
A Logic-Based Approach to

Multimedia Interpretation

Vom Promotionsausschuss der

Technischen Universität Hamburg-Harburg

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von

Atila Kaya

aus Izmir, Türkei

2011

Reviewers:

Prof. Dr. Ralf Möller

Prof. Dr. Bernd Neumann

Prof. Dr. Rolf-Rainer Grigat

Day of the defense:

28.02.2011

Abstract

The availability of metadata about the semantics of information in mul-

timedia documents is crucial for building semantic applications that offer

convenient access to relevant information and services. In this work, we

present a novel approach for the automatic generation of rich semantic

metadata based on surface-level information. For the extraction of the

required surface-level information state-of-the-art analysis tools are used.

The approach exploits a logic-based formalism as the foundation for knowl-

edge representation and reasoning. To develop a declarative approach, we

formalize a multimedia interpretation algorithm that exploits formal infer-

ence services offered by a state-of-the-art reasoning engine. Furthermore,

we present the semantic interpretation engine, a software system that im-

plements the logic-based multimedia interpretation approach, and test it

through experimental studies. We use the results of our tests to evaluate

the fitness of our logic-based approach in practice. Finally, we conclude this

work by highlighting promising areas for future work.

To my dear parents and wife

Sevgili anneme, babama ve es.ime

i

Acknowledgements

This thesis is the result of five years work in the Institute for Software

Systems (STS) research group at the Hamburg University of Technology

(TUHH). I am grateful to my advisor Prof. Dr. Ralf Möller for giving me

the opportunity to conduct such exciting research and mentoring me. I

would also like to thank Prof. Dr. Bernd Neumann and Prof. Dr. Rolf-

Rainer Grigat for reviewing this work.

I would like to express my gratitude to all my colleagues at the STS re-

search group: Sofia Espinosa, Sylvia Melzer, Alissa Kaplunova, Tobias

Näth, Kamil Sokolski, Maurice Rosenfeld, Oliver Gries, Anahita Nafissi,

Dr. Hans-Werner Sehring, Olaf Bauer, Rainer Marrone, Sebastian Wan-

delt, Volker Menrad and Gustav Munkby. Special thanks go to Dr. Patrick

Hupe and Dr. Michael Wessel, who always supported and encouraged me.

I am also indebted to STS staff Hartmut Gau, Ulrike Hantschmann, Thomas

Rahmlow, Thomas Sidow for their excellent administrative and technical

support.

Finally, I would like to thank my parents Tükez and Dursun, and my wife

Justyna for their love, care and continuous support.

ii

Contents

List of Figures v

1 Introduction 3

1.1 Motivation for this Research . 3

1.2 Research Objectives . 4

1.3 Contributions . 5

1.4 Dissemination Activities . 6

1.5 Outline of the Dissertation . 9

2 Logical Formalization of Multimedia Interpretation 11

2.1 Applications and Related Research Fields 12

2.2 Related Work On Image Interpretation 16

2.2.1 Image Interpretation Based on Model Generation 17

2.2.2 Image Interpretation Based on Abduction 20

2.2.3 Image Interpretation Based on Deduction 25

2.3 Discussion . 30

3 Logical Engineering of a Multimedia Interpretation System 33

3.1 Knowledge Representation Formalisms 35

3.1.1 Introduction to Description Logics 38

3.1.2 Introduction to Logic Programming 54

3.2 Overview of a Multimedia Interpretation System 59

3.3 Formalizing ABox Abduction . 66

3.3.1 Related Work on Abduction . 68

3.3.2 The ABox Abduction Algorithm 83

3.3.3 Selecting Preferred Explanations 89

iii

3.4 Abduction-Based Interpretation . 95

3.5 Fusion of Modality-Specific Interpretations 99

4 Case Studies 105

4.1 The BOEMIE Project . 106

4.2 The Semantic Interpretation Engine . 110

4.3 Interpretation of a Sample Multimedia Document 113

4.3.1 Modality-Specific Interpretations 114

4.3.2 Strategies for the Interpretation Process 138

4.3.3 Fusion . 148

5 Evaluation 161

5.1 Performance and Scalability . 162

5.2 Quality of Interpretation Results . 168

6 Conclusions 175

6.1 Summary . 175

6.2 Outlook . 177

References 179

Index 194

List of Figures

3.1 The hybrid approach for obtaining deep semantic annotations 34

3.2 Interpretation of complex concept descriptions 40

3.3 A graphical representation of the concept definition Person, which re-

quires modeling of a triangular structure 50

3.4 A graphical representation of an ABox with an inferred role assertion

(dashed) caused by the transitive role R 51

3.5 An example UML class diagram . 52

3.6 An example TBox T . 53

3.7 The multimedia interpretation process. Input: analysis ABox, Output:

interpretation ABox(es), The background knowledge: Domain ontology

and interpretation rules . 60

3.8 Interpretation of a document consisting of observations and their expla-

nations . 62

3.9 The multimedia interpretation approach including processing steps for

analysis, interpretation and fusion . 64

3.10 A rule used by the Wimp3 system for network construction 73

3.11 The Bayesian network constructed for plan recognition 74

4.1 The architecture of the semantic interpretation engine, which is deployed

into the Apache Tomcat servlet container. The Apache Axis is a core

engine for web services. The semantic interpretation engine exploits

the inference services offered by RacerPro. Each RacerPro instance is

dedicated to a single modality. 111

4.2 A sample web page with athletics news 115

4.3 The image taken from the sample web page in Figure 4.2 116

v

4.4 The ABox imageABox01 representing the results of image analysis for

the image in Figure 4.3 . 116

4.5 An excerpt of the TBox T for the athletics domain 117

4.6 An excerpt of the image interpretation rules Rima for the athletics domain117

4.7 The ABox A′ after the addition of ∆1 120

4.8 The interpretation ABoxes imageABox01 interpretation1 and imageABox01 interpretation2

returned by the semantic interpretation engine 123

4.9 The caption of the image shown in Figure 4.3 123

4.10 The ABox captionABox01 representing the results of text analysis for

the caption in Figure 4.9 . 124

4.11 Another excerpt of the TBox T for the athletics domain 125

4.12 An excerpt of the caption interpretation rules Rcap for the athletics domain125

4.13 The interpretation ABox captionABox01 interpretation1 returned by the

semantic interpretation engine . 129

4.14 The first paragraph of the text segment of the sample web page 129

4.15 The ABox textABox01 representing the results of text analysis for the

text segment in Figure 4.14 . 130

4.16 Another excerpt of the TBox T for the athletics domain 131

4.17 An excerpt of the text interpretation rules Rtex for the athletics domain 131

4.18 The ABox A′ after the addition of the explanation ∆2 134

4.19 The interpretation ABox textABox01 interpretation1 returned by the

semantic interpretation engine . 137

4.20 The ABox sampleABox1 . 139

4.21 A sample TBox T . 140

4.22 A set of text interpretation rules R1 . 140

4.23 Two possible interpretation results for the same analysis ABox sam-

pleABox1, where the one on the left-hand side is preferred 141

4.24 The ABox sampleABox2 . 142

4.25 A set of text interpretation rules R2 containing a single rule 142

4.26 Two different interpretation results for the analysis ABox sampleABox2,

where the one on the left-hand side is preferred 144

4.27 The sample analysis ABox sampleABox3 145

4.28 A set of text interpretation rules R3 . 145

4.29 Two different interpretation results for the analysis ABox sampleABox3,

where the one on the left-hand side is preferred 146

4.30 An excerpt of the axioms, which are added to the background knowledge T149

4.31 All assertions of the interpretation ABox captionABox01 interpretation1

as returned by the semantic interpretation engine 152

4.32 The analysis ABox of a sample web page 156

4.33 A sample image interpretation ABox . 156

4.34 A sample caption interpretation ABox 157

4.35 The fused interpretation ABox of the sample web page 160

5.1 The number of fiat assertions (x) and the time (y) spent in minutes for

the interpretation of 500 text analysis ABoxes. 164

5.2 The number of fiat assertions (x) and the time (y) spent in minutes for

the interpretation of selected text analysis ABoxes. 165

5.3 The sum of fiat and bona fide assertions (x) and the time (y) spent in

minutes for the interpretation of 500 text analysis ABoxes. 166

5.4 The number of fiat and bona fide assertions (x) and the time (y) spent

in minutes for the interpretation of selected text analysis ABoxes. 168

Chapter 1

Introduction

1.1 Motivation for this Research

The development of methods and technologies to realize convenient access to informa-

tion is one of the everlasting challenges in computer science. In recent years, with the

exponential growth of the number of documents in the World Wide Web as well as

in proprietary enterprise and personal repositories, information retrieval has evolved

into a major research field in computer science, which directly affects both private and

business life.

Nowadays, major web search engines index billions of web pages according to so-

phisticated algorithms, which exploit mainly textual information from these web pages,

and some additional information such as hyperlinks between web pages. In the enter-

prise scenario, content management systems are often used to support the creation of

large amount of documents. In most enterprise-scale information systems at least some

means of textual search over document repositories is provided.

Independent of the application scale, all information systems have to analyze and

index documents, in order to provide for successful information retrieval. Despite major

improvements in the past that empowered the advent of very successful information

systems today, two major problems still need to be addressed:

• The majority of current information systems exploit textual information, which

is directly identifiable at the surface of a document. Even though this kind of

surface-level information can be extracted very successfully in practice, the lack

of knowledge about more abstract information prevents not only better retrieval

3

but also the development of more valuable, intelligent services that rely on deep-

level semantic information. Nowadays it is widely-accepted that humans prefer

to search for documents using abstract instead of surface-level information, in

particular in large document repositories.

• Most search functionality provided today relies solely on the analysis of textual

data. However, in recent years, not only the amount of documents has changed

but also the content of these documents. Facilitated by improvements in hard-

ware and software technology, most documents created today include rich media

content such as visual and auditory information. Ignoring information from any

other modality than text unnecessarily reduces the performance of information

retrieval systems, especially in document repositories with rich multimedia con-

tent.

Therefore, it is essential to reveal as much as possible deep-level semantic information

about the content of a multimedia document, in addition to considering information

in modalities other than text. This will pave the way for the development of semantic

applications that support more convenient and more successful information retrieval.

1.2 Research Objectives

The aim of this work is to investigate and develop methods for the automatic gen-

eration of rich semantic metadata, which describe the semantics of the information in

multimedia documents. By providing a means for the automatic generation of semantic

metadata, this work aims to pave the way for the development of semantic applications.

In the past, formal languages have been studied extensively for knowledge represen-

tation problems, and they provide appropriate means for representing semantic meta-

data. Semantic metadata, consisting of surface- and deep-level information, describe

a multimedia document, and thus, can be seen as an interpretation of the multimedia

document. Consequently, the task of computing interpretations of multimedia docu-

ments can be called multimedia interpretation. A major objective of this work is the

development of a declarative, logic-based approach for the multimedia interpretation

problem.

Another important objective of this work is to show that the proposed approach

can be realized in practice as a software component, which exploits state-of-the-art

inference engines and can be integrated with other software systems. We focus on

building a stable software system rather than a research prototype. Therefore, the

fitness of the software system should be examined by applying it to practical problems

and evaluating its performance in terms of runtime, scalability and quality measures.

1.3 Contributions

The major contributions of this thesis are as follows:

• Following the previous line of work on media interpretation, an appropriate knowl-

edge representation and reasoning formalism is identified as the foundation of the

multimedia interpretation task. To this end, a logic-based formalism, namely

Description Logics (DLs) augmented with rules, is chosen.

• A logic-based multimedia interpretation approach based on formal inference ser-

vices is developed. The approach exploits ontologies and rules as domain-specific

background knowledge, and can be applied to an application domain without the

definition of new algorithms, but solely through the formalization of appropriate

background knowledge.

• To deal with multimedia documents, which contain information in multiple modal-

ities, a hybrid solution is proposed. Instead of enhancing modality-specific analy-

sis tools with the ability to interpret surface-level information, the hybrid solution

integrates existing analysis tools into a coherent framework. In the hybrid solu-

tion, analysis tools solely focus on the extraction of surface-level information, and

a so-called semantic interpretation engine is responsible for the interpretation of

the surface-level information.

• The semantic interpretation engine, an implementation of the proposed multime-

dia interpretation approach that incorporates state-of-the-art reasoning engines,

is presented. The semantic interpretation engine is responsible for the interpre-

tation and fusion tasks. The surface-level information, which serves as input for

these tasks, is extracted by state-of-the-art analysis tools.

• The semantic interpretation engine is evaluated in a practical scenario in terms

of runtime performance and scalability. Additionally, the quality of semantic

metadata generated by the semantic interpretation engine is examined in an ex-

perimental study and evaluated in terms of precision and recall.

• From a more general perspective, this work shows that a logic-based approach

for multimedia interpretation cannot only be formalized but also realized in prac-

tice in form of a logic-based semantic interpretation engine that automates the

generation of high-quality semantic metadata about multimedia documents.

1.4 Dissemination Activities

This thesis is the most comprehensive and up-to-date presentation of our work. How-

ever, many parts of this work have been published in various conferences and workshops

in order to disseminate contributions at different stages. In the following, these dis-

semination activities are listed in categories:

Book Chapters

• S. Espinosa, A. Kaya, R. Möller. Logical Formalization of Multimedia Interpre-

tation. In G. Paliouras, C. D. Spyropoulos, G. Tsatsaronis, editors, Knowledge-

Driven Multimedia Information Extraction and Ontology Evolution, Springer LNCS

Series, To appear in 2011

Journal Articles

• S. Castano, S. Espinosa, A. Ferrara, V. Karkaletsis, A. Kaya, R. Möller, S. Mon-

tanelli, G. Petasis and M. Wessel. Multimedia Interpretation for Dynamic On-

tology Evolution. Journal of Logic and Computation, Oxford University Press,

Advance Access published on September 30, 2008. doi:10.1093/logcom/exn049

Conference Papers

• S. Espinosa, A. Kaya and R. Möller. On Ontology Based Abduction for Text In-

terpretation. In Proceedings of 9th International Conference on Intelligent Text

Processing and Computational Linguistics (CICLing-2008), number 4919 in Lec-

ture Notes in Computer Science, pages 194-2005, Haifa, Israel, February 2008.

• S. Espinosa, A. Kaya, S. Melzer, R. Möller and M. Wessel. Towards a Media Inter-

pretation Framework for the Semantic Web. In Proceedings of the IEEE/WIC/ACM

International Conference on Web Intelligence (WI‘07), number 4919 in Lecture

Notes in Computer Science, pages 374-380, Washington, DC, USA, November

2007.

Workshop Papers

• S. Espinosa, A. Kaya and R. Möller. The BOEMIE Semantic Browser: A Se-

mantic Application Exploiting Rich Semantic Metadata. In Proceedings of the

Applications of Semantic Technologies Workshop (AST-2009), Lübeck, Germany,

October 2009.

• S. Espinosa, A. Kaya, and R. Möller. Formalizing Multimedia Interpretation

based on Abduction over Description Logic ABoxes. In Proceedings of Interna-

tional Workshop on Description Logics (DL2009), Oxford, UK, July 2009.

• S. Espinosa, A. Kaya, and R. Möller. Ontology and Rule Design Patterns for

Multimedia Interpretation. In Proceedings of the BOEMIE Workshop, Koblenz,

Germany, December 2008.

• S. Espinosa, A. Kaya, S. Melzer, R. Möller and M. Wessel. Multimedia Interpreta-

tion as Abduction. In Proceedings of the International Workshop on Description

Logics DL-2007, Brixen-Bressanone, Italy, June, 2007.

• S. Castano, S. Espinosa, A. Ferrara, V. Karkaletsis, A. Kaya, S. Melzer, R. Möller,

S. Montanelli and G. Petasis. Ontology Dynamics with Multimedia Information:

The BOEMIE Evolution Methodology. In Proceedings of the ESWC International

Workshop on Ontology Dynamics (IWOD 07), Innsbruck, Austria, June 2007.

• A. Kaplunova, A. Kaya and R. Möller. Experiences with Load Balancing and

Caching for Semantic Web Applications. In I. Horrocks and U. Sattler and F.

Wolter, editors, Proceedings of International Workshop on Description Logics

(DL’06), The Lake District, UK, May 2006.

• J. Galinski, A. Kaya and R. Möller. Development of a Server to Support the for-

mal Semantic Web Query Language OWL-QL. In Proceedings of the International

Workshop on Description Logics (DL’05), Edinburgh, Scotland, July 2005.

• A. Kaya and K. Selzer. Design and Implementation of a Benchmark Testing

Infrastructure for the DL System Racer. In Proceedings of the Workshop on

Application of Description Logics (ADL’04), Ulm, Germany, September 2004.

Technical Reports

• A. Kaplunova, A. Kaya and R. Möller. First Experiences with Load Balancing

and Caching for Semantic Web Applications. Institute for Software Systems

(STS), Hamburg University of Technology, Hamburg, Germany, 2006.

Project Deliverables

• S. Perantonis, R. Möller, S. Petridis, N. Tsapatsoulis, D. Kosmopoulos, M. Anthi-

mopoulos, B. Gatos, E. Iosif, G. Petasis, V. Karkaletsis, G. Stoilos, W. Hesseler,

K. Biatov, M. Wessel, A. Kaya and K. Sokolski. 2.9 Semantics Extraction from

Fused Multimedia Content. The BOEMIE Consortium, BOEMIE Project Deliv-

erable, Version 1.0 Final, March 2009.

• T. Tikwinski, C. Rosche, G. Paliouras, A. Ferrara, A. Kaya and V. Papastathis.

5.4 Specification of the Architecture. The BOEMIE Consortium, BOEMIE Project

Deliverable, Version 1.0 Final, April 2007.

• K. Dalakleidi, S. Dasiopoulou, E. Giannakidou, A. Kaya, V. K. Papastathis, G.

Petasis and V. Tzouvaras. 3.2 Domain Ontologies - Version 1. The BOEMIE

Consortium, BOEMIE Project Deliverable, Version 2.0 Final, February 2007.

• S. Castano, K. Dalakleidi, S. Dasiopoulou, S. Espinosa, A. Ferrara, G. N. Hess,

V. Karkaletsis, A. Kaya, S. Melzer, R. Möller, S. Montanelli and G. Petasis.

4.1 Methodology and Architecture for Multimedia Ontology Evolution. The

BOEMIE Consortium, BOEMIE Project Deliverable, Version 1.0 Final, Decem-

ber 2006.

• S. Petridis, N. Tsapatsoulis, D. Kosmopoulos, V. Gatos, P. Fragou G. Petasis,

V. Karkaletsis, W. Hesseler, K. Baitov, S. Espinosa, S. Melzer, A. Kaya and

S. Perantonis. 2.6 Semantics Extraction from Fused Multimedia Content. The

BOEMIE Consortium, BOEMIE Project Deliverable, Version 1.0 Final, February

2008.

1.5 Outline of the Dissertation

The primary goal of this thesis is the development of a declarative, logic-based approach

to multimedia interpretation aiming at the automatic generation of rich semantic meta-

data about multimedia documents.

In Chapter 2 we set the context of this work by introducing multimedia interpreta-

tion, its applications and related research fields in Section 2.1. We present pioneering

work on image interpretation that has a close connection with multimedia interpreta-

tion and are built on logical foundations in Section 2.2. In Section 2.3 we analyze the

work presented in Section 2.2 to identify remaining key problems to be solved for a

logic-based multimedia interpretation approach.

The goal of Chapter 3 is to logically engineer a multimedia interpretation system

that is based on formal inference services, and can be implemented as part of a practical

application. In Section 3.1 we select an appropriate formalism, DLs augmented with

rules, for our logic-based approach and present necessary preliminaries. Having put an

appropriate formalism forward, we introduce a multimedia interpretation system, and

present the underlying process including analysis, interpretation and fusion steps in

Section 3.2. In Section 3.3 we formalize ABox abduction in DLs as a non-standard re-

trieval inference service. After the presentation of relevant work on abduction, we also

present an algorithm for ABox abduction and appropriate criteria for selecting preferred

explanations. In Section 3.4 we present an interpretation algorithm that exploits ab-

duction as the key inference service to compute modality-specific interpretations. Most

multimedia documents such as web pages contain information in multiple modalities.

Therefore modality-specific interpretations have to be fused to obtain interpretations of

multimedia documents. An algorithm for the fusion of modality-specific interpretations

of web pages is discussed in Section 3.5.

The engineering of a multimedia interpretation system in Chapter 3 is followed by a

case study in Chapter 4. In Section 4.1 we briefly introduce a research project, in which

the logic-based approach developed in this thesis plays a central role. This clarifies the

practical use of our logic-based approach as part of a large application-oriented research

project in a real-world context. The semantic interpretation engine, a software system

that implements our logic-based approach, is the topic of Section 4.2. In particular,

we focus on architecture and implementation of the semantic interpretation engine. In

Section 4.3 the stepwise interpretation of a sample web page provides a case study in

how interpretations are computed based on analysis results and background knowledge.

Additionally, appropriate strategies for the interpretation process are studied in this

section on the basis of examples.

A major goal of this thesis is to show that by selecting an appropriate knowledge

formalism, a declarative approach to multimedia interpretation can be derived and real-

ized as a software system, which exploits state-of-the-art reasoning engines. Therefore,

as an important contribution of this thesis, we evaluate the interpretations that have

been computed by the semantic interpretation engine in Chapter 5. In Section 5.1 we

analyze the runtime performance and scalability of the semantic interpretation engine

through an experimental study. We present another experimental study in Section 5.2,

in which the quality of interpretation results are evaluated in terms of the widely-used

metrics recall and precision.

In Chapter 6 we conclude this thesis by summarizing the major achievements of the

work. Furthermore, in the light of insights gained throughout this thesis, we present

promising directions for future work.

Chapter 2

Logical Formalization of

Multimedia Interpretation

Nowadays, many documents in private and enterprise repositories as well as on the web

are multimedia documents that contain not only textual but also visual and auditory

information. Despite this fact, retrieval techniques that rely only on information from

textual sources are still widely used due to the success of current software systems,

in particular with respect to stability and scalability. However, to further increase

the precision and recall of multimedia retrieval, the exploitation of information from

all modalities is indispensable in order to derive high-level descriptions of multimedia

content. These descriptions, also called deep-level semantic annotations, play a cru-

cial role in facilitating multimedia retrieval. There is a general consensus that manual

annotation of multimedia documents is a tedious and expensive task which must be

automated in order to obtain annotations for large document repositories. Multimedia

interpretation is defined here as the process of producing deep-level semantic annota-

tions based on low-level media analysis processes and domain-specific conceptual data

models with formal, logical semantics.

The primary goal of this chapter is to present logical foundations and formaliza-

tions of multimedia interpretation. In order to illustrate what purposes the outcome of

the interpretation process should fulfill, we start with an introduction to applications

of multimedia interpretation in Section 2.1. In Section 2.1, we also present related

research fields, and further characterize the input of the interpretation process as a

prerequisite. In Section 2.2 we present pioneering work on image interpretation that

11

have a close connection with multimedia interpretation and are built on logical founda-

tions. In Section 2.3 we analyze the formal image interpretation approaches presented

in Section 2.2 in order to identify key problems remaining in developing a logic-based

multimedia interpretation approach.

2.1 Applications and Related Research Fields

In the last decade, information retrieval , a traditional research field in computer science,

has become the underlying basis of daily information access. In particular, the broad

use of the World Wide Web and web search engines has accelerated this development.

In essence, information retrieval is about providing access to information and covers

different aspects such as gathering, indexing and searching of documents. Manning et

al. [MRS08] provide the following definition:

Information retrieval is finding material (usually documents) of an unstruc-

tured nature (usually text) that satisfies an information need from within

large collections (usually stored on computers).

The term unstructured data refers to any data that is less structured than data

used in relational databases. Modern information systems often support information

retrieval in the form of Boolean retrieval of documents, where documents are indexed by

keywords (or terms). The Boolean retrieval model is a model for information retrieval

in which queries are Boolean expressions composed of terms and operators such as

and, or, and not. In this model, each document is indexed a priori with respect to

keywords. In order to derive keywords or other relational descriptions, techniques from

information extraction are applied.

Multimedia retrieval , an emerging research field closely related to information re-

trieval, investigates the retrieval of documents that contain media content represented

using multiple modalities such as text, images, video and audio. Nowadays, the major-

ity of commercial information systems such as web search engines and content manage-

ment systems often rely only on textual information to support multimedia retrieval

and ignore information from other modalities. The success of the long research tra-

dition in text analysis and text-based information retrieval as well as the experience

in building practical systems are the main reasons for this. For the analysis and re-

trieval of textual information, efficient and widely-used systems are available, whereas

analysis in other modalities is still an open challenge and retrieval of information from

multimedia repositories using high-level description of desired content is primarily an

academic discipline [JB08].

However, most of the documents in use today, e.g. web pages, are multimedia docu-

ments. They usually contain information in textual and visual modalities, and ignoring

information from modalities other than text, the quality of search results is not as high

as it could be. Thus, multimedia retrieval has to be improved to include information

from all modalities. By leveraging multimedia retrieval, existing information systems

such as content management systems and information portals can be enabled to sup-

port more convenient services for end-users. In addition, advanced multimedia retrieval

can provide for intelligent access to information, which is the key requirement for the

realization of upcoming semantic information systems such as the Semantic Web.

As indicated above, multimedia retrieval relies on high-level descriptions of multi-

media documents. Descriptions usually are provided in the form of annotations, which

are attached (or linked) to multimedia documents. The term annotations, also called

metadata, denotes information about data of any sort in any media. For example, key-

words, which are used to support the retrieval of textual documents can be considered

as syntactic annotations of these documents. Access to data annotated with keywords

is implemented using a syntactic match operation. Improved access to multimedia re-

quires semantic annotations of multimedia documents. Although there is no common

understanding of what semantic annotations about multimedia encompass, they can

be considered as formulas of a logical language with formal semantics. For example,

semantic annotations of an image might describe the objects observable in the image

as well as the relationships between these objects in terms of a high-level vocabulary.

Due to the formal semantics, implicit information can be derived by reasoning systems.

Semantic annotations might also involve the description of more abstract informa-

tion such as, for instance, events, which are not directly observable in a multimedia

document. Semantic annotations involving abstract information are called deep se-

mantic annotations. Deep semantic annotations can be obtained in a process called

multimedia interpretation through the interpretation of directly observable information

with respect to some domain-specific background knowledge.

The identification of directly observable information in different modalities, also

called surface-level information, has been studied in the past for at least two decades.

In natural language processing, information extraction is one of the major tasks that

aims to automatically extract surface-level information, e.g. entities, relations and event

names, from a certain domain. Evaluations have shown that state-of-the-art informa-

tion extraction systems are very powerful language analysis tools that can recognize

names and noun groups with an accuracy higher than 90% [CY99]. Different systems ex-

ploit various machine-learning techniques such as k-nearest neighbors or Hidden Markov

Models for solving real-world problems in certain domains [AHB+93]. However, infor-

mation extraction is a more restricted problem than general language understanding.

In fact, the language analysis employed in these systems provides for simple, reliable

language analysis but not full syntactic language analysis. Therefore, when it comes to

extracting more abstract information such as events (or aggregate entities) that require

a deep understanding of the domain, information extraction systems are reported not

to perform well in general [Gri03, pp. 545].

In computer vision, object recognition aims to find objects in an image or video

sequence. Even though object recognition has been successfully applied in specific

domains, e.g., for finding faces in images [VJ01], general object recognition is still an

unsolved problem. In most systems, object recognition follows segmentation, where

images are partitioned into regions, i.e. sets of pixels. Each of the pixels in a region are

similar w.r.t. some feature such as color, intensity or texture [SHB07]. However, when

used alone, global features like color histograms or shape analysis are not appropriate

for general purpose object recognition in images [JB08]. Therefore, a wide range of local

features, such as Harris corners [HS88], Shape Context [BMP02] and Scale Invariant

Feature Transform (SIFT) [Low04], have been proposed. Nowadays, local features are

successfully used for solving practical problems. For example, SIFT has been applied

to the problem of robot localization in unknown environments in robotics [SLL02].

Mikolajczyk and Schmid present a comprehensive evaluation of various local features

in [MS05].

Recently, Leibe and Schiele presented an approach that considers object recognition

and segmentation as intertwined processes and uses top-down knowledge for guiding

the segmentation process [LS03]. The authors reported on experimental results that

show the capacity of the approach to categorize and segment diverse categories such

as cars and cows. Even though the identification of observable information in image

and video sequences in specific domains can be achieved with state-of-the-art computer

vision systems, there is a consensus that object and event recognition in the general

domain is beyond the capabilities of current technology [KLSG03].

We conclude that in text, image and video modalities surface-level information can

be extracted successfully in certain domains, however when it comes to the extraction of

surface-level information in general or to the extraction of more abstract information

such as events and aggregate entities, the performance of existing systems are not

satisfactory.

Semantic annotations of a multimedia document are used for different purposes over

the lifetime of the multimedia document and, in most cases all possible usage scenarios

cannot be foreseen at the time of producing semantic annotations. Having deep se-

mantic annotations at hand, information systems can exploit annotations flexibly and,

thus, support different application scenarios. For example, assume that deep semantic

annotations of a news article have been extracted to be used in a news site specialized

on athletics news. The semantic annotations are deep in the sense that they involve

information such as: a Russian athlete named ‘Yelena Isinbayeva’ cleared 5.06, the

outdoor world record in female pole vaulting, in an athletics event in Zurich on 28th

of August 2009. Assume that the official website of the Zurich tourism is allowed to

exploit these semantic annotations as well. Using the same annotations but a tourism-

specific ontology the Zurich tourism website can present a link to the corresponding

news article to users asking for the most important events that happened in Zurich in

2009. We believe that deep semantic annotations are essential to gain the necessary

flexibility in the exploitation of multimedia, and to leverage multimedia retrieval.

Information extraction from text and the field of computer vision are related re-

search fields providing the input to the interpretation process. From now on, we as-

sume that the input to a multimedia interpretation process is available in symbolic

form, which is computed by the above-mentioned processes (called analysis processes

for short).

It is very well possible that media analysis can be influenced by media interpretation.

But for the time being we consider analysis and interpretation as sequential steps.

Deep semantic annotations associated with a multimedia document represent an

interpretation of the extracted information about the multimedia document and, there-

fore, the process of producing deep semantic annotations is called multimedia interpreta-

tion. The multimedia interpretation process produces deep semantic annotations based

on directly observable information in multimedia documents through the exploitation

of background knowledge.

The main goal of this thesis is to investigate and develop methods for the automa-

tion of the multimedia interpretation process to pave the way for the development

of intelligent information systems. The efforts to formalize image interpretation are

nowadays being revived in the context of Semantic Web and multimedia interpreta-

tion. We presuppose that formal representations are required such that reasoning can

be employed. Therefore, in the following section, we present important works on image

interpretation that are built on formal foundations, before discussing our logic-based

multimedia interpretation approach in detail in the next chapter.

2.2 Related Work On Image Interpretation

In this section we present related work on image interpretation. Image interpreta-

tion has a close connection with multimedia interpretation. In fact, the multimedia

interpretation problem, for which also modalities beyond images are relevant, can be

considered as a generalization of the image interpretation problem. Although there ex-

ists a substantial number of approaches to image interpretation in the literature, most

of them are not built on formal foundations. In this section we focus on approaches

that exploit formal, declarative representations for image interpretation and have been

implemented as software systems. Our goal is to study formal approaches to image

interpretation and their implementations as software systems.

We expect the reader to be familiar with first-order logic. Furthermore, a basic

understanding of standard notions from knowledge representation and reasoning such as

deduction and Closed World Assumption (CWA) are necessary to follow the discussion

in the remaining sections of this chapter. We will discuss these notions in more detail

in Chapter 3, in which we present the knowledge representation formalism chosen for

this work.

2.2.1 Image Interpretation Based on Model Generation

The first formal theory of image interpretation based on logics was introduced by Reiter

and Mackworth [RM87]. They propose a so-called theory of depiction and interpreta-

tion that formalizes image-domain knowledge, scene-domain knowledge and a mapping

between the image and scene domains using first-order logic [RM90]. An interpreta-

tion of an image is then defined as a logical model of a set of logical formulas. The

approach is based on model generation, since its goal is to compute (or generate) all

logical models of a given image.

The Mapsee System

We shortly discuss the main ideas of this approach and recapitulate the system Mapsee,

which has been implemented for the interpretation of hand-drawn sketch maps of ge-

ographical regions [MMH87]. Given a sketch map consisting of chains1, regions and

various relations between them, the goal of the system is to compute an interpretation

in terms of roads, rivers, shores, areas of land, areas of water etc.

The image-domain knowledge includes general knowledge about maps such as the

taxonomy of image-domain objects, which are specified through first-order logic axioms:

∀x : image-object(x) ↔ chain(x) ∨ region(x)

∀x : ¬(chain(x) ∧ region(x))

The first axiom states that chains and regions, so-called image primitives, are the

only objects that can exist in a map, whereas the latter axiom states that an object

cannot be both chain and region at the same time (disjointness of image primitives).

Relations between image-domain objects are also part of the image-domain knowledge

and are specified using axioms such as tee(c, c′) and bound(c, r). For example, the

axiom tee(c, c′) means that chain c meets chain c′ at a T-junction, and bound(c, r)

means that chain c encloses region r.

The approach assumes a map description to consist of finitely many chains and

regions together with finitely many relations between the chains and regions. Therefore,

the system makes the domain closure assumption by postulating that all image-domain

1Chain is the term used in the original paper for polylines.

objects are completely known. To this end, closure axioms of the following form are

used:

∀x : chain(x) ↔ x = i1 ∨ · · · ∨ x = im

∀x : region(x) ↔ x = i′1 ∨ · · · ∨ x = i′n

∀x, y : tee(x, y) ↔ (x = i1 ∧ y = i′1) ∨ · · · ∨ (x = ik ∧ y = i′k)

· · ·

where i and i′ are constants representing image-domain objects.

Furthermore, the system makes the Unique Name Assumption (UNA) by assuming

that all constants (e.g., image primitives such as chains and regions) denote different

objects. Both assumptions, the domain closure assumption and the UNA, play an

important role in the logical framework, as we will see later.

Scene-domain knowledge is represented by axioms for objects such as roads, rivers,

shores, land and water areas. For instance, the following subsumption, coverage and

disjointness axioms are used:

∀x : scene-object(x) ↔ linear-scene-object(x) ∨ area(x)

∀x : linear-scene-object(x) ↔ road(x) ∨ river(x) ∨ shore(x)

∀x : ¬(road(x) ∧ river(x))

∀x : ¬(linear-scene-object(x) ∧ area(x))

· · ·

In addition, the scene-domain knowledge contains also specific restrictions such as, for

instance, rivers do not cross each other:

∀x, y : river(x) ∧ river(y)→ ¬ cross(x, y)

Also, axioms that restrict the domain and range to scene objects only are used:

∀x, y : cross(x, y)→ scene-object(x) ∧ scene-object(y)

Besides the specification of image- and scene-domain knowledge, also relations be-

tween the image- and scene-domain objects are specified. The mappings are represented

by the binary predicate ∆(i, s) meaning that image object i depicts scene object s. The

depiction relation only holds between image and scene objects:

∀i, s : ∆(i, s)→ image-object(i) ∧ scene-object(s)

For specifying image-scene-domain mappings, closure and disjointness axioms are pro-

vided:

∀x : image-object(x) ∨ scene-object(x)

∀x : ¬(image-object(x) ∧ scene-object(x))

Furthermore, it is assumed that every image object i depicts a unique scene object,

which is denoted by σ(i):

∀i : image-object(i)→ scene-object(σ(i)) ∧∆(i, σ(i)) ∧ [∀s : ∆(i, s)→ s = σ(i)]

and every scene object is depicted by a unique image object:

∀s : scene-object(s)→ (∃1i : image-object(i) ∧∆(i, s))

The notation ∃1x : α(x) means that there exists exactly one x for which α(x) holds.

Finally, mappings between the image- and scene-objects:

∀i, s : ∆(i, s) ∧ region(i)→ area(s)

∀i, s : ∆(i, s) ∧ chain(i)→ linear-scene-object(s)

and mappings between relations of the image and scene domains are specified:

∀i1, i2, s1, s2 : ∆(i1, s1) ∧∆(i2, s2)→ tee(i1, i2)↔ joins(s1, s2)

∀i1, i2, s1, s2 : ∆(i1, s1) ∧∆(i2, s2)→ chi(i1, i2)↔ cross(s1, s2)

. . .

The above-mentioned axioms state that tee1 relations in the image depict joins relations

in the scene and vice versa, whereas chi2 relations in the image depict cross relations

in the scene.

Given the specification of all relevant image-domain axioms, scene-domain axioms

and mapping axioms, Reiter and Mackworth define an interpretation of an image as a

logical model of the set of axioms and the set of facts describing a particular image.

1Shorthand for T-junction.
2Shorthand for X-junction.

The main problem here is that, in principle, a set of first-order formulas may have

infinitely many models and therefore the computation of all models may become im-

possible. Even worse, it is undecidable in general whether a set of first-order formulas

has a model at all. However, Reiter and Mackworth show that as a consequence of the

assumptions made in their logical framework, it is possible to enumerate all models. In

fact, under the additional CWA, extensions of all predicates can be defined, and there-

fore quantified formulas can be replaced with quantifier-free formulas. Consequently,

first-order formulas can be reduced to propositional formulas, for which the computa-

tion of all models is possible [GN87]. Reiter and Mackworth formulate the problem of

determining all models of the resulting propositional formulas as a constraint satisfac-

tion problem (CSP). Although, in general, CSPs of this kind are NP-hard, and thus

computationally intractable, several efficient approximation algorithms exist, which

have also been used in the Mapsee system [MMH87].

2.2.2 Image Interpretation Based on Abduction

Inspired by the work of Reiter and Mackworth, Matsuyama and Hwang address the

image interpretation problem but follow a different approach. According to Matsuyama

and Hwang, the goal of image interpretation is to provide for explanations of the obser-

vations of an image, through the exploitation of axiomatized general knowledge about

the world and the generation of a set of logical hypothesis. To this end, the authors

follow the hypothetical reasoning approach of Poole et al. [PGA87, Poo89].

Hypothetical reasoning is the form of reasoning that enables to reason from obser-

vations to explanations through the generation of hypothesis (also known as explana-

tions). This form of reasoning has initially been introduced by Peirce under the name

abduction in the late 19th century [Pei78]. Abduction is often defined as a reasoning

process from evidence to explanation, which is a type of reasoning required in several

situations where the available information is incomplete [Ali06]. Abduction has been

widely used to formalize explanation-based reasoning and plays an important role in in-

telligent problem solving tasks such as medical diagnosis [PGA87] and plan recognition

[CG91].

The SIGMA System

In [MH90], Matsuyama and Hwang present a vision system called SIGMA, which

has been developed for the interpretation of aerial images. In the SIGMA system,

abduction-based image interpretation has been implemented as a recursive process,

where expectations are explained through hypotheses.

Matsuyama and Hwang use aerial images of suburban areas that typically show

houses and roads. First-order logic axioms are used to represent general knowledge

about the application domain. For example, the fact that every house is related to

exactly one street is represented as follows (for the sake of the example the relation is

called rel):

∀x : house(x)→ (∃y : road(y) ∧ rel(x, y) ∧ ∀z : (road(z) ∧ rel(x, z))→ z = y)

which is transformed into clausal normal form:

¬house(x) ∨ road(f(x))

¬house(x) ∨ rel(x, f(x))

¬house(x) ∨ ¬road(z) ∨ ¬rel(x, z) ∨ z = f(x)

where the existential quantification is replaced with a so-called Skolem function. The

Skolem function replaces the existentially quantified variable by creating a new con-

stant.

As an example, assume an aerial image depicting a house. The house is represented

by the constant h1. Given the above-mentioned axioms representing the general knowl-

edge about the domain and information about the existence of a house in the scene,

namely house(h1), the following information is entailed:

road(f(h1))

rel(h1, f(h1))

¬road(z) ∨ ¬rel(h1, z) ∨ z = f(h1)

Here, the new constant f(h1), denoted by using the Skolem function f, is called an

expected object, in this example a road, and has to be identified in the image.

In contrast to Reiter and Mackworth, Matsuyama and Hwang do not assume the

availability of an a priori image segmentation, and do not make the domain closure

assumption and the UNA for the image domain. Constant symbols representing image-

domain objects are not available in the beginning, but have to be created through an

expectation-driven segmentation approach, which is part of the interpretation process.

Consequently, also constant symbols representing scene objects are not available in the

beginning of the interpretation process and have to be computed through hypotheses.

In the SIGMA system, objects in the scene (e.g. houses, roads) are associated with

features in the image (e.g. points, lines, regions). Different classes of scene objects and

spatial relations are defined through necessary conditions in terms of the image domain:

∀x : road(x)→ greater(width(x), 5) ∧ less(width(x), 100) ∧ ribbon(shape(x))

∀x, y : rel(x, y)→ parallel(axis(x), axis(y)) ∧ distance(center(x), center(y), 50)

Object attributes such as width, shape, axis or center are modeled through functions,

predicates regarding spatial attributes such as greater, less, ribbon, parallel or distance

are modeled as constraints. These axioms define the conditions that must hold for the

objects of the scene-domain.

Assume that our sample image depicts, besides the house h1, also a road represented

by the constant r1. After adding a new axiom to represent this information, namely

road(r1), the following information is entailed:

¬rel(h1, r1) ∨ r1 = f(h1)

Notice that for spatial relations of the scene-domain such as rel only necessary con-

ditions are defined but not sufficient ones. Therefore it cannot be proved logically,

whether rel(h1, r1) holds or not. To solve this problem, a special equality predicate is

used in SIGMA, which reflects two important assumptions about the equality of scene

objects: i) Two scene objects are considered to be identical, if they are of the same

type, e.g. road, and have the same shape and position, i.e. occupy the same space. ii)

If an existing scene object fulfills all conditions that an expected object has to fulfill,

both objects are considered to be identical.

In our example, if r1 fulfills all conditions that have to be fulfilled by the expected

object f(h1) then as a result of the equality assumption, the hypothesis r1 = f(h1) is

generated, and rel(h1, r1) is derived. In case no suitable scene object that is identical to

the expected object f(h1) exists, the conditions of the expected object f(h1) are used

for an expectation-driven image analysis process to identify an object in the image. In

case an object is identified, a new constant symbol is introduced into the image domain,

e.g. r2, and the hypothesis road(r2) is created. Afterwards, the hypothesis r2 = f(h1)

is generated and rel(h1, r2) is derived.

In order to guarantee termination, expected objects are not allowed to trigger the

derivation of new expected objects, e.g. g(f(r1)). In other words, expectations are

not used to derive further expectations. Expectation generation is done solely through

the exploitation of constant symbols, which can only be introduced by an expectation-

driven image analysis process. After the generation of constant symbols the domain

closure assumption is applied. Therefore, the set of first-order logic axioms can be

transformed to a set of propositional logic axioms.

As mentioned above, in their work Matsuyama and Hwang follow the hypothetical

reasoning approach of Poole et al. [PGA87, Poo89] where the task is to compute a set

of logical hypotheses such that following conditions are fulfilled:

i) {axioms} ∪ {logical hypothesis} |= {observations}
ii) SAT({axioms} ∪ {logical hypothesis})

Logical hypotheses are either classification hypotheses, ground instances of unary pred-

icates with constant symbols, e.g. road(r2), or equality hypotheses, equality relations

between constant symbols and ground instances of Skolem functions such as r2 = f(h1).

As discussed earlier, ground instances of predicates can be derived through the ex-

ploitation of logical hypotheses and general knowledge. For example, in the previous

example rel(h1, r2) has been derived, which represents a spatial relation in the scene.

Matsuyama and Hwang call this derivation process the construction of a scene descrip-

tion, which can later be mapped to the image-domain to explain the observations of

the image.

The second condition on interpretations requires the union of the sets of axioms

and logical hypothesis to be consistent in order to provide a valid interpretation of an

image. However, in general, the problem of checking whether a set of first-order logic

formulas is consistent is undecidable. To provide for a pragmatic solution, Matsuyama

and Hwang presume that the set of axioms are consistent by definition and define an

application-specific consistency check for overlapping objects. Using special-purpose

procedures, each set of overlapping objects is checked programmatically to find out

whether the objects have incompatible attributes and, thus, cannot be identical. If

this is the case for one of the sets of overlapping objects, then the set of axioms is

inconsistent and consequently the interpretation is not valid.

According to Matsuyama and Hwang, during the interpretation process, inconsis-

tencies can only arise if negations can be derived as well. Therefore, the set of axioms

has to be extended with additional rules to state the disjointness of different classes of

objects. For example:

∀x : ¬(road(x) ∧ house(x))

In his doctoral thesis [Sch98, pp. 30], Schröder points out a second important source

of inconsistencies in Matsuyama and Hwang’s approach, which is not addressed by the

work of Matsuyama and Hwang. He shows that in cases where an expected object

cannot be identified in an image, the absence of the expected object has to be stated

formally through the negation of its existence as follows:

¬∃x : image-object(x) ∧ image-position(x, . . .) ∧ . . .

¬∃x : scene-object(x) ∧ scene-position(x, . . .) ∧ . . .

Schröder proposes the definition of an application-specific consistency check that can

detect an inconsistency in case axioms contradict about the existence of an object in

a scene. For example, the above-mentioned axioms about the absence of an expected

object together with an axiom about the existence of an expected object should raise

an inconsistency. In addition, Schröder argues that the existence of scene objects that

are not visible in an image always have to be negated formally with the help of axioms

in order to guarantee the termination of the interpretation process. Otherwise, objects

which are not visible in the image could be hypothesized and, in turn, this might lead

to the hypothesis of an infinite number of objects in the worst case.

The hypothesis generation process in SIGMA computes so-called interpretation net-

works, which are networks consisting of mutually related object instances. Multiple

interpretation networks can possibly be constructed for an image. In an interpretation

network, multiple objects instances may be located in the same place in the scene.

Such instances are called conflicting instances, and a so-called in-conflict-with relation

is established between them. It should be noted that the SIGMA system applies no

heuristics to select among the possible sets of networks but delivers the first computed

set of networks as result.

2.2.3 Image Interpretation Based on Deduction

Other relevant work on image interpretation built on formal foundations is due to Russ

et al. who follow a deduction-based approach to image interpretation. In [RMS97],

Russ et al. present the VEIL system (Vision Environment Integrating Loom) that aims

to improve computer vision programs by applying formal knowledge representation and

deductive reasoning services provided by the Loom system [RMS97]. To this end the

authors propose a layered architecture integrating vision processing, knowledge repre-

sentation and reasoning. In this architecture a computer vision program operates at the

pixel level using specialized data structures to deal with low-level processing, whereas

the knowledge representation and reasoning system Loom uses symbolic structures to

represent and reason higher-level knowledge.

The VEIL System

One of the major goals of VEIL is to enable the construction of explicit declarative vi-

sion models. This is achieved by exploiting the knowledge representation and reasoning

facilities provided by the Loom system [MB87, Bri93]. The Loom system provides sup-

port for an expressive knowledge representation language in the KL-ONE family and

reasoning tasks. It supports not only deductive reasoning but provides also facilities to

apply production rules. The declarative specification of knowledge offers various bene-

fits: i) It is easier to maintain than a procedurally specified program. ii) It enables the

application of automatic validation and verification techniques. iii) Data is represented

in a high-level specification instead of application-specific data structures, and thus can

easily be shared or reused by other applications.

Similar to the Mapsee and SIGMA systems, also in the VEIL system, domain

knowledge is represented in two different models. The site model is a geometric model

of concrete image objects such as runways, markings, buildings and vehicles. The so-

called domain model contains not only concrete objects such as roads, buildings and

vehicles but also abstract aggregate objects such as convoys (groups of vehicles) and

events such as field training exercises.

In the VEIL project, deductive reasoning is employed to classify an instance as

belonging to a concept. For example, assume that a group of pixels in an image is

identified as a vehicle instance v1 and added to the knowledge base. Further analysis

of the same group of pixels might unveil that v1 has tracks. After the addition of this

information into the knowledge base, Loom classifies v1 as a tracked-vehicle instance,

where the concept tracked-vehicle is defined as a subconcept of the concept vehicle.

This is possible, because the concept tracked-vehicle is defined with necessary and

sufficient conditions, which are all fulfilled by v1.

Concrete objects in the domain model are linked to geometric objects in the site

model. Operations on geographic information, e.g. the determination of the geographic

location of an object, require spatial reasoning. To this end several functions such as

location, is-near and area have been implemented at the site model level. These site

model level functions are linked to domain level relations. For example, the domain

level relation area is linked to the corresponding site level function. Loom allows a

domain level relation to be defined as a procedural function.

The Loom system supports querying about objects and relationships in images.

Besides a set of predefined queries, users can create new queries and assign names to

that queries. Later, these names can be used in subsequent queries. This allows the

user to dynamically extend the vocabulary defined in the domain model.

In [RPM+98], the practical application of Loom in two main areas of the VEIL

project has been reported. First, the application of Loom in developing and extending

an existing computer vision system for airport runway detection is presented. Second,

the application of Loom for the integration of higher-level knowledge and the detection

of events are discussed with examples. In the following we present these two application

scenarios briefly.

The first application scenario is the detection and analysis of aerial photographs of

airports. Airports are modeled as collections of runways, which are long thin ribbons

with markings (smaller ribbons) in certain locations. Aerial images are analyzed by the

computer vision system through standard analysis techniques such as the Canny edge

detector [Can86] to produce hypotheses. A sequence of filtering and grouping operations

are then applied to reduce the number of hypotheses. In the next step, hypotheses are

verified using the site model of the application scenario, which is defined using Loom.

For example, the site model describes markings in terms of their sizes, relative positions

and positions on the runway. The domain knowledge represented using Loom is used

to constrain the set of possible hypotheses. For example, descriptions of the size and

location of markings are used to rule out some hypotheses generated by the computer

vision system. To this end, the deductive reasoning service of Loom is used to determine

the most-specific concepts that an object is an instance of.

The second application scenario is the detection of event sequences that span mul-

tiple images. The goal of this scenario is to process a sequence of images and detect

events such as field training exercises. Forty images of a hypothetical armored brigade

garrison and exercise area that share a common site model have been used in the

experiments reported in [RPM+98].

In the VEIL context, an event is a sequence of scenes that satisfy certain criteria.

A scene is represented as a set of object descriptions (called a world), which can be

associated with a timestamp. Some of the criteria such as the temporal order apply

across different scenes, whereas other criteria apply only within a single scene. In the

event detection scenario, several objects such as vehicles and their locations are identi-

fied by a human expert. The human expert also corrects initial groupings of building

and identifies groups of vehicles. Furthermore, the human expert adds corresponding

objects to the site model. Once all relevant information is added to the site model,

Loom’s query answering service is used to automatically determine sequences of images

that satisfy all conditions of an event definition.

Let us consider an example: A field training exercise is a sequence of scenes showing

an armored unit in a garrison, then moving in convoy, then deployed in a training area

and finally in a convoy again. In order to extract the scenes that meet the criteria of

a field training exercise event, the following query is used:

(retrieve (?Y ?S1 ?S2 ?S3 ?S4)

(and (within-world ?S1 (in-garrison ?Y))

(within-world ?S2 (convoy ?Y))

(within-world ?S3 (deployed-unit ?Y))

(within-world ?S4 (convoy ?Y))

(before+ ?S1 ?S2) (before+ ?S2 ?S3) (before+ ?S3 ?S4)))

Query terms, e.g. in-garrison and deployed-unit, are defined in the domain model. The

result of the query is a set of tuples. Each tuple is a field training exercise event since

it satisfies all conditions defined in the query. Each detected event is displayed as a

collection of images in the graphical user interface of the VEIL system.

Ontology-based Interpretation of Road Networks

Recently, Hummel [Hum09] presented another deduction-based approach, in which

Description Logics (DLs), the successor of KL-ONE, is used as a formal language

for representing knowledge and reasoning about it. DLs are a family of knowledge

representation formalisms, that according to Baader et al. [BCM+03, pp. 47], represent

the knowledge of an application domain by first defining the relevant concepts of the

domain (in the so-called TBox), and then using these concepts to specify objects and

individuals occurring in the domain (in the so-called ABox).1

The system developed in this work integrates a state-of-the-art computer vision

system and a so-called DL-reasoner for deductive reasoning tasks. More precisely, in

[Hum09], Hummel uses the expressive description logic SHIQ, which is supported by

the state-of-the-art DL-reasoner RacerPro [HM01]. The overall goal of the system is to

facilitate an autonomous driverless car through the interpretation of road intersections.

To this end, the system is provided as input with sensor data from a camera and a global

positioning system (GPS) mounted on a vehicle, as well as with data from a digital

map. For each road intersection the system is then requested to answer questions such

as ‘Which driving directions are allowed on each lane?’, ’Which of the map’s lanes is

equivalent to the vehicle’s ego lane?’ (i.e., on which lane is the vehicle), etc. Answering

such questions requires reasoning since regulations of roads and intersections as well

as partial and non-complementary information from various sensors about the current

situation of the car have to be considered together.

In her work, Hummel investigates appropriate ways for representing relevant scene

information in DLs. For typical classes of scene information she proposes generic DL

representations, which she refers to as design patterns. In particular, she presents design

patterns for representing sensor data and qualitative scene geometry models in DLs. In

the context of road intersection interpretation, different sensor setups are investigated

as well. If a still image from a single sensor is interpreted, the UNA should be imposed

such that two individuals in the ABox are always interpreted (in the sense of first-order

logic) as different objects. However if data is acquired by multiple, non-complementary

1Syntax and semantics of Description Logics will be introduced in Section 3.1.1.

sensors, objects are detected multiple times, and hence the UNA must not hold. For

the multiple sensor setup, Hummel requires the UNA to hold within data acquired by

a single sensor only, which she calls the local UNA. She reports the local UNA to have

been implemented as a procedural extension that enhances a knowledge base through

the application of rules in a forward-chaining way.1

Furthermore, Hummel investigates image interpretation tasks with respect to their

solvability through standard deductive DL inference services. These tasks are i) Object

detection, i.e., the discovery of new scene objects ii) Object classification, i.e., the as-

signment of labels to a detected object iii) Link prediction, i.e., predicting the existence

and types of relationships between objects iv) Data association, i.e., the identification

of a set of measurements as referring to the same object. She shows that in order

solve the object classification task with standard DL inference services, the maximum

possible number of individuals in a scene have to be added a priori to the ABox, which

describes the scene. A corresponding design pattern has been proposed in [Hum09]. In

fact, if this design pattern is applied, the task of object detection can be reduced to the

task of object classification, which can be solved using the so-called ABox realization

DL inference service. In a nutshell, ABox realization is a deductive DL inference service

that computes for all individuals in an ABox A their most-specific concept names w.r.t.

a TBox T.2

In contrast to object detection and object classification, the task of link prediction

cannot be solved in SHIQ, since SHIQ does not allow for role constructors and hence

is not expressive enough. It is also shown that the data association task can be solved

using the so-called unification DL inference service. In a nutshell, unification reason-

ing is a deductive DL inference service that checks for semantic equality between two

individuals. Obviously, unification reasoning requires the UNA to be abandoned.

Hummel also presents the so-called road network ontology (RONNY), a SHIQ DL

TBox in which the qualitative geometry and building regulations of roads and intersec-

tions are specified. Finally, she describes a case study where the logic-enhanced system

solves interpretation tasks using RONNY and sensor data from a stereo vision sensor, a

global positioning system, and a digital map. The performance of the system in solving

object detection, object classification and data association tasks has been evaluated on

1Rule formalisms will be introduced in Section 3.1.2.
2Inference services in DLs will be formally introduced in Section 3.1.1.

a sample set of 23 diverse and complex intersections from urban and non-urban roads

in Germany. In [Hum09], the system build through the integration of a DL-reasoner

and a computer vision system is reported to significantly improve recognition rates of

the computer vision system.

2.3 Discussion

After the presentation of three logic-based approaches to image interpretation (model

generation, abduction and deduction), and their implementations as software systems,

in this section, we discuss the commonalities and differences of these approaches. Based

on the insights gained, we present the key idea in developing a logic-based interpretation

approach, which will later be used to logically engineer a multimedia interpretation

system.

In their work, Reiter and Mackworth presented a model generation-based approach

to image interpretation in which first-order logic is used as the knowledge representation

formalism. They provided the first formal definition of the image interpretation problem

in a logical framework, which is an important contribution of their work. In this

approach an interpretation of an image is defined as a logical model of a set of first-

order formulas, and the goal is to compute all logical models of a given image.

The main problem of this approach is that, in general, a set of first-order formulas

may have infinitely many models and hence the computation of all models may become

impossible. In this approach, the domain closure assumption, the UNA and the CWA

are made to overcome this problem. These assumptions can be made for the interpre-

tation of hand-drawn sketch maps, however they are too strict for the interpretation of

images and multimedia documents, since the combination of these assumptions prevents

the dynamic creation of new objects during the interpretation process. Consequently,

these assumptions make it impossible to create aggregates representing more abstract

scene objects, which are essential for the generation of deep-level annotations.

Like Reiter and Mackworth also Matsuyama and Hwang use first-order logic to dis-

cuss an abduction-based approach to image interpretation. An important contribution

of Matsuyama and Hwang’s work is the insight that, in general, concrete observations

about an image cannot logically follow solely from the background knowledge, which

contains axioms representing general knowledge about the domain, but only if appro-

priate explanations are hypothesized and added to the background knowledge. The

authors consider the computation of explanations as an abductive reasoning task.

Compared to Reiter and Mackworth’s work, Matsuyama and Hwang address a

more challenging problem because the images to be interpreted are not hand-drawn

sketch maps but aerial photographs where factors such as illumination hinder object

detection. Matsuyama and Hwang do not make the domain closure assumption and

the UNA in the image domain. Therefore they do not assume the availability of image-

domain objects at the beginning of the interpretation process, but require them to

be created through a so-called expectation-driven segmentation approach during the

interpretation process. Scene-domain objects are also not available in the beginning of

the interpretation process and have to be computed through hypotheses.

Different from Reiter and Mackworth’s model generation-based approach, Mat-

suyama and Hwang’s abduction-based approach has been implemented in a vision sys-

tem. To give a logical formulation of image interpretation based on abduction, Mat-

suyama and Hwang use first-order logic as the knowledge representation and reasoning

formalism, however, in the implementation of the approach frames and production rules

are used instead.

A deduction-based approach has been proposed and implemented by Russ et al. in

which a KL-ONE like formalism (the Loom knowledge representation language) is used

as the formalism for the interpretation of aerial photographs of airports. An important

contribution of this approach is the proposal of a layered architecture that integrates

vision processing, knowledge representation and reasoning. In this architecture, a com-

puter vision system operates at the pixel level, whereas the Loom system is used to

represent and reason about higher-level knowledge.

In the VEIL project, the deduction-based approach has been studied in two prac-

tical application scenarios. In the airport runway detection scenario, hypotheses are

generated by the computer vision system, and then verified using the deductive reason-

ing service of Loom. Deductive reasoning in Loom is, in general, incomplete, which is a

shortcoming of this approach. In the event detection scenario, Loom’s query answering

service is used to detect events. This is possible only after objects are identified and

added by an human expert, which is another shortcoming of this approach.

Another deduction-based approach has recently been presented by Hummel. In this

approach the expressive description logic SHIQ is used as the knowledge representation

formalism, in which deductive reasoning is complete and highly-optimized reasoners

exist, which is an important advantage of Hummel’s approach. Like Russ et al. also

Hummel integrates a computer vision system and a reasoner. Through a case study she

shows that most image interpretation tasks can be solved using deductive DL inference

services. However, Hummel also observes that the image interpretation problem cannot

be solved through deduction only, and uses production rules to enhance the knowledge

base before exploiting deductive reasoning to solve image interpretation tasks.

To summarize, all approaches are built on formal foundations, and most of them

share the view that image interpretation cannot be solved through deductive reasoning

only. The approaches differ in the way they compute an image interpretation: While

some reduce first-order formulas to propositional formulas and consider the computa-

tion of an interpretation as a constraint satisfaction problem, others build a procedural

framework or procedurally extend a deductive reasoner.

In this work, we favor an abduction-based multimedia interpretation approach,

where abductive reasoning is used to compute explanations for the observations, i.e.

analysis results of a multimedia document, in order to generate interpretations of the

multimedia document, i.e. deep semantic annotations. For the implementation of ab-

ductive reasoning we prefer the enhancement of a state-of-the-art DL reasoner. Since

our goal is the derivation of a declarative approach, we omit to enhance the DL reasoner

through procedural extensions but exploit rules instead. I.e., for abductive reasoning

we propose the exploitation of rules to define the space of abducibles. As we will dis-

cuss in detail in the next chapter, abduction in DLs can be considered as an extended

query answering service. In a nutshell, the use of rules for the definition of the space

of abducibles enables the computation of hypothesis in a more goal directed way, since

only the abducibles required to answer a certain query have to be hypothesized. In

addition to rules, we propose an additional mechanism for the computation of preferred

explanations w.r.t. the application context.

In the next chapter we logically engineer a stable software system for multimedia

interpretation. To this end we first formalize abductive reasoning towards the computa-

tion of preferred explanations, and then develop a multimedia interpretation approach

that exploits abductive reasoning as the key inference service.

Chapter 3

Logical Engineering of a

Multimedia Interpretation

System

The main goal of this chapter is to logically engineer a multimedia interpretation system

for the computation of deep semantic annotations of multimedia documents without

human intervention. In developing a multimedia interpretation engine, we cannot de-

sign our system in a completely top-down fashion and implement it from scratch. In

fact, we follow a bottom-up design to engineer a multimedia interpretation system

through the integration of existing software systems such as computer vision systems

and reasoners. The functionality of existing software systems is predefined and not

always modifiable. As a result, the design of a multimedia interpretation system is also

driven by the functionality of existing software systems that underly it.

For multimedia interpretation, i.e. for the generation of deep semantic annotations,

we propose a hybrid approach. The approach is hybrid in the sense that it combines

surface-level information extraction and multimedia interpretation. The general struc-

ture of this hybrid approach is sketched in Figure 3.1. First, surface-level information

is identified in different modalities using existing state-of-the-art information extrac-

tion and object recognition techniques. Second, a multimedia interpretation process

operates on the identified surface-level information, and at the same time exploits back-

ground knowledge in order to produce deep semantic annotations. The hybrid approach

pursued in this work has several merits:

33

!"#$%&'()'*')+

,-$.#/%01.-+

,2'-01$1&%01.-+

3")01/'21%+

,-0'#4#'0%01.-+

5%&67#."-2+8-.9)'27'+

9':4%7';+
;</:.)1&+

2';չ.-;+

2''4+

;</:.)1&+

2';չ.-;+

Figure 3.1: The hybrid approach for obtaining deep semantic annotations

• State-of-the-art natural language processing systems and computer vision systems

cannot only be exploited for information extraction and object recognition as

standalone software components but they can also be integrated into a coherent

framework.

• The multimedia interpretation process is independent of the systems used for

the identification of surface-level information. As a result, the techniques do not

suppose any constraints on the multimedia interpretation process. This enables

a higher degree of flexibility in choosing and developing appropriate techniques

for the multimedia interpretation process.

• The background knowledge serves as a common vocabulary of all semantic annota-

tions in a domain and can be exploited by the systems that identify surface-level

information as well as the multimedia interpretation process. This empowers

knowledge engineers to model the background knowledge for all modalities.

• The approach considers multimedia interpretation not merely as a data-driven,

that is, bottom-up process but also as a process that incorporates top-down knowl-

edge. In fact, the background knowledge represents top-down knowledge and is

actively involved in the multimedia interpretation process, besides the surface-

level information. For example, the background knowledge is used to discard

some of the interpretations of a multimedia document, which are not consistent

with respect to the background knowledge, or are not preferred.

• Typically, multimedia documents contain information from multiple modalities.

The hybrid approach can exploit synergies that arise from fusing information from

different modalities. For example, most web pages contain textual and graphi-

cal information. Detecting a person’s identity in an image is a challenging task

for object recognition, whereas the recognition of person names in free text is a

standard task for information extraction. By appropriate fusion of the informa-

tion from different modalities, the hybrid approach can provide for deep semantic

annotations, which are very difficult (or even impossible) to obtain from analysis

w.r.t. a single modality.

Our logic-based approach to multimedia interpretation is declarative in the sense

that the interpretation process is not ‘hard-coded’ in program code but specified in the

background knowledge. The background knowledge is not only used for representing

knowledge but also serves as an executable specification such that formal inference

services are exploited to automate the multimedia interpretation process.

In the remainder of this chapter, we engineer a multimedia interpretation system

step by step. We begin with the identification of an appropriate formalism, Description

Logics (DLs) augmented with rules, and present necessary preliminaries in Section 3.1.

Having identified DLs augmented with rules as the formalism of choice, we introduce our

multimedia interpretation process including the analysis, interpretation and fusion steps

in Section 3.2. The formalization of ABox abduction in DLs is the topic of Section 3.3.

In Section 3.4 we present an interpretation algorithm that exploits abduction as the

key inference service. Finally, in Section 3.5 we present an algorithm for the fusion

of modality-specific interpretations in order to obtain interpretations of multimedia

documents. It should be noted that this chapter presents the general interpretation

and fusion framework, whereas application specific details and hence the application of

the framework are presented in Chapter 4.

3.1 Knowledge Representation Formalisms

There exist several approaches in the literature that aim to improve multimedia re-

trieval by assisting humans in generating semantic annotations of multimedia docu-

ments [Boß08]. In contrast to these approaches, the work presented in this thesis aims

to automate the generation of semantic annotations. Furthermore, the majority of these

approaches consider humans as the only beneficiaries of the semantic annotations.

Our approach focuses on the integration of semantic information from different

modalities in order to gain a maximum of information about multimedia documents.

In addition, our approach considers both humans and software agents as potential

clients of multimedia retrieval. As a result, in our approach, the knowledge represen-

tation formalism has to serve as a foundation for defining and executing automated

processes such as interpretation of surface-level information, integration of information

from different modalities and semantic retrieval of information. Therefore the knowl-

edge representation formalism plays a key role and has to be chosen carefully.

The unified modeling language (UML) and entity relationship (ER) models are

widely-used representation formalisms in software engineering and database modeling

respectively. In the context of semantic applications vocabularies, taxonomies and

ontologies are established knowledge representation formalisms.

A vocabulary , also known as terminology , is a set of terms which can be associated

with the entities from the domain of discourse [McG03]. A taxonomy is an organized

vocabulary. The organization of a taxonomy is generally hierarchical. For example,

SNOMED is a widely-used taxonomy that covers information from the medical domain

such as diseases, findings, procedures etc. [CR80].

The term ontology has its origins in philosophy where an ontology is considered as a

systematic account of existence and is often associated with epistemology [Gru93b]. In

the context of computer science, in particular AI, an often-cited definition of an ontology

is Gruber’s ‘specification of a conceptualization’ [Gru93a]. Informally speaking, an

ontology is about concepts and relationships, and is used to represent the knowledge of a

domain in a declarative formalism. A formal ontology contains not only representational

terms such as names for objects and relations between objects, but also axioms that

constrain the interpretation of these terms. Therefore, a formal ontology provides for

the semantics of a domain.

Formal ontologies are particularly suitable for the development of a declarative

multimedia interpretation approach for a number of reasons:

• Ontologies enable concept-based modeling of the domain knowledge. A domain

expert can model the domain knowledge in terms of concepts and relationships.

From a cognitive point of view, it is commonly believed that knowledge rep-

resentation in ontologies is easier compared to knowledge representation in full

first-order logic, since nowadays popular ontology languages such as DLs offer

convenient, class-based, variable-free syntax for first-order logic axioms.

• Ontologies are high-level, programming-language-independent specifications. They

do not rely on programming-language-specific data structures. This allows on-

tologies to be shared, modified and reused by various applications.

• Nowadays ontology management tools that support creation, editing, viewing

and saving of ontologies are available. In addition, there exist software systems

that support formal inference services on ontologies. As a result of the enduring

research and development efforts, today these software tools are mature enough

for employment in practice.

• The end product of most information extraction tools are annotations that rep-

resent the surface-level information identified in a multimedia document. The

annotations describe a multimedia document, generally, in terms of a vocabu-

lary. In the context of multimedia interpretation, existing information extraction

tools can easily be adapted to exploit ontologies instead of vocabularies when

generating semantic annotations.

We have chosen Description Logics (DLs) as the knowledge representation formal-

ism in this work. DLs are a family of formal representation languages with well-

understood model-theoretic semantics and computational properties. Most DLs are

fragments of first-order logic, and inference in DLs used in practice is decidable. This

is important since unlike other formalisms such as Prolog, in principle, every request to

a DL system is guaranteed to terminate. DL systems have matured over years and have

successfully been applied to numerous problems such as conceptual modeling, software

engineering and information integration [BCM+03]. In addition, DLs are the under-

lying basis of the Web Ontology Language OWL [PSHH03], a language recommended

by the World Wide Web Consortium W3C for ontology representation in the Semantic

Web [Wor09]. Compared to other knowledge representation formalisms, DLs provide

for better tool support and have a larger developer and user community.

However, as we will discuss later in more detail, DLs alone do not provide the nec-

essary expressivity for building a multimedia interpretation system, and therefore, we

have chosen to augment our knowledge representation formalism through the integra-

tion of DLs with rules.

In the rest of this section we present the preliminaries of DLs and logic programming.

We start with the specification of syntax and semantics of DLs, and continue with the

presentation of interesting inference problems in DLs. Later, we address the limitations

of DLs in building practical applications that require the augmentation of DLs with

rules. We also introduce syntax and semantics of logic programming in which rule-based

formalisms are grounded.

3.1.1 Introduction to Description Logics

Description Logics (DLs), a family of knowledge representation formalisms with a for-

mally defined syntax and semantics, constitute the basis of the web ontology language

OWL. The language of DLs consists of constants, concepts and roles. Constants denote

objects, also known as individuals. Concepts denote sets of individuals, whereas roles

denote relationships between pairs of individuals.

DLs have been designed to optimize the trade-off between expressive abilities and

complexity of reasoning [BCM+03]. There exists various DLs with different expressivity.

In [SSS91], Schmidt-Schauss and Smolka introduce a naming scheme for DLs with

respect to the set of constructors they allow. They introduce the description logic ALC

as the basic language. The name ALC stands for Attributive concept Language with

Complement. In the following we introduce syntax and semantics of the description

logic ALCQ(D), which extends ALC by additional representation means.

Syntax and Semantics

The basic building blocks of DLs are concepts, which can be considered as variable-free

logical formulas. Concepts can be atomic or complex. Complex concepts are built

using concept constructors and atomic concepts. For example, consider the following

expression:

Person u ∃hasRanking .Ranking

In this example from the athletics domain Person and Ranking are atomic concepts,

hasRanking is a so-called atomic role, and the expression ∃hasRanking .Ranking is a

complex concept. The sign u denotes conjunction and is a concept constructor.

In this work, we focus on the description logic ALCQ(D), Attributive Language with

Complement, Qualified number restrictions and concrete Domains. In the following we

use A and R for atomic concepts and atomic roles, respectively. Descriptions of complex

concepts C,D in ALCQ(D) are defined inductively using concept constructors shown

in Table 3.1.

Syntax Constructor

A atomic concept

C uD conjunction

C tD disjunction

¬C negation

∃R.C qualified existential restriction

∀R.C value restriction

∃≤nR.C qualified maximum restriction

∃≥nR.C qualified minimum restriction

Table 3.1: Constructors for building complex concepts in ALCQ(D)

In addition, we introduce the concepts top (>) and bottom (⊥) as abbreviations of

A t ¬A and A u ¬A.

In DLs, concepts are given a set-theoretic interpretation. Each concept denotes a

subset of the domain objects. The set of domain objects denoted by a concept is the

extension or the semantics of that concept. More formally, an interpretation I is a

tuple (∆I, ·I) where ∆I is a non-empty set of domain objects, and ·I is an interpretation

function. The interpretation function ·I assigns to every atomic concept A a subset

of ∆I such that AI ⊆ ∆I, and to every atomic role R a subset of ∆I × ∆I such that

RI ⊆ ∆I×∆I. For complex concept descriptions, the interpretation function is extended

as shown in Figure 3.2, where]M denotes the cardinality of the set M . For top and

bottom concepts it holds that >I = ∆I and ⊥I = {}, respectively.

A model of a concept C is an interpretation that assigns a non-empty set CI to the

concept C. Given an interpretation I, the set CI is the extension of the concept C, and

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(¬C)I = ∆I\CI

(∃R.C)I = {x | there exists y ∈ ∆I, (x, y) ∈ RI and y ∈ CI}
(∀R.C)I = {x | for all y ∈ ∆I, if (x, y) ∈ RI then y ∈ CI}

(∃≤nR.C)I = {x |]{y | (x, y) ∈ RI and y ∈ CI} ≤ n}
(∃≥nR.C)I = {x |]{y | (x, y) ∈ RI and y ∈ CI} ≥ n}

Figure 3.2: Interpretation of complex concept descriptions

the set RI is the extension of the role R.

In many practical scenarios, besides abstract individuals also concrete datatypes

and values are required. For example, in the athletics domain we may want to describe

the concept JuniorAthlete to represent athletes who are younger than 18 years. The

use of natural numbers in this example requires so-called concrete domains.

According to Baader and Hanscke [BH91], concrete domains are formally defined as

follows: A concrete domain D is a pair (∆D,ΦD), where ∆D is the domain of concrete

objects, and ΦD is a set of predicate names. The sets ∆D and ∆I are disjoint. A

predicate P of arity n is denoted as Pn. The interpretation function ·I is extended

to map each predicate name Pn from ΦD to a subset (Pn)I of (∆D)n. A concrete

domain is called admissible if and only if the set of predicate names ΦD is closed under

negation and contains a name >D for ∆D, and the first-order satisfiability problem

Pn1
1 (x11, . . . , x1n1) ∧ . . . ∧ Pnm

k (xk1, . . . , xknm) is decidable, where xjk is a variable.

The interpretation function is extended in such a way that concrete domain at-

tributes are interpreted as partial functions from ∆I to ∆D. If AT1 to ATn are con-

crete domain attributes and Pn is an n-ary concrete domain predicate, then the ex-

pression ∃(AT1 . . . ATn).Pn is called the concrete domain predicate exists constructor .

The semantics of this constructor is given by (∃(AT1 . . . ATn).Pn)I={x | there exists

c1, . . . , cn ∈ ∆D such that (x, c1) ∈ AT I
1 , . . . , (x, cn) ∈ AT I

n and (c1, . . . , cn) ∈ (Pn)I}.

A DL knowledge base or ontology O is defined as a tuple consisting of a TBox T

and an ABox A: O = (T,A). Each DL knowledge base has a terminological (TBox)

and an assertional (ABox) part. A TBox represents intensional knowledge about the

domain in terms of a finite set of terminological axioms. An ABox represents extensional

knowledge about specific domain objects in terms of a finite set of assertional axioms.

In a TBox, subsumption and equality relations between concepts can be defined

using so-called terminological axioms. A generalized concept inclusion axiom (or GCI

in short) is a terminological axiom of the form:

C v D

where C and D are concepts. An interpretation I satisfies a GCI axiom C v D if

CI ⊆ DI. An interpretation I is a model of a TBox T if it satisfies all axioms in T.

For example, if Athlete and Person are concepts from the athletics domain, the

GCI axiom Athlete v Person states that the concept Athlete is a specialization of the

concept Person, and thus every domain object in the interpretation of the concept

Athlete must also be in the interpretation of the concept Person. In DL terminology,

the concept Person is said to subsume the concept Athlete. Person is called the

subsuming concept or subsumer, and Athlete the subsumed concept or subsumee.

C ≡ D is another terminological axiom, also known as concept definition, used as

an abbreviation for two GCI axioms, namely C v D and D v C. It states that the

interpretations of the concepts C and D contain the same domain objects. For example,

the concept JuniorAthlete can be defined as

JuniorAthlete ≡ Athlete u ∃(hasAge). ≤18

where ≤18 (x) is a unary concrete domain predicate and hasAge is a concrete domain

attribute.

In an ABox, knowledge about individuals and their properties can be asserted using

assertional axioms as shown in Table 3.2 where i and j are individuals and cd ∈ ∆D (it

is assumed that cdI = cd for all cd ∈ ∆D hence the name concrete domain).

Syntax Axiom Name

A(i) concept assertion

R(i, j) role assertion

AT (i, cd) attribute assertion

same-as(i, j) same-as assertion

Table 3.2: Assertional axioms

An interpretation I satisfies the concept assertion A(i) if iI ∈ AI. An interpretation

I satisfies the role assertion R(i, j) if (iI, jI) ∈ RI. An interpretation I satisfies the

attribute assertion AT (i, cd) if (iI, cd) ∈ AT I. An interpretation I satisfies the same-as

assertion same-as(i, j) if iI = jI. An interpretation that satisfies an assertion is called

a model of the assertion.

An interpretation I is a model of an ABox A with respect to a TBox T if it is a

model of T and satisfies all assertions in A. We say that the individual j is an R-filler

of the individual i, if (iI, jI) ∈ RI holds in all models of O.

For example, assume an image depicting a high jump trial, where a person’s body

is adjacent to a horizontal bar. This athletics scene can be represented as an ABox

that contains the following assertions:

PersonBody(pb1)

HorizontalBar(hb1)

adjacent(pb1 , hb1)

where PersonBody and HorizontalBar are concepts, and adjacent is a role. The first

two axioms are concept assertions stating that the corresponding domain objects for

the individuals pb1 and hb1 belong to the interpretation of the concepts PersonBody

and HorizontalBar , respectively. The third axiom states that hb1 is a filler of the role

adjacent for pb1 .

Inference Services in DLs

In many practical applications users are not only interested in storing knowledge in

a DL knowledge base but also want to reason about the knowledge, i.e. exploit the

knowledge. In several cases, users might want to query the knowledge base, e.g. they

might want to know whether the stored knowledge is contradictory. In DLs a number

of tasks for exploiting knowledge can be defined as formal decision problems. To solve

these problems, practical DL systems, so-called DL reasoners, implement inference al-

gorithms and offer them as so-called inference services. Standard DL inference services

deal with the following tasks, which are described in detail:

Knowledge base consistency testing: Testing the consistency of knowledge bases

is a standard inference service. An ABox A is consistent w.r.t. a TBox T if there exists

a model I for A which is also a model of T. A knowledge base O = (T,A) is consistent

if there exists a model for A which is also a model for T. Knowledge bases that are not

consistent are called inconsistent.

Subsumption testing: Given two concepts C and D, the task of subsumption testing

is to check whether CI ⊆ DI holds in all models of T. In this case, it is said that D

subsumes C, or alternatively, C is subsumed by D. An important reasoning task is

the computation of ‘direct’ subsumption relationships between every pair of concept

names (atomic concepts) in a given TBox in order to obtain the subsumption hierarchy

between concept names, also known as taxonomy, in a knowledge base. For a given

concept C, the most-specific concept names in T that subsume C are called the parents.

The children of the concept C are the most-general concept names that are subsumed

by C. The computation of the parents and children of every concept name in a TBox

is called TBox classification.

Instance checking: Instance checking deals with finding whether an individual is an

instance of a certain concept. An individual i is an instance of a concept C with respect

to a knowledge base O = (T,A) if iI ∈ CI for all models of T and A. The most-specific

concept names in a TBox T that an individual is an instance of are called the direct

types of the individual with respect to the knowledge base. The computation of the

direct types of all individuals in A w.r.t. T is called ABox realization.

Concept satisfiability testing: The concept satisfiability testing inference service an-

swers the question whether a concept defined in a knowledge base can have instances. A

concept C is satisfiable w.r.t. a TBox T if there exists a model I of C such that CI 6= {}.
Checking the consistency of all concept names in a TBox (possibly without computing

the subsumption hierarchy of concept names) is called TBox coherence check .

In addition to standard inference services, practical applications require also addi-

tional inference services. For example, ABox entailment and instance retrieval inference

services are important inferences for many practical applications. Therefore, we intro-

duce them briefly.

ABox entailment: The ABox entailment inference service answers the question

whether an ABox, i.e. a set of assertions, is entailed by a knowledge base. An ABox

A′ is entailed by (or logically follows from) a knowledge base O = (T,A), denoted with

T ∪A |= A′, if all models of T and A are also models of A′.

Instance retrieval: Another important inference service is instance retrieval , which

is used to retrieve all individuals that are instances of a given concept C or all pairs of

individuals, which are related via a given role R.

The instance retrieval inference service supports the retrieval of all individuals for

a concept or role name from a knowledge base. State-of-the-art DL reasoners offer an

additional retrieval service by supporting so-called conjunctive queries. Conjunctive

queries provide for an expressive query language for DLs with capabilities that go be-

yond instance retrieval.

Conjunctive queries: A conjunctive query

{(H) | Q1(V1), . . . , Qn(Vn)}

consists of a head H and a body Q1(V1), . . . , Qn(Vn) where H is a sequence of variables,

V1, Vn are sequences of variables and individuals, and the body Q1(V1), . . . , Qn(Vn)

denotes a conjunction of query atoms. Query atoms can be concept query atoms of the

form C(X) or role query atoms of the form R(X,Y) where C is a concept name, R is a

role name, and X and Y are variables. The variables in the head are called distinguished

or answer variables, and define the format of the query result. The answer variables

have to be bound to satisfying individuals. Every answer variable must appear at least

once in the body of the query. The variables that appear only in the body are called

non-distinguished variables. Unlike answer variables, non-distinguished variables are

considered as existentially quantified, i.e. they do not have to be bound to individuals,

rather, it suffices that in all models a satisfying domain object exists.

Informally speaking, the answer to a conjunctive query is a set of tuples representing

bindings for the distinguished variables. If all variables in the query are replaced with

the corresponding individuals from the query answer, every query atom in the body is

true in each model of the knowledge base.

Currently, most DL reasoners support only so-called grounded conjunctive queries,

which differ from the standard conjunctive queries introduced above by requiring that

also non-distinguished variables have to be bound to individuals. Thus, from a formal

point of view there is no difference between distinguished and non-distinguished vari-

ables in grounded conjunctive queries. For grounded conjunctive queries the standard

semantics can be obtained (only) for so-called tree-shaped queries by using existential

restrictions in query atoms (see [GHLS07], [HSTT00], [WM06] for a detailed discus-

sion). In this work, we focus on (unions of) grounded conjunctive queries, which are

supported by contemporary DL reasoners such as KAON2 [HMS04], Pellet [SP06] and

RacerPro [HM01].

To describe the semantics of grounded conjunctive queries, the notion of a variable

substitution σ is defined as a function which maps variables to individuals from a

knowledge base O, and every individual from O to itself. More formally, let V ars =

{X,Y, . . .} be a set of variables, where variables are denoted by capital letters and

Inds = {i, j, . . .} be a set of individuals, where individuals are denoted by lowercase

letters. The variable substitution function σ assigns to every variable in V ars an

individual from Inds, and maps every individual in Inds to itself. For example, σ(X) =

i, σ(Y) = j, σ(i) = i.

Note that the variable substitution function σ has to be defined for individuals as

well, since σ will later be applied to sequences containing both variables and individuals.

σ is extended to sequences in the obvious way, i.e. by element-wise application: σ(V1) =

σ(〈X〉) is defined as 〈σ(X)〉, and σ(V2) = σ(〈X,Y 〉) is defined as 〈σ(X), σ(Y)〉.

A variable substitution σ is called admissible for a conjunctive query

{(H) | Q1(V1), . . . , Qn(Vn)} if σ is defined for all elements in V1, . . ., Vn. Answer-

ing a grounded conjunctive query with respect to a knowledge base O then means

finding all admissible variable substitutions such that O |= {Q1(σ(V1)), . . . , Qn(σ(Vn))}

holds. Here the query is grounded first, meaning that the variable substitution σ is

applied first, before checking whether O |= {Q1(σ(V1)), . . . , Qn(σ(Vn))} holds. Note

that a grounded query atom, e.g. Qi(σ(Vi)), is in fact an ABox assertion, and O |=

Qi(σ(Vi)) if and only if O |= {Qi(σ(Vi))} (ABox entailment has been defined be-

fore). The answer of a conjunctive query is given as the set of tuples: {σ(H) | O |=

Q1(σ(V1)), . . . , Qn(σ(Vn))}. If the head of a conjunctive query is empty, i.e. H is of

length zero, then the conjunctive query is called a Boolean conjunctive query . If an ad-

missible variable substitution exists such that O |= {Q1(σ(V1)), . . . , Qn(σ(Vn))} holds,

then the answer to the Boolean conjunctive query is true, and false otherwise.

To give an example, we consider the ABox

HighJump(hj1)

SportsTrial(st1)

HighJumper(h1)

Athlete(a1)

hasParticipant(hj1 , h1)

hasParticipant(st1 , a1)

and the TBox

HighJump v SportsTrial

HighJumper v Athlete

The conjunctive query

{(X,Y) | SportsTrial(X), hasParticipant(X,Y),Athlete(Y)}

is used to retrieve all sports trials and the participating athletes from this knowledge

base. The answer to this query is as follows:

{(hj1 , h1), (st1 , a1)}

As this simple example demonstrates, query answering in DL systems requires the

consideration of the axioms in a knowledge base. In this example the subsumption

relations are considered to answer the query. Due to the fact that disjunctive informa-

tion can be represented in DLs as well, query answering becomes even more involved,

since multiple models have to be considered for query answering and some kind of case

analysis is required. To illustrate the later point, assume that the ABox above contains

also the following assertions:

Jumper(j1)

SportsTrial(st2)

hasParticipant(j1 , st2)

and the TBox above contains also the following axioms:

PoleVaulter v Athlete

Jumper ≡ (HighJumper t PoleVaulter)

Now, in order to recognize that the pair (st2 , j1) is also an answer to the query, the

system has to perform case analysis. In one model it holds that j1 is a HighJumper and

thus an Athlete, whereas in the other model j1 is a PoleVaulter and thus an Athlete.

Hence in all models it holds that j1 is an Athlete.

Unlike DL systems, standard relational database systems do not perform case anal-

ysis and consider only one model for query answering. In fact, a database instance rep-

resents exactly one interpretation, whereas an ABox represents many interpretations

(its models). As shown by Reiter in [Rei84], it is equivalent to consider a database

instance as a set of ground facts (in the first-order logic sense). In principle, this set

of ground facts has multiple models. However, due to the absence of negative and

disjunctive information it is sufficient to consider only the minimal Herbrand model for

query answering. Since the database contains only positive information and its model

is minimal, the corresponding negative information is maximized. This means that the

modeled positive information is assumed to be complete. This is referred to as the

Closed World Assumption (CWA). As a consequence of the CWA, the information not

contained in the database is assumed to be false.

Database systems employ the CWA by means of a non-monotonic inference rule

called negation-as-failure. In this inference rule, failure to prove some fact p automat-

ically proves ¬p.
In contrast to database systems, DL systems employ the Open World Assumption

(OWA), which means that the information about the domain may be incomplete. This

is why query answering in DLs is a computationally much harder task compared to

query answering in database systems.

DL systems support a larger class of logical axioms than database systems. For

example, in DL systems general truths can be expressed as universally quantified sen-

tences. For instance, the general truth that all participants of a sports trial are athletes

is expressed with the GCI SportsTrial v ∀hasParticipant .Athlete. Furthermore, in DL

systems the existence of unnamed domain objects can be implied by the knowledge

base. Unnamed domain objects are domain objects for which no individual exists in

the ABox. For example, the GCI SportsTrial v ∃hasParticipant .Athlete states that

each sports trial has an athlete as a participant. Notice that the existence of an indi-

vidual in the ABox representing this domain object, namely an athlete, is not required.

Database systems also make the UNA, which means that different individuals are

necessarily mapped to different domain objects. Contrary to database systems, DL

systems usually do not make the UNA. In some DL reasoners, such as RacerPro, UNA

is optional. Without the UNA, different individuals can be mapped to the same domain

object. In this case, the equality of two individuals can be stated explicitly as follows:

same-as(athlete1 , athlete2).

Merits and Shortcomings of Description Logics

The main arguments for using description logics as the logic-based formalism for mul-

timedia interpretation can be listed as follows:

Expressive Language: DLs are based on first-order logics. In general, DLs can be con-

sidered as a restricted first-order logic language over unary and binary predicates with a

special, variable-free syntax. However, there exist also description logics, such as DLR,

that allow for n-ary relations [CGL08]. Most DLs are decidable fragments of first-

order logic with equality. DLs have been designed with a special focus on the trade-off

between expressivity, decidability and sometimes complexity of reasoning. The compu-

tational properties of DLs have been studied extensively [BCM+03].

Standardization: DLs constitute the underlying basis of OWL, a language recommended

by the W3C for ontology representation in the Semantic Web. Therefore several stan-

dards exist for interacting with DL knowledge bases. For example OWL-QL [FHH04]

and SPARQL-DL [SP07] are languages for querying OWL knowledge bases. DIG

[TBK+06] and its successor OWLLink [TLN+08] are protocols for communication with

DL reasoners. They facilitate clients not only to query ontologies but also to configure

reasoners and load ontologies. OWL API [HBN07] is a Java interface and implemen-

tation for OWL that can be exploited to develop semantic applications that require

reasoning in OWL ontologies.

Tool Support : Besides several standards also a number of stable software systems exist

for DLs. Most importantly, several DL reasoners with support for various inference

services are available. KAON2, Pellet and RacerPro are examples of contemporary DL

reasoners, which are used for building practical applications. In addition to DL reason-

ers also systems for supporting ontology design are available. Protégé-OWL [KMR04]

and SWOOP [KPH05] are examples of software tools that assist ontology designers in

modeling and editing domain ontologies in OWL. These tools also implement standard

interfaces for interacting with DL reasoners. For example, using Protégé an ontology

designer can check for the consistency of a knowledge base being designed. In this case,

Protege can interact with DL reasoners, e.g. RacerPro, through the OWL-API.

Concept-Based Knowledge Representation: In cognitive psychology, semantic memory

is a model of human memory organization [And76, pp. 380]. Driven by work on human

memory and language processing, Quillian initiated work on semantic networks [Qui68].

Later, Minsky introduced frames, a variation of semantic networks where knowledge

describing a particular concept is organized as a frame [Min75]. A frame contains prop-

erties (called attributes) and relations to other frames. In the same spirit as the seminal

semantic network language KL-ONE, also its successor DLs support the concept-based

knowledge representation paradigm. It is often argued that this paradigm is partic-

ularly suitable for modeling conceptual knowledge about a domain, since it offers a

user-friendly, variable-free syntax, and the concept-based (frame-based) representation

is appealing from a cognitive point of view. Different from other formalisms such as

rule formalisms, in concept-based knowledge representation all axioms that belong to

a certain cognitive concept are kept together.

Modeling of Incomplete Information: The OWA employed by DLs allows for the model-

ing of incomplete information, which is an important feature for multimedia interpreta-

tion where the available information is in most cases noisy and incomplete. Using DLs

we can state not only information about known objects in a multimedia document but

also general truths that are always valid in the domain of interest. For instance, in the

athletics domain, we can state the general truth that all pole vault trial scenes include

a pole object, which may or may not be visible in an image of the scene. Assume, for

example, an image depicting a pole vault trial where a pole object is not visible. Under

the OWA, the knowledge about the particular pole vault image is not in contradiction

with the general truth about pole vault trial scenes, since the knowledge about the

particular image may be incomplete.

Besides several merits, description logics have also some shortcomings, which have

been revealed when building practical applications. For example, in [MHRS06], five

important shortcomings of DLs are discussed, which can easily be addressed through

the integration of DLs and logic programming:

Higher Relational Expressivity : Even though very expressible description logics exist,

the relational expressivity of DLs, and therefore OWL, are not sufficient in some cases.

For example, many practical applications require modeling of triangular structures.

However, in DLs only tree-like structures can be modeled in the TBox, although very

limited kinds of triangular structures can be modeled using the so-called complex role-

inclusion axioms of the recently released OWL2 standard [OWL09].

For example, assume that in our example athletics ontology we model the concept

Person using DLs. However, we cannot model the fact that an instance of the concept

Person always has instances of the concepts Body and Face as parts and at the same

time, these Body and Face instances must be adjacent to each other. We cannot

model the concept Person in the TBox because this requires expressing a ‘triangle of

relations’ between the concepts Person, Body and Face. Figure 3.3 shows a graphical

representation of this example.

!"#$%&'

(%)*' +,-"'

.,$!,#/' .,$!,#/'

,)0,-"&/'

Figure 3.3: A graphical representation of the concept definition Person, which requires

modeling of a triangular structure

It should be noted that expressive DLs support features such as transitive roles

allowing for ‘shortcuts’ between branches of a tree. For example, in Figure 3.4 the

individuals i1 and i2 and the individuals i2 and i3 are related to each other through

the role R, which is depicted as continuous edges. If the role R is defined as transitive,

then a ‘shortcut’, depicted as a dashed edge in the graph, is implied in any model of

the knowledge base and, therefore, the relation R is inferred between i1 and i3.

!"# !$# !%#

&# &#

&#

Figure 3.4: A graphical representation of an ABox with an inferred role assertion (dashed)

caused by the transitive role R

The use of transitive roles is just a useful workaround for certain situations but

does not solve the problem of modeling triangular structures in general. In practice,

there are several situations where this workaround cannot be applied. For example, a

particular role used to model a concept definition of the application domain may be

non-transitive by definition. Figure 3.3 shows another example where the workaround

cannot be applied since the definition of the concept Person requires roles that are

different from each other.

Relations of Arbitrary Arity : Standard DLs only allow for modeling of roles that denote

binary relationships between objects. However, when modeling ontologies for practical

applications, relationships with an arity greater than two are often encountered. For

example, we cannot model a ternary relation performs in our athletics ontology to rep-

resent the fact that an athlete has a certain performance in a particular sports trial,

where athlete, performance and sports trial are concepts in the ontology. Note that

some description logics such as DLR allow for n-ary relations [CGL08]. Even though

some of the inference problems in DLR can be reduced to inference problems in stan-

dard DLs [HSTT99], currently, there exists no implemented DL reasoner that supports

reasoning in DLR.

Integrity constraints: Informally speaking, an integrity constraint is a formula that

constrains the information which may be stored in a relational database. The validity of

the constraints must be checked every time updates are made to the database [LST87].

Integrity constraints, which are widely used in modeling relational database schemas

and object-oriented systems, are not supported by standard DLs [MHRS06]. However

some proprietary and system-specific solutions exists, e.g. integrity constraints can

be expressed as certain rules in RacerPro. Also certain nonstandard DLs such as

autoepistemic DLs [DNR97] allow for the formulation of integrity constraints. Unlike

the database realm none of these solutions are standardized for the time being.

The Unified Modeling Language (UML) is the most widely-used modeling language

in software engineering [Fow04]. For example, the UML class diagram depicted in

Figure 3.5 shows a conceptual model for a simple object-oriented application involving

the classes Employee and Company, and the uni-directional association worksFor. In

UML, associations are integrity constraints which are used to model the relationships

between classes of objects.

!"#$%&''()%"#*+&(
,%-./0%-(

1(22(3(

Figure 3.5: An example UML class diagram

The uni-directional association worksFor in Figure 3.5 means that for every instance

of the Employee class at least one instance of the Company class in the worksFor

relation must be known. The multiplicity value 1..∗ indicates that an employee can work

for several companies. Roughly speaking, the diagram in Figure 3.5 can be translated

into natural language as: ‘Each employee works for one or more companies and for

each employee the company (or companies) he works for must be known’. Assume that

we want to develop an object-oriented application according to the class diagram in

Figure 3.5, and our application contains a single instance of the class Employee and no

instances of the class Company. In this case the integrity constraint, and therefore the

class diagram, is violated since our application does not contain any company instances

in the worksFor relation with the employee instance.

Figure 3.6 shows an attempt to model the UML diagram from Figure 3.5 using

standards DLs. The axiom in the TBox T defines a constraint on the concept Employee

meaning: ‘Each employee works for a company’. However, in the case of a DL knowledge

base, where information is incomplete, this constraint means that each employee works

for a company but we do not necessarily know for which one. Therefore, an ABox

A = {Employee(Michael)} is consistent w.r.t. T in Figure 3.6, whereas A would violate

the UML diagram from Figure 3.5, since the company for which Michael works is not

known.

Employee v ∃worksFor .Company

Figure 3.6: An example TBox T

It can be concluded that the axiom in T is too weak to serve as a conceptual model

for the object-oriented example application discussed above. In principle, autoepis-

temic DLs can be used to represent the integrity constraint required in this example.

Closed World Reasoning : Many applications require the formalization of closed world

reasoning over DL knowledge bases, which is not addressed in standard DLs [Ros06].

For example, in a multimedia interpretation process, under certain conditions, it may

be required to assume that the surface-level information identification (see Figure 3.1)

has delivered complete information about the objects in a document and we might

be interested in the consequences of applying closed world reasoning on the available

information.

Modeling of Exceptions: In many practical applications modeling of exceptions is es-

sential, due to the fact that the real-world is full of exceptions. However using standard

DLs we cannot express exceptions, or more generally, non-monotonic knowledge. Note

that besides the standard DLs we discuss in this work that allow modeling of crisp

knowledge, there exist also other DLs that are designed to deal with uncertainty and

vagueness. For example, probabilistic [GL02] and possibilistic [QPJ07] extensions of

DLs have been proposed in the literature.

The shortcomings of standard DLs can be addressed through the integration of

description logic with logic programming. Before discussing details of our integration

approach in the next chapter, we proceed with a brief introduction to logic program-

ming.

3.1.2 Introduction to Logic Programming

Logic programming uses the language of logic to express both data and programs.

Similar to first-order logic, the language of a logic program allows for constant, function

and predicate symbols. Atomic formulas (also known as atomic sentences or atoms in

short) have the form p(t1, . . . tn), where t’s are terms and p is a predicate symbol of

arbitrary arity. A literal is either an atomic formula or the negation of an atomic

formula. A clause is a logic formula of the form:

L1 ∨ · · · ∨ Ln

where each Li is a literal. A Horn clause (also known as Horn rule) is a clause that

contains at most one positive literal. A definite clause (also known as definite rule) is

a clause that contains exactly one positive literal:

A0 ∨ ¬A1 ∨ · · · ∨ ¬An

Following the notational convention proposed in [NM95], definite clauses can be written

as follows:

A0 ← A1, . . . , An

where n ≥ 0 and A0, . . . , An are atomic formulas. All variables occurring in a formula

are universally quantified over the whole formula. The atomic formula A0 is called the

head of the clause whereas the atomic formulas A1, . . . , An are called the body of the

clause. Formulas and clauses are called ground if they contain no variables. A fact

is a definite clause with an empty body, i.e. n = 0. Usually, the head of a fact is a

ground atomic formula. A Horn clause with an empty head, i.e. where A0 is absent, is

called a goal clause. A definite program is a finite set of definite clauses. A program is

also called a rule set. A rule set is called recursive if the body of one rule directly of

indirectly depends on the head of another rule, and non-recursive otherwise.

To give an example, let Π be a definite program containing the following rules:

q(x)← p(x)

r(x)← q(x)

p(i)←
r(j)←

A definite program with variables can be considered as a shorthand for the set of all

ground instances of its rules, i.e., for the result of substituting variable-free terms for

variables in the rules of the program in all possible ways (this process is often referred

to as grounding). Therefore Π is a shorthand for the following set of ground instances

of its rules:

q(i)← p(i)

r(i)← q(i)

q(j)← p(j)

r(j)← q(j)

The set of all ground atoms in the language of a definite program Π is called the

Herbrand base of Π and denoted by HB . Note that the language of a definite program is

the set of constant, function and predicate symbols that occur in the definite program.

In our example Π has the following Herbrand base:

HB = {p(i), q(i), r(i), p(j), q(j), r(j)}

A Herbrand model of a definite program Π uses HB as the interpretation domain

and is a standard first-order model of Π. There exists a unique minimal model for

each definite program Π, which is the least Herbrand model of Π. To specify the least

Herbrand model of Π in our example, it suffices to give the interpretation function ·I

as follows:

pI = {p(i)}
qI = {p(i)}
rI = {p(i), r(j)}

It can easily be observed that every Herbrand model must be a superset of this least

Herbrand model. Note that, in general, the Herbrand base HB may be infinite, e.g. if

Π contains function symbols. In this work, we consider function-free definite clauses

only and follow a Datalog-like approach.

Datalog, a prominent query and rule language used in deductive databases and pro-

duction systems, supports only definite clauses with no function symbols. In addition,

Datalog requires all variables that appear in the head of a rule to appear also in the

body of the same rule. Systems supporting Datalog often employ forward-chaining , also

known as bottom-up inference. Here the name forward-chaining indicates that rules are

processed forward, i.e., in the sense of the logical implication sign, from body (premise)

to head (conclusion). Prolog is a widely-used logic programming system, and unlike

Datalog Prolog supports also definite clauses with function symbols. Prolog uses reso-

lution based inference algorithms, which work in a backward-chaining way, also known

as top-down or goal-directed inference. Backward-chaining inference based on the SLD

resolution does not always guarantee termination since inference with definite clauses

with function symbols is in general undecidable [Kow74, Kow79a, Kow79b], whereas

termination is guaranteed for the fixed-point based inference algorithms employed for

Datalog [Ull85].

In general, there are several decidable rule formalisms for which decidability is

achieved through the application of some kind of restrictions, also known as safety

conditions, on the rules [Ros05]. In Datalog, any program Π must satisfy the following

safety conditions:

• Each fact in Π is ground.

• Each variable that appears in the head of a rule in Π must also appear in the

body of the same rule.

These safety conditions guarantee that the set of all facts that can be derived from

a Datalog program Π is finite [CGT89].

In the context of Datalog, it is usually distinguished between two sets of clauses:

a set of ground facts, called the Extensional Database (EDB), is stored in a relational

database, and a Datalog program Π, called the Intentional Database (IDB), is given.

The predicates that appear in the EDB are called EDB-predicates. EDB-predicates

may appear in Π as well, but only in clause bodies. The predicates that appear in Π

but not in the EDB are called IDB-predicates. As a consequence, the head predicate

of each clause in Π is an IDB-predicate.

Assume that a Datalog rule A0 ← A1, . . . , An and a set of ground facts {F1, . . . , Fn}
are given. If a substitution θ which replaces variables with constants exists such that

for each 1 ≤ i ≤ n it holds that θ(Ai)=Fi, i.e. the premises of the rule are satisfied,

then we can infer the fact θ(A0), also known as the conclusion. Informally speaking,

we say that a rule is applied to a set of ground facts or a knowledge base (KB). Notice

that the inferred fact may either be a new fact or it may already be contained in the

KB. We say a set of rules Π is applied to a KB in a forward-chaining way, if for every

rule in Π whose premises are satisfied the conclusion of the rule is added to the KB,

and this process is repeated until a fixed point is reached such that no new facts can

be added to the KB.

As an example, consider the following set of ground facts stored as tuples in a

relational database:

EDB = {parent(mary , john), parent(john,michael)}

and the following Datalog program Π consisting of the two rules:

ancestor(i, j)← parent(i, j)

ancestor(i, j)← parent(i, k), ancestor(k, j)

that defines the ancestor relationship. As a consequence of applying the rules in Π to

EDB, the following tuples are added to the KB:

{ancestory(mary , john), ancestor(john,michael), ancestor(mary ,michael)}

Notice that after the addition of these tuples to the KB, a fixed point is reached where

no new facts can be inferred.

In this work we use Datalog-like rules to extend DLs with logic programming. For

multimedia interpretation we exploit a background knowledge consisting of a DL TBox

and a set of rules. The rules used are Datalog-like in the sense that they are function-

free definite clauses, and each variable that appears in the head of a rule must also

appear in the body of the same rule. However, we apply an additional restriction on

the rules which requires the predicate of each rule atom to exist in the signature of the

DL TBox.

In this work DLs are extended with logic programming through the application of

a set of rules to a DL knowledge base. To apply a rule r to a DL knowledge base O

consisting of a TBox T and an ABox A, we first define θ(Ai) as a function that maps

variables from a rule atom Ai to individuals in A. Subsequently, we define the function

apply-rule as follows:

Algorithm apply-rule(T,A, r)

Output: a set of ABox assertions

r = A0 ← A1, . . . , An

if there exists a substitution θ such that ∀i ∈ 1, . . . , n : T ∪A |= θ(Ai) then
return {θ(A0)}

else
return {}

end

Algorithm 1: The apply-rule algorithm

To apply a set of rules R to O in a forward-chaining way, we define the function apply-

rules as follows:

Algorithm apply-rules(T,A,R)

Output: a set of ABox assertions

C := {}
A0 := {}
A1 := A

i := 1
while Ai 6= Ai−1 do

if there exists r ∈ R such that apply-rule(T,Ai, r) 6= {} and
apply-rule(T,Ai, r) 6⊆ Ai then

C := C ∪ apply-rule(T,Ai, r)
Ai+1 := Ai ∪ apply-rule(T,Ai, r)

else
Ai+1 := Ai

end
i := i+ 1

end
return C

Algorithm 2: The apply-rules algorithm

We say that a DL knowledge base O entails the ABox assertion P (I) under the Datalog

semantics:

O |=R P (I)

iff

T ∪ A ∪ apply-rules(T,A,R) |= P (I)

where P is a concept or role name from T and I is a sequence of individuals from A.

As we have discussed before, logic programming is often seen as a way to overcome

several shortcomings of DLs [LR98]. Logic programming has some important differences

to DLs: In logic programming the arity of predicates is not restricted whereas standard

DLs allow for unary and binary predicates only. Furthermore, different from description

logics, rules allow for modeling of triangular structures. Coming back to the example

in Figure 3.3, the following rule can be used to model the concept Person that requires

a ‘triangle of relations’ between the concepts Person, Body and Face.

Person(z)← hasPart(z, x),Body(x), hasPart(z, y),Face(y), adjacent(x, y)

3.2 Overview of a Multimedia Interpretation System

As discussed in Section 2.1 in detail, we consider multimedia interpretation as a process

for the computation of deep semantic annotations of multimedia documents. The multi-

media interpretation process produces deep semantic annotations based on surface-level

information in multimedia documents through the exploitation of background knowl-

edge. In this context, surface-level information are surface-level semantic annotations

of multimedia documents. Therefore the multimedia interpretation process takes se-

mantic annotations as input, enriches them and provides deep semantic annotations,

i.e. deep-level and surface-level information, as output.

In Section 3.1, we have chosen a logic-based formalism for multimedia interpreta-

tion, namely DLs extended with rules. This formalism is appropriate for multimedia

interpretation for several reasons. As discussed in Section 3.1, the relational expressiv-

ity of standard DLs is often not sufficient for multimedia interpretation. This problem

can be solved using rules. Furthermore, as we will discuss in this section, there is an-

other important motivation for extending DLs with rules. As presented in Section 2,

multimedia interpretation is not a purely deductive process but may require abduction.

Since existing DL reasoners do not support abduction, we propose rules as a way to

define the space of abducibles and to achieve abductive inference.

In the formalism we have chosen for multimedia interpretation, the background

knowledge consists of a TBox and a set of rules. In our approach, a TBox contains

the domain knowledge and is called the domain ontology. We do not permit the use of

individual names, so-called nominals in the TBox. In addition, a set of rules contain the

knowledge about how to interpret multimedia documents, which contain information

about the domain. Therefore we call these rules interpretation rules.

!"#$%&'(%)*

+,$'-.-'$)$%/,*

0/&)%,**

1,$/#/23*

4,)#35%5**

46/7*

+,$'-.-'$)$%/,**

46/7'5*

+,$'-.-'$)$%/,*

8"#'5*

6)9:2-/",(**

;,/<#'(2'*

Figure 3.7: The multimedia interpretation process. Input: analysis ABox, Output: in-

terpretation ABox(es), The background knowledge: Domain ontology and interpretation

rules

Semantic annotations of a document can be represented as an ABox, i.e. as a set of

assertions. Initially, semantic annotations are the result of modality-specific analysis

processes and therefore we call an ABox that represents the results of an analysis

process an analysis ABox . Multimedia interpretation is a process based on reasoning

about analysis ABoxes with respect to background knowledge, the outcome being one

or many (extended) ABoxes. The goal of the multimedia interpretation process is to

compute ABoxes that represent deep semantic annotations. As discussed in Section 2.1,

deep semantic annotations involve more abstract information, e.g. events, than the

information found in analysis ABoxes.

Each ABox produced by the multimedia interpretation process represents a pos-

sible interpretation of a multimedia document and, therefore, we call such ABoxes

interpretation ABoxes. Figure 3.7 illustrates the multimedia interpretation process

where available background knowledge is comprised of the domain ontology and inter-

pretation rules (compare with Figure 3.1). An analysis ABox contains instance and role

assertions about surface-level objects. For example, an analysis ABox A1, representing

the outcome of image analysis for a sports image, might contain the following assertions:

A1 = {Body(i1),Face(i2),HorizontalBar(i3), adjacent(i1 , i2),near(i1 , i3)}

Besides the surface-level information from the corresponding analysis ABox, an in-

terpretation ABox describes usually also some deep-level information. Hence, if no

interpretations can be computed for a document, e.g. due to lack of background knowl-

edge, the interpretation ABox of the document describes no deep-level information,

and is the same as the analysis ABox. Furthermore, roughly speaking, the information

in an interpretation ABox should not contradict with the background knowledge. This

means that an interpretation ABox should be consistent w.r.t. the TBox.

In [NM06] and [MN08], Möller and Neumann propose the use of DLs for the rep-

resentation of aggregates that can be used by reasoning services as building blocks for

a scene interpretation process. In these works, DLs serve as a basis for formal scene

interpretation processes, yet a concrete implementation of these processes is missing.

Inspired by these works, we consider deep-level objects as aggregates that are built

on surface-level objects such that aggregates contain surface-level objects as their parts.

Therefore, given surface-level objects and relations among these objects, the task of the

interpretation process is to hypothesize aggregates and parthood relations between ag-

gregates and surface-level objects. In this context, a hypothesis is a set of assertions

and explains the existence of particular surface-level objects or constellations of surface-

level objects in the sense that, if the hypothesis is added to the available background

knowledge then a particular surface-level object or a particular constellation of surface-

level objects is entailed. This is a major difference of our approach to other approaches,

which aim to attach keywords (or terms) to documents in order to support the Boolean

retrieval model. For example, the keyword sports trial can be attached to an image

depicting a typical sports trial. Later, this image can be retrieved when searching for

the keyword sports trial. However, it remains opaque why this document is believed

to be related to a sports trial. In our approach the goal is to compute interpreta-

tions, which are rich symbolic structures representing deep-level information about

documents. Parthood relations between aggregates and surface-level objects play an

important role in here, because they set aggregates in relation with other surface-level

objects and, therefore, explain why an aggregate is believed to exist in the interpre-

tation of a document. For an image depicting a sports trial, our approach aims to

compute an interpretation where a sports trial object is in relation with surface-level

objects such as sports equipments or persons. Therefore the interpretation computed

by our approach can be queried more conveniently. For example, a user can query for

sports trial images in which a horizontal bar and a pillar are shown.

An interpretation of a document can be computed by generating hypotheses that

explain observations. In the case of multimedia interpretation, observations are surface-

level objects and relations among surface-level objects, i.e. surface-level information.

Figure 3.8 illustrates an interpretation consisting of observations, surface-level objects

and relations among surface-level objects, and explanations, aggregates and relations

between aggregates and surface-level objects.

!"#$%&'()!*#+

$,-.'*'()!*#+
)*($%-%$('()!*+

Figure 3.8: Interpretation of a document consisting of observations and their explanations

It should be noted that aggregates can have different levels of abstraction (see Fig-

ure 3.8). Some aggregates may directly be built from surface-level objects whereas

others may be more abstract and build on other aggregates. The selection of the

necessary level of abstraction for aggregates is an application-specific decision. In ap-

plication scenarios in which very deep semantic annotations, and hence very abstract

aggregates in the interpretations, are required, more abstract aggregate concepts have

to be modeled in the background knowledge.

The multimedia interpretation process is required to compute rich relational struc-

tures, i.e. objects that are related to each other, and thus as many abstract aggregates,

and possibly relations among them, as possible. Consequently, the multimedia inter-

pretation process cannot terminate after explaining the surface-level objects and their

relations. In fact, the computation of explanations for surface-level objects and their

relations should be the first iteration of an iterative process. In subsequent iterations

the explanations computed by the previous iteration should be considered as observa-

tions, and should be explained as well. If none of the observations can be explained in

an iteration, then the process should terminate. In Section 3.4, along with other details

of the interpretation process, we will show that the termination of the process can be

guaranteed if certain conditions are fulfilled. The surface-level information together

with the computed explanations constitute the interpretation of the document, i.e. the

outcome of the interpretation process.

As a result of noise and the inherent ambiguity in real-world data, it is realistic to

expect that many documents can be interpreted in multiple valid ways. In some cases,

even a single observation may be explained in many different ways. For example, this

is true if precise information about distinctive features of an observation is missing or

if the background knowledge does not contain enough knowledge about the domain.

Hence, the multimedia interpretation process must include a mechanism to restrict the

number of explanations to those, which are more ‘probable’ than others, and maybe

to compute ‘preferred’ explanations only. Even if the interpretation process is capable

of computing ‘preferred’ explanations, there can still be situations, e.g. because of the

ambiguity of available information, where the computation of multiple explanations

cannot be avoided. Therefore the multimedia interpretation process should be able to

compute multiple interpretations for a document, and the embedding context should

be set up to handle multiple interpretations.

In order to deal with multimedia documents that are multi-modal information re-

sources, information in any modality needs to be analyzed and interpreted. Existing

analysis tools are specialized in extracting information from single modalities such as

the text or visual modality. Therefore, in our approach multimedia documents are

partitioned into their segments prior to analysis. A segment is a part of a multime-

dia document and contains information in one modality. For example, a web page

containing an image, its caption and a text paragraph has three segments.

Modality-specific analysis and interpretation processes are then applied to these

segments to obtain interpretation ABoxes, which are also modality-specific. At this

! ! ! !!!!!!!!!"#$%&'('!

! ! ! !!!!!!!!!)#*+,-,+*$*(.#!

)#*+,-,+*$*(.#!!

"/.0+'!

! ! ! !!!!!!!!!!12'(.#!

"#$%&'('!!

"/.0+'!

12'+3!

)#*+,-,+*$*(.#!!

"/.0+'!

Figure 3.9: The multimedia interpretation approach including processing steps for anal-

ysis, interpretation and fusion

stage it is necessary to merge the modality-specific interpretation results in order to

obtain deep semantic annotations of the whole web page. This is why we enhance

our hybrid approach to include another processing step called fusion that follows the

interpretation step. Figure 3.9 illustrates the enhanced hybrid approach to multime-

dia interpretation including processing steps for analysis, interpretation and fusion.

Informally speaking, the goal of the fusion process is to take various interpretation

results as input and provide for a fused interpretation ABox with respect to the initial

compositional structure of the multimedia document and the background knowledge.

In the literature, the merging of information from multiple sources, possibly with

different conceptual or contextual representations, is referred to as information fusion

or information integration. Information integration, also known as data integration

has been extensively studied in the context of database systems [Ull97]. Information

integration is often defined as the problem of combining data residing at different

resources and providing users with a unified view on this data [Len02]. The use of

formal ontologies in our approach assures that the information sources we want to

fuse, namely modality-specific interpretation ABoxes, have the same conceptual and

contextual representation. In our context, the fusion problem differs from the general

problem of information fusion, and is more similar to the sensor data fusion problem

which is a specialization of the information fusion problem. In sensor data fusion the

goal is to fuse sensor data or data derived from sensor data from different sources into

a single model of some aspect of the world such that the resulting information is more

appropriate than the information from one of these sources only [CY90].

We consider interpretation results from different modalities as information derived

from various modality-specific sensor data. In addition, we define the fusion process

with special emphasis on the peculiarities of multimedia documents. Most multimedia

documents are composed of segments that contain information in one or many modal-

ities. The information in a segment of the document usually refers to information in

another segment, and different segments complement each other. For example, a web

page from a news web site typically contains texts about several events and images of

most important people involved. Furthermore images are usually captioned with tex-

tual information. Captioning images with text has two major advantages: First, readers

can easily obtain additional textual information about persons or things shown in an

image. Second, the text captioning an image serves as a link between the image and

the rest of the multimedia document such that readers can easily find out paragraphs

in the textual part of the multimedia document that refer to this image. Therefore

we design a fusion process with respect to two important peculiarities of multimedia

documents of interest:

• To fuse the interpretations of the segments of a multimedia document appropri-

ately, the structural composition of the multimedia document has to be considered

such that the references between the segments are retained.

• The information contained in segments of a multimedia document are in a sense

redundant and complementary.

The fusion process should merge modality-specific interpretations of a multimedia

document with respect to the structural composition of the document such that one

or many fused interpretation ABoxes for the whole multimedia document is obtained.

In addition, it should exploit the inherent redundancy of information in multimedia

documents and make equalities between aggregates with different names but describing

the same abstract entity in the real-world explicit.

Fusion of interpretation ABoxes can be achieved by merging corresponding ABoxes

into a fused interpretation ABox, and adding so-called same-as assertions into the

fused interpretation ABox if certain application-dependent conditions are fulfilled. In

Section 3.5, we present an algorithm that implements fusion in our multimedia inter-

pretation system.

This way, fusion offers two major benefits:

• Fusion facilitates the improvement of modality-specific interpretation results.

During fusion, uncertainty and imprecision involved in interpretation results of a

modality can be disambiguated using the additional information obtained from

other modalities and the background knowledge.

• Fusion not only empowers answering of queries which require the combination of

information from different modalities, but also enables the use of more intuitive

queries. For instance, assume that a user wants to retrieve images of Yelena

Isinbayeva from a multimedia repository. This requires the identification of the

string Yelena Isinbayeva as a person name in image captions. The existence

of same-as assertions between aggregates in fused interpretation ABoxes enables

answering of queries that are more intuitive. In this simple example, the user

can directly ask for images that depict Yelena Isinbayeva, instead of asking for

images that are captioned with text about Yelena Isinbayeva.

To recapitulate, after setting up the appropriate formalism we have discussed the

process underlying our multimedia interpretation system including the analysis, inter-

pretation and fusion steps. We proceed with the formalization of ABox abduction in

DLs, which is essential for explanation generation.

3.3 Formalizing ABox Abduction

As discussed in Chapter 2 in detail, explanation generation is one of the key problems

in image interpretation. If a declarative solution is searched, many works share the

view that abduction is the appropriate solution to the explanation generation problem.

The main goal of this section is to formalize explanation generation as an abductive

reasoning task which can be realized in DLs through ABox abduction.

In works that exploit logic-based formalisms, abduction is often formalized as

Σ ∪∆ |= γ (3.1)

where Σ is the background knowledge, γ an observation, and ∆ a set of formulas, also

known as an explanation, that together with the background knowledge entails the

observation. Given the background knowledge Σ and an observation γ, the goal of

abduction is to find explanations (∆s).

Formula 3.1 defines no restrictions on explanations and hence allows for explana-

tions that are inconsistent or trivial. Furthermore, in general, for every γ there exists

infinitely many explanations, since we can obtain an infinite number of explanations

by adding new formulas to an explanation. Therefore, additional restrictions have to

be defined on explanations to limit the number of explanations, and constrain abduc-

tive reasoning to compute only such explanations that fulfill certain criteria. In the

literature, e.g. [Pau93, AL97], the most-commonly used restrictions on explanations

are:

Consistency : Σ ∪∆ 6|= ⊥
Minimality : ∆ is a ‘minimal explanation’ for γ
Relevance: ∆ 6|= γ
Explanatoriness: Σ 6|= γ, ∆ 6|= γ

Consistency is the most fundamental restriction on explanations, because if an

explanation is inconsistent w.r.t. the background knowledge Σ then not only the obser-

vation γ but also any other formula is entailed. Informally speaking, an inconsistent

explanation ∆ (w.r.t. the background knowledge Σ) can ‘explain’ anything. An expla-

nation ∆ is minimal if for all other non-equivalent explanations ∆′ that are comparable

w.r.t. |= it holds that Σ ∪∆′ |= ∆. Notice that an infinite number of explanations can

be computed by adding new formulas to a minimal explanation. In [EKS06], an ex-

planation ∆ is called relevant if γ does not follow from ∆ alone. Furthermore, an

explanation is called explanatory if it is guaranteed that γ follows only from the union

of ∆ and Σ, but not from ∆ or Σ separately.

In Formula 3.1, if DLs are used as the underlying representation and reasoning

formalism, Σ is a DL knowledge base consisting of a TBox T and an ABox A: Σ =

(T,A).1 γ is a concept or role assertion, and ∆ is a finite set of concept and role

assertions. Given an observation and a DL knowledge base, the goal of ABox abduction

is to compute explanations, ∆s, that fulfill certain criteria.

We consider ABox abduction as a non-standard retrieval inference service in DLs,

where the task is to find out what should be added to the DL knowledge base in or-

der to answer a query. Different from the standard instance retrieval service, where

answers are found by exploiting the knowledge base, ABox abduction requires the hy-

pothesization of a set of concept and role assertions, a so-called explanation, such that

the query can be answered. To implement ABox abduction as a practical inference

service, a mechanism for constraining the search space for explanations, i.e. for spec-

ifying the space of abducibles, is required. Rules provide for the necessary formal

language for specifying the space of abducibles. Therefore, the enhancement of DLs

with logic programming is a promising solution for the realization of ABox abduction

as a non-standard retrieval inference service. We proposed this idea for the first time in

[EKM+07a], and later presented its application in building a multimedia interpretation

approach in [EKM+07b, EKM08a, CEF+07].

In our approach, an algorithm implements ABox abduction in DLs. The consistency

of an explanation (∆) generated by the abduction inference service is guaranteed, since

every computed explanation is checked for consistency, and inconsistent explanations

are discarded. Furthermore, we do not require explanations to be minimal, since the

abduction inference service always computes a finite number of explanations. However,

we require explanations to fulfill some context-dependent criteria in order to reduce

the number of explanations, and to acquire preferred explanations only. Before a de-

tailed discussion of our ABox abduction algorithm, we present relevant work from the

literature that exploits abduction for the explanation generation problem.

3.3.1 Related Work on Abduction

The explanation generation problem has been addressed by several works in the lit-

erature. All these works share the view that deductive inference is not sufficient for

explaining observations. They consider abduction as the appropriate form of reasoning

1In equations such as Σ ∪ ∆ |= ⊥ we read (T,A) as T ∪A

for explanation generation. In the following we present some of these works, which

study abduction in different formalisms and application domains.

Hobbs et al.: One of the earliest approaches to apply abductive inference in practice is

due to Hobbs et al. [HSME88], who consider abductive inference as inference to the best

explanation and apply abduction to interpret texts. The approach has been investigated

in the TACITUS project [HM87] for the interpretation of casualty reports, messages

about breakdown in machinery, and other texts. Abductive inference is applied in solv-

ing so-called local pragmatics problems such as reference resolution, compound nominal

interpretation, syntactic and lexical ambiguity resolution, and metonymy resolution.

The work presented in [HSME88] is significantly different from other approaches

that provide for a shallow text analysis, because it aims to interpret sentences in dis-

course by providing the best explanation of why the sentences would be true. To this

end, a knowledge base of domain knowledge has been built, and procedures for using

the knowledge base for the interpretation of discourse have been developed.

To interpret a sentence, the sentence is first transformed into the so-called logical

form [HM87]. Hobbs et al.’s work exploits first-order logic as the formalism for inter-

preting texts. The logical form of a sentence is a first-order expression, and is produced

through syntactic analysis and semantic translation of the sentence.

For example, consider the sentence ‘The Boston office called’. This sentence poses

three local pragmatics problems: i) The reference of ‘the Boston office’ has to be

resolved. ii) The metonymy to ‘(Some person at) the Boston office called’ has to be

resolved. iii) The implicit relation between Boston and the office has to be resolved.

The logical form of this sentence is as follows:

∃x, y, z, e : call ′(e, x) ∧ person(x) ∧ rel(x, y) ∧ office(y) ∧ Boston(z) ∧ nn(z, y)

where e is a calling event carried out by x, who is a person. The primed predicate

call ′(e, x) means that e is the eventuality of call being true of x. x is related to the

office y, and may be the subject of the sentence. The office y is in some unspecified

relation nn to z, which is Boston. Furthermore, assume that the knowledge base

contains the facts:

{Boston(B1), office(O1), in(O1, B1), person(J1), work -for(J1, O1)}

the implication:

∀y, z : in(y, z)→ nn(z, y)

which states that if y is in z, then z and y are in a possible compound nominal relation,

and the implication:

∀x, y : work -for(x, y)→ rel(x, y)

which states that if x works for y, then x and y are in a relation named rel.

To interpret a sentence, its logical form has to be proved abductively with respect

to the knowledge base. In our example, call ′(e, x) is a constraint imposed by the

predicate on its arguments. All conjuncts found in the logical form except call ′(e, x),

which has to be assumed, can be derived from the facts in the knowledge base, and

constitute a proof. The proof resolves ‘the Boston office’ to O1, determines in as the

implicit relation in the compound nominal ‘Boston office’, and expands the metonymy

to ‘J1 who works for the Boston office called’. As Hobbs et al. indicate, solving local

pragmatics problems is equivalent to proving the logical form and the constraints.

In [HSAM90], Hobbs et al. point out that in abduction there may be many pos-

sible explanations for an observation, and thus, criteria are needed to choose among

potential explanations. Besides the obvious criterion that requires the consistency of

an explanation, they propose simplicity, consilience and specificity as further criteria.

Informally speaking, a preferred explanation should be as small as possible (simplicity),

and explain as many observations as possible (consilience). Furthermore the explana-

tion with the most-specific assumptions should be preferred (specificity), since it is

most informative. It should be noted that an explanation may not fulfill all three

criteria equivalently well. Consequently, to find out the preferred explanation among

many possible explanations, explanations have to be evaluated with respect to all three

criteria and compared with each other. For example, assume that for the observation

‘An alarm sounded’ two possible explanations are given, namely ‘Something must have

happened’ and ‘There must be a fire’. If no information about the type of alarm is

available, we prefer the explanation ‘Something must have happened’ to the more spe-

cific explanation ‘There must be a fire’, because the first explanation hypothesizes less

and thus is simpler. However, if we know that the alarm is a fire alarm, then the latter

explanation is preferred, since it is most-specific and thus more informative.

For abductive inference the authors present a process, which they call an abduction

scheme. The abduction scheme has three major features in order to apply the above-

mentioned criteria: i) Goal expressions are assumable at varying costs. ii) Assumptions

can be made at various levels of specificity. iii) The natural redundancy of texts can

be exploited to obtain simpler explanations.

To interpret the logical form of a sentence, the abduction scheme proceeds as fol-

lows: First, every conjunct in the logical form of a sentence is assigned a cost. Note

that if a conjunct in the logical form cannot be proved or derived in the logical sense

from the axioms in the knowledge base, then it has to be assumed. The cost assigned

to each conjunct is called assumability cost, and represents the relative cost of assum-

ing that conjunct when computing an explanation. For example, compound nominal

relations are given a very high cost value, since assuming them means failing to solve

the interpretation problem.

Second, the assumability cost is passed back to the atoms in the body of Horn rules

by assigning weights to the atoms. For example, in the Horn clause:

Q(x)← Pw1
1 (x) ∧ Pw2

2 (x)

w1 and w2 are weights. According to the abduction scheme, if the cost of assuming

Q is c, then the cost of assuming P1 is w1c, and the cost of assuming P2 is w2c. The

assignment of cost and weight values to atoms enables the calculation of overall costs

for possible explanations, and thus, the preference of one explanation over another.

This is why the authors call their approach ‘weighted abduction’.

Third, factoring is supported. Factoring means that goal expressions may be uni-

fied, in which case the resulting expression is given the smaller of the costs of the input

expressions. For example, given the goal expression:

∃x, y : q(x) ∧ q(y)

where the costs of q(x) and q(y) are $20 and $10, respectively, factoring assumes x and

y to be identical, and generates the following expression:

∃x : q(x)

where q(x) costs $10. Factoring provides for merging of redundancies and thus leads

to minimal explanations. It should also be noted that in the abduction scheme, each

time an assumption is made, it is checked for consistency with respect to the knowledge

base.

Hobbs et al. also present the idea of employing a type hierarchy with disjointness

relations among types as a heuristics to eliminate a large number of assumptions that

are likely to result in an inconsistent explanation. Therefore the implementation of the

approach includes a module which defines the types that various predicate-argument

positions can take on, and the likely disjointness relations among types. Even though

this heuristic leads to a substantial speed-up of the interpretation process, it is also

reported to cause the process to fail for certain rarely occurring sentences [HSAM90].

To recapitulate, in [HSME88] Hobbs et al. present interesting work towards the for-

malization of text interpretation as abduction, and address important natural language

problems. However, empirical investigations of the behavior and performance of the

approach with very large knowledge bases are missing.

Charniak and Goldman: In [CG91], Charniak and Goldman propose the use of

probabilistic abduction for plan recognition. Plan recognition is the problem of con-

structing possible plans to explain a set of observations and then selecting one or more

of the plans as the best explanation. Observations, typically, are actions performed by

an agent. In this view, plan recognition is the problem of inferring an agent’s plans

from observations. The authors consider plan recognition and text understanding as

a particular case of the abduction problem, where the goal is to reason from actions

(effects) to plans (causes).

In [CG91], Charniak and Goldman present a probabilistic framework. The goal of

the framework is to apply plan recognition for text understanding. I.e., understanding

the meanings of stories by understanding the way the actions of characters in the story

serve purposes in their plans. The framework enables the construction of possible plans,

and the selection of the best plan among possible plans. To this end, the framework

exploits Bayesian networks for selecting the plan, which has the highest degree of

support from evidence.

The model of the plan recognition framework contains a knowledge base of facts

about the world, which is expressed in a first-order notation. The language used in

the framework consists of i) Terms denoting actions and physical objects. ii) Terms

denoting sets of actions and objects. iii) Functions from terms to terms to indicate

roles. iv) The predicates ==, inst and isa. For example, bus2 denotes an object,

bus- denotes a set of objects, and agent-of denotes a function. The statement (agent-

of drive3) denotes the agent of the action drive3. The predicate inst denotes set

membership: (inst bus2 bus-). The predicate isa denotes subsumption between two

sets: (isa bus- vehicle-). Finally, the predicate == denotes the so-called better name

relation, and is used for noun-phrase references. For instance, the statement (== it20

jack2) means that jack2 is a better name for it20.

In [CG91], the authors also introduce a software system called Wimp3 that has been

developed to experiment with the probabilistic framework. Wimp3 contains a parser

that reads words from a given text one at a time. The parser deals with linguistic

problems such as reference and ambiguity resolution, and produces statements in a

first-order notation. The statements describe the words in the story, and the syntactic

relations between the words.

The output of the parser is used by the so-called network construction compo-

nent. The network construction component contains a set of rules that are applied

in a forward-chaining way to construct a set of Bayesian networks. In Figure 3.10, a

simplified version of one of the rules used for Bayesian network construction is shown.

(→ (inst ?i ?f) :label ?A

(→ ← (role-inst ?f ?slot ?sfrm)

(Exists (x :name ?sfrm)

(and (inst ?x ?sfrm) :label ?B

(== ’(?slot ?x) ?i) :label ?C)))

:prob ((?B → ?A) ((t t 1))))

Figure 3.10: A rule used by the Wimp3 system for network construction

The rule in Figure 3.10 can be translated into natural language as follows [Gol90]:

If we see a new action (inst ?i ?f), and this object could fill ?slot in a frame

of type ?sfrm [(role-inst ?f ?slot ?sfrm)], then hypothesize that this action

is explained by filling ?slot of an entity of type ?sfrm (this entity is the

?sfrm-explanation of ?i).

Given the simple sentence ‘Jack went to a liquor store.’, Wimp3 constructs the

Bayesian network shown in Figure 3.11. Notice that conditional probability tables are

not shown in Figure 3.11 for the sake of brevity.

!"#$%&'$$()& !"#$%&*+,-)&

!"#$%&.+/)&

!"#$%&'$0)&

!11&!.+2$%3&'$$()&.+/)& !11&!.+2$%3&*+,-)&.+/)&

!11&!$%+*42+5&'$$()&'$0)& !11&!$%+*42+5&*+,-)&'$0)&

!11&!64$%"#7%"+#&.+/)&'$0)&

Figure 3.11: The Bayesian network constructed for plan recognition

The Bayesian network represents two plans (explanations), namely liquor store shop-

ping (lss3) and robbery (rob4), which compete to explain the observation that someone

went (go1) to a liquor store (ls2). Since shopping is a much more common event than

robbery, the prior priority assigned to the shopping node is much higher than the one

assigned to the robbery node. In this example, the evidence (== (destination (go1)

ls2) supports both plans roughly in proportion to their prior properties, because there

is no other evidence. As a result, the liquor store shopping plan has a higher posterior

probability, and is selected as the best plan.

Probabilistic reasoning in Bayesian networks is, in general, an NP-hard problem

[Coo90]. Therefore it is essential to construct a compact Bayesian networks. A Bayesian

network is compact if it is sparse. In a sparse Bayesian network most of the nodes have

only a few parent nodes. However, not all domains have a sparse structure, and even

for domains with a sparse structure constructing a sparse Bayesian network is not a

trivial problem.

In [CG91], the authors also report scalability problems of the probabilistic frame-

work. Tests conducted using Wimp3 are reported to show that the growth in the size of

the knowledge base results in the generation of very large Bayesian networks, what the

authors consider as the main drawback of their approach. In view of the advancements

in computer hardware since then, we think that new empirical investigations of the

approach are required.

Kakas et al.: In [RAKD06], Kakas et al. present an abductive logic programming

approach for assisting clinicians in the selection of drugs for patients infected with the

Human Immunodeficiency Virus (HIV). Since, for the time being, no cure for HIV

exists, the goal of drug treatment is to postpone the collapse of immune function of

the patient known as the Acquired Immune Deficiency Syndrome (AIDS). Even though

potent drugs are available for slowing down the progression of the disease, the treatment

of HIV is complicated by the propensity of the virus to accrue mutations that cause

resistance to known drugs. Clinical trials of patients have been analyzed by experts

and the results, so-called genotypic drug resistance interpretation rules, are maintained

in drug resistance databases such as the Stanford HIVDB [Sha03]. In a nutshell, the

genotypic drug resistance interpretation rules show which mutations cause which drug

resistance regarding HIV treatment.

Different from existing HIV resistance test interpretation algorithms, the approach

presented by Kakas et al. uses these rules not in a forward-chaining way to predict

likely drug resistances implied by observed mutations, but it uses them backwards to

explain the observed drug resistance of a patient in terms of likely mutations. Based on

the information about likely mutations a patient may or may not have, the approach

predicts for which other drugs the patient may be resistant as well. Given this infor-

mation, clinicians can design salvage therapies for patients, whose first- or second-line

treatments are failing, without the use of resistance tests. This is an important advan-

tage of Kakas et al.’s approach compared to the use of existing resistance tests, which

are expensive and require expert interpretation. In addition, existing resistance tests

are ineffective in some cases, e.g. for patients with low level of viruses in their bloods

(≤ 500-900 copies/ml).

The authors consider abduction as a form of reasoning, which, given a goal or

observations G and a logic program T , returns explanations (∆s) that logically entail

the goal with respect to the logic program T . Each explanation is a set of ground atoms

whose predicates are specified as abducible. Informally speaking, the abducibles A are

predicates whose extents are incompletely specified by the program T . The abducibles

may be subject to further integrity constraints IC.

Formally, an ALP theory is a triple (T,A, IC) which consists of a logic program

T , a set of abducibles A, and a set of logical formulas IC which represent integrity

constraints. A goal or observation G is a set of literals. An explanation ∆ of G with

respect to (T,A, IC) is a set of ground atoms with predicates specified in A such that

the following holds:

i) T ∪∆ |=LP G

ii) T ∪∆ |=LP IC

Here |=LP denotes standard entailment relation of logic programming under the stable

model semantics. In this abductive framework, integrity constraints IC have two roles:

i) To augment the basic model in T with any partial information on the abducible

predicates ii) To impose additional requirements on the hypotheses ∆.

In [RAKD06], the authors describe a software system called in-Silico Sequencing

System (iS3) that employs Abductive Logic Programming (ALP) [KD93, KKT98] for

the computation of explanations, and thus for the realization of abduction. The iS3

system is applied in the HIV clinical management context. Given a patient’s treatment

history, iS3 computes first sets of viral mutations the patient may be carrying, and

then the drugs the patient is most likely resistant to. The objective of iS3 is to assist

clinicians in defining a future treatment plan for HIV patients.

In this scenario, the logic program T used by iS3 consists of genotypic drug resis-

tance interpretation rules. These rules, which are extracted from the drug resistance

database maintained by the French AIDS research agency [BVDR+03], have the form:

resistant (P, T,D) ← mutation (P, T,M)

where atoms of the form resistant(P, T,D) denote that patient P is resistant to drug

D at time T , and atoms of the form mutation(P, T,M) denote that patient P carries

mutation M at time T . For example, the rule

resistant (P, T,‘zidovudine’) ← mutation (P, T,‘151M’)

states that the viral mutation ‘151M’ causes resistance to the drug named ‘zidovudine’.

Furthermore, the set of abducibles A contains only a single abducible, namely the

predicate mutation. The set of integrity constraints IC contains a single integrity

constraint to model the fact that if a patient P carries a mutation M at time T1, then

he or she must carry that mutation at all later times T2:

false ← mutation (P, T1,M), T2 ≥ T1, not mutation (P, T2,M)

Given a patient’s clinical history, the system abductively infers the mutations the pa-

tient may be carrying. In a second step, it exploits genotypic drug resistance interpre-

tation rules to deduce for which drugs the patient may be resistant.

A remarkable characteristic of the work presented by Kakas et al. is its assumption

that it is not always possible to select the best explanation among various possible

explanations, since the application domain is intrinsically uncertain, and thus, one

can never be absolutely sure which mutations a patient is carrying. Different from

the approaches of Charniak and Goldman [CG91] and Hobbs et al. [HSME88], where

abduction is applied to infer the best explanation, Kakas et al.́s approach deals with

multiple alternative explanations. In order to predict for which drugs a patient may

be resistant, the iS3 system ranks each mutation according to the number and size

of explanations it appears in, and each drug according to the number of explanations

that imply its resistance. To avoid the explosion of possible explanations for a drug

resistance, iS3 computes solely minimal abductive explanations for abductive inference.

A minimal explanation is an explanation from which no smaller explanations can be

obtained by removing atoms [KKT98].

The work of Kakas et al. shows us that it is not always possible to consider abduction

as inference to the best explanation. In application domains with intrinsic uncertainty,

an abductive framework has to deal with multiple alternative explanations. In that

case, it is essential to apply appropriate criteria for reducing the number of possible

explanations.

Shanahan: Other relevant work on abduction is due to Shanahan [Sha05], who presents

a formal theory of robot perception as a form of abduction. The work extends the ba-

sic abductive framework presented in [Sha96], where robot perception is given a logical

characterization by defining it as an abductive task. For a given stream of low-level

sensor data Γ, the task of abduction is to find one or more explanations (∆s) that are

consistent with the background theory Σ such that the stream of low-level sensor data

Γ logically follows from the union of the background theory Σ and an explanation ∆:

Σ ∪∆ |= Γ

The stream of low-level sensor data Γ consists of a set of observation sentences. The

abductive framework tries to explain sensor data by hypothesizing the existence, loca-

tions, and shapes of objects. Therefore an explanation ∆ contains a consistent logical

description of the locations and shapes of hypothesized objects in the scene (or envi-

ronment). The background theory Σ describes how robot’s interactions with the world

impact on its sensors. Typically there are many ∆s that explain the given sensor data,

thus a preference relation is required to order them.

[Sha05] extends the basic abductive framework presented in [Sha96] in several im-

portant practical aspects of robot perception such as top-down information flow, ac-

tive perception and sensor fusion. The incorporation of top-down information flow is

achieved through the use of expectations. An explanation, together with the background

theory Σ, entails not only the observations in Γ but also a number of other observation

sentences, called expectations, that might not exist in the original sensor data Γ. Each

explanation can be confirmed or revoked by checking whether its expectations are ful-

filled. To this end low-level sensor data can be reanalyzed, e.g. using a different edge

detection algorithm, or additional sensor data can be gathered, probably in a differ-

ent modality. As a result, the flow of high-level information influences low-level image

processing.

Shanahan further extends the basic abductive framework to encompass active per-

ception. Motivated by human perception, which is active (e.g. human look by adjusting

their eyes or turning their heads to an object), active vision and perception have been

studied in computer vision community. In active vision, an observer is considered active

if engaged in activities to control the geometric parameters of some sensory apparatus

[AWB87]. In [Bal91], a camera control system mounted on a movable robotic arm has

been used to study active perception. Shanahan widens the concept of active percep-

tion to include any form of action that leads to the acquisition of new information via

a robot’s sensors. In Shanahan’s view, active perception includes not only low-level ac-

tions such as adjusting the threshold of an edge detection routine or rotating a robot’s

camera, but also high-level actions such as moving a robot to explore its environment.

Another extension of the basic abductive framework aims to address the problem

of sensor data fusion where potentially conflicting data from multiple sources has to

be fused into a single model of some aspect of the world [CY90]. In the robotics

context, the problem of sensor fusion is relevant even for very simple robots with a

single sensor since the same sensor data can be processed using different algorithms or

can be extracted at different times. Therefore, Shanahan argues for a careful design

of the background theory Σ with respect to conflicting data. To this end, Σ should

include noise and/or abnormality conditions in terms of formulas that can explain away

unexpected sensor data as noise and/or dismiss the absence of expected sensor data as

abnormal. The preference relation over ∆s should be defined in such a way that the

explanation with the fewest noise or abnormality terms is preferred.

Shanahan considers the definition of a preference relation over possible explanations

an important measure against the explosion in the number of possible explanations

for observations. In [Sha05], the preference relation is required to respect both the

explanatory value and expectations of an explanation. In a nutshell, the idea is to

prefer explanations that explain more sensor data against competing explanations by

assigning a higher explanatory value to them. In addition, other things being equal,

an explanation with fewer unfulfilled expectations should be preferred.

Assume that the set of all possible explanations ∆1, . . . , ∆n is computed to explain a

stream of sensor data Γ. Under the assumption that the set of explanations is mutually

exclusive, i.e. one and only one of the explanations is true, the explanatory value of

an explanation ∆k is equal to the posterior probability of ∆k. Let R be the set of all

possible explanations apart from ∆k: R = {∆1, . . ., ∆k−1, ∆k+1, . . ., ∆n }. Following

Bayes’ rule, the posterior probability of ∆k is:

P(∆k | ∆k ⊕R) =
P(∆k ⊕R | ∆k) P(∆k)

P(∆k ⊕R)

In this equation P(∆k) stands for the prior probability of ∆k. The ⊕ (exclusive or)

operator represents the assumption that one and only one of the terms on the right-

hand side of the | sign is true. Notice that P(∆k ⊕ R | ∆k) can be removed from

the equation, because P(∆k ⊕ R | ∆k) = 1, i.e. P(∆k ⊕ R) is always true if P(∆k) is

true. Furthermore, P(∆k ⊕R) can be replaced with P(∆k) + P(R), since according to

the probability law P(∆k ∨ R) = P(∆k) + P(R) - P(∆k ∧ R), and P(∆k ∧ R) = {}.
Consequently, the equation simplifies to:

P(∆k | ∆k ⊕R) =
P(∆k)

P(∆k) + P(R)
(3.2)

Equation 3.2 defines the probability of P(∆k) to be true, given that either ∆k or R is

true. The prior probability of R can be calculated as follows (see the definition of R

above):

P(R) =

[
n∑

i=1

P(∆i)

]
−P(∆k) (3.3)

Notice that R is the set of all possible explanations apart from ∆k, so we need to

subtract P(∆k) from the sum of the probabilities of all explanations.

The prior probability of each hypothesis (aka explanation) ∆i consisting of the

atoms Ψ1, . . .Ψm is calculated using the following equation:

P(∆i) =
m∏
j=1

P(Ψj) (3.4)

Equation 3.4 is defined under the very strict assumption that the probabilities of each

atom Ψj constituting an explanation ∆i are independent from each other.

Using Equations 3.2, 3.3 and 3.4 the posterior probability of each explanation,

and thus the explanatory value of each explanation can be calculated. Furthermore,

Equation 3.4 also enables the incorporation of expectations in the calculation of the

explanatory value. To this end, noise terms can be assigned with low probabilities and

then, according to Equation 3.4, an explanation including a term with a low probability

gets a lower explanatory value. Therefore, Equation 3.4 enables the realization of the

idea to punish explanations that explain away some sensor data as noise or have unful-

filled expectations. Note that there may be situations such as the malfunctioning of a

sensor where the data delivered by that sensor is erroneous, and thus explanations that

explain away the erroneous sensor data as noise should not be punished but rewarded.

In Shanahan’s framework this can be achieved by assigning high probability values to

noise terms, since we expect the observations made by the malfunctioning sensor to be

wrong.

In [Sha05], Shanahan presents not only a formal theory of robot perception as

abduction but also discusses the application of the theoretical framework in various

robotics contexts. To this end, he describes a number of experiments that took place

in various environments. He evaluates the abductive account of perception using real

robots that have different capabilities with respect to movement and the number of

sensors [Sha00]. To realize his abductive framework in practice, e.g. in the experiments

reported in [Sha00] and [Sha05], Shanahan exploits the event calculus. The event cal-

culus was introduced initially by Kowalski and Sergot [KS86] as a logic programming

formalism for representing events and their effects. Shanahan uses a dialect of the event

calculus introduced by Kowalski and Sergot as the formalism for representing and rea-

soning about robot actions and their effects [Sha99]. The ontology of the event calculus

in [Sha05] contains events (or actions), time points and so-called fluents. Fluents are

any kind of parameters, e.g. the location of a robot, whose values change over time.

To sum up, Shanahan considers robot perception as an abductive process for pro-

cessing a set of low-level sensor data. He presents an abductive framework that imple-

ments the abductive process which consists of four steps: i) Establish a set of hypothe-

ses, i.e. compute a set of explanations using abduction. ii) Compute the explanatory

value of each hypothesis, and select the best hypothesis with respect to the explana-

tory values. iii) Determine the expectations of each hypothesis selected in step ii, and

reanalyze the sensor data to confirm or deny these expectations. iv) Recompute the

explanatory value of the selected hypothesis with respect to the reanalysis done in step

iii, and reorder the hypotheses.

It should be emphasized here that in Shanahan’s approach the computation of the

explanatory value of an explanation is based on the assumption that the probabili-

ties of atoms Ψj constituting an explanation ∆i are independent from each other (see

Equation 3.4). Even though Shanahan reports his approach to deliver satisfactory ex-

perimental results in the robotics context, this is a very strong simplification, that, in

general, cannot hold in other contexts.

Elsenbroich et al.: The work by Elsenbroich et al. [EKS06] presents an interesting

investigation of various forms of abductive inference tasks in expressive DLs. Among

others, they identify TBox and ABox abduction as important abductive reasoning tasks

in DLs. They consider TBox abduction as an abductive reasoning task that can be used

to repair unwanted non-subsumptions. I.e. in cases where an ontology engineer wants

to have a subsumption such as C v D, which does not follow from the TBox T , TBox

abduction provides a finite set of TBox assertions S as a solution such that:

T ∪ S |= C v D

In [EKS06], the authors also consider ABox abduction in DLs as a new query an-

swering service, that allows for abductive retrieval of instances of concepts or roles that

would entail a desired ABox assertion. Given the TBox T and an ABox assertion γ

that is desired to be entailed, a solution to the ABox abduction problem is any finite

set of ABox assertions S such that

T ∪ S |= γ

In addition to the formalization of abductive reasoning tasks in DLs, Elsenbroich

et al. also address the problem of selecting ‘good’ solutions. Abductive problems, in

general, can have infinitely many solutions and therefore it is important to identify

criteria for preferring one solution over another. Therefore, the authors discuss differ-

ent preference criteria such as syntactic notions to prefer solutions of a specific form of

minimal length or semantic notions such as maximality w.r.t. subsumption. Finally, the

authors address the problem of finding solutions by citing relevant work from literature.

They classify these works into three groups according to the technique used for finding

solutions: Those exploiting abductive logic programming [KD93], those using resolu-

tion for finding abductive explanations [Pau93], and those aiming to develop tableaux

calculi for realizing abductive inference in propositional logic [AL97] or first-order logic

[MP93]. Elsenbroich et al. favor the integration of abductive reasoning techniques into

existing tableau algorithms for DLs but they do not provide for a concrete solution in

[EKS06].

Putting it together, abduction is the form of reasoning from observations to ex-

planations (or hypothesis) and has been widely used to formalize the computation of

explanations. Besides theoretical studies there exists also several practical works in

the literature, which have implemented abductive frameworks for solving real-world

problems using different formalisms such as first-order logic or Horn-clause logic. The

majority of these works share the view that in many application domains it is not al-

ways possible to compute a single explanation as the best explanation among multiple

alternative explanations. In many cases abduction has to compute several possible

explanations, and a measure to rank these explanations is necessary. Given such a

measure, a preference relation over possible explanations can be defined. This enables

abductive frameworks to cope with the possible explosion in the number of explanations

by focusing on more likely explanations.

Except Elsenbroich et al.́s work, which is an investigation of abduction in DLs, all

other works presented in this section not only discuss an abductive framework that

exploits a formal language, but also present a software system. These software systems

can be considered as proof of concept, i.e. as prototypes used to demonstrate that the

ideas are workable, and can be realized as software systems. Therefore, in our view, the

next research challenge is the development of a generic abduction framework, which

can be applied to various application domains, and its implementation as a stable

software system. To this end, we believe that existing DL reasoners which already

demonstrated some scalability and stability should be reused, and enhanced if necessary.

The proposal by Elsenbroich et al. to consider ABox abduction as an extended query

answering service is a promising idea, since abduction can be performed in a more goal

directed way, i.e. only the abducibles required to answer a certain query have to be

hypothesized. Furthermore, existing DL reasoners incorporate powerful query engines,

which offer at least so-called grounded conjunctive queries, that can be exploited. It

is obvious that the idea proposed by Elsenbroich et al. can be extended to the case of

conjunctive queries, but it is not clear yet how the more general rule-based abduction

can be realized within the existing DL reasoners. These research issues are addressed

in the next sections of this thesis.

Considering all these facts, we think that the incorporation of existing DL reasoners,

and the enhancement of their capabilities is a promising way to build a stable software

system for multimedia interpretation. Finally, evaluation strategies are required to

rigorously explore the performance and scalability of the software system.

3.3.2 The ABox Abduction Algorithm

As the discussion of relevant work has shown, abductive reasoning is the appropriate

form of reasoning for interpretation. In our multimedia interpretation approach, ex-

isting DL reasoning mechanisms and rules are combined in a coherent framework. In

this framework, abduction constitutes the basis for the interpretation process that aims

to compute deep-level annotations for a multimedia document. As mentioned before,

the generation of explanations as part of a multimedia interpretation process requires

hypothesization. To this end, rules are used to define the space of abducibles.

Notice that as discussed in Section 3.2, the multimedia interpretation process should

not stop after explaining the surface-level objects and their relations. In fact, the com-

putation of explanations for surface-level objects and their relations is only the first

step of an iterative multimedia interpretation process. In subsequent iterations the

explanations computed by the previous iteration should be explained as well. This is

plausible since requiring explanations for explanations forces the multimedia interpre-

tation process to compute rich relational structures, and thus deep-level annotations

are obtained.

Before the presentation of the interpretation process, we proceed with the ABox

abduction algorithm which is used by the interpretation process. As discussed in Sec-

tion 3.3, abduction is formalized as

Σ ∪∆ |= γ

where the background knowledge Σ, and an observation γ are given, and explanations

(∆s) are to be computed. If DLs are used as the underlying formalism, Σ is a knowledge

base that consists of a TBox T and an ABox A, γ is an ABox assertion, and ∆ is an

ABox. In our approach, we extend the background knowledge Σ to contain also a

non-recursive rule set R: Σ = (T,A,R). As discussed in Section 3.1.2, all atoms that

appear in rules from R are required to be DL atoms. In other words, every atom in

rules from R is either a concept or a role name in T.

More precisely, γ is an ABox assertion of the form P (I), where P is a concept or role

name from T, and I is a sequence of individuals from A. Consequently, the abduction

formula becomes

Σ ∪∆ |=R P (I)

In our framework, abduction is implemented as a retrieval inference service in DLs,

and thus requires a Boolean query as input. Therefore, we introduce the function

transform, which given an ABox assertion P (I) returns a Boolean query {() | P (I)}.

Unfortunately existing DL reasoners do not support Boolean query answering w.r.t.

a set of rules in Σ, i.e. only T ∪ A is considered. However, given that the rules are

non-recursive, it is possible to expand the Boolean query {() | P (I)} w.r.t. the rules in

R, and thus effectively eliminate the rules from Σ. The result of applying the function

expand, which will be presented in more detail later, to a Boolean query is, in general,

a set of Boolean conjunctive queries. Given a Boolean query, the goal of the abductive

retrieval service is to acquire (or hypothesize) what has to be added to the ABox, i.e.

explanations, in order to answer the query positively.

To give a rough overview, the ABox abduction algorithm performs three major

subtasks in the following order:

1. Expand the Boolean query w.r.t. a set of rules to obtain a set of Boolean con-

junctive queries.

2. Instantiate query variables to generate explanations.

3. Filter out explanations that are not preferred.

In the remainder of this section, we present the first two subtasks of the ABox abduc-

tion algorithm, and then the complete ABox abduction algorithm. The third subtask

will be discussed in the next section together with an overview of existing literature on

selecting preferred explanations.

Query Expansion: The goal of the query expansion task is the semantics-preserving

transformation of a Boolean query into a set of Boolean conjunctive queries w.r.t. a set

of rules R such that the rules are eliminated from the background knowledge Σ. For

query expansion we define the function expand as follows:

Algorithm expand({() | P (I)},R)

Output: a set of Boolean conjunctive queries

S0 := {}
S1 := {{P (I)}}
i := 1

while Si 6= Si−1 do
if there exists Aj ∈ Si such that expand′(Aj ,R) 6= {} then

Si+1 := (Si \Aj) ∪ expand′(Aj ,R)
else

Si+1 := Si
end
i := i+ 1

end

return { {() | β1, . . . , βn} | {β1, . . . , βn} ∈ Si}

Algorithm 3: The query expansion algorithm expand

where Si denotes a set of sets of query atoms, Aj denotes a set of query atoms and βi

denotes a query atom. Algorithm 4 depicts the auxiliary function expand′:

Algorithm expand′({α1, . . . , αn},R)

Output: a set of sets of query atoms

if there exists αi and (α′i ← β′1, . . . , β
′
n) ∈ R such that αi = P (V) and

α′i = P (W) of same arity then
return {A′ | A′′ ∈ expand′′(αi,R), A′ = (A \ αi) ∪A′′}

else
return {}

end

Algorithm 4: The algorithm for the auxiliary function expand′

αi is a query atom of the form αi = P (V) where P is a concept or role name, and

hence V is a sequence of length one or two, respectively. The sequence V may contain

individuals and variables as elements. The sequence W contains variables as elements,

and has the same length as V . Algorithm 5 shows the auxiliary function expand′′:

Algorithm expand′′(α,R)

Output: a set of sets of query atoms

B := { {β1, . . . , βn} | (α′ ← β′1, . . . , β
′
n) ∈ R,

Θ1(α, α
′, β′1) = β1,

...
Θn(α, α′, β′n) = βn}

return B

Algorithm 5: The algorithm for the auxiliary function expand′′

Finally, we define the function Θ that rewrites atoms by renaming variables based on

the atoms α = P (x1, . . . , xn) and α′ = P (y1, . . . , yn). Note that yi is a variable, and xi

is a variable or an individual. Based on α and α′, an arbitrary variable z is renamed

as follows:

Θi(P (x1, . . . , xn), P (y1, . . . , yn), z) :=

{
xi if z = yi

z otherwise

The function Θ is extended inductively for atoms as follows:

Θi(α, α
′, P (z1, . . . , zn)) := P (Θi(α, α

′, z1), . . . ,Θi(α, α
′, zn))

Variable Instantiation: Recall from Section 3.1.1 that answering a grounded con-

junctive query w.r.t. a DL knowledge base O means finding admissible variable sub-

stitutions such that O |= {Q1(σ(V1)), . . . , Qn(σ(Vn))} holds. To this end, the variable

substitution function σ is applied to map variables from the query to individuals from

an ABox A.

In the context of abduction, to generate an explanation from a Boolean conjunctive

query, the variables from the query have to be substituted with individuals as well.

However, different from standard conjunctive query answering, abduction requires hy-

pothesization, and hence query variables should be instantiated either with individuals

from the ABox A, or with individuals that do not exist in A. To distinguish between

existing and hypothesized individuals, we introduce the non-empty set ExtIndsA which

contains all individuals from A, and the set NewInds which contains a set of hypothe-

sized individuals, also known as new individuals. The set V arsBQ contains all variables

from a Boolean conjunctive query BQ. The sets NewInds and V arsBQ have the same

cardinality. Therefore we denote NewInds as NewIndsBQ.

We define the variable instantiation function ΦBQ,A in a nondeterministic way as

follows:

ΦBQ,A(X,Ω) :=


i ∈ NewIndsBQ if X ∈ V arsBQ,Ω = use new individuals

i ∈ NewIndsBQ ∪ ExtIndsA if X ∈ V arsBQ,Ω = reuse existing individuals

X if X ∈ ExtIndsA

where X is either an individual from the set ExtIndsA or a variable. If X is an indi-

vidual, then applying ΦBQ,A results in X. If X is variable, the value of the parameter

Ω defines the strategy in instantiating X. Depending on the value of the strategy

parameter Ω, ΦBQ,A instantiates a variable with a new or an existing individual.

The variable substitution function ΦBQ,A is extended to sequences of variables and

individuals in the obvious way, i.e. by element-wise application: If V1 = 〈X〉 then

ΦBQ,A(V1,Ω) is defined as 〈ΦBQ,A(X,Ω)〉, and if V2 = 〈X,Y 〉 then ΦBQ,A(V2,Ω) is

defined as 〈ΦBQ,A(X,Ω),ΦBQ,A(Y,Ω)〉.

The complete ABox abduction algorithm: Having discussed the subtask expand

for eliminating the rules in the abduction formula by expanding a Boolean query into a

set of Boolean conjunctive queries, and the subtask variable instantiation for generating

explanations based on the set of Boolean conjunctive queries, we proceed with the

presentation of the complete ABox abduction algorithm.

Algorithm abduce(T,A,R, {() | P (I)}, Ω)

Output: a set of explanations: ∆s = {∆1, ...,∆n}
BQs := expand({() | P (I)}, R)
Γs := {}
for each BQ ∈ BQs where BQ = {() | Q1(V1), . . . , Qn(Vn)} do

for each ΦBQ,A do
Γ = {Q1(ΦBQ,A(V1,Ω)), . . . , Qn(ΦBQ,A(Vn,Ω))}
if T ∪A ∪ Γ 6|= ⊥ then

Γs := Γs ∪ {Γ}
end

end

end
∆s := select-preferred-explanations(Γs, T, A)
return ∆s

Algorithm 6: The ABox abduction algorithm abduce

Informally speaking, the ABox abduction algorithm proceeds as follows:

1. Expand the query {() | P (I}} w.r.t. R to obtain the set of Boolean conjunctive

queries BQs (query expansion subtask).

2. Iterate as BQ over the Boolean conjunctive queries.

3. Iterate as ΦBQ,A over the set of possible variable instantiation functions w.r.t.

BQ and A. Note that this set if finite, and hence the termination of the loop is

guaranteed.

4. Apply the current ΦBQ,A to BQ to instantiate its variables, yielding an ABox

Γ whose non-entailed assertions constitute ∆i. I.e., the explanation ∆i contains

only hypothesized assertions, whereas Γ may contain entailed assertions as well.

5. Check for each explanation Γ whether A ∪ Γ is consistent with respect to T. If

Γ is consistent, then add it to the set of explanations Γs.

6. Remove non-preferred Γ’s from Γs with respect to some criteria, determine their

hypothesized assertions, and assign them to ∆s.

7. Return the set of preferred explanations (∆s) for the Boolean query {() | P (I)}.

It should be noted here that Algorithm 6 provides for a specification of the abductive

retrieval service. In a practical implementation, the algorithm can be optimized in

various ways. For example, instead of selecting the preferred explanations from all

explanations at the end of the algorithm, one can think of an incremental algorithm

scoring and maintaining a best so far explanation and using it as a criterion for filtering

out other explanations already at runtime.

Another possible optimization is to check for the consistency of an explanation

before all variables of the corresponding Boolean conjunctive query are instantiated.

In fact, partial explanations can be checked for consistency in order to detect and

discard inconsistent explanations earlier, and thus, improve the performance of the

abductive retrieval service.

3.3.3 Selecting Preferred Explanations

As discussed earlier, the general abduction formula in Equation 3.1 allows for an infi-

nite number of explanations for any observation, if no further constraints are applied

on explanations. Even though our abduction algorithm (shown in Algorithm 6) is guar-

anteed to deliver a finite number of explanations (Γs), it may still deliver too many

explanations for a practical multimedia interpretation scenario. Therefore abductive

reasoning is required to deliver ‘preferred’ explanations only (∆s).1 In addition to

the constraints on explanations already discussed in Section 3.3, namely consistency,

minimality, relevance and explanatoriness, further criteria have been proposed in the

literature.

In [Tha78], the cognitive psychologist Thagard investigates appropriate criteria for

selecting a scientific theory as the best explanation for a phenomenon. He focuses on

explanatory scientific theories such as Darwin’s theory of the evolution of species by

natural selection or Huygens’ wave theory of light. According to Thagard, a scientific

theory that best satisfies the criteria consilience, simplicity and analogy , is the best

explanation. In a nutshell, a theory T1 is more consilient than a theory T2, if T1

explains more classes of facts than T2. In the scientific theories context, the notion of

a class of facts has been used to organize facts for which competing scientific theories

provide explanations. For example, phenomena such as reflection and polarization are

two classes of facts that can be explained by the wave theory of light. A theory T1 is

simpler than a theory T2, if T2 assumes the existence of entities, also known as auxiliary

assumptions, that T1 does not. A theory T1 has more explanatory value if there exists

an analogy between T1 and an established theory. For example, Darwin uses an analogy

between his theory of the evolution of species by natural selection and the established

theory of artificial selection to argue for the explanatory value of his theory. In artificial

selection, also known as selective breeding, human preferences have a significant effect

on the evolution of a particular species. Since natural selection is similar to artificial

selection in a number of respects, Darwin concludes that natural selection also leads to

the development of species.

Mayer and Pirri [MP96] discuss the logical nature of abduction and emphasize

the preference of hypotheses as the key problem of abduction. They point out the

inappropriateness of Thagard’s consilience criteria for a logic-based approach, since

an inconsistent theory can explain anything, and hence is maximally consilient. The

authors consider preference not only as a logical issue that is context-independent

1Although Γ and ∆ are both called explanations, a ∆ is a ‘preferred’ explanation, and for conve-

nience reasons ∆ does not contain entailed assertions.

[MP96] and hence identify two main categories of criteria: context-independent and

context-dependent criteria. In addition to context-independent criteria, the authors

advocate the use of context-dependent criteria, since each domain has its own laws of

preference.

Regarding context-independent criteria, consistency and minimality are the most-

commonly used criteria on explanations in the literature, as discussed earlier in this

section. Our ABox abduction algorithm delivers only consistent explanations, since it

discards inconsistent explanations (see Algorithm 6). As discussed earlier, the minimal-

ity restriction is often used to reduce the number of explanations. An infinite number

of (more-specific) explanations exists otherwise. Since the presented ABox abduction

algorithm always computes a finite number of explanations, the minimality restriction

is not required to reduce the number of explanations. In our approach, explanations

are constructed with respect to the finite space of abducibles, which is defined explicitly

in the form of a non-recursive rule set. It is thus guaranteed that the number of expla-

nations is finite, and the ABox abduction algorithm computes all possible explanations

with respect to the space of abducibles.

Regarding context-dependent criteria, we define a preference relation for multimedia

interpretation inspired by the works of Thagard, Mayer and Pirri, and Hobbs et al.

as follows. Assume that an ABox A with the results of the analysis process for a

multimedia document is given. Furthermore, assume that for an assertion from A the

set of explanations Γs has been computed according to Algorithm 6. This means that

we have a set of consistent explanations Γs and would like to acquire the set of preferred

explanations ∆s.

We prefer explanations that involve as many ground assertions from the analysis

ABox A (consilience) as possible, and at the same time hypothesize as few assertions

as possible (simplicity). More precisely, we define the consilience value Sc and the

simplicity value Sh as follows:

Sc(T,A,Γ) :=]{α ∈ A | T ∪ Γ |= α}

Sh(T,A,Γ) :=]{γ ∈ Γ | T ∪A 6|= γ}

where T is a TBox and Γ an explanation. In order to have a measure of preference for

explanations we define the preference score S as follows:

S(T,A,Γ) = Sc(T,A,Γ)− Sh(T,A,Γ) (3.5)

The preference score reflects the assumption that, in the context of multimedia inter-

pretation, an explanation is preferable over others if it is more consilient and simpler.

Therefore, an explanation with the highest preference score S is preferred over other

explanations.

According to Equation 3.5, an explanation with high consilience value is allowed

to hypothesize more assertions than explanations with lower consilience values. For

example, assume that two explanations, Γ1 and Γ2, with the following consilience and

simplicity values are given: Sc,1=4, Sh,1=2 and Sc,2=2, Sh,2=1. Even though Γ1 hy-

pothesizes more assertions than Γ2, Γ1 is the preferred explanation, because according

to Equation 3.5, the preference score of Γ1 is higher than the preference score of Γ2.

In DLs, checking an ABox assertion for entailment is a computationally expensive

task. In multimedia interpretation, analysis ABoxes often contain a large number of

assertions, and thus, the computation of the preference score according to Equation 3.5

requires many invocations of the entailment inference service. To overcome this prob-

lem, the consilience value Sc can be approximated such that fewer entailments checks

are required. Since all entailed assertions in Γ contribute to the consilience of Γ, we

define the approximated consilience value Sa as follows:

Sa(T,A,Γ) :=]{γ ∈ Γ | T ∪A |= γ}

The approximated consilience value Sa can be computed much more efficiently than

the initial consilience value Sc, since only the assertions in Γ have to be checked for

entailment. We slightly modify the definition of the preference score S to incorporate

Sa instead of Sc:

S(T,A,Γ) = Sa(T,A,Γ)− Sh(T,A,Γ) (3.6)

The use of the approximated consilience Sa in the preference score S ensures on the

one hand efficient computability, and on the other hand reflects (at least partially) the

original consilience value Sc. With respect to performance considerations, we decided

to use the preference score S defined in Equation 3.6, and obtained very satisfactory

experimental results in terms of quality and runtime performance. In Chapter 5, we

present these results in detail and evaluate them.

In addition to the preference score S defined in Equation 3.6, we apply a further

context-dependent criterion. In accordance with Hobbs et al. [HSAM90], among two

explanations with the same preference score, we prefer the explanation with the most-

specific assumptions, since it is most informative in the context of multimedia inter-

pretation. For example, the image of an athlete vaulting with a pole can be explained

as showing a sports trial or a pole vault trial, where we prefer the latter one. Notice

that the preference of more specific explanations is in accordance with the consilience

criteria, because more specific explanations potentially entail more assertions from A,

and thus have higher consilience values.

As a result of the variable substitution function Θ used in Algorithm 5, the algo-

rithm may deliver explanations which are logically equivalent modulo renaming of new

individuals. Consequently, the standard ABox entailment inference service is not suffi-

cient to compare explanations for specificity. Therefore, we define the so-called relaxed

ABox entailment relation, denoted by the symbol, in order to compare two expla-

nations (or ABoxes in general) for specificity. Informally speaking, the new individuals

in the ABox to be checked for entailment, i.e. the new individuals on the right hand

side of the of the entailment sign, have to be considered as variables and not as ABox

individuals, whereas the new individuals on the left hand side of the entailment sign

are considered as ABox individuals.

Let us assume that the explanations Γ1 and Γ2 (w.r.t. the TBox T) are to be

compared under the UNA. The relationship Γ1 Γ2 holds if there exists a total and

injective mapping ψ: new-inds-from(Γ2) → inds-from(Γ1) such that Γ1 |= ψ(Γ2) w.r.t.

T. Note that this definition is only reasonable if the UNA holds for both explanations.

Given an ABox the function new-inds-from returns all new individuals from the ABox,

where as the function inds-from returns all individuals (including new individuals).

The entailment problem Γ1 |= ψ(Γ2) w.r.t. T can be reduced to Boolean conjunctive

query answering as follows: Assume that a knowledge base consisting of T and Γ1 is

given: O = (T,Γ1). First, each new individual i ∈ new-inds-from(Γ2) is replaced with

a distinct query variable. Subsequently, the function transform is applied to obtain a

Boolean conjunctive query, which is then answered with respect to the knowledge base

O. If the Boolean conjunctive query is answered with true, then Γ1 |= ψ(Γ2) w.r.t. T

holds. Consequently, the relationship Γ1 Γ2 holds. In this case, we say that Γ1 is

more specific than Γ2, and prefer Γ1 over Γ2.

To recapitulate, it is not sufficient to obtain a finite set of explanations of an obser-

vation for practical applications such as multimedia interpretation. We have to further

reduce the number of explanations by selecting the preferred explanations among all

possible explanations. The ABox abduction algorithm in Algorithm 6 incorporates the

select-preferred-explanations function in order to deliver only such explanations that

are preferred with respect to the two context-dependent criteria presented in this sec-

tion. We define the function for selecting preferred explanations as follows:

Algorithm select-preferred-explanations(Γs, T,A)

Output: a set of preferred explanations: ∆s = {∆1, ...,∆n}
Γmax := {Γ | Γ ∈ Γs , 6 ∃ Γ′ ∈ Γs: S(T,A,Γ′) > S(T,A,Γ)}
Γmost−spec := {Γ | Γ ∈ Γmax, 6 ∃ Γ′ ∈ Γmax : Γ′ Γ}
∆s := {∆ | Γ ∈ Γmost−spec,∆ = {γ ∈ Γ | T ∪A 6|= γ}}
return ∆s

Algorithm 7: The algorithm for selecting preferred explanations

Given the set of all possible explanations Γs, the select-preferred-explanations func-

tion filters out non-preferred explanations as follows: First, the preference score of

each explanation in Γs is computed according to the formula in Equation 3.6, and the

explanations with the highest preference score constitute the set Γmax. Second, the

most-specific explanations from Γmax are determined using the relaxed ABox entail-

ment inference service to obtain the set Γmost−spec. Finally, all non-entailed assertions

from Γmost−spec are used to constitute the set ∆s, which is then returned as the result

of the select-preferred-explanations function call.

Notice that it is not always possible to determine the more specific explanation

between two explanations. Therefore, the result of the select-preferred-explanations

function call may contain multiple explanations, and hence the abductive retrieval

service may deliver more than one explanation for an observation. Our framework is

designed to deal with multiple alternative explanations when computing interpretations

of a multimedia document.

3.4 Abduction-Based Interpretation

After the discussion of ABox abduction as a non-standard DL retrieval inference service

and the presentation of an algorithm for its implementation, we proceed with the

presentation of an algorithm for multimedia interpretation, in which abduction plays a

key role.

Let us assume that background knowledge about the application domain is avail-

able in the form of a TBox and a non-recursive rule set. In a nutshell, given the

background knowledge and an analysis ABox representing the analysis results of a

multimedia document, the goal of the interpretation process is to compute interpreta-

tions of the document, and to deliver interpretation ABoxes as result. To this end, the

interpretation algorithm exploits abduction to compute explanations for assertions.

Depending on the application context, it is not always required to compute expla-

nations for every assertion of an analysis ABox. For example, some assertions may

represent analysis results that are considered as correct by default. We call such as-

sertions bona-fide assertions. Other assertions of the analysis ABox require fiats, i.e.

their correctness is questioned by the agent and should be explained. We call these

assertions fiat assertions.

As discussed earlier in this chapter, it is not sufficient to only explain fiat assertions

from the analysis ABox, i.e. surface-level objects and their relations, to compute an

interpretation of a document. Since interpretations are required to consist of rich rela-

tional structures including abstract aggregates, after the computation of explanations

for a fiat assertion, the interpretation process should identify new fiat assertions, for

which explanations should be computed as well.

At first sight, it seems to be a reasonable idea to use all assertions returned by the

abduce function as fiats for the next level. However, the rules used in this framework

have some limitations (e.g. the head of each rule cannot contain more than one DL

atom) and hence are not specific but rather general. Since it is not possible to define

very context-specific rules, a large number of rules has to be defined, and the space

of abducibles is, in general, very large. Consequently, using all assertions returned

by the abduce function as fiats for the next level requires a lot of computation and

reduces the performance of the interpretation process. This problem can be solved by

better controlling the interpretation process and identifying the fiats for the next level

of the process. To this end, we introduce forward-chaining rules as a mechanism for the

definition of context-specific rules, and the context-specific identification of fiats for the

next level. Unlike the rules used for abduction which are applied with respect to the

single atom in the rule head, forward-chaining rules require a conjunction of atoms to

be true in order to be applied. Therefore forward-chaining rules enable the definition of

more context-specific interpretation means, and at the same time enable better control

of the interpretation process through context-specific identification of fiats. As we will

see later, the interpretation algorithm exploits the apply-rules function (introduced in

Section 3.1.2) to infer context-specific information and to identify fiat assertions for the

next level of the interpretation process.

Our practical experiments have shown that context-specific identification of the

fiat assertions for the next level of the interpretation process is crucial for the run-

time performance of a multimedia interpretation engine. In addition, the quality of

the interpretation results depend on the order in which fiat assertions are explained,

since the order, in general, effects the interpretations of a multimedia document and

most application scenarios require the computation of certain preferred interpretations.

Therefore application-specific strategies are required for selecting the next fiat assertion

from a set of fiat assertions. Since the order in which fiat assertions are explained is

important, a simple set of fiat assertions is not sufficient. To represent the order of

the fiats, we define the set of fiat assertions Fiats that consists of pairs of the form (γ,

level), where γ is a fiat assertion and level is a natural number. Informally speaking, a

level i means that the assertion was introduced in the i-th recursive call of the interpre-

tation algorithm. Since in the beginning of the interpretation process Fiats contains

fiat assertions from the analysis ABox, these assertions have the level zero.

The generic interpretation algorithm interpret relies on the function select-fiat,

which implements the interpretation strategy. The function select-fiat selects the next

fiat from the set Fiats (as specified above) according to some strategy (e.g. depth-first

or breadth-first) w.r.t. the level of the assertions. Depending on the requirements of an

application context, an appropriate select-fiat function has to be defined.

Having investigated a large repository with multimedia documents from the athlet-

ics domain, our experiments have shown that the following select-fiat function is the

most appropriate one in this domain, and ensures that the interpretations computed

by the interpretation algorithm correspond to the interpretations preferred by humans:

Algorithm select-fiat(Fiats)

Output: a triple: (γ, level, Ω)

min-level := min ({ level | (γ, level) ∈ Fiats})
C := { γ | (γ, min-level) ∈ Fiats, γ is a concept assertion }
R := { γ | (γ, min-level) ∈ Fiats, γ is a role assertion }
if C 6= {} then

Let γ ∈ C

return (γ, min-level, use new individuals)
else

Let γ ∈ R

return (γ, min-level, reuse existing individuals)
end

Algorithm 8: The algorithm for selecting the next fiat assertion, its level and the

appropriate abduction strategy

It should be noted that the select-fiat function is only called with a non-empty set

Fiats. Besides a fiat assertion γ and the level, the triple returned by the select-fiat

function contains also Ω, the strategy parameter value to control the abduce function

(see Algorithm 6).

Informally speaking, the select-fiat function proceeds as follows: After the determi-

nation of the lowest level of fiat assertions, it returns a fiat concept assertion if there is

any, and a fiat role assertion otherwise. For fiat concept assertions the abduction strat-

egy parameter gets the value use new individuals and for fiat role assertions the value

reuse existing individuals. Additional motivation for the selection of the appropriate

abduction strategy parameter will be given in Section 4.3.2 using practical examples

from the athletics domain.

Algorithm 9 shows the multimedia interpretation algorithm interpret, which is the

centerpiece of our multimedia interpretation approach. In order to get interpretations

for a multimedia document, the recursive interpret algorithm is initially called with a

TBox T, a non-recursive rule set R, an analysis ABox A, and the set Fiats as input.

The set Fiats contains initially all fiat assertions from the analysis ABox A. We

assume that the set of fiat assertions is determined before the invocation of interpret.

In a practical application, any assertion from an analysis ABox can be considered as a

fiat assertion, if there exists a rule ri ∈ R where the predicate of the rule atom in the

head of ri is the same as the concept or role name of the assertion.

Algorithm interpret(T,R,A, F iats)

Output: a set of interpretation ABoxes: I = {A1, ...,An}

if Fiats = {} then
return {A}

else
(γ, level,Ω) := select-fiat(Fiats)

Fiats′ := Fiats \ {(γ, level)}
∆s := abduce(T,A \ γ,R, {() | γ},Ω)

if ∆s = {} then
return interpret(T,R,A,Fiats ′)

else
I := {}
for each ∆ ∈ ∆s do

A′ := A ∪∆

C :=apply-rules(T,A′,R)

if T ∪A′ ∪ C 6|= ⊥ then
I := I ∪ interpret(T,R,A′ ∪ C,Fiats ′ ∪ {(c, level + 1) | c ∈ C})

end

end

return I
end

end
Algorithm 9: The interpretation algorithm interpret

Informally speaking, the multimedia interpretation algorithm proceeds as follows:

1. If the set Fiats is empty, return a (singleton) set containing the ABox A.

2. Otherwise determine the next fiat assertion γ, its level and the appropriate ab-

duction strategy Ω using the select-fiat function, and remove the pair (γ, level)

from Fiats.

3. For γ compute explanations (∆s) using the abduce function.

4. If no explanations could be computed, then return the result of the recursive

interpret function call for the remaining set of fiat assertions.

5. Otherwise for each explanation ∆, add ∆ to the ABox and apply the rules R in

a forward-chaining way to obtain the set of consequences C.

6. If the ABox augmented with the consequences C is consistent w.r.t. T, then add

each assertion from C as a fiat of level level+1 (where level is the level of γ) to

the set of fiat assertions, and continue the interpretation with this augmented set

of fiats. Note that for the recursive interpret function call the ABox augmented

with the consequences C is used. Furthermore, the results of the recursive calls

for each ∆ are accumulated into the set I, in which all interpretation ABoxes are

collected.

7. After the accumulation of interpretations for all ∆, I is returned as result.

It should be noted here that the result of the interpret algorithm always contains

at least one interpretation ABox. Let us assume the worst case in which for none of

the fiat assertions in Fiats an explanation could be computed. Since the algorithm

removes the fiat assertions successively, the set Fiats eventually becomes empty, and

hence the algorithm terminates returning a singleton set containing the analysis ABox

as the interpretation result.

3.5 Fusion of Modality-Specific Interpretations

The multimedia interpretation algorithm presented in the previous section facilitates

the computation of interpretations for analysis results from a single modality. As

discussed in Section 3.2 in detail, in our approach multimedia documents such as web

pages are partitioned into segments prior to analysis. Modality-specific analysis and

interpretation processes are then applied to each segment to obtain modality-specific

interpretation ABoxes. Notice that a single segment may have multiple interpretations.

The goal of the fusion process is to obtain one or many interpretation results for the

whole multimedia document.

The first step in the fusion process is to merge (take the union of) the modality-

specific interpretation results of all segments of a multimedia document. The informa-

tion in different segments are, in general, redundant and complementary. Therefore

the fusion process is required to identify individuals from different segments describing

the same real-world entity. Notice that the individuals in different modality-specific

interpretation results are distinct, and hence application-specific conditions have to be

defined for the identification of such individuals in order to yield an information gain.

After the identification of individuals that describe the same real-world entity, certain

possible interpretations of a multimedia document can be ruled out due to inconsisten-

cies.

To give an example, assume that an image depicting an athlete during a sports trial,

and the image caption containing the person name ‘Blanka Vlasic’ is given. Assume

that there exists two interpretations for the image segment, one containing a pole

vaulter and the other one a high jumper. Furthermore, the caption is interpreted as

containing a person instance named ‘Blanka Vlasic’. Given the additional background

information that ‘Blanka Vlasic’ is a high jumper, and pole vaulters and high jumpers

are disjoint, any attempt to identify the person instance from the caption segment and

the pole vaulter instance as the same will yield an inconsistency. As a result, one of the

fusion possibilities is ruled out by combining the information from different modalities.

To sum up, the goal of the fusion process is not only to merge modality-specific

interpretation ABoxes into a fused interpretation ABox. The fusion process is also

required to identify individuals in different modality-specific interpretation ABoxes that

describe the same entity in the real world, and make their sameness explicit through

the addition of same-as assertions to the fused interpretation ABox(es). Notice that in

our framework it is guaranteed that the sets of individuals contained in interpretation

ABoxes from different modalities are disjoint. It should also be noted that for fusion

we drop the UNA, which is employed for interpretation.

The conditions under which two individuals from different modality-specific in-

terpretation ABoxes should be considered as describing the same real-world entity is

application-dependent. To this end, we introduce the function query-same-as-candidates

that poses queries to the union of the modality-specific interpretation ABoxes, and re-

turns a set of pairs of individuals, where each pair of individuals is believed to be

the same. Since these queries are application-dependent, we will present them in Sec-

tion 4.3.3 for the athletics domain.

If one of the segments of a document has multiple interpretations, there exist also

multiple alternatives to fuse the interpretation ABoxes, and multiple alternatives for

fusion lead to the computation of several interpretation ABoxes for a multimedia docu-

ment. However, in a practical application scenario we would like to reduce the number

of fused interpretation ABoxes for a multimedia document. Getting back to our previ-

ous example, if we know the fact that the athlete ‘Blanka Vlasic’ is a high jumper, we

would like to rule out interpretations, in which she is considered, e.g., a pole vaulter.

To achieve this within our logical framework, we enhance our background knowledge T

with additional axioms such as:

Person u ∃hasPersonName.∃hasV alue.‘Blanka V lasic′ v HighJumper

Henceforth we refer to the enhanced background knowledge as Tenc. Since Tenc contains

also axioms such as:

HighJumper u PoleV aulter v ⊥

the interpretations in which ‘Blanka Vlasic’ is considered a pole vaulter become incon-

sistent and are ruled out. In Section 4.3.3, using practical examples from the athletics

domain, we will show how the axioms added to T cause certain fusion alternatives to

become inconsistent, and thus enable the fusion algorithm to rule out certain fused

interpretation ABoxes.

Algorithm 10 shows the fusion algorithm fuse. In order to get fused interpretation

ABoxes for a multimedia document, the algorithm is called with a TBox Tenc, a set of

modality-specific interpretation ABoxes {M1, . . . ,Mn}, and a set of conjunctive queries

CQs as input.

Algorithm fuse(Tenc, {M1, . . . ,Mn},CQs)
Output: a set of fused interpretation ABoxes: F = {Af1, ...,Afn}
F := {}
for each (A1, . . . , An) ∈M1 × · · · ×Mn do

A =
⋃

i∈ 1,...nAi

C := query-same-as-candidates(Tenc,A,CQs)
SA := {same-as(i, j) | (i, j) ∈ C}
F := F ∪ compute-consistent-fused-interpretations (Tenc,A, SA)

end
return select-preferred-fused-interpretations (T,F)

Algorithm 10: The fusion algorithm fuse

Informally speaking, the fusion algorithm proceeds as follows:

1. For each fusion alternative, i.e. the cross product of the sets of modality-specific

interpretation ABoxes, accumulate the corresponding modality-specific interpre-

tation ABoxes into an ABox A.

2. Obtain the set of pairs of candidate individuals C that probably describe the same

real-world entity by posing the set of application-specific conjunctive queries CQs

to Tenc ∪A.

3. Using the pairs of individuals in C generate the set of same-as assertions SA.

4. Call the function compute-consistent-fused-interpretetions with the enhanced back-

ground knowledge, the ABox and the generated same-as assertions to obtain the

set of consistent fused interpretation ABoxes.

5. After the accumulation of all consistent fused interpretation ABoxes in F, select

preferred fused interpretations by calling the select-preferred-fused-interpretations

function, and return them as result.

As shown in Algorithm 11, the function query-same-as-candidates poses a set of

application-specific conjunctive queries CQs in order to acquire pairs of individuals

that probably describe the same real-world entity.

Algorithm query-same-as-candidates(Tenc,A,CQs)

Output: a set of pairs of individuals

for each CQ ∈ CQs where CQ = {(X,Y) | Q1(V1), . . . , Qn(Vn)} do
C := C ∪ {(σ(X), σ(Y)) | Tenc ∪A |= {Q1(σ(V1)), . . . , Qn(σ(Vn))}

end
return C

Algorithm 11: The algorithm for identifying individuals that probably describe the

same real-world entity

Different from the abduction and interpretation algorithms, the fusion algorithm

fuse contains functions which, in the terminology of object-oriented development in-

troduced in [GHJV93], act as ‘template methods’ and can be replaced/overwritten

with application-specific functions. For example, instead of simply ruling out inconsis-

tent interpretations completely, one may integrate different repair mechanisms into the

compute-consistent-fused-interpretetions function.

As shown in Algorithm 12, the general compute-consistent-fused-interpretetions

function can be defined in an application-independent way such that the consistent

maximal subset of A is returned as result.

Algorithm compute-consistent-fused-interpretations(Tenc,A, SA)

Output: a set of consistent fused interpretation ABoxes

C := {A′ | A′ ⊆ A ∪ SA, A′ ∪ T 6|= ⊥}
return {A′ |6 ∃A′′ ∈ C,A′ 6⊆ A′′}

Algorithm 12: The algorithm for computing the consistent maximal subset of A∪SA
For an application scenario, the function compute-consistent-fused-interpretetions

can be overwritten in an application-specific way to enable alternative treatments of in-

consistent fused interpretations. In Section 4.3.3, we will present an application-specific

compute-consistent-fused-interpretetions function that has been tailored towards web

pages and the athletics domain in order to compensate for less reliable image analysis

results.

In the same spirit, the general select-preferred-fused-interpretations function can

be overwritten in an application-specific way as well. For example, as shown in Algo-

rithm 13, one may want to prefer those fused interpretations that contain a maximal

number of same-as assertions, in order to maximize the information gain.

Algorithm select-preferred-fused-interpretations(T,F)

Output: a set of preferred fused interpretation ABoxes

m := maxA∈F]{same-as(i, j) | same-as(i, j) ∈ A}
return {A | A ∈ F, m =]{same-as(i, j) | same-as(i, j) ∈ A}}

Algorithm 13: An algorithm for selecting preferred fused interpretations

To study the appropriateness of our approach we have developed a software system,

a so-called semantic interpretation engine, that implements the algorithms interpret

and fuse. In Chapter 4 we present the semantic interpretation engine together with a

case study of how interpretations of web pages with athletics news are computed in a

practical scenario.

Chapter 4

Case Studies

This work aims to develop a declarative multimedia interpretation approach by com-

bining existing formalisms and exploiting reasoning services. In order to show the

applicability of this approach in practice, a multimedia interpretation system has been

logically engineered in the previous chapter. This chapter presents the semantic inter-

pretation engine, a software system for the automatic generation of deep-level semantic

annotations in practical application scenarios. In addition, a detailed discussion of the

interpretation of a sample multimedia document provides a case study in how the se-

mantic interpretation engine can be used to generate deep-level semantic annotations

of a multimedia document.

The semantic interpretation engine is the central component of the software sys-

tem developed during the BOEMIE project. The design of the semantic interpretation

engine has been influenced by the BOEMIE project and the use case of the engine is

derived from this project. We therefore start with a brief introduction of the BOEMIE

project in Section 4.1. Afterwards, we present both the architecture and the imple-

mentation of the semantic interpretation engine in Section 4.2. Finally, in Section 4.3,

we present the stepwise interpretation of a sample web page as a case study. Based on

the insights gained during the case study, we identify the appropriate processing order

for fiat assertions, and appropriate values for the strategy parameter of the abductive

retrieval service.

105

4.1 The BOEMIE Project

The BOEMIE project is a research project funded by the European Union under the

Information Society Technologies program (IST-FP6-027538). The name BOEMIE

is an acronym for Bootstrapping Ontology Evolution with Multimedia Information

Extraction.

The BOEMIE architecture has been designed to integrate state-of-the-art software

tools as components into a coherent framework [TRP+07]. Using domain-specific back-

ground knowledge, the framework processes a multimedia corpus as a set of data sources

and produces a repository of deep-level semantic annotations for the corpus. The de-

sign of the architecture has been determined by two principal objectives of the project:

to facilitate ontology evolution and to support ontology-based retrieval of multimedia

documents. Ontology evolution is defined as a bootstrapping process that aims to

incrementally improve the quality and performance of both multimedia retrieval and

semantics extraction from multimedia content.

The software system developed during the project has been evaluated using mul-

timedia content such as web pages and videos. Web pages with news about athlet-

ics events have been collected from different web sites such as International Associ-

ation of Athletics Federations (IAAF) and USA Track & Field (USATF) web sites

[Int09, USA09]. Relevant videos of athletics events have been acquired from televi-

sion broadcasters. Athletic events taking place in three major European cities, namely

Athens, Berlin and London, are the application domain of BOEMIE.

The DL part of the BOEMIE background knowledge consists of three domain on-

tologies [DDG+07], the Athletics Event Ontology (AEO), where all concepts and re-

lations regarding the athletics domain are modeled, the Multimedia Content Ontology

(MCO) that has been defined to address structural aspects of multimedia content, and

the Geographic Information Ontology (GIO) where notions for representing geographic

information are modeled. Strictly speaking, these ontologies are TBoxes, because they

include terminological knowledge only. However, in the Semantic Web context, the

term ontologies is widely used instead of TBoxes. In the BOEMIE project we comply

with the Semantic Web nomenclature and consider the term domain ontologies as a

more general name for ontologies where the ABox part is empty.

In BOEMIE, the extraction and interpretation of information from multimedia doc-

uments and the evolution of background knowledge occurs in a bootstrapping process.

In each bootstrapping cycle new deep-level semantic annotations of a multimedia doc-

uments corpus are generated and stored in a repository of annotations, the so-called

BOEMIE annotation repository. The content of multimedia documents, i.e. web pages

and videos, are stored in another repository called BOEMIE multimedia repository.

Note that annotations of a multimedia document contain not only semantic informa-

tion about the content of the document but also information about the compositional

structure of the document and the uniform resource locators (URLs) of the document.

For example, annotations of a web page include information about the segments of

the web page, such as text paragraphs and images, and the URLs of the web page as

well as URLs of the images in the web page. Similarly, annotations of a video include

information about the existence of audio and video OCR segments and the URL of the

video. Therefore, information from the annotation repository can easily be related to

content stored in the multimedia repository.

The BOEMIE project also aims to integrate existing geographic information with

deep-level annotations of multimedia documents. To this end, a so-called Geographic

Information System (GIS) is exploited by the BOEMIE system. In general, geographic

information systems are special information systems for capturing, storing, managing,

analyzing and displaying data which are geographically referenced [LGMR91]. The GIS

used in BOEMIE provides for maps and information about various geographic points

of interest like stadiums, marathon routes etc. in Athens, Berlin and London. Notice

that the geographic information ontology GIO is part of the BOEMIE background

knowledge, and thus, is used not only by the GIS but also by other components of the

BOEMIE software system. Therefore, spatial information about points of interest from

GIS is related to deep-level annotations of multimedia documents. It should be noted

here that spatial information from GIS is not used for the multimedia interpretation

process, but to enhance deep-level annotations of multimedia documents.

BOEMIE deals with four main tasks: information extraction, interpretation, on-

tology evolution and multimedia retrieval. In the following we concisely present these

tasks and some software components, which have been developed for these tasks.

Information extraction Information is extracted from multimedia documents such

as web pages and videos. Multimedia documents are heterogeneous data sources that

generally contain information in multiple modalities. Various analysis tools process

data in modalities such as text, image, video or audio in order to extract surface-level

information from a single modality. For example, optical character recognition tech-

niques are used for acquiring textual information from videos. This process is known

as Video OCR. More precisely, Video OCR is a process that detects, segments and rec-

ognizes texts in video frames [AGP07, AGPP07]. The basic analysis tools integrated

into the BOEMIE system return the extracted information in proprietary formats. The

output of the analysis tools are then translated to ABoxes compliant with the AEO,

MCO and GIO ontologies. Therefore, the output of the information extraction task is

always a modality-specific analysis ABox [PTK+08].

Interpretation Taking modality-specific analysis ABoxes as input, interpretation aims

to compute deep-level semantic annotations for multimedia documents. For the inter-

pretation task we have developed a software component called the semantic interpre-

tation engine, which implements the interpretation and fusion algorithms presented in

Chapter 3.

The semantic interpretation engine interprets analysis ABoxes, i.e. surface-level

annotations, of multimedia document segments to generate modality-specific interpre-

tation results, i.e. deep-level annotations. Afterwards, it fuses the modality-specific

interpretation results to produce interpretations of whole multimedia documents, i.e.

fused interpretation ABoxes [EKM+07b, EKM08a]. In Section 4.2, we will present the

semantic interpretation engine in more detail and discuss the computation of fused in-

terpretation ABoxes by using an example web page.

Ontology evolution Ontology evolution aims to adapt the BOEMIE background

knowledge used for information extraction and interpretation in order to obtain bet-

ter deep-level annotations of multimedia documents in subsequent bootstrapping steps

[CDD+06]. For this task an evolution toolkit has been developed that supports a do-

main expert in a semi-automatic enhancement process where the BOEMIE background

knowledge evolves.

The evolution toolkit outputs proposals for enriching the background knowledge in

terms of new concept and relations in the ontology and new rules for interpretation. To

achieve this goal, it analyses the fused interpretation ABoxes produced by the semantic

interpretation engine using machine learning techniques. Additionally, it consults other

ontologies that deal with the athletics domain using ontology matching techniques. The

proposals for change are presented to the domain expert together with summarized cur-

rent interpretation results such that the domain expert obtains a holistic view and can

make decisions on ontology evolution. For this purpose, a web-based application called

the BOEMIE Semantic Manager has been developed [TRP+07]. The BOEMIE Se-

mantic Manager supports users in viewing and managing multimedia resources and the

information extracted from these content by the BOEMIE system [CFML08]. There-

fore it can be considered as a content management system.

Multimedia retrieval Another important task is to develop software applications

that support convenient retrieval of multimedia documents. For this reason a graphical

user interface, called the BOEMIE Semantic Browser , has been developed [EKM09].

The BOEMIE Semantic Browser is a web-based application that can be accessed using

a web browser. It has two variants: One for machines with high processing power

like desktop computers and notebooks. Another one developed with particular focus

on mobile devices with limited capabilities, for example a mobile phone with a small

display and limited processing power.

The main goal of the BOEMIE Semantic Browser is to demonstrate how deep-level

annotations generated by the BOEMIE system can be used for ontology-based access

to multimedia resources enriched with geographical information. More precisely, it

aims to demonstrate how semantic information can be exploited to offer innovative and

convenient ways of multimedia access that goes beyond the access methods offered by

conventional multimedia content management systems such as keyword-based search.

A typical use case scenario of the BOEMIE Semantic Browser is the following:

A user starts accessing multimedia content based on geographic information, e.g. by

accessing all videos recorded at a certain geographic location in London, where London

marathon takes place. A key feature of the BOEMIE Semantic Browser is its support

for ontology-based navigation. Assume that a user views a high jump image using the

BOEMIE Semantic Browser. The image depicts Blanka Vlasic, the world’s top-ranked

high jumper in 2007, clearing a height. On demand, the user is provided with semantic

context menus and can navigate to semantically related content using ontology-based

navigation proposals, e.g. other images showing Blanka Vlasic, other high jump images,

other jumping images or the web page to which the image shown belongs to.

Furthermore, the BOEMIE Semantic Browser can be used as a tool for debugging

the information that has been extracted by the BOEMIE system. For example, a region

depicting a pillar in the above-mentioned image is highlighted and tagged with the label

pillar or the words London Marathon in a web page are highlighted and tagged with

the label a marathon event name. Therefore, the BOEMIE Semantic Browser can be

used to examine the information extracted by the BOEMIE system and to comprehend

why a particular multimedia content is displayed as relevant.

4.2 The Semantic Interpretation Engine

In the previous section, we have briefly presented the BOEMIE project in order to

explain the context in which the semantic interpretation engine has been developed.

In this section, we present both architecture and implementation of the semantic inter-

pretation engine.

The semantic interpretation engine is a software system developed for the com-

putation of modality-specific interpretations and the fusion of these interpretations

in order to obtain deep-level semantic annotations of multimedia documents. In the

BOEMIE project, the semantic interpretation engine is called BIWS, an acronym for

BOEMIE Interpretation Web Services. However, BIWS has been designed as a generic,

stand-alone software component that can also be used in other contexts and projects.

Therefore we prefer to use the more general name, namely the semantic interpretation

engine, in this work.

The semantic interpretation engine supports both interpretation and fusion by

implementing the interpretation and fusion algorithms presented in Section 3.4 and

Section 3.5, respectively. To this end, it exploits inference services provided by the

state-of-the-art DL reasoner RacerPro. Besides standard inference services such as

ABox consistency testing, the semantic interpretation engine utilizes the retrieve-with-

explanation function provided by RacerPro. RacerPro’s retrieve-with-explanation func-

tion is an implementation of the ABox abduction algorithm abduce (see Algorithm 6

in Section 3.3.2).

!"#$%&'

()*+'

,-#%.&*$'/.&-010-&%&*".'2.3*.-'

4%$-0!" 4%$-0#" 4%-0"

Figure 4.1: The architecture of the semantic interpretation engine, which is deployed into

the Apache Tomcat servlet container. The Apache Axis is a core engine for web services.

The semantic interpretation engine exploits the inference services offered by RacerPro.

Each RacerPro instance is dedicated to a single modality.

Figure 4.1 illustrates the architecture and the typical deployment of the semantic

interpretation engine, which has been implemented in the Java programming language

as a so-called servlet . A servlet is a server-side Java program that can be deployed into

a web server or servlet container, and accessed via a request-response programming

model. A servlet can dynamically process requests and construct answers. A servlet

container is responsible for managing the lifecycle of servlets, mapping a URL to a

particular servlet and ensuring that the URL requester has the correct access rights.

In the BOEMIE project, the semantic interpretation engine has been deployed into

the Apache Tomcat servlet container [Apa09]. However, it can also be deployed into

any other servlet container that complies with the servlet specification released by Sun

Microsystems under the name JSR-000154 Java Servlet 2.5. Specification [Mic09].

In the BOEMIE scenario, a set of RacerPro instances is managed by the semantic

interpretation engine, where for each modality a dedicated RacerPro instance is used.

Most important parameters of the semantic interpretation engine, such as the set of

RacerPro instances to be utilized, the domain ontologies and interpretation rule sets

are declared in a configuration file to offer high flexibility. To improve scalability, the

semantic interpretation can easily be configured to manage multiple RacerPro instances

for each modality.

The semantic interpretation engine offers its functionality through web-based ser-

vices, a.k.a. web services. This enables the development of a flexible software system

where the semantic interpretation engine and other software components are loosely

coupled through standardized interfaces. The web services offered by the semantic in-

terpretation engine can be grouped into two categories: single-modality interpretation

services and fusion services. In its current state, the semantic interpretation engine of-

fers single-modality interpretation in image, text, caption, audio and videoOCR modal-

ities. It offers fusion services for web pages and videos. In this work we only report on

the interpretation of web pages consisting of image, text and caption segments.

Typically, multimedia documents such as web pages and videos contain information

in multiple modalities. For example, a video is an audiovisual medium, and hence

contains information both in visual and auditory modalities. A web page contains

information in visual and textual modalities. In order to obtain semantic annotations of

web pages and videos, the semantic interpretation engine can be used as follows: First,

all segments of a multimedia document are interpreted with respect to information

in a single modality using modality-specific interpretation services. Second, modality-

specific interpretations of multimedia document segments are fused with respect to

information about structural composition of the multimedia document using fusion

services.

For example, assume that a client of the semantic interpretation engine wants to

obtain semantic annotations of a web page that consists of a textual part and two

images, which are captioned with text. First, the client has to call the modality-

specific interpretation service for each part of the web page. More precisely, the client

has to call the image interpretation service for each image, the caption interpretation

service for each caption and the text interpretation service for the text separately. Each

modality-specific interpretation service requires surface-level information, which have

been extracted from that modality by the analysis tools, as input. The client has to

provide this information in the form of an analysis ABox when calling these services.

The interpretation of the web page segments are independent from each other, and thus

can be called in any order. Second, the client has to call the web page fusion service

that requires information about the structural composition as input. The information

about the structural composition has to be provided as an ABox as well when calling

the web page fusion service. In this ABox, all segments of the web page have to be

represented together with information about how these segments are related to each

other, e.g., which caption belongs to which image.

4.3 Interpretation of a Sample Multimedia Document

The goal of this section is to discuss the interpretation of multimedia documents in

detail. In particular, we focus on the interpretation of web pages, and present the

stepwise interpretation of a sample web page as a case study. However, the approach

is general and can be applied to other kinds of multimedia documents as well. For

example, the approach is also applicable to videos for which videoOCR and audio

analysis results are available. The interpretation of video segments based on videoOCR

and audio analysis results works analogously to the interpretation of web page segments.

The semantic interpretation engine supports also video interpretation including the

fusion of videoOCR and audio interpretation results. Due to space restrictions, in this

section, we only discuss the interpretation of web pages consisting of image, text and

caption segments in detail.

In the remainder of this section, at first, we use a sample web page to present

the interpretation of web page segments based on modality-specific analysis results

and background knowledge. Afterwards, we discuss appropriate strategies for the in-

terpretation process including appropriate values for the strategy parameter Ω of the

abductive retrieval service and the appropriate processing order for fiat assertions. Fi-

nally, we explain how modality-specific interpretations of web page segments are fused

to obtain interpretations of the sample web page.

4.3.1 Modality-Specific Interpretations

Figure 4.2 shows a sample web page taken from the website of the International Asso-

ciation of Athletics Federations IAAF [Int09]1. The web page consists of a text passage

and an image that is captioned. The textual information in the caption complements

the visual information in the image by providing additional information such as the

athlete’s name, performance, the city and the country where the picture was taken.

We assume that the web page in Figure 4.2 has successfully been partitioned into

text, image and caption segments, and analyzed by analysis tools to obtain surface-

level information in corresponding modalities. To obtain interpretations of web page

segments, a client calls the corresponding interpretation web services of the semantic

interpretation engine. The modality-specific interpretation web services are indepen-

dent from each other, and thus, can be called in any order. In this example, we start

with the interpretation of the image analysis ABox, continue with the caption analysis

ABox, and conclude with the text analysis ABox.

The interpretation services offered by the semantic interpretation engine require

a DL ABox in the OWL syntax as input. The Web Ontology Language OWL is a

knowledge representation language that is widely used in the Semantic Web context.

Various software tools such as ontology modeling tools and DL reasoners support OWL

which has an XML-based syntax. In this example, however, we prefer to use a syntax

inspired by the KRSS syntax [PSS93] instead of OWL, due to better readability and

compactness.

The analysis results of the image depicted in Figure 4.3 are represented in the ABox

imageABox01, which is shown in Figure 4.4. Furthermore, we assume that the TBox

part of the background knowledge contains the axioms shown in Figure 4.5. The TBox

T shown in Figure 4.5 is an excerpt from the athletics domain ontology AEO used in

the BOEMIE project, and contains only the axioms that are relevant for our example.

The abbreviations DLC and SLC stand for deep-level concept and surface-level

concept, respectively. All objects that are detected in an image are represented as

instances of the SLC in analysis ABoxes. For example, the instances face1 , body1

and bar1 in Figure 4.4 are instances of the concepts PersonFace, PersonBody and

1Figures containing athletics images and athletics news are reproduced here with permission granted

by IAAF.

Figure 4.2: A sample web page with athletics news

Figure 4.3: The image taken from the sample web page in Figure 4.2

PersonFace (face1)

PersonBody (body1)

HorizontalBar (bar1)

adjacent (face1 , body1)

adjacent (body1 , bar1)

Figure 4.4: The ABox imageABox01 representing the results of image analysis for the

image in Figure 4.3

HorizontalBar, which are disjoint subconcepts of the SLC. All objects that are hy-

pothesized during the interpretation process are instances of disjoint subconcepts of the

DLC. The disjointness axioms are necessary to avoid ‘awkward’ explanations, which

would otherwise be generated.

In addition to the TBox T, the background knowledge used for image interpretation

also contains a set of rules. Figure 4.6 depicts an excerpt of the image interpretation

rules Rima that are relevant for our discussion.

In Figure 4.6 the star sign (*) next to a line number indicates that the corresponding

rule should be considered only if the rule set Rima is to be applied in a forward-chaining

way, whereas all other rules in Rima are to be considered only if a query is to be

DLC v ¬SLC

Person v DLC u ∃≤1 hasPart .PersonFace u ∃≤1 hasPart .PersonBody

Athlete v Person

Jumper v Athlete

HighJumper v Jumper

PoleVaulter v Jumper

SportsTrial v DLC u ∃≤1 hasParticipant.Athlete u ¬Person

Jumping v SportsTrial

HighJump v Jumping

PoleVault v Jumping

HighJump v ∃≤1 hasPart .HorizontalBar u ∀ hasParticipant .HighJumper

PoleVault v ∃≤1 hasPart .HorizontalBar u ∃≤1 hasPart .Pole u
∀hasParticipant.PoleV aulter u ¬HighJump

Object v SLC u ¬OrganismPart

PersonFace v OrganismPart

PersonBody v OrganismPart u ¬PersonFace

HorizontalBar v Object u ¬Pole

Figure 4.5: An excerpt of the TBox T for the athletics domain

1 adjacent(Y, Z) ← Person(X), hasPart(X,Y),PersonFace(Y),

hasPart(X,Z),PersonBody(Z)

2 adjacent(Y, Z) ← PoleVault(X), hasParticipant(X,Y),PoleVaulter(Y),

hasPart(X,Z),Pole(Z)

3 adjacent(Y, Z) ← PoleVault(X), hasParticipant(X,Y),PoleVaulter(Y),

hasPart(X,Z),HorizontalBar(Z)

4 adjacent(Y, Z) ← HighJump(X), hasParticipant(X,Y),HighJumper(Y),

hasPart(X,Z),HorizontalBar(Z)

5* adjacent(Y, Z) ← Person(Y), hasPart(Y,X), adjacent(X,Z),Object(Z)

Figure 4.6: An excerpt of the image interpretation rules Rima for the athletics domain

expanded during abduction, i.e. if Rima is to be applied in a backward-chaining way.

In fact, RacerPro’s rule definition language supports the use of a parameter as part

of a rule definition in order to explicitly declare whether a rule should be considered

for application in a forward-chaining or backward-chaining way. This parameter is not

visible in Figure 4.6, since we prefer to use a more general logic programming notation

(and the star sign) instead of RacerPro’s rule definition language in discussing our

example. Notice that the rules for query expansion constitute a non-recursive rule set,

since by definition the only recursive rule in Rima, namely the rule with the star sign,

is to be considered only if Rima is applied in a forward-chaining way.

We assume that a client who wants to obtain interpretations of the web page in

Figure 4.2 calls, at first, the interpretImage function of the semantic interpretation

engine, and provides the ABox imageABox01 in Figure 4.4 as input. At first, the

semantic interpretation engine determines the set of fiat assertions from imageABox01.

In the current implementation, any assertion from imageABox01 is considered as a

fiat assertion, if there exists a rule ri ∈ Rima where the concept or role name of the

assertion is also the predicate of a rule atom in the head of ri. Therefore, the set Fiats

initially contains the following assertions:

Fiats = {(adjacent(face1 , body1), 0), (adjacent(body1 , bar1), 0)}

As discussed in Section 3.4, fiat assertions from the analysis ABox have the level zero

in the set Fiats.

The semantic interpretation engine employs the interpretation algorithm interpret

presented in Algorithm 9 in Section 3.4. In this example, the interpret algorithm

is initially called with the TBox T (Figure 4.5), the set of interpretation rules Rima

(Figure 4.6), the analysis ABox imageABox01 (Figure 4.4) and the above-mentioned

set Fiats.

Following the interpretation algorithm, a fiat assertion is selected from the set Fiats,

removed from Fiats, and transformed into a Boolean query in order to call the abduc-

tive retrieval service. Assume that the fiat assertion adjacent(face1 , body1) is selected

first. After the removal from Fiats: Fiats ′ := Fiats \ {(adjacent(face1 , body1), 0)}, the

assertion is transformed into a Boolean query for abduction. The DL reasoner Racer-

Pro provides the function retrieve-with-explanation, which is an implementation of the

ABox abduction algorithm abduce presented in Section 3.3.2 (see Algorithm 6). The

exact syntax of the RacerPro function call is as follows:

(retrieve-with-explanation ()

(face1 body1 adjacent) (:reuse-old))

The function retrieve-with-explanation accepts the strategy parameter Ω that de-

fines the strategy in instantiating variables. As discussed in Section 3.3.2, there are

two possible values for Ω: ‘use new individuals’ and ‘reuse existing individuals’. If the

retrieve-with-explanation function is called without the optional strategy parameter, Ω

has the value ‘use new individuals’, and thus the function prefers to hypothesize new

individuals instead of reusing existing individuals when generating explanations.

The retrieve-with-explanation function can also be instructed to additionally gen-

erate explanations where existing individuals are reused. If the function retrieve-with-

explanation is called with the optional parameter value reuse-old, which corresponds to

the Ω value ‘reuse existing individuals’, it tries to reuse existing individuals as part of

an explanation, if such individuals exist in the ABox (see Algorithm 6 in Section 3.3.2).

In other words, the parameter reuse-old instructs the abductive retrieval service to use

a certain strategy in explanation generation.1 In the next section, we will investigate

the role of the strategy parameter value in explanation generation in detail.

All rules for query expansion in Figure 4.6 have the atom adjacent in the head, and

thus can be exploited to generate explanations for the Boolean query:

• Γ1 = {Person(new ind1), hasPart(new ind1 , face1),

PersonFace(face1), hasPart(new ind1 , body1), PersonBody(body1)}

• Γ2 = {PoleVault(new ind2), hasParticipant(new ind2 , face1),

PoleVaulter(face1), hasPart(new ind2 , body1), Pole(body1)}

• Γ3 = {PoleVault(new ind3), hasParticipant(new ind3 , face1),

PoleVaulter(face1), hasPart(new ind3 , body1), HorizontalBar(body1)}

• Γ4 = {HighJump(new ind4), hasParticipant(new ind4 , face1),

HighJumper(face1), hasPart(new ind4 , body1), HorizontalBar(body1)}

However, only Γ1, the explanation generated using the rule at line 1 of Figure 4.6 is

consistent w.r.t. T and A. This is due to the disjointness axioms in T. The retrieve-

with-explanation function discards inconsistent explanations. Since there exists only

1It should be noted here that for role assertions that are transformed into a Boolean query for

abduction, the semantic interpretation engine calls retrieve-with-explanation always with the strategy

parameter value reuse-old.

one consistent explanation, the retrieve-with-explanation function computes no prefer-

ence scores, and returns a single explanation, which contains the set of non-entailed

assertions from Γ1:

∆1 = {Person(new ind1), hasPart(new ind1 , face1), hasPart(new ind1 , body1)}

Informally speaking, in ∆1, the adjacency of the face and the body is explained by

hypothesizing a person instance to whom they both belong to. The retrieve-with-

explanation function generates unique names for aggregates (hypothesized instances)

as needed.

Following the interpretation algorithm in Algorithm 9, the assertions from ∆1 are

added to A: A′ := A ∪ ∆1. Figure 4.7 depicts the ABox A′ at this stage:

PersonFace (face1)

PersonBody (body1)

HorizontalBar (bar1)

adjacent (face1 , body1)

adjacent (body1 , bar1)

Person (new ind1)

hasPart(new ind1 , face1)

hasPart(new ind1 , body1)

Figure 4.7: The ABox A′ after the addition of ∆1

In the next step, the rules in Rima are applied in a forward-chaining way by calling

the execute-or-reexecute-all-rules function of RacerPro which is an implementation of

the apply-rules function introduced in Section 3.1.2 (see Algorithm 2). By definition,

the rule at line 5 of Figure 4.6 is the only rule in Rima that has to be considered by

the execute-or-reexecute-all-rules function. The premises of this rule are proven to be

true w.r.t. A′ in Figure 4.7 such that the atom in its head, the consequence, must be

true as well. Therefore, the result set of the execute-or-reexecute-all-rules function call

is: C={adjacent(new ind1 , bar1)}. Since A′ ∪ C is consistent w.r.t. T, the algorithm

interpret is called recursively with the following parameters: T, Rima, A′ ∪C, Fiats ′ ∪
{(c, level + 1) | c ∈ C}.

In the new interpret function call, the set Fiats contains following assertions:

Fiats = {(adjacent(body1 , bar1), 0), (adjacent(new ind1 , bar1), 1)}

Next, the assertion with the lowest level from Fiats, namely adjacent(body1 , bar1),

is selected. Analogous to the first fiat assertion, the assertion adjacent(body1 , bar1)

is removed from Fiats, transformed to a query to call the retrieve-with-explanation

function. However, this time the retrieve-with-explanation function delivers no answers,

because all explanations that can be generated using the rules in Rima are inconsistent.

Next, the interpretation algorithm is called recursively. In the new interpret func-

tion call, the only assertion from Fiats, namely adjacent(new ind1 , bar1) is selected.

The assertion is removed from Fiats, and transformed into a Boolean query for abduc-

tion:

(retrieve-with-explanation ()

(new_ind1 bar1 adjacent) (:reuse-old))

For this query only the explanations that can be generated using the rules at lines 2, 3

and 4 in Figure 4.6 are consistent w.r.t. T and A. These explanations are as follows:

• Γ5 = {PoleVault(new ind5), hasParticipant(new ind5 , new ind1),

PoleVaulter(new ind1), hasPart(new ind5 ,new ind6), Pole(new ind6)}

• Γ6 = {PoleVault(new ind7), hasParticipant(new ind7 , new ind1),

PoleVaulter(new ind1), hasPart(new ind7 , bar1), HorizontalBar(bar1)}

• Γ7 = {HighJump(new ind8), hasParticipant(new ind8 , new ind1),

HighJumper(new ind1), hasPart(new ind8 , bar1), HorizontalBar(bar1)}

where Γ5 is generated using the rule at line 2, Γ6 the rule at line 3, and Γ7 the rule

at line 4 in Figure 4.6. At this stage, this sample image interpretation provides an

interesting example to discuss how the preference score S presented in Section 3.3.3 is

calculated for a practical example in order to deliver ‘preferred’ explanations only.

As discussed in Section 3.3.3, the preference score S reflects the assumption that, in

the context of multimedia interpretation, an explanation is to be preferred over others

if it is more consilient and simpler. The approximated consilience value Sa and the

simplicity value Sh have been defined follows:

Sa(T,A,Γ) :=]{γ ∈ Γ | T ∪A |= γ}
Sh(T,A,Γ) :=]{γ ∈ Γ | T ∪A 6|= γ}

whereas the preference score S has been defined as (see Equation 3.6):

S(T,A,Γ) = Sa(T,A,Γ)− Sh(T,A,Γ)

Getting back to our example, the explanation Γ5 contains no assertion that logically

follows from T ∪ A. Hence, Sa(T,A,Γ5)=0, Sh(T,A,Γ5)=5, and S(T,A,Γ5)=0-5=-5.

Regarding the explanation Γ6, the only assertion that logically follows from T ∪ A

is HorizontalBar(bar1). Therefore Sa(T,A,Γ6)=1, Sh(T,A,Γ6)=4, and S(T,A,Γ6)=1-

4=-3. Also for the explanation Γ7, the only assertion that logically follows from T ∪ A

is HorizontalBar(bar1), thus Sa(T,A,Γ7)=1, Sh(T,A,Γ7)=4, and S(T,A,Γ7)=1-4=-3.

As discussed in Section 3.3.3, in the case of two explanations with the same pref-

erence score, the most-specific one is preferred. For this purpose, the relaxed ABox

entailment inference service offered by RacerPro is used to check whether one of the

explanations is more specific than the other one. In our example, the relaxed ABox

entailment relationship does not hold between Γ6 and Γ7: Γ6 6 Γ7 and Γ7 6 Γ6.

It should be noted that RacerPro’s retrieve-with-explanation function implements

the preference score S. Therefore the answer to the above-mentioned retrieve-with-

explanation call returns ∆6 and ∆7, the sets of non-entailed assertions from the expla-

nations Γ6 and Γ7, since both Γ6 and Γ7 have the highest preference score, and none

of them is more specific than the other one.

Following the interpretation algorithm, for each one of the two explanations the

assertions from the explanation are added to A: A′ := A ∪ ∆, and then the function

execute-or-reexecute-all-rules is called to apply the rules in Rima in a forward-chaining

way. In this example, for both explanations there are no new consequences and the

function call delivers an empty set C. Furthermore, in both cases A′ ∪ C is consistent

w.r.t. T, and the interpret function is called recursively with an empty set of fiat asser-

tions. Consequently, both interpret function calls return an ABox, and both ABoxes

are accumulated in the set I.

Finally, the interpret algorithm terminates by returning the set I containing the

two interpretation ABoxes depicted in Figure 4.8. These two interpretation ABoxes

represent the two most preferred interpretations of the image in Figure 4.3 that the

PersonFace (face1)

PersonBody (body1)

HorizontalBar (bar1)

adjacent (face1 , body1)

adjacent (body1 , bar1)

Person (new ind1)

hasPart(new ind1 , face1)

hasPart(new ind1 , body1)

PoleVault (new ind7)

hasParticipant(new ind7 ,new ind1)

PoleVaulter (new ind1)

hasPart(new ind7 , bar1)

PersonFace (face1)

PersonBody (body1)

HorizontalBar (bar1)

adjacent (face1 , body1)

adjacent (body1 , bar1)

Person (new ind1)

hasPart(new ind1 , face1)

hasPart(new ind1 , body1)

HighJump (new ind8)

hasParticipant(new ind8 ,new ind1)

HighJumper (new ind1)

hasPart(new ind8 , bar1)

Figure 4.8: The interpretation ABoxes imageABox01 interpretation1 and image-

ABox01 interpretation2 returned by the semantic interpretation engine

semantic interpretation engine can compute with respect to the background knowledge

and image analysis results. Consequently, the semantic interpretation engine answers

the client’s call of the interpretImage web service for the analysis ABox in Figure 4.4

with the two interpretation ABoxes shown in Figure 4.8. In the answer, the interpreta-

tion ABoxes are given some unique names, namely imageABox01 interpretation1 and

imageABox01 interpretation2. Notice that these names include the name of the anal-

ysis ABox, which has been provided by the client when calling the interpretImage web

service. This is important, since during the fusion process, the semantic interpretation

engine has to identify all possible interpretations of a document segment based on the

segment’s name in order to consider all fusion alternatives. In Section 4.3.3 we will

discuss the fusion process using practical examples.

To continue the interpretation of the sample web page in Figure 4.2, assume that,

in the next step, the client wants to obtain interpretations of the text from the caption

of the image. Figure 4.9 depicts the caption of the image shown in Figure 4.3.

!"#$%#&'"#()*&*"+#,(&-./-&)$&!#(0#12&34+1+$&

Figure 4.9: The caption of the image shown in Figure 4.3

The underlined words in Figure 4.9 are key entities of the text that are extracted by the

text analysis processes. The analysis results of the caption in Figure 4.9 are represented

in the ABox captionABox01, which is shown in Figure 4.10.

PersonName (pName1)

Performance (perf1)

CityName (ciName1)

CountryName (coName1)

personNameToPerformance (pName1 , perf1)

hasValue (pName1 , ‘Blanka Vlasic’)

hasValue (perf1 , ‘2.02’)

hasValue (ciName1 , ‘Bastad’)

hasValue (coName1 , ‘Sweden’)

Figure 4.10: The ABox captionABox01 representing the results of text analysis for the

caption in Figure 4.9

In addition, we assume that the TBox part T of the background knowledge contains

the axioms shown in Figure 4.11. Analogous to the image modality, all objects that are

detected by low-level analysis processes are instances of the SLC, whereas all objects

that are hypothesized during the interpretation process are instances of the DLC. All

subconcepts of the concepts SLC and DLC are disjoint from each other in order to dis-

card ‘awkward’ explanations. Notice that in captionABox01 personNameToPerformance

is a role atom, whereas hasValue is a concrete domain predicate. In [EKM08b], we have

published patterns for ontology and rule design that facilitate the design of background

knowledge for multimedia interpretation.

The background knowledge contains also a set of rules for the interpretation of texts

from the captions of images. Figure 4.12 depicts an excerpt of the caption interpretation

rules Rcap that are relevant for our example. The rule at line 4, by definition, is to be

considered only if Rcap is applied in a forward-chaining way, whereas all other rules in

Rcap are to be considered only if Rcap is applied in a backward-chaining way, i.e. for

abductive inference.

We assume that the client calls the interpretCaption function of the semantic in-

terpretation engine, and provides the ABox captionABox01 in Figure 4.10 as input.

Before the application of the interpretation algorithm, it has to be determined which

DLC v ¬SLC

Person v DLC u ∃ hasPersonName.PersonName u ¬SportsTrial

Athlete v Person

SportsTrial v DLC u ∃≤1 hasParticipant.Athlete
∃≤1 hasPerformance.Performance

Name v SLC u ∃ hasValue.string u ¬Performance

PersonName v Name u ¬CityName

CityName v Name u ¬CountryName

CountryName v Name u ¬PersonName

Performance v SLC u ∃ hasValue.string

Figure 4.11: Another excerpt of the TBox T for the athletics domain

1 PersonName(Y) ← Person(X), hasPersonName(X,Y)

2 Performance(Y) ← SportsTrial(X), hasPerformance(X ,Y)

3 personToPerformance(Y ,Z) ← SportsTrial(X), hasParticipant(X,Y),

Athlete(Y), hasPerformance(X ,Z),

Performance(Z)

4* personToPerformance(Y ,Z) ← Person(Y), hasPersonName(Y,X),

PersonName(X),Performance(Z),

personNameToPerformance(X ,Z)

Figure 4.12: An excerpt of the caption interpretation rules Rcap for the athletics domain

assertions from the ABox captionABox01 are fiat assertions. Any assertion from cap-

tionABox01 is considered to require a fiat, if there exists a rule ri ∈ Rcap where the

concept or role name of the assertion is also the predicate of a rule atom in the head of ri.

Consequently, in our example, the set Fiats initially contains the following assertions:

Fiats = {(PersonName(pName1), 0), (Performance(perf1), 0)}

In this example, the interpretation algorithm incorporated in the semantic interpre-

tation engine takes the TBox T, the rule set Rcap, the ABox captionABox01 and the

above-mentioned set Fiats as input.

According to the interpretation algorithm, a fiat assertion has to be selected from

Fiats in the beginning. Assume that the assertion PersonName(pName1) is selected

first. It is then removed from the set Fiats. Later, the assertion is transformed into a

Boolean query for abduction:

(retrieve-with-explanation ()

(pName1 PersonName))

It should be noted that for concept assertions that are transformed into a Boolean query

for abduction, the semantic interpretation engine always calls the function retrieve-with-

explanation without the parameter reuse-old. The retrieve-with-explanation function,

by default, omits the generation of explanations where existing individuals are reused.

In the next section, based on examples we discuss the reasons why the parameter

reuse-old has to be used in the case of fiat role assertions only.

The rule set Rcap contains only a single rule that has the concept name PersonName

in the head, namely the rule at line 1 in Figure 4.12. For this reason, the function

retrieve-with-explanation considers only this rule for explanation generation and returns

the following explanation:

∆1 = {Person(new ind9), hasPersonName(new ind9 , pName1)}

Informally speaking, the appearance of a person name in the caption is explained

through the hypothesization of a person instance, to whom the name belongs to. It

should be noted that the names of hypothesized individuals are unique also across

modalities. This is an essential requirement, since interpretations of segments of a

multimedia document are fused later.

Following the interpretation algorithm, the assertions from ∆1 are added to A: A′

:= A ∪ ∆1. Next, the function execute-or-reexecute-all-rules is called to apply the rules

in Rcap to A′ in a forward-chaining way. By definition, the rule at line 4 in Figure 4.12 is

the only rule that should be considered. All premises of this rule are proven to be true

such that its consequence must be true as well. Consequently, the function execute-or-

reexecute-all-rules returns the set C={personToPerformance(new ind9, perf1)}. Since

A′ ∪ C is consistent w.r.t. T, the algorithm interpret is called recursively with the

following parameters: T, Rcap, A
′ ∪ C, Fiats ′ ∪ {(c, level + 1) | c ∈ C}.

In the new interpret function call, the set Fiats contains following assertions:

Fiats = {(Performance(perf1), 0), (personToPerformance(new ind9 , perf1), 1)}

Since Performance(perf1) is the fiat assertion with the lowest level, it is selected next.

The assertion is first removed from Fiats, and then transformed into the following

Boolean query:

(retrieve-with-explanation ()

(perf1 Performance))

To answer this query, only the rule at line 2 in Figure 4.12 can be exploited, because it

is the only rule with the appropriate predicate in the head. The explanation generated

using that rule is as follows:

∆2 = {SportsTrial(new ind10), hasPerformance(new ind10 , perf1)}

According to the interpretation algorithm, the assertions from ∆2 are added to the

ABox A: A′ := A ∪ ∆2, and the execute-or-reexecute-all-rules function is called to

apply the rules in Rcap in a forward-chaining way. However, this time there are no

consequences, and the function call delivers an empty set C. Since A′ ∪C is consistent

w.r.t. T, the interpret function is called recursively.

In the new interpret function call, the set Fiats contains a single assertion, namely

personToPerformance(new ind9 , perf1) which is selected. The assertion is removed

from Fiats, and transformed into a Boolean query for abduction:

(retrieve-with-explanation ()

(new_ind9 perf1 personToPerformance) (:reuse-old))

For this query the only rule that can be exploited for explanation generation is the

rule at line 3 in Figure 4.12. Notice that also the rule at line 4 in Figure 4.12 contains

the role name personToPerformance as the predicate in the rule head. However, that

rule is, by definition, not considered for explanation generation. Consequently, the

explanation to the query is as follows:

Γ3 = {SportsTrial(new ind10), hasParticipant(new ind10 , new ind9),

Athlete(new ind9), hasPerformance(new ind10 , perf1), Performance (perf1)}

Notice that the function retrieve-with-explanation is instructed to prefer the reuse of

existing individuals over the hypothesization of new individuals using the reuse-old pa-

rameter. Therefore the existing instances of the concepts SportsTrial and Performance

in A, namely (new ind10) and (perf1), are reused in Γ3.

Following the interpretation algorithm, the set of non-entailed assertions from Γ3,

namely ∆3, is added to A: A′ := A ∪ ∆3, and the function execute-or-reexecute-all-

rules is called to apply the rules in Rcap to A′ in a forward-chaining way. However,

also this time there are no consequences, and the function call delivers an empty set

C. Since A′ ∪ C is consistent w.r.t. T, the interpret function is called recursively with

an empty set of fiat assertions. Consequently, the new interpret function call returns

an ABox as result, which is accumulated in the set I.

Finally, the interpret algorithm terminates by returning the set I containing the

ABox depicted in Figure 4.13. Consequently, the semantic interpretation engine an-

swers the client’s call of the interpretCaption function with the ABox shown in Fig-

ure 4.13. In the answer, the interpretation ABox is given the unique name caption-

ABox01 interpretation1.

To conclude the modality-specific interpretation of segments of the sample web

page in Figure 4.2, assume that the client wants to obtain an interpretation of the text

segment as well. In the sample web page, the text segment is the main information

source and contains most information. Due to space restrictions, in this work, we

only present the interpretation of a single paragraph of the text. However, the same

approach applies analogously to the rest of the text segment.

Figure 4.14 depicts the first paragraph of the text segment of the sample web page

in Figure 4.2, which we use to discuss the text interpretation service. The underlined

words in Figure 4.14 are key entities of the text that are extracted by the text analysis

processes. Figure 4.15 shows the analysis ABox of the text segment in Figure 4.14.

Furthermore, we assume that the TBox part T of the knowledge base contains

the axioms depicted in Figure 4.16. Notice that in T, HighJumpCompetition and

PoleVaultCompetition are modeled as disjoint subconcepts of the more general con-

cept SportsCompetition. Figure 4.16 depicts only a small part of the TBox T. In

fact, there exist many other subconcepts of the concept SportsCompetition such as

HurdlingCompetition and LongJumpCompetition. However, all subconcepts of the con-

cept SportsCompetition are disjoint from each other, and hence are not relevant for

PersonName (pName1)

Performance (perf1)

CityName (ciName1)

CountryName (coName1)

personNameToPerformance (pName1 , perf1)

hasValue (pName1 , ‘Blanka Vlasic’)

hasValue (perf1 , ‘2.02′)

hasValue (ciName1 , ‘Bastad’)

hasValue (coName1 , ‘Sweden’)

Person (new ind9)

hasPersonName (new ind9 , pName1)

personToPerformance (new ind6 , perf1)

SportsTrial (new ind10)

hasPerformance (new ind10 , perf1)

hasParticipant (new ind10 ,new ind9)

Athlete (new ind9)

Figure 4.13: The interpretation ABox captionABox01 interpretation1 returned by the

semantic interpretation engine

!"#$"%&'()*%*+','-).'/*"0#'"1.'$2*'30*4.45.6#'$**+"1*'$"7*+$'!7"+8"''

97"#54'#4.0*%'2*0':50#$'*;*0'$056<32'"1"5+#$').0%'47"##'#*+5.0'4.<3*$5$5.+'

)2*+'#2*').+'$2*'=+%'*%5$5.+'.:'$2*'>512'?6<3'1"7"'"$'$2*'@()*%5#2''

A5<B7*%.+C&'5D*D'$2*';*+*0"B7*'!"#$"%'$*++5#'#$"%56<D'

Figure 4.14: The first paragraph of the text segment of the sample web page

this example. Even if an explanation would have been generated to explain the ap-

pearance of a HighJumpName instance using subconcepts of SportsCompetition other

than HighJumpCompetition, it would become inconsistent, and would be discarded.

For example, if the appearance of a HighJumpName is explained by hypothesiz-

ing a PoleVaultCompetition instance, which is in a hasSportsName relation with the

HighJumpName instance, then that explanation is inconsistent w.r.t. T, because a

PoleVaultCompetition can only be in a hasSportsName relation with a PoleVaultName

instance, and PoleVaultName and HighJumpName are disjoint concepts.

CityName (ciName2)

CountryName (coName2)

PersonName (pName2)

Gender (gen2)

HighJumpName (hjName2)

StadiumName (stName2)

StadiumName (stName3)

hasValue (ciName2 , ‘Bastad’)

hasValue (coName2 , ‘Sweden’)

hasValue (pName2 , ‘Blanka Vlasic’)

hasValue (hjName2 , ‘High Jump’)

hasValue (stName2 , ‘Swedish Wimbledon’)

hasValue (stName3 , ‘Bastad Tennis Stadium’)

personNameToGender (pName2 , gen2)

spoNameToStaName (hjName2 , stName2)

spoNameToStaName (hjName2 , stName3)

Figure 4.15: The ABox textABox01 representing the results of text analysis for the text

segment in Figure 4.14

In addition to T, the background knowledge includes also a set of interpretation

rules for text segments. Figure 4.17 depicts an excerpt of the text interpretation rules

Rtex that are relevant for the example text segment in Figure 4.14.

Different from the set of image interpretation rules Rima and the set of caption

interpretation rules Rcap, the set of text interpretation rules Rtex contains no rules

that should be considered when applying rules in a forward-chaining way. In other

words, the excerpt of the text interpretation rules Rtex consists of rules that have to

be considered for abduction only. For the sake of brevity, the excerpt in Figure 4.17

includes only such rules that are essential for the interpretation of the text analysis

ABox textABox01 in Figure 4.15.1

We assume that the client calls the interpretText function of the semantic interpre-

tation engine, and provides the ABox textABox01 as input. In this case, the semantic

interpretation engine determines fiat assertions from the ABox textABox01 w.r.t. the

1The complete set of text interpretation rules used in the BOEMIE project contains also rules that

have to be considered when applying rules in a forward-chaining way.

DLC v ¬SLC

Person v DLC u ¬SportsCompetition u ∃≤1hasGender .Gender u
∃hasPersonName.PersonName

SportsCompetition v DLC u ∃ hasSportsName.SportsName u
∃ takesPlaceIn.StadiumName

HighJumpCompetition v SportsCompetition u ∀ hasSportsName.HighJumpName

PoleVaultCompetition v SportsCompetition u ∀ hasSportsName.PoleVaultName

Name v SLC u ∃ hasValue.string

PersonName v Name u ¬CityName u ¬StadiumName

CityName v Name u ¬CountryName u ¬SportName

CountryName v Name u ¬PersonName u ¬StadiumName

StadiumName v Name u ¬SportName u ¬CityName

SportsName v Name u ¬CountryName u ¬PersonName

HighJumpName v SportsName

PoleVaultName v SportsName u ¬HighJumpName

Gender v SLC u ¬Name

Figure 4.16: Another excerpt of the TBox T for the athletics domain

1 PersonName(Y) ← Person(X), hasPersonName(X,Y)

2 personNameToGender(Y,Z) ← Person(X), hasPersonName(X,Y),

PersonName(Y), hasGender(X,Z),

Gender(Z)

3 spoNameToStaName(Y, Z) ← SportsCompetition(X),

hasSportsName(X,Y),SportsName(Y),

takesPlaceIn(X,Z),StadiumName(Z)

4 spoNameToStaName(Y, Z) ← HighJumpCompetition(X),

hasSportsName(X,Y),HighJumpName(Y),

takesPlaceIn(X,Z),StadiumName(Z)

5 spoNameToStaName(Y, Z) ← PoleVaultCompetition(X),

hasSportsName(X,Y),PoleVaultName(Y),

takesPlaceIn(X,Z),StadiumName(Z)

Figure 4.17: An excerpt of the text interpretation rules Rtex for the athletics domain

text interpretation rules in Rtex. Following the same strategy as for the previous modal-

ities, any assertion from the ABox textABox01 is considered as a fiat assertion, if there

exists a rule ri ∈ Rtex where the concept or role name of the assertion from textABox01

is also the predicate of a rule atom in the head of ri. In this example, the set Fiats

initially contains the following assertions:

Fiats = {(PersonName (pName2), 0),

(personNameToGender(pName2 , gen2), 0),

(spoNameToStaName(hjName2 , stName2), 0),

(spoNameToStaName(hjName2 , stName3), 0)}

The interpretation algorithm is initially called with the TBox T, the rule set Rtex,

the ABox textABox01, and the above-mentioned Fiats set. The algorithm starts with

the selection of a fiat assertion from Fiats. If the set Fiats contains both concept and

role assertions like in this example, then the algorithm selects concept assertions first

in order to obtain ‘preferred’ explanations. In the next section we discuss the reasons

why concept assertions should be explained first.

In this example, the only fiat concept assertion, namely PersonName(pName2), is

selected first. The assertion is removed from Fiats and transformed into a Boolean

query. Consequently, the RacerPro instance dedicated for text interpretation is called

as follows:

(retrieve-with-explanation ()

(pName2 PersonName))

The rule at line 1 in Figure 4.17 is the only rule with the corresponding predicate in

the rule head, and hence the only explanation generated as an answer to the query is:

∆1 = {Person(new ind11), hasPersonName(new ind11 , pName2)}

Following the interpretation algorithm, the assertions from ∆1 are added to A: A′

:= A ∪ ∆1. To apply the rules in Rtex to A′ in a forward-chaining way the function

execute-or-reexecute-all-rules is called. The function returns an empty set C, because

all rules in Rtex are declared as rules that should only be considered for abduction.

Since A′∪C is consistent w.r.t. T, the algorithm interpret is called recursively with the

following parameters: T, Rtex, A′ ∪ C, Fiats ′ ∪ {(c, level + 1) | c ∈ C}, where C = {}.
In the new interpret function call, the set Fiats contains the following assertions:

Fiats = {(personNameToGender(pName2 , gen2), 0),

(spoNameToStaName(hjName2 , stName2), 0),

(spoNameToStaName(hjName2 , stName3), 0)}

Assume that personNameToGender(pName2 , gen2) is selected as the next fiat assertion

to be explained. Again, the assertion is removed from Fiats, and then transformed into

a Boolean query for abduction. The corresponding function call is as follows:

(retrieve-with-explanation ()

(pName2 gen2 personNameToGender) (:reuse-old))

If a fiat role assertion such as personNameToGender(pName2 , gen2) is transformed

to a query for abduction, then the function retrieve-with-explanation is always called

with the parameter reuse-old. This parameter instructs the reasoner to consider not

only the hypothesization of new individuals but also the reuse of existing individuals

when answering the Boolean query. Therefore there exist two possible answers to the

above-mentioned query:

• Γ2 = {Person(new ind11), hasPersonName(new ind11, pName2),

PersonName(pName2), hasGender(new ind11 , gen2), Gender(gen2)}

• Γ3 = {Person(new ind12), hasPersonName(new ind12 , pName2),

PersonName(pName2), hasGender(new ind12 , gen2), Gender(gen2)}

Both explanations are consistent w.r.t A and T. However, the explanation Γ2 reuses

the individual new ind11 that exists in the ABox A, whereas the explanation Γ3 hy-

pothesizes a new individual named new ind12. According to the preference score we

have defined in Section 3.3.3, Γ2 has a better preference score than Γ3: Sa(T,A,Γ2)=4,

Sh(T,A,Γ2)=1, and S(T,A,Γ2)=4-1=3, whereas Sa(T,A,Γ3)=2, Sh(T,A,Γ3)=3, and

S(T,A,Γ3)=2-3=-1.

Since RacerPro’s retrieve-with-explanation implements the function select-preferred-

explanations (see Algorithm 7 in Section 3.3.3), it returns a single explanation, which

contains the set of non-entailed assertions from Γ2:

∆2 = {hasGender(new ind11 , gen2)}

According to the interpretation algorithm the assertions from ∆2 are added to A:

A′ := A ∪ ∆2. Figure 4.18 depicts the ABox A′ at this stage. The execute-or-rexecute-

all-rules function call delivers again an empty set C, and the algorithm interpret is

called again.

CityName (ciName2)

CountryName (coName2)

PersonName (pName2)

Gender (gen2)

HighJumpName (hjName2)

StadiumName (stName2)

StadiumName (stName3)

hasValue (ciName2 , ‘Bastad’)

hasValue (coName2 , ‘Sweden’)

hasValue (pName2 , ‘Blanka Vlasic’)

hasValue (hjName2 , ‘High Jump’)

hasValue (stName2 , ‘Swedish Wimbledon’)

hasValue (stName3 , ‘Bastad Tennis Stadium’)

personNameToGender (pName2 , gen2)

spoNameToStaName (hjName2 , stName2)

spoNameToStaName (hjName2 , stName3)

Person (new ind11)

hasPersonName(new ind11 , pName2)

hasGender(new ind11 , gen2)

Figure 4.18: The ABox A′ after the addition of the explanation ∆2

In the new interpret function call, the set Fiats contains the following assertions:

Fiats = {(spoNameToStaName(hjName2 , stName2), 0),

(spoNameToStaName(hjName2 , stName3), 0)}

Assume that the assertion spoNameToStaName(hjName2 , stName2) is selected first.

That assertion is removed from the set Fiats, and then transformed into the following

query:

(retrieve-with-explanation ()

(hjName2 stName2 spoNameToStaName) (:reuse-old))

There exists three rules in Rtex with the corresponding predicate in the rule head,

namely the rules at lines 3, 4, and 5 in Figure 4.17. Therefore three explanations can

be generated:

• Γ4 = {SportsCompetition(new ind13),

hasSportsName(new ind13 , hjName2), SportsName(hjName2),

takesPlaceIn(new ind13 , stName2), StadiumName(stName2)}

• Γ5 = {HighJumpCompetition(new ind14),

hasSportsName(new ind14 , hjName2), HighJumpName(hjName2),

takesPlaceIn(new ind14 , stName2), StadiumName(stName2)}

• Γ6 = {PoleVaultCompetition(new ind15),

hasSportsName(new ind15, hjName2), PoleVaultName(hjName2),

takesPlaceIn(new ind15 , stName2), StadiumName(stName2)}

However, the explanation Γ6 is inconsistent, meaning that if it would be added to

A′ depicted in Figure 4.18, then A′ would become inconsistent. The reason for the

inconsistency is obvious: If Γ6 is added to A′, the individual hjName2 becomes an

instance of the concepts HighJumpName and PoleVaultName. However, according to

the TBox T, these concepts are disjoint.

The other two explanations Γ4 and Γ5 are both consistent, and have the same

preference score. The individual hjName2 is an instance of both SportsName and

HighJumpName, because according to the TBox T, the concept SportsName subsumes

the concept HighJumpName. Therefore, the preference scores of Γ4 and Γ5 are the

same: S(T,A,Γ4)=2-3=-1, S(T,A,Γ5)=2-3=-1.

As discussed in Section 3.3.3 in detail, if there exists multiple explanations with the

same highest preference score, then these explanations should be checked for relaxed

ABox entailment, and the most-specific explanation should be preferred. As mentioned

earlier, RacerPro’s retrieve-with-explanation function not only calculates and compares

preference scores of explanations, but also checks them for relaxed ABox entailment.

Therefore, in our example, the retrieve-with-explanation function returns only ∆5, the

set of non-entailed assertions from Γ5, because it holds that Γ5 Γ4. In other words,

Γ5 is the most-specific, and hence preferred, explanation for the query.

Following the interpretation algorithm, the assertions from ∆5 are added to A: A′

:= A ∪ ∆5. The execute-or-reexecute-all-rules function call delivers again an empty set

C, since there are no rules to be considered when applying rules in a forward-chaining

way. Since A′ ∪ C is consistent w.r.t. T, the algorithm interpret is called recursively.

In the new interpret function call, the set Fiats contains a single assertion, namely

the assertion spoNameToStaName(hjName2 , stName3), which is selected as the next

fiat assertion. The assertion is removed from the set Fiats, and transformed into the

following query:

(retrieve-with-explanation ()

(hjName2 stName3 spoNameToStaName) (:reuse-old))

Also for this query, the rules at lines 3, 4, and 5 in Figure 4.15 can be used to compute

explanations. The explanation generated using the rule at line 5 is again inconsistent

for the same reason, and the explanation generated using the rule at line 4 is again more

specific than the explanation generated using the rule at line 3. However, the call of

the retrieve-with-explanation function together with the reuse-old parameter results in

the computation of two different explanations by using the rule at line 4 in Figure 4.15:

• Γ7 = {HighJumpCompetition(new ind14),

hasSportsName(new ind14 , hjName2), HighJumpName(hjName2),

takesPlaceIn(new ind14, stName3), StadiumName(stName3)}

• Γ8 = {HighJumpCompetition(new ind16),

hasSportsName(new ind16 , hjName2), HighJumpName(hjName2),

takesPlaceIn(new ind16 , stName3), StadiumName(stName3)}

The explanation Γ7 reuses the existing HighJumpCompetition instance new ind14,

whereas Γ8 hypothesizes a new individual named new ind16 as part of the explana-

tion. Consequently, the explanation Γ7 has the highest preference score among all

explanations, and at the same time is the most-specific explanation. The retrieve-with-

explanation function returns only ∆7, the set of non-entailed assertions from Γ7.

Following the interpretation algorithm, the assertions from ∆7 are added to A: A′

:= A ∪ ∆7. The execute-or-reexecute-all-rules function call delivers again an empty set

C. Since A′ ∪C is consistent w.r.t. T, the algorithm interpret is called recursively, this

time with an empty set of fiat assertions. Consequently, the new interpret function call

returns an ABox as result, which is accumulated in the set I.

Finally, the interpret algorithm terminates by returning the set I containing the

ABox depicted in Figure 4.19. As a result, the semantic interpretation engine answers

the client’s call of the interpretText function with the ABox shown in Figure 4.19. In the

answer, the interpretation ABox is given the unique name textABox01 interpretation1.

CityName (ciName2)

CountryName (coName2)

PersonName (pName2)

Gender (gen2)

HighJumpName (hjName2)

StadiumName (stName2)

StadiumName (stName3)

hasValue (ciName2 , ‘Bastad’)

hasValue (coName2 , ‘Sweden’)

hasValue (pName2 , ‘Blanka Vlasic’)

hasValue (hjName2 , ‘High Jump’)

hasValue (stName2 , ‘Swedish Wimbledon’)

hasValue (stName3 , ‘Bastad Tennis Stadium’)

personNameToGender (pName2 , gen2)

spoNameToStaName (hjName2 , stName2)

spoNameToStaName (hjName2 , stName3)

Person (new ind11)

hasPersonName(new ind11 , pName2)

hasGender(new ind11 , gen2)

HighJumpCompetition (new ind14)

hasSportsName(new ind14 , hjName2)

takesPlaceIn(new ind14 , stName2)

takesPlaceIn(new ind14 , stName3)

Figure 4.19: The interpretation ABox textABox01 interpretation1 returned by the se-

mantic interpretation engine

Informally speaking, the interpretation of the text segment in Figure 4.14 states

that a high jump competition is taking place in two stadiums. Notice that in the TBox

T shown in Figure 4.16, there are no number restrictions on the takesPlaceIn relation

between the concepts SportsCompetition and StadiumName, and thus the interpreta-

tion ABox in Figure 4.19 is consistent. If we read the text in Figure 4.14 carefully, we

can understand that the Bastad tennis stadium, where the high jump competition took

place, is nicknamed the ‘Swedish Wimbledon’. However, the lack of this information

in the text analysis ABox in Figure 4.15 indicates that the employed text analysis tool

could not identify the synonymy of these two stadium names. As a solution, more

sophisticated text analysis techniques can be applied to improve text analysis results.

In our hybrid multimedia interpretation approach, the employed text analysis tool can

easily be replaced by any other text analysis tool that can provide for an analysis

ABox as output. Furthermore, despite the replacement of the text analysis tool em-

ployed in the framework, the semantic interpretation engine can be used without any

modifications.

4.3.2 Strategies for the Interpretation Process

In the previous section, the segments of a sample web page have been interpreted in

the following order: first image, then caption, and finally text. As mentioned before,

the interpretation of a segment is independent from other segments, and hence the

segments can be interpreted in any order. The only restriction is that all segments of

a multimedia document have to be interpreted before the fusion step.

Different from segments, fiats assertions cannot be processed in an arbitrary or-

der. In order to obtain ‘preferred’ explanations of observations using our logic-based

interpretation approach, fiat concept assertions have to be interpreted before fiat role

assertions. In addition, the strategy parameter Ω of the abductive retrieval service

(see Section 3.3.2) has to be selected carefully such that during explanation generation

existing individuals from the knowledge base are reused only in certain cases. If Racer-

Pro is used for abduction, the reasoner can be instructed to reuse existing individuals

by calling the retrieve-with-explanation function with the parameter reuse-old. In this

section we investigate appropriate strategy parameter values and the appropriate order

for explaining fiat assertions during the interpretation process on the basis of examples.

This will provide for additional motivation why the select-fiats function presented in

Section 3.4 employs a particular strategy when selecting the next fiat assertion during

the interpretation process.

As discussed in Section 3.2, the logic-based interpretation approach presented in this

work exploits a knowledge representation formalism where DLs are extended with rules.

The use of Datalog-like rules to extend DLs guarantees to preserve decidability, however

introduces some limitations, which has to be considered during explanation generation.

In fact, a Datalog-like rule contains at most one positive literal, and hence only one

atom in the head. For the time being, RacerPro’s retrieve-with-explanation can only be

called to explain a single observation, which is a concept or a role assertion. However,

this does not mean that the observation to be explained is considered in complete

isolation. In fact, all other observations exist in the ABox part of the background

knowledge, and thus, affect the preference scores of explanations (see Equation 3.6 in

Section 3.3.3). Therefore, ‘preferred’ explanations can be obtained only by appropriate

configuration of the retrieve-with-explanation parameters.

To explain the role of the retrieve-with-explanation function’s reuse-old parameter,

in the following, we present a simple interpretation example. Assume that the text

analysis ABox sampleABox1 in Figure 4.20 has to be interpreted.

PersonName (pName3)

Age (age1)

Gender (gen3)

hasValue (pName3 , ‘Blanka Vlasic’)

personNameToGender (pName3 , gen3)

personNameToAge (pName3 , age1)

Figure 4.20: The ABox sampleABox1

Assume that the background knowledge consists of the TBox in Figure 4.21 and the

set of rules in Figure 4.22.

Figure 4.23 illustrates two interpretation ABoxes for the analysis ABox sampleABox1

as graphs. The ABox on the left-hand side is the interpretation ABox that is preferred

and hence should be computed by the semantic interpretation engine, whereas the

ABox on the right-hand side is an interpretation result that should be omitted.

DLC v ¬SLC

Person v DLC u ∃≤1hasGender .Gender u ∃≤1hasAge.Age u
∃ hasPersonName.PersonName

Name v SLC u ∃ hasValue.string

PersonName v Name

Gender v SLC u ¬Name

Age v SLC u ¬Name

Figure 4.21: A sample TBox T

personNameToGender(Y, Z) ← Person(X), hasPersonName(X,Y),

PersonName(Y), hasGender(X,Z),

Gender(Z)

personNameToAge(Y,Z) ← Person(X), hasPersonName(X,Y),

PersonName(Y), hasAge(X,Z),

Age(Z)

Figure 4.22: A set of text interpretation rules R1

Informally speaking, the interpretation on the right-hand side in Figure 4.23 is not

preferred due to its vagueness. It includes two hypothesized Person instances, namely

new ind1 and new ind2, that may or may not refer to the same person in the text

segment.

With respect to the set of text interpretation rules R1 and the analysis ABox sam-

pleABox1, the set of fiat assertions is as follows:

Fiats = {(personNameToGender(pName3 , gen3), 0),

(personNameToAge(pName3 , age1), 0)}

Assume that the assertion personNameToGender(pName3 , gen3) is selected first. The

retrieve-with-explanation function call to explain this assertion is as follows:

(retrieve-with-explanation ()

(pName3 gen3 personNameToGender) (:reuse-old))

The answer to the query contains a single explanation, namely:

Figure 4.23: Two possible interpretation results for the same analysis ABox sam-

pleABox1, where the one on the left-hand side is preferred

∆1 = {Person(new ind1), hasPersonName(new ind1 , pName3),

hasGender(new ind1 , gen3)}

For this query, the use or the exclusion of the reuse old parameter makes no difference,

because there exists no person instance in the ABox that can be reused. Following the

interpretation algorithm, all assertions from the explanation ∆1 are added to the ABox

sampleABox1 : A′ = sampleABox1 ∪ ∆1.

The parameter reuse old plays a crucial role for obtaining the preferred explanation

of the fiat assertion personNameToAge(pName3 , age1). If the query is posed without

the reuse old parameter:

(retrieve-with-explanation ()

(pName3 age1 personNameToAge))

only the following explanation is generated:

∆2 = {Person(new ind2), hasPersonName(new ind2 , pName3),

hasAge(new ind2 , age1)}

In this case, the final interpretation result corresponds to the interpretation ABox

shown on the right-hand side graph in Figure 4.23, which is not preferred. However, if

the same query is posed with the parameter reuse old :

(retrieve-with-explanation ()

(pName3 age1 personNameToAge) (:reuse-old))

there are two possible explanations:

• Γ3 = {Person(new ind1), hasPersonName(new ind1 , pName3),

PersonName(pName3), hasAge(new ind1, age1), Age(age1)}

• Γ4 = {Person(new ind2), hasPersonName(new ind2 , pName3),

PersonName(pName3), hasAge(new ind2 , age1), Age(age1)}

with the preference scores S(T1, A′, Γ3)= 4-1=3 and S(T1, A′, Γ4)=2-3=-1. Conse-

quently, Γ3 is the preferred explanation. The retrieve-with-explanation function call

returns the set of non-entailed assertions from Γ3 as result, which are added to A′ fol-

lowing the interpretation algorithm. By using the reuse old parameter, we obtain the

same interpretation result as the one depicted on the left-hand side graph in Figure 4.23,

which is the preferred interpretation result.

This example shows that, in the logic-based interpretation approach, fiat role as-

sertions have to be explained always with respect to existing individuals in the ABox,

in order to obtain preferred explanations only.

In the next example, we explore the appropriate abduction strategy for explaining

fiat concept assertions. Assume that the text analysis ABox sampleABox2 in Fig-

ure 4.24 has to be interpreted. In addition, the background knowledge consists of the

TBox T in Figure 4.21 and the set of rules R2 in Figure 4.25.

PersonName (pName4)

PersonName (pName5)

hasValue (pName4 , ‘Blanka Vlasic’)

hasValue (pName5 , ‘Yelena Slesarenko’)

Figure 4.24: The ABox sampleABox2

PersonName(Y) ← Person(X), hasPersonName(X,Y)

Figure 4.25: A set of text interpretation rules R2 containing a single rule

In this case, the set of fiat assertions contains both concept assertions from the

ABox sampleABox2 :

Fiats = {(PersonName(pName4), 0), (PersonName(pName5), 0)}

Assume that PersonName(pName4) is the first assertion selected for abduction. The

function call to explain this concept assertion is as follows:

(retrieve-with-explanation ()

(pName4 PersonName))

where the use of the parameter reuse-old would not have any effect on the query answer,

since, at this moment, there exists no Person instance in the ABox that could be reused

in explanation generation. The only explanation is generated by hypothesizing a Person

instance:

∆1 = {Person(new ind1), hasPersonName(new ind1 , pName4)}

After the addition of the assertions from ∆1 to the ABox sampleABox2 : A′ = sam-

pleABox2 ∪ ∆1, the last fiat assertion, namely PersonName(pName5), is transformed

into a Boolean query:

(retrieve-with-explanation ()

(pName5 PersonName))

Since the retrieve-with-explanation function is called without the reuse-old parameter,

only a single explanation is generated by hypothesizing another Person instance:

∆2 = {Person(new ind2), hasPersonName(new ind2 , pName5)}

According to the interpretation algorithm, all assertions from ∆2 are added to A′ to

obtain the interpretation ABox. The interpretation ABox is depicted on the left-hand

side of Figure 4.26.

Informally speaking, the graph on the left-hand side in Figure 4.26 illustrates the

situation where two person names are considered as evidences for the existence of

two persons. This interpretation corresponds to what most users would agree with

intuitively. Therefore the interpretation result illustrated by the left-hand side graph

is the preferred interpretation of the analysis ABox sampleABox2.

Notice that one would prefer the interpretation on the right-hand side graph in

Figure 4.26, if both person names, namely pName4 and pName5, refer to the same

Figure 4.26: Two different interpretation results for the analysis ABox sampleABox2,

where the one on the left-hand side is preferred

person. In our framework, this information can only be extracted by text analysis

tools. Therefore, if the analysis ABox contains no additional information about two

person names referring to the same person, the interpretation engine has to interpret

this analysis ABox under the assumption that different person names refer to different

persons, and return the interpretation result shown in the left-hand side graph.

If the retrieve-with-explanation function is called with the reuse-old parameter for

the last fiat concept assertion:

(retrieve-with-explanation ()

(pName5 PersonName) (:reuse-old))

two explanations are generated:

• Γ3 = {Person(new ind1), hasPersonName(new ind1 , pName5)}

• Γ4 = {Person(new ind2), hasPersonName(new ind2 , pName5)}

where, informally speaking, Γ3 reuses the individual new ind1, and Γ4 hypothesizes a

Person instance, namely new ind2. The preference scores of the explanations are as

follows: S(T1, A
′, Γ3)= 1-1=0 and S(T1, A

′, Γ4)=0-2=-2. Since the preference score of

Γ3 is higher, the retrieve-with-explanation function call returns the set of non-entailed

assertions from Γ3, namely ∆1 = {hasPersonName(new ind1 , pName5)}. After the

addition of ∆1 to A′, the interpretation depicted on the right-hand side of Figure 4.26 is

obtained, which is not preferred. This simple example shows that fiat concept assertions

should always be explained without the reuse of existing individuals in the ABox.

After the identification of appropriate strategies regarding the reuse of individuals,

we continue with the identification of the appropriate order for the processing of fiat

concept and role assertions. To this end, we use a very simple text analysis ABox as

an example.

Assume that the text analysis ABox sampleABox3 in Figure 4.27 has to be inter-

preted. The background knowledge consists of the TBox T in Figure 4.21 and the set

of rules R3 in Figure 4.28.

PersonName (pName6)

Gender (gen4)

hasValue (pName6 , ‘Blanka Vlasic’)

personNameToGender (pName6 , gen4)

Figure 4.27: The sample analysis ABox sampleABox3

PersonName(Y) ← Person(X), hasPersonName(X,Y)

personNameToGender(Y,Z) ← Person(X), hasPersonName(X,Y),

PersonName(Y), hasGender(X,Z),

Gender(Z)

Figure 4.28: A set of text interpretation rules R3

Initially, the set Fiats contains following assertions:

Fiats = {(PersonName(pName6), 0), (personNameToGender(pName6 , gen4), 0)}

Assume that the assertion personNameToGender(pName6 , gen4) is selected first. The

function call to explain this assertion is:

(retrieve-with-explanation ()

(pName6 gen4 personNameToGender) (:reuse-old))

For this query only the following explanation is generated:

∆1 = {Person(new ind1), hasPersonName(new ind1 , pName6),

hasGender(new ind1 , gen4)}

Subsequently, all assertions from ∆1 are added to the ABox sampleABox3 : A′ = sam-

pleABox3 ∪ ∆1. In the next step, the assertion PersonName(pName4) is processed:

(retrieve-with-explanation ()

(pName6 PersonName))

As discussed earlier, for fiat concept assertions that are transformed into a Boolean

query, the retrieve-with-explanation function is called without the parameter reuse-old.

Therefore existing individuals from the ABox sampleABox3 are not considered for reuse

in the generated explanation:

∆2 = {Person(new ind2), hasPersonName(new ind2 , pName6)}

The interpretation result for this simple example is obtained by adding all assertions

from ∆2 to A′. The interpretation ABox is depicted on the right-hand side graph in

Figure 4.29. Informally speaking, the PersonName instance and the Gender instance

are considered to belong to two Person instances that may or may not be the same.

Figure 4.29: Two different interpretation results for the analysis ABox sampleABox3,

where the one on the left-hand side is preferred

Figure 4.29 illustrates two possible interpretation results for the analysis ABox

sampleABox3. The graph on the left-hand side depicts another interpretation where

the person name and the gender are interpreted as belonging to the same person since

a relation between the person name and gender has been identified by text analysis

tools. Obviously, the interpretation result on right-hand side graph is vague compared

to the interpretation result on the left-hand side graph. Therefore the interpretation

result shown on the left-hand side is the more intuitive one, and thus should be the

preferred interpretation for this example.

Figure 4.29 also shows that we could not obtain the preferred interpretation result

by calling fiat role assertions first, and fiat concept assertions later. We continue our

discussion by analyzing the situation in which fiat concept assertions are explained first.

To interpret the ABox sampleABox3 in Figure 4.27, this time we start with the fiat

concept assertion PersonName(pName6):

(retrieve-with-explanation ()

(pName6 PersonName))

and retrieve the following explanation:

∆1 = {Person(new ind1), hasPersonName(new ind1 , pName6)}

After the addition of all assertions from ∆1 to the ABox sampleABox3 : A′ = sam-

pleABox3 ∪ ∆1, the fiat role assertion personNameToGender(pName6 , gen4) is trans-

formed into a Boolean query:

(retrieve-with-explanation ()

(pName6 gen4 personNameToGender) (:reuse-old))

There exist two possible explanations for the query, since the retrieve-with-explanation

function is instructed to consider also explanations where existing individuals from A′

are reused.

• Γ2 = {Person(new ind1), hasPersonName(new ind1 , pName6),

PersonName(pName6), hasGender(new ind1 , gen4), Gender(gen4)}

• Γ3 = {Person(new ind2), hasPersonName(new ind2 , pName6),

PersonName(pName6), hasGender(new ind2 , gen4), Gender(gen4)}

Obviously, the explanation Γ2 has a higher preference score than the explanation

Γ3, because it hypothesizes less assertions and both explanations have the same number

of assertions. More precisely, the preference scores of the explanations are as follows:

S(T, A′, Γ2)= 4-1=3 and S(T, A′, Γ3)=2-3=-1. Therefore, the retrieve-with-explanation

function returns only the set of non-entailed assertions from Γ2 as result. Following

the interpretation algorithm, the set of non-entailed assertions from Γ2 is added to A′

to obtain the interpretation result. In this case, the interpretation result we obtain is

the preferred interpretation of the analysis ABox, and corresponds to the left-hand side

graph in Figure 4.29.

To recapitulate, we have investigated the appropriate abduction strategy parameter

Ω for the reuse or the exclusion of existing individuals from the knowledge base during

the interpretation process. Using practical examples, we have shown that in order to

obtain preferred interpretations, fiat role assertions should always be explained by also

considering the reuse of existing individuals (Ω=reuse existing individuals), whereas

fiat concept assertions should always be explained by considering the hypothesization

of new individuals only (Ω=use new individuals).

Furthermore, we have investigated the appropriate order for the processing of fiat

concept and role assertions. Based on examples, we have shown that fiat concept

assertions have to be processed before fiat role assertions in order to obtain preferred

interpretations.

The current implementation of the semantic interpretation engine employs the

select-fiats function presented in Section 3.4, and thus computes interpretations fol-

lowing the strategies we have dicussed in this section. Given a set of fiat assertions

with the same level, the semantic interpretation engine processes fiat concept assertions

first, and then fiat role assertions. In addition, the semantic interpretation engine in-

structs RacerPro to follow the above-mentioned individual reuse strategy through the

appropriate parameterization of the retrieve-with-explanation function.

4.3.3 Fusion

In Section 4.3.1, we discussed modality-specific interpretation of various segments of

a sample web page, where the semantic interpretation engine provides for the essen-

tial machinery to compute interpretations. Besides the interpretation algorithm, the

semantic interpretation engine implements also the fusion algorithm presented in Sec-

tion 3.5. In this section, we present the fusion of modality-specific interpretations based

on examples.

As discussed in Section 3.5, the goal of fusion is not only to merge modality-specific

interpretation ABoxes into a fused interpretation ABox, but also to achieve an infor-

mation gain through the identification of individuals in modality-specific interpreta-

tion ABoxes that describe the same real-world entity. After the addition of same-as

assertions, which represent the sameness of individuals in different modality-specific

interpretation ABoxes, certain fusion alternatives can be ruled out due to inconsisten-

cies. Since a web page segment may have multiple interpretations, there exists multiple

fusion alternatives, which cause the generation of several fused interpretation ABoxes

for the same multimedia document. However, practical application scenarios require

the generation of a small number of fused interpretation ABoxes for a multimedia

document.

In order to reduce the number of fused interpretations, we enhance the background

knowledge used by the semantic interpretation engine with a set of additional axioms.

Figure 4.30 shows an excerpt of these axioms, which state background knowledge about

the athletics domain. In the BOEMIE project these axioms have automatically been

generated from an athletics database. Henceforth, we refer to the enhanced background

knowledge as Tenc.

Person u ∃hasPersonName.∃hasValue.‘Blanka Vlasic’ v HighJumper

Person u ∃hasPersonName.∃hasValue.‘Yelena Slesarenko′ v HighJumper

Person u ∃hasPersonName.∃hasValue.‘Yelena Isinbayeva′ v PoleVaulter

Person u ∃hasPersonName. ∃hasValue.‘Stacy Dragila′ v PoleVaulter

Figure 4.30: An excerpt of the axioms, which are added to the background knowledge T

To show the role of the additional axioms in making certain fusion alternatives to

become inconsistent, we give a simple example from the athletics domain. Assume

a web page with an image and its caption. There exists two interpretations for the

image segment, one containing a pole vaulter and the other one a high jumper. For the

caption, there exists only one interpretation, which contains a person instance named

‘Yelena Slesarenko’. In this case, there exists two fusion alternatives, since the image

segment has two interpretations. In one fusion alternative, the pole vaulter from the

image interpretation and the person from the caption interpretation, and in the other

fusion alternative, the high jumper from the other image interpretation and the person

from the caption interpretation have been identified as describing the same real-world

entity.1

After the addition of the corresponding same-as assertions, one of the fusion al-

ternatives contains a pole vaulter named ‘Yelena Slesarenko’, whereas the other fusion

alternative contains a high jumper named ‘Yelena Slesarenko’. Notice that according to

Tenc ‘Yelena Slesarenko’ is a high jumper (see Figure 4.30). Furthermore, Tenc contains

also the following disjointness axiom:

HighJumper u PoleV aulter v ⊥

Consequently, the fused interpretation ABox that contains a pole vaulter named ‘Yelena

Slesarenko’:

PoleVault (new ind18)
PoleVaulter (new ind19)
hasParticipant(new ind18 , pName19)
hasPart(new ind18, pole5)
Pole (pole5)
hasPart(new ind19 , face3)
hasPart(new ind19 , body3)
PersonFace (face3)
PersonBody (body3)
adjacent (face3 , body3)
adjacent (body3 , pole5)
Person (new ind20)
hasPersonName(new ind20 , pName11)
PersonName (pName11)
hasValue (pName11 , ‘Yelena Slesarenko’)
same-as (new ind19 ,new ind20)

is inconsistent w.r.t. Tenc. Therefore, the semantic interpretation engine discards this

fusion alternative, and returns the fused interpretation ABox that contains a high

jumper named ‘Yelena Slesarenko’ as the only fusion result. This simple example

shows how the fusion algorithm disambiguates modality-specific interpretation results

with respect to the background knowledge, and hence reduces the number of fused

interpretation ABoxes.

1The queries used to identify the same-as candidates in web pages with athletics news will be

presented later in this section.

It should be noted here that the modality-specific interpretation ABoxes generated

by the semantic interpretation engine contain not only information about the athlet-

ics domain but also information about the segment from which information has been

extracted and interpreted. Furthermore, every interpretation ABox generated by the

semantic interpretation engine contains role assertions between the segment instance

and DLC instances, as well as between the segment instance and SLC instances. In

the interpretation ABoxes shown so far, e.g. the caption interpretation ABox caption-

ABox01 interpretation1 in Figure 4.13, these assertions are omitted for the sake of

brevity. However, for the current discussion these assertions are indispensable, since

they are exploited during fusion.

Figure 4.31 depicts the complete interpretation ABox captionABox01 interpretation1

for the caption in Figure 4.9 including all assertions (compare to Figure 4.13). Similarly,

all image interpretation ABoxes contain a unique Image instance, and all text inter-

pretation ABoxes a unique Text instance. As shown in Figure 4.31, the role depicts is

used to explicitly represent a relation between the segment and all DLC instances that

have been hypothesized during the interpretation step, whereas the role depictsSLC

is used to represent a relation between the segment and all SLC instances. Concepts

such as Caption, Image, Text and roles such as depicts and depictsSLC are related to

structural aspects of multimedia content. Therefore, in the BOEMIE project, these

concepts and roles have been defined in the multimedia content ontology MCO.

We proceed with the fusion of modality-specific interpretations of the web page seg-

ments from Section 4.3.1. For the image in Figure 4.3, two interpretation ABoxes shown

in Figure 4.8, namely imageABox01 interpretation1 and imageABox01 interpretation2,

are computed. For the text in Figure 4.9 that captions the image, and the text seg-

ment in Figure 4.14, the interpretation ABoxes captionABox01 interpretation1 and

text01 interpretation1 are computed, respectively.

Notice that UNA is dropped for fusion, and all interpretation ABoxes generated

by the semantic interpretation have unique names. Interpretation ABoxes with unique

names can be identified and referenced unambiguously, which is essential for fusion.

In this example there exist two fusion alternatives, since the image segment has two

interpretations.

Following the fusion algorithm presented in Section 3.5 (see Algorithm 10), for each

fusion alternative, i.e. the cross product of the sets of modality-specific interpretation

Caption (cap1)

depicts (cap1 ,new ind9)

depicts (cap1 ,new ind10)

depictsSLC (cap1 , pName1)

depictsSLC (cap1 , perf1)

depictsSLC (cap1 , ciName1)

depictsSLC (cap1 , coName1)

PersonName (pName1)

Performance (perf1)

CityName (ciName1)

CountryName (coName1)

personNameToPerformance (pName1 , perf1)

hasValue (pName1 , ‘Blanka Vlasic’)

hasValue (perf1 , ‘2.02′)

hasValue (ciName1 , ‘Bastad’)

hasValue (coName1 , ‘Sweden’)

Person (new ind9)

hasPersonName (new ind9 , pName1)

personToPerformance (new ind6 , perf1)

SportsTrial (new ind10)

hasPerformance (new ind10 , perf1)

hasParticipant (new ind10 ,new ind9)

Athlete (new ind9)

Figure 4.31: All assertions of the interpretation ABox captionABox01 interpretation1 as

returned by the semantic interpretation engine

ABoxes, the corresponding modality-specific interpretation ABoxes are accumulated

into an ABox A. Next, the function query-same-as-candidates is called to obtain a set

of pairs of individuals, which are believed to refer to the same real-world entity. To

this end, the function query-same-as-candidates poses a set of application-dependent

conjunctive queries CQs to Tenc ∪ A.

In the BOEMIE project, experiments have been conducted on web pages with

athletics news in order to identify the application-dependent conditions that have to be

fulfilled to consider two individuals as the same. Consequently, the set of conjunctive

queries CQs defined for the BOEMIE project contains three queries. In a nutshell, one

of these queries returns pairs of SportsTrial instances, whereas the other two return

pairs of Person instances.

More precisely, the first query returns pairs of SportsTrial instances where the first

SportsTrial instance originates from the image interpretation ABox, and the second

SportsTrial instance from the caption interpretation ABox:

(retrieve (?st1 ?st2)

(and (?x Image)

(?x ?st1 depicts)

(?st1 SportsTrial)

(?y Caption)

(?y ?st2 depicts)

(?st2 SportsTrial)))

The second query returns pairs of Person instances where the first Person instance

originates from the image interpretation ABox, and the second Person instance from

the caption interpretation ABox:

(retrieve (?p1 ?p2)

(and (?x Image)

(?x ?p1 depicts)

(?p1 Person)

(?y Caption)

(?y ?p2 depicts)

(?p2 Person)))

The third query returns pairs of Person instances with the same person names where

the first Person instance originates from the caption interpretation ABox, and the

second Person instance from the text interpretation ABox:

(retrieve (?p1 ?p2)

(and (?x Caption)

(?x ?p1 depicts)

(?p1 Person)

(?p1 ?pName1 hasPersonName)

(?y Text)

(?y ?p2 depicts)

(?p2 Person)

(?p2 ?pName2 hasPersonName)

(?pName1 ?pName2 (constraint hasValue hasValue string=))))

Following the fusion algorithm, the set of pairs of individuals C returned by the

query-same-as-function function call is used to generate the set of same-as assertions

SA. In the next step, the function compute-consistent-fused-interpretations is called

with the enhanced background knowledge Tenc, the ABox A, and the set of same-as

assertions SA.

As discussed earlier in this section, the ABox A might become inconsistent after

the addition of same-as assertions. The reason for the inconsistency of the fused inter-

pretation ABox might be imperfect interpretation results that are probably caused by

imperfect analysis results. In fact, experiments conducted on web pages with athletics

news have shown that in many cases, image analysis results are less reliable than text

analysis results. Therefore, for images with captioned text, the interpretation results

from the caption segment should be preferred over the interpretation results from the

image segment. For this purpose, image interpretation results can be ‘relaxed’ in the

sense that assertions regarding specific sports trial and athlete types can be replaced

with assertions representing more general sports trial and athlete types. For exam-

ple, PoleVault(i1) can be replaced with SportsTrial(i1), and PoleVaulter(i2) can be

replaced with Jumper(i2).

In the BOEMIE project, this insight has been exploited to develop a specific repair

mechanism in case of inconsistent fused interpretation ABoxes. In order to apply the

idea of ‘relaxing’ image interpretation results to repair inconsistencies, the application-

specific compute-consistent-fused-interpretations function shown in Algorithm 14 has

been defined, which overwrites the general compute-consistent-fused-interpretations

function presented in Section 3.5 (see Algorithm 12).

Algorithm compute-consistent-fused-interpretations(Tenc,A, SA)

Output: a set of consistent fused interpretation ABoxes

if T ∪A ∪ SA |= ⊥ then
return {relax-image-interpretation-results(Tenc,A, SA)}

else
return {A ∪ SA}

end

Algorithm 14: The algorithm for computing consistent fused interpretations

If the fused interpretation ABox (A ∪ SA) is inconsistent, the compute-consistent-

fused-interpretations function calls the relax-image-interpretation-results function. The

goal of the relax-image-interpretation-results function is to relax image interpretation

results, and then to propagate caption interpretation results in order to repair the

inconsistency. Later in this section, we will discuss the details of the relax-image-

interpretation-results function based on a practical example.

Following the fusion algorithm in Algorithm 10, all consistent fused interpretation

ABoxes returned by the compute-consistent-fused-interpretations function are accumu-

lated in the set F. Finally, the function select-preferred-fused-interpretations is called

to select preferred fused interpretations from F, which are then returned as the result.

The general select-preferred-fused-interpretations function presented in Section 3.5 (see

Algorithm 13) has not been implemented in the BOEMIE project. It has been over-

written by an application-specific select-preferred-fused-interpretations, which employs,

due to time restrictions of the project, no strategy for preferring fused interpretations.

It simply returns all consistent fused interpretation ABoxes as result.

Let us proceed with a concrete example to clarify how the preference of caption

interpretation results over image interpretation results is done in practice. We assume

that a client wants to obtain fused interpretations for a web page. For simplicity, the

web page consists of an image and a caption segment only. For fusion, the client calls

the interpetWebPage web service. Figure 4.32 depicts a so-called web page analysis

ABox , which the client of the semantic interpretation engine sends as a parameter

when calling the interpetWebPage web service.

The web page analysis ABox describes the structure of the multimedia document. In

addition, it serves as a blueprint for the fusion of the interpretation results of segments

into a fused interpretation ABox of the whole multimedia document. The web page

WebPage (wep1)

CaptionedImage (cim1)

Image (ima1)

Caption (cap1)

contains (wep1 , cim1)

contains (cim1 , ima1)

contains (cim1 , cap1)

hasURL (wep1 , ‘http://www.iaaf.org/.../news.html’)

hasURL (ima1 , ‘http://www.iaaf.org/.../ima01.jpg’)

Figure 4.32: The analysis ABox of a sample web page

analysis ABox contains also additional information such as the URL of the web page,

which is useful for the retrieval of the document.

Image (ima1)

depicts (ima1 ,new ind1)

depicts (ima1 ,new ind2)

depictsSLC (ima1 , face1)

depictsSLC (ima1 , body1)

depictsSLC (ima1 , pole1)

PersonFace (face1)

PersonBody (body1)

Pole (pole1)

adjacent (face1 , body1)

adjacent (body1 , pole1)

Person (new ind1)

hasPart(new ind1 , face1)

hasPart(new ind1 , body1)

PoleVault (new ind2)

hasParticipant(new ind2 , new ind1)

PoleVaulter (new ind1)

hasPart(new ind2 , pole1)

Figure 4.33: A sample image interpretation ABox

Assume that for the image in the web page, the interpretation ABox in Figure 4.33,

and for the text that captions the image, the interpretation ABox in Figure 4.34 have

been generated and returned by the semantic interpretation engine before the inter-

petWebPage web service call.

Caption (cap1)

depicts (cap1 ,new ind3)

depicts (cap1 ,new ind4)

depicts (cap1 ,new ind5)

depicts (cap1 ,new ind6)

depictsSLC (cap1 , pName1)

depictsSLC (cap1 , sName1)

PersonName (pName1)

Running100mName (sName1)

hasValue (pName1 , ‘Usein Bolt’)

hasValue (sName1 , ‘100m′)

Person (new ind3)

hasPersonName (new ind3 , pName1)

Running100mCompetition (new ind4)

hasSportsName (new ind4, sName1)

hasPart (new ind4,new ind5)

Running100mRound (new ind5)

hasPart (new ind5,new ind6)

Running100m (new ind6)

Figure 4.34: A sample caption interpretation ABox

Following the fusion algorithm in Algorithm 10, the image and caption interpreta-

tion ABoxes are merged into a single ABox A. Afterwards, the function query-same-

as-candidates is called to obtain the set of pairs of candidate individuals, which are

then used to generate the set of same-as assertions SA. In our example, SA contains

the following assertions:

(same-as new ind1 new ind3)

(same-as new ind2 new ind6)

In the next step, the compute-consistent-fused-interpretations function is called with

the enhanced background knowledge Tenc, the ABox A, and the set of same-as asser-

tions SA. According to Tenc, PoleVault and Running100m are disjoint subconcepts of

SportsTrial :

Jumping v SportsTrial
Running v SportsTrial u ¬Jumping

PoleVault v Jumping
Running100m v Running

Therefore, A∪ SA is inconsistent w.r.t. Tenc, and the relax-image-interpretation-results

function is called. Informally speaking, the function relax-image-interpretation-results

performs four subtasks:

1. Remove all SLC instances that are in the depictsSLC relation with the Image

instance, and all relations between these SLC instances.

2. Remove all concept assertions from image interpretation results that declare a

specific type of a SportsTrial or a specific type of an Athlete.

3. For the concept assertions removed in step 2, add new concept assertions that

declare a SportsTrial or a Athlete instance in the image.

4. If A ∪ SA is consistent w.r.t. Tenc, return {A ∪ SA}, otherwise an empty set as

result.

In our example, relax-image-interpretation-results proceeds as follows: First, all SLC

instances in the depictsSLC relation with the Image instance, and all relations between

these SLC instances are removed from A. The exact syntax of the necessary RacerPro

function calls is as follows:

(forget-individual face1)

(forget-individual body1)

(forget-individual pole1)

It should be noted that RacerPro’s forget-individual function removes not only concept

assertions in which the given individual name appears, but also all role assertions in

which the individual name appears.

Second, all assertions that declare a specific sports trial or a specific athlete in the

image segment are removed from the ABox A.

(forget-concept-assertion new ind1 PoleVaulter)

(forget-concept-assertion new ind2 PoleVault)

Third, new concept assertions are added to A in order to declare new ind1 and

new ind2 as Athlete and SportsTrial instances, respectively.

(instance new ind1 Athlete)

(instance new ind2 SportsTrial)

Finally, the relax-image-interpretation-results function returns {A ∪ SA} as result,

since A ∪ SA is consistent w.r.t. Tenc. Consequently, the semantic interpretation engine

answers the interpretWebPage web service call with the ABox shown in Figure 4.35,

which is the fused interpretation ABox of the sample web page.

WebPage (wep1)

CaptionedImage (cim1)

Image (ima1)

Caption (cap1)

contains (wep1 , cim1)

contains (cim1 , ima1)

contains (cim1 , cap1)

hasURL (wep1 , ‘http://www.iaaf.org/.../news.html’)

hasURL (ima1 , ‘http://www.iaaf.org/.../ima01.jpg’)

Image (ima1)

depicts (ima1 ,new ind1)

depicts (ima1 ,new ind2)

Athlete (new ind1)

SportsTrial (new ind2)

Caption (cap1)

depicts (cap1 ,new ind3)

depicts (cap1 ,new ind4)

depicts (cap1 ,new ind5)

depicts (cap1 ,new ind6)

depictsSLC (cap1 , pName1)

depictsSLC (cap1 , sName1)

PersonName (pName1)

Running100mName (sName1)

hasValue (pName1 , ‘Usein Bolt’)

hasValue (sName1 , ‘100m′)

Person (new ind3)

hasPersonName (new ind3 , pName1)

Running100mCompetition (new ind4)

hasSportsName (new ind4 , sName1)

hasPart (new ind4 ,new ind5)

Running100mRound (new ind5)

hasPart (new ind5 ,new ind6)

Running100m (new ind6)

same-as (new ind1 new ind3)

same-as (new ind2 new ind6)

Figure 4.35: The fused interpretation ABox of the sample web page

Chapter 5

Evaluation

In this work we present a logic-based multimedia interpretation approach, which serves

as the formal foundation for the automatic computation of deep-level semantic descrip-

tions of multimedia documents. In order to obtain deep-level semantic descriptions of

multimedia content, we propose a hybrid approach. As discussed in Chapter 2, the ap-

proach is hybrid in the sense that it combines surface-level information extraction and

multimedia interpretation. Modality-specific analysis tools extract information based

on low-level features of the content, and provide for surface-level semantic descrip-

tions. Surface-level semantic descriptions serve as input for the semantic interpretation

engine, which is an implementation of the logic-based multimedia interpretation ap-

proach. The semantic interpretation engine exploits background knowledge about the

application domain and provides for deep-level semantic descriptions of the multimedia

content.

The primary goal of this work is to show that knowledge representation formalisms

and state-of-the-art reasoning engines can be used as a basis for building software sys-

tems, which solve practical problems of the present such as the automatic computation

of deep-level semantic descriptions of multimedia content. Software systems exploiting

formal methods, e.g. the semantic interpretation engine, offer the advantage that they

can be reused easily to solve problems in different domains. Due to the declarative

nature of formal methods that underly such software systems, it is sufficient to provide

information at a high-level of abstraction. For example to use the semantic interpreta-

tion engine in a domain other than athletics, a domain expert does not need to specify a

procedure to solve the problem but has to define just the domain ontologies and sets of

161

interpretation rules. It is widely accepted that the definition of high-level information

is an easier task, and thus less prone to errors compared to the definition of low-level

program code.

Despite the advantages offered by the use of software systems exploiting formal

methods, it is crucial to address issues such as performance of the systems and quality

of the results obtained. As an important contribution of this work, we would like to

explore the semantic interpretation engine, an implementation of the ideas developed

in this work, and evaluate the results in a practical scenario.

This chapter is structured as follows: First, we explore the performance of the se-

mantic interpretation engine through an experimental study. To provide a rigorous

evolution, we use a test corpus consisting of 500 documents taken from the athletics

domain. Second, we analyze the quality of the deep-level semantic descriptions, which

have been computed automatically by the semantic interpretation engine. For the eval-

uation of the quality we exploit a large corpus of documents, which have been annotated

by human experts by using concept and role names from the domain ontologies.

5.1 Performance and Scalability

In this section, we analyze the performance and scalability of our semantic interpreta-

tion engine through an experimental study. We describe the setup of the experiments

used for the evaluation in detail. Afterwards, we present and discuss the results of our

experiments.

This experimental study has two main goals:

• To analyze the performance of the system in terms of time spent in processing

interpretation requests.

• To test the scalability of the system by analyzing the sensitivity of the interpre-

tation service to the growth in analysis ABox size.

To achieve a rigorous evolution of the semantic interpretation engine, we test it

using a reasonably large corpus of documents taken from websites. In particular, we

use 500 web pages taken from the IAAF and USTAF web sites [Int09, USA09] as test

data.

In order to obtain high-quality training data for analysis tools, these web pages

have been annotated by multiple human annotators. More precisely, each web page

has been annotated by two human experts, and then a third expert has adjudicated

on discrepancies between the annotations of different annotators. In the literature,

this process of obtaining high-quality annotation data is called gold-standard annota-

tion, and the resulting gold-standard annotations are often used to measure system

performance [MMSW06].

These gold-standard annotations created for the BOEMIE project include both

surface-level information, e.g. sport event or person names, and deep-level informa-

tion, e.g. such as sport trials and athletes. In the annotation process concept and role

names from the athletics domain ontology AEO are used. Therefore, these annotations

can be referred to as semantic annotations. Later, the gold-standard annotations have

been transformed to DL ABoxes. We henceforth call these ABoxes gold-standard in-

terpretation ABoxes to emphasize the fact that they are derived from gold-standard

annotations and contain both surface and deep-level information.

In our first experiment, we want to study the performance and scalability of the in-

terpretation service. In order to test the text interpretation web service of the semantic

interpretation engine, we need analysis ABoxes, which contain surface-level information

only. Therefore, we remove all deep-level information from gold-standard interpretation

ABoxes, and name the resulting ABoxes gold-standard analysis ABoxes.

Our first experiment has the following setup: A client application calls the inter-

pretText web service of the semantic interpretation engine serially for each one of the

500 web pages. The gold-standard analysis ABoxes serve as input for the interpreta-

tion process. We use three metrics as performance measures for the interpretation of

an analysis ABox: the number of fiat assertions, the number of all assertions, and the

time spent to process the interpretation request.

We define the time spent for interpretation as the time spent between the moment at

which the interpretation request arrives at the semantic interpretation engine, and the

moment at which the response to the call, i.e. the interpretation ABox, is ready to be

sent to the client. This definition considers solely the time needed by the interpretation

algorithm, and does not involve the time needed for the communication between the

client and the semantic interpretation engine. This enables us to measure the system

performance independent of external factors such as network latency that may vary

substantially.

The experiments were run on a Macintosh machine (OSX 10.4.11) with a 2.16 GHz

Intel Core Duo processor and 2 GB of main memory. The semantic interpretation engine

was deployed in the servlet container Apache Tomcat 6.0.14. We used Sun JVM version

1.5.0 16. The maximum heap size allocated to Java was set to 512 megabytes. The

semantic interpretation engine was configured to manage a single instance of the DL

reasoner RacerPro in version 1.9.3. The background knowledge used by the semantic

interpretation consists of the ontologies AEO version 2.13, MCO version 2.13, GIO

version 2.5 and the text interpretation rule file sports rules text 1.racer, which was last

modified at 6th of March 2009.

0 

1 

2 

3 

4 

5 

6 

7 

0  50  100  150  200  250  300  350  400  450 

Figure 5.1: The number of fiat assertions (x) and the time (y) spent in minutes for the

interpretation of 500 text analysis ABoxes.

Figure 5.1 shows the performance results of our semantic interpretation engine for

the interpretation of a corpus consisting of 500 text analysis ABoxes. Each point in

the diagram is a different text analysis ABox. For each text analysis ABox the value at

the horizontal axis denotes the number of fiat assertions, and the value at the vertical

axis denotes the time spent for interpretation in minutes.

To get a clear picture of the relation between the number of fiat assertions and the

time spent for interpretation, we built clusters of ABoxes with similar amount of fiat

assertions. Later we have selected an ABox from each cluster as representative average

members of that cluster. The diagram in Figure 5.2 shows the number of fiat assertions

and the time spent for the interpretation of the selected text analysis ABox.

0 

1 

2 

3 

4 

5 

6 

0  50  100  150  200  250  300  350  400  450 

Figure 5.2: The number of fiat assertions (x) and the time (y) spent in minutes for the

interpretation of selected text analysis ABoxes.

The number of fiat assertions in an analysis ABox plays an important role on the

amount of time needed to interpret that analysis ABox, because every fiat assertion

represents an observation that is questioned. Therefore, the semantic interpretation

engine is requested to compute preferred explanations for each fiat assertion.

Figure 5.3 shows the performance results of the semantic interpretation engine for

the interpretation of the same 500 text analysis ABoxes, but with respect to the number

of all assertions in the ABoxes. Like the diagram in Figure 5.1, each point in the

diagram is a different analysis ABox, and the vertical axis denotes the time spent

for interpretation in minutes. However, different from the diagram in Figure 5.1, the

horizontal axis denotes the sum of fiat and bona-fide assertions.

0 

1 

2 

3 

4 

5 

6 

7 

0  100  200  300  400  500  600  700  800  900  1000 

Figure 5.3: The sum of fiat and bona fide assertions (x) and the time (y) spent in minutes

for the interpretation of 500 text analysis ABoxes.

In this experiment, assertions that regard concrete domains, so-called data proper-

ties in OWL, are excluded. The values shown in the horizontal axis of the diagram in

Figure 5.3 include only so-called object properties, i.e. assertions that are not related

to concrete domains. In our approach, contrary to data properties, object properties

are used as predicates in text interpretation rules, and thus affect the time spent for

interpretation.

Comparing the two diagrams in Figure 5.1 and Figure 5.3, we observe that not

only the amount of fiat assertions affect the amount of processing time, but also the

sum of fiat and bona fide assertions. For example, in Figure 5.1 we observe that the

largest amount of time, more than 6 minutes, was requested for the interpretation of an

analysis ABox with less than 250 fiat assertions. We can also see that the interpretation

of many other ABoxes with a similar number of fiat assertions took between 1.6 and

3.6 minutes. In fact, the difference indicates the existence of another factor on the

performance. In Figure 5.3 we identify the reason for this difference: The sum of fiat

and bona-fide assertions in the analysis ABox that required more than 6 minutes for

interpretation is considerably higher than the sum of fiat and bona fide assertions in

other analysis ABoxes, which have a similar amount of fiat assertions.

To clarify the relationship between the number of fiat and bona fide assertions,

and the time spent for interpretation, we built again clusters of ABoxes with similar

amount of fiat assertions. From each cluster we have selected an ABox to represent all

ABoxes in that cluster. The plot in Figure 5.4 shows the number of fiat and bona-fide

assertions, and the time spent for the interpretation of the selected text analysis ABox.

The diagrams in Figure 5.2 and Figure 5.4 visualize the progression of the time

required for interpretation. We can observe that the time required for interpretation

increases approximately linear to the increase in the amount of fiat assertions and the

sum of fiat and bona fide assertions. The results obtained are very good, because they

show that the system scales quite well.

In a practical scenario, the multimedia interpretation process can be considered as

part of an offline process where a repository of semantic descriptions is prepared before

the repository can be exploited by a multimedia retrieval system. Considering also

the fact that this experimental study has been conducted on hardware below today’s

standard, the performance of the system is quite promising.

In light of this experimental study, we identify further possibilities for improving

the performance and scalability of the semantic interpretation engine, especially in

practical settings:

• Several reasoning tasks provided by RacerPro are constantly improved. The

semantic interpretation engine will benefit from future improvements in RacerPro

such as the support for incremental reasoning or optimizations of the abductive

inference service.

0 

1 

2 

3 

4 

5 

6 

0  100  200  300  400  500  600  700  800  900  1000 

Figure 5.4: The number of fiat and bona fide assertions (x) and the time (y) spent in

minutes for the interpretation of selected text analysis ABoxes.

• Analysis ABoxes can be interpreted in parallel to reduce the overall time spent

for interpretation. This is particularly important, if the document corpus to be

interpreted is large. For this purpose, the semantic interpretation engine should

manage multiple RacerPro instances, which are dedicated to text interpretation,

and distribute the requests among the RacerPro instances.

These ideas can be realized with reasonable effort, due to the loosely-coupled and

flexible design of the semantic interpretation engine.

5.2 Quality of Interpretation Results

In the previous chapters of this work, we have devised an algorithm to realize a logic-

based multimedia interpretation approach. As with any algorithm proposed to solve

a problem, it is not only crucial to analyze the performance and scalability of its

implementation, but also to investigate how well the computed solutions are. Therefore

the quality of the interpretation results computed by the semantic interpretation engine

have to be examined carefully in order to make a statement of its applicability in

practice.

In this section, we analyze and evaluate the quality of the interpretation results

computed by the semantic interpretation engine through an experimental study on

web pages with athletics news. To this end, we propose a method for the comparison

of interpretations computed by the semantic interpretation engine with human-made

annotations. Later, we present the results of the comparison that enables the evaluation

of the quality of interpretation results.

In this experiment, our main goal is to investigate how well the interpretations,

i.e. deep-level semantic descriptions, computed by the semantic interpretation engine

are. This can only be done by comparing the computed interpretations of a document

with interpretations of the same document, which are known to be correct and thus

can serve as ground truth. For this purpose, we exploit gold-standard interpretation

ABoxes, which have been generated from surface- and deep-level annotations created by

human experts. In our comparison gold-standard interpretation ABoxes are considered

as free from errors and serve as ground truth. Therefore, in the ideal case, auto-

matically computed interpretations should semantically be identical to gold-standard

interpretation ABoxes, even though the individual names, which are instances of DLCs,

are different. Notice that SLC instances have the same names both in automatically

generated and gold-standard interpretation ABoxes, since automatically generated in-

terpretation ABoxes are computed based on the information in gold-standard analysis

ABoxes, which contain SLC instances only.

For comparing an automatically generated interpretation ABox with the corre-

sponding gold-standard interpretation ABox, the straightforward approach is to trans-

form the gold-standard interpretation ABox into a Boolean conjunctive query. The

transformation is done by replacing the individual names with variable names, as dis-

cussed in the definition of the function transform in Section 3.3.2. Later, the query

is posed to a knowledge base consisting of the automatically generated interpretation

ABox and the TBox. If the query can be answered positively, then it can be said

that the automatically generated interpretation ABox contains semantically equivalent

information.

However, the straightforward approach has two crucial disadvantages:

• The approach is too coarse-gained in the sense that it only returns true or false but

no gradual values to indicate the degree of matching between the two ABoxes. The

Boolean conjunctive query can only be answered positively if for every assertion

in gold-standard interpretation ABox, a semantically equivalent assertion can be

found in the automatically generated interpretation ABox. This means that even

if for a single assertion a semantic equivalent cannot be found, we get a negative

answer for the query, and do not know for how many percent of the assertions

from the gold-standard interpretation ABox semantically equivalent assertions

could be found in the automatically generated interpretation ABox.

• Considering the amount of assertions in the ABoxes used, the approach has lim-

ited usability in practice. In a practical scenario, both automatically generated

and gold-standard interpretation ABoxes have a large number of assertions, i.e.,

several hundreds and more. Depending on the expressive power of the DL used,

conjunctive query answering has high computational complexity.

In view of the disadvantages of the straightforward approach, we pursue a differ-

ent approach. To evaluate the quality of interpretation results, our approach exploits

recall and precision, which are established metrics for benchmarking of keyword-based

retrieval, also known as Boolean retrieval, of documents. However, the standard use

of these metrics in the context of Boolean retrieval, in which appearances of certain

keywords in a document are counted, is too vague to evaluate deep-level semantic de-

scriptions. Considering the fact that the deep-level semantic descriptions computed by

the semantic interpretation engine are not keywords or labels, but relational structures,

i.e. concept and role assertions, it is obvious that counting the number of concept asser-

tions is not sufficient for a qualitative evaluation. Therefore, we modify the standard

approach used in the evaluation of Boolean retrieval techniques.

Our approach exploits Boolean conjunctive queries to check for the existence of

certain relational structures in interpretation ABoxes. This enables more precise com-

putation of recall and precision values, and thus, a more precise evaluation of the inter-

pretation results. For example, instead of counting the number of Person instances in

an interpretation ABox, in our approach, we count only such Person instances, which

are correctly related to surface-level information such as name, gender and age. More

precisely, we check whether certain relational structures found in the human-made an-

notations can also be found in the interpretation ABoxes computed by the semantic

interpretation engine.

In order to achieve better scalability than the straightforward approach, our ap-

proach starts with the examination of surface-level information and proceeds bottom-

up. To this end, surface-level information found in a gold-standard interpretation ABox

is transformed into a Boolean conjunctive query and posed to a knowledge base consist-

ing of the corresponding automatically generated interpretation ABox and the TBox.

Next, the approach proceeds with the examination of more abstract, i.e. deep-level,

information. For this purpose, the approach checks first the existence of aggregates,

which contain only surface-level concept instances as parts. Only if such aggregates ex-

ist in the automatically generated interpretation ABox, the existence of more abstract

aggregates that contain other aggregates are checked.

The approach inspects relational structures bottom-up starting from surface-level

information and proceeds with deep-level information, i.e. aggregates. The approach

proceeds in the same way as the logic-based interpretation approach that computes

the relational structures. It only checks for more abstract information if less abstract

information necessary to hypothesize such abstract information exists. Therefore, the

bottom-up Boolean conjunctive query based evaluation approach is particularly suitable

for the evaluation of the interpretation results.

In our second experiment, we use a corpus of 100 web pages with athletics news.

The gold-standard analysis ABoxes of this corpus serve as input for the semantic in-

terpretation engine. The resulting automatically generated interpretation ABoxes are

compared with corresponding gold-standard interpretation ABoxes of the corpus. In

the context of the BOEMIE project, a software tool has been implemented to realize

our evaluation approach. The software tool automatically generates a set of Boolean

conjunctive queries from a gold-standard interpretation ABox, and poses it to a knowl-

edge base consisting of the corresponding automatically generated interpretation ABox

and TBox. Furthermore the software tool calculates recall and precision values for each

document in the corpus, and for the whole corpus.

Following Koshafian and Baker’s notation [KB96, page 358], we introduce the clas-

sical definition of the terms recall and precision:

Recall =
Number of Relevant Objects Returned

Total Number of Relevant Objects in the Collection
(5.1)

Precision =
Number of Relevant Objects Returned

Total Number of Objects Returned
(5.2)

where both recall and precision have values in the interval [0,1]. In these formulas

objects are documents from a collection, also known as corpus. In the information

retrieval context, the goal is to retrieve all relevant documents for a query, and no

other documents which are irrelevant. In terms of the recall and precision the goal is

to achieve for both values as close to 1 as possible.

In our context, we do not count the number of documents to calculate recall and

precision values, but the number of aggregates, i.e. deep-level concept instances, in a

document. More precisely, we use Boolean conjunctive queries to check the existence

of certain relational structures. We consider the existence of an aggregate in the auto-

matically generated ABox as a relevant answer only if it is in the same relations with

its parts, i.e. surface-level instances or other deep-level instances, as its counterpart in

the corresponding gold-standard interpretation ABox.

Therefore, in our case, the recall and precision values for a DLC concept are calcu-

lated according to the following formula:

Recall =
|Relin|
|Relgo|

(5.3)

Precision =
|Relin|
|Retin|

(5.4)

where |Retin| denotes the number of all instances of a certain DLC concept in the

automatically generated interpretation ABox, and |Relin| the number of instances,

which are relevant. The relevant DLC concept instances are identified through Boolean

conjunctive queries. |Relgo| denotes the number of all instances of a certain DLC

concept in the gold-standard interpretation ABox, which are relevant by definition since

the gold-standard interpretation ABox serves as ground truth for the comparison.

Table 5.1 shows the average recall and precision values measured in our second

experiment for a corpus consisting of 100 web pages with athletics news. The values

are measured for each deep-level concept, of which at least an instance exists in the

corpus.

The values in Table 5.1 indicate that there exist 15 instances of the deep-level

concept SportsCompetition in the gold-standard interpretation ABoxes, whereas in the

interpretation ABoxes generated by the semantic interpretation engine 16 instances of

SportsCompetition exist, of which 11 are relevant.

Deep-Level Concept |Relin| |Relgo| |Retin| Recall Precision

JavelinThrowCompetition 2 2 2 1.00 1.00

Running100mCompetition 13 13 13 1.00 1.00

MarathonCompetition 12 16 15 0.75 0.80

PoleVaultCompetition 6 9 8 0.67 0.75

HammerThrowCompetition 7 7 7 1.00 1.00

LongJumpCompetition 8 8 8 1.00 1.00

HighJumpCompetition 4 4 4 1.00 1.00

SportsCompetition 11 15 16 0.73 0.69

SportsTrial 347 427 482 0.81 0.72

SportsEvent 47 53 68 0.89 0.69

Athlete 292 325 355 0.90 0.82

Person 134 140 769 0.96 0.17

Table 5.1: Recall and precision values for deep-level concepts

The recall and precision values measured in this experimental study are very good

with an exception, namely the precision value for the concept Person. The low precision

value measured for the concept Person is caused by different strategies followed by

human annotators creating annotations, and domain experts defining the interpretation

rules for the text modality. Our analysis of the gold-standard interpretation ABoxes

showed that human annotators have annotated a Person instance only if they could

observe a person’s name in relation with another personal attribute such as gender, age

or nationality. On the contrary, the text interpretation rules have been defined under

the assumption that even if further personal attributes cannot be related to a person

name, the existence of a person name gives enough evidence to hypothesize a Person

instance.

The recall and precision values in Table 5.1 confirm us in our belief that deep-level

semantic descriptions of multimedia documents computed by the semantic interpreta-

tion engine are of high-quality. The deep-level semantic descriptions can be exploited

to build a repository where the semantics of multimedia content are represented ap-

propriately in the sense that the repository can be used for the retrieval of documents

with high recall and precision.

Another advantage of building a repository with deep-level semantic descriptions of

multimedia content is the support for flexible and convenient querying that is intrinsic

to ontology-based retrieval. Compared to keyword-based retrieval techniques, queries

can be composed flexibly using the concept and role names defined in the ontology such

that the multimedia content can be retrieved more precisely. For example, instead of

asking for documents containing information about Blanka Vlasic as in the case of

keyword-based retrieval, it is possible to ask for multimedia documents that contain

not only information about the performance of Blanka Vlasic in a specific sports event,

but also an image of Blanka Vlasic which depicts her during a high jump trial in that

sports event.

Chapter 6

Conclusions

The realization of so-called ‘semantic’ or ‘intelligent’ applications requires the semantics

of information be represented in an appropriate form in order to make it possible to

understand and fulfill the requests of users and machines for accessing information found

in the web or in document repositories. Besides the Semantic Web vision, also present

information systems such as content management systems require intelligent retrieval

of content in order to offer more valuable information and services. Moreover, the

realization of convenient and intelligent information retrieval requires the availability

and accessibility of the semantics of information. In many scenarios, the available

information is not strictly structured, as in the case of information stored in databases,

but is loosely structured and exists in multimedia documents. Therefore semantic

metadata describing the semantics of information in multimedia documents is essential

for building semantic applications.

Motivated by the need for valuable semantic metadata about multimedia docu-

ments, we developed a logic-based approach to multimedia interpretation in this thesis.

In this chapter we conclude this thesis by summarizing the major achievements of the

work and presenting promising directions for future work.

6.1 Summary

With respect to the amount of time and other resources needed to manually annotate

documents, our multimedia interpretation approach is required to automatically gen-

erate semantic metadata with as few resources as possible, and to be flexible enough

175

for application in different domains with little effort and low cost.

The fact that standard inference problems have been formalized and well-studied

in formal languages in the past, and the availability of inference engines that provide

for successful implementations of standard inference services make formal languages a

promising candidate for solving the multimedia interpretation problem. Therefore we

have chosen a logic-based formalism for knowledge representation and reasoning as the

foundation of our approach.

We have formalized a declarative multimedia interpretation algorithm based on

formal inference services. Besides standard DL inference services, our interpretation

algorithm exploits abduction as the key inference service for explanation generation.

As part of this work, we also formalized ABox abduction in DLs as a non-standard

inference service.

Typically multimedia documents comprise of multiple segments, where each seg-

ment contains information in at least one modality. On the other hand, current analysis

tools are specialized in the extraction of information from a particular modality. There-

fore a solution for the generation of semantic metadata about multimedia documents

using modality-specific analysis tools is required.

In this thesis, we proposed a hybrid approach for the realization of the multimedia

interpretation task. We presented the semantic interpretation engine, an implementa-

tion of the multimedia interpretation algorithm, which has been realized as a distributed

software system incorporating reasoning engines for inference tasks. Our approach is

hybrid in the sense that it integrates modality-specific analysis tools and the semantic

interpretation engine into a coherent framework. In this framework the interpretation

of a multimedia document consists of two steps: First, each segment of a multimedia

document is interpreted with respect to information extracted from a particular modal-

ity. Second, interpretations of segments are fused to obtain an interpretation of the

whole multimedia document.

From a software engineering point of view, the hybrid approach has several advan-

tages compared to the alternative solution in which existing analysis tools have to be

enhanced in order to extract, in addition to surface-level information, also deep-level

information. In the hybrid approach, the background knowledge required to interpret

surface-level information is defined and later exploited by a central component, namely,

by the semantic interpretation engine. Therefore, in the hybrid approach the defini-

tion of the background knowledge by the domain expert is sufficient, whereas in the

alternative approach every analysis tool has to be enhanced and modified individu-

ally. Furthermore, the hybrid approach is more flexible and open, because an analysis

tool can easily be replaced by another one without modifications in the rest of the

framework.

An important objective of this work has been the development of a multimedia

interpretation approach that can be realized as a software component and applied to

solve practical problems. Therefore, we conducted an experimental study to analyze

the runtime performance and scalability of the semantic interpretation engine. In ad-

dition, we examined the quality of the semantic metadata generated by the semantic

interpretation engine through another experimental study, and evaluated the quality

in terms of recall and precision.

Putting it all together, we showed that semantic metadata about multimedia doc-

uments can be generated automatically using a declarative, logic-based approach. In

[EKM+07a], we discussed how this can be achieved without changing the logic or the

tableaux calculi used, but by enhancing DLs with rules and by exploiting a state-of-

the-art reasoning engine that supports abductive inference in this expressive formalism.

Furthermore, in [EKM+07a, EKM08a, CEF+07] we showed that the approach can

be realized as a distributed software system that serves as the core component of a large

application project aiming at the extraction, interpretation and retrieval of multimedia

documents from the athletics domain. The results of our experimental studies are very

promising and prove the fitness of our approach for practical use. We believe that due

to its flexible and open architecture, the semantic interpretation engine can easily be

integrated into other software systems that require cost- and time-efficient generation

of semantic metadata.

6.2 Outlook

In the light of insights gained in this thesis, we identified several promising directions

for future work. We are planning to employ our semantic interpretation engine in

domains other than the athletics domain in order to study the performance of the

context-dependent criteria used in this work, for reducing the number of explanations

by selecting preferred explanations only. This study might enable the identification of

further context-dependent criteria for multimedia interpretation.

In its current state, the multimedia interpretation approach developed in this work

considers all surface-level information extracted from a multimedia segment as input.

Another interesting research direction is to develop methods for focusing the attention

of the interpretation agent on relevant parts of the surface-level information extracted

from a multimedia segment. Successful determination of the interpretation discourse

will improve not only the runtime performance of the approach, but also the quality of

the generated semantic metadata.

Finally, more comprehensive experimental studies are required to measure and eval-

uate the quality of semantic metadata. Due to the lack of gold-standard annotations

for all segments of multimedia documents, the qualitative evaluation presented in this

thesis is done based on textual segments of web pages. Similar to benchmarks designed

to compare information retrieval systems, benchmarks for software systems generating

semantic annotations have to be defined in the future.

References

[AGP07] M. Anthimopoulos, B. Gatos, and I. Pratikakis. Multiresolution Text

Detection in Video Frames. In Proceedings of 2nd International Conference

on Computer Vision Theory and Applications (VISAPP 1007), pages 161–

166, Barcelona, Spain, March 2007. {108}

[AGPP07] M. Anthimopoulos, B. Gatos, I. Pratikakis, and S. J. Perantonis. Detecting

Text in Video Frames. In Proceeding of the 4th IASTED International

Conference on Signal Processing, Pattern Recognition, and Applications

(SPPRA 2007), pages 39–44, Innsbruck, Austria, February 2007. {108}

[AHB+93] D. E. Appelt, J. R. Hobbs, J. Bear, D. J. Israel, and M. Tyson. FASTUS:

A Finite-state Processor for Information Extraction from Real-world Text.

In Proceedings of IJCAI, pages 1172–1178, 1993. {14}

[AL97] A. Aliseda-Llera. Seeking Explanations: Abduction in Logic, Philosophy of

Science and Artificial Intelligence. PhD thesis, University of Amsterdam,

1997. {67, 82}

[Ali06] A. Aliseda. Abductive Reasoning: Logical Investigations into Discovery

and Explanation, volume 330 of Synthese Library. Springer, 2006. {20}

[And76] J. R. Anderson. Language, Memory, and Thought. Lawrence Erlbaum

Associates, Hillsdale, NJ, 1976. {49}

[Apa09] Apache Software Foundation. The Apache Tomcat Servlet Container web-

site http://tomcat.apache.org/, February 2009. {111}

179

[AWB87] J. Y. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active Vision. In

Proceedings of 1st International Conference on Computer Vision, pages

35–54, Washington DC, 1987. IEEE Computer Society. {78}

[Bal91] D. H. Ballard. Animate Vision. In Artificial Intelligence Journal, vol-

ume 48, pages 57–86, 1991. {78}

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Im-

plementation and Applications. Cambridge University Press, 2003.

{28, 37, 38, 48}

[BH91] F. Bader and P. Hanscke. A Schema for Integrating Concrete Domains

into Concept Languages. In Proceedings of the 12th Int. Joint Conf. on

Artificial Intelligence (IJCAI’91), pages 452–457, 1991. {40}

[BMP02] S. Belongie, J. Malik, and J. Puzicha. Shape Matching and Object Recog-

nition Using Shape Contexts. In IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), volume 24(24), pages 509–522, 2002.

{14}

[Boß08] S. Boßung. Conceptual Content Modeling Languages, Applications, and

Systems. PhD thesis, Hamburg University of Technology, 2008. {35}

[Bri93] D. Brill. Loom Reference Manual. Information Sciences Institute, Uni-

versity of Southern California, 4676 Admiralty Way, Marina del Rey, CA

90292, December 1993. {25}

[BVDR+03] F. Brun-Vezinet, D. Descamps, A. Ruffault, B. Masquelier, V. Calvez,

G. Peytavin, F. Telles, L. Morand-Joubert, J.L. Meynard, M. Vray,

D. Costagliola, and the Narval (ANRS 088) Study group. Clinically

Relevant Interpretation of Genotype for Resistance to Abacavir. AIDS,

17(12):1795–1802, August 15 2003. {76}

[Can86] J. F. Canny. A Computational Approach To Edge Detection. IEEE Trans-

actions on Pattern Recognition and Machine Intelligence, 8(6):679–698,

November 1986. {26}

[CDD+06] S. Castano, K. Dalakleidi, S. Dasiopoulou, S. Espinosa, A. Ferrara, G. N.

Hess, V. Karkaletsis, A. Kaya, S. Melzer, R. Möller, S. Montanelli, and

G. Petasis. 4.1 Methodology and Archtecture for Multimedia Ontology

Evolution. Project Deliverable Version 1.0 Final, The BOEMIE Consor-

tium, December 2006. {108}

[CEF+07] S. Castano, S. Espinosa, A. Ferrara, V. Karkaletsis, A. Kaya, S. Melzer,

R. Möller, S. Montanelli, and G. Petasis. Ontology Dynamics with Multi-

media Information: The BOEMIE Evolution Methodology. In Proceedings

of the ESWC International Workshop on Ontology Dynamics (IWOD 07),

Innsbruck, Austria, June 2007. {68, 177}

[CFML08] S. Castano, A. Ferrara, S. Montanelli, and D. Lorusso. Instance Matching

for Ontology Population. In Proceedings of the Sixteenth Italian Sympo-

sium on Advanced Database Systems (SEBD 2008), pages 121–132, Mon-

dello, PA, Italy, June 2008. {109}

[CG91] E. Charniak and R. Goldman. Probabilistic Abduction For Plan Recog-

nition. Technical report, Brown University, Tulane University, 1991.

{20, 72, 73, 75, 77}

[CGL08] D. Calvanese, G. D. Giacomo, and M. Lenzerini. Conjunctive Query

Containment and Answering under Description Logic Constraints. ACM

Transactions on Computational Logic, 9(3):1–31, 2008. {48, 51}

[CGT89] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about

datalog (and never dared to ask). IEEE Transactions on Knowledge and

Data Engineering, 1:146–166, 1989. {56}

[Coo90] G. F. Cooper. The Computational Complexity of Probabilistic Inference

using Bayesian Belief Networks. Artificial Intelligence, 42:393–405, 1990.

{74}

[CR80] R. A. Cote and S. Robboy. Progress in medical information management.

Systematized nomenclature of medicine (SNOMED). The Journal of the

American Mdeical Association, 243:756–762, February 1980. {36}

[CY90] J. J. Clark and A. L. Yuille. Data Fusion for Sensory Information Pro-

cessing Systems. Kluwer Academic, Norwell, MA, USA, 1990. {65, 79}

[CY99] S. Cucerzan and D. Yarowsky. Language Independent Named Entity

Recognition Combining Morphological and Contextual Evidence. In Pro-

ceedings of Joint SIGDAT Conf. on Emprical Methods in Natural Lan-

guage Processing and Very Large Corpora, 1999. {14}

[DDG+07] K. Dalakleidi, S. Dasiopoulou, E. Giannakidou, A. Kaya, V. K. Papas-

tathis, G. Petasis, and V. Tzouvaras. 3.2 Domain Ontologies - Version 1.

Project Deliverable Version 2.0 Final, The BOEMIE Consortium, Febru-

ary 2007. {106}

[DNR97] F. M. Donini, D. Nardi, and R. Rosati. Autoepistemic Description Logics.

In Proceedings of the International Joint Conference on Artificial Intelli-

gence 97), pages 136–141, 1997. {52}

[EKM+07a] S. Espinosa, A. Kaya, S. Melzer, R. Möller, and M. Wessel. Multimedia

Interpretation as Abduction. In Proceedings of the International Workshop

on Description Logics DL-2007, 2007. {68, 177}

[EKM+07b] S. Espinosa, A. Kaya, S. Melzer, R. Möller, and M. Wessel. Towards a

Media Interpretation Framework for the Semantic Web. In Proceedings

of the IEEE/WIC/ACM International Conference on Web Intelligence

(WI‘07), pages 374–380, Washington, DC, USA, November 2007. IEEE

Computer Society. {68, 108}

[EKM08a] S. Espinosa, A. Kaya, and R. Möller. On Ontology Based Abduction

for Text Interpretation. In Proceedings of 9th International Conference

on Intelligent Text Processing and Computational Linguistics (CICLing-

2008), number 4919 in Lecture Notes in Computer Science, pages 194–

2005, Haifa, Israel, February 2008. Springer. {68, 108, 177}

[EKM08b] S. Espinosa, A. Kaya, and R. Möller. Ontology and Rule Design Patterns

for Multimedia Interpretation. In BOEMIE workshop, Koblenz, Germany,

December 2008. {124}

[EKM09] S. Espinosa, A. Kaya, and R. Möller. The BOEMIE Semantic Browser:

A Semantic Application Exploiting Rich Semantic Metadata. In Proceed-

ings of the Applications of Semantic Technologies Workshop (AST-2009),

Lübeck, Germany, October 2009. {109}

[EKS06] C. Elsenbroich, O. Kutz, and U. Sattler. A Case for Abductive Reasoning

over Ontologies. In OWL: Experiences and Directions, 2006. {67, 81, 82}

[FHH04] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL – A Language for Deductive

Query Answering on the Semantic Web. Web Semantics: Science, Services

and Agents on the World Wide Web, 2(1):19–29, December 2004. {48}

[Fow04] M. Fowler. UML Distilled. Addison-Wesley, 3th edition edition, 2004.

{52}

[GHJV93] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Abstraction and Reuse of Object-Oriented Design. Addison-Wesley, 1993.

{102}

[GHLS07] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive Query An-

swering for the Description Logic SHIQ. In Proceedings of the 20th In-

ternational Joint Conference on Artificial Intelliegence IJCAI-07. AAAI

Press, 2007. {45}

[GL02] R. Guigno and T. Lukasiewicz. A Probabilistic Extension of SHOQ(D)

for Probabilistic Ontologies in Semantic Web. In Proceedings JELIA-2002,

volume 2424 of Lecture Notes in Computer Science, pages 86–97. Springer,

2002. {53}

[GN87] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial

Intelligence. Morgan Kaufmann Publ. Inc., Los Altos, CA, 1987. {20}

[Gol90] R. Goldman. A Probabilistic Approach to Language Understanding. Tech-

nical report, Brown University, Providence, RI, USA, 1990. {73}

[Gri03] R. Grishman. Information Extraction. In Handbook of Computational

Linguistics Information Extraction, 2003. {14}

[Gru93a] T. R. Gruber. A Translation Approach to Portable Ontology Specifi-

cations. Technical Report KSL 92-71, Knowledge Systems Laboratory,

Computer Science Department, Stanford University, Stanford, California

94305, April 1993. {36}

[Gru93b] T. R. Gruber. Toward Principles for the Design of Ontologies Used

for Knowledge Sharing. International Journal Human-Computer Studies,

43:907–928, March 1993. {36}

[HBN07] M. Horridge, S. Bechhofer, and O. Noppens. Igniting the OWL 1.1 Touch

Paper: The OWL API. In OWL: Experiences and Directions Third Inter-

national Workshop (OWLED 07), 2007. {48}

[HM87] J. Hobbs and P. Martin. Local Pragmatics. In Proceedings of International

Conference on Artificial Intelligence, pages 520–523, Milano, Italy, August

1987. {69}

[HM01] V. Haarslev and R. Möller. RACER System Description. In Proceedings

of the International Joint Conference on Automated Reasoning (IJCAR

2001), volume 2083 of Lecture Notes in Computer Science, pages 701–705.

Springer, 2001. {28, 45}

[HMS04] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ-Description Logic

to Disjunctive Datalog Programs. In Proceedings of the 9th International

Conference on the Principles of Knowledge Representation and Reasoning

(KR 2004), pages 152–162, 2004. {45}

[HS88] C. Harris and M. Stephens. A Combined Corner and Edge Detector. In

Proceedings of 4th Alvey Vision Conference, pages 147–151, 1988. {14}

[HSAM90] J. R. Hobbs, M. Stickel, D. Appelt, and P. Martin. Interpretation as

Abduction. Technical Report 499, AI Center, SRI International, 1990.

{70, 72, 93}

[HSME88] J. Hobbs, M. Stickel, P. Martin, and D. Edwards. Interpretation as Ab-

duction. In 26th Annual Meeting of the Association for Computational

Linguistics: Proceedings of the Conference, 1988. {69, 72, 77}

[HSTT99] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. Query Containment us-

ing a DLR ABox. LTCS report LTCS-99-15, LuFG Theoretical Computer

Science, RWTH Aachen, Germany, 1999. {51}

[HSTT00] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to Decide Query

Containment Under Constraints Using a Description Logic. In Proceedings

of 7th International Conference on Logic for Programming and Automated

Reasoning (LPAR 2000), volume 1955 of Lecture Notes in Computer Sci-

ence, pages 326–343. Springer, 2000. {45}

[Hum09] Britta Hummel. Description Logic for Scene Understanding at the Ex-

ample of Urban Road Intersections. PhD thesis, Karlsruhe Institute of

Technology, 2009. {28, 29, 30}

[Int09] International Association of Athletics Federations IAAF. The IAAF web-

site http://www.iaaf.org, February 2009. {106, 114, 162}

[JB08] Y. Jing and S. Baluja. PageRank for Product Image Search. In Proceedings

of 17th International World Wide Web Conference WWW 2008, April

2008. {13, 14}

[KB96] S. Khoshafian and A. B. Baker. Multimedia and Imaging Databases. Mor-

gan Kaufmann Publ. Inc., 1996. {171}

[KD93] A. C. Kakas and M. Denecker. Abductive Logic Programming. Journal

of Logic and Computation, 2:719–770, 1993. {76, 82}

[KKT98] A. Kakas, R. Kowalski, and F. Toni. The Role of Abduction in Logic

Programming. Handbook of Logic in Artificial Intelligence and Logic Pro-

gramming, 5:235–324, 1998. {76, 77}

[KLSG03] B. Katz, J. Lin, C. Stauffer, and E. Grimson. Answering Questions About

Moving Objects in Surveillance Videos. In Proceedings of AAAI Spring

Symposium on New Directions in Question Answering, March 2003. {15}

[KMR04] H. Knublauch, M. A. Musen, and A. L. Rector. Editing Description Logic

Ontologies with the Protégé OWL Plugin. In International Workshop on

Description Logics, 2004. {49}

[Kow74] R. Kowalski. Predicate Logic as a Programming Language. In Proceedings

of the IFIP-74, pages 569–574. Elsevier/North-Holland, 1974. {56}

[Kow79a] R. Kowalski. Algorithm = Logic + Control. In Communications of the

Association for Computing Machinery, volume 22(7), pages 424–436, 1979.

{56}

[Kow79b] R. Kowalski. Logic for Problem Solving. Elsevier/North-Holland, New

York, 1979. {56}

[KPH05] A. Kalyanpur, B. Parsia, and J. A. Hendler. A Tool for Working with

Web Ontologies. International Journal on Semantic Web and Information

Systems, pages 36–49, 2005. {49}

[KS86] R. Kowalski and M. J. Sergot. A Logic-Based Calculus of Events. New

Generation Computing, 4:67–95, 1986. {81}

[Len02] M. Lenzerini. Data Integration: A Theoretical Perspective. In Proceedings

of Symposium on Principles of Database Systems, pages 233–246, 2002.

{65}

[LGMR91] P. A. Longley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind. Geo-

graphic Information Systems and Science. Jon Wiley and Sons Ltd., first

edition, 1991. {107}

[Low04] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.

In International Journal of Computer Vision, volume 60(2), pages 91–110,

2004. {14}

[LR98] A. Y. Levy and M.-C. Rousset. Combining Horn Rules and Description

Logics in CARIN. In Artificial Intelligence, volume 104(1-2), pages 165–

209, 1998. {59}

[LS03] B. Leibe and B. Schiele. Interleaved Object Categorization and Segmen-

tation. In Proceedings of British Machine Vision Conference (BMVC’03),

September 2003. {14}

[LST87] J. W. Lloyd, E. A. Sonenberg, and R. W. Topor. Integrity Constraint

Checking in Stratified Databases. Journal of Logic Programming, 4:331–

343, December 1987. {52}

[MB87] R. M. MacGregor and R. Bates. The Loom Representation Language.

Technical Report ISI/RS-87-188, Information Sciences Institute, Univer-

sity of Southern California, 1987. {25}

[McG03] D. L. McGuinness. Ontologies Come of Age. In Spinning the Semantic

Web, pages 171–194, 2003. {36}

[MH90] T. Matsuyama and V. S. Hwang. SIGMA: A Knowledge-Based Aerial

Image Understanding System. Perseus Publishing, 1990. {21}

[MHRS06] B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can OWL and Logic Pro-

gramming Live Together Ever After? In Proceedings of the 5th Semantic

Web Conference (ISWC-06), number 4273 in Lecture Notes in Computer

Science, pages 501–514. Springer, 2006. {50, 52}

[Mic09] Sun Microsystems. The Java Servlet 2.5. Specification (JSR-000154)

http://jcp.org/aboutjava/communityprocess/mrel/jsr154/index.html,

February 2009. {111}

[Min75] M. Minsky. A framework for representing knowledge. In P. H. Winston,

editor, The Psychology of Computer Vision, pages 211–277. Mc-Graw-Hill,

New York, 1975. {49}

[MMH87] J. A. Mulder, A. K. Mackworth, and W. S. Havens. Knowledge Structuring

and Constrataint Satisfaction: The Mapsee Approach. Technical Report

87-21, Department of Computer Science, University of British Columbia,

Vancouver, Canada, 1987. {17, 20}

[MMSW06] J. Medero, K. Maeda, Stephanie Strassel, and Christopher Walker. An Ef-

ficient Approach to Gold Standard Annotation: Decision Points for Com-

plex Tasks. In Proceedings of 5th international conference on Language

Resources and Evaluation (LREC 2006), Genoa, Italy, May 2006. {163}

[MN08] R. Möller and B. Neumann. Ontology-based Reasoning Techniques for

Multimedia Interpretation and Retrieval. In Semantic Multimedia and

Ontologies : Theory and Applications. Springer, 2008. {61}

[MP93] M. C. Mayer and F. Pirri. First-order Abduction via Tableau and Sequent

Calculi. In Logic Journal of the IGPL 1, volume 1, pages 141–155, 1993.

{82}

[MP96] M. C. Mayer and F. Pirri. Abduction is not Deduction-in-Reverse. In

Journal of the IGPL, volume 4(1), pages 95–108, 1996. {90, 91}

[MRS08] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information

Retrieval. Cambridge University Press, 2008. {12}

[MS05] K. Mikolajczyk and C. Schmid. A Performance Evaluation of Local Descip-

tors. In IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), volume 27(10), pages 1615–1630, 2005. {14}

[NM95] U. Nilsson and J. Maluszynski. Logic, Programming and Prolog. Jon Wiley

and Sons Ltd., 1995. {54}

[NM06] B. Neumann and R. Möller. On Scene Interpretation with Description

Logics. In Cognitive Vision Systems: Sampling the Spectrum of Ap-

proaches, number 3948 in Lecture Notes in Computer Science, pages 247–

278. Springer, 2006. {61}

[OWL09] W3C OWL Working Group. OWL-2 Web Ontology Language: Document

Overview. W3C Recommendation, Available at http://www.w3.org/TR/

owl2-overview/, 27 October 2009. {50}

[Pau93] G. Paul. Approaches to Abductive Reasoning: An Overview. AI Review,

7:109–152, 1993. {67, 82}

[Pei78] C. S. Peirce. Deduction, Induction and Hypothesis. In Popular Science

Monthly 13, pages 470–482, 1878. {20}

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

[PGA87] D. Poole, R. Goebel, and R. Aleliunas. Theorist: A Logical Reasoning

System for Defaults and Diagnosis. In Nick Cercone and Gordon Mc-

Calla, editors, The Knowledge Frontier: Essays in the Representation of

Knowledge, pages 331–352. Springer, 1987. {20, 23}

[Poo89] D. Poole. Explanation and Prediction: An Architecture for Default

and Abductive Reasoning. Computational Intelligence, 5(2):97–110, 1989.

{20, 23}

[PSHH03] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology

Language: Semantics and Abstract Syntax http://www.w3.org/tr/owl-

semantics. W3C Candidate Recommendation, August 2003. {37}

[PSS93] P. F. Patel-Schneider and B. Swartout. Description-Logic Knowledge

Representation System Specification from the KRSS Group of the ARPA

Knowledge Sharing Effort, November 1993. {114}

[PTK+08] S. Petridis, N. Tsapatsoulis, D. Kosmopoulos, V. Gatos, G. Petasis,

P. Fragou, V. Karkaletsis, W. Hesseler, K. Baitov, S. Espinosa, S. Melzer,

A. Kaya, and S. Perantonis. 2.6 Semantics Extraction from Fused Mul-

timedia Content. Project Deliverable Version 1.0 Final, The BOEMIE

Consortium, February 2008. {108}

[QPJ07] G. Qi, J. Z. Pan, and Q. Ji. Extending Description Logics with Uncertainty

Reasoning in Possibilistic Logic. In 9th European Conference on Symbolic

and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-

07), number 4724 in Lecture Notes in Computer Science, pages 828–839.

Springer, 2007. {53}

[Qui68] M. Quillian. Semantic memory. In M. Minsky, editor, Semantic Informa-

tion Processing, pages 227–270. MIT Press, 1968. {49}

[RAKD06] O. Ray, A. Antoniades, A. Kakas, and I. Demetriades. Abductive Logic

Programming in the Clinical Management of HIV/AIDS. In G. Brewka,

S. Coradeschi, A. Perini, and P. Traverso, editors, Proceedings of the 17th

European Conference on Artificial Intelligence, volume 141 of Frontiers in

Artificial Intelligence and Applications. IOS Press, 2006. {75, 76}

[Rei84] R. Reiter. Towards a Logical Reconstruction of Relational Database The-

ory. In M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, editors, On Con-

ceptual Modelling: Perspectives from Artificial Intelligence, Databases,

and Programming Languages, pages 191–233. Springer, 1984. {47}

[RM87] R. Reiter and A. K. Mackworth. The Logic of Depiction. Technical Report

87-24, Department of Computer Science, University of British Columbia,

Vancouver, Canada, 1987. {17}

[RM90] R. Reiter and A. K. Mackworth. A Logical Framework for Depiction

and Image Interpretation. Artificial Intelligence, 41(2):125–155, 1989/90.

{17}

[RMS97] T. A. Russ, R. M. MacGregor, and B. Salemi. VEIL: Combining Semantic

Knowledge with Image Understanding. In O. Firschein and T.M. Strat, ed-

itors, Radius: Image Understanding for Imagery Intelligence, pages 409–

418, San Francisco, CA, 1997. Morgan Kaufmann. {25}

[Ros05] R. Rosati. On the Decidability and Complexity of Integrating Ontologies

and Rules. In Web Semantics: Science, Services and Agents on the World

Wide Web, volume 3(1), pages 41–60, 2005. {56}

[Ros06] R. Rosati. The Limits and Possibilities of Combining Description Logics

and Datalog. In RULEML ’06: Proceedings of the Second International

Conference on Rules and Rule Markup Languages for the Semantic Web,

pages 3–4. IEEE Computer Society, 2006. {53}

[RPM+98] T. A. Russ, K. Price, R. M. MacGregor, R. Nevatia, and B. Salemi.

VEIL: Research in Knowledge Representation for Computer Vision, Fi-

nal Report. Technical Report A051143, Information Sciences Institute,

University of Southern California, February 1998. {26, 27}

[Sch98] C. Schröder. Bildinterpretation durch Modellkonstruktion: Eine Theo-

rie zur rechnergestützten Analyse von Bildern. PhD thesis, University of

Hamburg, 1998. {24}

[Sha96] M. P. Shanahan. Robotics and the Common Sense Informatic Situation. In

W. Wahlster, editor, Proceedings of the European Conference on Artificial

Intelligence (ECAI 96), pages 684–688, Chichester, England, 1996. Wiley.

{77, 78}

[Sha99] M. P. Shanahan. The Event Calculus Explained. In M. J. Wooldridge

and M. Veloso, editors, Artificial Intelligence Today, Lecture Notes in

Computer Science, pages 409–430, New York, 1999. Springer. {81}

[Sha00] M. P. Shanahan. Reinventing Shakey. In J. Minker, editor, Logic-based

artificial intelligence, pages 233–253, New York, 2000. Kluwer Academic.

{81}

[Sha03] R. W. Shafer. Rationale and Uses of a Public HIV Drug-Resistance

Database. Journal of Infectious Diseases, 194:51–58, 2003. {75}

[Sha05] M. P. Shanahan. Perception as Abduction: Turning Sensor Data

Into Meaningful Representation. Cognitive Science, 1:103–134, 2005.

{77, 78, 79, 81}

[SHB07] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and

Machine Vision. Thomson Learning, April 2007. {14}

[SLL02] S. Se, D. Lowe, and J. J. Little. Global Localization using Distinctive

Visual Features. In Proceedings of International Conference on Intelligent

Robots and Systems (IROS2002), pages 226–231, Lausanne, Switzerland,

November 2002. {14}

[SP06] E. Sirin and B. Parsia. Pellet System Description. In Proceedings of the

2006 Description Logic Workshop (DL-2006), CEUR Electronic Workshop

Proceedings, 2006. {45}

[SP07] E. Sirin and B. Parsia. SPARQL-DL: Sparql query for OWL-DL. In

In Proceedings of the 3rd OWL Experiences and Directions Workshop

(OWLED-2007), 2007. {48}

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive Concept Descriptions with

Complements. Artificial Intelligence, 48(1–26), 1991. {38}

[TBK+06] A.-Y. Turhan, S. Bechhofer, A. Kaplunova, T. Liebig, M. Luther,

R. Möller, O. Noppens, P. Patel-Schneider, B. Suntisrivaraporn, and

T. Weithöner. DIG 2.0 – Towards a Flexible Interface for Description

Logic Reasoners. In B. C. Grau, P. Hitzler, and C. Shankey, editors,

OWL Experiences and Directions 2006, 2006. {48}

[Tha78] P. R. Thagard. The Best Explenation: Criteria for Theory Choice. The

Journal of Philosophy, 75(2):76–92, February 1978. {90}

[TLN+08] T.Liebig, M. Luther, O. Noppens, M. Rodriguez, D. Calvanese, M. Wessel,

M. Horridge, S. Bechhofer, D. Tsarkov, and E. Sirin. OWLlink: DIG

for OWL 2. In Proceedings of the 5th OWL Experiences and Directions

Workshop (OWLED-2008), 2008. {48}

[TRP+07] T. Tikwinski, C. Rosche, G. Paliouras, A. Ferrara, A. Kaya, and V. Papas-

tathis. 5.4 Specification of the Architecture. Project Deliverable Version

1.0 Final, The BOEMIE Consortium, April 2007. {106, 109}

[Ull85] J. D. Ullman. Implementation of Logical Query Languages for Databases.

In ACM Transactions on Database Systems, volume 10(3), pages 289–321,

1985. {56}

[Ull97] J. D. Ullman. Information Integration Using Logical Views. In Database

Theory - ICDT ’97, 6th International Conference, Delphi, Greece, Jan-

uary 8-10, 1997, Proceedings, volume 1186 of Lecture Notes in Computer

Science, pages 19–40. Springer, 1997. {64}

[USA09] USA Track & Field USATF. The USATF website www.usatf.org, February

2009. {106, 162}

[VJ01] P. Viola and M. Jones. Robust Real-time Object Detection. In Interna-

tional Journal of Computer Vision, 2001. {14}

[WM06] M. Wessel and R. Möller. A Flexible DL-based Architecture for Deductive

Information Systems. In G. Sutcliffe, R. Schmidt, and S. Schulz, editors,

Proceedings of IJCAR-06 Workshop on Emprically Successful Computer-

ized Reasoning (ESCor), pages 92–111, 2006. {45}

[Wor09] World Wide Web Consortium (W3C). The W3C website

http://www.w3.org, February 2009. {37}

Index

⊥ see bottom, 39

> see top, 39

W3C, World Wide Web Consortium, 37

abduction, 20

ABox, 40

ABox entailment, 44

ABox realization, 43

admissible variable substitution, 45

AEO, 106

aggregates, 61

analogy, 90

analysis ABox, 60

annotations, 13

apply-rules, 58

athletics event ontology, 106

attribute assertion, 41

Bayesian networks, 72

BIWS, 110

BOEMIE project, 106

BOEMIE Semantic Browser, 109

BOEMIE Semantic Manager, 109

bona-fide assertions, 95

Boolean conjunctive query, 46

Boolean retrieval, 12

bottom, 39

clausal normal form, 21

Closed World Assumption, 47

complex concept descriptions , 39

concept assertion, 41

concept definition, 41

concept satisfiability testing, 43

concrete domain attribute, 40

concrete domain predicate exists construc-

tor, 40

conjunction, 39

conjunctive queries, 44

consilience, 90

consistent explanation, 67

constraint satisfaction problem, 20

context-dependent criteria, 91

context-independent criteria, 91

data integration, 64

data property, 166

deep semantic annotations, 13

deep-level information, 61

deep-level objects see aggregates, 61

definite program, 54

Description Logics, 28, 37

direct types, 43

194

disjunction, 39

distinguished variables, 44

DL reasoners, 42

expand, 85

explanatory explanation, 67

fiat assertions, 95, 97

forward-chaining, 56, 57

frame, 31, 49

fused interpretation ABox, 64

fusion, 64

GCI, 41

generalized concept inclusion, 41

geographic information ontology, 106

geographic information system, 107

GIO, 106

GIS, 107

gold-standard analysis ABoxes, 163

gold-standard annotation, 163

gold-standard interpretation ABoxes, 163

grounded conjunctive queries, 45

hybrid approach, 33

information extraction, 14

information fusion, 64

information integration, 64

information retrieval, 12

instance checking, 43

instance retrieval, 44

integrity constraint, 52

interpret algorithm, 97

interpretation ABox, 60

interpretation function, 39

iS3, 76

knowledge base consistency testing, 42

KRSS, 114

literal, 54

Mapsee, 17

MCO, 106

minimal explanation, 67, 77

multimedia content ontology, 106

multimedia interpretation, 16

multimedia retrieval, 12

negation, 39

negation-as-failure, 47

new individuals, 87

nominals, 60

non-distinguished variables, 44

non-recursive rule set, 55

object property, 166

object recognition, 14

ontology, 36

Open World Assumption, 47

OWL, The Web Ontology Language, 37

precision, 171

preference score, 91

qualified existential restriction, 39

query-same-as-candidates function, 100

RacerPro, 28, 45

recall, 171

relax-image-interpretation-results function,

155, 158

relaxed ABox entailment relation, 93

relevant explanation, 67

retrieve-with-explanation function, 118

role assertion, 41

same-as assertions, 66

selectFiat function, 96

semantic annotations, 13

sensor data fusion, 65, 79

servlet, 111

SIGMA, 21

simplicity, 90

Skolem function, 21

subsumption testing, 43

surface-level information, 14

syntactic annotations, 13

taxonomy, 36

TBox, 40

TBox classification, 43

TBox coherence check, 43

terminology, 36

the semantic interpretation engine, 105,

110

top, 39

Unique Name Assumption, 18, 48

value restriction, 39

variable instantiation function, 88

variable instantiation strategy, 88

variable substitution, 45, 87

VEIL, 25

Video OCR, 108

vocabulary, 36

web page analysis ABox, 155

Curriculum Vitae

Surname Kaya
First name Atila
Date of Birth 28. December 1975
Place of Birth Izmir/Turkey

Education

07/1981 - 06/1986 Şemikler Primary School, Izmir/Turkey

07/1986 - 06/1993 Bornova Anadolu Highschool, Izmir/Turkey

10/1993 - 07/1998 B.Sc. in Mechanical Engineering at the
Istanbul Technical University

10/1998 - 05/2001 M.Sc. in Mechatronics at the
Hamburg University of Technology

04/2006 - onwards Ph.D. in Computer Science at the
Hamburg University of Technology

Employment

06/2001 - 03/2004 Software Engineer, T-Systems Nova GmbH

07/2003 - 03/2006 Teaching Assistant, Institute for Software Systems,
Hamburg University of Technology

04/2004 - 03/2006 Software Architect, T-Systems Enterprise Services GmbH

04/2006 - 02/2009 Research Assistant, Institute for Software Systems,
TuTech Innovation GmbH

03/2009 - 05/2009 Research Assistant, Institute for Software Systems,
Hamburg University of Technology

08/2009 - onwards IT Consultant & Project Manager,
Vattenfall Europe Information Services GmbH

	Title Page
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation for this Research
	1.2 Research Objectives
	1.3 Contributions
	1.4 Dissemination Activities
	1.5 Outline of the Dissertation

	2 Logical Formalization of Multimedia Interpretation
	2.1 Applications and Related Research Fields
	2.2 Related Work On Image Interpretation
	2.2.1 Image Interpretation Based on Model Generation
	2.2.2 Image Interpretation Based on Abduction
	2.2.3 Image Interpretation Based on Deduction

	2.3 Discussion

	3 Logical Engineering of a Multimedia Interpretation System
	3.1 Knowledge Representation Formalisms
	3.1.1 Introduction to Description Logics
	3.1.2 Introduction to Logic Programming

	3.2 Overview of a Multimedia Interpretation System
	3.3 Formalizing ABox Abduction
	3.3.1 Related Work on Abduction
	3.3.2 The ABox Abduction Algorithm
	3.3.3 Selecting Preferred Explanations

	3.4 Abduction-Based Interpretation
	3.5 Fusion of Modality-Specific Interpretations

	4 Case Studies
	4.1 The BOEMIE Project
	4.2 The Semantic Interpretation Engine
	4.3 Interpretation of a Sample Multimedia Document
	4.3.1 Modality-Specific Interpretations
	4.3.2 Strategies for the Interpretation Process
	4.3.3 Fusion

	5 Evaluation
	5.1 Performance and Scalability
	5.2 Quality of Interpretation Results

	6 Conclusions
	6.1 Summary
	6.2 Outlook

	References
	Index
	CV

