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Abstract

The influence of process strategies on the dynamics of cell population heterogeneities in

mammalian cell culture is still not well understood. We recently found that the progression

of cells through the cell cycle causes metabolic regulations with variable productivities in

antibody‐producing Chimese hamster ovary (CHO) cells. On the other hand, it is so far

unknown how bulk cultivation conditions, for example, variable nutrient concentrations

depending on process strategies, can influence cell cycle‐derived population dynamics. In

this study, process‐induced cell cycle synchronization was assessed in repeated‐batch and

fed‐batch cultures. An automated flow cytometry set‐up was developed to measure the

cell cycle distribution online, using antibody‐producing CHO DP‐12 cells transduced with

the cell cycle‐specific fluorescent ubiquitination‐based cell cycle indicator (FUCCI) system.

On the basis of the population‐resolved model, feeding‐induced partial self‐synchronization
was predicted and the results were evaluated experimentally. In the repeated‐batch
culture, stable cell cycle oscillations were confirmed with an oscillating G1 phase

distribution between 41% and 72%. Furthermore, oscillations of the cell cycle distribution

were simulated and determined in a (bolus) fed‐batch process with up to ×25 106 cells/

ml. The cell cycle synchronization arose with pulse feeding only and ceased with

continuous feeding. Both simulated and observed oscillations occurred at higher

frequencies than those observable based on regular (e.g., daily) sample analysis, thus

demonstrating the need for high‐frequency online cell cycle analysis. In summary, we

showed how experimental methods combined with simulations enable the improved

assessment of the effects of process strategies on the dynamics of cell cycle‐dependent
population heterogeneities. This provides a novel approach to understand cell cycle

regulations, control cell population dynamics, avoid inadvertently induced oscillations of

cell cycle distributions and thus to improve process stability and efficiency.
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Nomenclature

Variable Explanation Unit

ci Concentration of the component i [mM]

cGlc,F Glucose concentration in feed [mM]

cGln,0 Initial glutamine concentration

repeated‐batch
[mM]

cGln,F Glutamine concentration in feed [mM]

cGln,ME Glutamine concentration after

medium echange

[mM]

FRate Feed rate [ /ml min]

FStart Start of feed [h]

i Glc, Gln, Lac, Amm, Ab, Acf [‐]

ired
n Ratio of fluorescent ratios [%]

ki Substrate‐specific growth rate [‐]

ΩKGln, Dimensionless cell cycle‐specific
scaling factor

[‐]

mKO2
n Number of mKO2 positive cells [cells]

mVenusn Number of mVenus positive cells [cells]

p Significance factor [‐]

t Time [h]

tME Time medium exchange [h]

V%,ME Replaced medium [%]

Xv Viable cell density [cells/

ml]

Xv,0 Initial viable cell density [cells/

ml]

Ω Cell‐cycle states (G1, S, G2/M, and

dead cells)

[‐]

1 | INTRODUCTION

Changes in the cell populations of mammalian cell cultures have

received increasing attention. So far, variations in cell populations

have been identified in cell line generation (Patel et al., 2018;

Scarcelli et al., 2018) and clonal long term stability (Chusainow et al.,

2009; Vcelar et al., 2018). To assess heterogeneities under bioreactor

cultivation conditions, a combined workflow was developed using

near‐physiological cell cycle synchronization (review see Jandt,

Platas Barradas, Pörtner, & Zeng, 2014) and population‐resolved
modeling (Jandt, Platas Barradas, Pörtner, & Zeng, 2015; Möller,

Korte, Pörtner, Zeng, & Jandt, 2018). Using this approach, strong

metabolic up‐ and downregulation with changing productivities were

identified during the cell cycle of nonproducing CHO K1 and

AGE1.hnATT (Jandt et al., 2015) cells and antibody‐producing Chinese

hamster ovary (CHO) cells (Möller et al., 2018). However, it is still not

understood, to which extent bulk process conditions can trigger,

amplify or damp cell cycle oscillations in otherwise nonsynchronized

cultures under near‐production conditions. This knowledge would be

helpful to either intentionally synchronizes cultures without physical

selection (e.g., elutriation; Cooper & Gonzalez‐Hernandez, 2009), or

to avoid any undesired oscillation of the cell cycle distribution by

choosing appropriate conditions. The investigation of such processes

requires a mathematical process model to determine the suitable

conditions and highly time‐resolved data sets of the cell cycle

progression in the bioreactor, ideally obtained online.

We recently showed that the genetic integration of the

fluorescent ubiquitination‐based cell cycle indicator (FUCCI) system

(originally developed by Sakaue‐Sawano et al., 2008) can be applied

to the online monitoring of the cell cycle distribution of CHO‐K1 cells

(Fuge, Hong, Riecken, Zeng, & Jandt, 2017). In brief, two fluorescent

molecules representing either the G1 phase (mKO2‐red) or the

S/G2/M phases (mVenus‐green) are expressed and degraded

according to the cell cycle.

In this study, an automated and online flow cytometry set‐up was

designed and a population‐resolved model was used to predict and

assess the population dynamics of CHO cells under variable process

conditions. For this, antibody‐producing CHO cells were lentivirally

transduced with the FUCCI system. The online set‐up was used to

measure the actual cell cycle status of individual cells with a

sufficiently high frequency (i.e., every few hours), thus providing

details on the dynamics of process‐induced cell cycle oscillations. The

model parameters derived in a previous study (Möller et al., 2018)

were used to estimate process parameters for the induction of cell

cycle oscillations in a repeated‐batch and a (bolus) fed‐batch
cultivation. Experiments were performed with the pre‐determined

process parameters and cell cycle measurements were carried out

online. The crucial model parameters were readjusted based on

experimental data. A fed‐batch with continuous feeding was used as

a negative control. This workflow enables the understanding of cell

cycle dependencies and allows to assess and develop cell cycle‐
dependent bioprocesses without the need for external synchroniza-

tion techniques. Furthermore, this study demonstrates how cell cycle

fluctuations can be inadvertently induced by commonly used pulse

feeding strategies, potentially leading to undesired oscillations and

thus unpredicted bioprocess behavior.

2 | MATERIALS AND METHODS

The aim of this study was to gain an understanding of process‐
induced oscillations of cell cycle distribution. The basis of the

processes (repeated‐batch and fed‐batch) was a population‐
resolved model, which describes cell cycle‐dependent growth

and metabolism of mammalian cells (Jandt et al., 2015; Möller

et al., 2018). Materials and methods are partially based on
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previous publications for the FUCCI‐transduced, nonproducing

mammalian cell line derivatives CHO‐K1 FUCCI CN and CHO‐K1
FUCCI CM (Fuge et al., 2017) and the model‐based identification

of cell cycle‐dependent population dynamics in mammalian cell

lines (Castillo, Fuge, Jandt, & Zeng, 2012; Jandt et al., 2015; Möller

et al., 2018; Platas Barradas et al., 2015).

2.1 | Cell cycle‐based fluorescence with FUCCI
system

Sakaue‐Sawano et al. (2008) developed the FUCCI system, which is

based on the cell cycle‐dependent expression of two fluorescent

proteins, namely mKO2 and mVenus (Newman & Zhang, 2008;

Sakaue‐Sawano et al., 2008). mKO2 was fused to parts of the

chromatin licensing and DNA replication factor 1 (30/120; mKO2‐
hCdt1(30/120)) and mVenus to a fragment of the DNA replication

inhibitor hGeminin (1/60) (mVenus‐hGeminin (1/60)). hCdt1 is mainly

expressed during the G1 cell cycle phase whereas hGeminin is absent

during this phase. hGeminin is formed during the S/G2/M phases and

also acts as an inhibitor to hCdt1. FUCCI‐transduced cells express

the corresponding fluorescent proteins and change their fluores-

cence signal due to the cell cycle. The main applications have so far

been in the field of tissue growth (Iimura & Lee, 2017; Schoors et al.,

2015) and stem cell research (Deglincerti, Etoc, Ozair, & Brivanlou,

2016; Jang et al., 2016).

2.1.1 | Generation of FUCCI‐derived cell line
derivatives

Suspension‐adapted CHO DP‐12 cells (clone #1934, ATCC CRL‐
12445, kindly provided by T. Noll, Bielefeld University, Germany)

producing an anti‐interleukin‐8 IgG were cultivated in chemically

defined, animal component‐free TC‐42 medium (Xell AG, Germany).

The medium was supplemented with /0.1 mg L LONG R3 IGF‐1, 6
mM glutamine and 200 nM methotrexate (all Sigma‐Aldrich,
Germany). Exponentially growing CHO DP‐12 cells were transduced

with lentiviral particles containing the FUCCI construct, which were

kindly supplied by the group of Dr. A. Miyawaki (Laboratory for Cell

Function Dynamics, RIKEN Brain Science Institute, Saitama, Japan).

The generation of the lentiviral particles was performed as described

in previous publications (Weber, Thomaschewski, Benten, & Fehse,

2012) and the protocol for the transduction is described in (Fuge

et al., 2017). The novel CHO DP‐12 cell line, stably expressing the

FUCCI fusion proteins, is henceforth referred to as CHO DP‐12
(FUCCI). The cells were expanded using multiple T‐flasks in an

incubator ( °37 C; 5% CO2) and the cells were transferred to a

single‐use Erlenmeyer baffled flask with a working volume of 40 ml

(Corning). The incubator atmosphere (LT‐XC; Kuhner, Switzerland)

was controlled at °37 C, 5% CO2, and 85% humidity. Shaking speed

was set at 200 rpm and 25 mm shaking diameter. Further expansion

of cells was performed using multiple shake flasks and a cryobank

was created.

2.2 | Automated and online flow cytometry

An automated and online flow cytometry (AFC) set‐up was designed

as follows. A needle (diameter: 1 mm, Medorex, Germany) was

connected to the bioreactor representing an inline sampling port and

a small tubing (diameter: 0.5 mm, length: 60 cm) was connected to

the flow cytometer (Cytoflex, Beckman Coulter, Germany) instead of

the sample needle. Sample shaking was turned off and backflushing

after measurement was set to a minimum of 1 s to avoid

contamination of the bioreactor. This set‐up could be used to

measure the fluorescence signals of the FUCCI system online and the

samples were neither filtered nor stained before measurement.

Furthermore, automated measurements with distinct time intervals

or at distinct times were performed using the desktop automation

software “perfect automation” (Version 2.7.1, available at http://

www.perfectautomation.com/). Then, a flow of μ /60 l min was set for

6 min to flush the tube with fresh cultivation broth. The term online

was defined according to Biechele et al. (2015) because the sampling

time is low (approx. 10 min total) compared to the process dynamics

(approx. 22 hr for cell cycle; Biechele, Busse, Solle, Scheper, &

Reardon, 2015). Fifty thousand events were recorded at an

appropriate flow rate and the system was turned to standby

afterward.

2.2.1 | Quantification of FUCCI fluorescence
with Ired

n

The flow cytometer measurements were analyzed as described in

(Fuge et al., 2017). In brief, debris was excluded using SSC‐A versus

FSC‐A and doublets were excluded with FSC‐H versus FSC‐A gating.

mKO2 (red, G1 phase) was measured using a 488 nm laser and a 585/

42 filter and mVenus (green, S/G2/M phase) was quantified using the

same laser and a 525/40 nm filter. The gains in both measurements

were adjusted to 50 (arbitrary unit). Compensation (mVenus‐24%
mKO2, mKO2‐42.5% mVenus) was necessary to reduce cross talk.

mVenus positive cells were defined above a measured intensity of

×4 104 a.u. and mKO2 positive cells above ×2 104 a.u., which was

defined based on the autofluorescence of nontransduced CHO DP‐
12 cells. It was shown that the ratio of these fluorescence signals

(viz., ired
n ) can be applied to estimate the cell cycle distribution of the

culture (Fuge et al., 2017). Therefore, the number of mKO2 positive

cells is divided by the number of mKO2 and mVenus positive cells

[ ] =
+

i
m

m m
%

KO

KO Venus

n

n nred
n 2

2

(1)

It is a relative representation of the cell cycle distribution and

(Fuge et al., 2017) identified the significant correlation of ired
n with the

cell cycle distribution of exponentially growing cells. Furthermore,

the concept of ired
n measurements was introduced for the estimation

of the current growth rate of nonoscillating cultures. This study aims

at an improved understanding of the cell cycle distributions and the

application of ired
n as a measure of the growth rate was not targeted.

The calculation of ired
n can be done directly using the flow cytometry
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data. See the Supporting Information materials (Figure S1) for more

information about the gating of the flow cytometer data.

2.3 | Cultivations

In this study, different cultivation concepts have been tested in silico

to assess if they might induce cell cycle oscillations. A repeated‐batch
set‐up and a (bolus) fed‐batch were investigated. A continuous

feeding strategy was used as a negative control for the fed‐batch
process.

2.3.1 | Preculture

A single‐use Erlenmeyer baffled flask (40 ml; Corning) was inoculated

with freshly thawed cryo‐cultures ( ×1 107 cells/ml). The incubator

atmosphere and the expansion were as described in Generation of

FUCCI‐derived cell line derivatives. All cultivations were performed

without antibiotics and serum.

2.3.2 | Repeated‐batch cultivation

The cultivation of nonsynchronized CHO DP‐12 (FUCCI) cells in a

repeated‐batch (see Möller et al., 2018) was performed in the

bioreactor Medorex Vario 1000 (Medorex). The working volume at

the beginning was 100 ml fresh medium (TC‐42, Xell AG). The

medium was supplemented with 0.1 mg/L LONG R3 IGF‐1, 1 mM

glutamine, and 200 nM methotrexate. The pH was controlled at 7.1

(CO2 or 0.5 M Na CO2 3), agitation at 400 rpm, temperature at °36.8 C.

Headspace aeration of air was supplied at 10 /ml min and CO2 was

added in the headspace for pH adjustment. Dissolved oxygen was

controlled at 40% minimum and pure oxygen was sparged sub-

mersely if necessary. A total of × /2 10 cells ml6 were inoculated and a

partial medium exchange was performed every 22 hr to set the

glucose and glutamine concentrations as calculated in the model‐
based study and to adjust the cell concentration to the predicted

values. Therefore, part of the medium was removed and a freshly

prepared medium was fed to the bioreactor. AFC measurements

(Automated and online flow cytometry) were conducted every hour.

Offline cell cycle measurements were conducted every 3 hr in the

fourth batch.

2.3.3 | Fed‐batch cultivation

The bioreactor set‐up in the fed‐batch cultivation was the same as in

the repeated‐batch experiment (Repeated‐batch cultivation). The

working volume was 150 ml fresh medium (supplemented as in

Repeated‐batch cultivation) and × /0.3 10 cells ml6 were inoculated.

The bolus feed (Chomacs basic feed, Xell AG, 111 mM glucose) was

supplemented with 9 mM glutamine. 10% (based on current volume)

of prewarmed feed was added every 24 hr, with the first feed after

48 hr cultivation time. In the negative control, the same quantity of

the same feeding solution was supplied continuously using a syringe

pump (AL1000; World Precision Instruments GmbH, Friedberg,

Germany) with a flow rate of 10% of the actual bioreactor volume

supplied per day. The flow rate was adjusted each day to account for

an increase in volume.

2.3.4 | Analytics

Concentrations of glucose (cGlc), glutamine (cGln), and lactate (cLac)

were measured with the YSI 2900D (Yellow Springs Instruments)

biochemistry analyzer. The concentration of ammonium (cAmm) was

determined with an enzymatic test kit (AK00091; NZYTech,

Portugal). The antibody (cAb) was measured with biolayer inter-

ferometry (Octet RED; Pall ForteBio) with protein A biosensors (Pall

ForteBio) in accordance with the manufacturer protocol. The cell

concentration was measured with the particle counter Z2 (Beckman

Coulter, described in (Castillo et al., 2012)) and with the gated single

cells during the AFC (2.2.1). The flow‐cytometer liquid flow was

calibrated on the Z2 measurements. Viability was measured with the

4,6‐diamidin‐2‐phenylindol (DAPI) method, as explained in (Möller

et al., 2018) or with the Trypan Blue method. The cell cycle

distribution was determined based on the distribution of DAPI

stained DNA (Möller et al., 2018; Platas Barradas et al., 2015).

2.4 | Population‐resolved model

A stochastic population‐resolved model was adapted to predict a

process for the induction of cell cycle‐dependent oscillations based

on the feeding strategy. The basis of the model is the division of the

total cell population into four distinct cell cycle states (Ω = [G1, S,

G2M, dead cells]). In each phase, a cell cycle‐specific DNA replication

rate and volumetric growth rate are modeled individually. Cell

growth is based on the substrates glucose, glutamine and potentially

lactate (Equations S4 and S5). Furthermore, the cell cycle‐dependent
metabolic regulations are included for glucose, glutamine, lactate,

ammonium, and the antibody (Equations S6–S10). Möller et al. (2018)

identified the formation of a putative autocrine factor and showed its

interactions with the metabolism, which is also considered in the

model (Equations S11–S13). The cell cycle‐specificity is implemented

with individual model parameter sets for all Ω, that is G1, S, and G2/

M‐dependent parameters, allowing the description of cell cycle‐
dependent metabolic up‐ and downregulation. This approach has so

far been applied to identify cell cycle dependencies such as increasing

antibody productivity during the S‐phase of CHO DP‐12 cells (Möller

et al., 2018). The model is set up as a single cell model simulating

1,000 cells with individual growth and metabolism in accordance

with the cell cycle. The transition among different Ω is described

stochastically with Gaussian probability density functions (Equations

S15–S17; Liu, Bi, Zeng, & Yuan, 2007). Furthermore, a random

variation in the growth rate for each simulated cell is considered

(Equations S2 and S3) to reflect the individual growth variability on

the single‐cell level. The concentration changes and growth progres-

sions simulated for single cells are numerically integrated (Equation

S18) and the simulation results are scaled to the experimental cell

number (Equation S1) to reflect the bioprocess bulk behavior. A
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detailed explanation and discussion of the model components can be

found in the Supporting Information material and (Jandt et al., 2015;

Möller et al., 2018).

2.4.1 | Process‐induced cell cycle oscillations

In the model, the effective cell growth rate (Equation S5) is a function

of the substrate concentrations including glutamine. This is modeled

based on substrate‐specific growth rates (ki) with Monod‐like
structures (Equation S4). Here, the focus is specifically on the

contribution of the glutamine‐dependent growth rate kGln, as

depicted

=
( + )

k
c

K c
.Gln

Gln

Gln Gln
(2)

KGln describes the affinity of kGln to the glutamine concentration

in the medium. It was observed in preliminary simulation studies that

even small cell cycle dependencies of KGln would presumably lead to

significant cell cycle fluctuations depending on the bulk glutamine

profiles. In earlier studies, any potential cell cycle dependency of KGln

was not targeted and thus it was assumed to be constant (Jandt et al.,

2015; Möller et al., 2018). In this study, a cell cycle‐dependent
affinity of the cell growth to glutamine was considered and KGln in

Equation ((2)) was extended with a dimensionless cell cycle‐specific
scaling factor ΩKGln, which gives

=
( ⋅ + )Ω

k
c

K K c
.Gln

Gln

Gln Gln, Gln
(3)

The model extension phenomenologically reflects the strong

impact of glutamine on the cell metabolism and biosynthesis

(DeBerardinis & Cheng, 2010; Yang et al., 2016) and a changing cell

response to the available glutamine during the cell cycle (Jandt et al.,

2015; Möller et al., 2018; Son et al., 2013). The assumed cell cycle‐
dependent volumetric growth rate (Equation ((3))) would, in theory,

lead to an accumulation of cells in defined cell cycle positions based

on the glutamine profiles in the medium. This allows real synchro-

nization, which would pose no contradiction to synchronization

criteria defined by (Cooper, 1998a; Jandt et al., 2014). Note that this

approach does not rely on specific restriction points and that cell

cycle‐dependent variations of KGlc and KLac were not targeted. Here,

the consideration of cell cycle‐dependent growth rates with ΩKGln,

was used to predict the potential influence of process strategies on

the induction of cell cycle oscillations.

2.4.2 | Adaptation of model parameters

The model parameters were readapted to the experimental data of

the repeated‐batch and fed‐batch process following the workflow

described in the Supporting Information material and (Möller et al.,

2018). In brief, the measured data were smoothed (Gaussian

convolution, δ = 3 hr) to reduce the measurement noise. Then, the

model parameters were adapted based on the filtered data using the

Nelder–Mead optimization algorithm (Nelder & Mead, 1965; Singer

& Singer, 2004). The parameters were adapted stepwise (different

objective functions, see Supplementary materials or (Möller et al.,

2018)) and the obtained parameter sets are referred to as best‐fit.
The cell cycle‐specific parameters ΩKGln, were adapted on the

offline cell cycle data of the repeated‐batch process between 66 and

96 hr because very detailed time‐resolved data of the cell cycle

progression was available only between these time points. ired
n data

were not used for parameter fitting, but for validation, as it should

roughly correlate with the G1 phase distribution.

2.4.3 | Model parameter uncertainty quantification

To validate and evaluate the uncertainty of the model predictions, 50

independent parameter adaptations were performed starting from

the best‐fit. Due to the semistatistical nature of the model, each

parameter adaptation differs. Therefore, the uncertainty of the

model predictions was evaluated. The model was implemented in

GNU C++ and the computational demand required to estimate the

optimal parameter sets (500 iterations for each parameter optimiza-

tion, 50 replicates total) is roughly between 10 and 20 CPU hr.

Adaptations were performed on the High‐Performance‐Computer‐
Cluster at TUHH. The 10% and 90% percentiles of the simulated data

were calculated based on the function “prctile” (MATLAB 2018a,

exact mode; Langford, 2006).

3 | RESULTS AND DISCUSSION

It was investigated, whether and to which extent oscillations in the

cell cycle distribution are induced in CHO DP‐12 (FUCCI) cultures,

depending on the feeding strategy. Oscillations were predicted using

a population balance model derived from (Möller et al., 2018),

assuming ≫ ≈ ∕K K KGln,G1 Gln,S Gln,G2 M (see Equation ((3))) and supply

of a regular feed pulse and the glutamine concentration oscillating

above and below approx. 0.5 mM in the culture. This was confirmed

with the following two types of experiments: First, a repeated‐batch
cultivation concept to study stable cell cycle oscillations was

developed in silico and evaluated experimentally. Second, the

induction of cell cycle fluctuations was predicted and validated in a

(bolus) fed‐batch, which was compared to a continuously supplied

feed as negative control. Then, the model parameters were refined to

the new available experimental data to minimize residual errors (for

the parameter list, see Table S1). Note that, when keeping =ΩK 1Gln,

as in previous works, no oscillations occurred, as expected (data not

shown). ΩKGln, were adapted to the detailed cell cycle data of the

repeated‐batch cultivation (Performed repeated‐batch process) and

evaluated on all cultivations.

3.1 | Stable oscillating repeated‐batch

Repeated‐batch cultures were shown to be advantageous for the

study of cell cycle dependencies because overlaying effects, such as
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substrate limitations and presumed metabolite inhibitions could be

avoided (Möller et al., 2018). Furthermore, they offer a semicontin-

uous cultivation concept for long term studies (Kim, Bang, Kim, Jang,

& Lee, 2016) and are used as a scale‐down model for example

perfusion processes (Chen, Wong, & Goudar, 2018; Wolf et al., 2018).

3.1.1 | Determined process parameters

The identification of the process parameters for the induction of cell

cycle oscillations was based on the population‐resolved model (see

Population‐resolved model). The initial glutamine concentration

cGln,0, the glutamine concentration in the fresh medium (cGln,ME), the

percentage of replaced medium (V%,ME) and the time points for

medium exchange (tME) were predicted using simulations based on

their ability to induce cell cycle oscillations. The initial viable cell

density (Xv,0) was set to × /2 10 cells ml6 based on former experi-

ments (Möller et al., 2018). It was identified that a high oscillation of

nonsynchronized cultures through repeated‐batch experiments could

be obtained for the cultivation parameters shown in Table 1.

These parameters enable the glutamine concentration to be

between 1 and approximately 0.1 mM. After tME, part of the medium

was replaced and cGln,0 and Xv,0 were restored at the beginning of

each batch. Furthermore, the glucose concentration was designed to

remain higher than 20 mM, so limitations and inhibitions could be

prevented.

3.1.2 | Performed repeated‐batch process

The suggested experiment was performed and the measured

concentrations and online ired
n signals are shown in Figure 1.

The adapted curves of the best‐fit and the corresponding 10/90%

quantiles are in good agreement with the measured data. The

minimal and maximal values of the corresponding parameters and the

parameters of the best‐fit can be found in Table S1.

FUCCI fluorescence

As can be seen in Figure 1a, i edr
n starts to increase during the first 12

hr past inoculation and then decreases until the first medium

exchange at 22 hr. After that, the amplitudes increase from 16% in

batch 2 to a stable value of 30% in batch 3 and batch 4. The duration

of one cell cycle oscillation was ≈  20 hr, which is in good agreement

to the doubling time of CHO DP‐12 cells of nonsynchronized shake

flask cultivations (40 ml working volume) of 20.82 hr ± 1.70 hr (n =

29; see Möller, Kuchemüller, Steinmetz, Koopmann, & Pörtner

(2019)). The ired
n oscillations are stable and not damped, which

typically occurs during the cultivations of physically synchronized cell

populations in substrate excess (Jandt et al., 2014). A higher

glutamine concentration (Figure 1e) was fed after 88 hr of cultivation

and ired
n prolongs with an additional oscillation without any medium

exchanges.

Cell cycle distribution

The G1 phase distributions of the offline‐samples (Figure 1c) show a

cell cycle synchronization between 41% and 72%, which is compar-

able to physical synchronization techniques, such as countercurrent

elutriation (Platas Barradas et al., 2015). A small‐time shift of the

amplitude of approx. 2 hr, although not easily observable, exists

between the oscillations in Figure 1a,c.

Cell growth

Cell growth was quantified using flow cytometry data (Figure 1b) and

offline measurements (Figure 1d). The gated single cells show a

steady growth of the cultures without any lag phases due to low

glutamine concentrations. The same steady growth was measured

after the higher concentrated feed pulse at 88 hr. The viability was

higher than 96% for all measurements and cell death was not

observed.

Glutamine and ammonium

The glutamine concentration (Figure 1e) was adjusted to the

calculated starting concentration of approximately 1 mM and it

decreased in every batch close to 0.1 mM. The uptake of glutamine

was constant between different batches and no stagnation of the

glutamine uptake was observed after each medium exchange. No

growth interruptions were observed due to the intermittently low

concentrations of glutamine.

The assumed cell cycle‐dependent differences in the glutamine‐
related growth rate were implemented in the model with cell cycle‐
dependent Monod constants (Process‐induced cell cycle oscillations;

Equation ((3))). The model parameters were adapted and ΩKGln, were

found to be significantly different between different cell cycle

phases, shown in Figure 2.

KGln,G1 is significantly higher than KGln,S and KGln,G2M, which

describes a higher affinity to low glutamine concentrations with a

reduced growth during the G1 and the S phase in comparison to the

G2/M phase. The concentration of ammonium (Figure 1f) increases

from batch to batch, but stays below 1.5 mM and did not reach

typical inhibitory concentrations (Noh, Park, Lim, Kim, & Lee, 2017;

Zeng, Deckwer, & Hu, 1998).

Glucose and lactate

The concentration of glucose (Figure 1g) was in excess and above 20

mM for the five investigated batches. No limitations and no putative

inhibitions were observed. The consumption of glucose was

TABLE 1 Determined process parameters for a repeated‐batch
process with induced cell cycle oscillations

Variable

cGln,0 1 mM

cGln,ME adjusted to restore cGln,0

V%,ME 42%

tME 22 hr

Xv,0 ⋅2 106 cells

ml
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F IGURE 1 Mean experimental results (diamonds) of the repeated‐batch culture, solid line is the best‐fit (see Population‐resolved model),
dashed line represents 10% and 90% quantiles of 50 independent parameter adaptations; error bars show the standard deviation of three

technical measurements; exchange of the medium was performed every 22 hr (pointed line)
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comparable in all batches. The lactate concentration increases

strongly in the first batch from 0 to 10 mM and at the end of each

batch. The lactate production per batch decreases from batch to

batch. This effect could be coupled to a putative autocrine factor and

was identified previously (Möller et al., 2018).

Antibody and putative autocrine factor

The antibody (Figure 1i) was formed constantly and was diluted with

every feeding step, thus increasing batch‐wise. The putative

autocrine factor (Figure 1j) was simulated to be expressed constantly

over the five batches, as described previously (Möller et al., 2018).

3.2 | Feeding‐induced cell cycle oscillations

A fed‐batch process for the induction of cell cycle synchronization

was developed based on the population‐resolved model (2.4). Fed‐
batch processes are predominantly applied in the biopharmaceutical

industry and could be used to understand process‐induced cell cycle

dependencies in high cell density cultures (Pan, Dalm, Wijffels, &

Martens, 2017; Zhu, 2012).

3.2.1 | Determined process parameters

Similar to the repeated‐batch set‐up, a low‐glutamine environment

(supplied bolus‐wise) was tested to induce cell cycle synchronization

in fed‐batch cultures. The proposed feeding strategy was based on

the population‐resolved model and prior studies for the model‐
assisted design of fed‐batch strategies (Möller et al., 2018, 2019).

Using the model‐based approach, a cell cycle oscillation was

predicted in fed‐batch cultivations for the process parameters shown

in Table 2.

The glucose concentration in the feed (cGlc,F) was set to 111 mM

based on the available medium. The feed rate (Frate) and the start of

feeding (FStart) were defined based on the availability of glutamine

with estimated concentrations below 1 mM after 48 hr. The

glutamine concentration in the feed (cGln,Feed) was defined in a way

that low‐glutamine conditions comparable with the repeated‐batch
concept could be ensured.

3.2.2 | Performed fed‐batch process

The performed fed‐batch is depicted in Figure 3 including the

adapted best‐fit of the population‐resolved model and the 10/90%

quantiles.

In general, modeling was only performed during the exponential

and transition phase (until 168 hr) and not during the stationary

(approx. 168 –216 hr) and death phase (t > 216 hr). The mechanisms

of cell death, including apoptosis, necrosis, and cell lysis are not

understood properly, even in a holistic way (Klein et al., 2015; Tabas

& Ron, 2011). Moreover, the influence of these effects on the cell

cycle is still unknown and was not targeted in this study

(Chaiboonchoe et al., 2018; Hydbring, Malumbres, & Sicinski, 2016).

FUCCI fluorescence

ired
n (see Figure 3a) is stable at approx. 42% for the first 72 hr of

cultivation without any oscillations. After the second feed pulse at 72

hr, it starts to oscillate slowly with a difference in ired
n of 8% between

72 and 96 hr. After that, an oscillation of the ired
n signals with an

increasing peak height until 132 hr was observed. After the feed

pulse at 144 hr, ired
n increases again but the oscillation stops after 168

hr and ired
n constantly increases further up to 100%. No oscillations

were observed in the negative control (orange line) where ired
n

increased on average comparable to the bolus fed‐batch. Overall, the

concentrations (Figure 3e–h) and the cell numbers (Figure 3b,d) of

the negative control (continuous feeding) were in the same range as

the bolus fed‐batch process.

Cell cycle distribution

The cell cycle distribution was purely modeled (Figure 3c) and the

oscillations of simulated G1 content are comparable to the ired
n

measurements. The increase in the average ired
n (comparable to the

negative control) was no part of the modeling and only oscillation of

ired
n is reflected in the G1 phase distribution.

F IGURE 2 Adapted cell cycle‐specific growth constants for 50
independent parameter adaptations, two paired t test. ** = high
significance (p < .001)

TABLE 2 Determined process parameters for a fed‐batch process
with induced cell cycle oscillations

Variable

cGln,Feed 9 mM

cGlc,Feed 111 mM

FRate 10% of starting volume

FStart 48 hr
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F IGURE 3 Mean experimental results (diamonds) of the fed‐batch culture, solid line is the best‐fit (see Population‐resolved model), dashed

line represents 10% and 90% quantiles of 50 independent parameter adaptations; error bars show the standard deviation of three technical
measurements; feeding was performed every 24 hr (pointed line) with a start at 48 hr. Negative control with continuous feeding in orange
[Color figure can be viewed at wileyonlinelibrary.com]
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Cell growth

The single‐cell concentration determined with gating (Figure 3b)

increases from × /0.3 10 cells ml6 up to × /25 10 cells ml6 . The growth

phases including the death phase after approximately 192 hr could

be seen using the AFC approach. The offline‐determined cell

densities show similar numbers and the best‐fit reflects the

measurements sufficiently. Cell lysis could be identified during the

death phase with decreasing particle sizes and therefore a decrease

in gated cells (Kroll, Stelzer, & Herwig, 2017). The negative control

exhibited similar growth behavior as the pulse‐feed cultivation.

Glutamine and ammonium

The glutamine concentration (Figure 3e) decreased from 2 to 0.5 mM

after 48 hr and was then fed every 24 hr as a bolus. It did not fall

below 0.2 mM and was not limiting during the fed‐batch cultures.

After 144 hr, the glutamine uptake was slower and no glutamine was

taken up between 144 and 168 hr. The overall glutamine profile of

the negative control was comparable to the averaged trend of that

seen in the pulse fed‐batch cultivation. The model reflects

the glutamine profiles sufficiently, but the glutamine uptake at the

beginning (48 –72 hr) was partly underestimated. The change in the

glutamine uptake rates (i.e., high at the beginning and low at the end)

was simulated with acceptable variations. The 10/90% quantiles are

relatively wide, which is based on the simulation of starvation effects

near to 0 mM glutamine and part of the readapted curves reach the

starvation earlier than others. The concentration of ammonium (3f)

increases up to 4 mM until 168 hr, for which no inhibitory effects

were described in the literature (Hassell, Gleave, & Butler, 1991;

Hayter et al., 1991; Zeng et al., 1998).

Glucose and lactate

The concentration of glucose (Figure 3g) decreases below the

starting value of 40 mM and was depleted between 144 –168 hr,

which corresponds to the transition of the cell culture into the

stationary growth phase. The concentration of lactate (Figure 3h)

increases constantly up to 45 mM and lactate is taken up after

glucose is consumed. This metabolic lactate switch itself and its

regulations remain unclear and were not targeted in this study (Zalai

et al., 2015; Zagari, Jordan, Stettler, Broly, & Wurm, 2013).

Antibody and putative autocrine factor

The antibody concentration (Figure 3i) increased constantly during the

fed‐batch process and was comparable to former studies (Möller et al.,

2019). The putative autocrine factor (Figure 3j) was estimated to rise.

3.3 | Discussion

3.3.1 | Glutamine‐dependent cell cycle
synchronization

The role of glutamine in cell metabolism is still being investigated and

discussed (reviewed in DeBerardinis & Cheng, 2010). On the one

hand, glutamine is taken up during the glutaminolysis and provides

energy to the TCA cycle, which is required during cell proliferation

(Lunt & Vander Heiden, 2011). On the other hand, it is seen as a

nitrogen donor during nucleotide biosynthesis and is therefore

essential in cell cultures (Tardito et al., 2015; Tohyama et al.,

2016). However, the uptake of glutamine is significantly higher than

needed for biosynthesis and an ineffective metabolism comparable to

the Warburg effect is described in tumor cells (DeBerardinis &

Cheng, 2010; DeBerardinis et al., 2007). Previously, the glutamine

metabolism was found to be significantly cell cycle‐dependent in the

mammalian cell lines CHO K1, AGE1AAT and CHO DP‐12 (Jandt et al.,

2015; Möller et al., 2018). In this study, partial cell cycle

synchronization was identified based on the process strategy with

glutamine concentrations in the oscillation‐inducing range of

approximately 0.2–1.0 mM. This effect is likely to be biologically

related to an upregulation of the glutamine uptake/metabolism

during the G1/S phase, for example, due to an increased glutamine

demand during cell growth and DNA synthesis (Möller et al., 2018;

Son et al., 2013). The highly significant differences in the adapted

model parameter ΩKGln, (Figure 2) describe this effect. Thus, a strong

cell cycle control based on glutamine or glutamine‐dependent
intermediates in CHO DP‐12 (FUCCI) cells is postulated. ∕KGln,G2 M

was significantly reduced, which indicates a low glutamine depen-

dency of the G2/M phase.

3.3.2 | Absence of cell cycle arrest

The cell cycle itself is the basis of cell proliferation and it is strongly

regulated in mammalian cells (Kohrman & Matus, 2017; Lopez‐Mejia

& Fajas, 2015). The main regulation of the cell cycle is based on the

cyclin‐dependent kinases (CDK) 4 and CDK6 (Gelbert et al., 2014).

They form a heterodimer (CDK4/6) and are involved in cell cycle

control (review in Otto & Sicinski, 2017). In general, cell cycle arrests

with changing metabolic regulations and cell death were identified

for the depletion of nutrients (Roth et al., 2002; Saqcena et al., 2013;

Zhang et al., 2014). This effect could be linked to the decrease of

intracellular cyclin levels due to pathways associated with response

to amino acid deprivation (Dey et al., 2010; Du et al., 2015).

Furthermore, Cooper (2003) and Jandt et al. (2014) questioned cell

cycle synchronization methods using cell cycle arrest by, for example,

chemical cell cycle blockage in general.

Here, no overall reduction of the growth rate with apparent

dysregulations, example cell death, cell cycle arrest, or extensive

metabolic changes was observed. Cell cycle synchronization was

achieved based on the process strategy with the previously described

low‐glutamine concentrations supplied bolus wise. No growth inhibi-

tion/limitation with lag‐phases or induction of cell death/lysis have been

identified neither in the repeated‐batch nor fed‐batch process (exclud-

ing death phase). Metabolic dysregulations or changing uptake or

formation rates were not observed. In both processes, no suppression of

the antibody production by the process was observed, even for low‐
glutamine conditions. Furthermore, metabolic changes were not seen if

the model simulations including the 10/90% quantiles are compared to

the measured data (comparable to Möller et al., 2018). The proposed

processes and methods could, therefore, be applied to gain an improved
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understanding of cell cycle‐enriched populations and their dynamics in

physiologically synchronized cultures.

3.3.3 | Ired
n for online cell cycle measurements

The online monitoring and control of mammalian cell culture

processes are mostly based on bulk signals. Historically, pH or

dissolved oxygen (DO) has been related to changes in the cell

metabolism and process control strategies (e.g., feeding on OUR)

were developed based on these measurements (Hu & Aunins, 1997;

Jiang, Chen, & Xu, 2018; Romn et al., 2018). Even novel measurement

concepts in the process analytical technology initiative mostly

measure bulk compositions and relate this information to cellular

regulations and effects. Exemplary, online glucose measurements

(Zhang et al., 2015) or RAMAN spectroscopy (Berry et al., 2016;

Matthews et al., 2018) are discussed in the literature. These

measurement concepts are very useful to understand processes in

a holistic way, but only partially useful to gain an understanding of

population heterogeneity with changing cell metabolism.

This study shows the application of AFC for the quantification of

cell population‐based phenomena using ired
n . A correlation to the cell

cycle of individual cells was identified during the exponential growth

phase. However, the overall increase of ired
n at the end of the

cultivation could not be purely linked to the cell cycle distributions.

Cell starvation at the end of the cultivations could include the

transition of the cells into a quiescent state (sometimes referred to as

G0 phase) including changes in the protein expression, degradation,

and cell cycle regulation (Münzer et al., 2015). We observed that

mKO2‐hCdt1(30/120) accumulates during late‐stage growth and the

stationary phase, for which (Tomura et al., 2013) presumed an

accumulation due to the transition of the cell population into a G0

phase. Even though the pure existence of a G0 phase has been

disputed at all (Cooper, 1998b), the accumulation of mKO2‐
hCdt1(30/120) cells, including an increase in ired

n , correlates with

metabolic deactivation and cell death.

4 | CONCLUSION

The impact of different cultivation and feeding strategies on the

induction of cell cycle oscillations was investigated in nonsynchronized

processes with antibody‐producing CHO DP‐12 cells. The cells were

genetically modified to stably express the FUCCI system and an

automated flow cytometry set‐up was developed to measure the cell

cycle indicator ired
n online. First, a repeated‐batch process was assessed

based on a population‐resolved model. Stable cell cycle oscillations were

measured in five repeated batches (22 hr each). Second, it was

evaluated how a bolus feeding strategy induces cell cycle synchroniza-

tions. Interestingly, significant metabolic differences in the cell cycle‐
dependent glutamine metabolism were identified, which are the basis of

process‐induced cell cycle synchronization. This provides a novel

approach to understand and control cell cycle regulations and thus to

either intentionally triggers cell cycle synchronizations in cell culture

processes or, on the other hand, avoid unwanted fluctuations due to

inappropriate (bolus) feeding strategies. Further studies will focus on

the direct control of ired
n with an adaptation of the population‐resolved

model into a process control system.
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