properties of
hy.

Theorem 2:
Let wy be the smallest pole of gy, let € [0,wy), and let hy be defined by equations
(8) and (9). Then it holds that



(Z) by >0 and c+ > U,
whence hy is strictly monotonely increasing and strictly convex in [0,cq).

(ii) he(A™) < 0.

From Theorem 2 we deduce the following method for computing the smallest eigen-
value of a RSPDT matrix 7). Set a = 0 as a lower bound of the smallest ei(genvalue
and let the variable 7 monitor whether )\(ln) ln)

is even or odd or the type of A} is not

yet known:
1 if AMis odd
T = 0  if the type of )\(ln) is unknown (10)
1 if A(ln)is even
To obtain an upper bound of )\(ln) solve the Yule - Walker system T),_5z = —t, and
let zy ;=24 K, 9z and z_ := 2z — E,_52. Then

9+(0) = =1 F ooy — ' 2g, ¢4(0) = 14 0.5]|24|3,
and from the monotonicity and convexity of g, and ¢g_ in [0, A(ln)] it follows that

B := min{—g;(0)/9}(0),—9-(0)/¢~(0)}
(n)

is an upper bound of A;".

Choose po € (0, 5], set k := 0, and do the following steps until convergence of the
sequence { i }:

1. Solve (T,,_3 — pxl)y = —1 using Durbin’s algorithm and determine whether

[y > )\(171—2) or not.

2. I py > )\(ln_Q) then do a bisection step:

B = g, pryr = 0.5(a + 3)
(n)

otherwise obtain new bounds of A}~ in the following way:
— if 7 > —1 then determine gy (pg). If 7 =1 and g4 (ur) < 0 then o 1= py
is an improved lower bound

— if 7 < 1 then determine g_(ug). If 7 = —1 and g_(ux) < 0 then o := py
is an improved lower bound

—If 7 =0 and g4 (px) < 0 and g_(px) < 0 then a := py is an improved

(n)

lower bound of A}

—if T =0and g_(ur) < 0 < g4(ux) then )\(ln) < i 1s the smallest root of

gt Set T:=1

—if 7 =0 and g4 (ur) < 0 < g_(ux) then )\(ln) < i 1s the smallest root of
g_.Set 7:=—1



— if 7 > —1 compute ¢/ (1) and determine the smallest root p1 of gy (-5 pr);
else set p, = 1.

— if 7 < 1 compute ¢’ (1) and determine the smallest root p_ of g_(+; ur);
else set p_ = 1.

— pet1 :=min{py, p_, B}
(iii) k:=k+1

(n)

To check the convergence we use the following lower bound of A}" of [§].

Lemma 3
Let 0 < a < )\(ln) <p < )\(ln_l), and let )\(ln) be the smallest positive rootl of .,
o € {+,—}. Let p be the quadratic polynomial satisfying the interpolation conditions

pla) = go(a), p'(a) =g (a), p(n) = go(p).

Then p has a unique root k € (o, p) and r < A(ln).

The convergence behaviour is the same as for the nonsymmetric method: ug, €
()\(ln), )\(ln_Q)) for some kq. For k > kg the sequence {py} converges quadratically and
monotonely decreasing to A(ln), and 1t converges faster than Newton’s method for g,,
where o € {+,—} such that go()\(ln)) = 0. Notice that )\(ln_l) < A(ln_z). Hence, the
symmetric method usually will need a smaller number of bisection steps to reach its
monotonely decreasing phase than its nonsymmetric counterpart.

To test the improvement upon the nonsymmetric method we considered Toeplitz
matrices

T = mznkT27r9k (11)
k=1

where m is chosen such that the diagonal of T"is normalized to 1,

Ty = (i) = (cos(0(i — j)))

and n; and 6 are uniformly distributed random numbers taken from [0, 1] (cf. Cy-

benko, Van Loan [4]).

Table 1 contains the average number of flops and the average number of Durbin steps
needed to determine the smallest eigenvalue in 100 test problems with each of the
dimensions n = 32, 64, 128, 256, 512 and n = 1024 for the methods based on rational
Hermitian interpolation. The iteration was terminated if Lemma 3 guaranteed the
relative error to be less than 107°.



dimension | non-symmetric method from [§] symmetric method
flops steps flops steps
32 | 1.071 E04 4.55 9.087 E03 (84.9%) | 3.75
64 | 4.545 E04 5.19 3.653 £04 (80.4%) | 4.12
128 | 1.695 E05 5.01 1.407 E05 (83.0%) | 4.14
256 | 7.310 E05 5.50 6.046 E05 (82.7%) | 4.55
512 | 3.297 E06 6.25 2.597 E06 (78.8%) | 4.92
1024 | 1.352 EO7 6,44 1.065 EO07 (78.8%) | 5.08

Tab. 1. Rational Hermitian interpolation

4 A symmetric projection method

The root finding method of the last section can be interpreted as a projection method
where in each step the eigenvalue problem is projected to a 2 dimensional space.
Similarly as in [9] this follows easily from

Theorem 4:
Let e and €™ be the unit vector containing a 1 in its first and last component,
respectively, and for X not in the spectrum of T, and T, _5 let

p+(N) = —gs (V)T — X)) 7' (e £ €M),
Then

1
pr(A) = ( z4(A) ) . where zo(X) == —(T,—y — )\[)_l(fj: En_gtN), (12)
+1

and it holds that
—g+(A) + AgL(N) for A= p,

p(A) Tps(p) =2 —ge(N) + )\gi()\))\ :ii(ﬂ) for X #p,

and

gi(A) for A=y,

PN pe(1) =29 g1 (X)) — g lp)
- for X# p.

Proof: Equation (12) follows immediately from

1—A 17 to 1 1
i T,y — XN E,_,i z:(N)
toer TE,a 1= +1

L= A+t (N £t 1
= ( t+ (Thg — M)ze (M) £ En2£> = —g+()) ( 0 ) :

th_1+ tNTEn_QZi()\) +1 + A
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If ¢ is not in the spectrum of T}, then

PN Topz(p) = —ga(p)psN) (T = pd + pI)(Ty = pI) ™ (e £ €7)
= —ge(ps V)T (e £ &™) + pupe (N pe ()
= —2g+(p) + pp£ (M) pe(p),

and for A not in the spectrum of T,, the symmetry of T}, yields
PN Tapz (i) = =29 (A) + Ape(N) pe(p0)- (13)

Hence for A £
9 (N) = g+ (1)

p+(N) pe(p) =2

and from eqn. (13) we get

A) —
PO Lupaly) = —2a(3) + 22 20y
Finally, for A = p one obtains from eqns. (12), (5) and (6)
PNz =2 + [lz£ (V]2 = 265 (M)

and from eqn. (13)
PN Tope(N) = =29 (A) +2XgL (V). D

Theorem 4 suggests the following type of projection method for computing the
smallest eigenvalue of a RSPDT matrix T),:

(i) Choose parameters p1, ..., (not in the spectrum of T,,) and solve the linear
systems

(T — g Dp(px) = —ga(pur) (€' £ ")
(ii) Determine the smallest eigenvalues py of the projected problems
Q) 1.Q5y = MQF) Qiy (14)

where
Qf = (p=(p1), - -+, ppr)) € RUA.

(iii) A = min{ps.p_}

By Theorem 4 the entries of the projected matrices Af = (Qf)TTan and B,:f =
(QE)TQE are given by (we divided all entries by 2)

—gx (i) + pigl (1) if =y,
+
ai; = i) — j e ) (15)
! —gx (i) + gi(ﬂﬂ)_i%(ﬂj)ﬂi if @47,
i J
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and

gl (1) if i=j,
pt = N , 16
i gx (i) — g+(1t5) it (16)
i — [

In the algorithm to follow we will construct the parameters p; in the course of
the method. Increasing the dimension of the projected problem by one (adding one
parameter) essentially requires the solution of one Yule — Walker system and a small
number of level one operations to compute g4 (ux) and g—(pr). Then the matrices
AE and BE can be updated easily from the matrices of the previous step.

Symmetric projection method:
Let a = 0, y1; = 0, and define 7 as in eqn. (10). Solve the linear system T}, _z = —1,
and set z4 := z £+ E,_5z. Compute

g+(0) = =1 Ftoq — 724, ¢4 (0) = 14 0.5]z 3,
set
AF = (—g+(0)) e R and  BY := (¢,.(0)) € R™MY,
and
3 = min{—g4(0)/¢}(0), —g-(0)/g_(0)}.
Choose any ps € (0, 3] and set k := 2.

Repeat the following steps until convergence of the sequence {p }:

(i) Solve the system
(T2 —ppl)z = —t

by Durbin’s algorithm and determine whether u; < )\(ln_Q) or [l > )\(ln_Q).

(i) If pp > )\(ln_Q) then set

B :=min{f, pur} and pg = 0.5(c + )
else
— if 7 > —1 then determine gy (pg). If 7 =1 and g4 (ur) < 0 then o 1= py
is an improved lower bound

— if 7 < 1 then determine g_(ug). If 7 = —1 and g_(ux) < 0 then o := py
is an improved lower bound

—If 7 =0 and g4 (px) < 0 and g_(px) < 0 then a := py is an improved
(n)

lower bound of A}"

—if T =0and g_(ur) < 0 < g4(ux) then )\(ln) < i 1s the smallest root of
gt Set T:=1

—if 7 =0 and g4 (ur) < 0 < g_(ux) then )\(ln) < i 1s the smallest root of
g_.Set 7:=—1
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— if 7 > —1 compute ¢/, (y1z), update the matrices Af and B; and determine
the smallest eigenvalue p, of the k dimensional projected problem; else
set pp = 1.

— if 7 < 1 compute ¢ (px), update the matrices A, and B, and determine
the smallest eigenvalue p_ of the k dimensional projected problem; else
set p_ = 1.

— pet1 :=min{py, p_, B}

— test for convergence using Lemma 3

—k=k+1

The convergence properties are obtained in the same way as in [9]: Since for p €
(07)\(171—2)) the smallest positive root of gi(-;u) is the smallest eigenvalue of the
projected problem (14) (for k& = 2, y; = 0 and gy = p) the symmetric projection
method converges eventually monotonely decreasing and faster than the symmetric
method from Section 3. Comparing it to the Rayleigh quotient iteration it can even
be shown to be cubically convergent (cf. [9], Theorem 5).

We tested the symmetric projection method using the RSPDT matrices from (11).
In the algorithm above we took into account only vectors pi(u;) if p; < A(ln_Z).
In this case Durbin’s algorithm is known to be stable (cf. [3]). Additionally we
considered a projection method (complete projection) where py(;) was included
into the projection scheme even if a bisection step was performed since p; > A(ln_Z).
Although in the latter case Durbin’s algorithm is not guaranteed to be stable we
did not observe unstable behaviour. We compared the methods to the nonsymmetric
counterpart of the method from Section 3 based on rational Hermitian interpolation.

dimension stable projection complete projection

flops steps flops steps
32 1.124 F04 (105.0%) | 3.69 | 1.117 F04 (104.4%) | 3.60
64 3.776 £04 (83.1%) 3.97 | 3.574 E04 (78.6%) 3.72
128 1.399 K05 (82.5%) | 4.04 | 1.330 E05 (78.5%) 3.81
256 5.863 £05 (80.2%) | 4.39 | 5.425 E05 (74.2%) 4.03
512 2.410 E06 (73.1%) | 4.56 | 2.202 £06 (66.8%) 4.15
1024 9.982 £06 (73.8%) | 4.76 | 8.879 K06 (65.7%) 4.21

Tab. 2. Symmetric projection method

5 Concluding remarks

We have presented symmetric versions of the methods introduced in [8] and [9] for
computing the smallest eigenvalue of a real symmetric and positive definite Toeplitz
matrix which improve their nonsymmetric counterparts considerably. In our numeri-
cal tests we used Durbin’s algorithm to solve Yule — Walker systems and to determine
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the location of parameters in the spectrum of 7T),_5. This information can be gained
from superfast Toeplitz solvers (cf. [1], [2], [5]) as well. Hence the computational
complexity can be reduced to O(n log®n) operations.
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