
Decentralized cross-blockchain asset transfers with transfer
confirmation

Michael Sober1,4 • Marten Sigwart2 • Philipp Frauenthaler2 • Christof Spanring3 • Max Kobelt1,4 •

Stefan Schulte1,4

Received: 1 April 2022 / Revised: 8 August 2022 / Accepted: 25 August 2022
� The Author(s) 2022

Abstract
Today, several solutions for cross-blockchain asset transfers exist. However, these solutions are either tailored to specific

assets or neglect finality guarantees that prevent assets from getting lost in transit. In this paper, we present a cross-

blockchain asset transfer protocol that supports arbitrary assets, is adaptable to different means of cross-blockchain

communication, and adheres to requirements such as finality. The ability to freely transfer assets between blockchains may

increase transaction throughput and provide developers with more flexibility by allowing them to design digital assets that

leverage the capacities and capabilities of multiple blockchains. We define the general requirements and specifications for a

cross-blockchain asset transfer protocol and provide a proof-of-concept implementation for EVM-based blockchains.

Further, we evaluate the protocol concerning costs, transfer duration, and security.

Keywords Blockchain interoperability � Decentralized asset transfers � Cross-blockchain communication �
Digital assets

1 Introduction

With its ability to store data and perform computations in a

decentralized and immutable manner, blockchain technol-

ogy shows potential in application areas such as finance

[1], supply chain management [2], healthcare [3], business

process management [4], smart cities [5], the Internet of

Things [6, 7] and others [8]. Multiple independent and

unconnected blockchains have been developed [9] to

address the diverse requirements of these areas. As it is

unlikely that a single blockchain caters to the requirements

of all different areas [10], there is a strong need for inter-

operability between distinct blockchains.

Especially in scenarios where assets, i.e., digital repre-

sentations of value, are managed on-chain, the lack of

interoperability leads to a vendor lock-in as assets cannot

leave the blockchain platform on which they were issued.

Users would have to continue using the blockchain they

initially chose since switching to another blockchain would

only be possible with considerable effort or not at all. This

vendor lock-in exposes projects to significant risks such as

limited scalability [11], the danger that the underlying

blockchain sinks into insignificance, and the inability to

& Michael Sober

michael.sober@tuhh.de

Marten Sigwart

m.sigwart@dsg.tuwien.ac.at

Philipp Frauenthaler

p.frauenthaler@dsg.tuwien.ac.at

Christof Spanring

christof.spanring@bitpanda.com

Max Kobelt

max.kobelt@tuhh.de

Stefan Schulte

stefan.schulte@tuhh.de

1 TU Hamburg, Hamburg, Germany

2 TU Wien, Vienna, Austria

3 Pantos GmbH, Vienna, Austria

4 Christian Doppler Laboratory for Blockchain Technologies

for the Internet of Things, Hamburg, Germany

123

Cluster Computing
https://doi.org/10.1007/s10586-022-03737-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-9612-9022
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03737-6&domain=pdf
https://doi.org/10.1007/s10586-022-03737-6

take advantage of new features offered by novel block-

chains [9]. Of course, a centralized entity can be deployed

to migrate assets from one blockchain to another. However,

this contradicts the blockchain’s original idea of decen-

tralization [12].

The ability to transfer assets to arbitrary blockchains in a

decentralized way would remove the need to commit to a

particular blockchain. Instead, assets could be migrated to

new blockchains offering novel functionality or better

security at any time [9]. Another potential use case of cross-

blockchain asset transfers arises in the context of sidechains

[13, 14]. The idea is that an asset can be transferred to and

processed on multiple ‘‘side’’ blockchains, thus reducing the

workload of the original blockchain.

One way to exchange assets between independent

blockchains is via atomic swaps [15]. With atomic swaps,

multiple parties can atomically exchange assets, whereby no

party ends upworse off if one of themmisbehaves. However,

atomic swaps do not constitute actual cross-blockchain asset

transfers. The different assets are not leaving their respective

blockchain but rather ownership of assets changes in an

atomic fashion. Cross-blockchain asset transfers, on the

contrary, achieve that an asset moves from one blockchain to

the other, enabling users to hold different denominations of

the same asset type on multiple blockchains.

While schemes for cross-blockchain asset transfers have

been proposed before, most of these solutions are designed

with specific assets in mind and neglect important

requirements for cross-blockchain asset transfers, such as

finality to prevent assets from getting lost in transit.

Thus, in this paper, we formally define a set of general

requirements that need to be fulfilled by cross-blockchain

asset transfers and then propose a protocol that complies

with the defined requirements.

This paper extends our previous work [16] by (i) pro-

viding more background information about cross-block-

chain communication, (ii) adding additional functionality

to the protocol, (iii) conducting a more detailed evaluation

of the extended protocol while using different cross-

blockchain communication mechanisms, and (iv) updating

the related work.

The contributions of this paper can be summedup as follows:

• We formally define functional requirements for cross-

blockchain asset transfers.

• We define a protocol specification for enabling cross-

blockchain asset transfers that are decentralized, secure,

and not tailored to specific assets.

• We evaluate the protocol on public Ethereum test networks

using a proof-of-concept implementation for blockchains

based on the Ethereum Virtual Machine (EVM).

To this end, Sect. 2 provides important background infor-

mation. In Sect. 3, we formally define the requirements and

specify the protocol for cross-blockchain asset transfers.

Section 4 evaluates the proposed protocol concerning costs,

duration, security, and features using a proof-of-concept

implementation. Section 5 provides an overview of the

related work. Finally, Sect. 6 concludes the paper.

2 Background

This section introduces some notations and definitions

necessary for describing the requirements and specifica-

tions of the proposed cross-blockchain asset transfer pro-

tocol. Further, we look into different means of cross-

blockchain communication, which is an essential building

block of the protocol proposed in Sect. 3.

2.1 Notations and definitions

As has already been mentioned in Sect. 1, cross-blockchain

asset transfers ideally enable users to hold different

denominations of the same asset on multiple blockchains

simultaneously. By that, users are free to choose on which

blockchain they want to keep their assets. An asset can be

seen as anything holding some value with a corresponding

representation on a blockchain.

Assets can generally be divided into fungible and non-

fungible assets [17]. Fungibility implies that two entities of

the same asset are interchangeable. Cryptocurrencies like

Bitcoin or Ether are fungible assets. Another example of

fungible assets is Ethereum tokens following the ERC20

standard [18]. In contrast, non-fungible assets are uniquely

identifiable, i.e., one entity cannot be substituted by another

entity. For instance, ERC721 tokens (e.g., Cryptokitties)

are non-fungible assets [19].

One can further distinguish between native and user-de-

fined assets [17]. Native assets are inherently part of a partic-

ular blockchain. One cannot exist without the other, e.g., the

Bitcoin and Ether cryptocurrencies and the Bitcoin and

Ethereumblockchains, respectively.On theother hand, certain

blockchains allow the implementation of use case-specific

assets with their own set of rules, e.g., the already mentioned

ERC20 or ERC721 tokens. Contrary to native assets, these

user-defined assets are not bound to specific blockchains.

Instead, they are implemented using smart contracts and can

thus be potentially deployed on any blockchain with the nec-

essary scripting capabilities to express the asset’s rules.

This work concentrates on user-defined assets since the

goal is to provide an asset that allows users to hold different

amounts of the same asset on multiple blockchains at the

same time. We formally define an asset A as a set where the

set’s members represent the asset’s smallest indivisible

entities (asset entities). For instance, the smallest indivisible

entity of a fungible asset like Bitcoin is a Satoshi (i.e.,

Cluster Computing

123

0.00000001 BTC). For a non-fungible asset like Cryptokit-

ties, the smallest indivisible entity is a single ‘‘cryptokitty’’.

We define the set of blockchains between which asset

transfers can take place by the finite set B (also referred to as

the cross-blockchain ecosystem). Each blockchain b 2 B can

host multiple smart contracts. Out of these smart contracts,

one contract is responsible for managing asset A on b. We

denote this particular smart contract as cb for each b 2 B.

We assume blockchains to roughly follow the model

devised by Satoshi Nakatomo [1]: The state of the block-

chain is updated through transactions that can be used to

transfer the native asset of the blockchain, store arbitrary

data, or trigger the execution of smart contracts. In the

latter case, the transaction’s payload contains parameters

based on which the smart contracts may change their

associated state. For instance, a transaction payload con-

taining a sender, a recipient, and an amount could trigger a

smart contract causing the transfer of some user-defined

asset from the sender to the recipient.

We specify transactions as a tuple containing the elements

of the payload, which serve as parameters for the invoked

contract. In particular, we use tx :¼ hparam1; . . .; paramni to
denote a transaction tx with a payload containing n param-

eters. Further, we define the function calledContractðtxÞ to
return the address of the smart contract that was triggered by

transaction tx. The execution of transactions may fail, for

instance, if a user does not have enough funds for a transfer.

For this, we define the function isSuccessfulðtxÞ to return true
or false depending on whether the transaction has been

executed successfully or not.

Every transaction is signed by some off-chain

user u 2 U before being submitted to the blockchain. The

function submitterðtxÞ denotes the user that signed tx. Users
can be the owners of a subset of asset A on each partici-

pating blockchain b 2 B. Subsequently, the set Ab
u � A

defines the entities of asset A that are owned by a particular

user u 2 U on blockchain b.

Finally, for two blockchains src; dest 2 B, and two users

sender, recipient 2 U, we define a cross-blockchain asset

transfer as the transfer of some X � A from user sender on

source blockchain src to user recipient on destination

blockchain dest.

2.2 Cross-blockchain communication

Fundamental to the protocol proposed in Sect. 3 is the

ability to communicate state information between block-

chains. In particular, the protocol relies on the ability to

verify the inclusion of transactions across blockchains, i.e.,

the destination blockchain dest must be able to verify that

certain transactions are included in the source blockchain

src. Ideally, this cross-blockchain communication is

decentralized such that no trust in a centralized party is

required to ensure the validity of the information.

2.2.1 Oracles

Oracles, or more generally, data on-chaining solutions [20],

offer one way to realize cross-blockchain communication.

An oracle acts as a bridge between a blockchain and

external data sources. The task of the oracle is to retrieve

the data from the external data source (e.g., another

blockchain) and submit it to a smart contract. While dif-

ferent oracle solutions exist, one approach to verify the

inclusion of transactions is voting-based oracles. Several

concepts and solutions for voting-based oracles have

already been proposed [21–25].

A voting-based oracle requires a special oracle contract

on the destination blockchain. Clients can call the oracle

contract to get state information about the source block-

chain src, e.g., to check for the inclusion of a specific

transaction. The oracle contract starts a voting period

during which other users can post their votes (‘‘yes’’ or

‘‘no’’). The answer which reaches a previously defined

threshold (e.g., the majority) wins. Users are encouraged to

participate in the voting process through crypto-economic

incentives. Unfortunately, the votingmechanism incurs high

costs if the aggregation of the votes is done on-chain.

However, there are already oracle solutions, e.g. [25], that

use an off-chain aggregationmechanism and only submit the

aggregated result to the oracle contract. The oracle contract

then only has to verify the validity of the aggregated result,

which is cheaper since it requires only a single transaction.

2.2.2 Blockchain relays

Another technique for realizing transaction inclusion veri-

fications is using blockchain relays [26]. Blockchain relays

operate by having a set of off-chain clients relay block

headers (see Fig. 1) from a source blockchain to a desti-

nation blockchain, replicating the source blockchain within

the destination blockchain. Each relayed block header is

validated on the destination blockchain according to the

validation rules of the source blockchain. As block headers

do not contain any transactions, only a small fraction of the

space needed to store full blocks is consumed on the des-

tination blockchain.

With the block headers of the source blockchain repli-

cated, clients can query state information about the source

blockchain on the destination blockchain, e.g., the current

longest branch of the source blockchain, or if a certain block

header is confirmed by at least x succeeding block headers.

Further, transactions in a blockchain (i.e., in a block) are

stored in a special data structure called Merkle tree [27], or

variants thereof. Since the root hash of the Merkle tree is

Cluster Computing

123

also stored in the block header, it becomes possible on the

destination blockchain to verify whether some transaction

is included within a particular block of the source block-

chain. For that, users construct a so-called Merkle proof of

membership [27]. The proof is submitted to the destination

blockchain, on which the proof is used to recalculate the

root hash of the corresponding Merkle tree. If the calcu-

lated root hash matches the root hash of the stored block

header, the destination blockchain can be certain that the

transaction is included within the corresponding block of

the source blockchain. This technique is also known as

Simplified Payment Verification (SPV) [1].

Blockchain relays provide an on-chain answer to whe-

ther a certain transaction is included in the source block-

chain. Contrary to voting-based oracles where multiple

clients have to act honestly, blockchain relays only require

one honest participating client [28]. However, blockchain

relays cause higher costs since relayers have to continu-

ously submit block headers to keep the relay up to date. In

the following section, we use blockchain relays and oracles

to realize the proposed asset transfer protocol.

3 Cross-blockchain asset transfers

In this section, we define the requirements for cross-

blockchain asset transfers. Then, we use these requirements

as the foundation to define a decentralized cross-block-

chain asset transfer protocol.

3.1 Requirements

As defined in Sect. 2, a cross-blockchain asset transfer for an

asset A constitutes the transfer of ownership of some subset

X � A from some user sender on a source blockchain src to

another user recipient on a destination blockchain dest.

Before the transfer, X must only exist on blockchain src,

and after the transfer, the asset must only exist on block-

chain dest. At no point should X exist on both blockchains

in parallel since the accidental duplication of asset entities

can potentially lead to a deflation of the asset’s value.

Hence, a cross-blockchain asset transfer should only be

successful, i.e., X is created on dest, if X has been burned

(i.e., destroyed) before by its owner on src.

Therefore, before X can be recreated on dest, dest needs

somekindof evidence thatXhas alreadybeenburnedon src. If

we assume that it is possible to provide such evidence guar-

anteeing that X has been burned on src and that this evidence

can be used to recreate X on dest, two further requirements

emerge. First, faking the evidence needs to be prevented at all

costs. Users should not be able to counterfeit evidence certi-

fying thatX has been burned on srcwithout it havingoccurred.

Second, if the evidence is correct, it should only be used once

to recreateXonadifferent blockchain, i.e., onblockchaindest.

Hence, evidence of X having been burned on src cannot be

used multiple times to recreate X on other blockchains.

Essentially, disregard of any of these requirements would

enable users to illegally create new entities of asset A out of

nothing—again potentially deflating the value of the asset and

decreasing trust in this particular asset.

A further requirement comes up when trying to prevent

the opposite, accidental inflation of the asset’s value.

Accidental inflation could take place if X is burned on src

without ever being recreated on dest. This reduces the total

supply of A. Hence, cross-blockchain asset transfers need

to be eventually finalized to not decrease the total supply of

A over time. That is, either the transfer is executed com-

pletely or it fails with no intermediate state persisting.

Finally, the source blockchain src possibly needs to perform

some action if a certain cross-blockchain asset transfer has been

executed successfully (i.e.,Xhasbeen successfully recreatedon

destination blockchain dest). For instance, imagine a business

deal where some user buyerwants to buy asset entities Y � A0,

with A0 \ A ¼ ;, from another user seller. While asset A0 lives
exclusively on the source blockchain src, user buyer aims to

buy Y with cross-blockchain asset A, transferring X from

themselves on blockchain src to user seller on blockchain dest.

Therefore, ownership of Y can change on src if it is ensured that

the transfer of X was successful, i.e., blockchain src must

retrieve a confirmation of the successful transfer.

To sum up, we define the general requirements for a

cross-blockchain asset transfer as follows:

Requirement 1 When a user sender wants to burn X on

blockchain src, X should only be burned if X � Asrc
sender .

Requirement 2 When transferring some X � A from the

source blockchain src to the destination blockchain dest,

X should only be recreated on dest if it can be proven that

X has already been burned on src. That is, it should not be

possible to counterfeit the burning of asset entities.

Requirement 3 Double spending must be prevented at all

times. That is, if X is burned on one blockchain, X can only

be recreated once on one other blockchain.

Requirement 4 If X is burned on one blockchain, X is

always recreated on another blockchain within a certain

Relay
Contract

Source Blockchain Destination Blockchain

Relayer

Fig. 1 Blockchain relay

Cluster Computing

123

time limit t. Further, finality should not be dependent on a

single actor (i.e., not be centralized).

Requirement 5 After burningX on source blockchain src, src

will eventually receive a confirmation that X has been suc-

cessfully recreated on another blockchain. Analogous to

decentralized finality, any user should be able to submit con-

firmations. This requirement is optional since not every use

case requires that the source blockchain knowswhether a cross-

blockchain asset transfer has been completed successfully.

In the next subsection, we define a cross-blockchain asset

transfer protocol that fulfills these requirements. To this end,

we first define a base protocol that fulfills Requirements 1 to

4 (Sect. 3.2). We then provide an extension of the protocol

to also account for Requirement 5 (Sect. 3.3).

3.2 Base protocol

Protocol 1 Protocol for cross-blockchain asset transfers
Goal: For two blockchains src, dest ∈ B and two users sender, recipient ∈ U , transfer X ⊆ A from src to
dest and change ownership of X from sender to recipient.

1. Burn. User sender creates a new burn transaction txburn := 〈recipient, dest, X〉.
(a) User sender signs and submits txburn to source blockchain src invoking contract csrc, i.e., the

contract managing asset A on src.
(b) When being invoked, contract csrc performs the following operations.

i. Verify dest ∈ B to make sure that the specified blockchain dest is part of the cross-
blockchain ecosystem.

ii. Verify X ⊆ Asrc
sender to make sure that user sender owns the asset entities it wants to transfer

on blockchain src.
iii. When all checks are successful, the asset entities to be transferred are burned, i.e., Asrc

sender =
Asrc

sender \ X.
2. Claim. Once txburn is included in blockchain src, any user u ∈ U can construct the claim transaction

txclaim := 〈txburn, prooftxburn〉. Variable prooftxburn contains the Merkle proof of membership of txburn
certifying the inclusion of txburn in blockchain src.
(a) User u signs and submits txclaim to blockchain b ∈ B invoking contract cb, i.e., the contract

managing asset A on b.
(b) When being invoked, contract cb utilizes the verifier contract cverifier to ver-

ify the inclusion and confirmation of txburn in blockchain src, i.e., cb calls
cverifier.verifyInclusion(txburn, prooftxburn , src).

(c) If cverifier confirms the inclusion of txburn, contract cb performs the following steps.
i. Verify b = dest to ensure that the executing blockchain b is the intended destination

blockchain dest. Note that dest, recipient, and X are available within cb as these variables
are contained within the payload of txburn.

ii. Verify txburn /∈ Tburn where Tburn is the set of burn transactions that have already been
used to claim entities of asset A on dest. This ensures that burn transactions cannot be
used multiple times for claiming.

iii. Verify calledContract(txburn) = csrc to make sure that the contract that has been invoked
by txburn is a contract authorized for managing asset A on blockchain src.

iv. Verify that isSuccessful(txburn) returns true to ensure that the execution of csrc has been
completed without error.

v. If cverifier.confirmations(txburn, src) > t, user recipient has not submitted txclaim within
time t. Hence, the user u = submitter(txclaim) that submitted txclaim receives a transfer fee
Xfee ⊆ X as reward for finalizing the transfer, i.e., Adest

u = Adest
u ∪ Xfee. Otherwise, no fee

will be paid to u (i.e., Xfee = ∅), resulting in all asset entities being transferred to recipient.
vi. (Re-)create the asset entities and assign ownership to user recipient, i.e., Adest

recipient =
Adest

recipient ∪ (X \ Xfee).
vii. Add txburn to the set of already used burn transactions, i.e., Tburn = Tburn ∪ {txburn}.

Cluster Computing

123

As mentioned above, a cross-blockchain asset transfer

should only be successful if the asset is first burned on the

source blockchain and then recreated on the destination

blockchain (Requirement 2). Therefore, the transfer

requires at least two steps: one ‘‘burn’’ step on the source

blockchain and one ‘‘claim’’ step on the destination

blockchain. The protocol uses oracles or blockchain relays

for decentralized cross-blockchain communication to ver-

ify the ‘‘burn’’ step. In particular, these provide an on-chain

answer to whether a specific transaction is included in the

source blockchain via SPV [1]. With this in mind, we can

outline a minimal protocol for cross-blockchain asset

transfers (see Fig. 2).

The protocol consists of a BURN transaction txburn sub-

mitted to source blockchain src and a CLAIM transaction

txclaim submitted to destination blockchain dest. Further, a

verifier contract allows the asset contract on blockchain

dest to verify the inclusion of BURN transactions in block-

chain src. The exact specification is outlined in Protocol 1.

Initially, some user sender creates transaction txburn. The

payload of txburn contains the user intended as the recipient

of the transfer (recipient), an identifier representing the

desired destination blockchain (dest), and the asset entities

to be transferred (X). It may also be that additional data is

required, as is the case with ERC721 tokens, which have a

tokenID or tokenURI. These must also be part of txburn or

an additional data structure (e.g., the transaction receipt)

that can be verified on the destination blockchain.

User sender then signs and submits txburn to the source

blockchain src invoking smart contract csrc, which manages

asset A on blockchain src (Step 1a). The smart contract

then verifies that the specified destination blockchain dest

is part of the cross-blockchain ecosystem (Step 1(b)i).

Second, the contract ensures that the user sender is the

current owner of X on blockchain src (Step 1(b)ii). If both

checks are successful, X is burned on src (Step 1(b)iii).

Once txburn is included in blockchain src, any user u 2
U can construct the CLAIM transaction txclaim. The payload

of txclaim consists of transaction txburn and a Merkle proof of

membership of txburn (proof txburn). The verifier contract

cverifier on blockchain dest uses the proof to verify the

inclusion of txburn in blockchain src. Note that if only the

sender or only the recipient of the transfer were allowed to

submit txclaim, the finality of the transfer (Requirement 4)

would be entirely dependent on that particular user, e.g.,

the user could decide not to submit txclaim.

User u then signs and submits txclaim to some blockchain

b 2 B invoking the contract cb managing A on

blockchain b (Step 2a).

By invoking the verifier contract cverifier, the contract cb
checks whether txburn is included and confirmed in block-

chain src (Step 2b). If the verifier contract does not confirm the

inclusion of txburn, the claim request is rejected. Otherwise,

contract cb performs the following steps: First, it verifies that b

is the intendeddestinationblockchaindest (Step 2(c)i). Second,

it is verified that txburn has not been used to claim X on b

before (Step 2(c)ii). Third, if both checks are successful, con-

tract cb verifies that the contract that burned X on src is a valid

contract authorized for managingA on src (Step 2(c)iii). If this

is the case, contract cb further checks that txburn was successful,

i.e., the execution of contract csrc has been completed without

any error, e.g., constraint violations (Step 2(c)iv). This check

covers the case inwhich some blockchains transactionsmay be

included even if the triggered smart contract execution was not

successful. While Ethereum also includes failed transactions,

other blockchains may not include such transactions at all.

The above checks ensure that txclaim is only successful if

the corresponding txburn was also executed successfully. To

further account for Requirement 4 (transfer finality), the

protocol must ensure that when transaction txburn takes

place on blockchain src, the corresponding txclaim is even-

tually submitted to destination blockchain dest.

Usually, the incentive for transfer finalization lies with

the recipient of the transfer since the recipient wants to

receive the transferred asset entities. However, in case the

recipient is indisposed to submit txclaim for some reason, the

protocol offers an incentive in the form of a transfer fee to

other users. That is, any user u that successfully submits

txclaim gets assigned a subset Xfee � X as a reward (-

Step 2(c)v). However, to provide the user recipient with

the chance to receive all entities of X, other users are only

eligible to receive the fee if they submit txclaim after a

certain time t has elapsed.

Time t is defined by the number of blocks that succeed

the block containing txburn on source blockchain src.

Hence, when being invoked by txclaim, cb additionally

queries the verifier contract cverifier whether the block

containing txburn is confirmed by more than t succeeding

blocks. If this is the case, the time t is considered elapsed,

and the user that submitted txclaim receives the transfer fee

Alice

Relay
Contract

Asset
Contract

Asset
Contract

1. Burn 2. Claim

Source Blockchain Destination Blockchain

Bob

Fig. 2 Base protocol for cross-blockchain asset transfers leveraging a

blockchain relay

Cluster Computing

123

Xfee, while user recipient receives the rest X n Xfee. If not,

the user recipient always receives the entire set X (i.e.,

Xfee ¼ ;), even if another user submitted

txclaim (Step 2(c)vi). Asset entities are (re-)created on

blockchain b (¼ dest) by incrementing the balance of the

recipient (in case of fungible assets) or by copying the

transferred asset’s data structure from txburn into the storage

of contract cb (in case of non-fungible assets).

Finally, to ensure that txburn cannot be used to claim X

on b again, txburn is added to the set of already used BURN

transactions Tburn (Step 2(c)vii).

3.3 Protocol extension for transfer
confirmations

Protocol 2 Extension for transfer confirmations on the source blockchain
Goal: For two blockchains src, dest ∈ B and two users sender, recipient ∈ U , transfer X ⊆ A from src to
dest and change ownership of X from sender to recipient. Confirm finalization of transfer on src.

1. Burn. Contrary to Protocol 1, txburn contains an additional variable Y ⊆ A representing the stake
that will act as reward for users submitting a confirmation transaction to src once the transfer has
been completed on dest.
(a) User sender signs and submits txburn to source blockchain src invoking contract csrc.
(b) When being invoked, contract csrc performs the following steps.

i. Perform all verification steps from Step 1b of Protocol 1.
ii. Verify Y ⊆ Asrc

sender to make sure that user sender owns the asset entities she wants to use
as stake on blockchain src.

iii. Verify Y ∩ X = ∅, i.e., X and Y are disjoint, to ensure that the asset entities intended to
be transferred are not used as stake and vice versa.

iv. When all checks are successful, the asset entities to be transferred are burned and the stake
is locked, i.e., Asrc

sender = Asrc
sender \ (X ∪ Y).

2. Claim. To claim the entities of asset A on destination blockchain dest, the same steps as for txclaim
in Protocol 1 are performed.

3. Confirm. Once txclaim is included in blockchain dest, any user u ∈ U can construct the con-
firm transaction txconfirm := 〈txclaim, prooftxclaim〉. Variable prooftxclaim contains the Merkle proof of
membership of txclaim certifying the inclusion of txclaim in blockchain dest.
(a) User u signs and submits txconfirm to the source blockchain src invoking csrc.
(b) When being invoked, contract csrc utilizes the verifier contract cverifier to ver-

ify the inclusion and confirmation of txclaim in blockchain dest, i.e., csrc calls
cverifier.verifyInclusion(txclaim, prooftxclaim , dest).

(c) If cverifier confirms the inclusion of txclaim, contract csrc performs the following steps.
i. Verify txclaim /∈ Tclaim where Tclaim is the set of claim transactions that have already

been used for confirming transfer finalization on src. This ensures that claim transactions
cannot be used multiple times.

ii. Verify calledContract(txburn) = csrc to ensure that txconfirm invokes the same contract that
has been invoked by txburn.

iii. Verify calledContract(txclaim) = cdest to make sure that the contract that has been invoked
by txclaim is the contract managing asset A on dest as intended by txburn.

iv. Verify that isSuccessful(txclaim) returns true to ensure that the execution of cdest has been
completed without any error.

v. Check if timeout for submitting txconfirm is reached. If so, user sender has not submitted
txconfirm in time. Hence, the user u = submitter(txconfirm) that submitted txconfirm receives
the locked stake from txburn as reward for providing the confirmation of the corresponding
claim, i.e., Asrc

u = Asrc
u ∪ Y . If not, user sender gets back control of the locked stake, i.e.,

Asrc
sender = Asrc

sender ∪ Y , regardless of which user submitted txconfirm.
vi. Add txclaim to the set of already used claim transactions, i.e., Tclaim = Tclaim ∪ {txclaim}.

Cluster Computing

123

Protocol 1 provides finality by incentivizing users to sub-

mit txclaim for each txburn. However, only the destination

blockchain dest knows whether a cross-blockchain asset

transfer has been completed successfully. Source block-

chain src never actually learns about the finalization of the

transfer. To circumvent this, we can augment Protocol 1 by

adding a third kind of transaction (CONFIRM) to confirm the

successful cross-blockchain asset transfer on src, as dis-

played in Fig. 3.

The extension of the protocol is specified in Protocol 2.

At first, transaction txburn is submitted to the source

blockchain src. The payload of txburn is the same as pre-

sented in Protocol 1—except for one additional field

defined as Y. Y is a subset of asset A and represents a

certain amount of stake that will act as a reward for users

submitting a CONFIRM transaction to src.

When user sender submits txburn to src (Step 1a), csrc
first performs the same verifications as in Protocol

1 (Step 1(b)i). Additionally, a couple of checks concerning

the stake Y are performed. First, it is verified that user

sender is the owner of Y on blockchain src (Step 1(b)ii).

Second, it is verified that the sets X and Y are dis-

joint (Step 1(b)iii). That is, the asset entities intended to be

transferred should not be used as a stake and vice versa. If

all verifications are successful, X is burned on src, and Y is

locked (Step 1(b)iv).

Once txburn is included in src, any user can create and

submit transaction txclaim containing txburn and a corre-

sponding proof data proof txburn to the destination blockchain

dest. The steps performed when the corresponding smart

contract cdest is invoked are identical to those in Protocol 1

(Step 2).

With txclaim being successfully executed and included in

blockchain dest, the successful transfer is reported back to

source blockchain src. For that, any user can submit a

CONFIRM transaction txconfirm to src (Step 3a).

When being invoked by txconfirm, contract csrc verifies

that txclaim is included in dest using transaction inclusion

verification (Step 3b). If the verifier contract does not

confirm the inclusion of txclaim, the confirm request is

rejected. Otherwise, contract csrc performs the following

steps. First, it verifies that txclaim has not already been used

for confirming transfer finalization (Step 3(c)i). Second, it

checks that contract csrc is the contract that has burned X,

i.e., whether csrc has been invoked by txburn (Step 3(c)ii).

This check ensures that contract csrc is the intended

receiver of the confirmation. Third, csrc verifies that the

contract invoked by txclaim is the correct contract managing

asset A on the intended destination blockchain dest

(Step 3(c)iii). dest can be extracted from txburn included in

the payload of the provided txclaim. Fourth, contract csrc
checks that txclaim was successful, i.e., the execution of

contract cdest has been completed without any

error (Step 3(c)vi).

If all checks are successful, contract csrc not only has the

information about the successful execution of txburn but

also that the corresponding txclaim finalized the transfer on

blockchain dest. To reward user u for submitting txconfirm to

src, the locked stake Y from txburn is assigned to

u (Step 3(c)v). This provides an incentive for users to

submit txconfirm to src for finalized cross-blockchain asset

transfers.

The protocol uses a similar approach for the locked

stake as for the transfer fee. The initiator of the transfer can

withdraw its locked stake with certain conditions. A

timeout determines who is eligible to retrieve the locked

stake Y when txconfirm is submitted. Before the timeout, only

sender is eligible for the stake. After the timeout, anyone

submitting txconfirm earns Y as a reward. As contract csrc
executes both the burning of entities and confirmations, it

can track the time difference between the two events.

Finally, to ensure that txclaim cannot be used several

times, txclaim is added to the set of already used CLAIM

transactions Tclaim (Step 3(c)vi).

4 Evaluation

In this section, we evaluate the proposed cross-blockchain

asset transfer protocol and its extension with regard to the

defined requirements and conduct a quantitative analysis

evaluating transfer costs and duration. For the evaluation,

we provide a proof-of-concept implementation for EVM-

based blockchains such as Ethereum and Ethereum Classic.

The prototype, as well as the evaluation scripts used for

obtaining the results presented in Sect. 4.3, are available as

an open-source project on GitHub1.

Alice

Relay
Contract

Asset
Contract

Asset
Contract

1. Burn 2. Claim

Source Blockchain Destination Blockchain

Bob

3. Confirm

Relay
Contract

Fig. 3 Protocol extension to provide transfer confirmations leveraging

blockchain relays

1 https://github.com/soberm/x-chain-protocols/

Cluster Computing

123

https://github.com/soberm/x-chain-protocols/

4.1 Prototype

As mentioned above, the prototype is implemented for

EVM-based blockchains. The advantages of targeting

EVM-based blockchains in a first proof-of-concept are

twofold. First, EVM-based blockchains such as Ethereum

are among the most popular blockchains concerning

decentralized applications (DApps) and digital assets

[11, 29]. Cross-blockchain transfer capabilities for EVM-

based blockchains can thus enhance the utility of a majority

of available assets. The second reason is rather practical.

As quite a few EVM-based blockchains exist, multiple

blockchains can be targeted with a single implementation.

However, as long as a blockchain provides sufficient

scripting capabilities to implement the concepts of the

protocol, as well as some means of transaction inclusion

verification (e.g., via oracles or relays), the solution can be

adopted beyond EVM-based blockchains.

For our analysis, we use the ERC20 token standard as

asset representation. For transaction inclusion verification,

we use two different means of cross-blockchain commu-

nication. Initially, we implemented the prototype to work

with ETH Relay, a blockchain relay specifically targeting

EVM-based blockchains [28]. ETH Relay follows a vali-

dation-on-demand pattern where relayers can issue a dis-

pute during a certain lock time to trigger the validation of a

block header. This approach saves costs since not every

block has to be validated. For simplicity, we set the lock

time to 0 as it would only lengthen the experiments and add

a constant value to the transfer duration.

Additionally, we apply the oracle solution proposed in

[25], which uses an off-chain aggregation mechanism

based on threshold signatures. We extended the oracle to

return block headers instead of single transactions such that

it implements the same interface as ETH Relay. We run

three oracle nodes, the majority of which have to agree on

the same outcome to construct the threshold signature.

With the application of both mechanisms, we can also

observe how the asset transfer protocol works with dif-

ferent approaches to cross-blockchain communication.

A transaction in Ethereum consists of the fields nonce,

gasPrice, gasLimit, to, value, data, and a signature (v, r, s)

[30]. The field data contains the payload (e.g., the

parameters for a smart contract invocation) of the trans-

action. The field to contains the address of the smart con-

tract that has been invoked by the transaction (i.e., function

calledContractðtxÞ in our protocol). The submitter

submitterðtxÞ of the transaction can be calculated out of the

signature fields v, r, and s.

It should be noted that the transaction data does not

contain information about the transaction status, i.e.,

whether the execution succeeded or failed. In Ethereum,

this information is stored in another data structure, the so-

called transaction receipt. For each transaction, there exists

a corresponding receipt. The receipt contains all events that

were emitted during the execution of the transaction. Fur-

ther, a status flag indicates the successful execution of the

transaction. Thus, when evaluating the function

isSuccessfulðtxÞ in our protocol, the asset contract must

have access to the receipt of tx as well.

In Ethereum, a block’s transactions and receipts are kept

in separate Merkle trees, which do not contain references to

each other. However, transaction and receipt are logically

linked together as their position in their respective trees is

identical. Both the inclusion of the transaction and the

receipt can be verified via Merkle proofs of membership

using the respective Merkle trees.

Both Merkle proofs must be evaluated along the same

path to ensure that a transaction and receipt belong toge-

ther. Hence, in our prototype, the proof data certifying the

inclusion of a transaction (e.g., proof txburn) contains a

Merkle proof for the transaction and the transaction receipt.

Further, it includes the path for the evaluation of the

Merkle proofs.

4.2 Requirements analysis

This section evaluates the protocol with regard to the

requirements defined in Sect. 3.1.

4.2.1 Requirement 1 (ownership)

When user sender submits a BURN transaction txburn
invoking contract csrc, the contract verifies that

X � Asrc
sender (see Step 1(b)ii of Protocol 1), thus making

sure that user sender is the owner of X on src. Hence, we

consider Requirement 1 as fulfilled.

4.2.2 Requirement 2 (no claim without burn)

To claim X on dest, a user u submits a CLAIM transaction

txclaim. As defined by the protocol, the user provides txburn
as well as some proof data in the payload of txclaim. Before

recreating X, the asset contract cdest on blockchain dest

performs several checks.

First, it is verified that txburn is included in the source

blockchain src and confirmed by enough blocks (Step 2b).

Second, the protocol checks that txburn indeed invoked asset

contract csrc on the source blockchain src (Step 2(c)iii).

Third, contract cdest verifies that the execution of txburn was

successful (Step 2(c)iv).

These three checks ensure that assets are created on the

destination blockchain dest if they have been successfully

burned by the contract csrc on the source blockchain src.

Cluster Computing

123

Notably, the fulfillment of this requirement strongly

depends on the security of the used transaction inclusion

verification mechanism. A security analysis of the block-

chain relay (ETH Relay), as well as the oracle used in our

proof-of-concept implementation, can be found in [25, 28],

respectively.

4.2.3 Requirement 3 (double spend prevention)

To ensure that burned assets can not be claimed multiple

times, all BURN transactions that have already been used

within CLAIM transactions are stored in a set TBURN within

asset contract cdest. When cdest is invoked by a new CLAIM

transaction txclaim, it only executes the claim if the provided

BURN transaction txburn is not yet included in

TBURN (Step 2(c)ii).

Further, by encoding an identifier of the desired desti-

nation blockchain dest within BURN transactions, a burned

asset can not be claimed on multiple different blockchains.

When an asset contract cb on some blockchain b is invoked

by a CLAIM transaction containing txburn, cb can verify

whether it is the intended destination contract by compar-

ing b ¼ dest (Step 2(c)i). If not, the claim is rejected.

Therefore, Requirement 3 can be considered fulfilled as

well.

4.2.4 Requirement 4 (decentralized finality)

For the analysis of finality, we make use of the BAR

(Byzantine, Altruistic, Rational) model [31], which has

found application in security analysis for blockchain pro-

tocols and extensions before, e.g., [28, 32, 33]. Under this

model, Byzantine users may depart arbitrarily from the

protocol for any reason; altruistic users always adhere to

the protocol rules, and rational users will deviate from the

protocol to maximize their profit.

The protocol in this paper offers a reward to users

submitting the CLAIM transaction. As the reward is at least

as high as the submission costs of CLAIM transac-

tions (see Sect. 4.3), rational users have an economic

incentive to finalize transfers. However, in any protocol,

rational users according to the BAR model, cannot be fully

trusted to act rationally in the sense of the protocol’s

incentive structure since seemingly irrational behavior

might be perfectly rational in the context of a larger

ecosystem with the protocol being part of it [34]. For

instance, rational users might aim at yielding profit in the

larger ecosystem by finding ways to bet against the pro-

tocol or the value of the asset.

Therefore, rational users are not guaranteed to comply

with the protocol rules even with perfectly aligned incen-

tives. Building an open and permissionless system that

withstands all participants potentially deviating from the

protocol rules appears fundamentally impossible [34].

Thus, in our protocol, not only the users directly involved

in a transfer are allowed to post the CLAIM transaction, but

rather any user of the system can do it. This provides

stronger finalization guarantees as finalization does not

depend on a single user acting honestly. It is sufficient if

one user out of all users is altruistic to ensure finalization.

Notably, the protocol only relies on an altruistic user in

case rational users see an incentive in deviating from the

proposed protocol.

4.2.5 Requirement 5 (transfer confirmation)

With Requirements 1to 4 fulfilled, cross-blockchain asset

transfers with decentralized finality can be realized. How-

ever, in Protocol 1, only the destination blockchain dest

knows when a transfer is finalized. The source blockchain

src has no way of knowing about the finalization. We have

thus proposed Protocol 2 as an extension of Protocol 1 to

fulfill the additional requirement of providing src with a

finalization confirmation. The confirmation takes place in

the form of an additional transaction txconfirm being sub-

mitted to src.

The CONFIRM transaction also has to comply with

Requirements 2 to 4. The execution of txconfirm should only

be successful if there exists a corresponding CLAIM trans-

action txclaim successfully executed on dest (Requirement

2). Further, it should not be possible to confirm txclaim
multiple times (Requirement 3). Additionally, after the

successful execution of a CLAIM transaction txclaim on dest,

the corresponding CONFIRM transaction txconfirm is eventually

submitted to src (Requirement 4).

The requirements are fulfilled by Protocol 2 using the

same approach that is used for CLAIM transactions. That is,

similar to how a CLAIM transaction’s payload contains a

BURN transaction and corresponding proof data, txconfirm
consists of a CLAIM transaction txclaim and corresponding

proof data proof txclaim .

The asset contract csrc performs the following checks

when being invoked by a CONFIRM transaction txconfirm to

fulfill Requirement 2: First, csrc verifies that txclaim is

included in blockchain dest and confirmed by enough

blocks (see Step 3b of Protocol 2). Second, the contract

verifies that the provided CLAIM transaction txclaim has

invoked asset contract cdest on blockchain dest (see

Step 3(c)iii of Protocol 2). Third, csrc checks that txclaim has

been successfully executed on blockchain dest (see

Step 3(c)iv of Protocol 2). With these checks in place,

Requirement 2 also holds for CONFIRM transactions.

It should not be possible to reuse the same CLAIM

transaction txclaim on blockchain src to fulfill Requirement

3. Further, it should not be possible to use txclaim on any

Cluster Computing

123

blockchain other than src for confirming transfer finaliza-

tion. The first condition is ensured by adding each con-

firmed CLAIM transaction txclaim to a set TCLAIM (see

Step 3(c)vi of Protocol 2). Whenever csrc is invoked, it

checks whether txclaim provided within txconfirm is included

in TCLAIM (see Step 3(c)i of Protocol 2). If so, the request is

rejected. To ensure the second condition, the asset contract

that has been invoked by the BURN transaction contained

within txclaim is compared to csrc (see Step 3(c)ii of Pro-

tocol 2). If they match, csrc is the intended receiver of the

confirmation.

The applied incentive structure ensures the confirmation

of each transfer finalization on src (Requirement 4).

Essentially, whenever some user sender submits a BURN

transaction txburn to blockchain src, it has to provide some

stake Y. If user sender does not submit txconfirm before a

timeout, any user can redeem Y by submitting txconfirm to

src. Hence, there is an economic incentive to confirm

transfer finalizations on src. Applying the same chain of

reasoning for analyzing eventual finality reveals that as

long as at least one altruistic user is participating, each

transfer finalization on blockchain dest is eventually con-

firmed on blockchain src.

As the CONFIRM transaction txconfirm complies with

Requirements 2 to 4, we consider the requirement for

transfer confirmations fulfilled by Protocol 2.

4.3 Quantitative analysis

This section analyzes transfer costs and duration using the

proof-of-concept implementation. We conduct cross-

blockchain asset transfers between the public Ethereum test

networks Rinkeby and Ropsten. Rinkeby and Ropsten are

identical concerning the underlying EVM and the applied

inter-block time (about 15 seconds). The main difference is

the used consensus algorithm. Rinkeby uses Proof of

Authority (PoA), while Ropsten uses Proof of Work

(PoW). However, the execution of smart contracts is

independent of the consensus algorithm. Therefore, eval-

uating transfers in one direction provides a sufficient esti-

mation of transfer costs and duration.

Our evaluation consists of conducting 100 transfers of 1

ERC20 token from Rinkeby to Ropsten, i.e., BURN (CON-

FIRM) transactions are submitted to Rinkeby, whereas CLAIM

transactions are executed on Ropsten. We repeat the

experiment for both means of transaction inclusion

verification, i.e., the oracle and the blockchain relay.

Additionally, we also repeat the experiment without

transaction inclusion verification to measure the overhead

of the respective mechanisms. These mechanisms usually

charge a fee to reward the relayers or the oracle nodes. For

simplicity, we set the fee to zero. Further, as the protocol

extension also includes the steps of Protocol 1, we only use

the implementation of Protocol 2 for our experiment.

4.3.1 Transfer costs

For every performed transfer, we measure the gas con-

sumption of all three transaction types, i.e., BURN, CONFIRM,

and CLAIM. The obtained results (see Table 1) are outlined

in Figs. 4 and 5. Note that the respective figures contain the

gas consumption for the protocol and transaction inclusion

verification.

First, we examine the gas consumption of the protocol

while using the blockchain relay. Here, we get a total gas

consumption of 450.02 kGas (standard deviation of 17.16

kGas) for Protocol 1, calculated as the sum of txburn and

txclaim. The total gas consumption of Protocol 2 is about

1018.09 kGas (standard deviation of 34.8 kGas) and

includes the gas consumption of txconfirm, which accounts

for the higher overall costs. With an exemplary exchange

rate of about 3030.68 EUR per ETH (as of March 2022)

and a gas price of 10 GWei, the transfer costs amount to

13.64 EUR for Protocol 1 and 30.86 EUR for Protocol 2.

After examining the gas consumption with the block-

chain relay, we look at the gas consumption with the ora-

cle. Here, we get a total gas consumption of 427.31 kGas

(standard deviation of 8.75 kGas) for Protocol 1 and

976.35 kGas (standard deviation of 21.21 kGas) for Pro-

tocol 2. Using the same exchange rate and gas price leads

to transfer costs of 12.95 EUR for Protocol 1 and 29.6 EUR

for Protocol 2.

The execution of txburn is the cheapest, followed by

txclaim and by txconfirm. The differences can be explained by

the different payloads of each transaction type. As the

payload of txburn does not consist of any other transaction

and proof data, less data needs to be passed to and pro-

cessed by the asset contract leading to lower gas con-

sumption. On the contrary, txclaim contains txburn, as well as

proof data for txburn, and txconfirm contains txclaim together

with the corresponding proof data, which leads to higher

gas consumption.

Table 1 Average gas

consumption of the different

operations in kGas

Burn Claim Confirm Protocol 1 Protocol 2

Relay 39:39� 0:00 410:62� 17:16 568:07� 28:52 450:02� 17:16 1; 018:09� 34:80

Oracle 39:39� 0:00 364:19� 8:75 525:30� 14:86 427:31� 8:75 976:35� 21:21

Cluster Computing

123

The gas consumption of transaction inclusion verifica-

tion depends on the concrete means of cross-blockchain

communication. The oracle checks off-chain if the block

header is part of the main chain, thus resulting in lower gas

costs than the blockchain relay. Nevertheless, the client has

to issue the requests to the oracle separately to provide the

hashes of the block headers needed for the proofs. These

requests additionally consume 23.4 kGas per request as

there are no independent relayers that continuously provide

the data. However, an oracle is much cheaper to operate

than a blockchain relay since it does not cause any ongoing

costs [25]. These operating costs heavily influence the fees

charged by the relay or the oracle.

4.3.2 Transfer duration

In this subsection, we analyze the duration of asset trans-

fers, which depends on a few core factors. The current

network status and the selected gas price greatly influence

the inclusion and confirmation time of a transaction.

Therefore, we conduct the experiments at different times

over a period of 3 days, while the gas price is estimated

automatically to ensure the inclusion of a transaction with a

high probability in the next block.

Further, after submitting a BURN transaction, the sub-

mitter may wait before posting the corresponding CLAIM

transaction. The same applies to a CLAIM transaction, after

which the submitter can wait to submit the following

CONFIRM transaction. Hence, the overall transfer duration

depends on the user executing the transfer. However,

despite this uncertainty, we can measure the lowest pos-

sible transfer duration by submitting each transaction at the

earliest possible time, i.e., as soon as the previous trans-

action is included in the blockchain and confirmed by

enough blocks. In our experiment, we require each trans-

action on Rinkeby as well as on Ropsten to be confirmed

by at least five succeeding blocks.

Finally, the transfer duration also depends on the used

transaction inclusion verification mechanism. Therefore,

we examine the influence of different transaction inclusion

verification mechanisms by measuring the transfer duration

using a blockchain relay and an oracle.

As described above, in our experiment, assets are

transferred from Rinkeby to Ropsten. Therefore, BURN and

CONFIRM transactions are submitted to Rinkeby while CLAIM

transactions are submitted to Ropsten. Hence, durations for

BURN and CONFIRM transactions were measured on Rinkeby,

whereas for CLAIM transactions on Ropsten.

Essentially, CLAIM (CONFIRM) transactions are submitted

to Ropsten (Rinkeby) as soon as the corresponding BURN

(CLAIM) transactions are included and confirmed on Rin-

keby (Ropsten). However, users need to wait until the relay

running on Ropsten (Rinkeby) has been brought up to date

or the oracle has submitted the data before they can submit

the corresponding CLAIM (CONFIRM) transactions. Otherwise,

the transactions would not be successful as the transaction

inclusion verifier does not have enough information to

verify the inclusion of transactions.

To this end, DInclusion denotes the duration from the

moment a transaction is submitted to Rinkeby (Ropsten)

until it is included in some block. DConfirmation specifies the

time it takes for an already included transaction to be

confirmed by enough succeeding blocks. Further, DRelay

denotes the time it takes for the relay to collect enough

information to verify the inclusion of transactions.

burn
(Rinkeby)

claim
(Ropsten)

confirm
(Rinkeby)

0

100

200

300

400

500

600

241.38

320.03

39.39
169.24

248.04

kG
as

Protocol Relay

Fig. 4 Average transaction gas consumption with the blockchain

relay

burn
(Rinkeby)

claim
(Ropsten)

confirm
(Rinkeby)

0

100

200

300

400

500

194.95

277.26

39.39
169.24

248.04

kG
as

Protocol Oracle

Fig. 5 Average transaction gas consumption with the oracle

Cluster Computing

123

Alternatively, DOracle specifies the time the oracle takes to

query the other blockchain and submit the result.

Figure 6 shows the average transfer duration for each

transaction type for both protocols while leveraging a

blockchain relay. With an average duration of 55 seconds

(standard deviation of 19 seconds), BURN transactions

achieve the lowest duration, followed by CONFIRM transac-

tions (average duration of 134 seconds, standard deviation

of 49 seconds), and CLAIM transactions (average duration of

210 seconds, standard deviation of 138 seconds). The total

duration of Protocol 1 is calculated by summing up the

duration of BURN and CLAIM transactions, while the total

duration of Protocol 2 also contains the duration of CONFIRM

transactions. This calculation leads to an average transfer

duration of 265 seconds (standard deviation of 145 sec-

onds) for Protocol 1 and an average duration of 400 sec-

onds (standard deviation of 160 seconds) for Protocol 2.

Transfers with Protocol 2 take longer since an additional

transaction is required.

The results depicted in Fig. 7 also show the average

duration for each transaction type for both protocols.

However, an oracle instead of a blockchain relay is used

for transaction inclusion verification. Here also, BURN

transactions show the lowest transfer duration with 89

seconds (standard deviation of 3 seconds). CLAIM transac-

tions consume on average 248 seconds (standard deviation

of 137 seconds), and the execution of CONFIRM transactions

averages 117 seconds (standard deviation of 12 seconds).

The total duration for Protocol 1 averages 337 seconds

(standard deviation of 138 seconds) and 454 seconds (s-

tandard deviation of 137 seconds) for Protocol 2.

The results (see Table 2) initially indicate that using a

relay leads to a shorter transfer duration. However, looking

at the different durations for the inclusion and confirmation

of the transactions and the time it takes for the relay and the

oracle to include the data, we can discover different results.

Further, we also have to consider the lock time, which was

set to 0 for the experiments.

Although the inclusion and confirmation times are

higher due to the network status, the time it takes for the

oracle to provide the necessary data is less than the time it

takes for the blockchain relay. This difference is due to the

fact that the relay has to be kept up-to-date through the

continuous submission of new block headers, which can

lead to delays. With the oracle, on the other hand, only two

transactions are needed to get the necessary data into the

blockchain.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420

burn
(Rinkeby)

claim
(Ropsten)

confirm
(Rinkeby)

42

78

58

13

24

11

108

65

55

265

Duration in Seconds

ΔInclusion ΔConfirmation ΔRelay

Fig. 6 Average transaction durations with the blockchain relay

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

burn
(Rinkeby)

claim
(Ropsten)

confirm
(Rinkeby)

75

123

74

14

47

13

77

30

89

336

Duration in Seconds

ΔInclusion ΔConfirmation ΔOracle

Fig. 7 Average transaction durations with the oracle

Cluster Computing

123

The original implementation of ETH Relay foresees a

lock time of 5 minutes to allow relayers to dispute invalid

block headers. This mechanism causes another delay of at

least 5 minutes for Protocol 1 and 10 minutes for Protocol

2. Therefore, using an oracle results in a considerably

shorter transfer duration. Overall, the oracle is cheaper and

faster, but the blockchain relay provides a higher degree of

decentralization. Therefore, it depends on the use case

which solution is more viable. In any case, the protocol can

support both types of cross-blockchain communication.

5 Related work

Several solutions for cross-blockchain asset transfers have

been proposed in the literature [12]. Evaluating the most

important existing solutions against the requirements

defined in Sect. 3.1 reveals that solutions generally fulfill

Requirements 1 to 3. However, they lack with regards to

decentralized finality (Requirement 4) or do not provide

implementations of the proposed protocols. A summary of

the different cross-blockchain asset transfer solutions is

provided in Table 3.

In XClaim [35], cross-blockchain asset transfers are

realized by first locking assets with a client called ‘‘vault’’

on a ‘‘backing’’ blockchain and reissuing the assets on

another ‘‘issuing’’ blockchain. Locking of the assets on the

backing blockchain is verified on the issuing blockchain

via blockchain relays. However, the locked assets remain

with the vault on the backing blockchain. While malicious

vaults are penalized, transfer finality still depends on this

single actor. In contrast, our protocol enables any client—

whether directly involved in the transfer or not—to finalize

transfers. Further, transfer confirmations are not foreseen

by the XClaim protocol.

Metronome [36] implements cross-blockchain asset

transfers for their MET token. Token holders can export

MET from one blockchain and then import them on

another blockchain via receipts where validators vote on

the validity of receipts. While this can prevent illegal

transfers, at the time of writing, Metronome cannot be

considered decentralized since only authorized nodes can

participate as validators. Further, Metronome does not

provide concepts for transfer finality and confirmations.

In [37], the authors define a proof-of-burn protocol. The

protocol consists of two functions: GenBurnAddr and

BurnVerify. With the former, users can generate new burn

addresses with an encoded tag, while the latter allows users

to verify the tagged burn. For the verification of the proof-

Table 2 Average durations for the different operations in seconds

Relay Oracle

Inclusion time Burn 12:84� 2:25 14:27� 2:83

Claim 24:26� 25:72 47:06� 46:87

Confirm 11:36� 4:02 12:57� 4:84

Confirmation time Burn 42:35� 19:20 75:16� 2:0

Claim 77:68� 83:40 123:18� 87:68

Confirm 57:84� 19:37 73:68� 2:42

Verification time Burn 108:04� 73:5 77:71� 68:98

Claim 65:14� 44:31 30:27� 10:30

Protocol 1 265:16� 145:05 337:37� 137:69

Protocol 2 399:49� 160:24 453:88� 136:87

Table 3 Comparison of different cross-blockchain asset transfer protocols

Reference Ownership No claim without

burn

Double spend

prevention

Decentralized

finality

Transfer

confirmation

Implementation

XCLAIM [35] 4 4 4 4

Metronome [36] 4 4 4 4

Karantias et al. [37] 4 4 4 4

Pillai et al. [38] 4 4 4 4

Liu et al. [39] 4 4 4 4

Kiayias and Zindros

[40]

4 4

Gazi et al. [41] 4 4

Zendoo [43] 4 4 4

van Glabbeek et al.

[44]

4 4 4 4

DeXTT [46] 4 4 4 4

Protocol 1 4 4 4 4 4

Protocol 2 4 4 4 4 4 4

Cluster Computing

123

of-burn, the protocol foresees the usage of Noninteractive

Proofs of Proof of Work (NiPoPoWs), oracles, or direct

observation of the source blockchain by the miners. In the

course of this, the authors show how users can acquire

target cryptocurrency (e.g., ERC-20 tokens) by burning the

source cryptocurrency. However, the protocol does not

provide decentralized finality and transfer confirmations.

Pillai et al. [38] propose a burn-to-claim asset transfer

protocol. Also, similar to the protocol presented in Sect. 3,

it comprises a burn operation on the source blockchain and

a claim operation on the target blockchain. However, to

access the transaction on the source blockchain to verify

the correct execution of the burn transaction, the protocol

requires nodes that can mine in multiple networks and act

as gateways. Furthermore, the protocol does not take

decentralized finality and transfer confirmations into

account.

In [39], the authors present AucSwap, a cross-block-

chain token transfer protocol modeled as an auction pro-

cess. More specifically, the authors leverage the Vickery

auction process and atomic swap technology to enable

cross-blockchain asset transfers. The protocol consists of

two parts: bidding collection and asset exchange. Initially,

the seller broadcasts the bidding information and waits for

the buyers to return their bids. After receiving all bids, the

seller provides the buyers with a list of all bids. Having this

information, the buyers can determine who won the auc-

tion. After that, the parties use Hash Time-Locked Con-

tracts (HTLCs) to perform the actual exchange of the

assets. Compared to our protocol, this solution has more

similarities with asset exchanges than asset transfers.

The authors of [40, 41] propose approaches for realizing

cross-blockchain transfers between PoW and Proof of

Stake (PoS) blockchains, respectively. While [40] verifies

transaction inclusions via NiPoPoWs [41, 42] enables

transaction inclusion verifications via a novel crypto-

graphic construction called ad-hoc threshold multisigna-

tures (ATMS) ATMS. As such, NiPoPoW and ATMS are

used to prove events (e.g., BURN transactions) that occurred

on the source blockchain to the destination blockchain.

While this satisfies Requirements 1 and 2, Requirements 3

and4 are generally not covered by the protocol. Further,

NiPoPoWs currently cannot be implemented in existing

PoW blockchains like Bitcoin or Ethereum without intro-

ducing a so-called velvet fork, which requires adoption

from at least a subset of miners.

Similarly, Zendoo [43] provides a protocol for cross-

blockchain asset transfers focussing on zero-knowledge

proofs as a method for transaction inclusion verification.

However, requirements such as transfer finality are not

discussed. Further, the protocol relies on a special side-

chain construction and can thus not be easily implemented

on existing blockchains.

An approach that takes transfer finality into account is

presented by van Glabbeck et al. [44]. The paper proposes

a generic protocol for payments across blockchains similar

to how multi-hop payment channels operate [45]. The work

has a strong focus on finality. Requirements such as double

spend prevention are mentioned though not further speci-

fied. Also, the protocol has not been implemented and

evaluated yet. It does not become clear whether the pro-

tocol allows cross-blockchain asset transfers as defined in

Sect. 3.1, or only value transfers similar to atomic swaps.

An alternative approach for cross-blockchain asset

transfers is introduced in DeXTT [46]. DeXTT describes

an asset that can exist on different blockchains at the same

time. However, users cannot keep different denominations

of the asset on each blockchain. Rather, balances are syn-

chronized across all participating blockchains. While the

synchronization process itself is decentralized, the protocol

uses a concept called claim-first transactions, where assets

are claimed on the other blockchains before being burned

on the blockchain on which the transfer was initiated. This

clearly violates Requirement 2. Transfer confirmations

(Requirement 5) are also not foreseen.

Other works [15, 32, 47] focus on the transfer of value

across different blockchains. However, these solutions

rather focus on atomic swaps where two different assets are

exchanged and do not constitute true cross-blockchain

asset transfers as defined by our requirements in Sect. 3.1.

Finally, projects such as Polkadot [48] and Cosmos [49]

also aim for generic cross-blockchain interactions. Polka-

dot implements a Cross-chain Message Passing (XCMP)

protocol that enables two separate parachains to commu-

nicate with each other. To accomplish this, it makes use of

a simple queuing mechanism based on Merkle trees. Cos-

mos implements the Interblockchain Communication (IBC)

protocol proposed in [50]. The IBC protocol is inspired by

the TCP/IP protocol and enables the communication

between separate ledgers which implement the same

interface. Multiple ledgers can establish a connection with

each other to create channels over which packages can be

transmitted to modules (e.g., smart contracts) on the other

ledger. Both protocols have already been implemented by

the respective projects. While cross-blockchain asset

transfers are mentioned as example use cases, the docu-

mentation does not mention specifics on how these trans-

fers are implemented. Further, these projects aim to

provide interoperability primarily between specialized

blockchains that adhere to certain structures and consensus

protocols.

To the best of our knowledge, this work is the first to

provide requirements, a specification, and a proof-of-con-

cept implementation of a cross-blockchain asset transfer

protocol that also takes transfer finality and transfer con-

firmations into account.

Cluster Computing

123

6 Conclusion

Decentralized cross-blockchain asset transfers are one way

to provide interoperability between blockchains. In par-

ticular, they prevent vendor lock-ins by allowing block-

chain assets to be moved away from the blockchains on

which they were originally issued in a completely decen-

tralized way. While a number of solutions for enabling

cross-blockchain asset transfers have been proposed, these

solutions often focus on specific assets and neglect the

fundamental functionality that cross-blockchain asset

transfers should offer. In this work, we defined general

requirements and specifications for cross-blockchain asset

transfer protocols. Providing a proof-of-concept imple-

mentation of the proposed protocol, we have shown that

requirements such as decentralized finality and transfer

confirmations can be fulfilled.

In future work, we will investigate how the concepts of

this work can be extended to provide interoperability

beyond cross-blockchain asset transfers, e.g., generic

message passing between blockchains.

Acknowledgements The financial support by the Austrian Federal

Ministry for Digital and Economic Affairs, the National Foundation

for Research, Technology and Development as well as the Christian

Doppler Research Association is gratefully acknowledged.

Author contributions All authors contributed to the conception and

design of the protocol. The original paper was written by MS and PF.

The first draft of the manuscript was written by MS and is an extended

and revised version of the original paper. Data collection and analysis

were performed by MS and MK. SS provided supervision, as well as

reviewed, and edited this work. All authors read and approved the

final manuscript.

Funding Open Access funding enabled and organized by Projekt

DEAL. This work was supported by the Austrian Federal Ministry for

Digital and Economic Affairs, the National Foundation for Research,

Technology and Development as well as the Christian Doppler

Research Association.

Data availability The datasets generated during and/or analysed dur-

ing the current work are available in the Zenodo repository, https://

zenodo.org/record/6394523#.YkMj5H9BzJU

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System.

White Paper. Accessed 29 March 2022 (2008) https://bitcoin.org/

bitcoin.pdf

2. Tian, F.: An agri-food supply chain traceability system for China

based on RFID & blockchain technology. In: 2016 13th Inter-

national Conference on Service Systems and Service Manage-

ment (ICSSSM), pp. 1– 6 (2016). IEEE

3. Mettler, M.: Blockchain technology in healthcare: the revolution

starts here. In: 2016 IEEE 18th International Conference on

e-Health Networking, Applications and Services (Healthcom),

pp. 1– 3 (2016). IEEE

4. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime

verification for business processes utilizing the bitcoin block-

chain. Future Gener. Comput. Syst. 107, 816–831 (2020)

5. Makani, S., Pittala, R., Alsayed, E., Aloqaily, M., Jararweh, Y.: A

survey of blockchain applications in sustainable and smart cities.

Clust. Comput. 15, 1–22 (2022)

6. Tseng, L., Yao, X., Otoum, S., Aloqaily, M., Jararweh, Y.:

Blockchain-based database in an IoT environment: challenges,

opportunities, and analysis. Clust. Comput. 23(3), 2151–2165

(2020)

7. Al Ridhawi, I., Aloqaily, M., Karray, F.: Intelligent blockchain-

enabled communication and services: solutions for moving

internet of things devices. IEEE Robot. Automat. Mag. 29, 10–20
(2022)

8. Berdik, D., Otoum, S., Schmidt, N., Porter, D., Jararweh, Y.: A

survey on blockchain for information systems management and

security. Inform. Process. Manage. 58(1), 102329 (2021)

9. Schulte, S., Sigwart, M., Frauenthaler, P., Borkowski, M.:

Towards blockchain interoperability. In: Business Process Man-

agement: Blockchain and Central and Eastern Europe Forum.

LNBIP, vol. 361, pp. 1– 8 (2019)

10. Zamyatin, A., Al-Bassam, M., Zindros, D., Kokoris-Kogias, E.,

Moreno-Sánchez, P., Kiayias, A., Knottenbelt, W.J.: SoK:

Communication across distributed ledgers. In: International

Conference on Financial Cryptography and Data Security. LNCS,

vol. 12675, pp. 3–36 (2021)

11. Cai, W., Wang, Z., Ernst, J.B., Hong, Z., Feng, C., Leung,

V.C.M.: Decentralized applications: the blockchain-empowered

software system. IEEE Access 6, 53019–53033 (2018)

12. Belchior, R., Vasconcelos, A., Guerreiro, S., Correia, M.: A

survey on blockchain interoperability: past, present, and future

trends. ACM Comput. Surv. 54(8), 1–41 (2021)

13. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G.,

Miller, A., Poelstra, A., Timón, J., Wuille, P.: Enabling block-

chain innovations with pegged sidechains. http://kevinriggen.

com/files/sidechains.pdf. White Paper. Accessed 29 March 2022

(2014)

14. Poon, J., Buterin, V.: Plasma: scalable autonomous smart con-

tracts. https://www.plasma.io/plasma.pdf. White Paper. Accessed

29 March 2022 (2017)

15. Herlihy, M.: Atomic cross-chain swaps. In: 2018 ACM Sympo-

sium on Principles of Distributed Computing (PODC),

pp. 245–254 (2018). ACM

16. Sigwart, M., Frauenthaler, P., Spanring, C., Sober, M., Schulte,

S.: Decentralized cross-blockchain asset transfers. In: 2021 Third

International Conference on Blockchain Computing and Appli-

cations (BCCA), pp. 34–41 (2021). IEEE

Cluster Computing

123

https://zenodo.org/record/6394523#.YkMj5H9BzJU
https://zenodo.org/record/6394523#.YkMj5H9BzJU
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://kevinriggen.com/files/sidechains.pdf
http://kevinriggen.com/files/sidechains.pdf
https://www.plasma.io/plasma.pdf

17. Pillai, B., Biswas, K., Muthukkumarasamy, V.: Blockchain

interoperable digital objects. In: International Conference on

Blockchain, pp. 80–94 (2019). Springer

18. Cuffe, P.: The role of the ERC-20 token standard in a financial

revolution: the case of Initial Coin Offerings. In: IEC-IEEE-

KATS Academic Challenge (2018)

19. Casale-Brunet, S., Ribeca, P., Doyle, P., Mattavelli, M.: Net-

works of Ethereum Non-Fungible Tokens: A graph-based anal-

ysis of the ERC-721 ecosystem. In: 2021 IEEE International

Conference on Blockchain, pp. 188–195 (2021). IEEE

20. Heiss, J., Eberhardt, J., Tai, S.: From oracles to trustworthy data

on-chaining systems. In: 2019 IEEE International Conference on

Blockchain, pp. 496–503 (2019). IEEE

21. Peterson, J., Krug, J., Zoltu, M., Williams, A.K., Alexander, S.:

Augur: a decentralized oracle and prediction market platform.

arXiv:1501.01042 (2015)

22. Breidenbach, L., Cachin, C., Chan, B., Coventry, A., Ellis, S.,

Juels, A., Koushanfar, F., Miller, A., Magauran, B., Moroz, D.,

et al.: Chainlink 2.0: next steps in the evolution of decentralized

oracle networks. Accessed 29 March 2022 (2021) https://

research.chain.link/whitepaper-v2.pdf?_ga=2.244768454.

295607443.1648540372-1480369942.164639185

23. Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., Kas-

tania, A.: Astraea: A decentralized blockchain oracle. In: 2018

IEEE International Conference on Blockchain, pp. 1145–1152

(2018). IEEE

24. Kamiya, R.: Shintaku: An end-to-end-decentralized general-pur-

pose blockchain oracle system. https://gitlab.com/shintaku-group/

paper/blob/master/shintaku.pdf. Accessed 29 March 2022 (2019)

25. Sober, M., Scaffino, G., Spanring, C., Schulte, S.: A voting-based

blockchain interoperability oracle. In: 2021 IEEE International

Conference on Blockchain, pp. 160–169 (2021). IEEE

26. Buterin, V.: Chain interoperability. https://www.r3.com/wp-con

tent/uploads/2017/06/chain_interoperability_r3.pdf. Accessed 29

March 2022 (2016)

27. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.:

Bitcoin and Cryptocurrency Technologies: A Comprehensive

Introduction. Princeton University Press, Princeton (2016)

28. Frauenthaler, P., Sigwart, M., Spanring, C., Sober, M., Schulte,

S.: ETH relay: a cost-efficient relay for ethereum-based block-

chains. In: 2020 IEEE International Conference on Blockchain,

pp. 204–213 (2020). IEEE

29. Di Angelo, M., Salzer, G.: A survey of tools for analyzing

ethereum smart contracts. In: 2019 IEEE International Confer-

ence on Decentralized Applications and Infrastructures (DAPP-

CON), pp. 69–78 (2019). IEEE

30. Wood, G.: Ethereum: a secure decentralised generalised trans-

action ledger. Accessed 29 March 2022 (2014) https://ethereum.

github.io/yellowpaper/paper.pdf

31. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P.,

Porth, C.: BAR fault tolerance for cooperative services. In: 20th

ACM Symposium on Operating Systems Principles (SOSP),

pp. 45–58 (2005). ACM

32. Herlihy, M., Liskov, B., Shrira, L.: Cross-chain deals and

adversarial commerce. VLDB J. 25, 1–19 (2021)

33. Judmayer, A., Stifter, N., Zamyatin, A., Tsabary, I., Eyal, I., Gazi,

P., Meiklejohn, S., Weippl, E.R.: Pay-to-win: incentive attacks on

proof-of-work cryptocurrencies. IACR Cryptology ePrint

Archive (2019)

34. Ford, B., Böhme, R.: Rationality is self-defeating in permis-

sionless systems. (2019)arXiv:1908.03999

35. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A.,

Knottenbelt, W.: XCLAIM: trustless, interoperable, cryptocur-

rency-backed assets. In: 2019 IEEE Symposium on Security and

Privacy (SP), pp. 193–210 (2019). IEEE

36. Autonomous Software: Metronome: Owner’s Manual. Version

0.99 (Last Updated 2019-08-15). Accessed 29 March 2022

(2018). https://github.com/autonomoussoftware/documentation/

blob/master/owners_manual/owners_manual.md

37. Karantias, K., Kiayias, A., Zindros, D.: Proof-of-burn. In: Inter-

national Conference on Financial Cryptography and Data Secu-

rity, pp. 523–540 (2020). Springer

38. Pillai, B., Biswas, K., Hóu, Z., Muthukkumarasamy, V.: The

burn-to-claim cross-blockchain asset transfer protocol. In: 2020

25th International Conference on Engineering of Complex

Computer Systems (ICECCS), pp. 119–124 (2020). IEEE

39. Liu, W., Wu, H., Meng, T., Wang, R., Wang, Y., Xu, C.-Z.:

AucSwap: a vickrey auction modeled decentralized cross-block-

chain asset transfer protocol. J. Syst. Archit. 117, 102102 (2021)

40. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: Interna-

tional Conference on Financial Cryptography and Data Security,

pp. 21–34 (2019). Springer

41. Gaži, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In:

2019 IEEE Symposium on Security and Privacy (SP),

pp. 139–156 (2019). IEEE

42. Kiayias, A., Miller, A., Zindros, D.: Non-interactive Proofs of

Proof-of-Work. In: 24th International Conference on Financial

Cryptography and Data Security—Revised Selected Papers.

LNCS, vol. 12059, pp. 505–522 (2020). Springer

43. Garoffolo, A., Kaidalov, D., Oliynykov, R.: Zendoo: a zk-snark

verifiable cross-chain transfer protocol enabling decoupled and

decentralized sidechains. In: 2020 IEEE 40th International Con-

ference on Distributed Computing Systems (ICDCS),

pp. 1257–1262 (2020). IEEE

44. van Glabbeek, R., Gramoli, V., Tholoniat, P.: Cross-chain pay-

ment protocols with success guarantees. arXiv preprint arXiv:

1912.04513 (2019)

45. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi,

S.: Concurrency and privacy with payment-channel networks. In:

2017 ACM SIGSAC Conference on Computer and Communi-

cations Security, pp. 455–471 (2017). ACM

46. Borkowski, M., Sigwart, M., Frauenthaler, P., Hukkinen, T.,

Schulte, S.: DeXTT: deterministic cross-blockchain Token

transfers. IEEE Access 7, 111030–111042 (2019)

47. Thomas, S., Schwartz, E.: A protocol for interledger payments.

https://interledger.org/interledger.pdf. Accessed 29 March 2022

(2015)

48. Wood, G.: Polkadot: vision for a heterogeneous multi-chain

framework. https://polkadot.network/PolkaDotPaper.pdf. Acces-

sed 29 March 2022 (2016)

49. Kwon, J., Buchman, E.: Cosmos whitepaper: a network of dis-

tributed ledgers. https://cosmos.network/resources/whitepaper.

Accessed 29 March 2022 (2020)

50. Goes, C.: The interblockchain communication protocol: an

overview. arXiv preprint arXiv:2006.15918 (2020)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing

123

http://arxiv.org/abs/1501.01042
https://research.chain.link/whitepaper-v2.pdf?_ga=2.244768454.295607443.1648540372-1480369942.164639185
https://research.chain.link/whitepaper-v2.pdf?_ga=2.244768454.295607443.1648540372-1480369942.164639185
https://research.chain.link/whitepaper-v2.pdf?_ga=2.244768454.295607443.1648540372-1480369942.164639185
https://gitlab.com/shintaku-group/paper/blob/master/shintaku.pdf
https://gitlab.com/shintaku-group/paper/blob/master/shintaku.pdf
https://www.r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf
https://www.r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/autonomoussoftware/documentation/blob/master/owners_manual/owners_manual.md
https://github.com/autonomoussoftware/documentation/blob/master/owners_manual/owners_manual.md
http://arxiv.org/abs/1912.04513
http://arxiv.org/abs/1912.04513
https://interledger.org/interledger.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://cosmos.network/resources/whitepaper
http://arxiv.org/abs/2006.15918

Michael Sober received his

master‘s degree in Software

Engineering & Internet Com-

puting from TU Wien in 2020.

He is a research assistant and

Ph.D. student at the Institute for

Data Engineering at TU Ham-

burg and working on blockchain

interoperability solutions in the

Christian Doppler Laboratory

Blockchain Technologies for the

Internet of Things (CDL-BOT).

Marten Sigwart received his

master’s degree in Computer

Science from TU Berlin, Ger-

many, in 2018. He was a project

assistant in the TAST Research

Project at TU Wien, working on

blockchain interoperability solu-

tions, and is now a full-stack

software engineer at Datawrap-

per, Berlin.

Philipp Frauenthaler received

his master’s degree in Software

Engineering & Internet Com-

puting from TU Wien in 2018,

where he was also a project

assistant in the Distributed Sys-

tems Group. Before joining the

Distributed Systems Group in

February 2019, he worked for

five years as a software engineer,

developing enterprise software

for insurances. He is now a

senior software engineer at the

Austrian Federal Computing

Center in Vienna, Austria.

Christof Spanring is currently the

Chief Technology Officer of

Bonfire Group BV. He was the

lead blockchain researcher at

Pantos GmbH and worked on

blockchain interoperability solu-

tions, contributing to the Chris-

tian Doppler Laboratory

Blockchain Technologies for the

Internet of Things (CDL-BOT).

Max Kobelt is currently pursuing
his bachelor’s degree at TU

Hamburg. He is also a student

assistant in the Christian Dop-

pler Laboratory Blockchain

Technologies for the Internet of

Things (CDL-BOT).

Stefan Schulte heads the Insti-

tute for Data Engineering at

Hamburg University of Tech-

nology, Germany, and leads the

Christian Doppler Laboratory

Blockchain Technologies for

the Internet of Things (CDL-

BOT). His research interests

include the areas of data stream

processing, the Internet of

Things, and distributed ledger

technologies. Findings from his

research have been published in

more than 100 refereed schol-

arly publications.

Cluster Computing

123

	Decentralized cross-blockchain asset transfers with transfer confirmation
	Abstract
	Introduction
	Background
	Notations and definitions
	Cross-blockchain communication
	Oracles
	Blockchain relays

	Cross-blockchain asset transfers
	Requirements
	Base protocol
	Protocol extension for transfer confirmations

	Evaluation
	Prototype
	Requirements analysis
	Requirement 1 (ownership)
	Requirement 2 (no claim without burn)
	Requirement 3 (double spend prevention)
	Requirement 4 (decentralized finality)
	Requirement 5 (transfer confirmation)

	Quantitative analysis
	Transfer costs
	Transfer duration

	Related work
	Conclusion
	Author contributions
	Data availability
	References

