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Abstract
Fictitious domain methods, such as the finite cell method, simplify the discretization of a domain significantly. This is because
the mesh does not need to conform to the domain of interest. However, because the mesh generation is simplified, broken
cells with discontinuous integrands must be integrated using special quadrature schemes. The moment fitting quadrature
is a very efficient scheme for integrating broken cells since the number of integration points generated is much lower as
compared to the commonly used adaptive octree scheme. However, standard moment fitting rules can lead to integration
points with negative weights. Whereas negative weights might not cause any difficulties when solving linear problems, this
can change drastically when considering nonlinear problems such as hyperelasticity or elastoplasticity. Then negative weights
can lead to a divergence of the Newton-Raphson method applied within the incremental/iterative procedure of the nonlinear
computation. In this paper, we extend the moment fitting method with constraints that ensure the generation of positive
weights when solving the moment fitting equations. This can be achieved by employing a so-called non-negative least square
solver. The performance of the non-negative moment fitting scheme will be illustrated using different numerical examples in
hyperelasticity and elastoplasticity.

Keywords Finite cell method · Numerical integration · Moment fitting · Large deformations

1 Introduction

Over the last few years, interest in fictitious domainmethods,
such as the finite cell method (FCM) [12,14,38,44], Cut-
FEM [7,8], or CutIGA [15], has increased rapidly, mainly
because the mesh generation process is simpler than that
of the standard finite element method (FEM). In fictitious
domain methods, the mesh does not need to conform to
the geometry, which results in elements/cells that are cut
by the boundary of the domain. Consequently, those broken
elements/cells lead to discontinuous integrands that need to
be evaluated using more sophisticated numerical integration
schemes, since the standard Gauss-Legendre quadrature will
not performwell anymore. In this paper, we will focus on the
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numerical integration of broken cells in the finite cell method
– which is a combination of the fictitious domain approach
with high-order finite elements [12,38].

One possibility for integrating broken cells is the use of
the adaptive spacetree decomposition [2,3,12] – quadtree
or octree in two or three-dimensional space, respectively.
Thereby, the integration domain of each broken cell is sub-
divided into smaller sub-cells until a user-defined tree-depth
level is reached. Afterwards, the Gauss-Legendre quadrature
scheme is applied on a cell or sub-cell level excluding the
points that are located outside of the physical domain. The
approach based on spacetree decomposition is very robust
especially for nonlinear applications, and it is also fully
automatic and easy to implement. However, it results in a
large number of integration points, which renders themethod
very expensive. In this paper, we will use this approach as
a reference solution when compared to the newly proposed
methods.

It was shown in [39,40] that the approach based on the
spacetree decomposition could be further improved by com-
pressing the sub-cells of each broken cell that are located
completely in the physical domain, which can lead to a much
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lower number of integration points. Another improvement
was suggested in [31,32], where the octree is combined with
a node relocation and high-order polynomials in a so-called
smart octree. In doing so, the geometry can be captured with
a smaller number of refinement levels, and consequently, less
integration points are generated.

A second approach for integrating broken cells is based on
equivalent polynomials, as proposed by [1,51,52]. Thereby,
the discontinuous integrand is first transformed into a smooth
one with the help of equivalent polynomials. Afterwards, the
standard Gauss-Legendre scheme can be applied to integrate
the broken cells since the integrand is not discontinuous any-
more.

Another, yet very promising approach for integrating bro-
ken cells is based on the moment fitting quadrature. Here, for
each broken cell a separate quadrature rule is constructed by
solving the moment fitting equations [35,48]. The moment
fitting was applied in the context of the finite cell method
where an adaptive scheme was applied to distribute the inte-
gration points only in the physical domain [27]. Afterwards,
a linear least square solver is utilized to solve the moment
fitting equations. In [10,23], the position of the integration
points was chosen as the Gauss-Legendre points allowing
them to be located also outside of the physical domain. This
results in awell-conditioned linear system of equations of the
moment fitting even for high-order functions. Furthermore,
in [11,22], Lagrange polynomials through Gauss-Legendre
points were used as a basis for the moment fitting quadrature.
In doing so, taking advantage of theKronecker delta property,
the solving of a linear system of equations can be avoided.
Those versions of the moment fitting quadrature work well
for linear problems.

On the other hand, for nonlinear problems, standard
moment fitting quadratures turn out to deteriorate the stability
of the overall nonlinear solution procedure. This is due to the
existence of some integration points with negative weights
which can lead to the divergence of the Newton-Raphson
method during the incremental/iterative procedure of the
nonlinear computation. To overcome this problem, [11,22]
suggested an adaptive version of the moment fitting scheme.
Here, the moment fitting quadrature is combined with the
adaptive octree, where the moment fitting is applied on a
cell or a sub-cell level depending on the volume fraction of
the broken cell. This approach improves the robustness of the
moment fitting quite well. However, the number of generated
integration points is still too large as compared to the stan-
dard moment fitting. In [25] a non-negative moment fitting
quadrature was suggested for integrating one-dimensional
functions. Here, the moment fitting quadrature was extended
to include an additional constraint to ensure the genera-
tion of only positive weights when solving the linear least
square problem. This approachwas recently further extended
in [34] to two-dimensional problems in linear elasticity as

well as in small strain elastoplasticity showing promising
results.

In this paper, we will extend the work done by Huy-
brechs [25] and Legrain [34], and apply the non-negative
moment fitting approach to three-dimensional problems of
solid mechanics. Furthermore, wewill test the stability of the
proposed approach for a large deformation analysis including
geometrical and material nonlinearities in both hyperelastic-
ity and finite J2 elastoplasticity. As an application, foamed
types of materials will be considered since they pose a com-
plex geometry. Furthermore, a new reduced version of the
adaptive moment fitting will be introduced. Thereby, the
order of the quadrature is reduced by one for every refine-
ment level of the octree, as it was done in [3]. In doing
so, the number of integration points can be reduced signifi-
cantly while not affecting the accuracy too much. We want
to emphasize the fact that a reduction of the number of inte-
gration points for nonlinear problems is very important since
the cost per integration point is much higher than for lin-
ear problems and the system has to be recomputed many
times during the incremental/iterative procedure. Therefore,
reducing the number of integration points will be very bene-
ficial for several reasons. The overhead of the moment fitting
will be amortized during the many re-computations of the
nonlinear problem. Finally, the non-negative moment fitting
and the reduced adaptive moment fitting approaches will be
compared in terms of robustness and efficiency (number of
integration points) to the existing approaches of the adaptive
octree, the moment fitting, and the adaptive moment fitting.

This paper is organized as follows: Sec. 2 illustrates the
basic idea of the finite cell method. In Sec. 3, the different
numerical integration schemes used in this paperwill be sum-
marized, together with the proposed non-negative moment
fitting approach. In Sec. 4, preliminary investigations will
be presented for the different moment fitting approaches. In
Sec. 5, detailed investigations of the different moment fitting
quadrature schemes will be carried out based on a hyperelas-
tic material model – including a large deformation analysis.
In Sec. 6, the different moment fitting quadrature schemes
will be investigated for a finite J2 elastoplastic material
model, also including a large deformation analysis. Finally,
the paper is concluded in Sec. 7.

2 The finite cell method

The finite cell method is a combination of the fictitious
domain approach with high-order finite elements [49]. It
has been successfully applied to a variety of problems in
solid mechanics – such as thermoelasticity [56], geometrical
nonlinearities [20,45], explicit and implicit elastodynamics
[16,26], biomechanics [43,53,55], elastoplasticity [3,22,50],
modeling of fracture and crack propagation [24,37,41,42],
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Fig. 1 Basic concept of the
FCM

and microstructured materials [13,30]. The basic idea of
the FCM is outlined in Fig. 1 for a two-dimensional case.
Therein, the physical domain � is embedded into a fictitious
domain �e \ �, resulting in an extended domain �e that
has a simple shape. The extended domain is then discretized
using a Cartesian grid excluding the cells that are completely
outside of the physical domain.

To account for the geometry of the real problem, the indi-
cator function α is introduced to the weak form with a value
of one inside the physical domain and a value of zero else-
where. Consequently, the nonlinear weak form defined in the
initial configuration reads [4,54]

Gα
e =

∫

�e

α P · Grad η dV −
∫

�N
0

t̄ · η dA = 0. (1)

Here, P corresponds to the first Piola-Kirchhoff stress tensor,
η denotes the test function, and t̄ defines the applied traction
on the boundary �N

0 . Dirichlet boundary conditions ū are
applied on the boundary�D

0 . Equation (1) is highly nonlinear
since it involves both geometrical andphysical nonlinearities.
Applying the directional derivative DGα

e · �u results in the
following linearized form

DGα
e · �u =

∫

�e

α AGrad�u · Grad η dV , (2)

which will serve as a basis for the Newton-Raphson method.
Here, �u refers to the displacement increment and A is a
fourth order tensor defined as follows

A = ∂ P
∂F

, (3)

where F corresponds to the deformation gradient. Finally,
the linearized weak form reads

∫

�e

α AGrad�u · Grad η dV =
∫

�N
0

t̄ · η dA −
∫

�e

α P · Grad η dV , (4)

which is then discretized using the finite cell method utilizing
hierarchical shape functions of high order. As a result, the
global system of equations reads

K i
T (uik) �ui+1

k = −Gi (uik), (5)

which needs to be solved at every Newton iteration i within
every load step k. Here, K i

T (uik) and Gi (uik) correspond to
the global tangent stiffness matrix and the out of balance
vector, respectively, resulting from the assembly process

K i
T =

nc

A
c=1

kc,i , Gi =
nc

A
c=1

gc,i . (6)

The cell stiffness matrix kc,i and the residual vector gc,i are
defined as follows

kc,i =
∫

�c

α GT Av G dV ,

gc,i =
∫

�c

α GT Pv dV −
∫

�N
0

NT t̄k dA. (7)

The quantities with the upper index “v” are implemented
in Voigt notation. The discrete gradient operator G contains
derivatives of the shapes functions, while the matrix N con-
tains the shape functions of the corresponding cell c. The
solution u is then updated at every iteration i of the current
load increment k

ui+1
k = uik + �ui+1. (8)

The integrals in Equation (7) are discontinuous because of
the presence of the indicator function α. Therefore, special
quadrature schemes need to be applied to integrate the cells
that are cut by the boundary of the geometry, as will be
explained in detail in Sec. 3.

3 Numerical integration

This section provides a brief introduction to the quadrature
schemes used in this paper to integrate cut elements and cells.
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Fig. 2 Numerical integration utilizing a quadtree with a tree-depth of

kAOT = 2 and a quadrature order of pq = 2n
1
d − 1 = 9. Points for

integrating the physical domain (bottom). Additional points for stabi-
lization (top)

We will start with the adaptive octree quadrature and then
focus on the non-negative moment fitting scheme.

3.1 Adaptive octree quadrature

In the adaptive octree quadrature scheme (AOT), each broken
cell is partitioned into sub-cells utilizing an octree decompo-
sition to capture the boundary of the domain more accurately
until a user-defined tree-depth level kAOT is reached. After-
wards, the standard Gauss-Legendre quadrature is applied to
each of the sub-cells, see [2,12]. Furthermore, all points that
are located outside of the physical domain are neglected. In
Fig. 2 (bottom), a quadtree of a tree-depth level of kAOT = 2
is applied to a two-dimensional plate with a circular hole

with a quadrature order of pq = 2n
1
d − 1 = 9. Here, n cor-

responds to the number of integration points and d refer to
the space dimension of the problem.

3.2 Moment fitting

In the moment fitting quadrature scheme (MF), a new rule
is derived for every broken cell by solving the following
moment fitting system of equations:

n∑
i=1

f j (xi ) wi =
∫

�

f j (x) d�, j = 1, . . . ,m. (9)

Here, f j defines the basis functions that serve to approxi-
mate the function we need to integrate, and xi denotes the
position of the integration point i with the corresponding
weight wi . Furthermore, n and m correspond to the number
of integration points and the number of basis functions used,
respectively. Equation (9) can also be expressed in matrix
notation as follows

⎡
⎢⎣

f1 (x1) . . . f1 (xn)
...

. . .
...

fm (x1) . . . fm (xn)

⎤
⎥⎦
⎧⎪⎨
⎪⎩

w1
...

wn

⎫⎪⎬
⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
�

f1 (x) d�

...∫
�

fm (x) d�

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10)

or in a compact form

Aw = b. (11)

Here, A is referred to as the coefficient matrix containing
the evaluation of the basis functions f j at the integration
points xi . The right-hand side of Equation (10) is referred
to as the moments b, which can be computed in different
ways. In this paper, we follow the approach suggested by
[22], where the moments are integrated utilizing the adaptive
octree quadrature as explained in Sec. 3.1. Using

m = (pq + 1
)d (12)

polynomials as basis functions, the moment fitting can inte-
grate a polynomial exactly up to an order of pq . Since the
coefficient matrix A depends on the position of the integra-
tion points, the system is nonlinear w.r.t. the points xi but
linear w.r.t. the weights wi . The system can be transferred
into a linear one by fixing the position of the points a pri-
ori. In [19,22], the positions were chosen according to the
Gauss-Legendre points. Setting n = m results in a square
coefficient matrix A. At this point, one has the freedom to
decide what polynomials to use for f j . In this section, as
suggested in [22], we choose Lagrange polynomials through
the integration points such that f j (xi ) = δ j i . In doing so,
taking advantage of the Kronecker delta property, the coef-
ficient matrix is then reduced to the identity matrix. Thus,
the solution of the linear system is trivial and the weights are
computed by integrating the moments as follows

⎧⎪⎨
⎪⎩

w1
...

wn

⎫⎪⎬
⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
�

f1 (x) d�

...∫
�

fn (x) d�

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (13)
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Table 1 The different number of integration points utilizing the AMF and the RAMF on a cell or a sub-cell level

Tree-depth kMF Volume fraction v AMF points n RAMF points n

0 85% (pq + 1)d (pq + 1)d

1 70% (pq + 1)d n = (pq )d , if n < (
pq+1
2 + 2)d , then n = (pq + 1)d

2 70% (pq + 1)d max{(pq − 1)d , ( pq+1
2 + 1)d }

3 MF is applied directly (pq + 1)d max{(pq − 2)d , ( pq+1
2 + 1)d }

Thismoment fitting approach has the advantage of being able
to compute the weights without having to solve a linear sys-
tem at all. Nevertheless, one drawback of such an approach
is that the weights are not guaranteed to be positive for all of
the integration points. Unfortunately, negative weights can
become very critical when solving nonlinear problems since
the Newton-Raphson scheme tends to diverge during the
incremental/iterative solution procedure, as will be shown
in Secs. 5 and 6 .

3.3 Adaptive moment fitting

In [11,22], the so-called adaptive moment fitting (AMF)
was introduced to improve the stability of the moment fit-
ting quadrature for nonlinear applications. In the AMF, the
moment fitting is combined with the adaptive octree, where
for every broken cell the volume fraction v of the physical
domain

v = volume of the physical domain

volume of the extended domain
× 100% (14)

is computed to identify how badly a cell is cut by the bound-
ary of the domain. Consequently, the moment fitting scheme
is applied directly to the cell if the volume fraction v is
greater than a user-defined threshold. Otherwise, the cell
is partitioned into sub-cells applying the octree decomposi-
tion. Subsequently, the moment fitting quadrature is utilized
on the broken sub-cells depending on their volume fraction,
while the standard Gauss-Legendre quadrature is performed
for non-broken sub-cells. Table 1 shows the threshold values
of the volume fraction related to each refinement level kMF

of the moment fitting, which can reach up to a maximum
tree-depth of three. If higher tree-depth levels are needed for
the resolution of the geometry, this will be considered for the
computation of the moments (13). The tree-depth level used
for the computation of the moments is chosen as kAOT-kMF.
Note that the adaptive octree refinement for the computation
of the moments starts from the existing refinement level kMF,
see also the example given below.

In this contribution, the number of integration points used
for themoment fittingwill be reduced instead of just using the
“full” number of points of (pq+1)d for every refinement level
kMF, as was done in [22]. To this end, a reduced version of

Fig. 3 Numerical integration of a broken cell with a tree-depth kAOT =
4 and a quadrature order pq = 9. Applying the reduced adaptive
moment fitting (bottom). Applying the adaptive quadtree for the top-
right sub-cell �tr

sc to compute the moments (top)

the adaptivemoment fitting (RAMF) is proposed to lower the
number of integration points without affecting the solution
significantly. Here, a number of (pq + 1)d integration points
is only applied if the cell is not refined, i.e., kMF = 0. If
the moment fitting is applied to the first refinement level of
kMF = 1, the total number of points is reduced to n = (pq)d .
However, if the resulting number of points on this level is less
than (

pq+1
2 +2)d , the “full” number of points of (pq +1)d is

utilized. If themoment fitting is applied to the second or third
refinement levels, then a set of (pq −1)d or (pq −2)d points
is used, respectively. Nevertheless, the total number of points
on both levels is not allowed to be less than (

pq+1
2 + 1)d to

ensure a stable integration scheme, as illustrated in Table 1.
The RAMF scheme is only applied for quadrature orders
larger than three (pq > 3).

An example that illustrates the reduction of the integration
points is given in Fig. 3 (bottom) for an intended quadrature
order of pq = 9 and a tree-depth level of kAOT = 4 in two-
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dimensions for the sake of simplicity. Since the cell is badly
broken, it is first refined into four sub-cells. The moment
fitting is performed on the sub-cell on the top left with
(pq)2 = 81 integration points instead of (pq + 1)2 = 100
points, since the sub-cell is located on a tree-depth level of
kMF = 1. As the sub-cell on the bottom left is not bro-
ken, the standard Gauss-Legendre quadrature is utilized with
(
pq+1
2 )2 = 25 integration points. The two remaining sub-

cells are still badly broken and are therefore further refined.
This process continues in the same manner until a maxi-
mum refinement level of kMF = 3 is reached. After that, the
moment fitting is utilized – no matter how badly the cell is
cut. Higher refinement levels than three are considered in
the computation of the right-hand side of the moment fit-
ting equations (13). Let us now examine the sub-cell on the
top right �tr

sc. Here, the moment fitting is applied with only
(pq −1)2 = 64 integration points instead of (pq +1)2 = 100
points since they are located on a tree-depth level of kMF = 2.
For computing themoments, the adaptive quadtree is utilized
with an integration depth of kAOT − kMF = 4 − 2 = 2, as
illustrated in Fig. 3 (top).

3.4 Non-negative moment fitting

A non-negative moment fitting approach (NNMF) was
recently proposed by Legrain [34] to ensure the construc-
tion of a quadrature rule with only positive weights. The
approach was applied to one- and two-dimensional problems
in linear elasticity and small strain elastoplasticity. Thereby,
the construction of a non-negative moment fitting quadra-
ture was realized with the help of a non-negative least square
solver (NNLS). In this contribution, the approach of Legrain
[34] will be extended to three-dimensional problems includ-
ing geometrical and physical nonlinearities with hyperelastic
and finite J2 elastoplastic material models.

Starting from the moment fitting equations (9), the type
of polynomials to be used needs to be defined. Here –
in contrast to Sec. 3.2, where Lagrange polynomials were
used – integrated Legendre polynomials are utilized for the
moment fitting basis f j . The right-hand side of the system
(the moments b) can easily be computed by integrating the
polynomials over the domain � with the help of the adap-
tive octree scheme. The number of moments is set to m =
(pq + 1)d . To construct the coefficient matrix A, the num-
ber of integration points n should be chosen greater than the
number of momentsm, with all points located in the physical
domain [6,34]. This results in an under-determined system of
equations that can be solved using a linear least square solver
(LLS), as it was done in [27]. Nevertheless, utilizing an LLS
solver can lead to integration points with negative weights,
which is not desirable in a nonlinear computation, since it can
affect the stability of the Newton-Raphson method severely.

To overcome this problem, a non-negative least square
solver is applied to the moment fitting system of equations.
In doing so, Equation (9) is minimized subject to inequality
constraints enforcing the weights to be greater or equal to
zero (wi ≥ 0) for every integration point xi ,

minimize ‖Aw − b‖2 subject to

wi ≥ 0, i = 1, . . . , n. (15)

Algorithm 1 Non-negative moment fitting quadrature
(NNMF)
1: Set m = (pq + 1)d

2: Compute the moments b using the AOT

3: Set r = 0, kNNMF = 0, n = 0, i = 0, j = 0

4: Set tolerance ε, factor L , imax, jmax

5: Set r2 =10 × ε

6: while ((r2 > ε) and ( j < jmax)) do

7: Set r = r + 1, i = i + 1

8: Set nGL = min{r pq+1
2 , 50}

9: Apply the AOT with tree-depth kNNMF and

10: (nGL)d Gauss-Legendre points per broken

11: cell distributed in the physical domain

12: Update n = total number of integration points

13: if ((n < (L × m)) and (i < imax)) then

14: if ((nGL = 50) and (kNNMF < kAOT)) then

15: kNNMF = kNNMF + 1, r = 6

16: end if

17: goto line 7

18: end if

19: Set j = j + 1

20: Construct the matrix A with the size (m × n)

21: Solve the system Aw = b using Algorithm 2

22: Update r2 =‖r‖2 = ‖Aw − b‖2
23: end while

24: Remove every weight wi = 0 with its corresponding integration point

xi .

The way how the integration points are distributed in the
physical domain plays an important role. In this paper, we
take advantage of the adaptive octree and theGauss-Legendre
points. First, we start by applying the AOT with a tree-depth

of kNNMF = 0with a number of
(
r

pq+1
2

)d
integration points

per broken cell where r = 1. The factor r and the depth
kNNMF are increased until a minimum of (n ≥ L × m) inte-
gration points is obtained,where L is set to a number between
three and six, for instance. The integration depth kNNMF is not
allowed to surpass the depth kAOT specified to integrate the
moments, i.e., kNNMF ≤ kAOT. Once the number of integra-
tion points is fixed, it is possible to compute the coefficient
matrix A, which has a total size of (m×n).With themoments
b and the coefficient matrix A at hand, the non-negative least
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square solver is applied to the system Aw = b. Next, the
norm of the residual

‖r‖2 = ‖Aw − b‖2 (16)

is calculated to check for convergence. If the norm of the
residual is larger than a user-defined tolerance ε and the
maximum number of iterations is not exceeded, the factor
r is increased by one and the previous steps are repeated,
as illustrated in Algorithm 1. It is important to start with a
sufficiently large set of integration points to ensure the con-
vergence of the NNLS solver with an acceptable accuracy.
Once the NNLS solver is converged, a significant number
of points will have weights that are equal to zero. Those
weights and their corresponding integration points are fil-
tered out. The remaining number of integration points, to
be used later to integrate the corresponding broken cell, are
eventually less or equal to the number of moments (n ≤ m),
as shown in Sec. 4.

3.4.1 Non-negative least square solver

The non-negative least solver (NNLS) developed by Lawson
and Hanson [33] is utilized in this contribution. The method
is mainly based on an active set strategy, as can be seen in
Algorithm 2. As an input, the algorithm requires the matrix
A, the vector b, and a user-defined tolerance ρ. To begin
with, the weights w and an auxiliary vector z of size n are
initialized. Afterwards, two sets are introduced that contain
the indices of the vector w, namely the passive set P and the
active set Z . The weights that are indexed in the passive set
P are free to have any value. However, they are corrected
during the iterations if they become negative. All entries of
w that are indexed in the active setZ are set to zero. The dual
vector v

v = AT (b − Aw), (17)

is introduced. It can be thought of as a Lagrange multiplier
that enforces the equality constraints at every integration
point. Once the algorithm has converged, we have

v j = 0 ∀ j ∈ P, and v j < 0 ∀ j ∈ Z, (18)

and

w j > 0 ∀ j ∈ P, and w j = 0 ∀ j ∈ Z. (19)

Before starting the main loop, the weights are initial-
ized with zeros, and consequently, the active set contains
all indices of w, i.e., Z = {1, . . . , n}. On the other hand, the
passive set is empty at this point (P = ∅). Next, at the begin-
ning of the main loop, the index j in the active set Z that

corresponds to the maximum entry in v is determined and
then moved from the active to the passive set P . Afterwards,
the inner loop is executed by first extracting the matrix AP
from thematrix A, which contains only the columns of A that
are indexed in the passive setP , see Algorithm 2 line 11. The
restricted linear least square problem is then solved in line 12
for the unknown zP . All values in z that are indexed in the
active set are set to zero in line 13. Next, we check whether
all values of the solution of the restricted least square prob-
lem are greater than zero. If this is the case, the values of the
weights are set equal to the auxiliary vector (w = z) before
the inner loop is terminated in line 16. Going back to themain
loop, the vector v is updated in line 22. Then, a new variable
is considered in line 7. Themain loop will then continue until
either the maximum entry of v becomes less than a tolerance
ρ, or the passive set has no more indices left (Z = ∅).

If some of the entries of zP are not greater than zero after
solving the restricted system in line 12, the factor β is com-
puted in line 18, resulting in a value in a range between zero
and one. Afterwards, the new weights are computed as a lin-
ear combination of w and z with the help of β to ensure
positive results, see line 19. Finally, each index j which cor-
responds to a weight equal to zero is then moved from the
passive to the active set. If there are any negative weights at
this point due to round-off errors, their index is shifted to the
active set as well. Once the algorithm is finished, the weights
w are returned (containing only positive values).

There are different ways how to solve the restricted least
square problem in line 12. In this contribution, theQRdecom-
position is employed to solve the system, which leads to a
good accuracy even for badly conditioned systems. For a
more detailed explanation of the NNLS solver, the reader is
referred to the work of Lawson and Hanson [33], and also
Bro and Jong [5].

3.5 Stabilization of the solution in the fictitious
domain

Broken cells that obey a small volume fraction deteriorate
the condition number of the resulting global equation sys-
tem.Toovercome this problem, the standardGauss-Legendre
quadrature is applied by distributing a set of (p+1)d integra-
tion points in every broken cell, excluding the points located
in the physical domain. Afterwards, the weights of these
points aremultiplied by the small positive value of the indica-
tor function α. Furthermore, a hyperelastic material model is
used for those stabilization points. Taking into account these
extra integration points (with very small positive weights)
helps to improve the condition number of the resulting over-
all equation system. In this paper, the indicator function in
the fictitious domain is set to α = 10−5. Fig. 2 (top) shows
the additional points that are added to stabilize the solution
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Algorithm 2 Non-negative least square solver (NNLS) proposed by Lawson and Hanson [33]
1: Set w = 0 � Initialize the weights w with zeros

2: Set z = 0 � Initialize an auxiliary vector z with zeros

3: Set P = ∅ � Initialize the passive set with an empty set

4: Set Z = {1, . . . , n} � Initialize the active set with all indices in w

5: Set v = AT (b − Aw) � Compute the Lagrange multipliers

6: while (Z 	= ∅ and max{vi , i = 1, . . . , n} > ρ) do � Start the main loop

7: Find the index j ∈ Z corresponding to the maximum entry in v

8: Move the index j from the active set Z to the passive set P
9: Set zP = 0 � Initialize the solution corresponding to the passive set

10: while (min{zPi , i ∈ P} ≤ 0) do � Start the inner loop

11: AP = [Ai j , i = 1, . . . ,m, j ∈ P] � Restrict A to the passive set of unknowns

12: AP zP = b � Solve the restricted least square problem

13: Set zZ = 0 and update z � Set active set variable to zero

14: if (zPj > 0 for all j ∈ P) then

15: Set w = z

16: break the inner loop

17: end if

18: β = min

{
wi

wi − zi
, for i ∈ P where zi ≤ 0

}
� Here, the β value satisfies: 0 < β ≤ 1

19: Set w = w + β(z − w)

20: Move every index j with w j ≤ 0 from the passive set P to the active set Z
21: end while

22: Update v = AT (b − Aw)

23: end while

in the fictitious domain for the plate with a cylindrical hole
with a quadrature order of pq = 9.

4 Preliminary investigations

4.1 Recovery of the gauss-legendre quadrature

In this section, we first test a situation where the hexahedral
cell (in d = 3 dimensions) is not cut by the boundary of the
domain. In this case, it is common to apply the standard
Gauss-Legendre (GL) quadrature to integrate those cells.
Here, however, we will apply the NNMF and theMF quadra-
tures to check whether they can reproduce the same weights
as theGL scheme. To this end,we use the following definition
to compute the error in the weights

ew = 1

n

√√√√ n∑
i=1

(
wGL
i − w

q
i

wGL
i

)2

. (20)

The position and the number of the integration points are set
to be the same as the Gauss-Legendre quadrature scheme.
Since the cell is not broken, the accuracy of the NNMF and

the MF schemes become (pq = 2n
1
d − 1). To this end,

in Fig. 4, the error ew is plotted using different quadrature
orders. It can be observed that both the NNMF as well as the

1 2 3 4 5 6 7 8 9 10
10 -18

10 -16

10 -14

10 -12

10 -10

Fig. 4 Relative error in the weights applying different orders of the
moment fitting quadrature

MF schemes can reproduce the weights of the GL quadrature
up to machine accuracy.

4.2 Cell cut by a sphere with radius r = 1.55mm

In this section, the proposed NNMF andMF schemes will be
investigated and compared for the integration of polynomials
of order pi . This is done by considering one hexahedral finite
cell with a size of (1×1×1) mm3, cut by a sphere described
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Fig. 5 Cell cut by a sphere with
radius r = 1.55 mm. Geometry
and mesh consisting of one cell
(bottom). NNMF integration
points distributed in the physical
domain for a quadrature order of
pq = 9 (top)

by the following level set function

φ(x) = (x − xc)
2 + (y − yc)

2 + (z − zc)
2 − r2. (21)

Here, the center coordinates xc, yc, and zc are set to zero
corresponding to one corner of the cell, see Fig. 5. In order
to compute the moments (right-hand side of Equation (9)),
the adaptive octree is applied with an integration depth of
kAOT = 7. Furthermore, the adaptive octree is utilized as a
reference solution. To this end, the radius of the sphere is set
to r = 1.55 mm, which represents a cell that has a rather large
volume fraction with v = 99.42%, see Fig. 5 (bottom). Since
the volume fraction of the cell is larger than 85%, utilizing the
AMFherewill result in using theMF schemedirectlywithout
any refinement. The quadrature points generated using the
NNMF are distributed in the physical domain, as can be seen
in Fig. 5 (top) for a quadrature order of pq = 9. Next, the
integration points are generated for quadrature orders pq = 1
to pq = 10 utilizing both the NNMF and the MF schemes.

In Fig. 6 (bottom), the condition number κ

κ = σmax

σmin
(22)

of the coefficient matrix A is plotted against the quadrature
order. Here, σmax and σmin refer to the maximum and min-
imum singular values, respectively. It can be seen that the
condition number increases with higher quadrature orders.
Since the cell is not cut too severely, the condition number
is not excessively large. For the MF, the coefficient matrix A
is equal to the identity matrix because the Lagrange polyno-
mials are defined based on the integration points.

Next, we investigate the conditioning of the quadrature
rule κq defined as the sum of the absolute values of the
weights

κq =
n∑

i=1

|wi |. (23)
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Fig. 6 Cell cut by a sphere with radius r = 1.55 mm. Condition num-
ber κ of the coefficient matrix A (bottom). Condition number of the
quadrature rule κ̄q (top)

The condition number κq can also be normalized by dividing
it by the volume V of the domain

κ̄q = κq

V
. (24)

Here, a value of κ̄q = 1 corresponds to a well-conditioned
quadrature rule, while a value of κ̄q > 1 indicates the
presence of negative weights. This is of great importance
since the existence of negative weights severely affects the
convergence of the Newton-Raphson scheme during the
incremental/iterative procedure, as will be shown in Secs. 5
and 6 . It can be seen in Fig. 6 (top) that the condition number
of the NNMF is equal to one for all quadrature orders, while
it is greater than one in the MF scheme for quadrature orders
bigger than three.

Subsequently, the relative error er

er =
∣∣∣∣ IAOT − Iq

IAOT

∣∣∣∣ , (25)
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Fig. 7 Cell cut by a sphere with radius r = 1.55 mm. Relative error of
integrating polynomials (bottom). Total number of integration points n
(top)

is investigated for the integration of polynomials of order pi ,
where IAOT corresponds to the value of the integral based
on the adaptive octree, while Iq refers to the value of the
integral based on the moment fitting schemes. It can be seen
in Fig. 7 (bottom) that both methods produce a very low error
of about 1e-14 for polynomial orders up to four. The error is
then increased to about 1e-12 for the NNMF applying higher
polynomial orders because of the increase in the condition
number of the coefficientmatrix A. InFig. 7 (top), the number
of integration points are plotted for the different quadrature
orders. Here, both the NNMF and the MF schemes result in
the same number of points.

4.3 Cell cut by a sphere with radius r = 0.3mm

In this section, the radius of the sphere is set to r = 0.3 mm –
which corresponds to a cell that is badly cut, with a volume
fraction of only v = 1.41%, see Fig. 8 (bottom). The quadra-
ture points generated using the NNMF are distributed in the

Fig. 8 Cell cut by a sphere with
radius r = 0.3 mm. Geometry
and mesh consisting of one cell
(bottom). NNMF integration
points distributed in the physical
domain for a quadrature order of
pq = 9 (top)

physical domain, as can be seen in Fig. 8 (top) for a quadra-
ture order of pq = 9. To study the different approaches, the
integration points are set up for quadrature orders pq = 1 to
pq = 10 utilizing the different moment fitting quadratures.

In Fig. 9 (bottom), the condition number κ of the coef-
ficient matrix A (see Equation (22)) is plotted for different
quadrature orders. For the NNMF, the condition number evi-
dently increases with increasing quadrature order. Since the
cell is badly cut, the condition number is much higher as
compared to the case where the cell has a large volume frac-
tion. For the MF, AMF, and RAMF schemes, the coefficient
matrix A is equal to the identity matrix since the Lagrange
polynomials fulfill the Kronecker delta property at the inte-
gration points.

Next, we take a look at the conditioning of the quadrature
rule κ̄q (see Equation (24)). To this end, Fig. 9 (top) reveals
that the condition number of the NNMF is equal to one for
all quadrature orders, while it is much larger than one in the
MF scheme. The AMF and the RAMF schemes produce a
much better conditioning as compared to the MF with about
κq = 1.03. That is why they are more robust for nonlinear
problems, see Secs. 5 and 6.

Subsequently, we investigate the relative error er for the
task of integrating polynomials at different orders. Here, the
MF, AMF, and the RAMF produce similar accuracy of about
1e-13. Although the condition number of A is much larger
for such a badly cut cell, the NNMF scheme produces an
excellent accuracy of about 1e-12, see Fig. 10 (bottom).

Finally, the total number of integration points is plotted
in Fig. 10 (top). From this, it is evident that both the NNMF
and the MF schemes produce a much lower number of inte-
gration points (with about a factor of ten) as compared to the
AMF. The RAMF scheme shows a significant reduction in
the quadrature points as the quadrature order increases. The
non-negative least square solver in the NNMF generates a
lower number of integration points as compared to MF when
the cell is cut by a small volume fraction of the domain. It
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Fig. 9 Cell cut by a sphere with radius r = 0.3 mm. Condition num-
ber κ of the coefficient matrix A (bottom). Condition number of the
quadrature rule κ̄q (top)

is clear that if the volume of the physical domain in a cell is
too small, a lower number of points should be sufficient for
integration as compared to the scenario where the volume
fraction is larger.

5 Application to problems in hyperelasticity

In this section, a detailed investigation of the different
moment fitting quadrature schemes is carried out, taking
large deformations into account. To this end, a hyperelas-
tic material model is considered with the following strain
energy density function [9]

W = μ

2
(tr (C) − 3) + λ

4

(
J 2 − 1

)

−
(

λ

2
+ μ

)
ln (J ) . (26)
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Fig. 10 Cell cut by a sphere with radius r = 0.3 mm. Relative error of
integrating polynomials (bottom). Total number of integration points n
(top)

Here, C refers to the right Cauchy-Green deformation tensor
and J = √

det(C). The material properties are set to λ =
28.846N/mm2 and μ = 19.231N/mm2.

Because of the complexity of the material model, the inte-
grands in Equation (7) are not based on polynomials only.
Also, in elastoplasticity, the integrands are discontinuous as
the plasticity evolves through the elements.

5.1 Plate with a cylindrical hole

In this section, we consider a plate with a cylindrical hole.
The goal is to compare the performance and accuracy of the
different moment fitting quadrature schemes compared to the
adaptive octree as well as to a reference solution based on the
p-FEM. The geometry of the plate, depicted in Fig. 11, has
a side length of a = 100 mm, a thickness of t = 10 mm, and
a radius of r = 60 mm. Symmetry boundary conditions are
applied together with a prescribed displacement of ūz = 200
mm at the top surface, leading to a stretch of the plate. For
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Fig. 11 Plate with a cylindrical hole. Geometry and boundary condi-
tions

this, a displacement increment of ūz = 0.5 mm is applied,
which requires a total of 400 load steps.

In order to create a reference solution, the geometry is dis-
cretized with 3200 curved elements to generate an overkill
solution based on the p-FEM, see Fig. 12 (bottom). For the
FCM, amesh of 78 cells (10×1×10 subdivisions) is consid-
ered, see Fig. 12 (top). The polynomial degree of the shape
functions is set to p = 4. For the adaptive octree in the FCM,
an integration depth of kAOT = 4 is used. The Cauchy stress
σzz will be computed at point A with coordinates (x = 35.0,
y = 5.0, z = 4.0).

Table 2 lists the number of quadrature points generated for
the different integration schemes used in this paper. Here, we
will study the reduction η and the ratio γ of the total number
of integration points compared to the AOT as follows

η = nAOT − nq
nAOT

× 100% and γ = nAOT
nq

, (27)

where nAOT corresponds to the total number of integration
points generated by the AOT, while nq refers to the total

Fig. 12 Plate with a cylindrical hole discretized with 3200 elements
(bottom) and 78 cells (top)

number of integration points produced by the other quadra-
ture schemes.

The AOT quadrature produces a total number of 402 915
integration points (IPs) utilizing (p + 1)3 IPs in every sub-
cell. In the AMF, we will apply and investigate different
numbers of quadrature points to see how the accuracy and
stability is affected. Thereby, we start first off with the “full”
set of (2p + 1)3 integration points resulting in a total num-
ber of 378 938 IPs. Here, the number of integration points is
reduced by only 5.95% as compared to the AOT. Addition-
ally, we investigate the AMF utilizing a number of (p + 3)3

IPs as well as (p+2)3 IPs on each broken cell or sub-cell. In
doing so, a reduction of η = 53.6% and η = 69.2%, respec-
tively, can be achieved. Those two versions of the AMF use
the same set of points (either (p+ 3)3 or (p + 2)3) indepen-
dently of the refinement level of the moment fitting kMF.

Furthermore, we introduce a reduced version of the adap-
tive moment fitting (RAMF), where a number of (2p + 1)3

IPs is applied only if the cell is not refined. Then, for every
new tree-depth level, the number of points is reduced by one
in each direction so that the sub-cells on the highest level
have the least number of points, as explained in Sec. 3.3. In
doing so, we obtain a total number of 130 774 IPs, which
is a reduction of around η = 67.5%. The MF scheme pro-
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Table 2 Total number of integration points for the different quadrature schemes with tree-depth kAOT = 4 and shape function order p = 4 for the
plate with a cylindrical hole

Integration scheme/points Physical domain Fictitious domain Reduction η Ratio γ

Adaptive octree (p + 1)3 402915 760 – –

Adaptive moment fitting (2p + 1)3 378938 760 5.95 % 1.06

Adaptive moment fitting (p + 3)3 187096 760 53.6 % 2.15

Adaptive moment fitting (p + 2)3 123977 760 69.2 % 3.25

Reduced adaptive moment fitting 130774 760 67.5 % 3.08

Moment fitting (2p + 1)3 17602 760 95.6 % 22.89

Non-negative moment fitting (2p + 1)3 16188 760 96.0 % 24.89

duces a much smaller number of points with only 17 602
IPs, which is a reduction of around η = 95.6%. Finally, the
NNMF quadrature generates the least number of points with
only 16 188 IPs, resulting in a total reduction of η = 96%
as compared to the AOT. Additionally, a total of 760 IPs are
distributed in the fictitious domain for stabilization purposes,
as explained in Sec. 3.5.

In Fig. 13 (bottom), the strain energy is plotted versus
the displacement at every load step. It can be seen that all
quadrature schemes produce similar values. However, the
simulation based on the MF scheme failed to converge at an
early load step – already at a displacement of ūz = 8 mm –
because of the presence of negativeweights that lead to a high
condition number of the quadrature. Additionally, the stress
σzz at point A is plotted in Fig. 13 (top) for the different
quadrature schemes. Here, a good agreement between the
different methods can be observed as well.

Next,we take a look at the relative error in the strain energy

eU =
∣∣Uref −Uq

∣∣
Uref

, (28)

as well as the relative error in the stress σzz

eσ =
∣∣∣∣∣
σ ref
zz (xA) − σ

q
zz(xA)

σ ref
zz (xA)

∣∣∣∣∣ (29)

compared to theAOT, see Fig. 14.Here, differences in the rel-
ative error can be observed between the individual quadrature
schemes. The AMFwith a number of (2p+1)3 IPs produces
the lowest relative error as compared to the AOT. However,
with a ratio of only about γ = 1.06, the number of integra-
tion points generated is too large. It is interesting to observe
the great improvement in the RAMF–which achieves almost
the same accuracy as the AMF while leading to a significant
reduction in the number of integration points, with a ratio of
γ = 3.08. Here, the MF is the least stable scheme, with the
largest relative error compared to the AOT. Nevertheless, the
error is still within an acceptable range of about 1e-10 for the
strain energy and about 1e-8 for the stress. The reduction in

Fig. 13 Plate with a cylindrical hole. The strain energy (bottom). The
stress σzz at point A (top)

the integration points for the MF is remarkable – with a ratio
of γ = 22.89. Finally, the NNMF scheme heals the stability
problem of the MF and produces an even lower number of
integration points, with amuch smaller error compared to the
MF. In this case, the NNMF shows a good accuracy as well
as a huge reduction in the number of integration points, with
a ratio of γ = 24.89.
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Fig. 14 Plate with a cylindrical hole. The relative error in strain energy
(bottom). The relative error in the stress σzz at point A, as compared to
the adaptive octree (top)

Subsequently, we investigate the relative error in the strain
energy as well as in the stress σzz as compared to an overkill
solution from a conforming mesh. Here, all methods show
good agreement when compared to a reference solution, see
Fig. 15. This is because when compared to the overkill solu-
tion, other types of errors play a role as well – such as, for
instance, discretization error, introducing a soft material in
the fictitious domain, and applying an integration depth of
only four (integration error). Since those errors are more
dominant, the error introduced from the different integration
schemes presented earlier is considered negligible compared
to an overkill solution. In the end, it is important to have a
stable integration scheme that performs well for nonlinear
applications and can generate a low number of integration
points for broken cells. Fig. 16 shows a contour plot of the
Cauchy stress for the plate with a cylindrical hole at the last
load step discretized with the FCM.

Fig. 15 Plate with a cylindrical hole. The relative error in strain energy
(bottom). The relative error in the stress σzz at point A as compared to
a reference solution from a conforming mesh (top)

Fig. 16 Contour plot of the Cauchy stress component σzz for the plate
with cylindrical hole at the last load step

123



Computational Mechanics (2022) 70:1059–1081 1073

Fig. 17 Single pore of a foam. Geometry, boundary conditions, and
FCM mesh [17,18]

5.2 Single pore of a foam

In this section, we consider a more complex structure of a
single pore of a foam. The geometry is obtained from a CT-
scan and then converted into a triangulated surface [21], as
shown in Fig. 17 (bottom). The bottom surface of the foam
is fixed in all directions, while the top surface is fixed in x
and z-directions only. Furthermore, a displacement of ū y =
1.5 mm is applied on the top surface to compress the foam.
To achieve the final deformation, a displacement increment
of ū y = 0.05 mm is used, resulting in a total of 30 load
steps. The geometry is discretized using 2721 finite cells

(25× 25× 25 subdivisions) with a polynomial degree of the
shape functions of p = 2, see Fig. 17 (top).

Table 3 shows the number of quadrature points created
by the various integration strategies. Using a tree-depth level
of kAOT = 4 and a number of (p + 1)3 IPs in each sub-
cell, the AOT quadrature generates a total of 21 138 178
IPs. The AMF produces a total of 13 072 543 IPs utilizing
(2p + 1)3 integration points in each broken cell or sub-cell.
In comparison to theAOT, the number of integration points is
reduced by only η = 38.2%. Further, we study the reduction
in the number of points in the AMF by the same amount in
each refinement level. In doing so, a number of (p + 2)3

and (p + 1)3 IPs are considered, resulting in a reduction of
η = 67.9% and η = 85.9%, respectively.

Furthermore, by applying the RAMF, we obtain a total
of 6 957 842 IPs, which is a reduction of η = 67.1%. The
MF scheme creates a significantly lower number of quadra-
ture points, with only 319 153 IPs (or around 98.5% fewer
integration points). Finally, the NNMF quadrature generates
the lowest number of points: only 283 180 IPs, which is a
total reduction of η = 98.7% as compared to the AOT. As
indicated in Sec. 3.5, a total of 41 869 IPs are assigned in
the fictitious domain for stabilization purposes in all of the
quadrature schemes discussed.

The strain energy is plotted against the displacement at
each load step in Fig. 18 (bottom). As can be observed, all
quadrature techniques generate comparable energy values.
However, owing to the existence of negative weights, the
MF scheme failed at an early load step with a displacement
of ū y = 0.25 mm. Furthermore, the AMF simulation with
(p + 1)3 IPs could only be carried out up to a displacement
of ū y = 1.15 mm.

Fig. 18 (top) shows the relative error in strain energy
compared to the AOT. Differences in accuracy between the
various quadrature techniques can be seen here. The AMF
with (2p+1)3 IPs achieves high accuracy, but the number of
integration points generated is still too large, with a ratio of
only γ = 1.62. The RAMF, on the other hand, shows a great
accuracy compared to the AMF, with a significant reduction

Table 3 Total number of integration points for the different quadrature schemes with tree-depth kAOT = 4 and shape function order p = 2 of the
single pore of a foam

Integration scheme/points Physical domain Fictitious domain Reduction η Ratio γ

Adaptive octree (p + 1)3 21138178 41869 – –

Adaptive moment fitting (2p + 1)3 13072543 41869 38.2 % 1.62

Adaptive moment fitting (p + 2)3 6794057 41869 67.9 % 3.11

Adaptive moment fitting (p + 1)3 2985795 41869 85.9 % 7.08

Reduced adaptive moment fitting 6957842 41869 67.1 % 3.04

Moment fitting (2p + 1)3 319153 41869 98.5 % 66.23

Non-negative moment fitting (2p + 1)3 283180 41869 98.7 % 74.65
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Fig. 18 Single pore of a foam. The strain energy (bottom). Relative
error in strain energy (top)

in integration points and a ratio of γ = 3.04. The AMF with
(p + 1)3 IPs results in the largest error as compared to the
AOT, failing to converge at an earlier load step. Finally, with
a ratio of γ = 74.65, the NNMF demonstrates an excellent
reduction in the number of integration points while keeping
a very good accuracy as well.

Subsequently, Table 4 lists the simulation and quadrature
setup computation times for the various integration schemes.
The simulations are performed on amachine with two CPUs,
eachwith ten cores (40 threads) and a clock speed of 2.4GHz.
Although the time required to set up the quadrature points
using theAOTwas the shortest (about 2minutes), the simula-

Fig. 19 The von Mises stress of the single pore of a foam at the last
load step using p = 2

tion computation time was the highest one (almost 2 hours).
TheAMFusing (2p+1)3 required around6minutes to gener-
ate the points, followed by 1 hour and 21minutes to complete
the simulation, which is roughly 40 minutes less than for the
AOT. We see a good saving in computation time when uti-
lizing the RAMF scheme, with only 46 minutes needed to
finish the simulation. The NNMF scheme outperformed the
other quadrature methods in computational time, requiring
just 3 minutes to create the integration points and around 7
minutes to complete the entire simulation. Finally, Fig. 19
shows the contour plots of the von Mises stress for a single
pore of a foam at the last load step. Here, higher values of
the von Mises stress can be noticed at the foam struts.

6 Application to problems in elastoplasticity

In this section, a detailed investigation of the different
moment fitting quadrature schemeswill be carried out, taking
large deformations into account with a finite J2 elastoplastic
materialmodel. First, a short summary of the governing equa-
tions for the material model will be given. To this end, the
elastic part of the deformation is described based on a hyper-
elastic neo-Hooke model with the following strain energy
density function

We = λ

4

(
I I I be − 1 − ln I I I be

)+

Table 4 Computation time for
different integration schemes
with integration depth kAOT = 4
and shape function order p = 2
of the single pore of a foam

Integration scheme/time needed For simulation For quadrature setup

Adaptive octree (p + 1)3 1h , 59min , 12s 2min , 03s

Adaptive moment fitting (2p + 1)3 1h , 21min 5min , 48s

Reduced adaptive moment fitting 46min , 51s 5min , 28s

Non-negative moment fitting (2p + 1)3 6min , 57s 3min , 01s

123



Computational Mechanics (2022) 70:1059–1081 1075

Table 5 Material properties for the finite J2 elastoplastic model

Quantity value

First Lamé parameter (λ) 110743 MPa

Shear modulus (μ) 80194 MPa

Initial yield stress (Y0) 450.0 MPa

Saturation stress (Y∞) 715.0 MPa

Linear hardening parameter (H ) 129.24 MPa

Hardening exponent (δ) 16.93

μ

2

(
Ibe − 3 − ln I I I be

)
, (30)

where Ibe = tr be and I I I be = det be correspond to the first
and third invariant of the elastic left Cauchy-Green tensor be,
respectively. The von Mises yield criterion � is defined as

�(τ , ᾱ) =
√
3

2
s : s − K (ᾱ) with

s = τ − 1

3
tr(τ )1. (31)

Here, τ refers to the Kirchhoff stress tensor with its corre-
sponding deviatoric part s. Furthermore, a nonlinear isotropic
hardening is considered which is defined as follows

K (ᾱ) = Y0 + H ᾱ + (Y∞ − Y0)
(
1 − e−δᾱ

)
, (32)

where ᾱ defines the equivalent plastic strain. All material
parameters are listed in Table 5. For more details about the
material model, the reader is referred to [28,29,46,47].

6.1 Plate with a cylindrical hole

In this section, we once again consider the plate with
a cylindrical hole as described in (Sec. 5.1) but with a
finite J2 elastoplastic material model and a compressive
loading. For the FCM, a mesh consisting of 192 cells
(16 × 1 × 16 subdivisions) is considered with a polyno-
mial degree of the shape functions of p = 4. Symmetry
boundary conditions are applied together with a prescribed
displacement of ūz = −20 mm on the top surface of the
plate which leads to compression (see Fig. 11). In doing
so, small load steps are applied – starting off with ūz =
{−0.005,−0.025,−0.05,−0.1,−0.2,−0.3,−0.4,−0.5}mm.
The displacement is then increased by 0.5 mm at every
load step until the complete deformation is reached, which
requires 47 load steps.

Table 6 shows the total number of quadrature points cre-
ated by the various integration schemes. Using a tree-depth
of kAOT = 4 and a number of (p + 1)3 IPs for each sub-cell,
the AOT quadrature generates a total of 710 265 integration

points. Starting with (2p + 1)3 integration points in each
refinement level, the AMF produces a total number of 485
979 IPs. In comparison to the AOT, the number of integration
points is reduced by η = 31.6%. Furthermore, we apply the
AMFwith a number of (p+3)3 and (p+2)3 IPs in each bro-
ken cell or sub-cell. This results in a decrease of η = 65.6%
and η = 76.8%, respectively. Moreover, we obtain a total of
178 243 IPs using the RAMF, which is around 74.9% less
points than the AOT. The MF scheme yields a significantly
lower number of points, with just 35 476 IPs, or 95% fewer
integration points. Finally, the NNMF quadrature generates
the lowest number of points, with only 32 285 IPs, with a
total reduction of η = 95.5%. A total of 1060 IPs are dis-
tributed in the fictitious domain for stabilization purposes in
all of the quadrature schemes mentioned above, as explained
in Sec. 3.5.

The load displacement curves are plotted in Fig. 20 (bot-
tom) at each load step. It can be observed that all quadrature
schemes are in good agreement with the reference solution
obtained from a conforming curved mesh (see Fig. 12 (bot-
tom)). However, at a displacement of merely ūz = −0.1
mm, the simulation based on the MF technique failed to con-
verge very quickly. Furthermore, the computation based on
the AOT scheme failed to reach the last load step, result-
ing in a deformation of ūz = −16.5 mm. The final load
step of ūz = −20 mm was achieved by all of the remaining
moment fitting quadratures. Additionally, the relative error
in the reaction force

eFz =
∣∣∣∣∣
F ref
z − Fq

z

F ref
z

∣∣∣∣∣ (33)

is plotted in Fig. 20 (top). In this case, there is a relatively
good agreement between the various quadrature rules as com-
pared to the reference solution. Finally, the von Mises stress
σvM and the equivalent plastic strain ᾱ are plotted in Fig. 21
at the last load step. It is clear from this that the plastic zone
begins to evolve in a diagonal direction across the plate.

6.2 Single pore of a foam

In our last application, we once again consider the pore of a
foamdescribed inSec. 5.2, but nowwith afinite J2 elastoplas-
tic material model. A prescribed displacement of ū y = 1.0
mm is applied to compress the foam with a polynomial
degree of the shape functions of p = 3. Small load steps are
applied, beginning with ū y = {0.0001, 0.001, 0.003, 0.005}
mm. After that, the displacement is raised by 0.01 mm at a
time until the full deformation is obtained, which takes a total
of 104 load steps.

Table 7 lists the total number of quadrature points gen-
erated for each integration scheme. Using a tree-depth of
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Table 6 Total number of
integration points for the
different quadrature schemes
with tree-depth kAOT = 4 and
shape function order p = 4 for
the plate with a cylindrical hole

Integration scheme/points Physical domain Fictitious domain Reduction η Ratio γ

Adaptive octree (p + 1)3 710265 1060 – –

Adaptive moment fitting (2p + 1)3 485979 1060 31.6 % 1.46

Adaptive moment fitting (p + 3)3 244343 1060 65.6 % 2.91

Adaptive moment fitting (p + 2)3 164841 1060 76.8 % 4.31

Reduced adaptive moment fitting 178243 1060 74.9 % 3.98

Moment fitting (2p + 1)3 35476 1060 95.0 % 20.0

Non-negative moment fitting (2p + 1)3 32285 1060 95.5 % 22.0

Fig. 20 Plate with a cylindrical hole. The load-displacement curves
(bottom). Relative error in the reaction force (top)

kAOT = 4 and a number of (p + 1)3 IPs on each sub-cell,
the AOT quadrature gives a total number of 50 142 769 IPs.
We apply and analyze different numbers of quadrature points
using the AMF, just as we did in the previous sections. The
AMF generates a total of 35 793 794 IPs with (2p + 1)3

integration points in every broken cell or sub-cell, yielding
a decrease of only 28.6% as compared to the AOT. In addi-
tion, we apply a set of (p + 3)3 and (p + 2)3 IPs in every
broken cell or sub-cell of the AMF, resulting in η = 54.7%

Fig. 21 Contour plots for the plate with a cylindrical hole at the last
load step using p = 4. vonMises stress σvM (bottom). Equivalent plastic
strain ᾱ (top)

and η = 73.4% reductions, respectively, as compared to the
AOT. Furthermore, if the RAMF is applied, a total of 13 656
014 IPs is obtained, which is a 72.8% reduction as compared
to the AOT. TheMF and NNMF schemes produce the lowest
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number of integration points with only 873 597 and 675 420
IPs, respectively, which is a reduction of about η = 98%.
Also, a total of 99 181 IPs are distributed in the fictitious
domain for stabilization purposes, as explained in Sec. 3.5.

In Fig. 22 (bottom), the load displacement curves are
plotted utilizing the different integration methods. It can be
observed that all integration schemes show a good agreement
in the reaction forces. However, the simulation based on the
MF scheme failed to converge at an early load increment of
ū y = 0.003 mm. Also, the simulations based on the AMF
with (p + 3)3 and (p + 2)3 IPs only achieved a deformation
state of ū y = 0.61 mm and ū y = 0.68 mm, respectively.
Here, the NNMF and the RAMF are the only two schemes
that were able to reach the last load step of ū y = 1.0 mm.
TheAOT and the AMFwith (2p+1)3 reached a deformation
state of ū y = 0.92 mm. Additionally, Fig. 22 (top) shows the
relative error in the reaction force

eFy =
∣∣∣∣∣
F ref
y − Fq

y

F ref
y

∣∣∣∣∣ (34)

at different load steps as compared to the adaptive octree. It
can be noticed that all integration schemes produce approx-
imately a relative error of about 1e-5.

Next, the computation time of the simulation and the
quadrature setup are listed in Table 8 for a displacement of
ū y = 0.92 mm. The simulations are run on a computer with
two CPUs, each with ten cores (40 threads) and a 2.4 GHz
clock speed. Although it took the least amount of time to
set up the quadrature points using the AOT (about 2 min-
utes), the computation time for the entire simulation was the
most costly one (approximately 14.7 hours). The AMF took
around 6 minutes to generate the points and 10.7 hours to
conduct the entire simulation. The RAMF scheme reduced
the computation time to just 4.57 hours. The NNMF scheme
needed around 5 minutes to generate the integration points,
and then used about 0.63 hours to finish the whole simula-
tion. The NNLS algorithm can be terminated after a certain
number of iterations to allow for a fast quadrature setupwhile
not affecting the quality of the solution largely. In Fig. 22, we
observe a high accuracy of the NNMF scheme although the
number of iterations is cut earlier to reduce the setup time of
the quadrature.

It is remarkable to see howmuch computation time can be
saved by utilizing themoment fitting quadrature for nonlinear
applications. Generally, the time spent to generate the points
and weights in the moment fitting is amortized by reusing
the quadrature rule numerous times during the incremen-
tal/iterative procedure of the nonlinear computation. Finally,
the von Mises stress σvM and the equivalent plastic strain ᾱ

are plotted in Fig. 23 at the load step of ū y = 1.0 mm. The
plastic zone starts to evolve from the struts of the pore of the

foam, attaining greater values of the equivalent plastic strain
and the von Mises stress.

7 Conclusions

In this paper, we proposed a non-negative moment fitting
quadrature scheme to integrate broken cells using the finite
cell method. Thereby, all integration points are constructed
to have only positive weights. This is possible by utilizing
a non-negative least square solver, where the moment fitting
equations are solved including inequality constraints tomake
sure that the weights are greater or equal to zero. To ensure
high accuracyof theweights, the number of integration points
should be chosen larger than the number of moments, which
results in an under-determined linear system of equations.
The Lawson and Hanson non-negative least square solver
[33] produces a large number of zero-weight integration
points,which are subsequently removed from the set of points
to be utilized for integrating the broken cells. Consequently,
we showed that the resulting number of integration points
is eventually less or equal to the number of moments. In
this work, the adaptive octree was used for the moment fit-
ting to accomplish two goals: first, to capture the domain of
interest and distribute the integration points exclusively in
the physical domain for the non-negative moment fitting –
and second, to integrate the right-hand side of the moment
fitting equations. Furthermore, we proposed a reduced ver-
sion of the adaptive moment fitting, where the number of
quadrature points is reduced for the higher refinement levels.
To this end, we investigated different numerical examples
including large deformation analysis in both hyperelasticity
and elastoplasticity. We showed that the reduced adaptive
moment fitting scheme reduced the number of integration
points significantly while keeping the same accuracy and sta-
bility as observed for the adaptivemoment fitting. In addition,
we showed that the non-negative moment fitting scheme is
very robust for nonlinear applications, generating the lowest
amount of integration points with high accuracy as compared
to the other integration methods.

7.1 Future outlook

The computation time for the setup of the non-negative
moment fitting scheme can be divided into two main parts.
The first part is related to the computation of the right-hand
side of the moment fitting equations. In this paper, the adap-
tive octree was utilized to integrate the moments, which can
become very expensive when using high tree-depth levels to
capture the geometry. Since the moments are based on the
integral of polynomials, they can be integrated a priori and
stored in a tabulated form, see [1]. After that, computing the
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Table 7 Total number of
integration points for the
different quadrature schemes
with tree-depth kAOT = 4 and
shape function order p = 3 of
the single pore of a foam

Integration scheme/points Physical domain Fictitious domain Reduction η Ratio γ

Adaptive octree (p + 1)3 50142769 99181 – –

Adaptive moment fitting (2p + 1)3 35793794 99181 28.6 % 1.4

Adaptive moment fitting (p + 3)3 22722192 99181 54.7 % 2.21

Adaptive moment fitting (p + 2)3 13355926 99181 73.4 % 3.75

Reduced adaptive moment fitting 13656014 99181 72.8 % 3.67

Moment fitting (2p + 1)3 873597 99181 98.3 % 57.4

Non-negative moment fitting (2p + 1)3 675420 99181 98.7 % 74.2

Fig. 22 Single pore of a foam. The load-displacement curves (bottom).
Relative error in reaction force (top)

moments will simply involve reading the results from a table,
leading to a significant reduction in computation time.

The second part is related to solving the moment fitting
system of equations. Within the non-negative least square
algorithm, a restricted linear system of equations is solved
in several iterations, where at every iteration one integration
point is added to the system or removed from the system.
In this paper, a QR decomposition is employed to solve the
restricted system on a single thread. To further speed up the
non-negative least square solver, it is possible to apply some
of the high-performance and well-parallelized linear algebra
libraries – such as, for example, OpenBLAS and Intel MKL.
Furthermore, in this paper, we applied the non-negative least
square algorithm from Lawson and Hanson [33], which is
based on an active set strategy. It would also be possible
to consider more advanced solvers – such as the fast non-
negative least square algorithm (FNNLS) [5] or the recently
developed TNT-NN algorithm [36] – for which the authors
claimed that it is several times faster as compared to the non-
negative least square solver from [33].

To improve the accuracy of the elastoplastic simula-
tions, a hp-adaptivity can be applied to capture the plastic
front dynamically [58,59]. Alternatively, the polynomials
that define themomentfittingbasis canbe enriched to account
for the discontinuity introduced by the elastoplastic front
[10].

Remark

All numerical investigations in this paperwere carried out uti-
lizing the in-house code AdhoC++ [28,57], which is jointly

Table 8 Computation time up
to a deformation of ū y = 0.92
mm with a tree-depth kAOT = 4
and shape function order p = 3
of the single pore of a foam

Integration scheme/time needed For simulation For quadrature setup

Adaptive octree (p + 1)3 14h , 42min 02min , 19s

Adaptive moment fitting (2p + 1)3 10h , 40min 06min , 06s

Reduced adaptive moment fitting 04h , 34min 06min , 10s

Non-negative moment fitting (2p + 1)3 00h , 38min 05min , 20s
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Fig. 23 Contour plots for the single pore of a foam at the last load step
using p = 3. von Mises stress σvM (bottom). Equivalent plastic strain ᾱ

(top)

developed at the Technical University of Munich and the
Hamburg University of Technology.
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