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Z U S A M M E N FA S S U N G

I
n der vorliegenden Arbeit werden Regelstrecken als Lineare parameterveränder-

liche (LPV)-Systeme betrachtet, die einen hohen Aufwand in der Modellierung

sowie der Synthese und Implementierung entsprechender LPV-Regler aufweisen

können, weil sie entweder stark nichtlinear gekoppelte Systeme mit vielen Pa-

rametern darstellen, oder aus einer großen Anzahl verteilter, interagierender

LPV-Subsysteme bestehen. Für komplexe LPV Systeme der ersten Klasse wer-

den systematische Werkzeuge zur exakten mathematischen Modellierung mit ver-

ringerter Komplexität bereitgestellt und deren gewinnbringende Verwendung im

Rahmen von erweiterten LPV-Reglersynthesemethoden behandelt. Der grundsätz-

liche Ansatz beruht dabei auf einer Überführung nichtlinearer Differentialgle-

ichungen in eine Deskriptor-LPV-Zustandsraumdarstellung, einer automatisierten

Parametrierung und möglichen Approximation mit Hilfe einer Hauptachsentrans-

formation. Einflüsse auf den Rechenaufwand während der Synthese und Im-

plementierung werden identifiziert und durch mathematisch equivalente Umfor-

mulierungen reduziert. Die Methoden werden an den nichtlinearen Modellen eines

industriellen Roboters und eines Control Moment Gyroscopes (CMG) validiert. Dabei

gelingt es, LPV-Regler für die exakten und für die approximierten Modelle zu

synthetisieren und mit niedrigem Implementierungsaufwand experimentell zu va-

lidieren.

Des Weiteren wird zunächst ein allgemeines Framework für die Formulierung

verteilter LPV Systeme eingeführt. Ein Aufstellen der Synthesebedingungen für

ein solches verteiltes System erlaubt die Reduktion der Synthesekomplexität durch

strukturelle Randbedingungen auf Entscheidungsvariablen. So lassen sich Bedin-

gungen formulieren, die in ihrer Ordnung der Komplexität der eines einzel-

nen Subsystems multipliziert mit der Anzahl unterschiedlicher Subsystemdy-

namiken entsprechen. Die Diagonalisierbarkeit der Interaktionsmatrizen wird

durch Transformationen gewährleistet, die zu virtuellen symmetrischen oder nor-

malen Interaktionsmatrizen führen. Da solche Matrizen durch unitäre Transfor-

mationen diagonalisiert werden können, wird die direkte Komplexitätsreduk-

tion der Synthesebedingungen durch eine Kongruenztransformation bestimmter

Matrixungleichungen und somit die Berücksichtigung zeitvariabler, gerichteter

Topologien ermöglicht. Die vorgestellten Methoden werden sowohl an einem

numerischen Beispiel als auch anhand der Formationsregelung nichtlinearer

Quadrotor-Helikopter in der Simulation validiert.





S U M M A RY

T
he present work considers plant representations in the framework of linear

parameter-varying (LPV) systems that may involve a high degree of complexity.

This class contains nonlinear systems that lead to high costs in modeling, synthe-

sis and implementation of associated LPV controllers on the one hand as well as

systems consisting of a large number of LPV subsystems interconnected through a

possibly time-varying topology on the other hand. For complex LPV systems of the

first kind, the contribution of this thesis consists in the development of systematic

tools for mathematically exact modeling with reduced complexity and the subse-

quent efficient exploitation by extended LPV synthesis methods. The fundamental

approach follows a translation of nonlinear differential equations into a descriptor

state space LPV representation, parameterization and possible approximation by

means of a principle component analysis. The synthesis conditions and implemen-

tation are analyzed in terms of their respective computational effort and reduced by

mathematically equivalent modification. The methods are validated on nonlinear

models of an industrial robot and a Control Moment Gyroscope (CMG). LPV con-

trollers are synthesized for both the exact as well as the approximated models and

experimentally implemented with low computational costs.

Furthermore, a general framework for the representation of distributed LPV sys-

tems is introduced. A straightforward formulation of synthesis conditions for the

entire system allows reducing the synthesis complexity via the introduction of

structural constraints on decision variables. In this vein, synthesis conditions are

formulated whose complexity ranges in the order of a single subsystem times the

number of different subsystem dynamics. The diagonalizability of interaction ma-

trices is achieved by a transformation that leads to virtual symmetric or normal

interaction matrices. Such matrices can be diagonalized by unitary transformations,

which allows the direct congruence transformation of synthesis conditions for the

consideration of time-varying, directed topologies. The presented methods are eval-

uated against state-of-the-art techniques and validated in a numerical example as

well as in a simulated leader-follower-based formation of a group of heterogeneous

nonlinear quadrotor helicopters interconnected through arbitrary directed topolo-

gies.





K U R Z Z U S A M M E N FA S S U N G

Der Entwurf von Reglern für komplexe nichtlineare Regelstrecken im Frame-

work Linear Parameterveränderlicher (LPV) Systeme führt zu hohem Modellierungs-,

Synthese- und Implementierungsaufwand. Zugleich können Regelstrecken durch

eine verteilte Struktur ähnlicher interagierender LPV-Subsysteme eine hohe Kom-

plexität erlangen. Die vorliegende Arbeit behandelt Methoden zur Modellierung

komplexer LPV-Systeme, sowohl im Sinne nichtlinearer, als auch verteilter Regel-

strecken, und beinhaltet verbesserte Entwurfswerkzeuge, die zu niedrigerem

Synthese- und Implementierungsaufwand führen.

A B S T R A C T

The controller design for complex nonlinear systems using the framework of linear

parameter-varying (LPV) systems often leads to high costs in modeling, synthesis

and implementation. Interconnected LPV subsystems also yield complex systems.

This thesis presents methods for the modeling of complex LPV systems, in the

sense of nonlinear as well as interconnected subsystems and introduces improved

controller synthesis tools that lead to reduced synthesis and implementation costs.
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1
I N T R O D U C T I O N

≪Though the road’s been rocky,

it sure feels good to me.≫

Bob Marley

N
owadays, modern control systems are implemented digitally and can of-

ten be updated and improved at little cost. Systems can be designed with

a highly integrated control system in mind that is in fact essential for op-

eration. In classical control, systems are often engineered in such a manner that a

suitable control strategy for the entire operating envelope can be devised by means

of simple analysis and synthesis tools1. This would typically involve the design of

separate, cascaded subsystem controllers in a hierarchical order.

That means that higher level controllers rely on the closed-loop performance

provided by lower level controllers. While such a systematic, sometimes iterative

approach is attractive and can lead to robust designs, in engineering ≪interactions

are essential≫ [9] and can be exploited to improve performance. Taking interactions

into account introduces complexity into the system modeling, design and controller

synthesis phase, as elaborated in the following quote of Aström and Kumar.

≪There is a general tendency that engineering systems are becoming more

complex. Complexity is created by many mechanisms: size, interaction and

complexity of the subsystems are three factors that contribute.≫

Aström and Kumar [9], p. 28

1 As in the original meaning of the greek words: ὰνάλυσιζ — analysis: ≪decomposition≫; σύνθεσιζ
— sýnthesis: ≪combination≫.
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In this thesis, the ≪mechanisms≫ considered that induce complexity of a sys-

tem are the following two: Intricate nonlinear behaviour of lumped systems, the

interconnection of a potentially very large number of subsystems, or a combination

of the two, result in systems of a high degree of complexity that require special

techniques for control.

The linear parameter-varying (LPV) framework has been proven to be a suitable

tool for dealing with measurable changes in the plant dynamics and nonlinear

couplings via ≪gain-scheduling≫ controller design in a systematic fashion [134].

The attractiveness of the framework not only resides in its systematic synthesis

tools, but also in the closed-loop stability and performance guarantees that come

along with them. However, in many cases the available tools fail to appropriately

scale with the complexity of the LPV systems considered and are intractable to

apply.

Figure 1.1b illustrates the benefits of taking into account intricate nonlinear cou-

plings in controller designs over neglecting them via linearized models. The con-

sidered plant is a control moment gyroscope2, which exhibits strong nonlinear cou-

plings between the controlled angles q3 and q4, cf. Fig. 1.1a. As apparent, cross-

q3

q4

(a) A control moment gyroscope.
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(b) Simulation results of reference tracking.
( ) Nonlinear LPV controller designed by
the methods of this thesis.
( ) H∞-LTI controller.
( ) Reference trajectory.

Figure 1.1: Illustrative example of benefits of linear parameter-varying vs. linear time-

invariant control on the basis of a control moment gyroscope.

coupling effects are significantly decreased while the rise times are at least main-

tained. Furthermore, the reference of the linear control loop had to be reduced to

avoid instability.

Furthermore, when dealing with identical or similar systems interconnected

through a possibly time-varying topology, a suitable synthesis algorithm would

have to take into account dynamic interactions and potential loss of interconnec-

2 The control moment gyroscope will be introduced in detail in Chap. 4, Sect. 4.7.
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tion in the same instance. As it turns out, essential methods borrowed from LPV

controller synthesis can be employed to cater to this need.

In the course of this thesis, practical methods will be developed that lead to gain-

scheduled controllers for plants with complicated nonlinear couplings which can

be implemented with low computational cost. This can be attained by improved

synthesis methods taking into account the accurate plant dynamics, or by novel,

systematic approximation and modeling methods. If such subsystems modeled in

the LPV framework are connected to form an interconnected LPV system on a

larger scale, methods are developed whose computational effort during synthesis

does not scale with the number of subsystems.

The remainder of this chapter provides a brief historical background of LPV

systems in Sect. 1.1, motivation and objectives in Sect. 1.2, a detailed list of the main

contributions as well as an outline of this thesis in Sect. 1.3 and 1.4, respectively.

1.1 Historical Background

T
he systematic design of controllers that are able to guarantee stability and a high

level of performance for nonlinear and time-varying (TV) plants has been an ac-

tive field of research since at least from the beginning of the 1970s [E83]. Research

has shifted from focusing primarily on optimality to also taking into account robust-

ness against parameter variations [120]. If these parameters can be measured online,

gain-scheduling can be performed, which classically involves the interpolation or

switching between linear time-invariant (LTI) controllers designed independently

on a set of operating points [85]. This controller design approach is well-known

to only provide rigorous stability and performance guarantees for sufficiently slow

parameter variations [136]. However, it is still widely used in practice—often suc-

cessfully.

The seminal work of Shamma [133, 135] first introduced the paradigm of LPV

models for the systematic analysis and design of gain-scheduled controllers. LPV

models are introduced as linear state space models whose matrices depend on

time-varying parameters. The dynamics of an LPV system are therefore linear but

time-varying [138]. Special classes of nonlinear systems which can be naturally

covered by the LPV framework [138] are, e. g., hybrid dynamical systems [121]

and jump linear systems/switched linear systems [22]. The suitability of the LPV

framework for the control of general nonlinear systems arises from the fact that non-

linear state space models can be brought into the so-called quasi-linear parameter-

varying (q-LPV) form [83–85], in which parameters can be functions of the states, in-

puts or outputs, instead of only exogenous signals. In light of this, LPV models are

often derived from systems described by nonlinear differential equations that are

obtained from physical relations, e. g., by balancing generalized flows or potentials.

Such equations may yield transcendental, rational or polynomial terms in the states,

inputs and outputs, which are covered by parameter variations. Such endogenous

parameter definitions have become popular to tackle a variety of nonlinear control
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problems. See Sect. 3.2 for a survey. This approach is relatively straightforward

for systems, whose component parameters, like inertias, stiffnesses, inertances, re-

sistances, etc., are state-dependent. Hard nonlinearities such as stiction, hysteresis

or saturation are more difficult to handle, as are systems with nonlinearly coupled

modes. The success of controller synthesis for the latter depends on the non-unique

choice of LPV parameters, see, e. g., [E47, E69].

For the above systems, LPV controller synthesis is attractive as a straightforward

extension of LTI control methodologies, such as sensitivity shaping and modeling

tools. Early synthesis methods were limited to slow parameter variations [137] but

over the years methods have been derived that allow arbitrarily fast parameter

variations, [3, 5, 6, 124, 125, 129, 130, 161, 164]. Incorporating knowledge on bounds

on the parameters’ rate of variation can be used to reduce conservatism and has

been explored, e. g., in [3, 163].

Even though the LPV methodology has been introduced over 25 years ago [133,

135] and is nowadays theoretically well-founded, the LPV methodology still ap-

pears to be not be widely used in industrial applications. It is also stated that LPV

methods are difficult to apply to plants of industrial complexity due to considerable

computational burdens [E21] potential numerical issues during synthesis [E83] and

the lack of systematic LPV modeling tools [E60]. As mentioned above, this thesis

aims to contribute to resolving some of these issues.

1.2 Motivation and Objectives

D
espite extensive studies in LPV control, few methods can be applied

systematically—or only with severe drawbacks—to design controllers for com-

plex LPV plants. Consequently, this thesis essentially deals with the analysis and

control of systems with a high degree of complexity using and extending available

LPV methodologies. Since in this thesis complexity may arise from both intricate

nonlinear ordinary differential equations of lumped LPV systems as well as from

the interconnection of a potentially very large number of LPV subsystems, the the-

sis is structured in two parts for which the main motivational aspects are listed as

follows.

1.2.1 Part I—LPV Control of Complex Lumped Systems

As the data from a preliminary survey suggests [59]3 only few experimentally val-

idated controller designs are reported for plants with seven or more scheduling

parameters. In this survey, an attempt at a decision tree for LPV controller syn-

thesis is made for complex LPV systems, which is shown in Fig. 1.2. This tree

focuses on the major available standard output-feedback (OF) LPV controller syn-

thesis techniques, whose association with the respective LPV modeling frameworks

is depicted in Fig. 1.3. The decision tree is to be traversed by evaluating questions

3 Presented in extended form in Sect. 3.2
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about the associated numbers of parameters and block sizes indicated by nρ, nδ,

nθ and n∆ as well as the convexity of the range of admissible parameter values

ρ. Here, it is assumed that an LPV model with general parameter-dependence on

the parameter vector ρ is available and suitable rational or affine representations

in terms of the parameter vectors δ and θ, respectively, can be found. While it may

well be claimed that this assumption holds in general, the methods used to arrive

at rational, affine or even at the general LPV representation are highly non-trivial

to begin with. The matter of conservatism is further deeply entwined with the cho-

sen parameterization due to so-called overbounding in the parameter space and

relaxations used during synthesis. The question of whether a particular approach

delivers the required performance is posed at the very end, as it is hard to predict.

Following the approach to prefer simpler solutions, the only given answer is to

switch to parameter-dependent Lyapunov functions (PDLFs) in case of excessive

conservatism. Thus it may be argued that the decision tree in fact lacks feedback: A

mechanism and a systematic approach in case the available tools reach dead ends

in terms of excessive conservatism or excessive implementation complexity.

General
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LPV Model

Affine 
LFT-LPV Model

LFT-LPV Synth.
w/ D/G Scalings

Affine/poly.
Synthesis
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Figure 1.2: A first attempt at a decision tree for LPV controller synthesis for complex LPV

systems.
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General
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Controller 
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Existence Condition
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 in System Vertices
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Apkarian et al., ’98

Wu et al., ’06

Scherer, ’01

Gahinet et al., ’96

Apkarian et al., ’95

PDLF

PDLF

PDLF

CLF

CLF
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Figure 1.3: Standard OF LPV controller synthesis techniques associated with the respective

LPV modeling frameworks.

LPV Modeling and Model Complexity Assessment

The decision tree of Fig. 1.3 is the result of an empirical analysis of the model com-

plexities and associated synthesis techniques in [59] and is further supported by

preliminary research that led to the results presented in this thesis. In order to be

applicable by control designers, a suite of tools is required that can—at least to a

certain degree—provide an a priori assessment of model, synthesis and implemen-

tation complexities. Such tools quickly lead to an attempt to unify the modeling ap-

proach, in order to maintain comparable quantifiers for complexity. Even though

the mere number of scheduling parameters may bear limited meaning as a mea-

sure of complexity, it is still desirable to be able to derive parameterizations with a

minimum number of parameters.

Systematic LPV modeling tools have been proposed in [E60, 146], which allow

to arrive at LPV models from nonlinear differential equations. While in [E60] a

more rigorous mathematical language is employed than in [146], the work in [E60]

focuses on affine LPV model representations only, which were believed to yield

low-complexity controllers. This is not entirely untrue, but a rigorous enumeration

of complexity figures for a quantitative comparison has not yet been performed.

Therefore, one of the goals of this thesis is to introduce novel systematic methods

for arriving at general and rational LPV model factorizations and embed these in

an extendable framework that essentially allows to characterize all possible factor-

izations. As a consequence, an algorithm is provided that can be tuned towards

low-complexity LPV models or in favor of maintaining coupling terms.

LPV Model Approximation

The method of parameter set mapping (PSM) as introduced in [79] has been proven

to be capable of providing good approximations of relatively complex models [E37].

However, as formulated initially, it relies on simulation-based or experimental data

of trajectories that traverse the entire operating envelope of interest. This necessi-



1.2 Motivation and Objectives 7

tates the availability of a controller that can provide closed-loop stability and an

appropriate amount of performance in this range. Accordingly, the LPV controller

design is limited to the purpose of improving performance instead of enlarging the

available range of operation, which can be amended by methods that are not based

on data. In addition, the application of PSM to rational, so-called linear fractional

transformation (LFT)-based LPV models usually has the undesirable effect of actu-

ally increasing the model complexity in terms of the parameter block dimensions,

denoted n∆ in Fig. 1.2. Consequently, a further goal of this thesis is to provide novel

methods for the approximation of rational LPV models.

Synthesis Methods of Low Complexity

The design of the decision tree shown in Fig. 1.2 mainly stems from the fact that

complexity in LPV controller synthesis grows exponentially with the number of

scheduling parameters. This holds true for conditions based on a so-called grid-

ding for general parameter-dependency, full-block multipliers (FBMs) for LFT-LPV

representations as well as conditions for polytopic LPV models. In these cases this

ultimately limits the number of parameters that can be considered to only a few.

The thesis thus further focuses on model representations and improving synthe-

sis conditions, such that the increase in synthesis complexity with the increase in

model complexity is less severe. It is aimed at illustrating the benefits on a plant, for

which it was previously impossible to consider exact LPV plant representations in

modeling and synthesis. As a result of the research efforts presented in this thesis,

the decision tree will be revised in the conclusions of Sect. 11.2.

1.2.2 Part II—Control of Interconnected LPV Systems

In interconnected systems theory it is often desired to reach a global, common goal

by means of local interaction and information processing. The underlying ratio-

nale is to aim for resilient systems in a sense that is often stated to transcend the

control theoretic term ≪robustness≫. At the dawn of the age of cyber physical sys-

tems (CPSs)—a term coined ≪to describe the increasingly tight coupling of control,

computing, communication and networking≫ [9]—the requirement on a system to

be ≪resilient≫ includes the ability to recover and withstand the influence of hos-

tile and malicious actors [119]. In view of the research field of ≪glocal control≫4,

hybrid systems are the next evolutionary step from robust systems [118], meaning

that, e. g., even social components play an important role not to be dismissed dur-

ing the design of such a distributed system. However, it appears as though more

issues on the lower levels of control still need to be resolved, to which this thesis

aims to contribute.

Despite a wealth of research, it is still robustness against failing communication

links, failing subsystems, heterogeneity in the subsystem dynamics, or any combi-

nation of these that needs to be adressed further. For instance, distributed control

4 Global control by local interactions.



8 Introduction

systems should ideally be scalable, s. t. the introduction of additional agents or

subsystems does not require the complete redesign of the control structure. In es-

sence, it is desired to combine the universal applicability of the methods presented

in [80] with the scalability of the methods proposed by [98]. Figure 1.4 visualizes

the essential approach on the example of a multi-agent system (MAS): A synthesis

framework is sought that can handle heterogeneous, nonlinear subsystems with

physical or virtual time-varying and directed interconnections, while offering syn-

thesis complexity in the order of a single subsystem. Each type of subsystem is

associated with a respective type of controller, while the entirety of controllers in-

herit the interaction topology of the interconnected plant. Even though, this prob-

lem is easy to grasp, it becomes arguably more interesting in the face of physical

interconnections between the agents.

L2

L2

Figure 1.4: An exemplary heterogeneous MAS with nonlinear dynamics and a visualiza-

tion for synthesis conditions with complexity in the order of a single subsystem.

Circles of different shades indicate heterogeneity in the subsystems. Connect-

ing lines indicate interaction, and the fact that each circle has a superimposed

companion illustrates that each subsystem has its own local controller.

A General Framework for Interconnected Systems Modeling

A particular goal of this thesis resides in proposing a framework for the model-

ing of interconnected systems that encompasses the universal applicability of the

one defined in [80], i. e., freedom in defining virtual (communication) and physical

couplins, while allowing for the exploitation of graph theory [109] to limit/reduce

the complexity of synthesis and analysis conditions to yield scalable distributed

controller synthesis methods.

Arbitrary, Directed and Switching Interconnection Topologies

Owing to the limitations incurred by particular decomposition methods, e. g., [97],

synthesis conditions that provide optimization over a performance index and still

allow for arbitrary, directed and switching interconnections with low conservatism
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are not readily available. The thesis therefore also contains improved methods for

this purpose and relates them to existing ones.

Nonlinear and Heterogeneous Subsystem Dynamics

The efficiency of many tools for interconnected systems is achieved by considering

identical subsystems, e. g., [24]. However, real-world systems usually involve some

degree of heterogeneity, which may arise from changed dynamics or locally varying

operating points. A goal of this thesis is therefore to address this issue and extend

synthesis methods accordingly.

Scalable and Convex Synthesis Conditions

Methods for cooperative controller synthesis that allow the addition of new agents

at any time, e. g., [115], rely on non-convex optimization, since they are posed as ro-

bust control problems. A further goal of this thesis is to investigate to which extent

the methods proposed in this thesis can be applied to turn distributed controller

synthesis into convex optimization problems and therefore simplify the synthesis

process.

1.3 Main Contributions

T
he main contributions of this thesis are listed below—structured in two parts

according to the considered mechanisms that incur increased complexity.

1.3.1 Part I—LPV Control of Complex Lumped Systems

Within this thesis, contributions to the LPV control of complex lumped systems are

devoted to the development of a systematic modeling framework by extending the

automated derivation of LPV factorizations from intricate nonlinear ordinary differ-

ential equations (ODEs) and by proposing descriptor representation-based compact

LFT-LPV parameterizations. The highlights are summarized in the following items:

• A tool for the detailed analysis for the a priori assessment of synthesis and

implementation complexity for each of the respective major LPV modeling

frameworks is summarized in Sect. 3.1 in Tabs. 3.1–3.4 on pp. 83–84 and

pp. 89–90, respectively.

• A versatile and tunable heuristic approach to the LPV factorization of nonlin-

ear vectors occurring in state space representations is presented in Sect. 4.3

on pp. 105. It employs a mathematical nomenclature to allow for further, po-

tentially more rigorous optimization criteria to be applied to it.

• An explicit compact LFT parameterization of descriptor LPV models is devel-

oped in Sect. 4.4 on pp. 117, which allows for automatic LPV parameterization

and approximation by employing Lma. 4.2 on p. 126 and associated corollar-
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ies presented in Sect. 4.5 on pp. 123. The procedure is summarized in Alg. 4.1

on p. 137.

• In Chap. 5, a reduction of synthesis and implementation complexity for both

output-feedback and state-feedback LPV controller synthesis by improved lin-

ear matrix inequality (LMI) conditions is achieved via Cor. 5.1 on p. 160 and

Prop. 5.1 on p. 172, respectively.

The methods are applied in detail to the LPV modeling (Sects. 4.6 and 4.7) and

control (Chap. 6) of a three-degree of freedom (3-DOF) robotic manipulator and

a four-degree of freedom (4-DOF) control moment gyroscope (CMG). Preliminary

results w. r. t. the robotic manipulator have been experimentally validated in [E48],

whereas novel experimental validations of the extended methods are presented for

the CMG in this thesis. Using the above methods, for the first time controllers that

guarantee closed-loop stability and performance are synthesized directly based on

the exact model of the CMG, while reductions in synthesis time reach up to 90%.

1.3.2 Part II—Control of Interconnected LPV Systems

The core methods developed within this thesis associated with the synthesis of

distributed controllers are summarized in the following highlights:

• A compact modeling framework is developed in Chap. 8 on pp. 249 that

allows for a wide range of interconnected systems with both physical and

virtual interconnections.

• Propositions 9.1, 9.2 and 9.3 on pp. 253–259 are developed as solutions to

Prob. 9.1 on p. 251, which consists in finding an equivalent representation of

any interconnection matrix that involves a normal matrix.

• Based on these, in Chap. 9, the analysis result for heterogeneous groups of

interconnected LPV subsystems in Thm. 9.2 on p. 263 can be reduced in com-

plexity by applying Lma. 9.1 on p. 266. The lemma formalizes the congruence

transformation on the associated LMIs, in order to obtain decoupled condi-

tions in Thm. 9.3 on p. 269.

• Scalable existence conditions for distributed LPV controllers are presented in

Thm. 9.6 on p. 272 that can be solved efficiently as standard gain-scheduling

problems. This as the approach poised for applying recently developed ad-

vanced techniques in LPV gain-scheduling using dynamic multipliers to it.

• Application examples presented in Chap. 10 indicate both the relatively low

conservatism that may be introduced via the proposed methods and the ben-

efits over existing methods. Section 10.2.1 establishes the performance norm-

optimal formation control problem subject to directed and time-varying in-

terconnection topologies as well as LPV agents as a convex (gain-scheduling)

synthesis problem, instead of as a non-convex robust control problem.
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In summary, methods are developed that allow for the synthesis of distributed

controllers for

• interconnected heterogeneously scheduled LPV subsystems,

• subsystems with heterogeneous dynamics,

• interconnections that are both virtual and physical,

• directed and switching interconnection topologies.

Furthermore, the developed synthesis tools have the following properties:

• Synthesis complexity in the order of a single subsystem,

• Synthesis conditions posed as a convex optimization problem in terms of

LMIs,

• Guaranteed stability and upper bounds on the achievable control perfor-

mance.

The synthesis techniques presented herein consequently combine the universal ap-

plicability of the approach presented in [80] with the scalability of the methods

proposed by [98].

1.4 Thesis Outline

T
he thesis is structured as follows, cf. Fig. 1.5: After the introduction in Chap. 1,

Chap. 2 continues with the presentation of the fundamental concepts in LPV

theory that are relevant for both of the subsequent parts. From here the reader may

continue with either Part I or Part II. Part I is dedicated to the development of meth-

ods for synthesizing LPV controllers for complex lumped systems, while Part II fo-

cuses on the distributed controller synthesis for interconnected LPV systems. Both

parts start with an investigation of the current state of the art in Chap. 3 and 7,

respectively, to further illustrate the focus and direction of the research presented

in this thesis. The advances in both areas are to a large extent enabled by the de-

velopment of improved modeling tools and new perspectives proposed in Chap. 4

and 8. The new, extended or modified representations are then exploited in the sub-

sequent Chap. 5 and 9, where advances in the synthesis tools are presented. Before

the consolidation of the results in conclusions and an outlook in Part III, applica-

tion examples for both lumped systems and interconnected systems are discussed

in Chap. 6 and 10.
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2
L P V S Y S T E M S — R E P R E S E N TAT I O N S A N D C O N T R O L L E R

S Y N T H E S I S

≪There is nothing so practical

as a good theory.≫

Kurt Lewin, Marrow, 1969

T
his chapter introduces the basic theory of LPV model realizations and as-

sociated synthesis techniques. Sect. 2.1 defines and reviews terminology and

methods w. r. t. general, LFT-based and affine/polytopic LPV representations.

Sect. 2.2 reviews the fundamentals of LPV system stability and performance analy-

sis by convex optimization. Sect. 2.3 illustrates the extension to well-known con-

troller synthesis methods associated with the respective types of LPV representa-

tions.

A special in-depth treatment is provided for the construction of LPV controllers

in conjunction with multiplier-based LFT-LPV controller synthesis using constant

Lyapunov functions under special consideration of structural multiplier constraints.

This material lays the groundwork for the subsequent development of synthesis

methods in

Part I, allowing for the efficient synthesis of LPV controllers that result in low

computational load during online implementation,

Part II, allowing for the efficient synthesis of distributed LPV controllers that in-

herit the interconnection topology from the interconnected system.
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2.1 State Space Representations of Linear Parameter-Varying Systems

I
n the following LPV model representations are reviewed in the order of increased

restrictions on the type of parameter dependency. General LPV systems are intro-

duced in Sect. 2.1.1, followed by LFT-LPV systems that allow for rational parameter

dependency in Sect. 2.1.2. Affine representations are introduced in Sect. 2.1.3 and

a discussion on the parameter reduction technique denoted ≪parameter set map-

ping≫ follows in Sect. 2.1.4.

2.1.1 General Representations

An LPV system is defined as the combination of a mathematical system represen-

tation, e. g., in state space form, and a set of admissible parameter trajectories.

Definition 2.1 (Parameter Variation Set [160])

Given a compact set ρ ⊆ Rnρ , the parameter variation set Fρ denotes a set of piecewise

continuous functions mapping R+ into ρ with a finite number of discontinuities in any

interval.

Remark 2.1 This thesis’ notation widely follows [160], s. t. ρ(t) ∈ Fρ denotes time-

varying trajectories, whereas ρ ∈ ρ denotes a vector in a compact subset of Rnρ .

Definition 2.2 (General LPV System [133])

A dynamic system that can be written in the form

Tρ :






[
ẋ

z

]
=

[
A
(
ρ(t)

)
Bp

(
ρ(t)

)

Cp

(
ρ(t)

)
Dpp

(
ρ(t)

)
][

x

w

]

ρ(t) ∈ Fρ,

(2.1)

is called a ≪general LPV system≫, where x ∈ Rnx , w ∈ Rnw , z ∈ Rnz , are the state, input

and output signal vectors of the system, respectively, and the system’s state space model

matrix Tρ
(
ρ(t)

)
∈ C0(Rnρ , R(nx+nz)×(nx+nw)), with

Tρ
(
ρ(t)

)
=

[
A
(
ρ(t)

)
Bp

(
ρ(t)

)

Cp

(
ρ(t)

)
Dpp

(
ρ(t)

)
]

, (2.2)

is a continuous matrix-valued function of the parameter vector

Tρ
(
ρ(t)

)
∈ C0(Rnρ , R

(nx+nz)×(nx+nw)).

Furthermore, continuous, measurable quantities ρ(t) that range in some set of continuous

admissible trajectories Fρ are denoted as ≪scheduling signals≫.



2.1 State Space Representations of LPV Systems 17

The parameter vector

ρ(t) =
[
ρ1(t), ρ2(t), . . . , ρnρ(t)

]⊤
∈ ρ ⊆ R

nρ , (2.3)

may be associated with bounded rates of change if the admissible trajectories are

piecewise continuously differentiable. Denote the rate of change of the parameter

vector

ρ̇(t) = σ(t) =
[
σ1(t), σ2(t), . . . , σnρ(t)

]⊤
∈ σ ⊆ R

nρ , (2.4)

where σ denotes a compact subset of the vector space Rnρ .

Definition 2.3 (Rate-Bounded Parameter Trajectory Set [160])

The set Fσρ denotes a set of admissible rate-bounded trajectories

Fσρ =
{

ρ(t) ∈ C1(R+, R
nρ)

∣∣∣ (ρ(t),σ(t)) ∈ (ρ×σ), ∀t > 0
}

. (2.5)

Let the input-output operator associated with Tρ be denoted Tρ. It is obtained via

Tρ
(
ρ(t)

)
=
1

s
Inx ⋆ Tρ

(
ρ(t)

)
=

[
A
(
ρ(t)

)
Bp

(
ρ(t)

)

Cp

(
ρ(t)

)
Dpp

(
ρ(t)

)
]

(2.6)

The following definition is introduced to consider LPV systems with bounds on the

parameters’ rate of change.

Definition 2.4 (LPV System with Rate-Bounded Trajectories [160])

An LPV system Tρ as defined in (2.1) associated with bounds on the parameters’ rate of

change is denoted

Tσρ
△
=

{
Tρ
(
ρ(t)

) ∣∣ ρ(t) ∈ Fσρ
}

. (2.7)

Remark 2.2 Note at this point that the system Tσρ may explicitly depend on σ(t), e. g.,

when it represents the closed loop of an LPV system and controller, where the controller has

been synthesized by methods that result in explicit dependence of the controller’s system

matrix on σ(t) [3, 160].

LPV systems can be used to represent nonlinear systems through the notion of

quasi-LPV systems

Definition 2.5 (Quasi-LPV System [160])

An LPV system Tρ or Tσρ as from Defs. 2.2 or 2.4 is denoted a ≪quasi-LPV≫ system, if the

parameters are functions of the system’s endogeneous signals, such as states, inputs or

outputs.

ρ(t) = ρ
(
t, x(t),w(t), z(t)

)
. (2.8)

Consequently, an LPV system whose parameters only depend on exogenous signals is

referred to as a pure LPV system.
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With

ρ
i

△
= min

t>0
ρi(t), ρi

△
= max

t>0
ρi(t),

σi
△
= min

t>0
σi(t), σi

△
= max

t>0
σi(t), ∀i ∈ {1, . . . ,nρ} ,

it is possible to find more explicit characterizations of the compact sets, such as

hyperboxes

hyp (ρ) =
{

ρ(t)
∣∣∣ ρ

i
6 ρi(t) 6 ρi, ∀i ∈ {1, . . . ,nρ}

}

⊇ ρ and (2.9)

hyp (σ) =
{

σ(t)
∣∣∣ σi 6 σi(t) 6 σi, ∀i ∈ {1, . . . ,nρ}

}

⊇ σ. (2.10)

Furthermore, the convex hulls conv (ρ) and conv (σ) denote the smallest convex

sets containing all admissible parameter vectors. Consequently,

(ρ×σ) ⊆ (conv (ρ)× conv (σ)) ⊆ (hyp (ρ)× hyp (σ)) .

zw Tρ

(a) General LPV plant Tρ.

Tρ

1
sInx

ẋx

zw

Tρ

(b) General LPV plant as an interconnec-
tion of the parameter-dependent sys-
tem state space model matrix Tρ and
integrators.

Figure 2.1: General LPV plant.

As evident from Fig. 2.1a, the symbol Tρ is used in diagrams to denote the LPV

system associated with the admissible set of trajectories. An LPV representation

such as (2.1) is denoted general, since no further requirement on the parameter-

dependency is imposed. The parameters are assumed to be directly measureable

online and may appear in the system’s state space model matrix as arguments

of any arbitrary nonlinear function. More restrictive assumptions on the kind

of parameter-dependency, e. g., rational dependency, facilitate the convexification

of analysis and synthesis conditions by rendering tools such as the full-block S-

Procedure applicable [125]. As will be seen later, this usually comes at the expense

of one or multiple of the following items:

• Increased conservatism due to overbounding [79],

• Increased synthesis complexity due to additional decision variables in LMI-

based conditions [E48, 60],
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• Increased modeling effort and ambiguity/non-uniqueness in LPV representa-

tions [58, 78].

While these may appear as discouraging downsides, so-called LFT-based LPV rep-

resentations are able to offer significant advantages in synthesis and implementa-

tion complexity, especially when the number of parameters is large. A quantifica-

tion of the incurred increase in complexity is presented in Sect. 3.1.

2.1.2 Linear Fractional Representations

For the purpose of rewriting an LPV system (2.1) with general dependence on the

parameters ρ(t) in the form of an linear fractional representation (LFR), transcen-

dental functions are required to be covered up by newly introduced parameters.

This new set of parameters will be denoted LFT parameters and is collected in a

vector δ(t) ranging in an admissible compact set denoted δ ⊆ Rnδ .

δ(t) =
[
δ1(t), δ2(t), . . . , δnδ(t)

]⊤
∈ δ ⊆ R

nδ . (2.11)

Associated bounded rates of change are denoted

δ̇(t) = η(t) =
[
η1(t), η2(t), . . . , ηnδ(t)

]⊤
∈ η ⊆ R

nδ , (2.12)

where η denotes a set of admissible rates.

Remark 2.3 Transcendental functions ≪transcend≫ algebra in the sense that they cannot

be expressed in terms of a finite sequence of the algebraic operations of addition, multiplica-

tion and root extraction [147].

To obtain an LFT-LPV representation from a general LPV representation, intro-

duce the nonlinear, continuous and continuously differentiable injective mapping

fρ→δ ∈ C1(ρ, R
nδ), ρ(t) 7→ fρ→δ

(
ρ(t)

) △
= δ(t). (2.13)

Remark 2.4 Note that here the mapping fρ→δ ∈ C1(ρ, Rnδ) is only required to be contin-

uous and continuously differentiable on the domain ρ.

The rates of the LFT parameters can be obtained via

η(t) = δ̇(t) =
dδ(ρ)

dρ
ρ̇(t) =

d

dρ
fρ→δ

(
ρ(t)

)
σ(t). (2.14)

After the definition of the mapping fρ→δ, an LFR of the LPV plant is given by the

following.
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Definition 2.6 (LFT-LPV System Representation [5])

The model (2.1) rewritten in the form

Tδ :









ẋ

p∆
z


=



A B∆ Bp

C∆ D∆∆ D∆p

Cp Dp∆ Dpp







x

q∆
w


 ,

q∆ = ∆
(
δ(t)

)
p∆, δ(t) ∈ Fδ

(2.15)

is called an ≪LFT-LPV system≫, where q∆ ∈ R
nq∆ , p∆ ∈ R

np∆ denote the parameter

channel of the system. The parameter δ(t) is restricted to a set of admissible trajectories Fδ
and the parameter block ∆

(
δ(t)

)
is a continuous matrix-valued function of the LFT param-

eter vector δ(t)

∆
(
δ(t)

)
∈ C0(Rnδ , R

nq∆×np∆ ).

Note that due to the LFT approach, time-varying parameters and constant model

matrices are separated. By defining the system’s state space model matrix as

Tδ
△
=



A B∆ Bp

C∆ D∆∆ D∆p

Cp Dp∆ Dpp


 (2.16)

the input-output operator Tδ is obtained via

Tδ =
1

s
Inx ⋆ Tδ =



A B∆ Bp

C∆ D∆∆ D∆p

Cp Dp∆ Dpp


 . (2.17)

Figures 2.2a and 2.2b illustrate the separation of constant/dynamic LTI and

Tδ

∆
q∆ p∆

zw

Tδ

(a) LFT-LPV plant as an interconnection
of the LTI plant Tδ and the parameter
block ∆(t).

Tδ

∆

1
sInx ẋx

q∆ p∆

zw

Tδ

(b) LFT-LPV plant as an interconnection
of the constant system state space
model matrix Tδ, integrators and the
parameter block ∆(t).

Figure 2.2: LFT-LPV plant.
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parameter-dependent parameter block. The parameter-dependent input-output op-

erator

∆
(
δ(t)

)
⋆ Tδ =

[
A
(
δ(t)

)
Bp

(
δ(t)

)

Cp

(
δ(t)

)
Dpp

(
δ(t)

)
]

(2.18)

=

[
A Bp

Cp Dpp

]
+

[
B∆

Dp∆

]
∆
(
δ(t)

)(
I−D∆∆∆

(
δ(t)

))−1 [
C∆ D∆p

]

in turn recovers the LPV representation Tδ, when it is associated with the set of ad-

missible trajectories Fδ. The general LPV representation Tρ is obtained if the LFT

parameters are substituted by using the mapping δ(t) = fρ→δ
(
ρ(t)

)
and consider-

ing the set of admissible trajectories Fρ. In fact, the set of admissible trajectories Fδ
is derived from Fρ, in the sense that

Fδ =
{

δ
(
ρ(t)

)
= fρ→δ

(
ρ(t)

)∣∣∣ ρ(t) ∈ Fρ

}

. (2.19)

As before, the LFT-LPV system Tδ as defined in (2.15) associated with bounds on

the parameters’ rate of change is denoted

T
η
δ

△
=

{
∆(t) ⋆ Tδ

∣∣ δ(t) ∈ F
η
δ

}
, (2.20)

where the set Fη
δ

is the set of admissible rate-bounded trajectories

F
η
δ
=

{

δ(t) ∈ C1(R+, R
nδ)

∣∣∣ (δ(t),η(t)) ∈ (δ× η), ∀t > 0
}

. (2.21)

The parameter block may typically assume block-diagonal form

∆(t) =
nδ

diag
i=1

(
δi(t)Irδ,i

)
,

for which then nq∆ = np∆ =
∑nδ
i=1 rδ,i. However, the techniques presented in [124,

125] allow fully populated parameter blocks, which will play a central role in this

thesis. Furthermore, such representations can yield non-square parameter blocks.

Throughout the thesis, it is required that the LFR is well-posed, i. e., (I−D∆∆∆(t))

is invertible for all admissible parameter values.

As before, with δi = mint>0 δi(t), δi = maxt>0 δi(t), η
i
= mint>0 ηi(t) and

ηi = maxt>0 ηi(t), ∀i ∈ {1, . . . ,nδ}, it is possible to find hyperboxes

hyp (δ) =
{
δ(t)

∣∣ δi 6 δi(t) 6 δi, ∀i ∈ {1, . . . ,nδ}
}
⊇ δ and (2.22)

hyp (η) =
{

η(t)
∣∣∣ η

i
6 ηi(t) 6 ηi, ∀i ∈ {1, . . . ,nδ}

}

⊇ η. (2.23)

The convex hulls conv (δ) and conv (η) again denote the smallest convex sets con-

taining all admissible trajectories of the LFT parameters, s. t.

(δ× η) ⊆ (conv (δ)× conv (η)) ⊆ (hyp (δ)× hyp (η)) .

It is apparent that the compact sets δ and η are obtained by (2.13) and (2.14). Conti-

nuity on ρ and continuous differentiability of (2.13), together with the compactness

of both ρ and σ guarantee the compactness of δ and η.
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Definition 2.7 (Mixed General/LFT-LPV System Representation [161])

The model (2.1) rewritten in the form

T
σ,η
ρ,δ :









ẋ

p∆
z


=



A
(
ρ(t)

)
B∆
(
ρ(t)

)
Bp

(
ρ(t)

)

C∆
(
ρ(t)

)
D∆∆

(
ρ(t)

)
D∆p

(
ρ(t)

)

Cp

(
ρ(t)

)
Dp∆

(
ρ(t)

)
Dpp

(
ρ(t)

)







x

q∆
w


 ,

q∆ = ∆
(
δ(t)

)
p∆, δ(t) ∈ F

η
δ

, ρ(t) ∈ Fσρ

(2.24)

is called a ≪Mixed General/LFT-LPV system≫, where q∆ ∈ R
nq∆ , p∆ ∈ R

np∆ denote the

LFT parameter channel of the system defining rational dependence on the parameter δ(t)

via the continuous matrix-valued function

∆
(
δ(t)

)
∈ C0(Rnδ , R

nq∆×np∆ ).

The parameter δ(t) is restricted to the rate-bounded set of admissible trajectories Fη
δ

and is

assumed to be disjoint from the parameter ρ(t), which in turn is restricted to rate-bounded

set of admissible trajectories Fσρ .

Definitions of state space system matrix and input-output operator follow from

analogy.

2.1.3 Affine/Polytopic Representations

A special case of LFT-LPV representations are systems, which are affinely depen-

dent on the parameters. For the purpose of rewriting an LFT-LPV system (2.15) in

the form of an LFR with affine parameter-dependence, again new parameters need

to be introduced to cover rational functions. This new set of parameters will be

denoted affine parameters and is collected in a vector θ(t) ranging in an admissible

set denoted θ ⊆ Rnθ .

θ(t) =
[
θ1(t), θ2(t), . . . , θnθ(t)

]⊤
∈ θ ⊆ R

nθ . (2.25)

Associated bounded rates of change are denoted

θ̇(t) = ν(t) =
[
ν1(t), ν2(t), . . . , νnθ(t)

]⊤
∈ ν ⊆ R

nθ , (2.26)

where ν denotes a set of admissible rates.

To obtain an affine LPV representation from an LFT-LPV representation, intro-

duce the nonlinear, continuous and continuously differentiable injective mapping

from δ to Rnθ

fδ→θ ∈ C1(δ, R
nθ), δ(t) 7→ fδ→θ

(
δ(t)

) △
= θ(t). (2.27)
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Consider the derivation of affine parameters as a concatenation of the map-

pings fρ→δ and fδ→θ, s. t.

fρ→θ =
(
fδ→θ ◦ fρ→δ

)
∈ C2(ρ, R

nθ),

ρ(t) 7→ fρ→θ
(
ρ(t)

)
= fδ→θ

(
fρ→δ

(
ρ(t)

)) △
= θ(t). (2.28)

The rates of the affine parameters can be obtained via

ν(t) = θ̇(t) =
dθ(δ)

dδ
δ̇(t) =

dθ(δ)

dδ

dδ(ρ)

dρ
η(t). (2.29)

Again, the mapping fδ→θ is not unique but always injective.

Denote an LFT-LPV plant with affine parameter-dependency by

Tθ :









ẋ

pΘ
z


=



A BΘ Bp

CΘ 0 DΘp

Cp DpΘ Dpp







x

qΘ
w


 ,

qΘ = Θ
(
θ(t)

)
pΘ, θ(t) ∈ Fθ

(2.30)

where qΘ ∈ R
nqΘ , pΘ ∈ R

npΘ denote the modified parameter channels of the sys-

tem and Fθ represents the set of admissible trajectories. Note that the affine nature

of the plant is evident from DΘΘ = 0.

As before, Θ(t) is a continuous matrix-valued function of the affine parameter

vector θ(t), Θ
(
θ(t)

)
∈ C0(θ, R

nqΘ×npΘ ), and may typically assume diagonal form

Θ
(
θ(t)

)
=

nθ
diag
i=1

(
θi(t)Irθ,i

)
, (2.31)

for which then nΘ =
∑nθ
i=1 rθ,i. Again, full parameter blocks can be considered, but

in the light of a reduced implementation complexity, the diagonal structure is ad-

vantageous, [57]. Define symbols Tθ and Tθ associated with the system’s state space

model matrix and input-output operator as before, respectively. The parameter-

dependent input-output operator

Θ(t) ⋆ Tθ =

[
A
(
θ(t)

)
Bp

(
θ(t)

)

Cp

(
θ(t)

)
Dpp

(
θ(t)

)
]

(2.32)

eventually recovers the LPV representation Tθ, when it is associated with the set of

admissible trajectories Fθ. The general LPV representation Tρ is obtained if the pa-

rameters are substituted by using the mapping θ(t) = fρ→θ
(
ρ(t)

)
and considering

the set of admissible trajectories Fδ. The affine LPV system Tθ as defined in (2.30)

associated with bounds on the affine parameters’ rate of change is denoted

Tνθ
△
=

{
Θ
(
θ(t)

)
⋆ Tθ

∣∣ θ(t) ∈ Fνθ

}
, (2.33)
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where the set Fνθ is the set of admissible rate-bounded trajectories

Fνθ =
{

θ(t) ∈ C1(R+, R
nθ)

∣∣∣ (θ(t),ν(t)) ∈ (θ× ν), ∀t > 0
}

. (2.34)

With the extreme values θi = mint>0 θi(t), θi = maxt>0 θi(t), νi = mint>0 νi(t)

and νi = maxt>0 νi(t), ∀i ∈ {1, . . . ,nθ}, it is possible to find hyperboxes

hyp (θ) =
{
θ(t)

∣∣ θi 6 θi(t) 6 θi, ∀i ∈ {1, . . . ,nθ}
}
⊇ θ and (2.35)

hyp (ν) = {ν(t) | νi 6 νi(t) 6 νi, ∀i ∈ {1, . . . ,nθ}} ⊇ ν. (2.36)

The convex hulls conv (θ) and conv (ν) again denote the smallest convex sets con-

taining all admissible trajectories of the LFT parameters, s. t.

(θ× ν) ⊆ (conv (θ)× conv (ν)) ⊆ (hyp (θ)× hyp (ν)) .

Analogously to (2.32), the parameter-dependent state space model ma-

trix Tρ
(
ρ(t)

)
= Θ(t) ⋆ Tθ can be computed. An alternative exists in representing

this state space model matrix as an affine function of the parameters θi(t)

[
A
(
θ(t)

)
Bp

(
θ(t)

)

Cp

(
θ(t)

)
Dpp

(
θ(t)

)
]
=

[
A0 Bp,0

Cp,0 Dpp,0

]
+

nθ∑

i=1

θi(t)

[
Ai Bp,i

Cp,i Dpp,i

]
.

From this affine decomposition, a matrix polytope can be constructed from a fi-

nite number nv of ≪vertex matrices≫. Each admissible state space model matrix

can be constructed from a weighted sum of these vertex matrices by deriving the

barycentric coordinates αl, ∀l ∈ {1, . . . ,nv} from the corresponding polytope in the

parameter vectors θ(t). For this purpose, let θv,l, ∀l ∈ {1, . . . ,nv}, denote the vertices

spanning the polytope in the parameter range, i. e., the convex hull conv (θ), s. t.

conv (θ) = conv (θv,l, l ∈ {1, . . . ,nv})

△
=

{
nv∑

l=1

αlθv,l

∣∣∣∣∣ αl > 0,
nv∑

l=1

αl = 1

}

. (2.37)

Denote the corresponding matrix polytope by

conv (Sl, l ∈ {1, . . . ,nv})
△
=

{
nv∑

l=1

αlSl

∣∣∣∣∣ αl > 0,
nv∑

l=1

αl = 1

}

. (2.38)

where Sl =

[
A
(
θ(t)

)
Bp

(
θ(t)

)

Cp

(
θ(t)

)
Dpp

(
θ(t)

)
]∣∣∣∣∣
θ(t)=θv,l

(2.39)

Note that the parameter signal vectors ρv,l that map into the parameter vertices θv,l

via

θv,l = f
ρ→θ(ρv,l

)
, l ∈ {1, . . . ,nv} ,
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do not necessarily belong to the admissible range ρ, since the vertices are required

to form a convex region in terms of θ, whereas neither ρ nor θ are required to

denote convex sets. This results in so-called ≪overbounding≫ [79].

A formula for determining the barycentric coordinates αl,∀l ∈ {1, . . . ,nv} for a

parameter vector θ(t) ranging in a simple polytope is given in [158], detailed in

App. A.6 on p. 324.

2.1.4 Parameter Set Mapping

LPV controller synthesis may prove intractable in face of a large number of param-

eters or excessive overbounding. A systematic, but heuristic technique to approx-

imate any given set of parameters by a set containing fewer parameters has been

proposed [79] and is generally denoted PSM. Since the method is based on a princi-

ple component analysis (PCA), it also provides the option to change the coordinate

base of the parameters without approximation. The technique has so far been ap-

plied to affine LPV models, e. g., [E36, E37, E44, E45, 57, E46, E60, 76, 110], and will

be developed here in this venue.

The objective of PSM is to find a linear (approximating) mapping

fθ→φ ∈ C1(θ, R
nφ), θ(t) 7→ fθ→φ

(
θ(t)

) △
= φ(t). (2.40)

that maps the plant’s parameter vector θ(t) ∈ Rnθ into a (reduced) parameter

vector φ(t) ∈ Rnφ , nφ 6 nθ. In [E60, 79], normalization of the parameters θ is

assumed, s. t. |θi| 6 1, i ∈ {1, . . . ,nθ} and the parameters have zero mean w. r. t. the

data on which PCA is performed.

More specifically, the linear map can be written as

φ(t) = UNUθ(t), U ∈ R
nφ×nθ , UU⊤ = I. (2.41)

where with U = [uij], UN =
nφ

diag
i=1


(

nθ∑

j=1

|uij|
)−1



is used for normalizing the new parameter set, s. t. |φi| 6 1, i ∈
{
1, . . . ,nφ

}
. Since

the mapping is static, one may easily obtain compact sets for the new parameter

set and it’s rate of variation

φ(t) =
[
φ1(t), φ2(t), . . . , φnφ(t)

]⊤
∈ φ ⊆ R

nφ , (2.42)

φ̇(t) = ψ(t) =
[
ψ1(t), ψ2(t), . . . , ψnφ(t)

]⊤
∈ ψ ⊆ R

nφ . (2.43)

If the matrix U has been obtained, the original parameters θ(t) can be substituted

for via

θ̂(t) = U⊤U−1
N φ(t), (2.44)
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which allows to rewrite (approximate) the LPV system (2.30) with the input-output

operator

Tφ
(
φ(t)

)
=

[
A
(
φ(t)

)
Bp

(
φ(t)

)

Cp

(
φ(t)

)
Dpp

(
φ(t)

)
]

=

[
A0 Bp,0

Cp,0 Dpp,0

]
+

nφ∑

j=1

φj(t)

[
Âj B̂p,j

Ĉp,j D̂pp,j

]
.

2.1.4.1 Obtaining the Mapping by Principle Component Analysis

In order to obtain the projection U, a data matrix Ξ is constructed, containing hori-

zontally concatenated sampled parameter vectors θ. In [79], it is proposed to obtain

the parameter vector samples by recording experimental trajectories, which limits

the applicability to stable plants or unstable plants stabilized by some preliminary

controller. In the second case, such a controller needs to be able to operate the plant

in all relevant operating conditions, a requirement that may in some cases only be

fulfilled by a suitable nonlinear controller to begin with.

An alternative is presented in [57], which relies on sampled parameter vectors

obtained from a gridding of the set of admissible trajectories Fρ of measurable

signals that comprise the general LPV parameters. A more pragmatic, but possible

conservative way exists in gridding the compact set of admissible parameter vectors

ρ instead.

The data matrix is therefore constructed from the finite set of parameter vector

samples ρ(1), . . . , ρ(nd) covering the operating range:

Ξ =
[
θ
(
ρ(1)
)
. . . θ

(
ρ(nd)

)]
. (2.45)

If ρ ranges in a hyperbox, the number of samples from gridding each parameter

ρi, i ∈ {1, . . . ,nρ}, over ng evenly spaced grid points is nd = n
nρ
g . A singular value

decomposition of the data matrix

Ξ =
[
Uφ Uθ

] [
Σφ 0 0

0 Σθ 0

]

V⊤φ
V⊤θ
V⊤0


 , (2.46)

yields U =
[
Uφ Uθ

]⊤
, if no approximation is desired and U = U⊤φ , if an approxima-

tion is sought that represents the given data well enough based on the significant

singular values in Σφ. In such a case the corresponding data matrix in terms of

samples of the new parameters φ is Ξφ = ΣφV
⊤
φ .



2.1 State Space Representations of LPV Systems 27

2.1.4.2 The Effect on the Order of Linear Fractional Representations

Denote the corresponding (approximated) LPV plant in LFR form by

T
ψ
φ :









ẋ

pΦ
z


=



A BΦ Bp

CΦ 0 DΦp

Cp DpΦ Dpp







x

qΦ
w


 ,

qΦ = Φ(t)pΦ. φ(t) ∈ F
ψ
φ

(2.47)

While the affine representation of the input-output operator is reduced in complex-

ity, since the summation goes from 1 to nφ 6 nθ, the size of the LFT parameter

block Φ
(
φ(t)

)
∈ C0(Rnφ , RnΦ×nΦ), in diagonal form

Φ(t) =
nφ

diag
i=1

(
φi(t)Irφ,i

)
,

—hence the order of the LFR—is increased, s. t. nΦ > nΘ. To see this, first note that

for affine parameter-dependence the minimum order of an LFR results from the

rank of the matrix coefficients [166]. The increase in order due to PSM ensues from

the fact that for each θ̂i(t) that is substituted from (2.48) by

θ̂i(t) =

nφ∑

j=1

ujiu
−1
N,jφj(t), (2.48)

a linear combination of matrices each of rank Irθ,i is turned into

nθ∑

i=1

θi(t)

[
Ai Bp,i

Cp,i Dpp,i

]
=

nθ∑

i=1

nφ∑

j=1

ujiu
−1
N,jφj(t)

[
Ai Bp,i

Cp,i Dpp,i

]

=

nφ∑

j=1

φj(t)

nθ∑

i=1

ujiu
−1
N,j

[
Ai Bp,i

Cp,i Dpp,i

]

=

nφ∑

j=1

φj(t)

[
Âj B̂p,j

Ĉp,j D̂pp,j

]
, (2.49)

where now the rank of the new matrices in (2.49) is given by

min
i∈{1,...,nθ}

rθ,i 6 rank

([
Âj B̂p,j

Ĉp,j D̂pp,j

])
= rφ,j 6 nθ,

because in general uji 6= 0. This simple insight illustrates that LFT-LPV synthesis

based on LPV plants approximated via PSM can in fact become more complex.

A simple trick to prevent such an increase in the size of the parameter block

follows from the observation that many entries uij are in fact very close to zero. By

letting for some small ε≪ 1

uij =






uij , |uij| > ε

0 , |uij| < ε
, (i, j) ∈

({
1, . . . ,nφ

}
× {1, . . . ,nθ}

)
,
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the numerical rank of the matrices in (2.49) is usually significantly reduced, s. t.

nΦ 6 nΘ. The additional approximation error incurred by this procedure can be

easily checked and is usually small [E45].
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2.2 Analysis of Linear Parameter-Varying Systems

I
n this section, the necessary tools for stability and performance analysis of LPV

systems are reviewed. Sects. 2.2.1 and 2.2.2 develop the notions of Lyapunov sta-

bility as well as the induced L2-norm as stability and performance frameworks,

respectively. Sect. 2.2.3 is devoted to the full-block S-Procedure (FBSP) as a tool

to render parameter-dependent matrix inequalities solvable by a finite number of

LMIs. Eventually, Sect. 2.2.4 presents analysis results for the stability and perfor-

mance of LPV systems that can be verified by semi-definite programs (SDPs).

2.2.1 Stability Analysis of LPV Systems

For LPV systems the locations of the poles of the LTI systems obtained by freezing

the parameter values do not provide a conclusive statement about the stability of

the LPV system [4]. Lyapunov arguments are therefore employed to obtain suffi-

cient conditions for the stability of LPV systems. Since LPV representations can

be used to define nonlinear and/or time-varying system behaviour, speaking of
≪stability≫ as a system property require justifying assumptions. First, consider a

general parameter-dependent, autonomous, nonlinear and time-varying system






ẋ(t) = f
(
t, x(t), ρ(t)

)
,

y(t) = h
(
t, x(t), ρ(t)

)
,

(2.50)

with 0 = f
(
t, x̄, ρ(t)

)
, ȳ = h

(
t, x̄, ρ(t)

)
, ∀t ∈ R

+.

with the nonlinear functions f
(
t, x(t), ρ(t)

)
∈ C0

(
R+ ×Rnx × ρ, Rnx

)
as well as

h
(
t, x(t), ρ(t)

)
∈ C0

(
R+ ×Rnx × ρ, Rny

)
.

Remark 2.5 Explicit dependence on time in (2.50) could as well be absorbed in the param-

eter ρ(t). Further, even in equilibrium ρ(t) may be time-varying, if it does not affect the

state equilibrium.

Definition 2.8 (Stability [156])

An equilibrium x̄ of system (2.50) is stable if for every εi > 0 there exists an εo(εi) > 0,

s. t.,

‖x(0) − x̄‖ < εi =⇒ ‖x(t) − x̄‖ < εo, ∀t ∈ R
+.

Definition 2.9 (Attractiveness [156])

An equilibrium x̄ of system (2.50) is attractive if there exists an εi > 0, s. t.,

‖x(0) − x̄‖ < εi =⇒ lim
t→∞

x(t) = x̄.

Definition 2.10 (Asymptotic Stability [156])

An equilibrium x̄ of system (2.50) is asymptotically stable if it is both stable and attractive.
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Figures 2.3a and 2.3b illustrate these stability concepts. Note that an intuitive

description of trajectories of asymptotically stable equilibria can be given by curves

that

• converge to the equilibrium, and

• stay within a certain distance of the equilibrium before.

εi

εo

x0

x̄

(a) Definition of stability.

εi

x0

x̄

(b) Definition of attractiveness.

Figure 2.3: Definitions of stability and attractiveness [156].

Definition 2.11 (Derivative of a Function Along a Trajectory [156])

Let V
(
t, x(t), ρ(t)

)
∈ C1

(
(R+ ×Rnx × ρ) , R

)
. Then

∂V
(
t, x(t), ρ(t), ρ̇(t)

) △
=
∂V
(
·)

∂t
+
∂V
(
·
)

∂x(t)
f
(
t, x(t), ρ(t)

)
+
∂V
(
·
)

∂ρ(t)
ρ̇(t)

is called the ≪derivative of V along the trajectories of (2.50)≫. As a short-hand notation

V̇
(
t, x(t), ρ(t)

)
= ∂V

(
t, x(t), ρ(t), ρ̇(t)

)
is often used.

Let the equilibrium state x̄, w. l. o. g., be the origin, x̄ = 0. The following is a

preliminary result for the convenient characterization of stability of LPV systems

by matrix inequalities.

Theorem 2.1 (Lyapunov Stability [156])

Consider system (2.50). The equilibrium x̄ is stable, if there exists a function

V
(
t, x(t), ρ(t)

)
∈ C1

(
(R+ ×Rnx × ρ) , R

)
and a constant r, s. t., ∀t ∈ R+

V
(
t, x(t), ρ(t)

)
> 0, ∀x 6= 0

and

V̇
(
t, x(t), ρ(t)

)
6 0, ∀x ∈ Br

△
= {x ∈ R

nx | ‖x‖ < r} .
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The equilibrium is asymptotically stable, if

V̇
(
t, x(t), ρ(t)

)
< 0, ∀x ∈ Br\ {0}

△
= {x ∈ R

nx | ‖x‖ < r, x 6= 0} .

Theorem 2.1 provides only a sufficient condition in general, but can be shown to

be also necessary for LTI systems [156]. Furthermore, it is a local result, in the sense

that a positive constant r is required, s. t. the conditions of Thm. 2.1 are satisfied in a

ball with radius r. For LTI systems global (asymptotic) stability coincides with local

(asymptotic) stability of the origin and one can take the limit limr→∞Br = Rnx .

When considering the LPV system Tρ as defined in (2.1), with w(t) = 0, in the

case that A
(
ρ(t)

)
is non-singular for all times, x̄ = 0 is the only possible equilib-

rium. By making this assumption in the following, stability will be referred to as

a property of an LPV system, even though for nonlinear systems, stability is in

general not a system property, rather than the property of a trajectory or point in

state space.

Parameter-dependent quadratic Lyapunov functions are employed to arrive at

the well-known result for parameter-dependent asymptotic stability of the LPV

system Tσρ over ρ×σ.

Definition 2.12 (Parameter-Dependent Quadratic Lyapunov Function)

A function V : (Rnx × ρ) 7→ R

V
(
x(t), ρ(t)

)
= x(t)⊤X

(
ρ(t)

)
x(t), ∀ρ ∈ ρ

with the ≪Lyapunov matrix≫ X
(
ρ(t)

)
∈ C1(ρ, Snx), X

(
ρ(t)

)
≻ 0 is called a ≪parameter-

dependent quadratic Lyapunov function≫.

First introduce the definition of the derivative of X
(
ρ(t)

)
along the trajectories

of (2.1) by defining the function ∂X : (ρ×σ) 7→ Snx

∂X
(
ρ(t),σ(t)

) △
=
∂X
(
ρ(t)

)

∂ρ(t)
σ(t) =

nρ∑

i=1

∂X
(
ρ(t)

)

∂ρi(t)
σi(t)

Remark 2.6 It can be shown that the conditions of Thm. 2.2 in fact guarantee exponential

stability [E19], i. e., with a small value ε > 0 and αI 4 X 4 βI one can show that

‖x‖26βαe
− ε

β t‖x0‖2, where x0 = x(0).

Theorem 2.2 (Parameter-Dependent Stability of LPV Systems [160])

The system Tσρ as defined in (2.1), with w(t) = 0, ∀t > 0, is asymptotically stable over

ρ×σ if there exists X
(
ρ
)
∈ C1(ρ, Snx), X

(
ρ
)
≻ 0, s. t.

[
•
•

]⊤ [
∂X
(
ρ,σ
)
X
(
ρ
)

X
(
ρ
)

0

][
I

A
(
ρ
)
]
≺ 0, ∀ (ρ,σ) ∈ (ρ×σ) (2.51)
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Proof: Consider the parameter-dependent quadratic Lyapunov func-

tion V : (Rnx × ρ) 7→ R

V
(
x, ρ
)
= x⊤X

(
ρ
)
x > 0, ∀ρ ∈ ρ

Considering this along solutions of the system Tρ, one may write

V̇
(
x(t), ρ(t)

)
=

[
•
•

]⊤ [
Ẋ
(
ρ(t)

)
X
(
ρ(t)

)

X
(
ρ(t)

)
0

][
x(t)

ẋ(t)

]
< 0 (2.52)

Observe that along solution trajectories Ẋ
(
ρ(t)

)
= ∂X

(
ρ(t),σ(t)

)
, as well as

ẋ(t) = A
(
ρ(t)

)
x(t), s. t., by Def. 2.11 this yields

V̇
(
x(t), ρ(t)

)
= x(t)⊤

[
•
•

]⊤[
∂X
(
ρ(t),σ(t)

)
X
(
ρ(t)

)

X
(
ρ(t)

)
0

][
I

A
(
ρ(t)

)
]
x(t) < 0,

= x⊤
(
X
(
ρ
)
A
(
ρ
)⊤

+A
(
ρ
)
X
(
ρ
)
+ ∂X

(
ρ,σ
))

x.

From here, observe that V̇
(
x(t), ρ(t)

)
< 0, ∀x(t) ∈ Rnx , x(t) 6= 0, if (2.51) holds.

Another notion of stability often encountered in the context of LPV systems is

the notion of ≪quadratic stability≫ [17].

Theorem 2.3 (Quadratic Stability of LPV Systems [17, 160])

The system Tρ as defined in (2.1), with w(t) = 0, ∀t > 0, is asymptotically stable over ρ if

there exists X ∈ Snx , X ≻ 0, s. t.

[
•
•

]⊤ [
0 X

X 0

][
I

A
(
ρ
)
]
≺ 0, ∀ρ ∈ ρ (2.53)

The test for quadratic stability in Thm. 2.3 is not only recovered by considering

a constant quadratic Lyapunov function V(x) = x⊤Xx in the first place, but also

follows quite naturally, if the parameters ρ(t) are allowed to vary arbitrarily fast,

i. e., σ = Rnρ . In this case ∂X(ρ,σ) can become unbounded and (2.51) can only be

satisfied, if X
(
ρ(t)

) △
= X is chosen independent of ρ, i. e., X ∈ Snx . Then ∂X(ρ,σ) = 0,

since ∂X
(
ρ(t)

)
/∂ρ(t) = 0. If the parameters ρ(t) are assumed constant, however, the

Lyapunov matrix can still be parameter-dependent and ∂X(ρ,σ) in (2.51) simply

vanishes due to σ = {0}.

Remark 2.7 The term ≪quadratic stability≫ somewhat arbitrarily draws from the fact that

it is derived based on a quadratic and constant Lyapunov function V(x) = x⊤Xx. In some

literature, e. g., [17], this is in fact used as its definition, which allows to coin (2.53) a

necessary and sufficient condition for quadratic stability.
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The above arguments can be drawn upon for each individual parameter ρi(t),

i ∈ {1, . . . ,nρ}, s. t. single parameters can be allowed to vary arbitrarily fast or be

constant, while the rate of change of others is constrained by known bounds [E19].

For q-LPV systems, i. e., when the parameters are functions of endogeneous sig-

nals x(t), w(t) or z(t), the Lyapunov stability conditions are again local conditions

in the sense that statements about stability only hold true within bounds on the

state x(t) that imply (ρ(·),σ(·)) ∈ (ρ×σ).

Remark 2.8 A mixture between constant, switching or smoothly time-varying parameters

occurs naturally in the context of the control of interconnected LPV systems. Such scenarios

are considered in Part II of the thesis.

2.2.2 The Induced L2-Norm as a Performance Measure

The following definitions are introduced to facilitate the introduction of the in-

duced L2-system norm as a performance measure in LPV system analysis and

controller synthesis.

Definition 2.13 (Vector Norm)

For a vector z =
[
z1, z2, . . . , zn

]
∈ Rn, zi ∈ R, ∀i ∈ {1, . . . ,n}, the p-norm, p ∈N is

defined as

‖z‖p
△
=

(
n∑

i=1

|zi|
p

) 1
p

.

The Euclidean norm is obtained for p = 2 and denoted as

‖z‖ =
√
z⊤z.

Remark 2.9 The superscript attached to the L2-signal spaces, denoting the dimension of

the vector valued signals, is often omitted if clear from the context.

In this thesis, the primary performance specification considered will be in terms

of the induced L2-gain, as system norm induced by the L2-signal norm.

Definition 2.14 (L2-Signal Norm [160])

For a signal z(t) : R+ 7→ Rn, the L2-norm is defined as

‖z(t)‖2
△
=

√∫∞

0
z⊤(τ)z(τ)dτ.

Definition 2.15 (L2-Signal Space [160])

A signal z(t) : R+ 7→ Rn is said to be in the space Ln2 , i. e., z(t) ∈ Ln2 , if ‖z(t)‖2 is finite.

The space Ln2 is therefore defined as

Ln2
△
=

{
z(t) : R

+ 7→ R
n
∣∣ ‖z(t)‖2 <∞

}
.
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Definition 2.16 (Induced L2-System Norm [112, 125, 160])

For a parameter-dependent stable system Tσρ : L2 7→ L2 as defined in (2.1) with zero initial

condition x(0) = 0 and with input w(t) and output z(t), the induced L2-norm is defined

as

∥∥Tσρ
∥∥
L2

△
= sup
ρ(t)∈Fσρ

sup
w(t)6=0, w(t)∈L2

‖z(t)‖2
‖w(t)‖2

.

A condition for an upper bound on the induced L2-system norm ‖Tρ‖L2
< γ is a

special case of a more general constraint on the input and output signals in the

form of an integral quadratic constraint (IQC) [3, 104, 112].

lim
T→∞

∫T

0

[
w(t)

z(t)

]⊤ [
Qp Sp

S⊤p Rp

][
w(t)

z(t)

]
dt 6 0 (2.54)

For the special choice

Γ =

[
Qp Sp

S⊤p Rp

]
=

[
−γI 0

0 γ−1I

]
(2.55)

one arrives at the relation ‖z(t)‖22 6 γ2 ‖w(t)‖
2
2.

Remark 2.10 The induced L2-system norm reduces to the H∞-system norm, if the sys-

tem Tρ = T denotes an LTI system. The H∞-norm can then be defined by ‖T‖∞
△
=

supω∈R
σ
(
T(jω)

)
.

2.2.3 The Full-Block S-Procedure

Both parameter-dependent stability and performance criteria can be combined into

a single condition. For this purpose, the full-block S-Procedure is first introduced

as a tool to combine various conditions. It is then specialized for later application

on matrix inequalities with outer blocks that depend rationally on parameters.

In the theorem stated below and interpretations following a behavioral approach,

the family of subspaces W(ρ) ⊆ Rn is the system with signals ζ, from which

V(ρ) ∈ C0(ρ, Sq×n) selects interconnection variables that are constrained to reside

in S(ρ). Continuous parameterizations are given in terms of ρ ∈ ρ. The resulting
≪perturbed≫ system is denoted B(ρ). Further U ∈ Rp×n and Q(ρ) ∈ C0(ρ, Sp) are

used to form an implicit negativity condition that is supposed to hold on B(ρ), i. e.,

for all perturbations of W(ρ) [123].

Theorem 2.4 (Full-Block S-Procedure [125])

Let the family of subspaces W(ρ) ⊆ Rn depend continuously on ρ ∈ ρ, where ρ is a

compact set. Let further U ∈ Rp×n, V(ρ) ∈ C0(ρ, Sq×n) and Q(ρ) ∈ C0(ρ, Sp). Define

B(ρ)
△
= {ζ ∈W(ρ) | V(ρ)ζ ∈ S(ρ)} .
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(i) The condition

U⊤Q(ρ)U ≺ 0 on B(ρ), ∀ρ ∈ ρ (2.56)

holds iff there exists a multiplier M with

M < 0 on S(ρ), ∀ρ ∈ ρ (2.57)

which satisfies

U⊤Q(ρ)U+ V(ρ)⊤MV(ρ) ≺ 0 on W(ρ), ∀ρ ∈ ρ. (2.58)

(ii) Suppose there exists a subspace W0(ρ) with

U⊤Q(ρ)U < 0 on W0(ρ) ⊂W(ρ) (2.59)

and dim (VW0) (ρ) + dim (S(ρ)) > q. Then Conds. (2.57) and (2.58) imply

VW0(ρ)⊕ S(ρ) = R
q ∀ρ ∈ ρ (2.60)

Proof: The theorem and its proof are presented in full detail in [125] for the case

that Q ∈ Sp, V ∈ Rq×n are constant and W(ρ) and consequently W0(ρ) denote

fixed subspaces, rather than families of subspaces parameterized by ρ. However,

the statements hold in full analogy and only item (i) is proved again:

(i) First show that Conds. (2.57) and (2.58) imply Cond. (2.56). For this purpose

choose any ζ ∈ B(ρ) with ζ 6= 0. Since ζ ∈W(ρ) conclude from (2.58)

ζ⊤U⊤Q(ρ)Uζ < −ζ⊤V(ρ)⊤MV(ρ)ζ ∀ρ ∈ ρ.

Due to V(ρ)ζ ∈ S(ρ), one has

M < 0 on S(ρ) ⇐⇒ ζ⊤V(ρ)⊤MV(ρ)ζ > 0, ∀ρ ∈ ρ,

from which it follows that

ζ⊤U⊤Q(ρ)Uζ < 0 ∀ρ ∈ ρ.

It may seem counter-intuitive that the full-block S-Procedure is presented here

with possibly parameter-dependent Q(ρ) ∈ C0(ρ, Sp), V(ρ) ∈ C0(ρ, Rq×n) and the

family of subspaces W(ρ) ⊆ Rn, as it is widely used with the main purpose of

turning a parameter-dependent inequality (2.56) into a parameter-independent in-

equality and an inequality with more easily tractable parameter-dependency on

the multiplier. As will be seen later, the additional parameter-dependency is intro-

duced to facilitate a formal and unified view on the full-block S-Procedure as a
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tool to combine multiple constraints on a system’s signals. This is illustrated by the

derivation of the well-known Bounded Real Lemma.

Furthermore, it might be desired to carry over only some of the parameters in ρ

to the ≪multiplier condition≫ (2.57), while others remain in the ≪nominal condi-

tion≫ (2.58). For this purpose, partition ρ =
[
ρ⊤1 , ρ⊤2

]⊤
with ρ1 ∈ ρ1, ρ2 ∈ ρ2 and

consider, e. g., Q(ρ1), W(ρ1), V(ρ1) and S(ρ2), in order to require Cond. (2.57) to

hold ∀ρ1 ∈ ρ1 and Cond. (2.58) ∀ρ2 ∈ ρ2. Different schemes, e. g., gridding the

parameter range or the introduction of further multipliers, can then be employed

individually to test the conditions.

An alternative representation of the space B(ρ) is found in the theorem’s proof

in [125] as well as in [124, 163]:

B(ρ)
△
=

{

ζ ∈W(ρ)
∣∣∣ V(ρ)ζ ∈ ker

(
S⊥(ρ)

)}
,

where ≪ker≫ denotes the Kernel and S⊥(ρ) = I−ΠS(ρ) denotes the complementary

space of S(ρ), since ΠS(ρ) in turn denotes the orthogonal projector onto S(ρ). The

basic difference in the representation thus resides in whether an implicit descrip-

tion of a constraint is available that relates signals to remain in an image or kernel

space. This is precisely the difference in approaches Scherer on the one hand and

Iwasaki et al. on the other hand took in their work [66, 125].

The full-block S-Procedure can be specialized and compactly presented for linear

fractional parameter dependency. In the following lemma, the separation of param-

eters into some that are supposed to remain in the nominal condition and others

that only carry over to the multiplier condition is made explicit. This result has

been employed in, e. g., [161, 163].

Lemma 2.1 (Full-Block S-Procedure for LFRs [163])

Given parameters ρ and δ, each confined to a compact set, i. e., ρ ∈ ρ and δ ∈ δ. The

quadratic matrix inequality

B
(
ρ, δ
)⊤
Q
(
ρ
)
B
(
ρ, δ
)
≺ 0, ∀ (ρ, δ) ∈ (ρ× δ) (2.61)

with Q
(
ρ
)
∈ C0(ρ, Sp) and

B
(
ρ, δ
)
= ∆

(
δ
)
⋆

[
W11

(
ρ
)
W12

(
ρ
)

W21

(
ρ
)
W22

(
ρ
)
]

, ∆
(
δ
)
: R

nδ 7→ R (2.62)

holds iffthere exists a multiplier M, s. t.

[
•
•

]⊤ [
M 0

0 Q
(
ρ
)
]

W11

(
ρ
)
W12

(
ρ
)

I 0

W21

(
ρ
)
W22

(
ρ
)


 ≺ 0, ∀ρ ∈ ρ (2.63)

[
•
•

]⊤
M

[
I

∆
(
δ
)
]
< 0, ∀δ ∈ δ. (2.64)
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Proof: In analogy to Thm. 2.4 define

U =
[
0 0 I

]
, ζ

△
=



p

q

w


 , V =

[
I 0 0

0 I 0

]
,

W
(
ρ
) △
= im






W11

(
ρ
)
W12

(
ρ
)

I 0

W21

(
ρ
)
W22

(
ρ
)





 , S

(
δ
) △
= im

([
I

∆
(
δ
)
])

,

s. t. the image

im
(
B
(
ρ, δ
))

=W22

(
ρ
)
+W21

(
ρ
)
∆
(
δ
) (
I−W11

(
ρ
)
∆
(
δ
))−1

W12

(
ρ
)
,

δ ∈ δ can simply be represented by

im
(
B
(
ρ, δ
))

= B
(
ρ, δ
)
:






[
p

z

]
=

[
W11

(
ρ
)
W12

(
ρ
)

W21

(
ρ
)
W22

(
ρ
)
][
q

w

]
, ρ ∈ ρ

q = ∆
(
δ
)
p, δ ∈ δ

as illustrated in Fig. 2.4. Straightforward substitution into (2.58) results in

Conds. (2.63) and (2.64).

B
(
ρ, δ
)

∆
(
δ
)

w z

pq [
W11

(
ρ
)
W12

(
ρ
)

W21

(
ρ
)
W22

(
ρ
)
]

Figure 2.4: LFR of B
(
ρ, δ
)
.

As a predecessor, the normal S-Procedure (SP) [17] fulfills virtually the same

purpose as the FBSP with the drawback that conservatism is incurred, since only a

single scalar multiplier is introduced per additional quadratic constraint.

Theorem 2.5 (S-Procedure [17])

Let Q0,Q1, . . . ,Qp be quadratic functions in the variable ζ ∈ Rn,

Qi(ζ)
△
= ζ⊤Wiζ+ 2w

⊤
i ζ+ vi, i ∈ {0, . . . ,p} ,

where Wi ∈ Sn. Then

Q0(ζ) 6 0 for ζ ∈ B
△
= {ζ ∈ R

n | Qi(ζ) 6 0, i ∈ {0, . . . ,p}} , (2.65)
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holds if there exist mi > 0, i ∈ {0, . . . ,p}, s. t.

Q0(ζ) −

p∑

i=1

miQi(ζ) 6 0 for ζ ∈ R
n. (2.66)

If p = 1, Cond. (2.66) implies (2.65), provided that there exists some ζ0 that satisfies the

strict inequality Q1(ζ0) < 0.

Proof: The proof can be found in [4].

The FBSP will prove to be a central tool in this thesis. Its usefulness in con-

vexifying parameter-dependent linear matrix inequalitiess (PDLMIs) with complex

parameter-dependency will be used to render complex synthesis and analysis prob-

lems tractable. The generality of the FBSP approach over the normal SP further

allows to trade complexity in solving SDPs versus conservatism, by the imposition

of structural constraints on the multipliers.

2.2.4 Stability and Performance Analysis

2.2.4.1 The Parameter-Dependent Bounded Real Lemma

The parameter-dependent Bounded Real Lemma (PDBRL) presents the main tool

for LPV system analysis and controller synthesis. It is the origin of extending well-

known LTI system analysis and synthesis methods to the parameter-dependent

case. In the following, a formal derivation via the FBSP and dualization will be

reviewed, followed by a discussion on the major obstacles in solving the LPV sys-

tem analysis problem by convex optimization. This establishes the primary tools

necessary to advance to the synthesis of LPV controllers.

Theorem 2.6 (PDBRL [E19, 160])

The system Tσρ as defined in (2.7), is asymptotically stable over ρ×σ and has an induced

L2-norm bounded from above by γ if there exist a positive definite, symmetric matrix

X
(
ρ
)
∈ C1(ρ, Snx), X

(
ρ
)
≻ 0 and γ > 0 that satisfy

[
•
•

]⊤


∂X
(
ρ,σ
)
X
(
ρ
)

X
(
ρ
)

0

Γ







I 0

A
(
ρ
)

Bp

(
ρ
)

0 I

Cp

(
ρ
)
Dpp

(
ρ
)


≺0, ∀ (ρ,σ) ∈ (ρ×σ) (2.67)

Proof: It is the aim to combine the Conds. (2.52) , (2.54), i. e., more specifically

using (2.55). Classically, performance constraints are considered in the context of

robust stability analysis and small gain arguments [166]. For this purpose consider

Fig. 2.5 as the uncertainty interconnection, where γ ∈ δ △= R+, s. t. ‖∆p‖2 6 γ−1

and w(t) = ∆pz(t). Using the bound on the uncertainty, observe that

w(t)⊤w(t) = z(t)⊤∆⊤p∆pz(t) 6 γ
−2z(t)⊤z(t).



2.2 LPV System Analysis 39

Such an inequality lends itself for direct use with the S-Procedure, but here it is

desired to investigate how the full-block S-Procedure can be applied.

Tσρ

∆p

w z

[
A
(
ρ
)

Bp

(
ρ
)

Cp

(
ρ
)

Dpp

(
ρ
)
]

Figure 2.5: Uncertainty representation for performance.

Therefore, take

U =

[
I 0 0 0

0 I 0 0

]
, ζ

△
=




x

ẋ

w

z


 , V =

[
0 0 I 0

0 0 0 I

]
,

W(ρ)
△
= im







I 0

A
(
ρ
)

Bp

(
ρ
)

0 I

Cp

(
ρ
)

Dpp

(
ρ
)





 , S(δ)

△
= S(γ) = im

([
∆p

I

])
,

Q(ρ)
△
=

[
∂X
(
ρ,σ
)

X
(
ρ
)

X
(
ρ
)

0

]
,

s. t. by the full-block S-Procedure for Conds. (2.52) and (2.55) to hold it is required

that

[
•
•

]⊤
M

[
∆p

I

]
< 0 ∀γ ∈ δ (2.68)

which satisfies

[
•
•

]⊤
Q(ρ)

[
I 0

A
(
ρ
)
Bp

(
ρ
)
]
+

[
•
•

]⊤
M

[
0 I

Cp

(
ρ
)
Dpp

(
ρ
)
]
≺ 0 ∀ρ ∈ ρ. (2.69)

Observe now that a particular (parameter-dependent) choice for M that always

guarantees (2.68) is M = Γ = diag
(
−γI,γ−1I

)
, which also satisfies condition (2.55).

Remark 2.11 How to prove the PDBRL based on inductive trajectory arguments is

shown in, e. g., [E19, E83]. A constructive proof for the parameter-independent case is

given in [112] based on Finsler’s Lemma and the S-Procedure.

A dual version of the Bounded Real Lemma can be obtained by applying

Lma. A.6, respectively, Lma. A.7—both on page 321— on Cond. (2.67). This con-

cept of duality is essential to the derivation of convex controller synthesis methods,
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in which the controller parameters are first eliminated from both primal and dual

LMI formulations. Dualization of matrix inequalities quadratic in nature, as those

shown above, appears a purely ≪mechanical≫ exercise. This is the motivation for

representing LMIs in this way, rather than in expanded form, which is—in turn—

more suitable for applying the Schur complement. The following theorem presents

the dualized Bounded Real Lemma.

Theorem 2.7 (Dual PDBRL [E19])

The system Tσρ as defined in (2.7), is asymptotically stable over ρ×σ and has an induced

L2-norm bounded from above by γ if there exist a positive definite, symmetric matrix

Y
(
ρ
)
∈ C1(ρ, Snx), Y

(
ρ
)
≻ 0 and γ > 0 that satisfy

[
•
•

]⊤


0 Y

(
ρ
)

Y
(
ρ
)
∂Y
(
ρ,σ
)

Γ−1







−A⊤
(
ρ
)

−C⊤p
(
ρ
)

I 0

−B⊤p
(
ρ
)
−D⊤pp

(
ρ
)

0 I


≻0,

∀ (ρ,σ) ∈ (ρ×σ) (2.70)

Proof: The proof follows from direct application of Lma. A.7 on page 321 and by

defining Y
(
ρ
) △
= X−1

(
ρ
)
. A useful technicality to observe—due to Eq. (A.1) given

on p. 315 in the appendix—exists in
[
∂X
(
ρ,σ
)
X
(
ρ
)

X
(
ρ
)

0

][
0 Y

(
ρ
)

Y
(
ρ
)
∂Y
(
ρ,σ
)
]
=

[
I 0

0 I

]
. (2.71)

2.2.4.2 Solving the Analysis Condition

Obtaining a solution to the PDBRL and therefore proving both asymptotic stability

and an upper bound on the induced L2-gain of system Tσρ essentially requires

to minimize the performance index γ subject to finding a matrix-valued positive

definite function X(ρ) ≻ 0. Thus, when considering ≪LPV system analysis≫, it is

formally referred to the following problem definition.

Problem 2.1 (LPV System Analysis)

To certify asymptotic stability and an upper bound γ on the performance channel w→ z of

the LPV system Tσρ solve

min
X(ρ)≻0

γ subject to (2.67). (2.72)

In order to efficiently solve Prob. 2.1, remedies for the following obstacles have

to be found.
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Lyapunov matrix Ansatz

The Lyapunov matrix may have an arbitrary dependence on the parameter ρ. Since

the analysis condition is only sufficient, no statement about the system’s stability

can be made, if a particular Ansatz does not lead to a feasible solution to the matrix

inequality.

Convexification

Condition (2.67) has to be evaluated on infinitely many points in the parameter

range. A heuristic approach exists in evaluating a sufficiently dense grid over ρ.

Since ∂X(ρ,σ) is affine in σ, it suffices to check only extremal values of the param-

eters’ rate of change.

Sigmonial Inequality

Condition (2.67) is a ≪sigmonial≫ matrix inequality in γ. A simple Schur comple-

ment would be required to render it affine. However, the choice Γ = diag
(
−γ2I, I

)

fulfills the performance IQC, as well. The sigmonial choice will prove useful in the

projection-based controller synthesis approach explained in Sect. 2.3.

As will be seen later, the Ansatz for the Lyapunov matrix has a great impact

on the complexity of the semi-definite programming problem to be solved. Some

systematic approaches have been presented in [E19, 65]. However, to the best of

the author’s knowledge, their suitability is based on simple heuristics, such as

mimicking the plant’s parameter-dependency.

In order to be able to convexly solve Cond. (2.67), methods based on the different

LPV modeling paradigms

(a) general LPV representations,

(b) LFT-LPV representations,

(c) affine/polytopic representations,

as well as a mixture of the above have been devised.

While general LPV representations usually prescribe the application of gridding,

affine LPV representations can yield matrix inequalities that can be solved in the

vertices of the parameter ranges. The associated techniques are explained in more

detail in Sect. 2.3, where the synthesis approaches are considered. A detailed ap-

proach for a convexification of the analysis condition (2.67) based on the FBSP is

presented next, which can be applied if LFRs of both system matrices and a qua-

dratic Lyapunov matrix Ansatz are considered. The more general result obtained

analogously to [163] using a PDLF is presented first.
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Theorem 2.8 (PDBRL w/ Multipliers, PDLF [E46, 163])

The system T
η
δ as defined in (2.20), is asymptotically stable over δ× η and has an induced

L2-norm from w→ z bounded from above by γ if for a quadratic function

X
(
δ
)
= Q

(
δ
)⊤

XQ
(
δ
)
∈ C1(δ, S

nx), X
(
δ
)
≻ 0 ∀δ ∈ δ,

with Q
(
δ
)
= ∆Q

(
δ
)
⋆

[
Q11 Q12

Q21 Q22

]
∈ C1(δ, R

nX×nx)

there exist X = X⊤ ∈ SnX , M = M⊤, N = N⊤ and γ > 0 that satisfy

[
•
•

]⊤



M

0 X

X 0

Γ






B11 B12

I 0

B21 B22


≺ 0, (2.73)

[
•
•

]⊤[
N

X

]

Q11 Q12

I 0

Q21 Q22


≻ 0, (2.74)

[
•
•

]⊤
M

[
I

∆B

(
δ
)
]
≻ 0, ∀δ ∈ δ (2.75)

[
•
•

]⊤
N

[
I

∆Q

(
δ
)
]
≺ 0, ∀δ ∈ δ (2.76)

where

B
(
δ
)
= U

(
δ
)
G
(
δ
)
= ∆B

(
δ
)
⋆

[
B11 B12

B21 B22

]
, (2.77)

∆B =

[
∆U

(
δ,η
)

∆
(
δ
)
]

,

U
(
δ,η
)
=




Q
(
δ
)

0

∂Q
(
δ,η
)
Q
(
δ
)

I 0

0 I


=∆U

(
δ,η
)
⋆

[
U11 U12

U21 U22

]
, (2.78)

G
(
δ
)
=




I 0

A
(
δ
)

Bp

(
δ
)

0 I

Cp

(
δ
)
Dpp

(
δ
)


 = ∆

(
δ
)
⋆

[
G11 G12

G21 G22

]
, (2.79)

[
B11 B12

B21 B22

]
=



U11 U12G21 U12G22

0 G11 G12

U21 U22G21 U22G22


. (2.80)
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Proof: The proof is immediate from the quadratic construction of the Lyapunov

matrix and application of Lma. 2.1 on p. 36. The derivation of (2.78) and (2.79),

respectively, are given in App. B.1 on p. 325.

In some applications, transcendental functions may incur excessive amounts of

overbounding, when covered in a rational parameterization. In such cases, it may

be desirable to pull out only those parameters that fit well into the LFT framework,

while others remain in the LFT system matrices as general parameters, according to

Def. 2.7. The following result ensues from applying the FBSP w. r. t. the LFT channel

of such a mixed general/LFT-LPV representation, while keeping the parameter-

dependency of the Lyapunov function restricted to the general LPV parameters

ρ(t).

Theorem 2.9 (PDBRL w/ Multipliers, Mixed PDLF/PiDLF [161])

The system Tδ as defined in (2.15), is asymptotically stable over ρ × σ × δ and has an

induced L2-norm bounded from above by γ if there exist X
(
ρ
)
∈ C1(ρ, Snx), X

(
ρ
)
≻ 0,

M = M⊤ and γ > 0 that satisfy

[
•
•

]⊤



M

∂X
(
ρ,σ
)
X
(
ρ
)

X
(
ρ
)

0

Γ






G11
(
ρ
)
G12
(
ρ
)

I 0

G21
(
ρ
)
G22
(
ρ
)


≺ 0, ∀ (ρ,σ)

∈ (ρ×σ)
(2.81)

[
•
•

]⊤
M

[
I

∆
(
δ
)
]
≻ 0, ∀δ ∈ δ. (2.82)

with

G(ρ, δ) =




I 0

A
(
ρ, δ
)

Bp

(
ρ, δ
)

0 I

Cp

(
ρ, δ
)
Dpp

(
ρ, δ
)


 = ∆

(
δ
)
⋆

[
G11
(
ρ
)

G12
(
ρ
)

G21
(
ρ
)

G22
(
ρ
)
]

,

[
G11
(
ρ
)

G12
(
ρ
)

G21
(
ρ
)

G22
(
ρ
)
]
=




D∆∆
(
ρ
)

C∆
(
ρ
)
D∆p

(
ρ
)

0 I 0

B∆
(
ρ
)

A
(
ρ
)

Bp

(
ρ
)

0 0 I

Dp∆

(
ρ
)

Cp

(
ρ
)
Dpp

(
ρ
)




. (2.83)

Proof: The proof follows from applying the FBSP on Cond. 2.67 from Thm. 2.6

with respect to an LFT interconnection of a subset of parameters, in which the

plant is rational.

For completeness, the dual version is also presented.
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Theorem 2.10 (Dual PDBRL w/ Multipliers, Mixed PDLF/PiDLF [161])

The system Tδ as defined in (2.15), is asymptotically stable over ρ × σ × δ and has an

induced L2-norm bounded from above by γ if there exist Y
(
ρ
)
∈ C1(ρ, Snx), Y

(
ρ
)
≻ 0,

N = N⊤ and γ > 0 that satisfy

[
•
•

]⊤



N

0 Y
(
ρ
)

Y
(
ρ
)
∂Y
(
ρ,σ
)

Γ−1







I 0

H11

(
ρ
)
H12

(
ρ
)

H21

(
ρ
)
H22

(
ρ
)


≻ 0, ∀ (ρ,σ)

∈ (ρ×σ)
(2.84)

[
•
•

]⊤
N

[
−∆⊤

(
δ
)

I

]
≺ 0, ∀δ ∈ δ. (2.85)

with

H(ρ, δ)=




−A⊤
(
ρ, δ
)

−C⊤p
(
ρ, δ
)

I 0

−B⊤p
(
ρ, δ
)
−D⊤pp

(
ρ, δ
)

0 I


=−∆⊤

(
δ
)
⋆

[
H11

(
ρ
)

H12

(
ρ
)

H21

(
ρ
)

H22

(
ρ
)
]

,

[
H11

(
ρ
)

H12

(
ρ
)

H21

(
ρ
)

H22

(
ρ
)
]
=




−D⊤∆∆
(
ρ
)

−B⊤∆
(
ρ
)
−D⊤p∆

(
ρ
)

−C⊤∆
(
ρ
)

−A⊤
(
ρ
)

−C⊤p
(
ρ
)

0 I 0

−D⊤∆p

(
ρ
)

−B⊤p
(
ρ
)
−D⊤pp

(
ρ
)

0 0 I




(2.86)

Proof: The proof follows from applying Lma. A.7 on page 321 to Conds. (2.81)

and (2.82). Observe that N = M−1 and Y
(
ρ
)
= X−1

(
ρ
)
.

When the plant is purely parameterized within the LFT framework and a

parameter-independent Lyapunov function (PiDLF) is chosen in the conditions of

the previous theorems, a simplified special case is obtained as follows.

Theorem 2.11 (PDBRL w/ Multipliers, PiDLF [125])

The system Tδ as defined in (2.15), is asymptotically stable over δ and has an induced L2-

norm bounded from above by γ if there exist X = X⊤ ∈ Snx , X ≻ 0, M = M⊤ and γ > 0

that satisfy

[
•
•

]⊤



M

0 X

X 0

Γ






G11 G12

I 0

G21 G22


≺ 0, (2.87)

[
•
•

]⊤
M

[
I

∆
(
δ
)
]
≻ 0, ∀δ ∈ δ. (2.88)

with Gij, i, j ∈ {1, 2} from (2.83), where the vector of general LPV parameters ρ(t) is empty.
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Proof: The proof follows from taking QX

(
δ
)
= Inx in Thm. 2.8.

Again, for completeness, the dual version is presented.

Theorem 2.12 (Dual PDBRL w/ Multipliers, PiDLF [125])

The system Tδ as defined in (2.15), is asymptotically stable over δ and has an induced L2-

norm bounded from above by γ if there exist Y = Y⊤ ∈ Snx , Y ≻ 0, N = N⊤ and γ > 0

that satisfy

[
•
•

]⊤



N

0 Y

Y 0

Γ−1






I 0

H11 H12

H21 H22


≻ 0, (2.89)

[
•
•

]⊤
N

[
−∆⊤

(
δ
)

I

]
≺ 0, ∀δ ∈ δ. (2.90)

with Hij, i, j ∈ {1, 2} from (2.86), where the vector of general LPV parameters ρ(t) is empty.

Proof: The proof follows from applying Lma. A.7 on page 321 to Conds. (2.87)

and (2.88). Thus, observe that N = M−1 and Y = X−1.

2.2.5 Multiplier Constraints

As mentioned earlier, the benefit of applying the FBSP mainly resides in separating

parameter-independent from parameter-dependent conditions, the latter of which

being only quadratic in the parameter blocks.

For illustration, we consider multiplier conditions of the form (2.88) and partition

the multiplier into a 2× 2 block matrix conformable with the dimensions of ∆. For

the subsequent discussion, however, potentially complex-valued parameter blocks

are considered. Thus, the multiplier conditions are of the form

[
•
•

]∗[
M11 M12

M⊤12 M22

][
I

∆
(
δ
)
]
≻ 0, ∀δ ∈ δ, (2.91)

[
•
•

]∗[
N11 N12

N⊤12 N22

][
−∆∗

(
δ
)

I

]
≺ 0, ∀δ ∈ δ. (2.92)

The concepts presented here extend naturally to the dual multiplier condition or

parameter blocks composed from multiple subblocks. Since the set δ is not nec-

essarily convex, the evaluation of the multiplier condition is usually performed

on the hyperbox or convex hull containing δ. In addition, the imposition of in-

ertia or structural constraints potentially facilitates an efficient evaluation at the

cost of increased conservatism. Note that due to the fact that 0 ∈ {∆(δ) | δ ∈ δ}, one

has M11 ≻ 0, N22 ≺ 0.



46 LPV Systems — Representations and Controller Synthesis

Full-Block Multipliers

Full-block multipliers avoid any structural constraints on the multipliers. Concavity

constraints (or convexity constraints in the dual multiplier condition (2.92)) intro-

ducing low conservatism can be formulated if the following set is considered [E19,

125],

∆LR
△
=






N∆∑

j=1

Lj∆j
(
δ
)
R⊤j

∣∣∣∣∣∣
∆j
(
δ
)
∈ ∆j





, (2.93)

where ∆j are compact sets that define size and structure of the blocks ∆j
(
δ
)

and

Lj, Rj have full column rank. The following result is due to simple convexity argu-

ments.

Lemma 2.2 (Evaluation of Multiplier Conditions [125])

Let ∆
(
δ
)
∈ ∆LR. Then

[
•
•

]∗[
M11 M12

M⊤12 M22

][
I

∆
(
δ
)
]
≻ 0, ∀∆

(
δ
)
∈ ∆LR. (2.94)

implies the satisfaction of the condition for ∆
(
δ
)
∈ conv (∆LR) and in particular

Cond. (2.91), if

L⊤j M22Lj ≺ 0, ∀j ∈ {1, . . . ,N∆} . (2.95)

The decomposition using matrices Lj and Rj of full column rank is non-unique

and may affect the conservatism introduced via the concavity constraints. In prac-

tice, evaluating (2.94) is performed on on the vertices of conv (∆).

The set ∆LR is rather general and more explicit descriptions are common in the

literature, e. g., [5, 124]. Consider the following example.

Example 2.1 (Block-Diagonal Parameter Block Decomposition)

Consider a parameter block in block-diagonal form

∆
(
δ
)
=

N∆

diag
j=1

(
∆j
(
δ
))
∈ C0(Rnδ , R

nq∆×np∆ ), (2.96)

for which ∆j ∈ C0(Rnδ , R
nq∆,j×np∆,j) and thus nq∆ =

∑N∆
j=1 nq∆,j and np∆ =

∑N∆
j=1 np∆,j.

This block can be written as

∆
(
δ
)
=

N∆∑

j=1

Lj∆jL
⊤
j ,
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where

Lj =
N∆

col
i=1

(
δjiInq∆,j

)
, δji =






1 , j = 1

0 , otherwise.

Note that the blocks ∆j
(
δ
)

may or may not have a structure with repeated parameters δ on

the diagonal as in Ex. 2.2.

If the parameter block takes the form of a diagonal matrix with repeated param-

eters, the decomposition simplifies. Consider the following example.

Example 2.2 (Diagonal Parameter Block Decomposition)

Consider a parameter block of the typical form

∆
(
δ
)
=

nδ
diag
i=1

(
δiIrδ,i

)
∈ C0(Rnδ , R

n∆×n∆), (2.97)

for which n∆ =
∑nδ
i=1 rδ,i. This block can be written as

∆
(
δ
)
=

nδ∑

i=1

δiLiL
⊤
i ,

where

Lj =
nδ
col
i=1

(
δjiIrδ,j

)
, δji =






1 , j = 1

0 , otherwise.

In this case N∆ = nδ.

While Exs. 2.1 and 2.2 provide illustration on how to construct decompositions

of a parameter block that result in different concavity constraints, an often used

limiting case exists in choosing Lj = Inq∆ and N∆ = 1, which simply results in

M22 ≺ 0.

Such a simple inertia hypothesis clearly allows to evaluate Cond. (2.91) on conv (δ)

or hyp (δ) independently of the actual structure of ∆ and with the only requirement

that ∆
(
δ
)

is affinely dependent on the parameters δi, i ∈ {1, . . . ,nδ}. In this case

evaluating the multiplier condition on hyp (δ) amounts to 2nδ LMI constraints.

This inertia hypothesis appears to be essential for a practically valid construction

of a controller’s parameter block, as will become evident later [125, 143].
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In the following, the term ≪full-block multiplier≫ will refer to imposing only the

inertia constraints M11 ≻ 0 and M22 ≺ 0 on the multiplier, if not stated otherwise.

D/G-scaling Constraints

D/G-scaling (D/G-S) constraints impose structural requirements on the multiplier,

characterized by the following set.

MD/G

(
∆
) △
=

{

M =

[
M11 M12

M⊤12 M22

]
∈ S

(np∆+nq∆),

∣∣∣∣∣

M12∆ = ∆M12, M11∆ = ∆M11,

M12 = −M⊤12, M11 = −M22,
∀∆ ∈ ∆

}

(2.98)

Remark 2.12 The name ≪D/G-scalings≫ is owed to the application of these constraints in

µ-theory, e. g., in [39, 53, 130].

It is easy to verify that in the case of normalized bounds on real-valued param-

eters |δi| 6 1, ∀i ∈ {1, . . . ,nδ}, multipliers belonging to the set MD/G

(
∆
)

trivially

satisfy matrix inequalities of the form (2.91), where inertia hypotheses are implied

by 0 ∈ ∆.

A scaled version of D/G-S due to [130], takes into account bounds on δi, i ∈
{1, . . . ,nδ} ranging in a hyperbox hyp (δ). For this purpose, assume bounds on the

parameter values δi ∈
[
δi, δi

]
⊂ R, with

δi = min
t>0

δi(t), δi = max
t>0

δi(t), ∀i ∈ {1, . . . ,nδ} ,

The following two sets characterize the corresponding multipliers.

M̂D/G

(
∆
) △
=

{

M =

[
S11 S12
S12 S22

][
M11 0

0 M11

]
+

[
0 M12

M⊤12 0

] ∣∣∣∣∣ (2.99)

[
M11 M12

M⊤12 M22

]
∈MD/G

(
∆
)
,

S(i) =

[
S
(i)
11 S

(i)
12

S
(i)
12 S

(i)
22

]
=

[
−2δiδiIrδ,i (δi + δi)Irδ,i

(δi + δi)Irδ,i −2Irδ,i

]
,

Skl =
nδ

diag
i=1

(
S
(i)
kl

)
,
∀ (k, l) ∈ {1, 2}× {1, 2} ,

∀i ∈ {1, . . . ,nδ}





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N̂D/G

(
∆
) △
=

{

N =

[
S̃11 S̃12

S̃12 S̃22

][
N11 0

0 N11

]
+

[
0 N12

N⊤12 0

] ∣∣∣∣∣ (2.100)

[
N11 N12

N⊤12 N22

]
∈MD/G

(
∆
)
,

S(i)
−1

=

[
S̃
(i)
11 S̃

(i)
12

S̃
(i)
12 S̃

(i)
22

]
= 1

(δi−δi)
2

[
2Irδ,i (δi + δi)Irδ,i

(δi + δi)Irδ,i 2δiδiIrδ,i

]
,

S̃kl =
nδ

diag
i=1

(
S̃
(i)
kl

)
,
∀ (k, l) ∈ {1, 2}× {1, 2} ,

∀i ∈ {1, . . . ,nδ}






Remark 2.13 Since diagonal LFT parameter blocks can always be normalized, it may ap-

pear superfluous to introduce scaled multiplier conditions. However, in the context of dis-

tributed controller synthesis detailed in Part II of this thesis, such an approach is beneficial.

Figures 2.6a and 2.6b illustrate the concavity and convexity constraints for the

primal and dual multiplier conditions, respectively.

δi

δi δi

−2δiδi

1
2(δi + δi)

M
(
δ
)

(a) Concavity of primal multiplier
constraint for parameter δi,
where the multiplier constraint
reduces to M

(
δ
)

= −2δiδi+

2(δi+δi)δi−2δ
2
i > 0.

δi

δi δi

2δiδi

1
2(δi + δi)

N
(
δ
)

(b) Convexity of dual multiplier
constraint for parameter δi,
where the multiplier constraint
reduces to N

(
δ
)
= 2δiδi−2(δi+

δi)δi+2δ
2
i < 0.

Figure 2.6: Concavity and convexity of primal and dual multiplier constraints for parameter

δi.

Lemma 2.3 (D/G-scaling [130])

Under the assumption of a diagonal parameter block of the form

∆
(
δ
)
=

nδ
diag
i=1

(
δiIrδ,i

)
∈ C0(Rnδ , R

n∆×n∆),

and bounds on the parameter values δi ∈
[
δi, δi

]
⊂ R, with

δi = min
t>0

δi(t), δi = max
t>0

δi(t), ∀i ∈ {1, . . . ,nδ} ,
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the choice of multiplier structure M ∈ M̂D/G

(
∆
)

decouples Cond. (2.91) into the nδ
trivially fulfilled conditions

[
•
•

]⊤
M(i)

[
I

δiIrδ,i

]
≻ 0, ∀δi ∈

[
δi, δi

]
,

∀i ∈ {1, . . . ,nδ} .
(2.101)

M(i) =

[
S
(i)
11 S

(i)
12

S
(i)
12 S

(i)
22

][
M

(i)
11 0

0 M
(i)
11

]
+


 0 M

(i)
12

M
(i)
12

⊤
0


 , (2.102)

with

M11 =
nδ

diag
i=1

(
M

(i)
11

)
≻ 0, M

(i)
11 ∈ Srδ,i×rδ,i ,

M12 =
nδ

diag
i=1

(
M

(i)
12

)
= −M⊤12, M

(i)
12 ∈ Rrδ,i×rδ,i .

For the structural choice on the dual multiplier N ∈ N̂D/G

(
∆
)
, the dual multiplier

condition is decoupled to the nδ trivially fulfilled conditions

[
•
•

]⊤
N(i)

[
−δiIrδ,i

I

]
≺ 0, ∀δi ∈

[
δi, δi

]
,

∀i ∈ {1, . . . ,nδ} ,
(2.103)

N(i) =

[
S̃
(i)
11 S̃

(i)
12

S̃
(i)
12 S̃

(i)
22

][
N

(i)
11 0

0 N
(i)
11

]
+


 0 N

(i)
12

N
(i)
12

⊤
0


 , (2.104)

with

N11 =
nδ

diag
i=1

(
N

(i)
11

)
≻ 0, N

(i)
11 ∈ Srδ,i×rδ,i ,

N12 =
nδ

diag
i=1

(
N

(i)
12

)
= −N⊤12, N

(i)
12 ∈ Rrδ,i×rδ,i .

Proof: Only the fulfillment of the primal multiplier is proven and since the decou-

pling resulting from the structural constraints is obvious, it suffices to consider a

parameter block with only a single parameter δ resulting in a multiplier condition

[
•
•

]⊤[
−2δδM11 (δ + δ)M11 +M12

(δ + δ)M11 −M12 −2M11

][
I

δI

]
≻ 0, ∀δ ∈

[
δ, δ
]

.

Since M11 ≻ 0, an expansion yields the condition

−2δδ + 2(δ + δ)δ− 2δ2 ≻ 0, ∀δ ∈
[
δ, δ
]

,

which has both roots at δ and δ, constant curvature and is positive in between.
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Example 2.3 (Commutativity w/ Block-Diagonal Parameter Blocks)

Consider again a parameter block in block-diagonal form (2.96). Note that any parameter

block of this form commutes with matrices composed as

Mkl =
N∆

diag
i=1

(
M

(i)
kl In∆i

)
, M

(i)
kl ∈ R,

rendering the multiplier actually diagonal. Furthermore, the skew-symmetry requirement

on M12 enforces M12 = 0.

The commutativity requirement on the blocks Mkl and ∆ imposes a sparsity

pattern Mkl that depends on the shape of ∆. Also consider the following example.

Commutativity with respect to diagonal parameter blocks forces fewer multiplier

variables to be zero.

Example 2.4 (Commutativity w/ Diagonal Parameter Blocks)

Consider again a parameter block of the typical form (2.97). Note that any parameter block

of this form commutes with matrices composed as

Mkl =
nδ

diag
i=1

(
M

(i)
kl

)
, M

(i)
kl ∈ S

rδ,i×rδ,i .

For diagonal parameter blocks, such constraints will prove beneficial in LFT-LPV

synthesis based on PiDLFs, since they allow the controller’s parameter block ∆K
(
δ
)

to be simply chosen as a copy of the plant’s parameter block, i. e., ∆K
(
δ
)
= ∆P

(
δ
)
.

Block-diagonal parameter blocks will most likely lead to an excessive amount of

conservatism due to the commutativity requirements.

Note also that commutativity constraints emerge naturally from the channel-wise

application of the FBSP (Thm. 2.4) or SP (Thm. 2.5) [123], i. e., taking into account

each parameter δi, i ∈ {1, . . . ,nδ} with its repetition one at a time.

D-scaling Constraints

D-scaling (D-S) constraints impose stronger structural requirements on the multi-

plier, by requiring the off-diagonal blocks to be zero. While being more conservative

for real-valued diagonal parameter blocks of the typical form (2.97), e. g., shown on

p. 47, they allow for complex-valued parameter blocks

∆
(
δ
)
=

nδ
diag
i=1

(
δiIrδ,i

)
∈ C0(Cnδ , C

n∆×n∆). (2.105)



52 LPV Systems — Representations and Controller Synthesis

D-S constraints are characterized by the following set.

MD

(
∆
) △
=

{

M =

[
M11 0

0 M22

]
∈ S

(np∆+nq∆),

∣∣∣∣∣

M11∆ = ∆M11, M11 = −M22,∀∆ ∈ ∆
}

(2.106)

Again, it is easy to verify that in the case of normalized bounds on complex-valued

parameters |δi| 6 1, ∀i ∈ {1, . . . ,nδ}, multipliers belonging to the set MD

(
∆
)

trivially

satisfy matrix inequalities of the form (2.91), where inertia hypotheses are implied

by 0 ∈ ∆.

It is possible to formally define shifted D-Ss, as well. A scaled version of D/G-S

due to [130], takes into account bounds on δi, i ∈ {1, . . . ,nδ} ranging in a hyperbox

hyp (δ). The following two sets characterize the corresponding multipliers.

M̂D

(
∆
) △
=

{

M =

[
S11 S12
S12 S22

][
M11 0

0 M11

] ∣∣∣∣∣

[
M11 0

0 M22

]
∈MD

(
∆
)
,

S(i)=

[
S
(i)
11 S

(i)
12

S
(i)
12 S

(i)
22

]
=

[
(δ2i,r − δ

2
i,c)Irδ,i δi,cIrδ,i

δi,cIrδ,i −Irδ,i

]

Skl =
nδ

diag
i=1

(
S
(i)
kl

)
,
∀ (k, l) ∈ {1, 2}× {1, 2} ,

∀i ∈ {1, . . . ,nδ}






(2.107)

N̂D

(
∆
) △
=

{

N =

[
S̃11 S̃12

S̃12 S̃22

][
N11 0

0 N11

] ∣∣∣∣∣

[
N11 N12

N⊤12 N22

]
∈MD

(
∆
)
,

S(i)
−1

=

[
S̃
(i)
11 S̃

(i)
12

S̃
(i)
12 S̃

(i)
22

]
= 1
δ2i,r

[
Irδ,i δi,cIrδ,i

δi,cIrδ,i −(δ2i,r − δ
2
i,c)Irδ,i

]

S̃kl =
nδ

diag
i=1

(
S̃
(i)
kl

)
,
∀ (k, l) ∈ {1, 2}× {1, 2} ,

∀i ∈ {1, . . . ,nδ}






(2.108)

The geometric interpretation of the parameterization of the scalings becomes ap-

Re δi

Re δi Re δi

δi,r

δi,c

Im δi

Figure 2.7: Ball region constraints for parameter δi.

parent by noticing that they confine each δi to balls with radius δi,r and center δi,c.

The corollary below follows from Lma. 2.3.
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Corollary 2.1 (D-Scaling [130])

Under the assumption of a diagonal parameter block of the form

∆
(
δ
)
=

nδ
diag
i=1

(
δiIrδ,i

)
∈ C0(Cnδ , C

n∆×n∆),

and bounds on the parameter values |δi − δi,c| 6 δi,r, with δi,c, δi,r ∈ C, the choice of mul-

tiplier structure M ∈ M̂D

(
∆
)

decouples Cond. (2.91) into nδ trivially fulfilled conditions.

For the structural choice on the dual multiplier N ∈ N̂D

(
∆
)
, the dual multiplier condi-

tion is decoupled into nδ trivially fulfilled conditions.

Proof: The proof follows directly from Lma. 2.3.

D/G∗-scaling Constraints

Analogously to D/G-S constraints that require the parameters to be purely real,

D/G∗-scaling (D/G∗-S) constraints can be defined that require a zero real part for

complex parameters. For this purpose, consider parameter blocks of the form

∆
(
δ
)
=

nδ
diag
i=1

(
δiIrδ,i

)
∈ C0(jRnδ , jRn∆×n∆). (2.109)

D/G∗-S constraints are characterized by the following set.

MD/G∗

(
∆
) △
=

{

M =

[
M11 M12

M12 M22

]
∈ S

(np∆+nq∆),

∣∣∣∣∣

M12∆ = ∆M12, M11∆ = ∆M11,

M12 = M⊤12, M11 = −M22,
∀∆ ∈ ∆

}

(2.110)

As before, it is easy to verify that in the case of normalized bounds on the param-

eters |δi| 6 1, ∀i ∈ {1, . . . ,nδ}, multipliers belonging to the set MD/G∗

(
∆
)

trivially

satisfy matrix inequalities of the form (2.91), where inertia hypotheses are implied

by 0 ∈ ∆. The difference to D/G-S resides in the off-diagonal blocks required to be

symmetric instead of skew-symmetric. Due to the conjugate transpose of the scalar

purely imaginary parameters, terms associated with the off-diagonal blocks cancel.

A scaled version of D/G∗-S, takes into account bounds on δi ∈ jR, i ∈ {1, . . . ,nδ}

ranging in a hyperbox hyp (δ). For this purpose, assume bounds on the parameter

values δi ∈ j
[
δi, δi

]
⊂ jR, with

δi = min
t>0

Im δi(t), δi = max
t>0

Im δi(t), ∀i ∈ {1, . . . ,nδ} ,
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The following two sets characterize the corresponding multipliers.

M̂D/G∗

(
∆
) △
=

{

M =

[
S11 S12
S12 S22

][
M11 0

0 M11

]
+

[
0 M12

M12 0

] ∣∣∣∣∣ (2.111)

[
M11 M12

M12 M22

]
∈MD/G∗

(
∆
)
,

S(i) =

[
S
(i)
11 S

(i)
12

S
(i)
12 S

(i)
22

]
=

[
−2δiδiIrδ,i (δi + δi)Irδ,i

(δi + δi)Irδ,i −2Irδ,i

]
,

Skl =
nδ

diag
i=1

(
S
(i)
kl

)
,
∀ (k, l) ∈ {1, 2}× {1, 2} ,

∀i ∈ {1, . . . ,nδ}






N̂D/G∗

(
∆
) △
=

{

N =

[
S̃11 S̃12

S̃12 S̃22

][
N11 0

0 N11

]
+

[
0 N12

N12 0

] ∣∣∣∣∣ (2.112)

[
N11 N12

N12 N22

]
∈MD/G∗

(
∆
)
,

S(i)
−1

=

[
S̃
(i)
11 S̃

(i)
12

S̃
(i)
12 S̃

(i)
22

]
= 1

(δi−δi)
2

[
2Irδ,i (δi + δi)Irδ,i

(δi + δi)Irδ,i 2δiδiIrδ,i

]
,

S̃kl =
nδ

diag
i=1

(
S̃
(i)
kl

)
,
∀ (k, l) ∈ {1, 2}× {1, 2} ,

∀i ∈ {1, . . . ,nδ}






Corollary 2.2 (D/G∗-Scaling)

Under the assumption of a diagonal parameter block of the form

∆
(
δ
)
=

nδ
diag
i=1

(
δiIrδ,i

)
∈ C0(jRnδ , jRn∆×n∆),

and bounds on the parameter values δi ∈ j
[
δi, δi

]
⊂ jR, with

δi = min
t>0

Im δi(t), δi = max
t>0

Im δi(t), ∀i ∈ {1, . . . ,nδ} ,

the choice of multiplier structure M ∈ M̂D/G∗

(
∆
)

decouples Cond. (2.91) into nδ trivially

fulfilled conditions.

For the structural choice on the dual multiplier N ∈ N̂D/G∗

(
∆
)
, the dual multiplier

condition is decoupled into nδ trivially fulfilled conditions.

Proof: The proof follows directly from Lma. 2.3.
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2.3 Gain-Scheduled Linear Parameter-Varying Controller Synthesis

I
n this section, the previous analysis results are extended to synthesis through

the derivation of existence conditions resulting from the elimination of the con-

troller parameters. Closed-loop representations are introduced in Sect. 2.3.2 and the

controller elimination approach is detailed in Sect. 2.3.2. Sects. 2.3.3–2.3.5 treat the

special cases of gridding-, polytopic- or multiplier-based solution of the associated

LMIs and the implications w. r. t. controller construction.

2.3.1 Closed-Loop Representations

Consider an open-loop LPV system in general LPV representation of the form

Pσρ :








ẋ

z

y


=



A
(
ρ(t)

)
Bp

(
ρ(t)

)
Bu
(
ρ(t)

)

Cp

(
ρ(t)

)
Dpp

(
ρ(t)

)
Dpu

(
ρ(t)

)

Cy
(
ρ(t)

)
Dyp

(
ρ(t)

)
Dyu

(
ρ(t)

)






x

w

u




ρ(t) ∈ Fσρ ,

(2.113)

where x ∈ Rnx , u ∈ Rnu , y ∈ Rny , w ∈ Rnw , z ∈ Rnz , are the open-loop state, con-

trol input, measured output and performance signal vectors of the system, respec-

tively. The definitions of the symbols as from Sects. 2.1.1–2.1.3 for the system’s state

space model matrix Pρ
(
ρ(t)

)
and input-output operator Pρ

(
ρ(t)

)
extend naturally

to this representation. The system is illustrated in Fig. 2.8a.

Consider as well an LFR of the open-loop LPV system, illustrated in Fig. 2.8b,

P
η
δ :









ẋ

pP∆
z

y


=




A B∆ Bp Bu

C∆ D∆∆ D∆p D∆u

Cp Dp∆ Dpp Dpu

Cy Dy∆ Dyp Dyu







x

qP∆
w

u




q∆ = ∆P(t)p∆, δ(t) ∈ F
η
δ

,

(2.114)

where q∆ ∈ R
nPq∆ , p∆ ∈ R

nPp∆ .

w z

yu
Pσρ

(a) Generalized plant in general LPV rep-
resentation Pσ

ρ .

Pδ

∆P

w z

q∆ p∆

yu

P
η
δ

(b) Generalized LPV plant in linear frac-
tional representation P

η
δ .

Figure 2.8: Generalized plant.
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Consider an output-feedback LPV controller of the form

Kσρ :






[
ẋK

u

]
=

[
AK
(
ρ(t),σ(t)

)
BKy
(
ρ(t)

)

CKu
(
ρ(t)

)
DKuy

(
ρ(t)

)
][
xK

y

]

ρ(t) ∈ Fσρ ,

. (2.115)

where xK ∈ RnKx , is the controller’s state. An LFR of the controller can take the form

K
η
δ :








ẋK

u

pK∆


=



AK BKy BK∆
CKu DKuy D

K
u∆

CK∆ DK∆y D
K
∆∆






xK

y

qK∆




qK∆ = ∆K(t)pK∆, δ(t) ∈ F
η
δ

,

(2.116)

where qK∆ ∈ R
nKq∆ , pK∆ ∈ R

nKp∆ . As apparent from Eq. (2.115), the controller is gen-

erally allowed to depend also on the parameters’ rate of change σ. Thus an LFR

of the controller incorporates a parameter block ∆K
(
δ(t),η(t)

)
that is a continu-

ous matrix-valued function of the LFT parameter vector δ(t) and the associated

rates η(t).

∆K
(
δ(t),η(t)

)
∈ C0(δ×η, R

nKq∆
×nKp∆ ).

The interconnections

Tσρ = Pσρ ⋆K
σ
ρ , T

η
δ = P

η
δ ⋆K

η
δ (2.117)

denote the closed loop as illustrated in Figs. 2.9a–2.9b for general and LFT-LPV

representations.

An explicit formula for the parameter-dependent closed-loop state space matrix

linear in the controller matrix Kρ
(
ρ
)

can be obtained for plants with Dyu
(
ρ
)
= 0.

Tρ
(
ρ
)
= T0,ρ

(
ρ
)
+ Wρ

(
ρ
)
Kρ
(
ρ
)
Vρ
(
ρ
)
=

[
A
(
ρ
)

Bp

(
ρ
)

Cp

(
ρ
)

Dpp

(
ρ
)
]

(2.118)

=



A
(
ρ
)
0 Bp

(
ρ
)

0 0 0

Cp

(
ρ
)
0 Dpp

(
ρ
)


+



0 Bu

(
ρ
)

I 0

0 Dpu

(
ρ
)


×

[
AK
(
ρ,σ
)

BKy
(
ρ
)

CKu
(
ρ
)

DKuy
(
ρ
)
] [

0 I 0

Cy
(
ρ
)
0 Dyp

(
ρ
)
]

(2.119)
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For LFRs, obtaining the closed-loop state space matrix linear in the controller

matrix Kδ can be obtained by less restrictive assumptions on the plant. Specifically,

for plants for which Dyu = 0, one has

Tδ = T0,δ + WδKδVδ =



A B∆ Bp

C∆ D∆∆ D∆p

Cp Dp∆ Dpp


 (2.120)

=




A 0 B∆ 0 Bp

0 0 0 0 0

C∆ 0 D∆∆ 0 D∆p

0 0 0 0 0

Cp 0 Dp∆ 0 Dpp



+




0 Bu 0

I 0 0

0 D∆u 0

0 0 I

0 Dpu 0



×



AK BKy BK∆
CKu DKuy D

K
u∆

CK∆ DK∆y D
K
∆∆






0 I 0 0 0

Cy 0 Dy∆ 0 Dyp

0 0 0 I 0


 (2.121)

The closed-loop parameter block is therefore

∆
(
δ(t),η(t)

)
=

[
∆P
(
•
)

∆K
(
•
)
]
∈ C0(δ× η, R

nq∆×np∆ ),

where np∆ = nPp∆ +nKp∆ and nq∆ = nPq∆ +nKq∆ .

Pσρ

Kσρ

w z

yu

Tσρ

(a) Closed-Loop interconnection of gen-
eralized LPV plant and LPV con-
troller in general LPV representa-
tion Tσ

ρ .

Pδ

Kδ

∆P

∆K

w z

q∆ p∆

qK∆ pK∆

yu

T
η
δ

(b) Closed-Loop interconnection of gener-
alized LPV plant and LPV controller
in LFR T

η
δ .

Figure 2.9: Closed-Loop interconnection of generalized LPV plant and LPV controller.
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2.3.2 Controller Elimination and Explicit Solutions

A particular approach to LPV output-feedback or state-feedback controller synthe-

sis is based on first eliminating the controller variables and obtaining conditions on

the existence of stabilizing controllers that guarantee some degree of performance

for the entire range of parameters. After such existence conditions have been solved,

the controller parameters can be obtained by algebraic manipulations or by solving

additional LMI problems.

For the purpose of the presentation of these techniques, consider the following

assumptions on the plant [163].

(A2.1) Parameter-Dependent Stabilizability:

The pair
(
A
(
ρ
)
,Bu

(
ρ
))

is parameter-dependent stabilizable for all ρ(t) ∈ Fσρ .

(A2.2) Parameter-Dependent Detectability:

The pair
(
A
(
ρ
)
,Cy

(
ρ
))

is parameter-dependent detectable for all ρ(t) ∈ Fσρ .

(A2.3) Full Output Gain Rank:

The matrix
[
Cy
(
ρ
)
Dyp

(
ρ
)]

has full row rank for all ρ(t) ∈ Fσρ .

(A2.4) Full Input Gain Rank:

The matrix
[
B⊤u
(
ρ
)
D⊤pu

(
ρ
)]

has full row rank for all ρ(t) ∈ Fσρ .

(A2.5) Strictly Proper System:

There is no direct feedthrough in the control channel, i. e.,

Dyu
(
ρ
)
= 0.

(A2.6) Absence of Performance Feedthrough:

There is no direct feedthrough in the performance channel, i. e., Dpp

(
ρ
)
= 0.

Ass. (A2.1)–(A2.4), guarantee the existence of a stabilizing output-feedback LPV

controller. Ass. (A2.5)–(A2.6) simplify the controller formula presented later on.

The following theorem provides conditions on the existence of a stabilizing gain-

scheduled output-feedback controller that guarantees a certain performance of the

closed-loop system.

Theorem 2.13 (Controller Existence Conditions [3, 163])

Under Ass. (A2.1)–(A2.4), there exists a controller Kσρ that renders the closed-loop sys-

tem Tσρ as defined in (2.7) asymptotically stable over ρ×σ with an induced L2-norm from

w→ z bounded from above by γ > 0, if there exist R
(
ρ
)
∈ C1(ρ, Snx), S

(
ρ
)
∈ C1(ρ, Snx)

with R
(
ρ
)
≻ 0, S

(
ρ
)
≻ 0 that satisfy ∀ (ρ,σ) ∈ (ρ×σ)

LR
(
ρ,σ
)
=N⊤R

(
ρ
)
[
•
•

]⊤


∂R
(
ρ,σ
)
R
(
ρ
)

R
(
ρ
)

0

Γ







I 0

A
(
ρ
)
Bp

(
ρ
)

0 I

Cp

(
ρ
)
Dpp

(
ρ
)


NR

(
ρ
)
≺0, (2.122)
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LS
(
ρ,σ
)
=N⊤S

(
ρ
)
[
•
•

]⊤


0 S

(
ρ
)

S
(
ρ
)
∂S
(
ρ,σ
)

Γ−1







−A⊤
(
ρ
)
−C⊤p

(
ρ
)

I 0

−B⊤p
(
ρ
)
−D⊤pp

(
ρ
)

0 I


NS

(
ρ
)
≻0, (2.123)

as well as ∀ρ ∈ ρ

LRS
(
ρ
)
=

[
R
(
ρ
)

I

I S
(
ρ
)
]
≻0, (2.124)

where

NR
(
ρ
)
= ker

([
Cy
(
ρ
)
Dyp

(
ρ
)])

, (2.125)

NS
(
ρ
)
= ker

([
B⊤u
(
ρ
)
D⊤pu

(
ρ
)])

. (2.126)

Proof: The proof follows from the application of Lma. A.8 on page 321, using both

Cond. (2.67) and its dual (2.70). Partition X
(
ρ
)

from Cond. (2.67) and Y
(
ρ
)

from

Cond. (2.70) with dimensions compatible with the block matrix A
(
ρ
)

from (2.118)

as

X
(
ρ
)
=

[
R
(
ρ
)

R1
(
ρ
)

R⊤1
(
ρ
)
R2
(
ρ
)
]

, Y
(
ρ
)
= X−1

(
ρ
)
=

[
S
(
ρ
)

S1
(
ρ
)

S⊤1
(
ρ
)
S2
(
ρ
)
]

and observe that only both upper left blocks of the Lyapunov matrices remain after

eliminating the controller. Condition (2.124) results from the coupling condition

on the primal and dual Lyapunov matrices X
(
ρ
)
Y
(
ρ
)
= I. To see this, employ the

congruence transformation

TS =

[
S
(
ρ
)

I

S⊤1
(
ρ
)
0

]
, TR =

[
I R

(
ρ
)

0 R⊤1
(
ρ
)
]

,

s. t.

T⊤S X
(
ρ
)
TS = T

⊤
R Y
(
ρ
)
TR =

[
S
(
ρ
)

I

I R
(
ρ
)
]
≻ 0.

Under the Ass. (A2.5) and (A2.6), the following formulae can be used to contruct

the output-feedback controller Kσρ [161, 163] once a solution to the conditions of

Thm. 2.13 has been obtained, s. t. both R
(
ρ
)

and S
(
ρ
)

are known.

(i) Let M
(
ρ
)
N⊤
(
ρ
)
= I− S

(
ρ
)
R
(
ρ
)

and define

F
(
ρ
)
= −

(
D⊤pu

(
ρ
)
Dpu

(
ρ
))−1 (

γB⊤u
(
ρ
)
S−1
(
ρ
)
+D⊤pu

(
ρ
)
Cp

(
ρ
))

, (2.127)

L
(
ρ
)
= −

(
γR−1

(
ρ
)
C⊤y
(
ρ
)
+Bp

(
ρ
)
D⊤yp

(
ρ
))(

D⊤yp

(
ρ
)
Dyp

(
ρ
))−1

, (2.128)
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(ii) Using these definitions, the state space matrix Kσρ
(
ρ,σ
)

is constructed from

AK
(
ρ,σ
)
= −N−1

(
ρ
)(

− R
(
ρ
)
∂S
(
ρ
)
−N

(
ρ
)
∂M⊤

(
ρ
)

+A⊤
(
ρ
)
+ R
(
ρ
)(
A
(
ρ
)
+Bu

(
ρ
)
F
(
ρ
)
+ L
(
ρ
)
Cy
(
ρ
))
S
(
ρ
)

+ γ−1R
(
ρ
)(
Bp

(
ρ
)
+ L
(
ρ
)
Dyp

(
ρ
))
B⊤p
(
ρ
)

+ γ−1Cp

(
ρ
)(
C⊤p
(
ρ
)
+Dpu

(
ρ
)
F
(
ρ
))
S
(
ρ
))
M−⊤(ρ

)
, (2.129)

BKy
(
ρ
)
= N−1

(
ρ
)
R
(
ρ
)
L
(
ρ
)
, (2.130)

CKu
(
ρ
)
= F
(
ρ
)
S
(
ρ
)
M−⊤(ρ

)
, (2.131)

DKuy
(
ρ
)
= 0. (2.132)

In the state-feedback case, Ass. (A2.2) is not required due to the full informa-

tion on the system’s state. Consequently, Ass. (A2.3) is trivially fulfilled, as are

Ass. (A2.5) and (A2.6). Thus, further assumptions on the plant are

(A2.7) Cy
(
ρ(t)

)
= I and Dyp

(
ρ(t)

)
= 0.

In [160], more strict assumptions on the plant matrices are made, s. t. the general-

ized plant has the form

Pρ
(
ρ(t)

)
=




A
(
ρ(t)

)
Bp

(
ρ(t)

)
Bu[

Cp,1

Cp,2

]
0

[
0

I

]

I 0 0


 . (2.133)

While this simplifies the solution and is in general not difficult to fulfill, a more

general solution with a state-feedback gain formula as from Eq. (2.127) can be

obtained as follows.

The following theorem provides conditions on the existence of a stabilizing gain-

scheduled state-feedback controller that guarantees a certain performance of the

closed-loop system.

Theorem 2.14 (State-Feedback Controller Synthesis [160])

Under Ass. (A2.1) and (A2.4)–(A2.7), there exists a state-feedback controller gain F
(
ρ
)

that renders the closed-loop system Tσρ as defined in (2.7) asymptotically stable over ρ×σ
with an induced L2-norm from w → z bounded from above by γ > 0, if there exists

S
(
ρ
)
∈ C1(ρ, Snx) with S

(
ρ
)
≻ 0 that satisfies

N⊤S
(
ρ
)
[
•
•

]⊤


0 S

(
ρ
)

S
(
ρ
)
∂S
(
ρ,σ
)

Γ−1







−A⊤
(
ρ
)
−C⊤p

(
ρ
)

I 0

−B⊤p
(
ρ
)

0

0 I


NS

(
ρ
)
≻0, ∀ (ρ,σ)

∈ (ρ×σ)

(2.134)
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where

NS = ker
([
B⊤u
(
ρ
)
D⊤pu

(
ρ
)])

.

The parameter-dependent state-feedback gain is then given by Eq. (2.127).

Proof: The proof can be found in App. B.2 on p. 327.

The problem of synthesizing an estimator gain L
(
ρ
)

is the dual problem to syn-

thesizing a state-feedback gain F
(
ρ
)

and is performed using the primal matrix in-

equality Cond. (2.122) and the observer gain formula (2.128). The required associ-

ated dual assumption on the plant matrices is then

(A2.8) Bu
(
ρ(t)

)
= 0 and Dpu

(
ρ(t)

)
= I.

2.3.3 Gridding-Based Synthesis

In gridding-based LPV synthesis approaches [3, 160] the inequalities (2.122)–(2.124)

are solved on a set of points covering the parameter signal range and their associ-

ated rates of variation ρ×σ. An evenly spaced grid can be chosen, but also addi-

tional points can be added by the designer, where a higher density is required. Note

that the terms ∂R
(
ρ,σ
)

and ∂S
(
ρ,σ
)

and accordingly the matrix inequalities (2.122)–

(2.123) are affine in the parameters’ rate of change σ using a PDLF Ansatz, s. t. only

the extremes need to be checked.

The technique is applicable to LPV plants with general parameter-dependency,

requiring neither polytopic nor LFT representations. Since the gridding is not re-

stricted to convex regions, model elements such as look-up tables (LUTs) can be

readily incorporated in the design. Accordingly, the Lyapunov variable can be pa-

rameterized by general parameter-dependency. Since this approach does not pro-

vide any rigorous guarantees for closed-loop stability and performance, the analy-

sis inequality (2.67) is usually checked on a much denser grid a posteriori. It, how-

ever, suffices to perform eigenvalue tests, instead of solving semi-definite programs

again, [73].

If this analysis step fails, the grid density is increased (at least locally) and the

synthesis step is repeated. An iteration between analysis and synthesis is conducted

until local guarantees are established on a sufficiently dense grid.

The implementation of the controller is computationally inexpensive, but may

require large amounts of memory, in order to store the local controllers. The im-

plementation scheme may consider an interpolation or a switching between local

controllers. In general, this approach is limited to few scheduling signals because

of the exponential increase in grid points, hence memory requirements or interpo-

lation complexity. Closed-form controller formulae can be applied instead, shifting

the complexity to online computing. Especially in the light of microprocessors lim-

ited in precision and/or computing power, the gridded LUT-based implementation

is attractive, but applies to the other synthesis methods as well. I. e., also controller

matrices Kδ or Kδ derived from polytopic and LFT-based controller representations

can be gridded in terms of the scheduling signals ρ and implemented in LUTs.
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If observer-based state-feedback synthesis is performed, parameter-dependent

state-feedback matrices of both observer and controller can be computed online

each essentially by a single matrix inversion without the need to store multiple con-

trollers in memory [E83–E85]. Via a loop-shaping approach frequency-dependent

characteristics as in the output-feedback case can be achieved, while observer and

state-feedback gains can be synthesized sequentially via projection or a linearizing

change of variables each at the cost of approximately the analysis problem (2.67)

instead of the two projected LMIs. This can—in some sense—alleviate the relatively

high complexity of the gridding approach.

2.3.4 Polytopic Synthesis

If the system Pσρ as defined in (2.113) admits an affine/polytopic LPV representa-

tion Pνθ with

Pθ
(
θ(t)

)
=



A
(
θ(t)

)
Bp

(
θ(t)

)
Bu

Cp

(
θ(t)

)
Dpp Dpu

Cy Dyp 0




and the parameter-dependence of the Lyapunov variables R
(
θ
)

and S
(
θ
)

is

dropped at the expense of conservatism, the existence conditions (2.122)–(2.124)

can be solved in the vertices θv,l, l ∈ {1, . . . ,nv} of the convex hull conv (θ) that in-

cludes the parameter set θ [6]. If the conditions are solved on the hyperbox hyp (θ),

one has nv = 2nθ .

If R
(
θ
)

and S
(
θ
)

are chosen to depend affinely on the parameters θ, a multi-

convexity approach [42] can be used to introduce additional constraints

∂2

∂θ2i
LR
(
θ,ν
)
< 0,

∂2

∂θ2i
LS
(
θ,ν
)
4 0, i ∈ {1, . . . ,nθ} . (2.135)

These conditions allow to still solve the inequalities on a finite set of vertices [42]. If

the performance channel, or more specifically matrices Bp

(
θ(t)

)
and Cp

(
θ(t)

)
are

parameter-independent, the multi-convexity constraints can be reduced to

∂2

∂θ2i

(
∂R
(
θ,ν
)
+ R
(
θ
)
A
(
θ
)
+A⊤

(
θ
)
R
(
θ
))

< 0, i ∈ {1, . . . ,nθ} ,

−
∂2

∂θ2i

(
∂S
(
θ,ν
)
+ S
(
θ
)
A⊤
(
θ
)
+A

(
θ
)
S
(
θ
))

4 0, i ∈ {1, . . . ,nθ} .

Matrix inequalities (2.122)–(2.123) will be affine in ν and assuming that nν 6 nθ
of the parameters have a non-zero rate of change and/or are considered in the

parameter-dependent Lyapunov function (PDLF), the number of vertices increases

to nv = 2nθ+nν .

The controller is computed online as a weighted sum of the vertex controllers,

which may be obtained explicitly. So-called overbounding may occur, i. e., guaran-

tees are provided for portions of the scheduling signal range, that are not physically
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admissible. In many applications, the parameter polytope can be optimized to ei-

ther cover the parameter set more closely and/or use less vertices than incurred by

naively considering a hyperbox.

2.3.5 Multiplier-Based Synthesis

By means of the FBSP and a quadratic Ansatz for PDLFs, the controller existence

conditions of Thm. 2.13 can be formulated as a convex optimization problem as

follows.

Theorem 2.15 (Controller Existence Conditions, PDLF [163])

Under Ass. (A2.1)–(A2.6), there exists a controller K
η
δ given by Eqs. (2.127)–(2.132) that

renders the closed-loop system T
η
δ as defined in (2.20) asymptotically stable over δ × η

with an induced L2-norm from w → z bounded from above by γ > 0, if there exist

M ∈ S
(nRp∆

+nRq∆
), N ∈ S

(nSp∆
+nSq∆

), P ∈ S
(nRSp∆

+nRSq∆
) and for quadratic functions

R
(
δ
)
= QR

(
δ
)⊤
RQR

(
δ
)
∈ C1(δ, S

nx), R
(
δ
)
≻ 0 ∀δ ∈ δ,

S
(
δ
)
= QS

(
δ
)⊤
SQS

(
δ
)
∈ C1(δ, S

nx), S
(
δ
)
≻ 0 ∀δ ∈ δ,

with

QR
(
δ
)
= ∆R

(
δ
)
⋆

[
QR,11 QR,12

QR,21 QR,22

]
∈ C1(δ, R

nR×nx)

QS
(
δ
)
= ∆S

(
δ
)
⋆

[
QS,11 QS,12

QS,21 QS,22

]
∈ C1(δ, R

nS×nx)

there exist R ∈ SnR , S ∈ SnS and γ > 0 that satisfy

LR,M =

[
•
•

]⊤



M

0 R

R 0

Γ






BR,11 BR,12

I 0

BR,21 BR,22


≺ 0, (2.136)

LS,N =

[
•
•

]⊤



N

0 S

S 0

Γ−1






I 0

BS,11 BS,12

BS,21 BS,22


≻ 0, (2.137)

LRS,P =

[
•
•

]⊤




P

R 0

0 S

0 I

I 0






BRS,11 BRS,12

I 0

BRS,21 BRS,22


< 0, (2.138)
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and

LM
(
δ,η
)
=

[
•
•

]⊤
M

[
I

∆BR
(
δ,η
)
]
≻ 0, ∀ (δ,η) ∈ (δ×η) (2.139)

LN
(
δ,η
)
=

[
•
•

]⊤
N

[
∆BS

(
δ,η
)

I

]
≺ 0, ∀ (δ,η) ∈ (δ× η) (2.140)

LP
(
δ
)
=

[
•
•

]⊤
P

[
I

∆BRS
(
δ
)
]
≺ 0, ∀δ ∈ δ (2.141)

where the definitions of the outer factors is given in full detail in Sect. B.3 in the appendix.

Proof: The proof follows from application of the FBSP on the conditions of

Thm. 2.13 [163].

The somewhat complicated formulae for the matrix inequalities in Thm. 2.15

allow to prove the existence of a gain-scheduled controller via the parameter-

independent matrix inequalities (2.136)–(2.138) and the multiplier conditions (2.139)

and (5.13) that are now only quadratic in the parameters. Before detailing how to

solve these parameter-dependent matrix inequalities efficiently, simplified condi-

tions for the case, when only some of the parameters are treated via an LFR and

multiplier techniques are presented, while the Lyapunov variables are dependent

on general parameters. The following result follows from first applying the FBSP

on the PDBRL with respect to parameters pulled out in an LFT interconnection and

the subsequent application of the Parameter Elimination Lemma A.8.

Theorem 2.16 (Controller Existence Conditions, PDLF [161])

Under Ass. (A2.1)–(A2.4), there exists a controller Kσρ that renders the closed-loop sys-

tem Tσρ as defined in (2.7) in mixed general/LFT-LPV form as given in (2.24) asymptot-

ically stable over ρ× σ with an induced L2-norm from w → z bounded from above by

γ > 0, if there exist R
(
ρ
)
∈ C1(ρ, Snx), S

(
ρ
)
∈ C1(ρ, Snx) with R

(
ρ
)
≻ 0, S

(
ρ
)
≻ 0 and

M ∈ S
(nPq∆

+nPp∆
), N ∈ S

(nPq∆
+nPp∆

) that satisfy

LR,M

(
ρ,σ
)
=N⊤R,M

(
ρ
)
[
•
•

]⊤



M

∂R
(
ρ,σ
)
R
(
ρ
)

R
(
ρ
)

0

Γ


 (2.142)

×



GR,11

(
ρ
)
GR,12

(
ρ
)

I 0

GR,21

(
ρ
)
GR,22

(
ρ
)


NR,M

(
ρ
)
≺ 0, ∀ (ρ,σ)

∈ (ρ×σ)
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LS,N

(
ρ,σ
)
=N⊤S,N

(
ρ
)
[
•
•

]⊤



N

0 S
(
ρ
)

S
(
ρ
)
∂S
(
ρ,σ
)

Γ−1


 (2.143)

×




I 0

GS,11

(
ρ
)
GS,12

(
ρ
)

GS,21

(
ρ
)
GS,22

(
ρ
)


NS,N

(
ρ
)
≻ 0, ∀ (ρ,σ)

∈ (ρ×σ)

LRS
(
ρ
)
=

[
R
(
ρ
)

I

I S
(
ρ
)
]
≻0, ∀ρ ∈ ρ, (2.144)

LM
(
δ
)
=

[
•
•

]⊤
M

[
I

∆P
(
δ
)
]
≻ 0, ∀δ ∈ δ (2.145)

LN
(
δ
)
=

[
•
•

]⊤
N

[
−∆P

⊤(
δ
)

I

]
≺ 0, ∀δ ∈ δ (2.146)

where

NR,M

(
ρ
)
= ker

([
Dy∆

(
ρ
)
Cy
(
ρ
)
Dyp

(
ρ
)])

, (2.147)

NS,N

(
ρ
)
= ker

([
D⊤∆u

(
ρ
)
B⊤u
(
ρ
)
D⊤pu

(
ρ
)])

. (2.148)

and

[
GR,11

(
ρ
)
GR,12

(
ρ
)

GR,21

(
ρ
)
GR,22

(
ρ
)
]
=




D∆∆
(
ρ
)
C∆
(
ρ
)
D∆p

(
ρ
)

0 I 0

B∆
(
ρ
)

A
(
ρ
)
Bp

(
ρ
)

0 0 I

Dp∆

(
ρ
)
Cp

(
ρ
)
Dpp

(
ρ
)




(2.149)

[
GS,11

(
ρ
)
GS,12

(
ρ
)

GS,21

(
ρ
)
GS,22

(
ρ
)
]
=




−D⊤∆∆
(
ρ
)

−B⊤∆
(
ρ
)
−D⊤p∆

(
ρ
)

−C⊤∆
(
ρ
)

−A⊤
(
ρ
)
−C⊤p

(
ρ
)

0 I 0

−D⊤∆p

(
ρ
)

−B⊤p
(
ρ
)
−D⊤pp

(
ρ
)

0 0 I




(2.150)

Proof: The proof follows from application of the Parameter Elimination

Lemma A.8 on page 321 on the conditions of Thm. 2.9 and its dual [161].

The result of Thm. 2.16 is easily specialized to the fully PiDLF case [125] and

is presented for completeness. Instead of Ass. (A2.5) a milder assumption can be

used on the LFT-LPV plant representation:

(A2.9) There is no direct feedthrough in the control channel, i. e.,

Dyu = 0.
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Theorem 2.17 (Controller Existence Conditions, PiDLF [124, 125])

Under Ass. (A2.9), there exists a controller Kδ that renders the closed-loop system Tδ as de-

fined in (2.15) asymptotically stable over δ with an induced L2-norm from w→ z bounded

from above by γ > 0, if there exist R,S ∈ Snx with R ≻ 0, S ≻ 0 and M ∈ S
(nPq∆

+nPp∆
),

N ∈ S
(nPq∆

+nPp∆
) that satisfy

LR,M = N⊤R

[
•
•

]⊤



M

0 R

R 0

Γ






GR,11 GR,12

I 0

GR,21 GR,22


NR≺ 0, (2.151)

LS,N = N⊤S

[
•
•

]⊤



N

0 S

S 0

Γ−1







I 0

GS,11 GS,12

GS,21 GS,22


NR≻ 0, (2.152)

LR,S =

[
R 0

0 S

]
< 0, (2.153)

and

LM
(
δ
)
=

[
•
•

]⊤
M

[
I

∆P

]
≻ 0, ∀δ ∈ δ (2.154)

LN
(
δ
)
=

[
•
•

]⊤
N

[
−∆P

⊤

I

]
≺ 0, ∀δ ∈ δ (2.155)

where

NR = ker
([
Dy∆ Cy Dyp

])
, NS = ker

([
D⊤∆u B

⊤
u D

⊤
pu

])
.

and GR,ij, GS,ij, i, j ∈ {1, 2} from (B.6) and (B.8).

Proof: The proof follows from application of the Parameter Elimination

Lemma A.8 on page 321 on the conditions of Thm. 2.11 and its dual Thm. 2.12

[125].

The resemblance of the conditions of Thm. 2.17 with the conditions of Thm. 2.15

for the special case that PiDLFs are used is striking. However, note that due to the

fact that the Parameter Elimination Lemma A.8 and FBSP are applied in reversed

order as compared to Thm. 2.15, the elimination of the controller is performed via

parameter-independent kernel matrices. Consequently, an even larger reduction in

the size of the multiplier conditions is achieved than when considering PiDLFs in

Thm. 2.15. A further advantage resides in the fact that from the multipliers M and

N as well as from the Lyapunov variables R and S, the closed-loop multiplier M

and Lyapunov matrix X can be reconstructed by algebraic manipulations. Under

the constraint that FBM are chosen, these algebraic reconstructions allow to find a
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parameter block ∆K
(
δ
)

that renders the multiplier condition in Thm. 2.11 fulfilled,

while the controller matrices can be obtained by solving matrix inequality (2.87).

After a Schur complement this boils down to an LMI in the controller variables.

2.3.5.1 Controller Construction in the PDLF Case

Since Thm. 2.15 simply results from the application of the FBSP to the projected

PDBRL of Thm. 2.13, the closed-form formulae (2.127)–(2.132) apply directly.

2.3.5.2 Controller Construction in the mixed PDLF/PiDLF Case

The controller construction in the mixed gridding/multiplier-based synthesis

framework presented in Thm. 2.16 [161] consequently requires a mixture of the

techniques for the algebraic reconstruction of the closed-loop multiplier M and the

construction of the controller’s parameter block ∆K
(
∆P
)

with the algebraic compu-

tation of controller variables. The result of a special case from [161] is highlighted

here, which provides the additional important result that an LFT-LPV controller

can always be chosen to depend affinely on its parameter block, if the generalized

plant has affine dependence on the parameter block, as well. The explicit result can

be found in App. B.4 on p. 330.

The details of the algebraic reconstruction of the closed-loop multiplier M do not

differ from the fully PiDLF case and are presented in the subsequent section.

2.3.5.3 Controller Construction in the PiDLF Case

Formulae (2.127)–(2.132) simplify considerably for PiDLFs and can be completely

devoid of matrix inverses if the matrices Dpu

(
ρ
)

and Dyp

(
ρ
)

related to the perfor-

mance channel are parameter-independent. A symbolic preprocessing might there-

fore yield controller formulae that are inexpensive to evaluate in each instant.

However, it may be often desirable to impose further optimization criteria on con-

troller variables, such as minimizing the spectral radius of the matrix AK in an LFR.

Obtaining an explicit LFR of the controller by solving matrix inequality (2.87) for

the controller variables therefore provides means for systematic implementation

and further optimization within the limits of the existence guarantees. In order

to do so, the closed-loop Lyapunov matrix X and multiplier M need to be recon-

structed.

Reconstruction of the Closed-Loop Lyapunov Matrix

From the relation of the Lyapunov variables R and S to the closed-loop Lyapunov

matrix X and its inverse Y

X =

[
R •
• •

]
, X−1 = Y =

[
S •
• •

]
,
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the closed-loop Lyapunov matrix is reconstructed as

X =

[
R Z

Z⊤
(
Z⊤(R− S−1)Z

)−1

]
≻ 0, (2.156)

where the columns of Z form an orthogonal basis of im(R− S−1) [125]. In fact, any

non-singular matrix Z would be valid, but experience suggests better numerical

behaviour with an orthogonal matrix. Since from (2.153) and by a Schur Comple-

ment argument (R− S−1) ≻ 0, one can observe that from Lma. A.1 on page 315, the
(1, 1)-block of X−1 is indeed

(
R−ZZ⊤(R− S−1)ZZ⊤

)−1
= S.

Reconstruction of the Closed-Loop Multiplier

Quite analogously to the reconstruction of the closed-loop Lyapunov matrix, the

closed-loop multiplier has to be obtained. However, instead of a simple positive-

definiteness requirement, the closed-loop multiplier has to fulfill a closed-loop

quadratic matrix inequality, which contains a further unknown—the controller’s

parameter block that implements the actual scheduling policy. In the following, it

is detailed how this policy is influenced by closed-loop multiplier reconstruction,

which in turn is influenced by structural constraints imposed during the solution

of the existence conditions.

Lemma 2.4 (Reconstruction of the Closed-Loop Multiplier)

Let the elements of M and N satisfy the existence conditions (2.151), (2.152) and (2.154),

as well as the inertia hypotheses associated with FBM

M11 ≻ 0, M22 ≺ 0, N11 ≺ 0, N22 ≻ 0,

Then, a reconstruction of the closed-loop multiplier

M =

[
M11 M12

M⊤12 M22

]
= N−1 =

[
N11 N12

N⊤12 N22

]−1
(2.157)

that satisfies

[
•
•

]∗
M




I

I

∆P
(
δ
)

∆K
(
δ
)


 ≻ 0, ∀δ ∈ δ, (2.158)

for a suitable choice of ∆K
(
δ
)

is given by

M = Ψ

[
I

T⊤

][
M I

I
(
M−N−1

)−1

][
I

T

]
Ψ, (2.159)
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where T is a suitable non-singular matrix and

Ψ =




In∆ 0 0 0

0 0 In∆ 0

0 In∆ 0 0

0 0 0 In∆


 .

Proof: Observe that

ΨMΨ =

[
M •
• •

]
, ΨNΨ =

[
N •
• •

]
,

s. t. any extension

ΨNΨ = (ΨMΨ)−1 =

([
I

T⊤

][
M I

I
(
M−N−1

)−1

][
I

T

])−1

using a non-singular matrix T fulfills the duality constraints. The proof of the exis-

tence of a suitable parameter block of the controller ∆K
(
δ
)

associated with a suitable

matrix T is provided by the following lemmas.

Lemma 2.5 (Parameter Block Construction, FBM [E21, 124])

Under the hypotheses of Lma. 2.4, the selection of T =
[
T1 T2

]
, s. t. T1 and T2 satisfy

T⊤1

((
M−N−1

)−1
−

[
0 0

0 M−1
22

])
T1 ≺ 0, (2.160)

T⊤2

((
M−N−1

)−1
−

[
M−1
11 0

0 0

])
T2 ≻ 0, (2.161)

permits the choice for the controller’s parameter block

∆K
(
δ
)
= −W22 +

[
W21 V

⊤
12

][
U11 W⊤11 +∆

P⊤

W11 +∆
P V11

]−1[
U12

W12

]
, (2.162)

where

M11 −M12M
−1
22M

⊤
12
△
= U =

[
U11 U12

U⊤12 U22

]
≻ 0,

−M−1
22

△
= V =

[
V11 V12

V⊤12 V22

]
≻ 0,

M−1
22M

⊤
12
△
= W =

[
W11 W12

W21 W22

]
.
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Proof: The proof is given in App. B.5 on p. 332, providing some additional insight

over the one shown in [124].

The inertia hypotheses guarantee the existence of an explicit formula for the pa-

rameter block ∆K
(
δ
)

as opposed to the more general controller scheduling policy

presented in [125]. This is therefore regarded the practically valid approach [142,

143]. In constrast, in the face of relaxed inertia hypotheses resulting from condi-

tions proposed in Lma. 2.2, the controller’s scheduling function is formulated as

an orthogonal projector onto some potentially varying eigenspace, which may be

difficult to compute online. This indicates that the particular choice of the con-

troller’s parameter block (2.162) is by no means unique. An even more general

representation, albeit involving more complex computations, is presented in [143].

The controller’s parameter block presented in Lma. 2.5 (an LFR) requires comput-

ing an inverse online, which consumes additional processing power. Hence, simpler

choices of parameter blocks may be desired. The following lemma provides condi-

tions that make the choice ∆K
(
δ
)
= ∆P

(
δ
)

admissible.

Lemma 2.6 (Parameter Block Copy [74])

Under the hypotheses of Lma. 2.4 and the additional conditions
[
M11 I

I N11

]
≻ 0,

[
M22 I

I N22

]
≺ 0, (2.163)

[
•
•

]⊤(
M−N−1

)[
I

∆P
(
δ
)
]
≻ 0, ∀δ ∈ δ, (2.164)

the selection T =M−N−1 permits the choice for the controller’s parameter block

∆K
(
δ
)
= ∆P

(
δ
)

(2.165)

Proof: The proof is given in App. B.6 on p. 334.

It is evident from the proof that the crucial condition to satisfy is indeed (2.164),

which is non-trivial since it involves the inverse of N. However, it can be shown

that D/G-S constraints together with the coupling conditions (2.163) guarantee the

satisfaction of (2.164) [74] as shown in the next corollary.

Corollary 2.3 (D/G-S Constraints [74, 130])

If the multipliers M and N satisfying Conds. (2.151), (2.152), (2.154) and (2.155) are

coupled as in Cond. (2.163) and, in addition, satisfy the structural constraints

M ∈MD/G

(
∆
)
, N ∈ ND/G

(
∆
)
,

Condition (2.164) holds and the choice ∆K
(
δ
)
= ∆P

(
δ
)

is admissible, if ‖∆P‖ < 1.
Proof: Observe that the coupling conditions (2.163) imply the inertia hypotheses

M11 ≻ 0, M22 ≺ 0, N11 ≺ 0, N22 ≻ 0,
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as well as M11 − Ñ11 ≻ 0. It is easy to show that the structural constraints imposed

on N imply that N−1 inherits these structural constraints as well [E21]. Expand

Cond. (2.164) to obtain

M11 − Ñ11 +∆
P∗∆P

(
M22 − Ñ22

)
≻ 0. (2.166)

From the D/G-S constraints, one indeed has

M22 − Ñ22 = −
(
M11 − Ñ11

)
,

which renders (2.166) satisfied for all ∆P with ‖∆P‖ < 1.

Corollary 2.4 (Shifted D/G-S Constraints)

Assume a diagonal parameter block of the form

∆P
(
δ
)
=

nδ
diag
i=1

(
δiIrδ,i

)
∈ C0(Rnδ , R

n∆×n∆), (2.167)

and bounds on the parameter values δi ∈
[
δi, δi

]
, with

δi = min
t>0

δi(t), δi = max
t>0

δi(t), ∀i ∈ {1, . . . ,nδ} .

Then the multipliers M and N satisfy Conds. (2.152), (2.154) and (2.164) admitting the

choice ∆K
(
δ
)
= ∆P

(
δ
)
, if they are coupled as in Cond. (2.163) and, in addition, are chosen

as

M ∈ M̂D/G(∆), N ∈ N̂D/G(∆),

Proof: First note that

N−1 =




nδ
diag
i=1

(
S
(i)
11 Ñ

(i)
11

) nδ
diag
i=1

(
S
(i)
12 Ñ

(i)
11 + Ñ

(i)
12

)

nδ
diag
i=1

(
S
(i)
12 Ñ

(i)
11 − Ñ

(i)
12

) nδ
diag
i=1

(
S
(i)
22 Ñ

(i)
11

)


 .

Consequently, the same line of argumentation as in Cor. 2.3 applies with the addi-

tion of scalings and a constant term as in the proof of Lma. 2.3.

Summary: Full-Block Multipliers vs. D/G-scalings

In LFT-LPV controller synthesis with PiDLFs as per [125], FBMs and D/G-S con-

straints are alternatives, between which the control engineer may choose according

to the requirements on the control system design. For complex LPV systems, FBMs

may be prohibitively complex in terms of synthesis and implementation complex-

ity, even though they may strongly decrease the incurred conservatism. Tab. 2.1

compares advantages and disadvantages with respect to the two choices.
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Table 2.1: Comparison of LFT-LPV-based FBM and D/G-S-based synthesis with PiDLFs

based on the methods published in [125].

D/G-S

P

K

∆P

∆P

w z

q∆ p∆

qK∆ pK∆

yu

T
η
δ

FBMs

P

K

∆P

∆K
(
∆P
)

w z

q∆ p∆

qK∆ pK∆

yu

T
η
δ

Controller parameter block

can be copied from plant.

Controller parameter block

is an LFT in terms of the

plant’s parameter block.

Low synthesis complexity as

multiplier vertex conditions

are trivially fulfilled.

Multiplier conditions need

to be evaluated in vertices of

matrix polytopes, the

number of which increases

exponentially with the

number of parameters.

Conservative in general. Reduced conservatism.

Rendered overly

conservative for full

parameter blocks due to

commutativity requirements.

Only really suitable for

diagonal parameter blocks.

Can handle full and

non-square parameter

blocks.



Part I

L I N E A R PA R A M E T E R - VA RY I N G C O N T R O L O F

C O M P L E X L U M P E D S Y S T E M S

The application of the linear parameter-varying (LPV) modeling and

controller synthesis methodology to complex lumped plants, i. e., non-

distributed systems that result in intricate mathematical representations,

is a challenging task. The first part of this thesis introduces methods

that facilitate the derivation of low complexity LPV representations in

a compact modeling framework and their subsequent exploitation in

tractable synthesis algorithms.





3
L I N E A R PA R A M E T E R - VA RY I N G C O N T R O L — A S U RV E Y O F

C O M P L E X I T Y A N D A P P L I C AT I O N S

≪Examine the contents,

not the bottle.≫

The Talmud

T
his chapter aims at investigating ≪complexity≫ induced by the LPV con-

troller synthesis methods reviewed in Chap. 2. For this purpose, in Sect. 3.1

quantities are proposed from which the intricacy of a particular controller

synthesis algorithm and the subsequent online controller implementation can be

assessed. The result is a tool set consisting of formulae compiled in comprehensive

tables that allow the a priori assessment of

(i) implementation complexity in terms of the required number of arithmetic

operations in each sampling instant and the number of scalar variables to be

stored,

(ii) synthesis complexity in terms of the number of decision variables and the

total size of the linear matrix inequality (LMI) to be solved.

The quantities can be evaluated once an LPV model of the desired type is avail-

able and the associated synthesis method is decided upon.

In Sect. 3.2, the chapter continues to survey literature reporting experimental or

high-fidelity simulation-based validations of LPV control schemes and investigates

the complexity of the respective problems. The survey is an empirical and quan-

titative statement that reflects open questions in the design of LPV controllers for

complex plants.
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3.1 Complexity in Linear Parameter-Varying Control

T
he choice of the modeling framework and associated synthesis techniques affect

both the complexities encountered during implementation and synthesis. In

this section the involved complexity is analyzed, in order to generate numerical

indicators for benefits and drawbacks of the individual approaches a priori. In the

following, results from a thorough investigation of LPV controller synthesis and

implementation complexity, conducted in [58], are presented.

For the sake of simplicity, signal and parameter values are assumed to range

inside a hyperbox, which in most cases will mark an upper bound on the complex-

ity. Furthermore, the discussion is restricted for the most part to the synthesis and

implementation of state space output-feedback LPV controllers (2.115) of full order

(nKx = nx).

Four types of complexities are considered: The number of arithmetic operations

to compute a value A, which at some point is referenced to be computed by a

certain formula A = f(x), is denoted a[A]. The multiplications, additions, divisons,

etc., involved are assumed clear from the context by the explicit formula f(x).

Similarly, the number of scalar values required to store the variables, from which

A can be computed, is denoted by m[A] and acts as a measure for memory require-

ments. Furthermore, the size of an LMI L ≺ 0, or L ≻ 0, is written as s[L] and is

provided only in terms of one dimension, since LMIs are symmetric and square.

The associated number of decision variables is given by d[L]. If, e. g., L solely con-

tains the matrix variables X, Y, one may also write d[L] = d[X] + d[Y].

The notational shortcut

mabcd
△
= na +nb +nc +nd

is used, with

a,b, c,d ∈ {x,u,y,w, z,∆, {}, . . .} ,

s. t., e. g., mxu = nx +nu or mxw∆Pu = nx +nw +nP∆ +nu.

Both the computational costs and memory requirements of elementary matrix

operations are listed in Tabs. A.1 and A.2. These provide the basis of the following

complexity assessment and will be frequently used without further reference.

Preliminary results of this section have been previously published in [58]. Several mistakes are corrected and

non-square parameter blocks are considered.
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3.1.1 Implementation Complexity

3.1.1.1 General Complexity

Updating the states and calculating the outputs is assumed to consume the same

amount of arithmetic operations for each output-feedback-based method, which

amounts to

a

[
[ẋK⊤,u⊤]⊤

]
6 (nx +nu) (2(nx +ny) − 1) (3.1)

arithmetic operations once the state space matrices of the controller at a particular

time instant are available. In contrast, a state-feedback controller requires

a[u] 6 nu(2nx − 1). (3.2)

once the state-feedback gain matrix F
(
ρ
)
, as from (2.127) has been computed.

If the projection approach considered in Thm. 2.13 is applied, formulae (2.127)–

(2.132) have to be used for the implementation of parameter-dependent Lyapunov

function (PDLF)-based controllers, independent of the LPV framework (polytopic,

linear fractional transformation (LFT)-based, gridding) considered. The reason

for this resides in the fact that the construction of the closed-loop Lyapunov

matrix X
(
ρ
)
—even if carried out symbolically—results in a rational parameter-

dependence and a convex search for the controller variables is only possible by

again solving a gridded LMI problem based on Thm. (2.6).

The case where the controller depends on rates of change is considered prac-

tically undesirable and therefore the analysis is restricted to Eqs. (2.127)–(2.132)

when the Lyapunov variable S is chosen parameter-independent, whereas R
(
ρ
)

may be chosen parameter-dependent. A straightforward factorization is then

M
(
ρ
)
= I− S

(
ρ
)
R
(
ρ
)

and N⊤
(
ρ
)
= I. The opposite choice results in similar com-

plexity. Computing the resulting formulae then amounts to

a
[
Kρ
(
ρ
)]

6 a
[
Pρ
(
ρ
)]

+ a
[
F
(
ρ
)]

+ a
[
L
(
ρ
)]

+ a
[
M
(
ρ
)]

+ a

[
AK
(
ρ
)]

+ a

[
BKy
(
ρ
)]

+ a

[
CKu
(
ρ
)]

.

For implementation, the generalized plant model matrices in (2.113) are required

and it is assumed that their evaluation can be performed efficiently enough, such

that the cost in arithmetic operations is negligible. The actual memory and evalu-

ation costs then depend on the parameterization of R
(
ρ
)
. For the remainder, the

intuitive heuristic choice for the Lyapunov function basis is chosen that aims at re-

flecting the parameter-dependency of the plant. Therefore a
[
R
(
ρ
)]

will depend on

the framework, the plant is modeled in. Once R
(
ρ
)

is constructed online, however,

its inversion requires

a

[
M−⊤(ρ

)]
≈ a

[
R−1

(
ρ
)]

6
2/3n

3
x
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operations. Note that this complexity is absorbed in a
[
F
(
ρ
)]

. Furthermore, one has

a
[
M
(
ρ
)]

6 nx + 2n
3
x. In the following enumeration of complexities care has been

taken to maintain an economic sequence of operations, s. t., e. g., the inversion of

M
(
ρ
)

is considered in a
[
AK
(
ρ
)]

, but not in a
[
CKu
(
ρ
)]

, as an efficient implementation

will store the result of the inversion for multiple uses.

a
[
F
(
ρ
)]
6 2n2unz+

2/3(n
3
u +n

3
x)+nu(2nx−1)nx

+2nunx+nu(2nz−1)nx+nu(2nu−1)nx

a
[
L
(
ρ
)]
6 2n2xny+nx(2nw−1)ny+nxny+2n

2
ynw+

2/3n
3
y

a

[
AK
(
ρ
)]

6 7n2x+nxnw+nxnz+nx(2ny−1)(nx +nw)

+(nx +nz)(2nu−1)nx+nx(2nx−1)(5nx +nz)

+n2x(2nw−1)+
2/3n

3
x

a

[
BKy
(
ρ
)]

6 nx(2nx−1)nu

a

[
CKu
(
ρ
)]

6 nx(2nx−1)(ny +nx)

In addition to evaluating the Lyapunov variable online, which costs a
[
R
(
ρ
)]

, this

results in a total number of arithmetic operations to evaluate the controller’s state

space matrices from (2.127)–(2.132)

a
[
Kρ
(
ρ
)]

6
46/3n

3
x + (6muy + 2mwz − 2)n

2
x

+ (nw +muz(2nu − 1) + 2nunz −muyw + 4nynw + 1)nx

+ 2nzn
2
u + 2nwn

2
y +

2/3n
3
u +

2/3n
3
y. (3.3)

In many cases the performance channel related matrices will be parameter-

independent. If in addition, Cy
(
ρ
)

is also parameter-independent, L
(
ρ
)
∈ Rnx×ny

can be computed offline and the number of required computational steps is re-

duced. The same applies to the alternative practical case, where R
(
ρ
)

instead of

S
(
ρ
)

is chosen constant and performance channel and input matrices are parameter-

independent.

The memory requirements to store the plant matrices of general dependency on

the scheduling signals are approximated by (Dpp = 0,Dyu = 0)

m
[
Pρ
(
ρ
)]
≈ (nx+nz+ny)(nx+nw+nu)−nznw−nynu.

Furthermore, m[S] = m
[
S−1
]
= nx(nx + 1)/2. For the remainder, the memory re-

quirement m[γ] will be neglected. Thus the total required scalar variables to be

stored amount to

m
[
Kρ
(
ρ
)]
≈ m

[
Pρ
(
ρ
)]

+ 2m[S] +m
[
R
(
ρ
)]

≈ nx(nx + 1) +(nx+nz+ny)(nx+nw+nu)

−nznw −nynu +m
[
R
(
ρ
)]
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A particularly efficient implementation can be performed for state-

feedback LPV controllers. It is possible to evaluate the state-feedback gain

F
(
ρ
)
= −

(
γB⊤u

(
ρ
)
R
(
ρ
)−1

+Cp

(
ρ
))

by

a
[
F
(
ρ
)]

6 a
[
R
(
ρ
)]

+ 2/3n
3
x +nu(2nx − 1)nx +nunx.

Here, only two plant matrices and a single inversion need to be calculated, which

makes up the main computational load [E85].

3.1.1.2 Polytopic LPV Controllers

Parameter-Independent Lyapunov Functions

Polytopic LPV controllers synthesized based on parameter-independent Lyapunov

functions (PiDLFs) can be implemented by the interpolation of the state space ma-

trices of the linear time-invariant (LTI) vertex controllers. Therefore, one has:

Kθ
(
θ
)
=

[
AK
(
ρ
)
BKy
(
ρ
)

CKu
(
ρ
)
DKuy

(
ρ
)
]
=

nv∑

l=1

αlKθ
(
θv,l

)
. (3.4)

The associated number of arithmetic operations is

a
[
Kθ
(
θ
)]

6 (2nθ+1 − 1)(nx +nu)(nx +ny), (3.5)

which results from scaling each of the nv = 2nθ vertex controllers by the respective

αl and then calculating the controller as a weighted sum by 2nθ −1matrix additions.

In addition, the algorithm given in [158] to compute the barycentric coordinates α

from the affine parameters θ requires approximately

a[α] 6 nva[αl] = nv

(
O(n3θ) +n

2
θ +nθ − 1

)
.

When the parameters range in a hyperbox, the computation of the involved deter-

minants is always one, which yields

a[α] 6 2nθ
(
n2θ +nθ − 1

)
.

In contrast, the Matlab implementation of the command polydec requires

a[α]6

nθ∑

i=1

(a[ti] + a[ci])

= 3nθ + 2
1− 2nθ+1

1− 2
= 2nθ+2 + 3nθ − 2,

with a[ti] = 3, a[ci] = 2
i+1 and using the geometric series

∑n
i=0 a

i = 1−an+1

1−a . Note

that this is only valid for parameters ranging in a hyperbox, but also that it is

always less costly than the algorithm proposed by [158].
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Storing the controller matrices in the nv = 2nθ vertices requires

m
[
Kθ
(
θ
)]
≈ 2nθ(nx +nu)(nx +ny). (3.6)

If either an offline preprocessing can be applied, which converts the convex coordi-

nates back into the affine LPV parameter coordinates, or the synthesis for an affine

LPV plant is carried out using multiplier-based LFT methods with additional con-

straints, [E21, E45, 57, E46], the exponential growth can be reduced to linear growth

and barycentric coordinates need no longer be computed online:

a
[
Kθ
(
θ
)]

6 2nθ(nx +nu)(nx +ny),

m
[
Kθ
(
θ
)]
≈ (nθ + 1)(nx +nu)(nx +ny).

In the subsequent summary, it will be assumed that the implementation of affine

controllers is carried out in this more efficient way.

Parameter-Dependent Lyapunov Functions

Using PDLFs in conjunction with the multi-convexity approach results in a con-

troller which is no longer affine in the parameters θ, but rational. Therefore, the

explicit formulae (2.127)–(2.132) have to be used, the complexity of which has al-

ready been discussed. Assuming the Lyapunov matrix has been parameterized as

R
(
ρ
)
= R+

s∑

i=r

θi
(
ρ
)
Ri, nRθ = s− r. (3.7)

its online construction requires

a
[
R
(
ρ
)]

6 2nRθn
2
x, m

[
R
(
ρ
)]
≈ 1/2

(
nRδ + 1

)
nx(nx + 1)

operations and stored scalars, respectively.

3.1.1.3 LFT-Based LPV Controllers

Parameter-Independent Lyapunov Functions

The computation of LFT-based controllers is of polynomial order:

a
[
Kδ
(
δ
)]

6 nKq∆

(
2nKp∆−1

)
(nx +ny)+2n

K
q∆

(nx +ny)(nx +nu)

. . .+a

[
ΨK
(
δ
)]
+a

[
∆K
(
δ
)]

, (3.8)

where ΨK
(
δ
)
= ∆K

(
δ
)
(I−DK∆∆∆

K
(
δ
)
)−1, ∆K

(
δ
)
∈ R

nKq∆
×nKp∆ . For the computation

of ΨK
(
δ
)
, note that due to the ≪push-through rule≫, it follows that

ΨK
(
δ
)
= ∆K

(
δ
)
(I−DK∆∆∆

K
(
δ
)
)−1 = (I−∆K

(
δ
)
DK∆∆)

−1∆K
(
δ
)
,
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which allows to choose the size of the matrix of which an inverse is to be com-

puted between nKp∆ × n
K
p∆

and nKq∆ × n
K
q∆

. For non-square parameter blocks, this

can significantly reduce the computational burden. Accordingly, one has

a

[
ΨK
(
δ
)]

6






nK
2

p∆

(
2nKq∆−1

)
+nKp∆

(
2/3n

K2
p∆

+1
)

+nKq∆n
K
p∆

(
2nKp∆−1

)
,nKq∆ > nKp∆

nK
2

q∆

(
2nKp∆−1

)
+nKq∆

(
2/3n

K2
q∆

+1
)

+nKq∆n
K
p∆

(
2nKq∆−1

)
,nKq∆ < n

K
p∆

(3.9)

Note that for PiDLF-based synthesis of LFT-LPV controllers using a full-block S-

Procedure (FBSP) approach, the LFT channel sizes of the controller are usually

inherited from the plant, thus nKq∆ = nPq∆ and nKp∆ = nPp∆ .

Memory requirements amount to

m
[
Kδ
(
δ
)]

6 (nx+n
K
q∆

+nu)(nx+n
K
p∆

+ny)+m

[
∆K
(
δ
)]

. (3.10)

The terms a
[
∆K
(
δ
)]

and m
[
∆K
(
δ
)]

arise due to the scheduling block ∆K
(
δ
)

being

constructed as an LFT based on ∆P
(
δ
)

as detailed in Lma. 2.5 on p. 69 [124]. The

computation of the controller’s parameter block therefore requires

a

[
∆K
(
δ
)]

6 3nPq∆n
P
p∆

+2/3(n
P
q∆

+nPp∆)
3

+(2nPq∆ +nPp∆)
(
2(nPq∆ +nPp∆)−1

)
nPp∆ . (3.11)

Due to the symmetry, the inversion can possibly be performed more efficiently,

which has been neglected here. Taking into account the symmetry of the matri-

ces U11 and V11 from Eq. (2.162) in Lma. 2.5, however, the memory requirements

amount to

m

[
∆K
(
δ
)]

= 7(nPq∆ +nPp∆)
(
(nPq∆ +nPp∆) + 1

)
. (3.12)

As detailed in Lma. 2.3 on p. 49, at the price of increased conservatism the choice

∆K = ∆P can be made admissible [E21] by additional constraints on multipliers.

Neglecting the cost of evaluating ∆P, both memory requirements and arithmetic

operations are then negligible.

Parameter-Dependent Lyapunov Functions

In the case of PDLFs and LFT-based synthesis methods, the Lyapunov variable can

be parameterized in a multitude of ways and an affine parameterization is most

likely not the best choice. Therefore, consider an ansatz which—in a sense—mimics

the rational parameter-dependence of the plant [66]:

R
(
ρ
)
= Q⊤R

(
δ
)
RQR

(
δ
)

=

[
•
•

]⊤[
R0 R∆
R⊤∆ 0

][
I

∆P
(
δ
) (
I−D∆∆∆

P
(
δ
))−1

C∆

]
, (3.13)
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with R ∈ S
(nx+n

P
q∆

). For controller implementation, evaluating (2.127)–(2.132) is

required and the complexity again follows from (3.3) with

a
[
R
(
ρ
)]

6 nPq∆

(
2nPp∆−1

)
nx+

(
2nPq∆+1

)
n2x+a

[
ΨP
(
δ
)]

,

with a

[
ΨP
(
δ
)]

6 nP
2

p∆

(
2nPq∆−1

)
+nPp∆

(
2/3n

P2

p∆
+1
)

.

Storing the Lyapunov variables requires

m
[
R
(
ρ
)]

= 1/2nx(nx + 1) +
(
nPq∆ +nPp∆

)2
. (3.14)

However, the evaluation of Kδ
(
δ
)

can possibly be performed more efficiently via

first evaluating (2.127)–(2.132) offline symbolically [E69]. It may then be put into

LFT form by tools available in the Control System Toolbox of Matlab or the lin-

ear fractional representation (LFR)-toolbox available from the German Aerospace

Center (DLR) [52]. In this case, it is difficult to predict the size of the parameter

block ∆K
(
δ
)
, which will no longer match the size of the block ∆P

(
δ
)
. Then again

both (3.8) and (3.10) apply, but with nKq∆ 6= n
P
q∆

and nKp∆ 6= n
P
p∆

.

3.1.1.4 Gridding-Based LPV Controllers

Parameter-Independent Lyapunov Functions

Gridding-based LPV controllers can be implemented online by the formu-

lae (2.127)–(2.132). For PiDLFs the computation simplifies drastically, as, e. g., the

factorization problem and many multiplications can be performed offline. However,

as shown in [59], very few experimental results using the gridding technique with

PiDLFs have been reported.

Apart from using the explicit formulae, it is also possible to store precomputed

controllers on some parameter grid, which does not necessarily need to match the

one used to solve the synthesis LMIs. If an evenly spaced grid of ng points per

parameter dimension is assumed, the required memory amounts to

m
[
Kρ
(
ρ
)]

= n
nρ
g (nx +nu)(nx +ny). (3.15)

It is clear that an interpolation for intermediate grid points requires a number of

arithmetic operations in the same order as in the polytopic case:

a
[
Kρ
(
ρ
)]

6 (2nρ+1 − 1)(nx +nu)(nx +ny).

This approach, which resembles the complexity of classical gain-scheduling tech-

niques, can therefore quickly become intractable and control engineers might opt

for switching between controller parameters or the above mentioned closed-form

formulae instead.
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Table 3.1: Implementation complexity of LPV controllers in terms of arithmetic operations

vs. synthesis technique.

Technique Arithmetic operations

PDLF Total In parts

Grid.

a
[
Kρ
(
ρ
)]

− a
[
M−⊤]− a

[
R−1

]
a
[
M−⊤] ≈ a

[
R−1

]
6 2/3n

3
x

a
[
Kρ
(
ρ
)]

+ a
[
R
(
ρ
)]

a
[
R
(
ρ
)]

= 2nRθn
2
x

LFT

FBM a
[
Kδ
(
δ
)]

+ a[Ψ] + a
[
∆K
(
δ
)]

a[Ψ] = nP
2

p∆

(
2nPq∆−1

)
+nPp∆

(
2/3n

P2
p∆

+1
)

D/G-S a
[
Kδ
(
δ
)]

+ a[Ψ] a
[
∆K
(
δ
)]

= 3nPq∆n
P
p∆

+2/3m
3
qP∆p

P
∆

+(2nPq∆ +nPp∆)(2mqP∆p
P
∆
− 1)nPp∆

D/G-S a
[
Kθ
(
θ
)]

a
[
Kδ
(
δ
)]

= nPq∆mxy

(
(2nPp∆−1)+2mxu

)

w/ Θ a
[
Kθ
(
θ
)]

= nPqΘmxu

(
2mxy + 1

)

a
[
Kρ
(
ρ
)]

+ a
[
R
(
δ
)]

a
[
R
(
δ
)]

= nPq∆

(
2nPp∆−1

)
nx+

(
2nPq∆+1

)
n2x

+a[Ψ]

Poly.

Polytopic: a
[
Kθ
(
θ
)]

+ a[α] a[α] = 2nθ+2 + 3nθ − 2

a
[
Kθ
(
θ
)]

= (2nθ+1 − 1)mxumxy

Affine: a
[
Kθ
(
θ
)]

a
[
Kθ
(
θ
)]

= 2nθmxumxy

a
[
Kρ
(
ρ
)]

+ a
[
R
(
θ
)]

a
[
R
(
θ
)]

= 2nRθn
2
x

a
[
Kρ
(
ρ
)]

= 46/3n
3
x + (6muy + 2mwz − 2)n

2
x +
(
nw +muz(2nu − 1) + 2nunz

−muyw + 4nynw + 1
)
nx + 2nzn

2
u + 2nwn

2
y +

2/3n
3
u +

2/3n
3
y

Parameter-Dependent Lyapunov Functions

When a PDLF with affine parameter dependence is used, the LMIs need only be

evaluated at the extrema of the parameter’s rate of variation, since these still enter

the LMIs in an affine way. This amounts to doubling the grid points, but requires

an interpolation at least in terms of the variation in the rate of change.

3.1.1.5 Implementation Complexity — Summary

Tabs. 3.1 and 3.2 summarize LPV controller implementation complexity for the

different synthesis methods by giving an overview of the required number of arith-

metic operations to calculate the controller’s state space system matrix K in its

respective LPV representations and the associated requirements on the memory,

respectively.
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Table 3.2: Implementation complexity of LPV controllers in terms of memory requirements

vs. synthesis technique.

Technique Memory requirements

PDLF Total In parts

Grid.

m
[
Pρ
(
ρ
)]

+ 4m[R] +m
[
M−⊤] m[R] = 1/2nx(nx + 1)

m
[
M−⊤] = n2x

m
[
Pρ
(
ρ
)]

+m
[
R
(
ρ
)]

+ 2m[S] m
[
R
(
ρ
)]

= 1/2nx(nx + 1)(n
R
θ + 1)

m[S] = 1/2nx(nx + 1)

LFT

FBM m
[
Kδ
(
δ
)]

+m
[
∆K
(
δ
)]

m
[
∆K(δ)

]
= 7mqP∆p

P
∆

(
mqP∆p

P
∆
+ 1
)

D/G-S m
[
Kδ
(
δ
)]

m
[
Kδ
(
δ
)]

= mxqP∆u
mxpP∆y

D/G-S w/ Θ m
[
Kθ
(
θ
)]

m
[
Kθ
(
θ
)]

= mxqPΘu
mxpPΘy

−m2
qPΘp

P
Θ

m
[
Pρ
(
ρ
)]

+m
[
R
(
δ
)]

+ 2m[S] m
[
R
(
δ
)]

= 1/2nx(nx + 1) +m
2
qP∆p

P
∆

m[S] = 1/2nx(nx + 1)

Poly.

Polytopic: m
[
Kθ
(
θ
)]

m
[
Kθ
(
θ
)]

= 2nθmxumxy

Affine: m
[
Kθ
(
θ
)]

m
[
Kθ
(
θ
)]

= (nθ + 1)mxumxy

m
[
Pρ
(
ρ
)]

+m
[
R
(
θ
)]

+ 2m[S] m
[
R
(
θ
)]

= 1/2nx(nx + 1)(n
R
θ + 1)

m[S] = 1/2nx(nx + 1)

m
[
Pρ
(
ρ
)]

= mxzymxwu −nznw −nynu
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3.1.2 Synthesis Complexity

In the following both the total size of the LMI resulting from the diagonal con-

catenation of multiple LMI conditions and the number of decision variables are

assessed.

3.1.2.1 Polytopic LPV Synthesis

Synthesis complexity is first assessed for PiDLFs.

Parameter-Independent Lyapunov Functions

The size of the LMIs LR
(
ρ
)

(2.122) and LS
(
ρ
)

(2.123) is determined by (dependency

on σ is dropped due to PiDLFs)

s
[
LR
(
ρ
)]

= (nx +nw −ny) +nz and

s
[
LS
(
ρ
)]

= (nx +nz −nu) +nw.

Note that in order to solve the LMIs a Schur complement with respect to 1
γ has to

be taken each, which accounts for the additional terms nz and nw. The dimensions

of the basis forming the null spaces NR
(
ρ
)

and NS
(
ρ
)

are due to the assumptions

on the full row rank, which means that it is derived by the number of columns

minus the number of rows, respectively.

Furthermore, if evaluated in a hyperbox the number of LMIs grows with O(2nθ).

Together with the Lyapunov variable coupling condition of size 2nx, the total size

of the LMI amounts to

2nθ (2(nx +nw +nz) − (ny +nu)) + 2nx.

The associated number of decision variables of the existence conditions are limited

to the Lyapunov variables R and S and amount to nx(nx + 1). When solving for

the controller in the vertices, one may again obtain m
[
Kθ
(
θ
)]

from (3.6), although

closed-form formulae (2.127)–(2.132) can also be used, as performed in the Matlab

implementation hinfgs.

Parameter-Dependent Lyapunov Functions

The parameterization of the Lyapunov functions has a strong impact on the syn-

thesis complexity. Assume again that while S
(
θ
)
= S is chosen constant, R

(
θ
)

is

parameterized as (3.7). The number of decision variables therefore increases to

nx(nx + 1)(1+
1/2n

R
θ). Furthermore, the LMI (2.122) has to be evaluated on 2nθ+n

R
θ

vertices when considering the extremal values of (θ,ν) ∈ θ×ν. The multi-convexity

approach further introduces nRθ additional LMI constraints of size rank (NR) + nz.

The second multi-convexity constraint is not required if only R
(
θ
)

is parameter-

dependent. Furthermore, as above, it is assumed that Bp is parameter-independent,

s. t. only LMIs of size nx are introduced.
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Additionally, the coupling (2.124) needs to be verified on the 2n
R
θ vertices. In

conclusion the total size of the LMI is
(
2nθ+n

R
θ

)
(nx +nw +nz −nu)

+ 2nθ (nx +nw +nz −ny) +n
R
θnx + 2

nRθ+1nx.

3.1.2.2 LFT-Based LPV Synthesis

A core advantage in the synthesis of LPV controllers based on the LFT paradigm

and the FBSP consists in a decoupling of parameter-dependent from parameter-

independent LMIs. In addition, the multiplier conditions are quadratic in the pa-

rameters and therefore easily convexified by inertia hypotheses (multi-convexity)

even in the case of rational parameter-dependence of the plant.

Parameter-Independent Lyapunov Functions

After application of the Schur complement, the nominal LMIs LR,M (2.151)

and LS,N (2.152) are of the size

s[LR,M] = (nx +nw +nPp∆ +nPq∆ −ny) +nz and

s[LS,N] = (nx +nz +n
P
p∆

+nPq∆ −nu) +nw,

which is again derived from the dimensions of the null spaces as explained above.

The Lyapunov variable coupling condition LR,S (2.153) is again of size 2nx and the

multiplier conditions LM
(
δ
)

(2.154) and LN
(
δ
)

(2.155) are both of size nPp∆ +nPq∆ .

With the multi-convexity constraints associated with full-block multiplier (FBM)

as detailed in Lma. 2.4 on page 68, the multiplier conditions LM
(
δ
)

(2.154)

and LN
(
δ
)

(2.155) have to be evaluated at vertices of the convex hull conv (δ) of

the parameter range. Assuming a hyperbox, one has 2nδ LMI constraints on each

multiplier and a total size of the concatenated LMIs of

2(2nx +nw +nz +n
P
p∆

+nPq∆) − (ny +nu) + 2
nδ+1(nPp∆ +nPq∆).

As before, the Lyapunov variables require nx(nx + 1) decision variables and the

major increase is due to the size of the multipliers, which can be structurally con-

strained. The FBMs M and N each require (nPp∆ +nPq∆)(2(n
P
p∆

+nPq∆) + 1) decision

variables. The use of D/G-scalings (D/G-Ss) and the associated commutativity re-

quirement on all blocks of M and N with ∆P
(
δ
)

essentially reduces the number of

decision variables to the case, in which several multiplier conditions involving only

a single parameter are solved simultaneously. Then, the individual multiplier block

sizes are inferred from the parameter’s repetitions, leading to a total of

nδ∑

i=1

rδ,i(rδ,i + 1) + rδ,i(rδ,i − 1) = 2

nφ∑

i=1

r2δ,i
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decision variables for M and N. Consequently parameter blocks have to be square,

s. t. one may define nP∆
△
= nPp∆ = nPq∆ . Without a priori knowledge of the number

of repetitions, the limiting cases can be considered: Take nδ → nP∆, which leads to

rδ,i = 1, i ∈ {1, . . . ,nδ} and therefore the number of decision variables collapses to

2nδ. If nδ → 1, D/G-Ss are lossless [105], since a FBM is implied. This yields 2nP∆
2

decision variables for both multipliers. Note that D/G-Ss render the multiplier

conditions trivially fulfilled, s. t. the total size of the LMI reduces to

2(2nx +nw +nz +n
P
∆) − (ny +nu). (3.16)

When solving for the controller variables, the number of decision variables ad-

heres to m
[
Kδ
(
δ
)]

from (3.10). Again, closed-form formulae (2.127)–(2.132) can also

be used.

Parameter-Dependent Lyapunov Functions

Consider again the approach to mimic the plant’s parameter-dependence in the Lya-

punov variable, more specifically the choice shown in Eq. (3.13), which introduces

m
[
R
(
ρ
)]

= 1/2nx(nx + 1) + (nPp∆ +nPq∆)
2 decision variables, as obvious from (3.14).

When non-constant null spaces NR
(
δ
)

and NS
(
δ
)

are considered, the sizes of the

resulting parameter blocks associated with the outer factors in (2.73) and (2.74)

result from

∆BR = diag
(
∂∆P,∆P,∆P,∆P,∆P

)
∈ R

(n
qR
∆
×n

pR
∆
)
,

∆BS = diag
(
−∆P

⊤
,−∆P

⊤) ∈ R
(n

qS
∆
×n

pS
∆
)
,

∆BRS = diag
(
∆P,∆P

)
∈ R

(n
qRS
∆
×n

pRS
∆

)
,

and are upper bounded by

npR∆
= 5nPp∆ , nqR∆

= 5nPq∆ ,

npS∆
= 2nPq∆ , nqS∆

= 2nPp∆ ,

npRS∆
= 2nPp∆ , nqRS∆

= 2nPq∆ .

At the cost of an increased number of states nx, in this approach it will usually

be beneficial to pre- and postfilter, reducing the problem to the sizes

npR∆
= 4nPp∆ , nqR∆

= 4nPq∆ ,

npS∆
= nPq∆ , nqS∆

= nPp∆ .

For this case, LMIs (2.136)–(2.138) jointly have the size

2(nx+nw+nz) − (ny+nu)+nqR∆
+nqS∆

+(nqRS∆
+2nx)

= 2(nx +nw +nz) − (ny +nu) + 5n
P
q∆

+nPp∆ + 2nx.
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In order to evaluate the multiplier conditions (2.139) via FBMs, also the rates of

change have to be taken into account for conditions on M, which requires the

formulation of 22nδ LMI constraints. In total the multiplier conditions form an LMI

of size

2nδ(2nδnpR∆
+npS∆

+npRS∆
) = 2nδ(2nδ4nPq∆ +nPp∆ +nPq∆)

containing

(nPq∆ +nPp∆)(3(n
P
q∆

+nPp∆) + 1)

decision variables. Again, using D/G-S, the multiplier conditions are trivially ful-

filled and the number of multiplier related decision variables reduces to

3

nδ∑

i=1

r2δ,i +

nδ∑

i=1

(3rδ,i)
2 = 12

nδ∑

i=1

r2δ,i,

when treating rates of change independently and regarding the repeated ∆P-block

structure as a single block with three times the repetitions for each parameter δi.

3.1.2.3 Gridding-Based LPV Synthesis

Parameter-Independent Lyapunov Functions

For ng equidistant grid points between the minimum and maximum value of a

scheduling signal, the number of LMI constraints grow with O(n
nρ
g ). The size of

the LMIs derived from (2.122) and (2.123) is identical to the polytopic case by a

Schur complement, which leads to a total size of the LMI of

n
nρ
g (2(nx +nw +nz) − (ny +nu)) + 2nx. (3.17)

As before, the only decision variables of the existence conditions are the Lyapunov

variables R and S and amount to nx(nx + 1). When solving for the controller in the

grid points, one needs to solve for n
nρ
g ·m

[
Kρ
(
ρ
)]

variables as obtained from (3.15).

More typically the closed-form formulae (2.127)–(2.132) are used, which further

reduce in online complexity for constant Lyapunov functions.

Parameter-Dependent Lyapunov Functions

As in the previous approaches, the parameterization of the Lyapunov functions has

a strong impact on the synthesis complexity. Assume again that while S
(
ρ
)
= S is

chosen constant, R
(
ρ
)

is chosen parameter-dependent. Following the heuristic to

mimic the plant’s parameter-dependence, it appears a natural choice to consider

the parameterization (3.7), which leads to nx(nx + 1)(1+
1/2n

R
δ ) decision variables.

However, the Lyapunov matrix can also be chosen to depend on the scheduling

signals ρ directly. In any case, the rates of change η or σ do not have to be gridded,

since they enter the matrix inequality in an affine manner. Therefore, LMI (2.122)
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Table 3.3: Synthesis complexity of LPV controllers: No. of dec. vars vs. synth. tech.

Technique Number of decision variables

PDLF Total In parts

Grid.

d[R] + d[S] d[R] = d[S] = 1/2nx(nx + 1)

d
[
R
(
ρ
)]

+ d[S] d
[
R
(
ρ
)]

= 1/2nx(nx + 1)(n
R
θ + 1)

LFT

FBM

d[R] + d[S] + d[M] + d[N] d[R] = d[S] = 1/2nx(nx + 1)

d[M] = d[N] = 1/2mpP∆q
P
∆
(mpP∆q

P
∆
+ 1)

D/G-S

d[R] + d[S] + d[M] + d[N] d[R] = d[S] = 1/2nx(nx + 1)

d[M] = d[N] =
∑nδ
i=1 r

2
δ,i

2nδ 6 d[M] 6 2nP∆
2

FBM

d
[
R
(
δ
)]

+ d[S] d
[
R
(
δ
)]

= 1/2nx(nx + 1) +
1/4m

2
pP∆q

P
∆

+d[M] + d[N] + d[P] d[S] = 1/2nx(nx + 1)

d[M] = 2mpP∆q
P
∆
(4mpP∆q

P
∆
+ 1)

d[N] = d[P] = 1/2mpP∆q
P
∆
(mpP∆q

P
∆
+ 1)

D/G-S

d
[
R
(
δ
)]

+ d[S] d
[
R
(
δ
)]

= 1/2nx(nx + 1) +n
P
∆

2

+d[M] + d[N] + d[P] d[S] = 1/2nx(nx + 1)

d[M] = 10
∑nδ
i=1 r

2
δ,i

d[N] = d[P] =
∑nδ
i=1 r

2
δ,i

Poly

d[R] + d[S] d[R] = d[S] = 1/2nx(nx + 1)

d
[
R
(
θ
)]

+ d[S] d
[
R
(
θ
)]

= 1/2nx(nx + 1)(n
R
θ + 1)

has to be evaluated on 2n
R
δn

nρ
g grid points, whereas LMI (2.123) is still only con-

sidered in n
nρ
g grid points. For affine parameterizations of the Lyapunov variable,

the coupling (2.124) needs to be verified on 2n
R
δ vertices, whereas—perhaps more

typically—it is gridded over the n
nρ
g grid points. In conclusion the total size of the

LMI is

2n
R
δn

nρ
g (2(nx +nw +nz) − (ny +nu)) + 2

nRδ+1nx. (3.18)

3.1.2.4 Synthesis Complexity — Summary

Tabs. 3.3 and 3.4 summarize LPV controller synthesis complexity.
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Table 3.4: Synthesis complexity of LPV controllers: LMI size vs. synth. tech.

Technique Size of LMI (existence conditions)

PDLF Total In parts

Grid.

n
nρ
g

(
s
[
LR
(
ρ
)]

+ s
[
LS
(
ρ
)])

s
[
LR
(
ρ
)]

= mxzw −ny

+s
[
LRS

(
ρ
)]

s
[
LS
(
ρ
)]

= mxzw −nu

s
[
LRS

(
ρ
)]

= 2nx

n
nρ
g

(
2n

R
θ s
[
LR
(
ρ,σ
)]

+ s
[
LS
(
ρ
)]

s
[
LR
(
ρ,σ
)]

= mxzw −ny

+ s
[
LRS

(
ρ
)])

s
[
LS
(
ρ
)]

= mxzw −nu

s
[
LRS

(
ρ
)]

= 2nx

LFT

FBM

s[LR,M] + s[LS,N] + s[LRS] s[LR,M] = mxqP∆zw
−ny

+2nδ
(
s
[
LM
(
δ
)]

+ s
[
LN
(
δ
)])

s[LS,N] = mxpP∆zw
−nu

s[LRS] = 2nx

s
[
LM
(
δ
)]

= nqP∆
, s
[
LN
(
δ
)]

= npP∆

D/G-S

s[LR,M] + s[LS,N] + s[LRS] s[LR,M] = mx∆Pzw −ny

s[LS,N] = mx∆Pzw −nu

s[LRS] = 2nx

FBM

s[LR,M] + s[LS,N] + s[LRS,P] s[LR,M] = mxzw + 4nqP∆
−ny

+22nδs
[
LM
(
δ,η
)]

s[LS,N] = mxzw +npP∆
−nu

+2nδ
(
s
[
LN
(
δ
)]

+ s
[
LP
(
δ
)])

s
[
LM
(
δ,η
)]
=4nqP∆

, s
[
LP
(
δ
)]
=nqP∆

s[LRS,P] = 2nx +nqP∆
, s
[
LN
(
δ
)]
=npP∆

D/G-S

s[LR,M] + s[LS,N] + s[LRS,P] s[LR,M] = mxzw + 4nP∆ −ny,

s[LS,N] = mxzw +nP∆ −nu,

s[LRS,P] = 2nx +n
P
∆

Poly

2nθ
(
s
[
LR
(
θ
)]

+ s
[
LS
(
θ
)])

s
[
LR
(
θ
)]

= mxzw −ny

+s[LRS] s
[
LS
(
θ
)]

= mxzw −nu, s[LRS] = 2nx

2nθ+n
R
θ s
[
LR
(
θ,ν
)]

s

[
∂2

∂θ2i
LR
(
θ,ν
)]

= nx

+2nθs
[
LS
(
θ
)]

+ 2n
R
θ s
[
LRS

(
θ
)]

+nRθs
[
∂2

∂θ2i
LR
(
θ,ν
)]
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3.2 Fields of Application and Associated Methods

T
he following survey of LPV control applications associated with the respective

fundamental modeling and controller design methods—polytopic, multiplier-

based and gridding-based—is extended from [59]. It has been updated to include

the most recent publications and serves the purpose to assess the range of appli-

cations, the associated model complexity and synthesis method used to solve the

control problem.

As previously reported in [59], experimental LPV control applications reported

in the literature are ranging over a wide array of different subjects from robotic

manipulators to micro-systems and various academic examples. In aerospace ap-

plications, even though many simulation results are available, relatively little ex-

perimental work is reported. This is likely due to the high effort and risks in-

volved, e. g., in undertaking actual flight tests, and the possibly classified sta-

tus of the respective military flight test reports. However, in this field and also

other fields dealing with highly complex systems, the usual controller validation

procedure involves so-called high-fidelity (HiFi) simulations—sometimes also de-

noted ≪industry-grade simulations≫—as an intermediate step in-between ≪desk-

top analysis≫ and experimental validation. In aerospace applications, HiFi simula-

tions are often performed in the form of pilot-in-the-loop (PIL) experiments with

highly accurate flight simulators, see, e. g., [H7]. Due to the high requirements on

their accuracy, HiFi simulation-based validations are included in this section’s sur-

vey. References pointing to HiFi simulation-validated results are distinguished by

the letter ≪H≫ preceding the reference number, whereas experimental work is in-

dicated by an ≪E≫. ≪Low-fidelity≫ simulation results are not explicitly identified.

In the following, a chronological overview over the range of applications using

the different synthesis techniques is given. Figure 3.1 shows a time-line, listing and

classifying results by year and synthesis technique.

One of the more recent lines of research involved the control of the F-16 Variable

stability In-flight Simulator Test Aircraft (VISTA), a highly maneuverable aircraft

with relaxed airframe induced stability [H1, H3]. Civil research focuses more on

safety issues and has spawned fault-tolerant controller and fault detection and

isolation (FDI) filter designs in the LPV framework. The Advanced Fault Diagno-

sis for Sustainable Flight Guidance and Control (ADDSAFE)1 project incorporates

HiFi simulations of Boieng aircraft to validate these schemes [H4, H16, H28, H29,

H31].

Wind energy systems, for instance, can be validated using the Fatigue, Aerody-

namics, Structures, and Turbulence (FAST) software [68], a freely available HiFi

1 http://addsafe.deimos-space.com/

Preliminary results of this section have been previously published in [59]. The survey is extended to include

the entire list of publications for 2014.

http://addsafe.deimos-space.com/
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P
u

b
li

ca
ti
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n

s

Synthesis Technique

Apkarian et. al., [5, 6]
Scorletti, Ghaoui, [129]

Wu et. al., [164]
Feron et. al., [41]

Apkarian, Adams, [3]
Scorletti, Ghaoui, [130]
Tuan, Apkarian, [148]

Scherer, [125]
Wu, [161]

Apkarian, Tuan, [8] Colaneri, Geromel, [21]

Wu, Dong, [163]
Dietz, Scherer, [28]

Dong, Wu, [30]

Daafouz, [23]

[H7]

[E56,
E57]

[E91,
E104],
[H28]

[E43,
E105] [E17]

[E15,
E22,
E64],
[H29]

[E53,
E65,

E100]

[E26,
E29,
E52,
E97]

[E60,
E66,
E92]

[E32,
E36,
E51,
E61]

[E25,
E30,
E38,
E75,
E76,
E101,
E102]

[E39,
E70,
E98],
[H15,
H32]

[E3,
E6,

E11,
E16,
E37,
E41,
E44,
E47,
E74]

[E12,
E77,
E81,
E89,
E90,
E99]

[E9,
E10,
E55,
E78,
E82,

E111],
[H9,
H11,
H13]

[E20,
E56,
E57]

[E93]

[E19,
E21,
E95]

[E28]

[E13]

[E33] [E27] [E62,
E63]

[E2]

[H21,
H23]

[E7,
E8,

E88]

[E11,
E23,
E44,
E85]

[E24,
E45,
E69,
E83]

[E46,
E48],
[H12]

[H19]

[H8]

[E73],
[H22]

[E28,
E42,

E106],
[H6]

[E43]

[E80]

[E54]

[E109] [E110]

[E5,
E59]

[H1,
H21,
H30]

[E68,
E84],
[H3,
H14,
H15,
H20]

[E34,
E87],
[H26]

[E1,
E71,
E79,
E83],
[H17]

[E14,
E35,
E94,

E107],
[H18]

Figure 3.1: Time-line of application results validated by experiments or HiFi simulations

and milestones in theoretical LPV research.
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Misc. Mechatronic Systems
(E:37)/(H:7)

[E1, E7, E8, E11–E17, E19–E21, E23,
E24, E26, E32, E33, E35, E40, E41, E47,
E53, E59, E63, E69, E86–E91, E93–E95,
E100, E107], [H9, H11–H13, H18, H25,

H26]

Aerospace
(E:7)/(H:19)

[E50, E71–E73, E80–E82],
[H1–H3, H5–H8, H10,
H14–H17, H19–H23,

H27–H29, H31]

Robotic Manipulators
(E:15)/(H:0)

[E2, E36–E38, E44–E46, E48,
E74, E75, E79, E83–E85, E105]

Automotive
(E:14)/(H:1)

[E4, E9, E10, E18, E27,
E28, E60, E61, E96,

E98, E99, E108–E111],
[H32]

AMBs (E:9)/(H:0)
[E6, E29–E31, E64,

E66, E67, E101, E102]

Vehicle Motion
(E:10)/(H:1)

[E5, E22, E25, E42,
E43, E51, E52, E55,

E58, E78], [H30]

Academic
(E:9)/(H:0)

[E3, E24, E56, E57,
E62, E70, E76, E77,

E89]

Figure 3.2: LPV control results validated by experiments or HiFi simulations grouped by

application type.

simulator developed by the National Renewable Energy Laboratory (NREL)2 and

certified by Germanischer Lloyd Wind Energy3.

Figure 3.2 proposes a classification of the different types of applications and ar-

ranges them by the related number of publications. Especially the field of aerospace

applications carries a wide range of different applications, listed in Tab. 3.5. Work

on the National Aerospace Association (NASA) HL-20 Re-Entry Vehicle was em-

bedded as a highly nonlinear benchmark system into the LPV Modeling, Analysis

and Design (LPVMAD)4 research project. The project was divided into two phases,

where the second phase comprised the validation of data-based modeling and val-

idation tools [96, 144] as well as integral quadratic constraint (IQC)-based analysis

and LPV-LFT synthesis methods on a HiFi simulation model [67] and its final re-

sults are reported in [H21]. In the first phase, these techniques where tested on

simpler simulation models, see, e. g., [94, 96, 108, 150, 152], which are therefore not

included in this categorization. A more detailed overview of the project and the

challenges of LPV tools in space applications can be found in [95].

Among the miscellaneous mechatronic applications one finds very different sys-

tems, listed in Tab. 3.6. Work on active magnetic bearings (AMBs) is listed sep-

arately in Fig. 3.2 due to the extensive line of research. The academic examples

include the items listed in Tab. 3.7.

The first HiFi simulation-based validations of LPV controllers is reported in 1996

[H19], whereas the first experimental validations date back to 1999 [E20, E56]. In

[E56] both polytopic and small-gain theorem-based LFT-LPV controller synthesis

techniques are applied to the well-known academic example of an arm-driven in-

2 http://wind.nrel.gov/designcodes/simulators/fast/
3 http://www.gl-group.com/glwind/
4 Funded by the European Space Agency under ESA-ESTEC contract 20565/07/NL/GLC

http://wind.nrel.gov/designcodes/simulators/fast/
http://www.gl-group.com/glwind/
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Table 3.5: Aerospace applications.

• Airplanes [E80–E82], [H2, H3, H5, H7, H8, H14, H19, H22, E73, H23,

H28, H29]

• Hypersonic Vehicles [H24, H27]

• Re-Entry and Launch Vehicles [H21]

• Satellites [E34, E50]

• Turbofan Engines [H6]

• Unmanned Aerial Vehicles (UAVs) [E72]

Table 3.6: Mechatronic applications.

• Wind Energy [H11, H12, H18, H25, H26]

• Agricultural Open Canal Systems [E15], [H9]

• Active Vision Systems [E93]

• CD Players [E20, E21]

• Control Moment Gyroscopes [E1, E94]

• Drilling Systems [E53, E58]

• Electro-Hydraulic Servo Systems [E100]

• Electro-Magnetic Actuators [E26]

• Flexible Ball Screw Drives [E35]

• Magneto-Rheological Dampers [E68, E86, E87], [H13]

• Hydro-Kinetic Turbines [E32]

• Induction Motors/Generators [E13, E95]

• Injection Molding Machines [E91]

• Laser Printers [E17]

• Micro-Systems [E16]

• Active Noise/Vibration Control [E7, E8, E11, E12, E23, E39–E41, E90]

• Container Crane Load Swing [E47, E69]

• Shape Memory Alloys/Ionic Polymer Metal Composites [E59, E63]

• Wafer Scanners [E33]

• Web Server Performance Control [E92]

Table 3.7: Academic examples.

• Active Vibration Control Test Bench [E24, E88, E89]

• Arm-Driven Inverted Pendulum [E56, E57, E62, E70]

• T-Inverted Pendulum [E76]

• Twin Rotor MIMO System [E77]

• Quadruple Tank Process [E3]
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verted pendulum, whereas [E20] implements a FBM-based LFT-LPV design on

micro-processor hardware for a compact disc player. The underlying theory of LFT-

LPV controller synthesis with FBM, however, is first publicly reported in 2000 [124].

In [E73], gridding-based LPV controller synthesis is carried out for the single-

input single-output (SISO) pitch control problem of the Vectored thrust Aircraft

Advanced flight Control (VAAC) Harrier airplane. The paper focuses less on tech-

nical details, but rather on in-flight experience and testing carried out in what was

stated to be ≪one of the most successful first test flights performed by Defence

Evaluation and Research Agency (DERA)5 to date≫.

Polytopic Approach

Judging from the sheer number of related publications, the polytopic LPV con-

troller synthesis approach is most popular among the three considered here. Ac-

cordingly, the range of applications is large, including AMB systems [E6, E29, E30,

E64–E66, E101, E102], robotic manipulators [E36–E38, E44, E74, E75, E104, E105],

engine control [E60, E61, E99, E111], miscellaneous mechatronic systems [E15–E17,

E26, E32, E47, E53, E91, E100], vehicle motion control [E22, E25, E43, E51, E52, E55,

E78], academic test benches [E3, E56, E57, E70, E76, E77], noise canceling head-

sets and vibration control test benches [E9–E12, E24, E39, E41, E89, E90], aerospace

flight control [E81, E82] and computer sciences [E92].

Multiplier-Based LFT Approach

At around the time of the first polytopic and small-gain theorem-based LPV con-

troller validations, LFT-LPV synthesis with FBM was successfully applied in [E20],

validating simulation results shown in [26]. Even though the number of applica-

tions of the multiplier-based LFT-LPV synthesis approach has been relatively small,

noteworthy experimental results with industrial relevance were published between

2001 and 2014. These include CD players [E19, E21], induction motors [E13, E95],

engines [E27, E28] and a wafer stage [E33]. More recently, the application of LPV

techniques in robotics has been considered, both as an example on which to vali-

date methods to handle LPV models of high complexity experimentally [E44–E46,

E48] as well as with explicit industrial grade control objectives in mind [E81, E85].

In the field of active noise cancellation headsets and vibration control the LFT ap-

proach as per [5] is also followed [E7, E8, E11, E23, E24, E88]. Very recently LFT

techniques have also been applied in the control of wind turbines [H12].

Gridding Approach

The gridding-based approach was well-known at least from the publication of [3,

160] and experimental results in flight control [E73] were reported as early as 2000

with impressive results. Aircraft motion control was again considered in [E80] and

[E81]. Apart from that, relatively few experimental publications making use of the

gridding approach exist, for reasons mentioned above. Among them are automated

5 Authors’ note: Full meaning of acronym added by the author.
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lane guidance [E42], automated driving via visual feedback [E43], robotics [E79,

E83, E84, E103], engine control [E54, E109, E110] and the control of a control mo-

ment gyroscope [E1, E94]. The comparably high amount of HiFi simulation val-

idated control designs, however, indicates its usefulness in the highly nonlinear

aerospace related control problems. Further recent applications include oxygen sto-

chiometry regulation in fuel cells [E14] and wind turbine control [H18].

Examples of Methods Applied for Reduced Scheduling Order

As discussed in from Sect. 3.1, large numbers of scheduling signals/parameters

or a large number of repetitions in the parameter block of an LFR induce a high

amount of LMI constraints, decision variables, online computational load and mem-

ory requirements. The synthesis complexity induced by the scheduling order varies

heavily between the major synthesis approaches (polytopic, multiplier-based and

gridding). In addition, the complexity incurred strongly depends on the choice of

the LPV model, since even within one of the frameworks of polytopic, LFT-based

or general LPV models, the representation is most often not unique. For instance,

[E48] exploits FBMs, which allow for full/block-diagonal parameter blocks of the

plant model’s LFR. Without any approximation, this reduces the multiplier size

and therefore the number of decision variables in such a degree that the LFT-LPV

synthesis method outperforms the other methods in terms of both low synthesis

and implementation complexity. In this respect, the number of parameters can only

be taken as an indication of the synthesis and implementation complexity involved,

but not as a rigorous measure.

Tab. 3.8 categorizes the reported literature in a matrix, comprising the employed

synthesis technique and the complexity in terms of the original scheduling order

(number of parameters in the polytopic and LFR, or measured signals in the grid-

ding framework) of the original model. The details in the respective references

reveal that even though the polytopic approach appears to be capable of deal-

ing with a high scheduling order similar to the LFT-based methods in terms of

the number of related publications, approximate models of reduced scheduling or-

der are generally required. In fact, a controller design for a three three-degree of

freedom (3-DOF) robotic manipulator reported in [E45] is the only report of a con-

troller affinely scheduled on 16 different parameters without approximation, which

is achieved using D/G-S [E21]. In all additional work reported in the polytopic high

scheduling order range, approximations are involved.

The gridding approach has not been used for models with a high number of

scheduling signals. However, it should be noted that the number of parameters

required when turning a general LPV model into an LFT-based or polytopic rep-

resentation may be much higher than the number of actually measured schedul-

ing signals. A polytopic LPV model of the control moment gyroscope6 that will

be the subject of Sect. 6.2, e. g., requires 15 different parameters, despite being al-

6 http://www.ecpsystems.com

http://www.ecpsystems.com


3.2 Fields of Application and Associated Methods 97

Table 3.8: Publications sorted by synthesis technique and number of sched. parameters/sig-

nals.

No. of Scheduling Parameters/Signals

Low (1-2) Medium (3-6) High (7+)

S
y

n
th

es
is

T
ec

h
n

iq
u

e

P
o
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.

L
F

T
G

ri
d

.

(E:33)/(H:3)
[E6, E9, E10, E15–E17, E22, E25,

E26, E29, E30, E32, E47, E51–E53,
E55–E57, E64–E66, E70, E81, E82,

E91, E92, E98–E102], [H7, H11,
H15]

(E:15)/(H:4)
[E3, E11, E12, E39, E41,
E43, E60, E61, E75, E76,

E78, E89, E90, E104,
E111], [H9, H13, H15,

H32]

(E:6)/(H:2)
[E36–E38, E44, E74,

E77], [H28, H29]

(E:19)/(H:13)
[E1, E5, E14, E34, E35, E42, E54,

E59, E68, E71, E73, E80, E83, E86,
E87, E94, E107, E109, E110], [H2,
H3, H6, H8, H14, H15, H18–H22,

H26, H30]

(E:5)/(H:1)
[E28, E43, E79, E83,

E106], [H15]

(E:14)/(H:3)
[E13, E19–E21, E24, E33, E56, E57,

E63, E69, E83, E85, E93, E95],
[H12, H21, H23]

(E:9)/(H:0)
[E7, E8, E11, E23, E27,

E28, E62, E83, E88]

(E:5)/(H:0)
[E2, E44–E46, E48]

Table 3.9: Publications sorted by dynamic order and number of sched. parameters/signals.

No. of Scheduling Parameters/Signals

Low (1-2) Medium (3-6) High (7+)
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(E:18)/(H:4)
[E4, E13, E15, E26, E32, E47, E54,

E55, E59, E72, E92, E95, E98, E100,
E107–E110], [H6, H8, H14, H23]

(E:2)/(H:2)
[E60, E61], [H9, H32]

(E:1)/(H:0)
[E2]

(E:41)/(H:15)
[E1, E14, E19–E22, E29–E31, E34,

E35, E42, E51–E53, E56, E57,
E63–E71, E73, E80–E83, E85–E87,

E91, E93, E94, E99, E101, E102,
E111], [H2, H3, H7, H8, H10–H12,

H15, H18–H22, H25, H26]

(E:20)/(H:2)
[E3, E7, E8, E11, E12,

E23, E27, E39–E41, E43,
E75, E76, E78, E79, E83,
E88, E90, E104, E106],

[H13, H15]

(E:9)/(H:2)
[E36–E38, E44–E46, E48,

E74, E77], [H28, H29]

(E:5)/(H:1)
[E6, E9, E10, E24, E33], [H30]

(E:11)/(H:0)
[E7, E8, E11, E12, E23,

E28, E39, E41, E88–E90]

(E:2)/(H:0)
[E45, E46]
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ready considerably simplified by freezing some signals and a linearization of the

nonlinear model about a moving operating point, [E1]. The number of schedul-

ing signals eventually used in real-time experiments is then reduced to two by the

above-mentioned approach which is justified by a significant increase in perfor-

mance, although stability and performance guarantees are rendered void. In [E79],

a choice of affine scheduling parameters is made, s. t. for frozen parameters the

state space model represents two decoupled second order systems and two syn-

thesis problems are solved in a two loop configuration with only a single and two

scheduling parameters, respectively. The gridding approach is used, despite the

low number of affine scheduling parameters.

In some works, such as [E36, E37, E44–E46], on the control of a robotic manip-

ulator the complexity issues arising due to a high number of polytopic or LFT

scheduling parameters are tackled by employing the principle component analy-

sis (PCA)-based reduction of the parameter set [79] detailed in Sect. 2.1.4. The

resulting approximate model is then used for designing the controller with tremen-

dously reduced synthesis complexity. In [E45], this is combined with multiplier-

based synthesis methods for models with affine parameter-dependence. D/G-Ss

are used to cope with the otherwise intractable synthesis complexity and to achieve

a low implementation complexity. For the controller synthesized based on the ap-

proximate model, stability and performance guarantees are established via a pos-

teriori analysis performed in the LFT framework, [E37, E44–E46], i. e., by applying

the FBSP on the closed-loop analysis LMI condition. In [E45], both full scheduling

order and reduced scheduling order controller designs with guarantees are pre-

sented and compared in terms of their implementation complexity. In [E85] only

the base axis of an industrial manipulator is considered, whereas in [E81] it is phys-

ically motivated to design separate LPV controllers for axis one and the axis pair

two/three, comprising only a single and three scheduling parameters, respectively.

In other complex mechanical structures, such as a twin-rotor multiple-input

multiple-output (MIMO) system [E77], parameters that are only slightly varying

are simply fixed based on physical insight and exploratory experiments. State

feedback synthesis is performed, which remains tractable even for eight polytopic

scheduling parameters. In [H23] approximations based on physical insight are used

to reduce the scheduling block’s size of the LFR from 201× 201 to 7× 7.
The modeling of harmonic multi-sine disturbances in the generalized plant

framework usually introduces two LPV scheduling parameters per frequency [E12,

E90], which can lead to a very high number of scheduling parameters if many

disturbance modes are superimposed. In [E12, E90] it is assumed that the distur-

bance frequencies are harmonically related and a second order Taylor expansion

of sine and cosine terms are used as an approximation to reduce the number of

independent scheduling parameters to two, independent of the number of frequen-

cies considered. Despite the approximation, the closed-loop performance shows an

effective reduction of noise.
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The gain-scheduled controller design in [E34] for the in-orbit control of the en-

gineering test satellite (ETS-VIII) spacecraft is based on a simplified LPV model

and preliminary work is presented in [48]. Near symmetry in the singular values is

observed and accordingly only half the parameter range is considered. A residual

model covering the high frequency modes is then regarded as an additive uncer-

tainty. Novel matrix inequalities are formulated that allow the Lyapunov variable

to be constrained on a finer grid than that of the synthesis LMIs. This results in

only two controllers to be interpolated. The underlying ideas are a restriction of

the closed-loop PDLFs to a special form, where the (2, 1), (2, 2) and (1, 2) blocks

are all identical, a parameter-independent controller input matrix, dilated LMIs

and spline approximations [103] to reduce the LMI to a finite number.

Tab. 3.9 categorizes the reported results in a matrix comprising the dynamic or-

der (number of states) and the scheduling order of the original model. Considering

the low number of publications, it becomes evident that the synthesis of LPV gain-

scheduled controllers for plants of both high dynamic and high scheduling order

is a field for future research.





4
C O M PA C T L F T- L P V M O D E L I N G

≪We shape our tools and afterwards our

tools shape us.≫

Marshall McLuhan

T
he previous chapter has shown most of the LPV controller synthesis and

implementation complexity is induced by properties of the model. This chap-

ter investigates methods to arrive at equivalent LPV model representations

with properties that are more favorable w. r. t. controller design. For this purpose,

Sects. 4.1 and 4.2 first provide the problem formulations and the special model

class that are dealt with in this chapter:

(i) The derivation of LPV representations from nonlinear ordinary differential

equations (ODEs) (Sect. 4.3),

(ii) Optimal rational or affine parameterization of LPV representations (Sect. 4.4

and 4.5).

The chapter is concluded with the novel modeling tools being applied to two non-

linear plant models of moderate and high complexity, respectively. First, Sect. 4.6

deals with the LPV model generation of a 3-DOF robotic manipulator of type

Thermo CRS A465. Then, LPV models of various complexity levels are derived

for a control moment gyroscope (CMG).
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4.1 Problem Formulation

I
t is well known that representing nonlinear systems in the LPV framework is

highly non-unique. This non-uniqueness mostly arises from multiple options of

turning arbitrary nonlinear implicit system representations of the form

0 = f(ẋ, x,u), (4.1)

y = g(x,u), (4.2)

into system (differential) equations linear in the states and inputs. However, even

in the case that a—potentially even unique—solution to this task is obtained, the

introductory chapters have illustrated that the choice of LPV modeling framework

and associated synthesis methods as well as the parameterization approach within

such a framework introduces further options.

Consequently, the following two problems can be formulated.

Problem 4.1 (LPV System from Nonlinear Implicit System)

Based on the implicit nonlinear ODE (4.1) and the output equation (4.2), find a general

LPV system representation.

Problem 4.2 (LPV System Parameterization)

Based on a general LPV system representation, find a parameter set admitting a rational or

affine LPV system parameterization with a minimal number of parameters.

In the following sections, the above two distinct problems are investigated sep-

arately and solutions are proposed that aim for a systematic modeling approach

using full parameter blocks in an LFT-LPV controller synthesis approach. Combin-

ing both solution approaches to Probs. 4.1 and 4.2 is aiming at reducing the amount

of ambiguity in the derivation of LPV models suitable for efficient controller syn-

thesis. As a standing assumption, LPV models of reduced complexity are desired

to render controller synthesis tractable and possibly less conservative. The issue of

finding LPV realizations optimal w. r. t. conservatism is only touched.

Problem 4.1 is discussed building on tools developed in [146, Sect. 7.4.2, p. 187]

and specializing them for the case of nonlinear mechanical systems. Subsequently,

Prob. 4.2 is considered, assuming that a general non-singular descriptor LPV rep-

resentation has been derived based on a solution of Prob. 4.1.
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4.2 Mechanical LPV Systems

A
n automated tool for generating and assessing affine LPV models is proposed

in [77]. The algorithm directly identifies all possible affine representations and

assesses the incurred overbounding and the number of parameters as a means of

ranking models in terms of their supposed suitability for synthesis.

In contrast, the algorithm proposed in [146, Sect. 7.4.2, p. 187] translates first

principle nonlinear differential equations into so-called LPV kernel representations

(LPV-KRs) of the form

n∑

i=0

Ai
(
t, q, q̇, q̈, . . .

) di

dti
q = 0, (4.3)

which are closely related to descriptor forms.

In this chapter, the class of systems governed by a nonlinear differential equation

of the form

J(q, t)q̈+ k(q̇, q, t) = g(q̇, q, t) + T(q, t)u, (4.4)

is considered, where J(q, t) ∈ Rnq×nq with J(q, t) ≻ 0 is the generalized mass ma-

trix, k(q̇, q, t) ∈ Rnq is the vector of generalized Coriolis, centrifugal and gyroscopic

forces and g(q̇, q, t) ∈ Rnq is the vector of applied forces. The control forces and

torques are collected in u ∈ Rnu , which are projected onto the directions of gener-

alized coordinates q by T(q, t) ∈ Rnq×nu .

Remark 4.1 So-called scleronomic systems are systems devoid of an explicit dependence

on the time t [131]. The system description (4.5) also covers the non-scleronomic case, since

the time may be hidden in the parameters.

Under the assumption that both q and q̇ are measurable signals, it is the goal to

rewrite system (4.4) in a compact LFT-based LPV representation. The dependence

of the generalized forces and the generalized mass matrix on the state variables q

and q̇ as well as the explicit time dependence in (4.4) can be considered as parame-

ters collected in ρ(t) ∈ Fσρ .

J
(
ρ
)
q̈+ k

(
ρ
)
= g

(
ρ
)
+ T
(
ρ
)
u, ρ(t) ∈ Fσρ . (4.5)

Using the shorthand notation k̃
(
ρ
)
= k

(
ρ
)
− g
(
ρ
)
, (4.5) is commonly rewritten as

a system of first order differential equations, i. e., as a nonlinear state space model

in the form

Gσρ :








q̇

q̈

y


=




q̇

−J−1
(
ρ
)
k̃
(
ρ
)
+ J−1

(
ρ
)
T
(
ρ
)
u

q




ρ(t) ∈ Fσρ .

(4.6)
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In order to render (4.6) linear in the state—and therefore an LPV representation—a

factorization

k̃
(
ρ
)
= D

(
ρ
)
q̇+K

(
ρ
)
q (4.7)

needs to be found. If obtained, the nonlinear differential equation reads as

J
(
ρ
)
q̈+D

(
ρ
)
q̇+K

(
ρ
)
q = T

(
ρ
)
u, ρ(t) ∈ Fσρ (4.8)

and a general LPV representation can be written as

Gσρ :








q̇

q̈

y


=




0 I 0

−J−1
(
ρ
)
K
(
ρ
)

−J−1
(
ρ
)
D
(
ρ
)
J−1
(
ρ
)
T
(
ρ
)

I 0 0






q

q̇

u




ρ(t) ∈ Fσρ .

(4.9)

Such differential equations arise in the modeling of holonomic dynamic multi-

body systems in tree structure [131, Chap. 2, p. 18] or any kind of systems that, e. g.,

by the electrical-mechanical analogy, are modeled by generalized inertia, damping

and stiffness and whose states and inputs correspond to quantities of generalized

forces, velocities, displacements [15, Sect. II].

Using physical insight—which is already essential during first principles

modeling—heuristic algorithms, as well as rigorous mathematical tools, the pur-

pose of this chapter is to present a systematic approach to obtaining compact LFRs

of nonlinear mechanical systems. As opposed to the methods proposed in [77, 146],

some aspects of physical insight alleviate the ambiguities when obtaining LPV mod-

els based on (4.4). Furthermore, the techniques proposed in Sects. 4.4 and 4.5 of this

chapter will allow systematic rational as well as affine LPV parameterization with

a minimum number of parameters and an immediate option to approximate based

on model coefficients only.

In fact, due to a novel PCA-based approach to obtaining a set of LPV parameters

proposed in Sect. 4.5, once a parameter block of a suitable LFR has been extracted,

the ambiguities in LPV modeling are mainly reduced to the factorization (4.7). Since

the term J
(
ρ
)
q̈ turns out naturally from first principles modeling, maintaining the

maximal order of derivatives is not an issue, as opposed to the algorithm proposed

in [146, Sect. 7.4.2, p. 191]. An attempt at representing also all of the lower time

derivatives of the generalized coordinates then boils down to populating K
(
ρ
)

and

D
(
ρ
)

as fully as possible. Such a heuristic will possibly result in a better represen-

tation of the inherent coupling at the cost of a larger number of LPV parameters.

A trade-off can be found by only applying this heuristic on rows of the system

matrices which the control input does not enter directly.
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4.3 Factorization of the Vector of Generalized Forces

I
n this section, an algorithm is proposed to obtain a factorization—or rather a set

of candidate factorizations—as in (4.7). The following assumptions are made

(A4.1) The vector k̃
(
ρ
)

is polynomial in q̇, q and transcendental terms.

Ass. (A4.1) is justified for mechanical systems represented by the form of the

Newton-Euler Equations and their projections onto the generalized coordinates q

via D’Alembert’s principle, which eliminates reaction forces and torques as well as

coordinate transformations by rotation. I. e., any rational parameter dependency is

assumed to be easily covered by functions, in which k̃
(
ρ
)

is polynomial. The tran-

scendental terms in q raise the issue of so-called non-factorizable terms, for which

the solutions proposed in [146, Sect. 7.4.3], are adopted to render k̃
(
ρ
)

polynomial

in q:

• Substitution of sin(q) = sinc(q)q,

• Taylor approximation and elimination of constant terms.

Under the Ass. (A4.1) the multiple possibilities of factorizing k̃
(
ρ
)

essentially

reduce to the various options of pulling out a generalized coordinate qi or velocity

q̇i from the individual monomial terms into the state vector, while the remainder

of the monomials is turned into a parameter-dependent matrix entry in K
(
ρ
)

and

D
(
ρ
)
, respectively.

4.3.1 Constructing All Possible Factorizations

For the purpose of factorizing

k̃
(
ρ
)
=
[
K
(
ρ
)
D
(
ρ
)]
[
q

q̇

]
(4.10)

first construct a decomposition in terms of a monomial basis mx

(
x
)
: Rnx 7→ Rnmx

in the states x =
[
q⊤ q̇⊤

]⊤
∈ Rnx with the required degree. Separate the vector of

monomials into univariate and multivariate monomials, mu
x

(
x
)

and mm
x

(
x
)
, respec-

tively.

mu
x

(
x
)
=




mu
x,1

(
x
)

mu
x,2

(
x
)

...

mu
x,nmu

x

(
x
)




, mm
x

(
x
)
=




mm
x,1

(
x
)

mm
x,2

(
x
)

...

mm
x,nmm

x

(
x
)




.

Preliminary results of this section have been previously published in [E49]. The results are extended by a

treatment of the optimization based derivation of selector coefficients for the factorization.
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which reads as

k̃
(
ρ
)
=



k̃1
(
ρ
)

...

k̃nq
(
ρ
)


 =

[
k̃

u(
ρ
)
k̃

m(
ρ
)]
[

mu
x

(
q
)

mm
x

(
q
)
]

,

k̃
m(
ρ
)
=



k̃

m
1

(
ρ
)

...

k̃
m
nq

(
ρ
)


 =




k̃
m
11

(
ρ
)
k̃

m
12

(
ρ
)
. . . k̃

m
1nmm

x

(
ρ
)

...
. . .

...

k̃
m
nq1

(
ρ
)
k̃

m
nq2

(
ρ
)
. . . k̃

m
nqnmm

x

(
ρ
)


 ∈ R

nq×nmm
x ,

and an identically structured k̃
u(
ρ
)
∈ R

nq×nmu
x . Note that the required maximum

degree of monomials can be reduced, if substitutions similar to sin(q) = sinc(qi)qi
are only performed, where otherwise the term would not be factorizable, i. e., when

no generalized coordinate or velocity is part of the product. This, however, also

forecloses factorization options.

With respect to mechanical systems, this reasoning is somewhat related to the

preference of pulling out generalized velocity coordinates q̇ as opposed to gener-

alized position coordinates q. Consequently, the majority of parameter-dependent

terms will appear in the generalized damping matrix D
(
ρ
)
. Such a preference may

be justified by the following arguments:

(i) Since usually position measurements are less corrupted by noise or in some

applications are more readily available than velocity measurements that

may require numerical differentiation, the fundamental requirement of exact

knowledge of the LPV parameters during online computation is more likely

to be fulfilled.

(ii) The number of possible matrix/state vector factorizations of the vector of gen-

eralized forces is reduced. This, however, comes at the risk of not enumerating

potentially well suited parameterizations.

Collecting the different possible factorizations (4.10) can now first be treated on

the level of each vector coefficient/monomial pair for each row i

(
k̃

m
ij

(
ρ
)
, mm

x,j

(
x
))

, (i, j) ∈ {1, . . . ,nq}×
{
1, . . . ,nmm

x

}
.

For each of these pairs, the options result from possibilities to pull out a single state

variable xk, k ∈ {1, 2, . . . ,nx}, contained in mm
x,j

(
x
)

and multiplying the remaining

monomial into the coefficient

k̃m
ijk

(
ρ
) △
= k̃

m
ij

(
ρ
)mm

x,j

(
x
)

xk
, k ∈ {1, 2, . . . ,nx} . (4.11)

Accordingly, k̃m
ijk

(
ρ
)

can be a summand in the (i,k)th entry of
[
K
(
ρ
)
D
(
ρ
)]

. For

the coefficients associated with the univariate monomials, there exists only a single
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obvious factorization—the one based on the single state variable the respective

monomial is composed from.

For a formalized discussion on the construction of a possible factorizations with

regard to the multivariate terms, consider the notation

⌊
mm
x,j

(
x
)

xk

⌋
=






mm
x,j

(
x
)

xk
, if xk is a factor of mm

x,j

(
x
)
,

0 otherwise.

Denote the number of admissible combinations nc, s. t. l ∈ {1, 2, . . . ,nc} and intro-

duce selector vectors associated with choice l, the ith row and jth monomial,

c
(l)
ij =

[
c
(l)
ij1 c

(l)
ij2 . . . c

(l)
ijnx

]
, C

(l)
ij

△
=

nx
diag
k=1

(
c
(l)
ijk

)
,

with

nx∑

k=1

c
(l)
ijk = tr

(
C
(l)
ij

)
= 1. c

(l)
ijk = 0, if

⌊
mm
x,j

(
x
)

xk

⌋
= 0. (4.12)

Note that by this construction

mm
x,j

(
x
)
=

nx∑

k=1

c
(l)
ijk

⌊
mm
x,j

(
x
)

xk

⌋
xk

=

[⌊
mm

x,j

(
x
)

x1

⌋ ⌊
mm

x,j

(
x
)

x2

⌋
. . .

⌊
mm

x,j

(
x
)

xnx

⌋]
C
(l)
ij x

=

⌊
mm
x,j

(
x
)

x

⌋
C
(l)
ij x,

where the following shorthand is used:
⌊

mm
x,j

(
x
)

x

⌋
△
=

[⌊
mm

x,j

(
x
)

x1

⌋ ⌊
mm

x,j

(
x
)

x2

⌋
. . .

⌊
mm

x,j

(
x
)

xnx

⌋]
.

Consequently, the ith row is parameterized by the selector matrix via

k̃m
i

(
ρ
)
=

nmm
x∑

j=1

k̃
m
ij

(
ρ
)
⌊

mm
x,j

(
x
)

x

⌋
C
(l)
ij x = k̃

m
i

(
ρ
)
⌊

mm
x

(
x
)

x

⌋
C
(l)
i x (4.13)

where

⌊
mm
x

(
x
)

x

⌋
△
=

nmm
x

diag
j=1

(⌊
mm
x,j

(
x
)

x

⌋)
,

C
(l)
i

△
=

nmm
x

col
j=1

(
C
(l)
ij

)
.

By taking into account constraint (4.12), the matrix C
(l)
i thus yields the decision

variables to construct any possible factorization of the ith row k̃m
i

(
ρ
)
.
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+k̃
m
i1

(
ρ
)

k̃
m
i2

(
ρ
)

k̃
m
inmx

(
ρ
)

..
.

..
.

. . .

..
.

..
.

..
.

..
.

. . .

. . .

. . .

[
K(l)
(
ρ
)
D(l)

(
ρ
)]
= ith row

c
(l)
i11

c
(l)
i1nx

c
(l)
i21

c
(l)
i2nx

c
(l)
inmx1

c
(l)
inmxnx

⌊
mm

x,1

x1

⌋

⌊
mm

x,1

xnx

⌋

⌊
mm

x,2

x1

⌋

⌊
mm

x,2

xnx

⌋

⌊
mm

x,nmx
x1

⌋

⌊
mm

x,nmx
xnx

⌋

Figure 4.1: Composition tree for constructing the ith row of
[
K
(
ρ
)
D
(
ρ
)]

resulting from

multivariate monomials.

Figure 4.1 illustrates the decomposition of k̃
(
ρ
)

in terms of selector gains c
(l)
ijk the

column coefficients k̃ij
(
ρ
)

and the factored monomials

⌊
mm

x,j

(
x
)

xk

⌋
.

Consider Exs. 4.1 and 4.2 for illustration.
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Example 4.1 (Van der Pol Oscillator)

For illustration, consider the Van der Pol Oscillator [71] a stable oscillator usually described

by a state dependent damping coefficient and an exciting stiffness term. The governing

differential equations can be written in the form

q̈+ k̃ = u, k̃(q, q̇) = b(1− q2)q̇− q.

The monomial decomposition of vector k̃ reads as

k̃(q, q̇) = b(1− q2)q̇− q =
[
−1 b −b

]



q

q̇

q2q̇


 .

From this, only −bq2q̇ contains a multivariate monomial that results in multiple options

for factorization. Parameterizing this multivariate term in terms of the selector matrix as

per (4.13) yields

k̃m(q, q̇) = −b
[
qq̇ q2

] [
c
(l)
111

c
(l)
112

][
q

q̇

]
, c

(l)
111 + c

(l)
112 = 1.

Due to the constraint c
(l)
111 + c

(l)
112 = 1, all LPV factorizations can thus be parameterized by

a scalar c = c
(l)
111 ∈ [0, 1], resulting in

[
q̇

q̈

]
+

[
0 −1

−1− bqq̇c b− bq2(1− c)

][
q

q̇

]
=

[
0

1

]
u.
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Example 4.2 (Pendulum With Variable Length)

For illustration consider a container crane that is essentially modeled as a pendulum with

variable length [E69]. The pendulum length and angle are denoted x and q, respectively.

The pendulum length x has first order dynamics, s. t. the resulting governing differential

equations can be written in the form

[
x

b3

][
q̈

ẍ

]
+ k̃ =

[
0

u

]
, k̃

(
ρ
)
=

[
b1 sin(q) + b2q̇x+ 2q̇ẋ

ẋ

]
.

Before constructing the monomial decomposition, the sine term is factored as sinc(q)q,

which results in

k̃
(
ρ
)
=

[
b1sinc(q) 0 b2 2

0 1 0 0

]



q

ẋ

q̇x

q̇ẋ


 .

Parameterizing these multivariate terms in terms of the selector matrix as per (4.13) yields

k̃m
(
ρ
)
=

[
b2 2

0 0

][
0 x q̇ 0

0 ẋ 0 q̇

]




0

c
(l)
112

c
(l)
113

0

0

c
(l)
122

0

c
(l)
124







q

q̇

x

ẋ


 .

Due to the constraints c
(l)
112 + c

(l)
113 = 1 and c

(l)
122 + c

(l)
124 = 1, all LPV factorizations can thus

be parameterized by scalars c1 = c
(l)
112 ∈ [0, 1] and c2 = c

(l)
122 ∈ [0, 1], resulting in




1

x

1

b3







q̇

q̈

ẋ

ẍ


+




0 −1 0 0

b1sinc(q) b2c1x+ 2c2ẋ b2(1− c1)q̇ 2(1− c2)q̇

0 0 0 −1

0 0 0 1







q

q̇

x

ẋ


=




0

0

0

u


 .
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4.3.2 Evaluating Factorizations

The above parameterization yields infinitely many factorizations due to the degrees

of freedom in choosing c
(l)
ijk. In fact, due to the constraint (4.12), for the ith row and

jth monomial, nx the allowed coefficients c
(l)
ijk yield the part in the positive quadrat

of the surface of the unit sphere in an nx-dimensional space associated with the

vector 1-norm, illustrated in Fig. 4.2a for the three-dimensional case.

When strengthening the constraint (4.12), by additionally requiring

c
(l)
ijk ∈ {1, 0} , (4.14)

the decision set becomes a finite set, as illustrated in Fig. 4.2b.

1
1

1

c
(l)
ij1

c
(l)
ij2

c
(l)
ij3

(a) Exemplary decision set of the c
(l)
ijk as the

positive quadrat of the surface of the
unit sphere associated with the vector
1-norm in a 3-dimensional space.

1
1

1

c
(l)
ij1

c
(l)
ij2

c
(l)
ij3

(b) Exemplary decision set of the c
(l)
ijk as

the extremal points of the surface of the
unit sphere associated with the vector
1-norm in the positive quadrat in a 3-
dimensional space.

Figure 4.2: Illustration of decision sets in the LPV factorization process.

While in [77], possible overbounding in the parameter range incurred by a par-

ticular LPV parameterization is used as the major selective property for affine LPV

models, the algorithm in [146, Sect. 7.4.2] priorizes the resulting number of LPV

parameters and preservation of dynamic order for each row of the nonlinear dif-

ferential equation. The last aspect corresponds to the aforementioned priority of

pulling higher order derivatives w. r. t. each degree of freedom into the state vector

instead of having them as a parameter in the K
(
ρ
)

and D
(
ρ
)

matrices.

Based on some such heuristic rules, the introduction a further weighting matrix

Wi =

nmm
x

diag
j=1

([
aij1 aij2 . . . aijnx

])
,

with aijk =






aijk ∈ R, if

⌊
mm

x,j

(
x
)

xk

⌋
6= 0

0, otherwise,

(4.15)
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can yield a framework for an a priori specification of an objective measure. By taking

the product, one has the matrix

WiC
(l)
i =




ai11c
(l)
i11 ai12c

(l)
i12 . . . ai1nxc

(l)
i1nx

ai21c
(l)
i21 ai22c

(l)
i22 . . . ai2nxc

(l)
i2nx

...
. . .

...

ainmm
x
1c

(l)
inmm

x
1 ainmm

x
2c

(l)
inmm

x
2 . . . ainmm

x
nxc

(l)
inmm

x
nx




,

which inherits the sparsity pattern from Wi, cf. (4.15).

The coefficients aijk can be perceived as design parameters that under some

objective measure incur a penalty for a particular entry in row i and column k. The

following objective measures are proposed:

Penalize Sparsity, Finite Decisions

Following the heuristic that fully populated plant matrices increase the capability

of a representation to represent couplings for frozen parameter values, sparsity in

the resulting factorization is penalized. For this purpose define L as a nmm
x
× nmm

x

lower left triangular matrix full of ones. This matrix is used to penalize terms

accumulating in a certain column by producing a cumulative sum of the rows of

WiC
(l)
i . Summing over both columns and rows yields a single objective measure.

If decisions are constrained by (4.14), the lowest objective measure indicates the

desired factorization.

The corresponding optimization problem can be formulated as

min
c
(l)
ijk

1⊤nmm
x

(
LWiC

(l)
i

)
1nx , s. t. (4.14). (4.16)

Penalize Sparsity, Infinite Decisions

For the case of infinitely many combinations of coefficients according to con-

straint (4.12), the number of factorizations can no longer be enumerated and as-

signed to an objective measure. In this case, the largest singular value of WiC
(l)
i ,

subject to (4.12) can be taken as a measure of the uniformity by which coeffi-

cients are distributed due to the factorization. For illustration, consider aijnx = 1,

∀ (j,nx) ∈
{
1, . . . ,nmm

x

}
× {1, . . . ,nx}. Then,

The corresponding optimization problem can be formulated as

min
c
(l)
ijk

σ
(
WiC

(l)
i

)
, s. t. (4.12). (4.17)

Promote Sparsity

In case, coupling terms are already sufficiently represented by the nominal system

matrices, penalizing sparsity can lead to unnecessary complex LPV representations.

In such situations, the usual decision constraint (4.14), [77, 146], is superior to re-

duce the number of parameter-dependent terms.
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Thus, the following optimization problem is proposed

max
c
(l)
ijk

1⊤nmm
x

(
LWiC

(l)
i

)
1nx , s. t. (4.14). (4.18)

Consider Ex. 4.3 for illustration.

Example 4.3 (Pendulum With Variable Length, cont’d)

Reconsider Ex. 4.2 on p. 110. In the spirit of [E47, E69], the angular velocity q̇ and angle

q is to be regulated to zero.




1

x

1

b3






q̇

q̈

ẋ

ẍ


+




0 −1 0 0

b1sinc(q) b2c1x+ 2c2ẋ b2(1−c1)q̇ 2(1−c2)q̇

0 0 0 −1

0 0 0 1






q

q̇

x

ẋ


=




0

0

0

u


 .

If both c1 = c2 = 1 are chosen, the angular mode is always decoupled from the pendulum

length.




1

x

1

b3






q̇

q̈

ẋ

ẍ


+




0 −1 0 0

b1sinc(q) b2x+ 2ẋ 0 0

0 0 0 −1

0 0 0 1






q

q̇

x

ẋ


=




0

0

0

u


 .

On the other hand, if both c1 = c2 = 0 are chosen




1

x

1

b3






q̇

q̈

ẋ

ẍ


+




0 −1 0 0

b1sinc(q) 0 b2q̇ 2q̇

0 0 0 −1

0 0 0 1






q

q̇

x

ẋ


=




0

0

0

u


 .

the pendulum appears as undamped for frozen parameter values. Consequently, to preserve

coupling through ẋ in the (2,4)-term, sparsity in the resulting factorization has to be pe-

nalized. However, as x > 0, it is also desirable to penalize sparsity to the extent that local

damping in q via the (2,2)-term is maintained. For this purpose, a high penality a1j3 = 1

may be imposed on the third column for all monomials, whereas a particularly low penalty

a1j4 = 0.1 is imposed on the fourth. The remaining penalties for the second column are set

to a1j2 = 0.5. From

W1C
(l)
1 =

[
0 a112 a113 0

0 a122 0 a124

]




0

c1

(1− c1)

0

0

c2

0

(1− c2)




,
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one therefore has when following the optimization problem (4.16)

1⊤nmm
x

(
LW1C

(l)
1

)
1nx

=
[
1 1

] [
1 0

1 1

][
0 a112c1 a113(1− c1) 0

0 a122c2 0 a124(1− c2)

]



1

1

1

1




=
[
2 1

] [
a112c1 + a113(1− c1)

a122c2 + a124(1− c2)

]

= 2a112c1 + 2a113(1− c1) + a122c2 + a124(1− c2).

= c1 + 2(1− c1) +
1

2
c2 +

1

10
(1− c2).

The minimizing solution is obviously c1 = 1 and c2 = 0. For more complex problems such

an optimization can also be performed by the Matlab function ≪fmincon≫. Note, that this

factorization has been used effectively in real-time, experimental active damping control of

a container crane test rig [E47, E69].

With equal weights aijk = 1, optimization (4.17) returns c1 = c2 =1 /3 using ≪fmin-

con≫. This solution reflects an equal distribution of monomial terms: Two terms weighted

by 1/3 in the second column and one term each weighted 2/3 in the third and fourth column.

While not necessarily resulting in the best control performance, such factorizations of high

complexity preserve both coupling and damping/stiffness terms and can be used to check

feasibility of a control problem as a preliminary step.

4.3.3 Further Considerations

The above approaches are only heuristics, intended to help systematize the tedious

and error prone factorization procedure. Based on the above factorization, further

heuristics—or possibly even rigorous methods—can be developed. As mentioned

in [146], obtaining a tractable number of LPV terms is only one dimension of the

LPV parameterization issue. It appears, however, difficult to rigorously connect

more control-oriented objective measures, such as stabilizability and detectablility

for all frozen parameter values.

As an initial step towards this direction, consider the following condition on

stabilizability of an LTI system in non-singular, i. e., Exx is invertible, descriptor

form

P :

[
Exx 0

0 I

][
ẋ

y

]
=

[
Fxx Fxu

Cy Dyu

][
x

u

]
. (4.19)



4.3 Factorization of the Vector of Generalized Forces 115

Lemma 4.1 (Stabilizability of a Descriptor LTI System [88])

The system P from (4.19) is stabilizable iff

[
sExx − Fxx Fxu

]
has full row rank ∀s ∈ C

+. (4.20)

Proof: The proof follows immediately from premultiplying the well-known con-

dition
[
sI−A Bu

]
has full row rank ∀s ∈ C

+

by Exx and the fact that rank (MN) = rank (N) for all matrices M of full column

rank.

By ≪local stabilizability≫, we will denote the fact that all LTI systems, resulting

from all possible frozen parameter values of an LPV system, are stabilizable.

Formally, we have for the LPV plant

Pσρ :






[
Exx
(
ρ
)
0

0 I

][
ẋ

y

]
=

[
Fxx
(
ρ
)

Fxu
(
ρ
)

Cy
(
ρ
)
Dyu

(
ρ
)
] [
x

u

]
,

ρ(t) ∈ Fσρ

(4.21)

the following definition.

Definition 4.1 (Local Stabilizability of LPV Systems)

The LPV system Pσρ from (4.21) is said to be locally stabilizable, if it is stabilizable for all

fixed ρ ∈ ρ.

Consequently, one can formulate the following corollary.

Remark 4.2 Unlike the gridded evaluation of stability conditions on the basis of matrix

inequality conditions, common as an a posteriori check in the gridding LPV synthesis

approach, continuity arguments do not prevail with respect to rank conditions, which are

discontinuous.

Corollary 4.1 (Local Stabilizability of a Descriptor LPV System)

The system Pσρ from (4.21) is locally stabilizable iff

[
sExx

(
ρ
)
− Fxx

(
ρ
)
Fxu
(
ρ
)]

has full row rank ∀ (s, ρ) ∈ C
+ × ρ. (4.22)

Analogously, one may define ≪local detectability≫ as follows.

Definition 4.2 (Local Detectability of LPV Systems)

The LPV system Pσρ from (4.21) is said to be locally detectable, if it is detectable for all

fixed ρ ∈ ρ.
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Formally, the following corollary provides a rank condition to check for local

detectability.

Corollary 4.2 (Local Detectability of a Descriptor LPV System)

The system Pσρ from (4.21) is locally detectable iff

[
sExx

(
ρ
)
− Fxx

(
ρ
)

Cy
(
ρ
)

]

has full column rank ∀ (s, ρ) ∈ C
+ × ρ. (4.23)

The conditions of Cors. 4.1 and 4.2 may be difficult to check in general, but for

practical purposes, it may often be sufficient to evaluate it on a sufficiently dense

grid for a constant s = 0.

The descriptor-like form of the rank conditions may further simplify the evalua-

tion by avoiding rational terms.
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4.4 A Full-Block Linear Fractional Transformation-Based Linear

Parameter-Varying Parameterization of Descriptor Models

I
n the following, explicit LFRs of general LPV models will be derived based on

a non-singular descriptor form. These LFT-LPV model representations are devel-

oped making use of full LFT parameter blocks as opposed to diagonal ones usually

assumed in the literature, e. g., [5, 161, 163].

Potential benefits of full parameter blocks have been hinted at in [53, Chap. 4.4,

p. 58] and [125]. Their usefulness in synthesis will be explored in Chap. 5, whereas

the following sections of this chapter focus on LFRs of small size. The next chapter

will continue with the automated rational or affine parameterization of the result-

ing full parameter blocks by a minimal number of parameters.

4.4.1 Non-Singular LPV Descriptor Representation

Consider models of physical plants governed by an LPV differential equation in

non-singular descriptor form

Gσρ :






[
Exx
(
ρ
)
Exy
(
ρ
)

Eyx
(
ρ
)
Eyy
(
ρ
)
] [
ẋ

y

]
=

[
Fxx
(
ρ
)
Fxu
(
ρ
)

Fyx
(
ρ
)
Fyu
(
ρ
)
] [
x

u

]
,

ρ(t) ∈ Fσρ

(4.24)

where

E
(
ρ
) △
=

[
Exx
(
ρ
)
Exy
(
ρ
)

Eyx
(
ρ
)
Eyy
(
ρ
)
]
∈ R

(nx+ny)×(nx+ny),

F
(
ρ
) △
=

[
Fxx
(
ρ
)
Fxu
(
ρ
)

Fyx
(
ρ
)
Fyu
(
ρ
)
]
∈ R

(nx+ny)×(nx+nu),

with E
(
ρ
)

non-singular. Both matrices have arbitrary dependency on ρ ∈ Fσρ . Con-

sider Ex. 4.4 to appreciate nonlinear mechanical LPV systems as a special case of

system representation (4.24).

Remark 4.3 The attribute ≪non-singular≫ is derived from restricting E
(
ρ
)

to invertible

matrices only and therefore prohibiting any kinds of algebraic constraints.

Preliminary results of this section have been previously published in [57, E46, E48, 60]. The results are ex-

tended by the derivation of more general and compact representations. Experimental validation of the methods

is published in [60].
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Example 4.4 (Mechanical Descriptor LPV System)

Clearly, mechanical LPV systems as introduced in the previous sections are a special case

of (4.24) when written in the form

Gσρ :








I 0 0

0 J
(
ρ
)
0

0 0 I






q̇

q̈

y


=




0 I 0

−K
(
ρ
)
−D

(
ρ
)
T
(
ρ
)

I 0 0






q

q̇

u


 ,

ρ(t) ∈ Fσρ ,

(4.25)

with q ∈ Rnq , q̇ ∈ Rnq , u ∈ Rnu .

Introduce LFRs for the parameter-dependent matrices E
(
ρ
)

and F
(
ρ
)

of the form

E
(
ρ
)
= E0

(
ρ
)
+∆̃E

(
ρ
)
= ∆E

(
ρ
)
⋆

[
0 WE

(
ρ
)

V
(
ρ
)
E0
(
ρ
)
]
, (4.26)

F
(
ρ
)
= F0

(
ρ
)
+∆̃F

(
ρ
)
= ∆F

(
ρ
)
⋆

[
0 WF

(
ρ
)

V
(
ρ
)
F0
(
ρ
)
]
. (4.27)

The masking matrices V
(
ρ
)
, WE

(
ρ
)

and WF

(
ρ
)

can be used to select parameter-

dependent blocks ∆E
(
ρ
)

and ∆F
(
ρ
)

that are potentially smaller in size than their

nominal matrices E0
(
ρ
)

and F0
(
ρ
)
, respectively. For generality, the nominal ma-

trices remain parameter-dependent and even the masking matrices could contain

parameters, consequently allowing a combined gridding and multiplier-based syn-

thesis approach as per [161], if, e. g., some parameters are difficult to treat in the

LFT framework.

Define

Υ
(
ρ
) △
=
[
∆E
(
ρ
)
, ∆F

(
ρ
)]

, Υ
(
ρ
)
∈R

nqΥ×npΥ (4.28)

and require the following assumptions to hold.

(A4.2) A parameterization is chosen that satisfies 0 ∈
{
Υ
(
ρ
) ∣∣ ρ ∈ ρ

}
.

(A4.3) The matrix E0
(
ρ
)

is non-singular for all ρ ∈ ρ.

Ass. (A4.2) is required for multiplier-based synthesis as per [125]. It guarantees that

the inertia hypotheses on the multipliers as from Lma. 2.4 lead to the existence of

an explicit formula for the parameter block of the controller given in Lma. 2.5 on

page 69. Consequently, consider an admissible nominal operating point ρ0 ∈ ρ, for

which Υ
(
ρ0
)
6= 0. Then clearly

Υ
(
ρ
)
=
(
Υ
(
ρ
)
−Υ

(
ρ0
))

+Υ
(
ρ0
)
,
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where
(
Υ
(
ρ
)
−Υ

(
ρ0
))

defines the new block Υ
(
ρ
)

and Υ
(
ρ0
)

can be shifted into

the nominal system matrices E0
(
ρ
)

and F0
(
ρ
)
.

In the case that Ass. (A4.2) cannot be satisfied for any physically admissible

parameter ρ ∈ ρ, the compact set of admissible parameters may be extended at

the cost of introducing overbounding and consequently conservatism in controller

synthesis. It can therefore be assumed that Ass. (A4.2) holds. Ass. (A4.3) restricts

the class of descriptor systems to not include algebraic constraints, s. t. a standard

state space representation can always be derived.

4.4.2 Compact Rational LFT-LPV Parameterization

From compact LFRs associated with coprime factor representations [44], an LFR of

Gρ
(
ρ
) △
= E−1

(
ρ
)
F
(
ρ
)
=
(
E0+∆̃E

(
ρ
))−1 (

F0+∆̃F
(
ρ
))

can be found as

Gρ
(
ρ
)
=
[
∆̃E

(
ρ
)
∆̃F

(
ρ
)]

⋆



−E0

−1 −E0
−1F0

0 I

E0
−1 E0

−1F0


 . (4.29)

Using (4.29), it is straightforward to obtain the system representation (4.31) as an

LFR with non-square parameter block Υ
(
ρ
)
.

Gσρ :








ẋ

pΥ
y


=



A BΥ Bu

CΥ DΥΥ DΥu
Cy DyΥ Dyu






x

qΥ
u




qΥ = Υ
(
ρ
)
pΥ, ρ(t) ∈ Fσρ ,

(4.30)



DΥΥ CΥ DΥu

BΥ A Bu

DyΥ Cy Dyu


=



−WEE0

−1V −WEE0
−1F0

0 WF

E0
−1V E0

−1F0


, (4.31)

Gσρ :








ẋ

pΛ
y


=



A BΛ Bu

CΛ 0 DΛu
Cy DyΛ Dyu






x

qΛ
u




qΛ = Λ
(
ρ
)
pΛ, ρ(t) ∈ Fσρ ,

(4.32)



0 CΛ DΛu

BΛ A Bu

DyΛ Cy Dyu


=



0 CΛ DΛu

BΥ A Bu

DyΥ Cy Dyu


. (4.33)
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Example 4.5 (Mechanical Descriptor LPV System, cont’d)

For the special case (4.25), introduce LFRs for the parameter-dependent matrices J
(
ρ
)
,

K
(
ρ
)
, D
(
ρ
)

and T
(
ρ
)

of the form

J
(
ρ
)
= J0

(
ρ
)
+ ∆̃J

(
ρ
)
= ∆J

(
ρ
)
⋆

[
0 WJ

VJ J0
(
ρ
)
]

, (4.34)

K
(
ρ
)
= K0

(
ρ
)
+ ∆̃K

(
ρ
)
= ∆K

(
ρ
)
⋆

[
0 WK

VJ K0
(
ρ
)
]

, (4.35)

D
(
ρ
)
= D0

(
ρ
)
+ ∆̃D

(
ρ
)
= ∆D

(
ρ
)
⋆

[
0 WD

VJ D0
(
ρ
)
]

, (4.36)

T
(
ρ
)
= T0

(
ρ
)
+ ∆̃T

(
ρ
)
= ∆T

(
ρ
)
⋆

[
0 WT

VJ T0
(
ρ
)
]

. (4.37)

Define

V =



0

VJ

0


 ,

WE =
[
0 WJ 0

]
,

WF = diag(WK,WD,WT ) ,

E0
(
ρ
)
=



I 0 0

0 J0
(
ρ
)
0

0 0 I


 , F0

(
ρ
)
=




0 I 0

−K0
(
ρ
)
−D0

(
ρ
)
T0
(
ρ
)

I 0 0


 ,

∆E
(
ρ
)
= ∆J

(
ρ
)
, ∆F

(
ρ
)
=
[
−∆K

(
ρ
)
−∆D

(
ρ
)
∆T
(
ρ
)]

.

4.4.3 Compact Affine LFT-LPV Parameterization

An alternative representation can be derived by considering the parameter block

Λ
(
ρ
)
∈R

nqΛ×npΛ , with

Λ
(
ρ
) △
= Υ

(
ρ
)
⋆WΛ=Υ

(
ρ
)
⋆

[
DΥΥ WΛ12

I 0

]
, (4.38)

where, in order to minimize npΛ , a case distinction should be made:

WΛ12
△
=






[
CΥ DΥu

]
W
(
ρ
)

if nu +nx 6 npΥ

InpΥ
if nu +nx > npΥ

.
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Using this for an alternative compact representation yields the system descrip-

tion (4.33), which is affinely dependent on the compact non-square matrix Λ
(
ρ
)
.

Accordingly, in the system matrices, make the case distinction

[
CΛ DΛu

] △
=






W⊤
(
ρ
)

if nu +nx 6 npΥ[
CΥ DΥu

]
if nu +nx > npΥ

.
(4.39)

The matrixW
(
ρ
)
∈ R

(nu+nx)×npΛ contains an orthogonal basis of the space comple-

mentary to ker
[
CΛ DΛu

]
and satisfies W

(
ρ
)
W⊤

(
ρ
)
= I(nu+nx). This construction

allows to generate parameter blocks Λ
(
ρ
)

with npΛ < nu +nx for the case that col-

umns of the system matrix Gρ
(
ρ
)

are parameter-independent. For the typical case

that all plant parameters are located within ∆E
(
ρ
)

and ∆F
(
ρ
)
, s. t. all masking and

nominal matrices are constant, the construction of W is a simple task.

In contrast to (4.33), the representation (4.31) is rational in Υ
(
ρ
)
. In view of me-

chanical model structures as shown in (4.25), the block Υ
(
ρ
)

clearly separates gen-

eralized inertia, stiffness, damping and input gains, which facilitates a systematic

affine or rational parameterization of Υ
(
ρ
)

by inspection. Due to the relation of

both parameter blocks made explicit in (4.38), this also gives rise to a rational pa-

rameterization of Λ
(
ρ
)

in terms of parameters in which Υ
(
ρ
)

is affine or rational. A

fully affine parameterization can be derived based on the reformulation of Eq. (4.38)

as

Λ
(
ρ
)
=
(
I+∆E

(
ρ
)
WEE0

−1V
)−1

Υ
(
ρ
)
WΛ12 (4.40)

obtained by simple manipulations. Using

Λ
(
ρ
)
=

1

d
(
ρ
)Λ̃
(
ρ
)

(4.41)

with

d
(
ρ
) △
= det

(
I+∆E

(
ρ
)
WEE0

−1V
)

(4.42)

and where

Λ̃
(
ρ
)
= adj

(
I+∆E

(
ρ
)
WEE0

−1V
)
Υ
(
ρ
)
WΛ12, (4.43)

the term d
(
ρ
)

can be identified as a common denominator and the problem reduces

to parameterizing Λ̃
(
ρ
)
. The next section will formally introduce such a systematic

approach of parameterizing LPV models.

Figures 4.3a–4.3c illustrate the parameterizations of the LPV system and their

relation. Note that the sizes of the parameter blocks Υ
(
ρ
)

and Λ
(
ρ
)

may differ. For

the special case of mechanical systems, consider Ex. 4.6 for illustration.
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GΛ
(
ρ
)

Λ
(
ρ
)

qΛ pΛ

yu

Gσρ

(a) LFT-LPV plant as an interconnection of
the general LPV plant GΛ

(
ρ
)

and the pa-
rameter block Λ

(
ρ
)
.

GΥ
(
ρ
)

Υ
(
ρ
)

qΥ pΥ

yu

Gσρ

(b) LFT-LPV plant as an interconnection of
the general LPV plant GΥ

(
ρ
)

and the pa-
rameter block Υ

(
ρ
)
.

GΥ
(
ρ
)

GΛ
(
ρ
)

Υ
(
ρ
)

Λ
(
ρ
)

WΛ

(
ρ
)

qΛ pΛ

qΥpΥ

yu

Gσρ

(c) LFT-LPV plant as an interconnection of the general LPV
plant GΛ

(
ρ
)

and the parameter block Λ
(
ρ
)

represented as an
LFR in the block Υ

(
ρ
)

and the parameter-dependent matrix
WΛ

(
ρ
)
.

Figure 4.3: LFT-LPV plant model representations with compact parameter blocks.

Example 4.6 (Mechanical Descriptor LPV System, cont’d)

For the special case (4.25), and LFRs for the parameter-dependent system matrices intro-

duced as in Ex. 4.5, note that the worst-case sizes of the parameter blocks Υ
(
ρ
)

and Λ
(
ρ
)

as obtained from Eq. 4.28 and 4.38, respectively, are

Υ
(
ρ
)
∈ R

nq×(3nq+nu), Λ
(
ρ
)
∈ R

nq×(2nq+nu),

where q ∈ Rnq . For constant input gains, e. g., T
(
ρ
)
= Inq , both parameter blocks attain

the same size: nq × 3nq.
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4.5 Semi-Automated Parameterization

T
he parameter blocks Υ

(
ρ
)

and Λ
(
ρ
)

have thus far been considered in terms

of their dependency on the general LPV parameters ρ, which are usually con-

sidered to consist of the directly measurable signals, cf. Sect. 2.1.1. For their use

in multiplier-based LFT-LPV synthesis approaches, parameter sets in which the

parameter blocks are rational are required.

4.5.1 Usage in an LFT-LPV Synthesis Approach

From Lmas. 2.2 and 2.5, i. e., under the inertia hypotheses on full multiplier blocks,

the multiplier conditions encountered in Thms. 2.15 and 2.17 can be evaluated on

the vertices of matrix polytopes conv (Υ) and conv (Λ), respectively, where

Υ
△
=

{
Υ
(
ρ
) ∣∣ ρ ∈ ρ

}
, (4.44)

Λ
△
=

{
Λ
(
ρ
) ∣∣ ρ ∈ ρ

}
. (4.45)

In practice, the vertices of the matrix polytopes are derived from a set of param-

eters in which the respective parameter block is affine. Such an approach allows

fully populated parameter blocks, such as Λ
(
ρ
)

or Υ
(
ρ
)

derived above. Therefore,

methods to systematically parameterize Υ
(
ρ
)

or Λ
(
ρ
)

affinely are required.

Since the number of vertices usually grow exponentially with the number of

parameters, synthesis complexity may be rendered intractable for large numbers of

affine parameters. Chap. 5 will detail methods that benefit from the use of compact

full parameter blocks, while also using knowledge on their underlying rational

parameterization.

4.5.2 Affine and Rational Parameterizations

Parameterizations of the blocks Υ
(
ρ
)

and Λ
(
ρ
)

in LFR form with standard diagonal

parameter blocks are developed to maintain the underlying rational parameter-

dependency. In this regard, consider a mapping from measurable parameters to a

parameter set that renders Υ
(
δ
)

polynomial in δ, denoted

fρ→δ ∈ C1(ρ, R
nδ), ρ(t) 7→ fρ→δ

(
ρ(t)

) △
= δ(t),

Preliminary results of this section have been previously published in [60]. The results are extended by a more

comprehensive parameterization algorithm.
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It allows for a parameterization of Λ
(
ρ
)

rational in δ, which yields

Υ
(
δ
)
= ∆Υ

(
δ
)
⋆

[
W∆11 W∆12

W∆21 W∆22

]
= ∆Υ

(
δ
)
⋆W∆, (4.46)

∆Υ
(
δ
)
=

nδ
diag
i=1

(
δi(t)IrΥδ,i

)

Λ
(
δ
)
= ∆Λ

(
δ
)
⋆

[
V∆11 V∆12

V∆21 V∆22

]
= ∆Λ

(
δ
)
⋆ V∆, (4.47)

∆Λ
(
δ
)
=

nδ
diag
i=1

(
δi(t)IrΛδ,i

)
,

Note that due to (4.38) ∆Λ
(
δ
)
= ∆Υ

(
δ
)
.

In order to develop affine parameterizations, a mapping

fρ→θ ∈ C1(ρ, R
nθ), ρ(t) 7→ fρ→θ

(
ρ(t)

) △
= θ(t),

which renders Λ
(
ρ
)

affine in the parameters θ and a further mapping rendering

Υ
(
ρ
)

affine in the parameters υ,

fρ→υ ∈ C1(ρ, R
nυ), ρ(t) 7→ fρ→υ

(
ρ(t)

) △
= υ(t),

is required. Such mappings allow to construct LFRs of the form

Υ
(
υ
)
= ΥΥ

(
υ
)
⋆

[
0 WΥ12

WΥ21 WΥ22

]
= ΥΥ

(
υ
)
⋆WΥ, (4.48)

ΥΥ
(
υ
)
=

nυ
diag
i=1

(
υi(t)Irυ,i

)
.

Λ
(
θ
)
= ΘΛ

(
θ
)
⋆

[
0 VΘ12

VΘ21 VΘ22

]
= ΘΛ

(
θ
)
⋆ VΘ, (4.49)

ΘΛ
(
θ
)
=

nθ
diag
i=1

(
θi(t)Irθ,i

)

Figures 4.4a and 4.4c show decompositions that choose the rational plant repre-

sentation based on Υ
(
ρ
)

as a starting point. Figure 4.4a illustrates the case, where

a parameterization Υ
(
υ
)

is found by means of a mapping υ
△
= fρ→υ

(
ρ
)

that renders

the parameter block affine in the parameters υ. Pulling out these parameters into

standard LFR with diagonal blocks is performed using (4.48). Figure 4.4c depicts

the case, where Υ
(
δ
)

is rationally parameter dependent and (4.46) is employed to

generate a diagonal feedback block ∆Υ
(
δ
)
.

Figures 4.4b and 4.4d illustrate the same ideas for decompositions that choose

the affine plant representation based on Λ
(
ρ
)

instead.
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Gυ
(
ρ
)

GΥ
(
ρ
)

ΥΥ
(
υ
)

Υ
(
υ
)

WΥ

qΥ pΥ

yu

Gσρ

(a) LFT-LPV plant GΥ

(
ρ
)

in interconnec-
tion with the affinely parameterized
parameter block Υ

(
υ
)
. The block Υ

(
υ
)

in turn is decomposed by the LFT
Υ
(
υ
)
= ΥΥ

(
υ
)
⋆WΥ.

Gθ
(
ρ
)

GΛ
(
ρ
)

ΘΛ
(
θ
)

Λ
(
θ
)

VΘ

qΛ pΛ

yu

Gσρ

(b) LFT-LPV plant GΛ

(
ρ
)

in interconnec-
tion with the affinely parameterized
parameter blockΛ

(
θ
)
. The blockΛ

(
θ
)

in turn is decomposed by the LFT
Λ
(
θ
)
= ΘΛ

(
θ
)
⋆ VΘ.

Gδ
(
ρ
)

GΥ
(
ρ
)

∆Υ
(
δ
)

Υ
(
δ
)

W∆

qΥ pΥ

yu

Gσρ

(c) LFT-LPV plant GΥ

(
ρ
)

in interconnec-
tion with the polynomially param-
eterized parameter block Υ

(
δ
)
. The

block Υ
(
δ
)

in turn is decomposed by
the LFT Υ

(
δ
)
= ∆Υ

(
δ
)
⋆W∆.

Gδ
(
ρ
)

GΛ
(
ρ
)

∆Λ
(
δ
)

Λ
(
δ
)

V∆

qΛ pΛ

yu

Gσρ

(d) LFT-LPV plant GΛ

(
ρ
)

in interconnec-
tion with the rationally parameterized
parameter block Λ

(
δ
)
. The block Λ

(
δ
)

in turn is decomposed by the LFT
Λ
(
δ
)
= ∆Λ

(
δ
)
⋆ V∆.

Figure 4.4: LFT-LPV plant models with full parameter blocks parameterized as LFRs with

diagonal parameter blocks.



126 Compact LFT-LPV Modeling

4.5.3 Tools for Automated Parameterization

To automate the process of parameterization, consider the following lemma as the

main tool for the subsequent discussion.

Lemma 4.2 (Polynomial Basis)

Consider a function

N :δ→ R
n1×n2 , δ 7→ N

(
δ
)

with polynomial dependence on the parameter vector

δ =
[
δ1 δ2 . . . δnδ

]⊤
∈ δ.

Let the vector of monomials m
(
δ
)
=
[
m1

(
δ
)

m2

(
δ
)
. . . mnm

(
δ
)]⊤

occurring in N
(
δ
)

admit the decomposition

N
(
δ
)
= N

(
m
(
δ
)
⊗ In2

)
(4.50)

N =
[
N1 N2 . . . Nnm

]
∈ R

n1×nmn2 ,

Ni =
[
ni,1 ni,2 . . . ni,n2

]
∈ R

n1×n2 ,

ni,j ∈ R
n1 , i ∈ {1, 2, . . . ,nm} , j ∈ {1, 2, . . . ,n2} .

Then a vector p
(
δ
)
=
[
p1
(
δ
)

p2
(
δ
)
. . . pnp

(
δ
)]⊤

contains a minimal number np of poly-

nomials that admits a decomposition

N
(
δ
)
= P

(
p
(
δ
)
⊗ In2

)
(4.51)

P =
[
P1 P2 . . . Pnp

]
∈ R

n1×npn2 ,

Pi =
[
pi,1 pi,2 . . . pi,n2

]
∈ R

n1×n2 ,

pi,j ∈ R
n1 , i ∈

{
1, 2, . . . ,np

}
, j ∈ {1, 2, . . . ,n2} .

with np 6 nm is given by p
(
δ
)
= V⊤m

(
δ
)
, where V ∈ R

nm×np and P are derived from

the singular value decomposition (SVD)

n
(
δ
)△
=




n1,1 n2,1 . . . nnm ,1

n1,2 n2,2 . . . nnm ,2

...
. . .

...

n1,n2
n2,n2

. . . nnm ,n2


m
(
δ
)
=[U U0]

[
Σ 0

0 0

][
V⊤

V⊤
0

]
m
(
δ
)

=




p1,1 p2,1 . . . pnp ,1

p1,2 p2,2 . . . pnp ,2

...
. . .

...

p1,n2
p2,n2

. . . pnp ,n2


p
(
δ
)
= UΣp

(
δ
)
.
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Lemma 4.2 essentially provides a systematic way to obtain affine parameteri-

zations of polynomially parameter-dependent parameter blocks. The new affine

parameters are simply defined from the polynomial terms. By first normalizing the

monomial basis, a polynomial basis derived via Lma. 4.2 will not be biased, since

all weights are shifted into the coefficient matrices the PCA relies on. In return,

after obtaining a polynomial basis, its normalization facilitates further modeling

steps.

Remark 4.4 An affine decomposition of N
(
δ
)

into coefficient matrices Ni and monomials

mi

(
δ
)

can be easily performed using standard symbolic tools in Matlab.

The following proposition formalizes the normalization of the monomial basis.

Proposition 4.1 (Normalization of Monomial Basis)

Consider a function

N :δ→ R
n1×n2 , δ 7→ N

(
δ
)

with polynomial dependence on the parameter vector δ ∈ δ. Furthermore, consider the

decomposition in terms of a monomial basis m
(
δ
)

as from Lma. 4.2.

Let the vector of shifted (e. g., normalized) parameters be given as

δN =




δ1N

δ2N
...

δnδN


 , δiN =

1

δiR
(δi − δi0) , i ∈ {1, 2, . . . ,nδ} ,

where in the case of normalization, one has

δiR =
1

2

(
δi − δi

)
and δi0 =

1

2

(
δi + δi

)
, i ∈ {1, 2, . . . ,nδ} .

Express the vector of monomials occurring in N
(
δ
)

as

m
(
δ
)
=MNm

(
δN

)
+ m

(
δ0
)
,

which admits the decomposition

N
(
υ
)
= N (MN ⊗ In2)

(
m
(
δN

)
⊗ In2

)
+N

(
m
(
δ0
)
⊗ In2

)

= NN

(
m
(
δN

)
⊗ In2

)
+N0

Since for the parameterization of parameter blocks Υ
(
•
)

or Λ
(
•
)
, each column

corresponds to a specific state, state derivative or plant input, it can be appropri-

ate to weight each column with the respective maximum bounds or range of the

admissible state or input trajectories. If such information is available a priori, it can

be used to reduce the bias of the singular value decomposition via the following

corollary.
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Corollary 4.3 (Weighted Polynomial Basis)

In addition to the conditions of Lma. 4.2, consider an invertible weighting matrix W used

to weight the function N
(
δ
)

by right multiplication

Nw :δ→ R
n1×n2 , δ 7→ Nw

(
δ
)
= N

(
δ
)
W

Due to the decomposition of Lma. 4.2, one may write

N
(
δ
)
= N (Inm ⊗ W)

(
Inm ⊗ W−1

) (
m
(
δ
)
⊗ In2

)
(4.52)

= Nw

(
m
(
δ
)
⊗ In2

)
w−1

and a vector of polynomials pw

(
δ
)

resulting from the weighted coefficient matrix that ad-

mits a decomposition

N
(
δ
)
= Pw

(
Inp ⊗ W−1

) (
pw

(
δ
)
⊗ In2

)
(4.53)

is obtained by application of Lma. 4.2 on Nw

(
δ
)
.

Proof: The application of Lma. 4.2 simply results in

Nw

(
δ
)
= Pw

(
pw

(
δ
)
⊗ In2

)

which by

N
(
δ
)
= Nw

(
δ
)
W−1

= Pw

(
pw

(
δ
)
⊗ In2

)
W−1

= Pw

(
Inp ⊗ W−1

) (
pw

(
δ
)
⊗ In2

)

yields the result.

Note that the polynomial basis terms in the vector of polynomials p
(
δ
)

derived

from applying Lma. 4.2 to a polynomial matrix are ordered by descending magni-

tude of the singular values. The following corollary provides an unbiased means

to approximate a given matrix polynomial.

Corollary 4.4 (Polynomial Basis Approximation)

Consider the decompositon (4.51) in terms of

p
(
δ
)
=

[
p̂
(
δ̂
)

p̆
(
δ̆
)
]

, where
p̂ : δ̂→ R

np̂ , δ̂ 7→ p̂
(
δ̂
)
,

p̆ : δ̆→ R
np−np̂ , δ̆ 7→ p̆

(
δ̆
)
,

p̂
(
δ̂
)
=




p1
(
δ̂
)

p2
(
δ̂
)

...

pnp̂

(
δ̂
)




, p̆
(
δ̆
)
=




pnp̂+1

(
δ̆
)

pnp̂+2

(
δ̆
)

...

pnp

(
δ̆
)




δ̂ ∈ δ̂ ⊂ R
nδ̂ , δ̆ ∈ δ̆ ⊂ R

nδ̆ , δ̂∪ δ̆ = δ
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derived by Lma. 4.2 applied on the decomposition (4.50). Further assume that the monomial

basis is normalized according to Prop. 4.1. Then, an approximation

N̂ : δ̂→ R
n1×n2 , δ̂ 7→ N̂

(
δ̂
)

of N
(
δ
)

is given by

N
(
δ
)
≈ N̂

(
δ̂
)
= P̂

(
p̂
(
δ̂
)
⊗ In2

)

P̂ =
[
P1 P2 . . . Pnp̂

]
∈ R

n1×np̂n2 .

Proof: Omitting the (insignificant) last np − np̂ singular values in the procedure

of Lma. 4.2 yields the result.

Remark 4.5 It may happen that the first np̂ polynomials in p
(
δ
)

only depend on a subset

of parameters, collected in the vector δ̂, which—in turn—takes only admissible values from

δ̂ ⊆ δ.

4.5.4 Parameterization Procedure

In the following, a procedure for parameterizing LFT-LPV systems is proposed.

The procedure can be denoted as ≪semi-automated≫, because it relies on an ini-

tial choice of parameters in which the descriptor system matrices are polynomial.

Although this choice may have a non-negligible effect on the resulting complexity

and performance, it has to be performed on a level that still offers a high amount

of transparency to the engineer and can thus be easily performed manually. The

subsequent automated parameterization procedure then provides a guideline in ob-

taining models and approximations thereof of intermediate to low complexity. This

renders the objective of finding a small parameter set in the initial manual defini-

tion of polynomial parameters less important, which allows to strengthen the focus

on retaining couplings and reducing overbounding by the selection of parameters.

The procedure is first explained in detail, after which it is summarized in Alg. 4.1

and illustrated in a matrix-type classification of the resulting models in Fig. 4.6.

4.5.4.1 Polynomial Parameterization of Υ
(
ρ
)

The block Υ
(
ρ
)

is formed and masking matrices V , WE and WF are defined se-

lecting only parameter-dependent blocks. For subsequent application of Lma. 4.2

and Cor. 4.4 with minimum bias, choose equally weighted entries in the mask-

ing matrices—preferably identities. The choice of a polynomial parameterization

of Υ
(
ρ
)

presents the foundation of subsequent rational or affine parameterizations.

A parameter set δ̃ can be selected manually even for complex systems, simply

covering all transcendental terms or introducing taylor expansions with sufficient

accuracy.
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Subsequently, Ass. (A4.2) is satisfied via a shift based on some admissible op-

erating point ρ0, which also guarantees that the nominal system retains physical

meaning.

Therefore, first decompose Υ
(
ρ
)

as a linear combination of monomials mδ̃

(
δ̃
)
,

Υ
(
δ̃
)
= Υ̃

(
mδ̃

(
δ̃
)
⊗ InpΥ

)
, mδ̃

(
δ̃
)
∈ R

nm
δ̃ ,

where the parameter vector δ̃ contains all transcendental and non-transcendental

terms from which the monomials are constructed without taking into consideration

that each parameter in δ̃ should be allowed to take zero as a value. Since it is the

goal to enable LFT parameterizations of Υ
(
•
)

with diagonal parameter blocks,

such as those given in Eq. (4.46) that contain zero in their compact set of admissible

values, the shift based on ρ0 should be performed on the level of the parameters δ̃,

rather than on the level of the monomials. Consider Ex. 4.7 for illustration.

Example 4.7 (Admissible Diagonal Parameter Blocks)

Assume that ρ
△
=
[
ρ1 ρ2

]
and ρ0 =

[
0 0

]
. Further assume |ρ| 6

[
π π

]
/4 and that a

particular monomial as part of the matrix Υ
(
ρ
)

is

m
(
ρ
)
= cos(ρ1) cos(ρ2)

=
(

cos(ρ1)−1
)(

cos(ρ2)−1
)
+
(

cos(ρ1)−1
)
+
(

cos(ρ2)−1
)
+1.

In view of Ass. (A4.2), an admissible LFR of m
(
ρ
)

is

m
(
ρ
)
=

[
δ1
δ2

]
⋆



0 1 1

0 0 1

1 1 1


 ,

[
δ1
δ2

]
△
=

[
cos(ρ1) − 1

cos(ρ2) − 1

]
.

On the other hand, the LFR

m
(
ρ
)
=

[
δ1
δ2

]
⋆



0 0 1

1 0 0

0 1 0


 ,

[
δ1
δ2

]
△
=

[
cos(ρ1)

cos(ρ2)

]
.

is impractical, since both cos(ρ1) and cos(ρ2) cannot become zero. Finally, the choice

m
(
ρ
)
= δ ⋆

[
0 1

1 1

]
, δ

△
= cos(ρ1) cos(ρ2) − 1,

may appear attractive, but in the case of multiple occurrences of cos(ρ1) and cos(ρ2) in

other entries of matrices related to Υ
(
ρ
)
, such a choice can forcefully hide the underlying

coupling.
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Consequently, in the monomial vector mδ̃

(
δ̃
)
, substitute

δ̃i
(
ρ
)
= δi

(
ρ
)
+ δ̃i

(
ρ0
)
, δi

(
ρ
) △
= δ̃i

(
ρ
)
− δ̃i

(
ρ0
)
, i ∈

{
1, . . . ,nδ̃

}
.

This can yield a larger vector of monomials mδ

(
δ
)
∈ R

nmδ , nmδ
> nmδ̃

, in the

shifted parameters and produces a constant term and a modified decomposition

mδ̃

(
δ̃
)
=M0mδ

(
δ
)
+ mδ̃

(
δ̃
(
ρ0
))

, M0 ∈ R
nm

δ̃
×nmδ .

Υ
(
δ
)
= Υ

(
mδ

(
δ
)
⊗ InpΥ

)
+Υ0,

where Υ = Υ̃
(
M0 ⊗ InpΥ

)
, Υ0 = Υ̃

(
mδ̃

(
δ̃
(
ρ0
))
⊗ InpΥ

)
. Attribute the offset Υ0 to

the nominal system matrices E0 and F0, which then guarantees

0 ∈
{

Υ
(
δ
) ∣∣∣ δ

(
ρ
)
= fρ→δ

(
ρ
)
, ρ ∈ ρ

}

.

Example 4.8 (Shifting of a Monomial Vector)

Consider the nonlinear term

m
(
ρ
)
= cos(ρ1) cos(ρ2) + sin(ρ1) cos(ρ2),

and its decomposition into constant coefficients and monomial vector

m
(
ρ
)
= Υ̃mδ̃

(
δ̃
)
=
[
1 1

] [
δ̃1δ̃2
δ̃2δ̃3

]
,



δ̃1
δ̃2
δ̃3


 △=




cos(ρ1)

cos(ρ2)

sin(ρ1)


 .

With ρ0 =
[
ρ1,0 ρ2,0

]⊤
=
[
0 0

]⊤
, one obtains

δ
△
=



δ1
δ2
δ3


 =



δ̃1 − δ̃1,0
δ̃2 − δ̃2,0
δ̃3 − δ̃3,0


 , δ̃

(
ρ0
)
=



δ̃1,0
δ̃2,0
δ̃3,0


 =



1

1

0


 .

m
(
ρ
)
=
[
1 1

]




[
δ̃2,0 δ̃1,0 0 1 0

0 0 δ̃2,0 0 1

]



δ1

δ2

δ3

δ1δ2

δ2δ3



+

[
δ̃1,0δ̃2,0
δ̃2,0δ̃3,0

]



=
[
δ̃2,0 δ̃1,0 δ̃2,0 1 1

]
mδ

(
δ
)
+ δ̃2,0(δ̃1,0 + δ̃3,0) = Υmδ

(
δ
)
+ Υ̃mδ̃

(
δ̃
(
ρ0
))

.
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Performing a normalization instead of a shift about some nominal operating

point ρ0 ∈ ρ may be tempting at this stage, but in many cases this will result in the

constant offset Υ0 and therefore the nominal system matrices will not correspond to

a physically admissible system in terms of the compact set of general parameters ρ.

This is unavoidable, but a deliberate choice can be made to keep the offset resulting

from normalization performed later in the LFT parameter block instead of shifting

it to the nominal system matrices. Consider Ex. 4.9 for illustration.

Example 4.9 (Normalization of a Monomial Vector)

Consider the nonlinear vector-valued function

m
(
ρ
)
=

[
sin(ρ)

cos(ρ)

]
, |ρ| 6 π/2,

and the ranges of the trigonometric terms

sin(ρ) ∈ [−1, 1] , cos(ρ) ∈ [0, 1] .

The normalized new parameters

δ
△
=

[
δ1(ρ)

δ2(ρ)

]
=

[
sin(ρ)

2(cos(ρ) − 0.5)

]
,

produce a constant offset after substitution that does not correspond to any particular

m
(
ρ0
)
, where ρ0 ∈ [−π/2,π/2]. Thus

m
(
ρ
)
=

[
δ1(ρ)
1
2δ2(ρ)

]
+

[
0

0.5

]
.

Consequently, for the remainder, it is assumed that such a transformation has

been performed and subsequently a normalization according to Prop. 4.1 is ap-

plied,

Υ
(
δN

)
= ΥN

(
mδ

(
δN

)
⊗ InpΥ

)
+ΥN0, (4.54)

where ΥN0 now results from the normalization and remains part of the parameter

block. In the following, the subscript N will be dropped for simplicity of notation.

The set of parameters δ therefore represents a rational parameterization that admits

an LFR of the form (4.46), with a parameter block ∆Υ
(
δ
)

that satisfies

0 ∈
{

∆Υ
(
δ
) ∣∣∣ δ

(
ρ
)
= fρ→δ

(
ρ
)
, ρ ∈ ρ

}

.

Remark 4.6 Note that in general an SVD will yield fully populated matrices Vυ̂ and Vῠ in

Eq. (4.55). Thus, the approximate parameter vector υ̂ usually depends on the full parameter

vector δ. Eliminating entries close to zero in the coefficient matrix Vυ̂ can yield simpler

parametric dependencies υ
(
δ̂
)
, possibly omitting some general LPV parameters altogether.
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4.5.4.2 Affine Parameterization of Υ
(
ρ
)

Application of Lma. 4.2 on the normalized monomial decomposition of Υ
(
δ
)

from (4.54)1 and a subsequent normalization of the polynomials yields a normal-

ized polynomial decomposition based on the vector of polynomials in δ,

υ
(
δ
) △
=

[
V⊤υ̂
V⊤ῠ

]
mδ

(
δ
)
∈ R

nυ , (4.55)

where Vυ̂ ∈ R
nυ̂×nmδ and Vῠ ∈ R

nῠ×nmδ are obtained by Lma. 4.2 and contain the

coefficients with which the monomials are linearly combined. The polynomials are

defined as the set of parameters υ in which Υ
(
υ
)

is affine. The constant offset Υ0
remains unchanged and the affine decomposition is

Υ
(
υ
)
= Υυ

(
υ
(
δ
)
⊗ InpΥ

)
+Υ0.

Using Cor. 4.4, an approximation Υ̂
(
υ̂
)

can be defined up to a desired accuracy.

For this purpose, discard the lower rows of (4.55) corresponding to non-significant

singular values according to Cor. 4.4. Let these rows correspond to the coefficient

matrix Vῠ. Then, the vector of approximate parameters is

υ̂
(
δ
)
= V⊤υ̂ mδ

(
δ
)
∈ R

nυ̂ . (4.56)

By resubstitution, an approximation Υ̂
(
δ̂
)

can be obtained as well.

4.5.4.3 Rational Parameterization of Λ
(
ρ
)

Due to (4.38), Λ
(
δ
)

is directly available. Similarily, approximations Λ̂
(
δ̂
)

and Λ̂
(
υ̂
)

can be obtained from the respective approximations Υ̂
(
•̂
)
.

4.5.4.4 Affine Parameterization of Λ
(
ρ
)

From (4.41), observe that Λ̃
(
υ
)

is polynomial in υ, s. t. a decomposition

Λ
(
υ
)
=

1

d
(
υ
)Λ
(

mυ

(
υ
)
⊗ InpΛ

)
.

can be found. A set of affine parameters is constructed from

θ
(
υ
)
=

1

d
(
υ
)
[
V⊤
θ̂

V⊤
θ̆

]
mυ

(
υ
)
∈ R

nθ , (4.57)

1 Recall that the subscript N has been dropped.
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where the coefficient matrices Vθ̂ ∈ R
nθ̂×nmυ and Vθ̆ ∈ R

nθ̆×nmυ are obtained by

application of Lma. 4.2 and Cor. 4.4, respectively, on the monomial decomposi-

tion without the denominator. By discarding singular values associated with Vθ̆—

possibly due to the reason that they are particularly small—an approximating set

of parameters can be obtained via

θ̂
(
υ
)
=

1

d
(
υ
)V⊤

θ̂
mυ

(
υ
)
∈ R

nθ̂ . (4.58)

An alternative approximate, fully affine parameterization can be obtained by ap-

plying Lma. 4.2 on Λ̂
(
υ̂
)
, which yields yet another parameter set φ.

4.5.5 Summary

The procedure described in the previous sections allows to systematically construct

a set parameterizations of a plant model with different trade-offs between param-

eter complexity and incurred overbounding. Based on the results, a priori assess-

ments of the incurred synthesis and implementation complexity can be performed,

s. t. the most suitable plant representation may be selected for use in, e. g., the LFT-

LPV controller synthesis framework as per [125].

Figs. 4.5a and 4.5b illustrate the chain of LFT interconnections for the case that

some general LPV parameters have been taken to remain in the masking matrices

V , WE, WF or the nominal matrices E0 and F0.

The diagram shown in Fig. 4.6 presents a summary of the above transformations.

The boxes show the respective system descriptions as LFTs of a parameter block

and an input-output operator G•
(
ρ
)
. The parameter-dependence of the operators

arises specifically from possible parameter-dependency of the masking or nominal

matrices. However, it is suppressed in the diagram.

The representations are categorized on two axes: The horizontal segments in-

dicate whether the respective LFRs denote rational or affine dependence on the

parameter block. The vertical segments categorize the type of parameterizations of

the parameter blocks and the structure of the block. For instance, in the represen-

tation Υ
(
δ
)
⋆GΥ, the parameter block Υ

(
δ
)

is polynomially dependent on δ, while

Υ
(
δ
)
⋆GΥ is a rational function in the block Υ

(
δ
)
.

The segments that indicate affine dependence of the parameter blocks on some

parameters are of particular interest. As mentioned above, affinely parameterized

parameter blocks render the evaluation of multiplier conditions as per Lma. 2.2,

i. e., based on LMIs in the vertices spanning the corresponding matrix polytopes,

applicable. In an LFT-LPV synthesis setting based on PiDLFs, Lma. 2.5 is then ap-

plied to construct the controller’s scheduling block. Hence, the smaller the affinely

parameterized parameter block, the less costly the implementation of the controller,

cf. Eq. (3.11). Note, however, that the required number of LMIs increases exponen-

tially with the number of parameters.

When full parameter blocks are considered the commutativity requirements im-

posed by D/G-S, cf. Lma. 2.3 and Exs. 2.3 and 2.4, introduce a high amount of con-
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GΥ
(
ρ
)

GΛ
(
ρ
)

∆Υ
(
δ
)

Λ
(
δ, ρ
)

Υ
(
δ
)

WΛ

(
ρ
)

W∆

qΛ pΛ

qΥpΥ

yu

Gσρ

(a) LFT-LPV plant GΛ

(
ρ
)

in interconnection with the parameter
block Λ

(
δ, ρ
)
. The block Λ

(
δ, ρ
)

is decomposed by the LFT
Λ
(
δ, ρ
)
=
(
∆Υ

(
δ
)
⋆W∆

)
⋆WΛ

(
ρ
)
.

GΥ
(
ρ
)

GΛ
(
ρ
)

ΥΥ
(
υ
)

Λ
(
υ, ρ
)

Υ
(
υ
)

WΛ

(
ρ
)

WΥ

qΛ pΛ

qΥpΥ

yu

Gσρ

(b) LFT-LPV plant GΛ

(
ρ
)

in interconnection with the parameter
block Λ

(
υ, ρ
)
. The block Λ

(
υ, ρ
)

is decomposed by the LFT
Λ
(
υ, ρ
)
=
(
ΥΥ

(
υ
)
⋆WΥ

)
⋆WΛ

(
ρ
)
.

Figure 4.5: LFT-LPV plant models with diagonal parameter blocks and different options in

the parameterization hierarchy.

servatism. Recall that by Lma. 2.6, the use of D/G-S constraints permits to choose a

copy of the plant’s parameter block as the controller’s scheduling function. The use

of D/G-S constraints is therefore advised only for diagonal affinely parameterized

parameter-blocks.

In subsequent sections, it will be shown that the application of the full-block S-

Procedure on multiplier conditions—thus introducing an additional so-called mul-

tiplier stage—will allow a more efficient approach to controller synthesis with both

low implementation and synthesis complexity. By combining compact, full param-

eter blocks and FBMs in the first multiplier stage with diagonal parameter blocks

and D/G-S in a second multiplier stage, low conservatism and compact controller

scheduling functions can be achieved without the need to solve a large number of

LMIs.

For this purpose, the dash-dotted lines in Fig. 4.6 denote the use of LFRs from

Eqs. (4.46), (4.47), (4.48) or (4.49) to arrive at standard parameterizations with diago-
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Figure 4.6: Visualization of Alg. 4.1.

( ) Thin solid lines indicate manual operations.

( ) Dashed lines show immediately available transformations via Eq. (4.38).

( ) Dash-dotted lines indicate the use of standard Matlab tools to transform

an LFR with a full parameter block to an LFR with diagonal parameter block.

( ) Dotted lines indicate a resubstitution using the functional dependence of

a parameter set on another, e. g., on the measurable parameter set ρ.

( ) Thick solid lines indicate the application of Lma. 4.2 or Cor. 4.4.

nal parameter blocks that are possibly better suited for evaluation in some synthesis

LMIs, e. g., to employ an additional multiplier stage as will be detailed in the next

chapter.

Finally, Alg. 4.1 summarizes the suggested parameterization procedure detailed

in Sect. 4.5.4. The individual phases of the algorithm are indicated in Fig. 4.6.

4.5.6 Discussion: Relation to Parameter Set Mapping

The technique presented in Lma. 4.2 and Cor. 4.4 has a close relationship to the

parameter set mapping (PSM) technique proposed in [79], cf. Sect. 2.1.4. However,

it holds the following advantages.
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Algorithm 4.1 Rational and affine full-block/diagonal parameterizations from a

general descriptor LPV plant model.

(A) Manual Initialization:

1: Define V , WE and WF:

• Choose param.-dep. rows and columns of E
(
ρ
)

and F
(
ρ
)
.

2: Define parameters δ̃ covering all transcendental nonlinear terms.

(B) Automated Nominal Shift and Normalization:

1: Shift about a nominal operating point ρ0 by application of Prop. 4.1.

2: Define E0 and F0 with dependence on ρ if desired.

3: Define Υ
(
δ
)

while normalizing the parameter vector δ.

(C) Automated Rational Parameterization and Approximation:

1: Define Υ
(
υ
)

via Lma. 4.2 and normalization of υ by Prop. 4.1.

2: Define Υ
(
υ̂
)

and Υ
(
δ̂
)

by application of Cor. 4.4.

3: Form Λ
(
υ
)
, Λ
(
υ̂
)
, Λ
(
δ
)

and Λ
(
δ̂
)

from Υ
(
•
)

via Eq. (4.38).

(D) Automated Affine Parameterization and Approximation:

1: Define Λ̃
(
υ
)

and d
(
υ
)

by Eq. (4.43) and (4.42).

2: Define Λ̃
(
θ
)

and Λ̃
(
θ̂
)

by applying Lma. 4.2 and Cor. 4.4 on Λ̃
(
υ
)
:

• First reattach the denominator d
(
υ
)

to θ.

• If Λ
(
υ
)

has constant parts, append 1/d
(
υ
)

to θ.

• Normalize θ by Prop. 4.1.

4.5.6.1 Obtaining the Affine Parameter Set

While the PSM technique has been proposed to approximate a parameter set by

a set containing fewer parameters or to rotate the parameter set coordinate basis

with the purpose to reduce overbounding, the technique proposed here provides an

automated derivation of a new set of parameters ordered by significance in which

a polynomial matrix is affine. The typical manual and error prone derivation of

affine parameters is thus avoided.

4.5.6.2 Minimality and Overbounding

The parameter set derived by application of Lma. 4.2 yields a minimal number

of affine parameters, reducing hidden coupling and overbounding. Furthermore,

an intimate relation to the rational parameterizations is easily retained by the ap-

proach, which will prove useful in extended synthesis conditions detailed in Sect. 5.

4.5.6.3 Approximation of LFRs

When PSM is applied to a given parameter set on which a parameter block de-

pends, e. g., affinely, the old parameters are replaced by linear combinations of

the new ones. In general, the order of an LFR will therefore increase, which can
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sometimes be avoided by setting coefficients to zero that are already very close to

zero, cf. Sect. 2.1.4.2. PSM is therefore not an adequate tool for the approximation of

LFRs. In contrast, approximations based on Cor. 4.4 do not only reduce the number

of parameters a matrix depends on, but also reduce the order of the corresponding

LFR with diagonal parameter block. With the novel technique, an approximation

of the affine parameter set is as simple as omitting parameters starting from the

highest index. This is due to the coordinate basis which is already rotated to re-

flect parameter directions of decreasing influence. Consequently, when following

the parameterization procedure detailed in Sects. 4.4 and 4.5 any approximation

based on Cor. 4.4 will yield a plant model with less deviation from the nominal

case, ultimately yielding the nominal plant model if the full set of parameters is

discarded.

However, the approximating quality of the approach shares the disadvantage

with the PSM approach that no guarantees exist that an approximate LPV repre-

sentation retains the dynamic characteristics relevant for control purposes. These

could, e. g., be quantified by the degree of variation in frozen parameter pole loca-

tions.

4.5.6.4 Data Free Approach

Apart from plant coefficients, the proposed method acts only on the respective pa-

rameter block, which represents a deviation from nominal dynamics. This deviation

is then efficiently parameterized affinely or approximated based on the influence

of monomial terms. In contrast to PSM, the approach therefore completely avoids

data generation, which would require gridding the parameter range or recording

experimental trajectories.
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4.6 Example — Compact LFT-LPV Model of a 3-DOF Robotic Manipulator

F
or illustration, consider the example of a 3-DOF robotic manipulator, where

the dynamics of joints one q1, two q2 and three q3 are modeled [E45]. Figure 4.7

illustrates the robot, whereas Fig. 4.8 pictures the joint coordinate frames of interest.

From the Denavit-Hartenberg (DH) convention result the joint coordinates q1, q̃2
and q̃3. The so-called ≪ready position≫ of the robot is defined as q̃2 =

π
2 and q̃3 =

−π. The coordinate frame used in the model’s nonlinear differential equations are

relative to this ready position, while joint three is also adjusted to a fixed reference

frame with respect to the horizontal, as follows:

q2
△
= q̃2 −

π

2
, q3

△
= q̃3 + π+ q2.

The angle q3s
△
= q̃3 + π is shown in Fig. 4.8 for illustration. The dimensions of the

workspace result from L1 = 50mm, L2 = 305mm and L3 = 330mm.

Table 4.1: Kinematic limits of the Thermo CRS A465 3-DOF robot.

Angle Range [°]

q1 [−170, . . . , 170]

q̃2 [0, . . . , 180]

q̃3 [−235, . . . ,−45]

(a) DH convention-based coor-
dinate frames.

Angle Range [°] Vel. Range [° s−1]

q1 [−170, . . . , 170] q̇1 [−100, . . . , 100]

q2 [−90, . . . , 90] q̇2 [−80, . . . , 80]

q3 [−145, . . . , 225] q̇3 [−150, . . . , 150]

(b) Modified coordinate frames and angular velocities.

4.6.1 Nonlinear LPV Model

Using the Euler-Lagrange formulation, the rigid-body dynamic model of the three-

link manipulator is obtained as a 6th-order system with three inputs and three

outputs governed by a differential of the form

J
(
ρ
)
q̈+ k̃

(
ρ
)
+ kc

(
ρ
)
= τ.

The vector kc

(
ρ
)

denotes the vector of Coulomb friction terms

kc

(
ρ
)
=



b18sign(q̇1)

b19sign(q̇2)

b20sign(q̇3)


 , (4.59)

Preliminary results of this section have been previously published in [60]. The results are extended by consid-

ering additional models and a more detailed complexity analysis.
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Figure 4.7: Isometric view of the 3-DOF robot model.
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Figure 4.8: Side view of the 3-DOF robot model.

which are neglected in the LPV model and will be compensated for separately in

the controller implementation by redefining the inputs as

u
△
= τ− kc

(
ρ
)
=



τ1
τ2
τ3


−



b18sign(q̇1)

b19sign(q̇2)

b20sign(q̇3)


 .
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The vector of generalized forces is given as

k̃
(
ρ
)
=



k̃1
(
ρ
)

k̃2
(
ρ
)

k̃3
(
ρ
)


 , (4.60)

k̃1
(
ρ
)
= b1q̇1+(b2s2c2+b3c2s3) q̇1q̇2+(b3s2c3+b4s3c3) q̇1q̇3

k̃2
(
ρ
)
=
(
2b11s2c2+2b12s3c3 −

1/2b3 (s2c3 + c2s3)
)
q̇21

+1/2b3 (c2s3−s2c3) q̇
2
2 + b10q̇2

+1/2b3 (s2c3−c2s3) q̇
2
3+b8s2+b9s3

k̃2
(
ρ
)
=
(
2b12s3c3−

1/2b3s2c3

)
q̇21+

1/2b3 (c2s3−s2c3) q̇
2
2

−b15q̇2+b15q̇3+b9s3

Due to the predominant trigonometric terms and the typical substitution

sin
(
ρ
)
= sinc

(
ρ
)
ρ, along with a preference to pull out generalized velocities q̇i,

i = 1, 2, 3 into the state vector, the factorization of the generalized forces is not am-

biguous, except for the first row of the generalized damping matrix, which contains

multiplications of distinct generalized velocity variables. A factorization rendering

D
(
ρ
)

fully populated is chosen for increased coupling at frozen operating points

leading to the mechanical system of LPV differential equations (4.61).

Abbreviations:

si
△
= sin(qi)

ci
△
= cos(qi)

[
b3s2s3 +b6c22 +b7c23 +b5 0 0

0 1/2b3 (c2c3 + s2s3)+b13
1/2b3 (c2c3 + s2s3)+b14

0 1/2b3 (c2c3 + s2s3)+b17 b16

][
q̈1

q̈2

q̈3

]

+

[
b1 (b2s2c2 +b3c2s3) q̇1 (b3s2c3 +b4s3c3) q̇1(

2b11s2c2 + 2b12s3c3 − 1/2b3 (s2c3 + c2s3)
)
q̇1

1/2b3 (c2s3 − s2c3) q̇2 +b10
1/2b3 (s2c3 − c2s3) q̇3(

2b12s3c3 − 1/2b3s2c3
)
q̇1

1/2b3 (c2s3 − s2c3) q̇2 −b15 b15

][
q̇1

q̇2

q̇3

]

+

[
0 0 0

0 b8s2/q2 b9s3/q3

0 0 b9s3/q3

][
q1

q2

q3

]
=

[
τ1

τ2

τ3

]
−

[
b18sign(q̇1)

b19sign(q̇2)

b20sign(q̇3)

]
=

[
u1

u2

u3

]
(4.61)

The coefficients bk, k ∈ {1, . . . , 20}—given in Tab. B.1 in App. B.7 on p. 335—have

been estimated experimentally on a real plant and details on the procedure applied

to the two-degree of freedom (2-DOF) case are provided in [E37].

4.6.2 Parameterization

With the parameters δ̃ from Tab. 4.3b covering up all transcendental and trigono-

metric terms, thus rendering the matrices polynomial in δ̃, the generalized inertia,

stiffness and damping matrices are decomposed into parameter-dependent and

nominal parts. The nominal operating point ρ0 =
[
0, 0, 0, 0, 0

]⊤
is chosen, about
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Table 4.2: Measurable signals and LPV parameters.

ρ1
△
= q2

ρ2
△
= q3

ρ3
△
= q̇1

ρ4
△
= q̇2

ρ5
△
= q̇3

(a) Measurable
signals.

δ̃1
△
= sin(ρ1) δ̃6

△
= sinc(ρ2)

δ̃2
△
= sin(ρ2) δ̃7

△
= ρ3

δ̃3
△
= cos(ρ1) δ̃8

△
= ρ4

δ̃4
△
= cos(ρ2) δ̃9

△
= ρ5

δ̃5
△
= sinc(ρ1)

(b) Parameters δ̃.

δ1
△
= 1.0 δ̃1 δ6

△
= 2.9 δ̃6−1.9

δ2
△
= 1.7 δ̃2−0.7 δ7

△
= 0.6 δ̃7

δ3
△
= 2.0 δ̃3−1.0 δ8

△
= 0.7 δ̃8

δ4
△
= 1.2 δ̃4−0.2 δ9

△
= 0.5 δ̃9

δ5
△
= 5.5 δ̃5−4.5

(c) Parameters δ.

which the parameters are shifted to include zero. Therefore, further constant terms

are shifted into the nominal matrices, which are then defined as

J0
△
=

[
b5+b6+b7 0 0

0 1/2b3+b13
1/2b3+b14

0 1/2b3+b17 b16

]
, K0

△
=

[
0 0 0

0 0 0

0 0 0

]
, D0

△
=

[
b1 0 0

0 b10 0

0 −b15 b15

]
.

The constant nominal matrices E0 and F0 are thus defined in accordance with Ex. 4.5

and by observing that T0 = I. Similarly, masking matrices are defined to form WE,

WF and V . Observe that the first column of the generalized stiffness matrix K
(
ρ
)

is

parameter-independent, which allows to define

Υ
(
δ̃
) △
=
[
∆E
(
δ̃
)
∆F
(
δ̃
)] ∈ R

3×8.

Subsequently, a normalization is applied, s. t. |δi| 6 1, i = 1, 2, . . . , 9. The resulting

constant terms that appear due to the offsets associated with the normalization are

chosen to remain in the parameter block Υ
(
δ
)

in accordance with Alg. 4.1.

The parameter block Υ
(
δ
)

is then decomposed into a linear combination of 30

monomials in δ. Lemma 4.2 and further normalization according to Prop. 4.1 is then

applied to obtain affine dependence of Υ
(
υ
)

in nυ = 10 parameters υ. Normalized

singular values of the vectorized monomial decomposition are given in Fig. 4.9a.

4.6.3 Approximation and Summary

An approximation is chosen by selecting all normalized singular values greater

or equal 6 × 10−2 and a set of the first nυ̂ = 2 parameters remains, leading to

a maximum absolute entry-wise error of 1.41 × 10−2 in the coefficient matrix. It

turns out that this approximation renders ∆E and ∆K—the part of ∆F corresponding

to the generalized stiffness matrix—parameter-independent, s. t. the approximate

parameter block can be reduced to a square 3× 3 matrix, Υ̂
(
υ̂
) △
=−∆̂D

(
υ̂
)
, in which

the plant is now affine.
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From this approximation, approximate parameter vectors ρ̂ and δ̂ are inferred by

resubstituting the respective functions υ̂
(
δ
)

or υ̂
(
ρ
)
. Accordingly, the approximate

plant is only dependent on q2, q3 and q̇1.
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(a) Singular values of the mono-
mial decomposition of Υ
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)
.
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υ
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.

Figure 4.9: Singular values of the monomial decomposition of Υ
(
δ
)

for constructing a ra-

tional and an affine robot model.

( ) Weighted normalized singular values (Cor. 4.3);

( ) Unweighted normalized singular values.

Tab. 4.3 summarizes the resulting parameter blocks and relations. The repetitions

of the respective parameters in a diagonal parameter block are given as vectors r•.
For the repetitions resulting from approximations the vectors r•̂ indicate omissions

by zero repetitions. For instance, rδ̂ identifies that ∆̂Υ(δ̂) does not depend on δ5, δ6,

δ8 and δ9. Thus, according to Tab. 4.3b, angular velocities q̇2 and q̇3 do not need to

be measured online for implementation of any controller synthesized based on the

approximate model in terms of υ̂ or δ̂, respectively.

From the definitions of Υ
(
δ
)
, Υ
(
υ
)

and Υ̂
(
υ̂
)
, parameterizations Λ

(
δ
)
, Λ
(
υ
)

and Λ̂
(
υ̂
)

follow from (4.38). Then, Lma. 4.2 is applied to the polynomial matrix

d
(
υ
)
Λ
(
υ
)

by first canceling the common denominator. Fig. 4.9b again shows the

corresponding singular values, which leads to nθ = 15 parameters without approx-

imation.

Choosing the first nθ̂ = 2 parameters yields a maximum absolute entry-wise

error of 2.91× 10−2 in the coefficient matrix. It again turns out that this approx-

imation renders ∆E and ∆K parameter-independent, and the approximate matrix

Λ̂
(
θ̂
) △
=−∆̂D

(
θ̂
)

even retains the same sparsity pattern as Υ̂
(
υ̂
)
. Accordingly, con-

trollers based on this latter approximation do not require online measurement of

q̇2 and q̇3, as before.

Note that in the work documented in [E45], affine parameterizations of both Υ
(
υ
)

and Λ
(
θ
)

have been performed by error-prone manual inspection. Furthermore, a

fully affine parameterization has previously only been found with 16 parameters.
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Table 4.3: Parameter block sizes and no. of repetitions for the 3-DOF robot.

Full Sched. Order Size Red. Sched. Order Size

Υ(δ) = ∆Υ
(
δ
)
⋆W∆ 3× 8 Υ̂(δ̂) = ∆̂Υ

(
δ̂
)
⋆ Ŵ∆ 3× 3

Υ(υ) = ΥΥ
(
υ
)
⋆WΥ 3× 8 Λ̂(θ̂) = Θ̂Λ

(
θ̂
)
⋆ V̂Θ 3× 3

Λ(θ) = ΘΛ
(
θ
)
⋆ VΘ 3× 8 Υ̂(υ̂) = Υ̂Υ

(
υ̂
)
⋆ ŴΥ 3× 3

Diagonal Blocks Size Repetitions ri

ΥΥ(υ) 18× 18 rυ = [2 2 2 1 3 2 1 3 1 1]

Υ̂Υ(υ̂) 4× 4 rυ̂ = [2 2 0 0 0 0 0 0 0 0]

∆Υ(δ) 31× 31 rδ = [3 6 8 7 1 1 3 1 1]

∆̂Υ(δ̂) 15× 15 rδ̂ = [3 3 3 3 0 0 3 0 0]

ΘΛ(θ) 31× 31 rθ = [2 2 2 2 3 1 1 3 3 1 3 3 1 2 2]

Θ̂Λ(θ̂) 4× 4 rθ̂ = [2 2 0 0 0 0 0 0 0 0 0 0 0 0 0]

For assessing implementation complexity, Tab. 4.4 lists the number of arithmetic

operations to calculate the parameter vectors or blocks from the measurable signals

for each of the models. The numbers of operations is enumerated in an optimized

way, i. e., by a hierarchical approach it is generally less costly to first compute, e. g.,

the parameter vector υ
(
ρ
)

and insert it into Υ
(
υ
)
= Υ

(
υ
(
ρ
))

, instead of evaluat-

ing Υ
(
ρ
)

directly. However, this does not hold true in the case a[Λ(ρ)], where it

turns out less costly to use the parameterization in terms of υ. Furthermore, the

symbolic expressions are first rewritten in Horner scheme to reduce the amount of

necessary coefficients and operations. The number of arithmetic operations associ-

ated with the diagonal parameter blocks ∆•
(
•
)

and ∆̂•
(
•
)

is identical to the number

of operations required to evaluate the respective parameter vector, since diagonal

concatenation is assumed to not incur additional complexity.

Table 4.4: Number of arithmetic operations for computing and scalar variables for storing

parameter blocks and vectors for the robot model.

Parameter Vectors

a[•]/(m[•]) a[•]/(m[•])
δ(ρ) 15/(14) δ̂(ρ̂) 7/(8)

υ(ρ) 188/(79) υ̂(ρ̂) 56/(30)

θ(ρ) 825/(281) θ̂(ρ̂) 174/(48)

Parameter Blocks

a[•]/(m[•]) a[•]/(m[•])
Υ(ρ) 245/(120) Υ̂(ρ̂) 75/(52)

Λ(ρ) 886/(306) Λ̂(ρ̂) 90/(57)
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4.7 Example — Compact LFT-LPV Model of a 4-DOF Control Moment

Gyroscope

C
onsider the example of a four-degree of freedom (4-DOF) CMG manufactured

by ECP Systems2. The CMG exhibits strong inherent nonlinear coupling and is

a considerably more challenging plant to control than the 3-DOF robotic manipula-

tor considered in the previous section. LTI control methods have thus far been only

capable of stabilizing the plant in a limited angular range [89].

The CMG consists of an actuated flywheel ((q̇1, q1)) located in a gimbal mounting.

The second gimbal ((q̇2, q2)) is also actuated, while gimbals three ((q̇3, q3)) and four

((q̇4, q4)) are not. The latter two mark the angular outputs to be controlled. Each of

the gimbals is linked to its previous by a rotational joint perpendicular to its axis.

Figure 4.11 illustrates the kinematic setup.

Previous attempts at applying LPV control methods to the CMG have been based

on a model linearized about a moving operating point in terms of the flywheel’s

angular velocity q̇1, and the angles of both gimbal two and three, q2 and q3, respec-

tively [E1, 1, E94]. Validation results for the linearized model indicated a good fit

with respect to the full nonlinear model for typical trajectories and both simulation

and experimental results revealed very good control performance. However, the

purpose of this section is to discuss the application of the systematic modeling and

approximation tools detailed in Sects. 4.3 to 4.5 on the basis of the full nonlinear

model of the CMG. It is the purpose to illustrate that these tools are applicable

to highly nonlinear plants and can yield exact models and good approximations

that render both controller synthesis for high performance and low implementation

complexity tractable as well as the design of controllers that provide strict stability

and performance guarantees.

Table 4.5: Kinematic limits of the CMG.

Angle Range [°]

q1 [−180, . . . , 180]

q2 [−25, . . . , 25]

q3 [−75, . . . , 75]

q4 [−180, . . . , 180]

(a) Angular limits of the CMG.

Vel. Range [rad s−1] Accel. Range [rad s−2]

q̇1 [30, . . . , 65] q̈1 [−10, . . . , 10]

q̇2 [−2, . . . , 2] q̈2 [−10, . . . , 10]

q̇3 [−2, . . . , 2] q̈3 [−7.5, . . . , 7.5]

q̇4 [−2, . . . , 2] q̈4 [−7.5, . . . , 7.5]

(b) Limits of the angular velocities and accelerations of the CMG.

2 www.ecpsystems.com

Preliminary results of this section have been previously published in [E49]. The results are extended by

considering additional models and a more detailed complexity analysis.

www.ecpsystems.com
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Figure 4.10: Isometric view of the 4-DOF CMG.

4.7.1 Nonlinear LPV Model

A set of nonlinear differential equations is obtained via the modeling tool Neweul-

M2 [75] and takes the form of a rigid-body dynamic model of 8th-order with two

inputs and two outputs

J̃
(
q̃
)

¨̃q+ ˜̃k
(

˙̃q, q̃
)
= T̃

(
q̃
)
τ, (4.62)

where q̃
△
=
[
q1, q2, q3, q4

]⊤
. The full model is given in (4.63) below.

Abbreviations:

si
△
= sin(qi)

ci
△
= cos(qi)




b1 0 b1c2 b1s2c3
0 b3 0 −b3s3

b1c2 0 b2s22 + b4 −b2s2c2c3
b1s2c3 −b3s3 −b2s2c2c3 −b2s22c23+b5s23+b6







q̈1

q̈2

q̈3

q̈4




+




b13q̇1

b14q̇2

b15q̇3

b15q̇4


+




˜̃k1
(

˙̃q, q̃
)

˜̃k2
(

˙̃q, q̃
)

˜̃k3
(

˙̃q, q̃
)

˜̃k4
(

˙̃q, q̃
)


 =




b16 0

0 b17

0 0

0 0



[
u1

u2

]
, (4.63)

˜̃k1
(

˙̃q, q̃
)
= b1 (c2c3q̇2q̇4−s2q̇2q̇3−s2s3q̇3q̇4) ,

˜̃k2
(

˙̃q, q̃
)
= b1 (s2q̇1q̇3−c2c3q̇1q̇4)+b2

(
c2c

2
3s2q̇

2
4−c2s2q̇

2
3

)

−b8c3q̇3q̇4+b7(1−2s
2
2)c3q̇3q̇4+2b9c

2
2c3q̇3q̇4,
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˜̃k3
(

˙̃q, q̃
)
= b1 (s2s3q̇1q̇4−s2q̇1q̇2)+(b8+b7)c3q̇2q̇4+b11s3c3q̇

2
4

+b10

(
2c22c3q̇2q̇4−2s2c2q̇2q̇3−s3c

2
2c3q̇

2
4

)

˜̃k4
(

˙̃q, q̃
)
= b1 (c2c3q̇1q̇2−s2s3q̇1q̇3)+b2s2s3c2q̇

2
3−2b11s3c3q̇3q̇4

+2b10

(
c22c3q̇2q̇3+s2c2c

2
3q̇2q̇4+s3c

2
2c3q̇3q̇4

)
+b12c3q̇2q̇3,

q̇1

q̇2

q̇3
q̇4

A

B

C

D

τ1
τ2

ID
JD KDIC

JC
KC

IB JB
KB

IA JA
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Figure 4.11: Schematic view of the 4-DOF CMG [113].

A schematic overview of the CMG is given in Fig. 4.11. Tab. B.2 in App. B.8 on

p. 336 lists the physical and grouped parameters with their respective values. The

moments of inertia I•, J•, K• of bodies A, B, C, D about the directions indicated in

Fig. 4.11 have been identified experimentally in [E1].

4.7.1.1 Full Model Representation

A gridded analysis of some possible state space representations according to

Cor. 4.1 on p. 115 reveals that in certain frozen local joint configurations the system

is not locally stabilizable in the sense of Def. 4.1. This forecloses the factorization

of the vector of generalized forces ˜̃k
(

˙̃q, q̃
)

into generalized damping and stiffness

terms, linear in the states. However, to circumvent the issue of stabilizability, it

turns out that eliminating the states connected to the flywheel (q̇1, q1), by solving

the second differential equation from (4.62) for q̈1 and substituting into the remain-

ing three, renders the system locally stabilizable. Using the new vector of general-
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ized coordinates q =
[
q2, q3, q4

]⊤
, the resulting nonlinear differential equations are

given in (4.64) below.

J
(
q
)
q̈+



k̃2
(
q̇, q
)

k̃3
(
q̇, q
)

k̃4
(
q̇, q
)


 = T

(
q
) [u1
u2

]
−




0

b13c2q̇1
b13s2c3q̇1


 , (4.64)

k̃2
(
q̇, q
)
= b1 (c2c3q̇1q̇4−s2q̇1q̇3)+b2

(
s2c2q̇

2
3−s2c2c

2
3q̇
2
4

)

−b14q̇2+b8c3q̇3q̇4+b7(2s
2
2+1)c3q̇3q̇4−2b9c

2
2c3q̇3q̇4,

k̃3
(
q̇, q
)
= b1

(
s2q̇1q̇2−s2c2q̇2q̇3−s2s3q̇1q̇4+c22c3q̇2q̇4−s2s3c2q̇3q̇4

)

+b10

(
s3c

2
2c3q̇

2
4+2s2c2q̇2q̇3−2c

2
2c3q̇2q̇4

)

−b15q̇3−b7c3q̇2q̇4−b8c3q̇2q̇4−b11s3c3q̇
2
4,

k̃4
(
q̇, q
)
= b1

(
s2s3q̇1q̇3−c2c3q̇1q̇2−s22c3q̇2q̇3+s2c2c

2
3q̇2q̇4−s22s3c3q̇3q̇4

)

2b10

(
−c22c3q̇2q̇3−s2c2c

2
3q̇2q̇4−s3c

2
2c3q̇3q̇4

)

−b15q̇4−b12c3q̇2q̇3+2b11s3c3q̇3q̇4−b2s2s3c2q̇
2
3.

The generalized inertia and input matrix are

J
(
q
)
=




b3 0 −b3s3
0 (b1 + b2)s

2
2 + b4 − b1 −(b1 + b2) s2c2c3

−b3s3 −b2s2c2c3 −(b1 + b2) (1− s23)s
2
2+b5s23+b6


 ,

T
(
q
)
=




0 b17

−b16c2 0

−b16s2c3 0


 .

Terms involving only sine, cosine terms and q̇1 result from the elimination of the

flywheel states. These are not factorizable in an LPV sense [146] but lie in the range

space of the parameter-dependent input gain matrix, which allows a cancellation

by redefinition of the first input as

û1
△
= u1 −

b13
b16

q̇1.

4.7.1.2 Partial Feedback Cancellation

In order to reduce the LFT-LPV model complexity used for synthesis, a partial

cancellation of nonlinear terms directly accessible through the control inputs can

be performed. For this purpose define

u1,F
△
= ˜̃k1

(
˙̃q, q̃
)
+ u1,

u2,F
△
= ˜̃k2

(
˙̃q, q̃
)
+ u2. (4.65)
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Similarily to the full model representation the flywheel states (q̇1, q1) are eliminated.

The resulting nonlinear differential equations are given in (4.66) below.

J
(
q
)
q̈+




0

k̃3,F

(
q̇, q
)

k̃4,F

(
q̇, q
)


 = T

(
q
) [u1,F

u2,F

]
, (4.66)

k̃3,F
(
q̇, q
)
= b1 (s2q̇1q̇2−s2s3q̇1q̇4)+b10

(
s3c

2
2c3q̇

2
4+2s2c2q̇2q̇3−2c

2
2c3q̇2q̇4

)

−b15q̇3−b7c3q̇2q̇4−b8c3q̇2q̇4−b11s3c3q̇
2
4,

k̃4,F
(
q̇, q
)
= b1 (s2s3q̇1q̇3−c2c3q̇1q̇2)+2b10

(
−c22c3q̇2q̇3−s2c2c

2
3q̇2q̇4−s3c

2
2c3q̇3q̇4

)

−b15q̇4−b12c3q̇2q̇3+2b11s3c3q̇3q̇4−b2s2s3c2q̇
2
3.

4.7.1.3 Linearization About Moving Operating Point

An approach to simplify the nonlinear differential equations even further is pur-

sued in [E1, 1, E94] by linearizing Eq. (4.62) about a moving operating point given

by

q̄
△
=




q̄1

q̄2

q̄3

q̄4


 , ˙̄q

△
=




˙̄q1
˙̄q2
˙̄q3
˙̄q4


 =




˙̄q1
0

0

0


 , ¯̈q

△
=




¨̄q1
¨̄q2
¨̄q3
¨̄q4


 =




0

0

0

0


 . (4.67)

Denote this operating point ζ̄
△
=
[
q̄⊤, ˙̄q⊤, ¨̄q, ū

]
, whereas ζ̃

△
=
[
q̃⊤, ˙̃q⊤, ¨̃q, u

]

collects the state variables and derivatives as well as the inputs. The Jacobian lin-

earization is then derived by

∂J̃
(
q̃
)

¨̃q

∂ζ̃

∣∣∣∣∣
ζ̄

∂ζ̃+
∂ ˜̃k
(

˙̃q, q̃
)

∂ζ̃

∣∣∣∣∣
ζ̄

∂ζ̃ =
∂T̃
(
q̃
)
τ

∂ζ̃

∣∣∣∣∣
ζ̄

∂ζ̃, (4.68)

where ∂ζ̃
△
= ζ̃− ¯̃ζ. After subsequent elimination of the state deviations with respect

to the flywheel (∂q̇1,∂q1) the differential equations take the form given in (4.69)

below.

J
(
q̄
)
∂q̈+





b14 0 0

0 b15 0

0 0 b15


+ ˙̄q1b1




0 s2−c2c3
−s2 0 s2s3

c2c3−s2s3 0




∂q̇ = T

(
q̄
) [∂u1
∂u2

]
, (4.69)

4.7.1.4 Factorization of the Vector of Generalized Forces

Each of the parameter dependent terms in the vector of generalized forces has

at least a single angular velocity that can be pulled out as a state variable. Con-

sequently, the heuristic approach of preferring generalized velocity variables as a
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state is pursued, whereas the remainder of each term is considered an LPV param-

eter. This reduces the size of the full-block parameter matrix, since only the gen-

eralized damping matrix will be populated. Consequently, the resulting descriptor

LPV models will take the form

Gσρ :








I2

J
(
ρ
)

I2







q̇3

q̇4

q̈2

q̈3

q̈4

y




=



02×2

[
02×1 I2

]
0

02×2 −D
(
ρ
)

T
(
ρ
)

I2 0 0







q3

q4

q̇2

q̇3

q̈4

u




ρ(t) ∈ Fσρ .

(4.70)

For the subsequent factorization, two approaches are chosen from the ones con-

sidered in Sect. 4.3.2:

(i) Penalize sparsity, finite decisions, cf. (4.16) on p. 112,

(ii) Promote sparsity, finite decisions, cf. (4.18) on p. 113.

More specifically, the selector vector entries c
(l)
ijk are limited to {1, 0} and the objective

measure is either (i) minimized or (ii) maximized, according to (4.16) and (4.18),

respectively.

Despite the highly nonlinear nature of the plant, approach (ii) is expected to

yield adequate results, since in the gridding-based gain-scheduling approach pre-

sented in [E94], the synthesis is performed on the strongly simplified plant for-

mulation (4.69) with good control performance. On closer inspection, the model

based on a linearization about a moving operating point simply lacks some of the

nonlinear terms of the full model representation. Promoting sparsity in the general-

ized damping matrix will therefore possibly retain the relevant nonlinear coupling

terms, while adding the full model description in a way that preserves guarantees

as well as induces a significantly lower complexity during synthesis.

On a related note, the application of Lma. 4.2 on p. 126 as introduced in Sect. 4.5

is expected to yield fewer affine parameters derived from the polynomial terms, if

sparsity during factorization is promoted.

As a consequence, five model representations are derived:

1. full model, penalized sparsity (FMax)

2. full model, promoted sparsity (FMin)

3. PFC model, penalized sparsity (PFCMax)

4. PFC model, promoted sparsity (PFCMin)

5. moving operating point (MOP)
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The model matrices are explicitly stated in the Eqs. (4.72) (FMax/FMin), (4.71)

(PFCMax/PFCMin) and (4.69) (MOP).

For simplicity, all trigonometric terms are preserved and only after the factor-

ization, they are substituted by polynomial expansions to reduce conservatism, as

detailed next.

J
(
q
)
q̈+

(
D̃MOP

(
q̇, q
)
+DPFCMax/PFCMin

(
q̇, q
))

q̇ = T
(
q
) [u1,F

u2,F

]
, (4.71)

D̃MOP

(
q̇, q
)
=



0 0 0

0 b15 0

0 0 b15


+ q̇1b1




0 0 0

−s2 0 s2s3
c2c3 −s2s3 0


 ,

DPFCMin

(
q̇, q
)
=




0 0 0

q̇4(2b10+b7+b8−2b10s22)c3 0 q̇4

(
b11−b10(1−s22)

)
s3c3

−2q̇3b10s2c2

2q̇4b10s2c2(1− s23)

q̇3b2s2s3c2
0+2q̇4

(
b10(1−s22)−b11

)
s3c3

+q̇2(2b10+b12−2b10s22)c3




,

DPFCMax

(
q̇, q
)
=




0 0 0

q̇4(2b10+b7+b8−2b10s22)c3 −2q̇2b10s2c2 q̇4

(
b11−b10(1−s22)

)
s3c3

q̇3(2b10+b12−2b10s22)c3
q̇3b2s2s3c2 2q̇2b10s2c2(1− s23)

+2q̇4
(
b10(1−s22)−b11

)
s3c3


 .

J
(
q
)
q̈+

(
DMOP

(
q̇, q
)
+DFMax/FMin

(
q̇, q
))

q̇ = T
(
q
) [û1
u2

]
, (4.72)

DMOP

(
q̇, q
)
=



b14 0 0

0 b15 0

0 0 b15


+ q̇1b1




0 s2 −c2c3
−s2 0 s2s3

c2c3 −s2s3 0


 ,

DFMin

(
q̇, q
)
=




0
q̇4

(
2b9−2(b7 +b9)s22+b7−b8

)
c3

q̇4b2s2c2(1−s23)
−q̇3b2s2c2

q̇3(b1−2b10)s2c2 0

q̇4

(
b11−b10(1− s22)

)
s3c3

+q̇3b1s2s3c2

+q̇2
(
(2b10−b1)(1− s22)

+b7+b8) c3

q̇4(2b10−b1)s2c2(1− s23)

q̇4

(
2b10−2b11+(b1−2b10)s22

)
s3c3

0+q̇2
(
2b10+b12+(b1−2b10)s22

)
c3

+q̇3b2s2s3c2




,

DFMax

(
q̇, q
)
=




0

q̇4

(
2b9−2(b7 +b9)s22

q̇4b2s2c2(1−s23)+b7−b8) c3

−q̇3b2s2c2

q̇4

(
b7+b8+(2b10−b1)(1−s22)

)
c3

q̇4b1s2s3c2 q̇4

(
b11−b10(1−s22)

)
s3c3

+q̇3(b1−2b10)s2c2

q̇3

(
(2b10+b1)s22+b12

)
c3

q̇4 (2b10−2b11

−q̇2(b1−2b10)s2c2(1−s23)+(b1−2b10)s22
)

s3c3

+q̇3b2s2s3c2




.
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4.7.1.5 Polynomial Expansion of Trigonometric Terms

Due to the limited angular range, trigonometric terms are considered to be exactly

represented in terms of polynomials. For this purpose, sine and cosine functions

are developed by polynomials with appropriate degrees and monomials that match

a Taylor series expansion. Consequently, the best fit is obtained by the polynomial

approximations

sin(q2) ≈ 0.99078 q2,

sin(q3) ≈ −0.15138 q33 + 0.99445 q3,

cos(q2) ≈ −0.49313 q22 + 0.99987 q2,

cos(q3) ≈ 0.03852 q43 − 0.49822 q23 + 0.99986.

Over the considered angular range given in Tab. 4.6a, the average accuracy in-

creases by about a factor of two as indicated in Tab. 4.6 and visualized in Fig. 4.12.

In light of the above expansions, squared cosine terms are substituted by their re-

spective squared sine terms, i. e., cos2(•) = 1− sin2(•), to allow for fewer repetitions

in an LFR.

Table 4.6: Comparison of polynomial expansions of trigonometric terms for the CMG.

Avg. Expansion Error

Sine/Cosine Term Taylor Expansion Polynomial Fit

sin(q2) 1.09% 0.81%

sin(q3) 0.60% 0.25%

cos(q2) 0.03% 0.01%

cos(q3) 0.26% 0.01%

4.7.2 Parameterization

With the parameters δ̃ from Tab. 4.8a and the polynomial expansion of the trigono-

metric terms, the matrices are naturally rendered polynomial in the parameters δ̃,

which are identical to the measurable LPV signals ρ. The model (MOP) based on a

linearization about a moving operating point is considered to be scheduled by the

real-time signals, of which only ρ1, ρ2 and ρ3 remain due to the approximation.

The generalized inertia, stiffness and damping matrices are decomposed into

parameter-dependent and nominal parts after performing a shift about the nominal

operating point ρ0 =
[
0, 0, 45, 0, 0, 0

]⊤
, about which the parameters are shifted to

include zero. The constant nominal matrices Ē and F̄ are thus defined in accordance
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Figure 4.12: Polynomial approximations of cosine and sine terms.

( ) Polynomial approximation;

( ) exact trigonometric function.

with Ex. 4.5. Similarly, masking matrices are defined to form WE, WF and V .

Subsequently, a normalization is applied, s. t., |δi| 6 1, i = 1, 2, . . . , 6. The result-

ing constant terms that appear due to the offsets associated with the normalization

are chosen to remain in the parameter block Υ
(
δ
)

in accordance with Alg. 4.1 on

p. 137. The resulting set of parameters is defined in Tab. 4.8b.

The parameter block Υ
(
δ
)

is then decomposed into a linear combination of mono-

mials in δ for each of the modeling options. Lemma 4.2 and further normalization

according to Prop. 4.1 are then applied to obtain affine dependence of Υ
(
υ
)

in the

new parameters υ. The normalized singular values of the vectorized monomial de-

compositions of each modeling option are given in Fig. 4.13. Cor. 4.3 is applied to

weight the columns with the expected maximum magnitude of the respective states.

For comparison, the unweighted normalized singular values are also shown.

As evident from Fig. 4.13, the differences resulting from promoting or penalizing

sparsity in the generalized damping matrix mostly reside in the maximum number

of affine parameters. Furthermore, the set of singular values resulting from model

(MOP) closely resembles the ones of the models (PFCMax) and (PFCMin). The

latter three models appear to be already quite accurately modeled by only a single

parameter υ if a weighted singular value decomposition according to Cor. 4.3 is

used.
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Table 4.7: Measurable signals and LPV parameters for the CMG.

ρ1 = δ̃1
△
= q2

ρ2 = δ̃2
△
= q3

ρ3 = δ̃3
△
= q̇1

ρ4 = δ̃4
△
= q̇2

ρ5 = δ̃5
△
= q̇3

ρ6 = δ̃6
△
= q̇4

(a) Measurable signals.

δ1
△
= 2.29 δ̃1

δ2
△
= 0.76 δ̃2

δ3
△
= 0.07 δ̃3−3.0

δ4
△
= 1.00 δ̃4

δ5
△
= 0.50 δ̃5

δ6
△
= 0.50 δ̃6

(b) Parameters δ.

4.7.3 Approximation and Summary

An approximation is chosen by selecting the two largest normalized singular val-

ues each, since a significant drop in magnitude is observed below. The maximum

absolute entry-wise errors range between 1.851× 10−1 and 2.15× 10−1 in the coeffi-

cient matrices of the respective models. In contrast to the approximation resulting

from truncating polynomials in case of the 3-DOF robot detailed in Sect. 4.6, the re-

maining two parameters contribute to generalized inertia, damping and input gain

matrices, s. t., the resulting parameter blocks are reduced in size, but the overall

plant parameterization remains rational.

Table 4.8: Parameter block sizes for the CMG model.

Full Sched. Order Size Red. Sched. Order Size

F/MOP PFC

Υ(δ) = ∆Υ
(
δ
)
⋆W∆ 3× 7 Υ̂(δ̂) = ∆̂Υ

(
δ̂
)
⋆ Ŵ∆ 3× 6 2× 6

Υ(υ) = ΥΥ
(
υ
)
⋆WΥ 3× 7 Λ̂(υ̂) = Υ̂Υ

(
υ̂
)
⋆ ŴΛ 3× 4 2× 4

Λ(υ) = ΥΥ
(
υ
)
⋆WΛ 3× 5 Υ̂(υ̂) = Υ̂Υ

(
υ̂
)
⋆ ŴΥ 3× 6 2× 6

From the approximations, the approximate parameter vector δ̂ is inferred by

resubstituting the function υ̂
(
δ
)
. It is observed that in both of the cases where

sparsity is penalized (FMax, PFCMax), the plant matrices become independent of

q̇2.

Tab. 4.8 and Tab. 4.9 summarize the resulting parameter block properties in terms

of size and repetitions given as vectors r•. Again, for the repetitions resulting from

approximations the vectors r•̂ indicate omissions by zero repetitions. As evident

from the tables, the numbers of repetitions for the approximate parameter blocks

represented in terms of the parameters δ increase. Note that the commonly avail-

able tools for the exact reduction of LFRs of Matlab [149] as well as the n-D (Kalman
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Table 4.9: Parameter block information for the CMG models.

Model Block Size Par. No. Repetitions ri

FMax

ΥΥ(υ) 31× 31 nυ = 13 rυ = [3, 2, 3, 2, 3, 3, 2, 3, 3, 1, 3, 2, 1]

Υ̂Υ(υ̂) 5× 5 nυ̂ = 2 rυ̂ = [3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

∆Υ(δ) 59× 59 nδ = 6 rδ = [9, 41, 3, 1, 2, 3]

∆̂Υ(δ̂) 80× 80 nδ̂ = 5 rδ̂ = [9, 57, 5, 0, 4, 5]

FMin

ΥΥ(υ) 29× 29 nυ = 11 rυ = [3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2]

Υ̂Υ(υ̂) 5× 5 nυ̂ = 2 rυ̂ = [3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0]

∆Υ(δ) 62× 62 nδ = 6 rδ = [9, 42, 3, 2, 3, 3]

∆̂Υ(δ̂) 80× 80 nδ̂ = 6 rδ̂ = [9, 57, 5, 2, 2, 5]

PFCMax

ΥΥ(υ) 24× 24 nυ = 11 rυ = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

Υ̂Υ(υ̂) 4× 4 nυ̂ = 2 rυ̂ = [2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0]

∆Υ(δ) 55× 55 nδ = 6 rδ = [6, 39, 3, 2, 2, 3]

∆̂Υ(δ̂) 56× 56 nδ̂ = 5 rδ̂ = [6, 38, 5, 0, 5, 2]

PFCMin

ΥΥ(υ) 18× 18 nυ = 9 rυ = [2, 2, 2, 2, 2, 2, 2, 2, 2]

Υ̂Υ(υ̂) 4× 4 nυ̂ = 2 rυ̂ = [2, 2, 0, 0, 0, 0, 0, 0, 0]

∆Υ(δ) 52× 52 nδ = 6 rδ = [6, 37, 3, 1, 2, 3]

∆̂Υ(δ̂) 65× 65 nδ̂ = 6 rδ̂ = [6, 45, 5, 2, 2, 5]

MOP

ΥΥ(υ) 22× 22 nυ = 8 rυ = [3, 2, 3, 2, 3, 3, 3, 2]

Υ̂Υ(υ̂) 5× 5 nυ̂ = 2 rυ̂ = [3, 2, 0, 0, 0, 0, 0, 0]

∆Υ(δ) 34× 34 nδ = 3 rδ = [8, 23, 3]

∆̂Υ(δ̂) 44× 44 nδ̂ = 3 rδ̂ = [6, 33, 5]
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Figure 4.13: Singular values of the monomial decomposition of Υ
(
δ
)

for the respective

CMG models.

( ) Weighted normalized singular values (Cor. 4.3);

( ) Unweighted normalized singular values.

like) decomposition or the generalized Gramian approach [13, 14, 25, 93] available

through the ONERA LFR Toolbox, do not yield any further reduction in repetitions

than the ones reported in Tab. 4.9.

For assessing implementation complexity, Tab. 4.10 lists the number of arithmetic

operations to calculate the parameter vectors or blocks from the measurable signals
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for each of the models. The numbers of operations is enumerated in an optimized

way, i. e., by a hierarchical approach it is generally less costly to first compute, e. g.,

the parameter vector υ
(
ρ
)

and insert it into Υ
(
υ
)
= Υ

(
υ
(
ρ
))

, instead of evaluating

Υ
(
ρ
)

directly. The number of arithmetic operations associated with the diagonal pa-

rameter blocks ∆•
(
•
)

and ∆̂•
(
•
)

is identical to the number of operations required to

evaluate the respective parameter vector, since diagonal concatenation is assumed

to not incur additional complexity.

Table 4.10: Number of arithmetic operations for computing and scalar variables for storing

parameter blocks and vectors for the CMG model.

Parameter Vectors

a[•]/(m[•]) by Model

PFC F MOP

Min Max Min Max

δ(ρ) 6/(7) 6/(7) 6/(7) 6/(7) 4/(4)

δ̂(ρ̂) 6/(7) 6/(7) 6/(7) 6/(7) 4/(4)

υ(ρ) 477/(160) 477/(153) 572/(186) 637/(204) 197/(73)

υ̂(ρ̂) 126/(51) 126/(43) 141/(47) 143/(47) 60/(22)

Parameter Blocks

Υ(ρ) 537/(196) 537/(193) 652/(237) 718/(256) 254/(112)

Υ̂(ρ̂) 138/(62) 138/(55) 156/(62) 156/(60) 75/(37)





5
S Y N T H E S I S O F L I N E A R PA R A M E T E R - VA RY I N G

C O N T R O L L E R S F O R C O M P L E X S Y S T E M S U S I N G

M U LT I P L I E R - B A S E D S Y N T H E S I S

≪Any product of the mind is a reaction

of the past, a synthesis of what is old.≫

Barry Long

I
n the previous chapter the derivation of descriptor LPV plant representations

with small-in-size LFT parameter blocks and automated parameterization was

investigated. The purpose of this chapter is to exploit this modeling frame-

work, in order to reduce both synthesis and implementation complexity of LPV

controllers.

In light of this, a two-stage multiplier approach to LFT-LPV synthesis is intro-

duced in Sect. 5.1 as an effective method to evaluate multiplier conditions associ-

ated with the small-in-size LFT parameter blocks by finitely many LMIs irrespective

of the underlying type of parameterization. Using this approach, implementation

complexity remains constant and it is discussed in which cases it is lower than the

one incurred by standard approaches.

Furthermore, improved LFT-LPV state-feedback controller synthesis conditions

are derived in Sect. 5.2 that make use of the descriptor framework. As a conse-

quence, decision variables are reduced and the evaluation of FBM-based conditions

is simplified.
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5.1 A Multi-Stage Multiplier Approach to LFT-LPV Synthesis

A
fter the proposition of parameterizations for an LPV plant in Sect. 4.5, the

following result is introduced to facilitate the discussion on their efficient use

in synthesis. For this purpose, the application of Lma. 2.1 on primal and dual mul-

tiplier conditions occurring in the context of LFT-LPV synthesis is made explicit.

Corollary 5.1 (Two-Stage FBSP)

Consider a matrix-valued function ∆
(
ρ, δ
)

represented via the LFR

∆
(
ρ, δ
)
= ∆∆

(
δ
)
⋆

[
W11

(
ρ
)
W12

(
ρ
)

W21

(
ρ
)
W22

(
ρ
)
]
∈ C0(ρ×δ, R

(nq∆×np∆)),

where the parameter vectors ρ and δ are confined to compact sets, s. t. ρ ∈ ρ ⊂ Rnρ and

δ ∈ δ ⊂ Rnδ , and where ∆∆
(
δ
)
∈ C0(δ, R

(nq∆∆
×np∆∆

)). Further, let M ∈ S
(nq∆+np∆),

N ∈ S
(nq∆+np∆). The quadratic matrix inequalities

[
•
•

]⊤
M

[
I

∆
(
ρ, δ
)
]
≻ 0, ∀ (ρ, δ) ∈ ρ× δ (5.1)

[
•
•

]⊤
N

[
−∆⊤

(
ρ, δ
)

I

]
≺ 0, ∀ (ρ, δ) ∈ ρ× δ (5.2)

hold iff there exist M̆ ∈ S
(nq∆∆

+np∆∆
), N̆ ∈ S

(nq∆∆
+np∆∆

) that satisfy

[
•
•

]⊤[
M̆

M

]



W11

(
ρ
)
W12

(
ρ
)

I 0

0 I

W21

(
ρ
)
W22

(
ρ
)


 ≻ 0, ∀ρ ∈ ρ (5.3)

[
•
•

]⊤
M̆

[
I

∆∆
(
δ
)
]
≺ 0, ∀δ ∈ δ (5.4)

[
•
•

]⊤[
N̆

N

]



W⊤11
(
ρ
)
W⊤21

(
ρ
)

I 0

−W⊤12
(
ρ
)
−W⊤22

(
ρ
)

0 I


 ≻ 0, ∀ρ ∈ ρ (5.5)

[
•
•

]⊤
N̆

[
I

∆⊤∆
(
δ
)
]
≻ 0, ∀δ ∈ δ. (5.6)

Preliminary results of this section have been previously published in [57, E46, E48, 60]. The results are

extended by a more comprehensive treatment of the complexity reduction achieved.
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Proof: Observe that

[
I

∆
(
ρ, δ
)
]
= ∆∆

(
δ
)
⋆



W11

(
ρ
)
W12

(
ρ
)

0 I

W21

(
ρ
)
W22

(
ρ
)


 ,

[
−∆⊤

(
ρ, δ
)

I

]
= ∆⊤∆

(
δ
)
⋆



W⊤11

(
ρ
)

W⊤21
(
ρ
)

−W⊤12
(
ρ
)

−W⊤22
(
ρ
)

0 I


 .

The equivalence follows from Lma. 2.1 applied to Conds. (5.1) and (5.2).

Here, the application of Cor. 5.1 is proposed in conjunction with LFT-LPV-based

controller synthesis using PiDLFs and an LMI-based construction of controller vari-

ables. Reconsider the comparison of D/G-S- and FBM-based synthesis in Tab. 2.1

on p. 72 and recall that in this framework, the scheduling policy of the controller is

essentially determined by the type of multiplier constraints that are used:

• D/G-scalings allow to choose the controller’s parameter block as a copy of

the plant’s parameter block as per Lma. 2.6 on page 70.

• FBMs require the online computation of the controller’s parameter block as

per Lma. 2.5 on page 69.

Essentially, Cor. 5.1 can be applied for two distinct reasons that may also be

exploited in combination:

1. Reduction of Synthesis and Implementation Complexity

Despite the more elaborate computation of the controller’s parameter block,

compact LFT-LPV plant parameterizations with full parameter blocks can

yield controllers that are less costly to implement. However, FBM-based syn-

thesis conditions may yield intractable synthesis conditions. Corollary 5.1 can

be used to recover the benefits of D/G-S-based synthesis listed in Tab. 2.1

on p. 72, by employing FBM in the first and D/G-S in the second multiplier

stage.

2. Reduction of Conservatism

In case the use of either D/G-S constraints or FBMs in the first multiplier

stage is prescribed, e. g., if reduced implementation complexity is required

or the online computation of matrix inverses is to be avoided, underlying

parameterizations can be used to reduce overbounding associated with the

parameterization in the first multiplier stage.

The following sections provide details on the above reasons.
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5.1.1 Reduction of Implementation Complexity via Full-Block Multipliers and Full

Parameter Blocks

One of the benefits of applying Cor. 5.1 becomes apparent by noticing that only

the first multiplier stage determines the construction of the controller’s parameter

block.

Therefore, appreciate that the more involved computation of the controller’s pa-

rameter block ∆K
(
∆P
(
δ
))

as an LFT of the plant’s parameter block ∆P
(
δ
)

due to the

choice of FBMs, may in fact be computationally less expensive than the standard

LFT-LPV-based controller synthesis using a plant parameterization with a diagonal

parameter block. A prerequisite for this to happen, is a sufficiently compact size of

the plant’s parameter block.

For this purpose, let the parameter block of the plant be denoted ∆P
(
δ
)

and let

there exist an LFR

∆P
(
δ
)
= ∆P∆

(
δ
)
⋆

[
W11 W12

W21 W22

]
∈ C0(δ, R

(n
qP
∆
×n

pP
∆
)
), (5.7)

with a diagonal parameter block ∆P∆
(
δ
)
∈ C0(δ, R(nP∆×nP∆)). Provided the incurred

conservatism is not prohibitively excessive, it is clear that the parameter block

∆P∆
(
δ
)

may be used directly in a D/G-S-based synthesis approach, rendering the

controller’s parameter block ∆K
(
δ
) △
= ∆P∆

(
δ
)
. As an alternative, assume that the

synthesis multiplier conditions can also be solved using ∆P
(
δ
)

and FBMs directly.

We now aim at comparing the implementation complexities following from the

two plant parameterizations and multiplier constraints denoted by both

a
[
KD/G-S

(
δ
)]

and a
[
KFBM

(
δ
)]

that yield the total number of arithmetic operations required to compute the state

space matrices of the respective controller in each time instant, as derived from

Eq. (3.8) on page 80.

Consequently, in the case of D/G-S, it remains to evaluate

a
[
KD/G-S

(
δ
)]

6

(
nP∆

(
2nP∆−1

)
+2nP∆(nx +nu)

)
(nx +ny)

+ a

[
ΨKD/G-S

(
δ
)]

with a

[
ΨKD/G-S

(
δ
)]

6 2nP∆
2 (
2nP∆−1

)
+nP∆

(
2/3n

P
∆

2
+1
)

and where

ΨKD/G-S

(
δ
)
= ∆P∆

(
δ
) (
I−D

KD/G-S

∆∆ ∆P∆
(
δ
))−1

.

In contrast, when using FBMs the complexity indicator a
[
KFBM

(
δ
)]

takes the

form of the full set of Eqs. (3.8), (3.9) and (3.11), where the size of the controller’s

parameter block takes on the size of the plant’s parameter block, nKq∆ = nPq∆ and

nKp∆ = nPp∆ .
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Example 5.1 illustrates—for the special case of square mechanical LPV plants—

that even for moderately sized diagonal parameter blocks, the implementation of

scheduling functions resulting from FBM-based synthesis can be less costly.

Example 5.1 (Impl. Complexity for Square Mechanical LPV Plants)

Consider the case of LPV control of a mechanical system as developed throughout Exs. 4.4

and 4.5 with nq degrees of freedom, nu = ny = nq and a standard S/KS weighting

scheme with parameter-independent first order shaping filters, s. t. nx = 4nq. If second

order shaping filters are used, we have nx = 6nq, while a standard four-block problem with

first order input disturbance and reference filters yields nx = 8nq.

Let the modeling approach detailed in Chap. 4 yield generalized inertia, stiffness, damping

and input matrices, J
(
ρ
)
, K
(
ρ
)
,D
(
ρ
)

and T
(
ρ
)
, fully populated with parameter-dependent

entries. Such a setup yields a worst-case full non-square parameter block of size nq × 3nq,

which is derived from the case distinction given in Eq. 4.39 on page 121 and illustrated in

Ex. 4.6.

Take as a decision variable

ξ(nq,nP∆)
△
= sign

(
a
[
KD/G-S

(
δ
)]

− a
[
KFBM

(
δ
)])

, (5.8)

where for some value pair
(
nq,nP∆

)
, ξ(nq,nP∆) = 1 indicates that FBM-based synthesis

yields controllers that are less costly to implement than D/G-S-based controllers scheduled

on the diagonal parameter block and the value ξ(nq,nP∆) = −1 means the opposite. Then

Fig. 5.1 illustrates the decision for all value pairs
(
nq,nP∆

)
with

nq ∈ {1, 2, . . . , 24} and nP∆ ∈ {1, 2, . . . , 50} .

As indicated, the slope of the decision border increases if more elaborate sensitivity shaping

schemes are employed. The particular pairs
(
nq = 3,n

P
∆ = 31

)
and

(
nq = 3,n

P
∆ = 18

)
lie

in the vicinity of the LFT-LPV modeling example of a 3-DOF robotic manipulator pre-

sented in Sect. 4.6, indicated by a black box, cf. Tab. 4.3 on p. 144. Grey boxes indicate

the approximate models that have been derived. The drastic reduction of diagonal parameter

block sizes due to the approximation results in D/G-S-based controllers to be actually less

costly during implementation.

Remark 5.1 Note that the assumptions made in Ex. 5.1 are conservative: If a diagonal

parameter block of small size can be found, chances are that the system matrices are also

not fully populated with parameter-dependent entries and thus even smaller full parameter

blocks can be found by using masking matrices.

In order to compare the potential benefits of using the full-block parameteriza-

tion in conjunction with the parameter-block Λ
(
•
)

with the full-block representa-

tion in terms of Υ
(
•
)
, consider the following example.
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Figure 5.1: Comparison of implementation complexity for a square mechanical LPV plant:

D/G-S using diagonal parameter blocks vs. FBMs using full non-square parame-

ter blocks against increasing size of the diagonal parameter block and increasing

number of degrees of freedom.

Example 5.2 (Impl. Complexity for Square Descriptor LPV Plants)

Consider the case of LPV control of a physical general descriptor system as developed from

Eq. (4.24) with nx physical states, nu = ny = nx and a standard S/KS weighting scheme

with parameter-independent first order shaping filters, s. t. nx = 3nx.

Let the modeling approach detailed in Chap. 4 yield matrices, E
(
ρ
)

and F
(
ρ
)

fully pop-

ulated with parameter-dependent entries. Such a setup yields a worst-case parameter block

Λ
(
•
)

of size 2nx × 2nx. Alternatively, the block Λ
(
•
)

with size 2nx × 3nx on which the

plant depends rationally can be used.

Take again (5.8) as the decision variable. Figure 5.2 illustrates the potential benefit of

using the parameterization in terms of Λ
(
•
)

for the first FBM-based multiplier stage. The

grey line indicates the border line above which D/G-S-based synthesis yields controllers

with less implementation complexity, when Λ
(
•
)

is used. The black line corresponds to

Υ
(
•
)
, which in this example is larger and thus leads to a lowered border line for the decision.

A comparison with Fig. 5.1 from Ex. 5.1 in turn illustrates the potential of using the

masking matrices to pull out only parameter-dependent parts into the parameter block.

Recall that from Lma. 2.5 on p. 69 the parameter block ∆K
(
∆P
(
δ
))

can be written

as an LFT

∆K
(
∆P
(
δ
))

=

[
W̃11 W̃12

W̃21 W̃22

]
⋆

[
∆P
⊤(
δ
)

∆P
(
δ
)

]
= W̃ ⋆ ∆̃P

(
δ
)
,
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Figure 5.2: Comparison of implementation complexity for a square descriptor LPV plant:

D/G-S using diagonal parameter blocks vs. FBMs using full non-square parame-

ter blocks against increasing size of the diagonal parameter block and increasing

number of degrees of freedom.

while it is in fact more efficiently evaluated in the form (2.162). Instead of comput-

ing ∆K
(
∆P
(
δ
))

and the LFT of the controller state space matrices separately, the

controller matrices can also be expressed as an LFT in terms of ∆̃P
(
δ
)

directly, as il-

lustrated by Fig. 5.3. Defining nP
∆̃

△
= nPq∆ +nPp∆ the resulting cost of implementation

can be assessed by

a

[
K̃FBM

(
δ
)]

6

(
nP
∆̃

(
2nP

∆̃
−1
)
+2nP

∆̃
(nx +nu)

)
(nx +ny)

+ a

[
ΨK̃FBM

(
δ
)]

with a

[
ΨK̃FBM

(
δ
)]

6 2nP
∆̃

2
(
2nP

∆̃
−1
)
+nP

∆̃

(
2/3n

P
∆̃

2
+1
)

and where

ΨK̃FBM

(
δ
)
= ∆̃P

(
δ
) (
I−D

K̃FBM
∆∆ ∆̃P

(
δ
))−1

.

5.1.2 Rendering Full-Block Multiplier-Based Synthesis Tractable

Sect. 5.1.1 showed that in many cases FBM-based LFT-LPV synthesis yields con-

trollers that are less costly to implement, given a sufficiently compact parameter

block can be found. However, solving FBM-based multiplier conditions in the ver-

tices may not always be tractable. In this case Cor. 5.1 can be applied in conjunction

with an LFR of the full parameter block, parameterized via a diagonal parameter

block, of the form (5.7).
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[
∆P
⊤
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]
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q∆ p∆

qK∆ pK∆
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T
η
δ

(a) LPV control loop with LFT-LPV con-
troller KFBM

(
δ
)

in interconnection with
FBM-based parameter block ∆K

(
∆P
(
δ
))

expanded as an LFT W̃ ⋆ ∆̃P
(
δ
)
.

Pδ

K̃FBM

∆P

[
∆P
⊤

∆P

]

w z

q∆ p∆

qK∆ pK∆

yu
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η
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(b) LPV control loop with LFT-LPV
controller KFBM

(
δ
)

represented as

K̃FBM

(
δ
)
= KFBM

(
δ
)
⋆ W̃.

Figure 5.3: LPV control loop with LFT-LPV controller K
(
δ
)

in interconnection with FBM-

based parameter block ∆K
(
∆P
(
δ
))

.

In such a case, the results of Chap. 4, more specifically those of Sect. 4.5, provide

a range of parameterization options to choose from for use in the second D/G-S-

based multiplier stage. Proper normalization allows to use the standard non-shifted

D/G-S-constraints, which render the multiplier conditions trivially fulfilled.

5.1.3 Reduction of Conservatism

The use of D/G-S-constraints in the first or second multiplier stage is conservative

in general. Examples 5.1 and 5.2 also illustrate the adverse effects of large diago-

nal parameter blocks on the implementation complexity. The case of FBM-based

synthesis with the corresponding parameter block of the controller not being con-

sidered prohibitively complex a priori is discussed first.

5.1.3.1 Overcoming the Limits of Affine Parameterization of Full Parameter Blocks

In standard LFT-LPV synthesis with diagonal parameter blocks, the choice between

different rational parameterizations is affected by a trade-off between implementa-

tion complexity and conservatism. In contrast, the implementation complexity due

to the use of full parameter-blocks of constant dimensions is not dependent on the

complexity of rational parameter-dependent terms occurring in such a block. More

specifically, the implementation complexity resulting from a block Υ
(
•
)

remains a

constant, independent of the choice of parameterizations Υ
(
δ
)

from (4.46) or Υ
(
υ
)

from (4.48) on pp. 124. Sect. 5.1.2 showed that such parameterizations can be used

to omit the formulation of multiplier conditions in vertices of the matrix polytope,

in order to render FBMs tractable.
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As long as the incurred synthesis complexity permits, the second multiplier stage

should therefore be based on a parameterization of the compact full parameter

block that exhibits the least amount of overbounding. In LFT parameterizations,

such a choice often results in the least amount of parameters with the largest

amount of repetitions. In such cases, it might even happen that controller syn-

thesis based on a compact parameter block and FBM-based multiplier constraints

solved in the vertices of a matrix polytope derived from an affine parameterization

of the parameter block, turns out to be more conservative than using a rational

parameterization with very little overbounding and D/G-S in the second (or first)

stage.

Practical examples of parameterizations that incur a high amount of overbound-

ing are sine and cosine terms of a common angle that need to be separately cov-

ered by newly introduced affine parameters, even though a Taylor expansion of

sufficient accuracy can be found. The Taylor expansion approach might yield a

high order polynomial in a single variable, while the repetitions of two different

affine parameters are few. Clearly, in the affine parameterization the information

on the common argument of the sine and cosine terms is lost and might incur

excessive converatism, while, in turn, a diagonal parameter block of the Taylor

expansion might lead to intractable implementation complexity using first stage

D/G-S-constraints. The solution to such a kind of problem resides in moving the

D/G-S-based multiplier conditions with the Taylor expansion parameterization to

the second stage, in order to reduce conservatism, while retaining the small-in-size

FBM-based first multiplier stage, for the purpose of keeping implementation com-

plexity as low as possible.

5.1.3.2 Avoiding Online Inverses by Diagonal Affine Parameterization in the First

Multiplier Stage

In practice, hardware restrictions may often permit the implementation of con-

trollers that require the computation of a matrix inverse online. In such cases, it

is mandatory to obtain a particularly simple scheduling law, such as an affinely

scheduled controller. In order to obtain such an affinely scheduled controller using

LFT-LPV controller synthesis methods, the following steps need to be taken:

(i) Affinely parameterize the LPV plant, e. g., by using the methods described in

Sect. 4.5.4.4, or Alg. 4.1, respectively.

(ii) Obtain an LFR with a diagonal parameter block ΘΛ
(
θ
)

that contains the affine

parameters θ from (4.49).

(iii) Perform D/G-S-based LFT-LPV controller synthesis. According to [161], a con-

troller scheduled affinely on ΘΛ
(
θ
)

is guaranteed to exist, if the controller ex-

istence conditions are satisfied. As an alternative, designs may also be based

on approximate parameter blocks.
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However, as mentioned earlier, affine parameterizations usually involve an in-

creased number of LPV parameters that are handled as independent and therefore

incur overbounding. It is thus desirable to evaluate the synthesis conditions based

on underlying rational parameterizations, which may incur a much tighter compact

set with respect to the physically admissible range. For this purpose, resubstitute

the affine parameters θ by their functional dependence on, e. g., the parameter set

δ using the mapping

fδ→θ ∈ C1(δ, R
nθ), δ(t) 7→ fδ→θ

(
δ(t)

) △
= θ(t).

This leads to an LFR

ΘΛ
(
θ
)
= ∆PΘ

(
δ
)
⋆

[
U∆11 U∆12
U∆21 U∆22

]
∈ C0(δ, R

(n
qP
Θ
×n

pP
Θ
)
), (5.9)

= ∆PΘ
(
δ
)
⋆U∆,

∆PΘ
(
δ
)
=

nδ
diag
i=1

(
δi(t)IrΘδ,i

)
,

with which Cor. 5.1 can be applied.

5.1.4 Summary

The introduction of a second multiplier stage is a particular way to provide an

exact relaxation, in order to evaluate the multiplier condition of the first stage. Or

relaxations—exact or possibly approximate ones—, such as sum-of-squares (SOS)-

based methods can be employed [27, 63]. However, the use of the FBSP appears to

be attractive due to its simplicity. The application examples of Chap. 6 will provide

insight on the conservatism and complexity incurred.
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5.2 Improved LFT-LPV State Feedback Synthesis Conditions

F
irstly, FBSP-based methods to turn LPV state-feedback controller synthesis as

per Thm. 5.1 into a convex optimization problem are reviewed.

5.2.1 Standard LFT-LPV State Feedback Synthesis Conditions

Theorem 5.1 (SF Controller Synthesis, extended from [160])

Under Ass. (A2.1) and (A2.4)–(A2.7), there exists a state-feedback controller gain F
(
δ
)

given by Eq. (2.127) on p. 2.127, i. e.,

F
(
δ
)
= −

(
D⊤pu

(
δ
)
Dpu

(
δ
))−1 (

γB⊤u
(
δ
)
S−1
(
δ
)
+D⊤pu

(
δ
)
Cp

(
δ
))

,

that renders the closed-loop system T
η
δ as defined in (2.20) asymptotically stable over δ×η

with an induced L2-norm from w → z bounded from above by γ > 0, if there exist

N ∈ S
(nBp∆

+nBq∆
), P ∈ S

(nSp∆
+nSq∆

) and for the quadratic function

S
(
δ
)
= Q⊤

(
δ
)
SQ
(
δ
)
∈ C1(δ, S

nx), S
(
δ
)
≻ 0 ∀δ ∈ δ,

with

Q
(
δ
)
= ∆Q

(
δ
)
⋆

[
Q11 Q12

Q21 Q22

]
∈ C1(δ, R

nS×nx)

there exists S ∈ SnS and γ > 0 that satisfy

LN =

[
•
•

]⊤



N

0 S

S 0

Γ−1






I 0

B11 B12

B21 B22


≻ 0, (5.10)

LP =

[
•
•

]⊤[
P

S

]

Q11 Q12
I 0

Q21 Q22


≻ 0, (5.11)

LN
(
δ,η
)
=

[
•
•

]⊤
N

[
∆B
(
δ,η
)

I

]
≺ 0, ∀ (δ,η) ∈ (δ×η) (5.12)

LP
(
δ
)
=

[
•
•

]⊤
P

[
I

∆Q
(
δ
)
]
≺ 0, ∀δ ∈ δ (5.13)

Preliminary results of this section have been previously published in [E49].
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where

B
(
δ,η
)
= U

(
δ,η
)
G
(
δ
)
= ∆B

(
δ,η
)
⋆

[
B11 B12

B21 B22

]

U
(
δ,η
)
=




Q
(
δ
)
∂Q
(
δ,η
)

0 Q
(
δ
)

I 0

0 I


 = ∆U

(
δ,η
)
⋆

[
U11 U12

U21 U22

]

∆B
(
δ,η
)
=

[
∆U
(
δ,η
)

∆G
(
δ
)
]

G
(
δ
)
=




−A⊤
(
δ
)
−C⊤p

(
δ
)

I 0

−B⊤p
(
δ
)

0

0 I


NS

(
δ
)
= ∆G

(
δ
)
⋆

[
G11 G12

G21 G22

]

NS
(
δ
)
= ker

([
B⊤u
(
δ
)
D⊤pu

(
δ
)])

[
B11 B12

B21 B22

]
=



U11 U12G21 U12G22
0 G11 G12

U21 U22G21 U22G22


 (5.14)

Theorem 5.1 presents verifiable conditions to synthesize the state-feedback gain

from Eq. (2.127). By essentially following [163], i. e., in order to construct the LFR

of the outer factor B
(
δ
)
, LFRs of the Lyapunov basis functions U

(
δ
)

via Eq. (B.3) on

p. 327, the nullspace NS
(
δ
)

via Lma. A.4 on p. 319 and subsequently G
(
δ
)

by mul-

tiplication of LFRs via Eq. (A.2) on p. 318 need to be obtained. For descriptor LPV

systems, however, the complexity incurred by this construction can be reduced.

5.2.2 LFT-LPV State Feedback Synthesis Conditions for Descriptor LPV Systems

The following proposition presents an alternative construction based on a class of

descriptor LFT-LPV systems. For this purpose, first recall the considered class of

physical plant models given in Eq. (4.24) on page 117. Ass. (A2.7) and (A2.5) on an

associated generalized plant configuration imply the following conditions on the

physical plant model.
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(A5.1) The full set of physical states is measurable, i. e., the plant model Gσρ from

Eq. (4.24) fulfills

E
(
ρ
) △
=

[
Exx
(
ρ
)
Exy
(
ρ
)

0 I

]
∈ R

(nx+ny)×(nx+ny),

F
(
ρ
) △
=

[
Fxx
(
ρ
)
Fxu
(
ρ
)

I 0

]
∈ R

(nx+ny)×(nx+nu).

(A5.2) The plant matrix Exy
(
ρ
)

fulfills Exy
(
ρ
)
= 0.

Ass. (A5.1) yields a strictly proper state space representation with identity as the

output gain.

Gσρ :






[
ẋ

y

]
=

[
Exx

−1
(
ρ
)
0

0 I

][(
Fxx
(
ρ
)
− Exy

(
ρ
))
Fxu
(
ρ
)

I 0

][
x

u

]
,

ρ(t) ∈ Fσρ

(5.15)

W. l. o. g., Ass. (A5.2) can be fulfilled by redefining Fxx
(
ρ
)

as the difference occurring

in (5.15).

Within this setup and under the otherwise standard state-feedback setting com-

pleted by Ass. (A2.6) and (A2.7), the generalized plant

Pσρ :








ẋ

z

y


=



A
(
ρ
)

Bp

(
ρ
)
Bu
(
ρ
)

Cp

(
ρ
)
Dpp

(
ρ
)
Dpu

(
ρ
)

Cy
(
ρ
)
Dyp

(
ρ
)
Dyu

(
ρ
)






x

w

u




ρ(t) ∈ Fσρ ,

can be written as

Pσρ :








Exx
(
ρ
)
0 0

0 I 0

0 0 I






ẋ

z

y


=



Fxx
(
ρ
)
Fp

(
ρ
)
Fxu
(
ρ
)

Cp

(
ρ
)

0 Dpu

(
ρ
)

I 0 0






x

w

u




ρ(t) ∈ Fσρ ,

(5.16)

where x ∈ Rnx , u ∈ Rnu , y ∈ Rnx , w ∈ Rnw , z ∈ Rnz .

W. l. o. g., in the generalized plant description (5.16), the performance channel

input gain matrix Bp

(
ρ
)

is restricted to a descriptor-like structure E−1xx
(
ρ
)
Fp

(
ρ
)
.

For standard sensitivity shaping schemes, e. g., the S/KS configuration, such an

assumption can be made, since, if the matrix Exx is really only a source of the phys-

ical plant being modeled in a descriptor framework, one has E−1xx
(
ρ
)
Fp

(
ρ
)
= Fp

(
ρ
)
.

In such a case, the entries in Bp

(
ρ
)

denote input gains to prefilters of the reference

or output disturbance low-pass filter, which are required due to Ass. (A2.6), and

which will not be affected by the physical inertia. In a four-block shaping scheme,
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in turn, input disturbances are usually supposed to directly act on the plant inputs.

Then, the descriptor representation appears quite naturally. In any case, if so re-

quired, the input gain can be defined as Fp

(
ρ
)
= Exx

(
ρ
)
F̃p

(
ρ
)
, in order to eliminate

the effect of the inertia.

Proposition 5.1 (Compact Full-Block LFT Parameterization)

For the generalized plant representation given in Eq. (5.16) and parameter-dependent plant

matrices of the form

Exx
(
ρ
)
= Exx0

(
ρ
)
+∆̃E

(
ρ
)
= ∆E

(
ρ
)
⋆

[
0 WE

(
ρ
)

V
(
ρ
)
Exx0

(
ρ
)
]
, (5.17)

Fxx
(
ρ
)
= Fxx0

(
ρ
)
+∆̃F,x

(
ρ
)
= ∆F,x

(
ρ
)
⋆

[
0 WF,x

(
ρ
)

V
(
ρ
)
Fxx0

(
ρ
)
]
, (5.18)

Fp

(
ρ
)
= Fp0

(
ρ
)
+∆̃F,p

(
ρ
)
= ∆F,p

(
ρ
)
⋆

[
0 WF,p

(
ρ
)

V
(
ρ
)
Fp0

(
ρ
)
]
, (5.19)

with ∆F
(
ρ
)
=
[
∆F,x

(
ρ
)
, ∆F,p

(
ρ
)]

, WF

(
ρ
)
= diag

(
WF,x

(
ρ
)
,WF,p

(
ρ
))

, the conditions of

Thm. 5.1 can be written with the LFR in terms of ∆E
(
ρ
)

and ∆F
(
ρ
)

of the outer factor

G
(
ρ
)

G
(
ρ
)
= ∆G

(
ρ
)
⋆

[
0 G12

(
ρ
)

G21
(
ρ
)
G22
(
ρ
)
]

, ∆G
(
ρ
)
=

[
∆⊤F
(
ρ
)

∆⊤E
(
ρ
)
]

G21
(
ρ
)
=




−I 0 0

0 0 I

0 −I 0

0 0 0




[
W⊤F

(
ρ
)

0

0 W⊤E
(
ρ
)
]

G12
(
ρ
)
= V⊤

(
ρ
) [
I 0

]
NS,F

(
ρ
)

G22
(
ρ
)
=




−F⊤xx0
(
ρ
)
−C⊤p

(
ρ
)

E⊤xx0
(
ρ
)

0

−F⊤p 0
(
ρ
)

0

0 I


NS,F

(
ρ
)

NS,F

(
ρ
)
= ker

([
F⊤xu
(
ρ
)
D⊤pu

(
ρ
)])

.

Proof: First observe that a parameter-dependent kernel representation of NS
(
ρ
)

in

Eq. (2.134) on page 60 can be found in

NS
(
ρ
)
= ker

([
B⊤u
(
ρ
)
D⊤pu

(
ρ
)])

=

[
E⊤xx
(
ρ
)
0

0 I

]
ker

([
F⊤xu
(
ρ
)
D⊤pu

(
ρ
)])
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due to the non-singularity of Exx
(
ρ
)
. This results in the outer factor




−A⊤
(
ρ
)
−C⊤p

(
ρ
)

I 0

−B⊤p
(
ρ
)

0

0 I




[
E⊤xx
(
ρ
)
0

0 I

]
NS,F

(
ρ
)

=




−F⊤xx
(
ρ
)
−C⊤p

(
ρ
)

E⊤xx
(
ρ
)

0

−F⊤p
(
ρ
)

0

0 I


NS,F

(
ρ
)
, (5.20)

which is affine in ∆G
(
ρ
)

for which then an LFR can be easily constructed. This

concludes the proof.

Proposition 5.1 provides means to more compactly define the outer factors in

Thm. 5.1 for use with full-block multipliers, while still separating the parameter

blocks ∆E
(
ρ
)

and ∆F
(
ρ
)
. In contrast, directly constructing the LFT parameterization

of the nullspace NS
(
ρ
)

along the lines of [163], i. e., by application of Lma. A.4

on p. 319, results in an LFR of higher order, as the inverse of Fxx
(
ρ
)

needs to be

considered. Compared to that, the approach proposed in Prop. 5.1 merely requires

an LFR of ker
([
F⊤xu
(
ρ
)
, D⊤pu

(
ρ
)])

, which for many mechanical systems may even

be constant.

Due to the diagonal concatenation, it is also expected that the approach of [163]

leads to a larger parameter block when converted to a diagonal parameter block.

5.2.3 Summary

The above results provide a simple method to effectively exploit descriptor models

with non-singular generalized inertias. They do not easily extend to cover the sin-

gular case, see, e. g., [102]. However, compared to other methods for non-singular

descriptor models, for which a detailed overview is presented in [0], the methods

provide benefits simply due to the manipulation of the synthesis conditions and

involve no modification during implementation.

The above methods are also enabling a simplified use of full-block multipliers:

As the outer factors are linear in both the parameter blocks ∆E and ∆F, an affine

parameterization of these blocks is sufficient to allow for a small-in-size multiplier

condition that is checked in the vertices spanning the convex hull of the parameter

range. This potentially reduces overbounding and the number of decision variables

over the standard approach using diagonal parameter blocks and D/G-scalings.

An extension to the output-feedback case is obvious, since the projections used

in the primal LMI do not even involve the inverse of the generalized inertia. Thus,

no improvement is to be expected.





6
A P P L I C AT I O N E X A M P L E S

≪Tell me, I’ll forget.

Show me, I’ll remember.

Involve me, I’ll understand.≫

Chinese Proverb

T
his chapter presents two case studies for the LPV control of complex plants

with both low synthesis and implementation complexity. Reduced as well as

full scheduling order control approaches are presented for:

(i) The low-complexity output-feedback LPV control of a robotic manipulator

(Sect. 6.1),

(ii) Experimental real-time state-feedback and output-feedback LPV control of a

control moment gyroscope (Sect. 6.2).

The two case studies build on the modeling framework introduced in Chap. 4

and the improved synthesis tools derived in Chap. 5 and illustrate the obtained

benefits.

With respect to the robotic manipulator, high-performance full scheduling order

control is rendered tractable with low implementation complexity further reduced

over previous results, [E45]. A controller for the CMG is synthesized based on the

exact model for the first time, while the novel approximation scheme results in a

state-feedback control scheme of particularly low complexity.
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6.1 A Three-Degrees-of-Freedom Robotic Manipulator

I
n the following, a case study in LPV control of the Thermo CRS A465 robotic

manipulator is conducted. Sect. 6.1.1 outlines the problem setup and Sect. 6.1.2

briefly introduces a computed torque control (CTC) reference design. Sects. 6.1.3

and 6.1.4 illustrate the improvements obtained by employing a two-stage multiplier

approach to PiDLF-based output-feedback (OF) LFT-LPV controller synthesis tech-

niques w. r. t. both synthesis and implementation complexity associated with full

and reduced scheduling order models. A summary is provided in Sect. 6.1.5.

6.1.1 Problem Setup

Position control of rigid robotic manipulators is widely considered a problem for

which satisfactory industry-standard, high-performance solutions exist [128, 140].

Cost efficiency has sparked research pursuing high performance control of flexi-

ble manipulators, e. g., [E83]. The latter is an ongoing field of research and while

LPV control has already been successfully implemented even for such an advanced

control problem, the purpose of considering LPV control for a rigid robotic ma-

nipulator in this thesis is less based on a desire to compete with the standard

approaches, but to showcase the ability of the LFT-LPV control framework to cope

with a system of high complexity. Furthermore, the advances in reducing imple-

mentation complexity of LFT-LPV controllers will be emphasized. In light of this,

feedforward compensation is deliberately omitted at this point. Regardless, a CTC

design will be presented first for reference.

Remark 6.1 Experimental results with two-stage multiplier approaches using a slightly

less advanced modeling approach have been presented in [E48]. The results presented here

use a four-block sensitivity shaping design and significantly faster reference trajectories over

[E48, 60] to highlight the capabilities of the controller designs.

6.1.1.1 Choice of Reference Trajectories

The reference trajectories are chosen to drive the robotic manipulator of type

Thermo CRS A465 to its allowed specified limits in terms of the angles and an-

Preliminary results of this section have been previously published in [E48, 60]. The results are extended by

benchmarking against a computed torque control design and an improved tuning as well as a more detailed

complexity analysis. The methods introduced in Sect. 5.1 have been validated experimentally in [E48].
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gular velocities with a ten percent safety margin. For this purpose, the reference

trajectories are essentially designed by sinusoids

rqi(t)
△
= αi(t)qi sin(ωit),

ω1 = 1 s
−1, ω2 = 2 s

−1, ω3 = 2 s
−1,

q1 = 150°, q2 = 80°, q3 = 170°.

For smooth initial and final parts of the trajectories, the amplitude is multiplied

by ramp signals shown in Fig. 6.1. The trajectories are further modified in order to

satisfy

cos
( π

180°
rq2

)
L2 + sin

( π

180°
rq3

)
L3 > L1.

Cf. Fig. 4.8 on p. 140 for reference to the lengths involved. Finally a low-pass filter

is applied.
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Figure 6.1: Reference trajectory phase-in factors αi for the robot.

6.1.2 Computed Torque Reference Controller Design

The CTC reference design is based on the results summarized in [20], where the

particular control law—commonly referred to as ≪computed torque feedback con-

trol≫ [20]—takes the form of a particular parameter-dependent state-feedback (SF)

control law

uCTC, FB = J
(
ρ
)
(r̈+uFB) +D

(
ρ
)
q̇+K

(
ρ
)
q. (6.1)

Due to the fact that all nonlinear generalized damping and stiffness terms are

directly accessible through the input, they are effectively being canceled if they

are known accurately enough.

Under the assumption of perfect cancellation of nonlinear terms, the system is

reduced to a double integrator system

q̈− r̈ = uFB, (6.2)
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where the sole purpose of the remaining feedback control action uFB consists in

rejecting potential deviations from the reference trajectory. CTC in the form of (6.1)

is a feedback control law, as opposed to the case, where generalized velocities and

positions are precomputed and therefore form a feedforward control law

uCTC, FF = J
(
ρr
)
(r̈+uFB) +D

(
ρr
)
ṙ+K

(
ρr
)
r. (6.3)

Here, ρr(t) denotes the precomputed trajectory of the scheduling parameters asso-

ciated with the planned reference trajectory r(t). The design choices, advantages

and disadvantages associated with implementing a CTC controller in either feed-

forward or feedback configuration have been discussed extensively in the literature,

see, e. g., [20, 92, E83, 145]. For the purpose of this thesis, the feedback configuration

is chosen for better a comparison with the LPV reference control scheme.

6.1.2.1 LTI-H∞ Controller Design

The control input uFB can take many forms, such as proportional integral derivative

(PID) control

uFB = KPe+KDė+KI

∫ t
edτ. (6.4)

However, for the purpose of this thesis, an LTI-H∞ controller design is used that

employs the same shaping scheme as the one that will be used for the subsequent

LPV controller designs. The robot model is considered exact and no further uncer-

tainty modeling is performed.

The generalized plant configuration depicted in Fig. 6.2 is used throughout the

section, with shaping filters defined as

WS(s) =
3

diag
i=1

(WSi) , WKS(s) =
3

diag
i=1

(WKSi) ,

WSi(s) =
3333

s2+2s+1
, i ∈ {1, 2} , WKSi(s) = 50

s2+40s+400
s2+4·104s+4·108 ,

WS3(s) =
8333

s2+2s+1
,

Vd(s) =
3

diag
i=1

(Vdi) , Vr(s) =
3

diag
i=1

(Vri) ,

Vdi(s) =
1

5s+10 , Vri(s) =
5
s+5 , i ∈ {1, 3} ,

Vr2(s) =
10
s+10 .

The synthesis results and implementation complexity of the CTC reference con-

troller will be listed in the following enumerations for the respective LPV controller

designs for comparison. Band-limited white noise with a power matching the ex-

perimental setup is added to the feedback signals, in order to assess the noise

attenuation of the controllers.
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Figure 6.2: Generalized plant configuration for OF controller synthesis for the robot.

6.1.3 Full Scheduling Order Output-Feedback Linear Parameter-Varying Control

The purpose of the following full scheduling order OF LPV controller designs is

to showcase the ability of the modeling framework presented in Chap. 4 and the

modified two-stage multiplier LFT-LPV synthesis methods presented in Chap. 5,

Sect. 5.1 to handle LPV plants of high scheduling complexity, while achieving low

implementation complexity.

The generalized plant configuration including the shaping filters used during

synthesis is adopted from the CTC LTI-H∞ controller design, cf. Fig. 6.2.

Controller designs are carried out via three different approaches:

(i) FBMs: PiDLF-based OF LPV controller synthesis as per Thm. 2.17 on p. 66

using FBMs in a single multiplier stage,

(ii) FBMs + D/G-Ss: PiDLF-based OF LPV controller synthesis as per Thm. 2.17

using FBMs in the first and D/G-Ss in the second multiplier stage via the

application of Cor. 5.1 on p. 160,

(iii) D/G-Ss: PiDLF-based OF LPV controller synthesis as per Thm. 2.17 using

D/G-Ss in a single multiplier stage.

FBMs require the construction of a controller parameter block ∆K according to

Lma. 2.5 on p. 69, which incurs additional online computations, whose complex-

ity needs to be assessed. In contrast, D/G-Ss allow the controller to be scheduled

by a copy of the plant’s parameter block according to Lma. 2.6 on p. 70. Here,

method (ii) is used to combine the benefits of FBMs and D/G-Ss from Tab. 2.1 on

p. 72 in terms of synthesis complexity and the possibility to consider fully popu-

lated parameter blocks of small size. Method (i) is used to illustrate the achieved

benefits and method (iii) acts as the standard reference method for LFT-based LPV

controller synthesis.
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6.1.3.1 Synthesis and Simulation Results

Tab. 6.1 lists synthesis, simulation and complexity results for full scheduling or-

der control of the robotic manipulator. The method and the associated parameter

blocks—introduced in Sect. 4.6, Tab. 4.3 on p. 144—are indicated in the left columns.

The diagonal parameter block used in the second multiplier stage can be inferred

from Tab. 4.3 or the argument of the respective parameter block. The RMSEs for

each joint as well as their average is given. The control effort is quantified via

Eu
△
=
1

T

∫T

0

3∑

i=1

u2i dt.

Synthesis complexity is reported in terms of the synthesis time t[•], number of de-

cision variables d[•] and total size of the LMI s[•] for both the controller existence

conditions and the LMI-based synthesis of the controller parameters (in parenthe-

ses).

Table 6.1: OF controller synthesis options for the robot models with various full scheduling

order parameterizations.

•/(•): The first value indicates quantities associated with the LMI-based existence

conditions, cf. Thm. 2.17, p. 66, using—in some cases—a two-stage multiplier

approach, cf. Cor. 5.1, p. 160, whereas values in parentheses indicate quantities

associated with the LMI-based derivation of controller parameters.

OF Control/Synth. Performance

RMSE [°] Synthesis Complexity

Syn. Blk. γ q1 q2 q3 Avg. Eu t[•] d[•] s[•]

FBMs Υ(υ) 0.91 0.064 0.040 0.061 0.055 2.60 374.4s/(26.5s) 733/(1157) 11468/(131)

FBMs +
D/G-Ss

Υ(δ) 0.93 0.054 0.039 0.056 0.050 2.60 16.5s/(17.2s) 1075/(1157) 452/(131)

Λ(δ) 0.90 0.051 0.039 0.052 0.047 2.60 16.3s/(20.4s) 1075/(1157) 452/(131)

Υ(υ) 0.88 0.059 0.039 0.058 0.052 2.60 10.0s/(27.9s) 809/(1157) 348/(131)

Λ(υ) 0.87 0.059 0.039 0.057 0.052 2.60 10.7s/(17.6s) 809/(1157) 348/(131)

Λ(θ) 1.32 0.083 0.074 0.062 0.073 2.60 12.8s/(29.1s) 883/(1157) 452/(131)

D/G-Ss

∆Υ(δ) 0.94 0.058 0.062 0.074 0.065 2.60 17.3s/(736.9s) 943/(3540) 408/(233)

ΥΥ(υ) 1.08 0.070 0.077 0.079 0.075 2.61 8.3s/(114.4s) 677/(2162) 304/(181)

ΘΛ(θ) 2.10 0.129 0.175 0.139 0.148 2.61 16.5s/(372.4s) 751/(3540) 408/(233)

CTC Υ(ρ) 1.00 0.058 0.053 0.086 0.066 2.64 3.5s 300/(810) 84/(54)

As apparent from Tab. 6.1, controllers based on a parameterization in terms of

δ or υ perform slightly better than the CTC controller at mildly reduced control

effort. A deterioration of performance is visible for controllers based on the fully

affine parameterization in terms of θ. The based parameterization in terms of δ
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has a slight advantage over the automated parameterization rendering Υ affine in

υ. Differences in performance are more clearly revealed in D/G-S-based synthesis,

while the use of FBM appears to alleviate some of the conservatism.

In all LPV control cases, the two-stage multiplier approach achieves the fastest

total synthesis time (below 42 s), whereas the other approaches show significantly

increased synthesis complexity at reduced or comparable performance levels.

6.1.3.2 Implementation Complexity

Tab. 6.2 lists the implementation complexity of each synthesized controller in terms

of the required arithmetic operations a[•] and scalar variables m[•] to be stored. The

complexity is divided into computing/storing the plant’s parameter block (Blk.),

the controller’s parameter block ∆̂K
(
•
)

as a function of the former, the opera-

tions to perform the LFT of the controller parameter block with the constant state

space system matrix (LFT), as well as the remaining operations to compute the

controller’s time-varying state space matrices (Matrices) together with the memory

requirements of the controller parameters. The number of arithmetic operations

a[•] and memory requirements m[•] for the respective blocks are listed in Tab. 4.4

on p. 144. In each case, the most effective implementation is chosen. Therefore,

the choice of parameterization in the second multiplier stage has no effect on the

resulting implementation complexity. The complexity of the CTC controller is ap-

proximated by computing/storing the parameter block Υ
(
ρ
)

and storing the state

space matrices from LTI-H∞ synthesis. As obvious from Tab. 6.2, the CTC controller

implementation is the least costly. Some additional computations are incurred due

to the use of the parameter block Λ
(
•
)
, despite the fact that the LFT is not required,

since the controller can be synthesized to be affine in its parameter block. However,

in conclusion, the use of FBMs in conjunction with small-in-size fully populated

parameter blocks has a significant advantage over the conventional D/G-S-based

synthesis approach.

Figure 6.3 shows the simulation results of reference tracking control of the ro-

botic manipulator using a full scheduling order OF LPV controller synthesized

by a two-stage multiplier approach using the parameterization via Λ
(
δ
)

(method

(ii)). When compared to the results obtained by CTC the controller outputs appear

less aggressive. In fact, a close zoom-in on the trajectories and controller outputs,

cf. Fig. 6.4, indicates slightly reduced deviations from the reference command as

well as fewer oscillations in the control signals. The comparison also includes an

OF LPV controller synthesized by a standard single-stage D/G-S approach using

the affine parameterization via Λ
(
θ
)
.
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Table 6.2: Implementation complexity for OF controllers synthesized on full scheduling or-

der robot models.

No. of Arith. Ops./Mem. Req.

Blk. ∆K
(
•
)

LFT Matrices Total

Syn. Blk. a[•] m[•] a[•] a[•] m[•] a[•] m[•] a[•] m[•]

FBMs Υ(υ) 245 120 3311 924 276 6210 1140 10042 2184

FBMs

+ D/G-Ss

Υ(•) 245 120 3311 924 276 6210 1140 10042 2184

Λ(•) 886 306 3311 924 — 6210 1140 10407 2370

D/G-Ss

∆Υ(δ) 15 14 — — 137130 106950 3538 244095 3552

ΥΥ(υ) 188 79 — — 26586 48060 2160 74834 2239

ΘΛ(θ) 825 281 — — — 51057 3538 51882 3819

CTC Υ(ρ) 245 120 — — — — 810 245 930
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Figure 6.3: Simulation results of reference tracking control of the robotic manipulator using

a full scheduling order OF LPV controller synthesized by a two-stage multiplier

approach using the parameterization via Λ
(
δ
)
.
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Figure 6.4: Comparison of simulation results of reference tracking control of the robotic

manipulator using full scheduling order controllers.

( ) OF LPV controller synthesized by a two-stage multiplier approach using

the parameterization via Λ
(
δ
)
.

( ) Combined CTC-OF LTI-H∞ controller.

( ) OF LPV controller synthesized by a standard single-stage D/G-S ap-

proach using the affine parameterization via Λ
(
θ
)
.

( ) Dashed lines indicate the reference trajectory.
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6.1.4 Reduced Scheduling Order Output-Feedback Linear Parameter-Varying Control

The purpose of the following reduced scheduling order OF LPV controller designs

is to showcase the ability of the modeling framework presented in Chap. 4 and the

modified two-stage multiplier LFT-LPV synthesis methods presented in Chap. 5,

Sect. 5.1 to approximate LPV plants of high scheduling complexity with simpler

ones, while achieving low implementation complexity and maintain high control

performance. The synthesis methods (i)–(iii) from Sect. 6.1.3 are again applied and

evaluated.

6.1.4.1 Synthesis and Simulation Results

Tab. 6.3 lists synthesis, simulation and complexity results for reduced scheduling

order control of the robotic manipulator. The associated approximate models with

their respective parameter blocks are derived in Sect. 4.6 and listed in Tab. 4.3 on

p. 144. The data for the evaluation of control performance, synthesis and imple-

mentation complexity follows the figures detailed in Sect. 6.1.3.

Table 6.3: OF controller synthesis options for the robot models with various reduced sched-

uling order parameterizations.

•/(•): The first value indicates quantities associated with the LMI-based existence

conditions using—in some cases—a two-stage multiplier approach, cf. Thm. 2.17,

p. 66, and Cor. 5.1, p. 160, whereas values in parentheses indicate quantities asso-

ciated with the LMI-based derivation of controller parameters.

OF Control/Synth. Performance

RMSE [°] Synthesis Complexity

Syn. Blk. γ q1 q2 q3 Avg. Eu t[•] d[•] s[•]

FBMs Υ̂(υ̂) 0.50 0.031 0.029 0.034 0.031 2.62 5.4s/(14.8s) 643/(992) 376/(121)

FBMs

+ D/G-Ss

Υ̂(δ̂) 0.50 0.027 0.022 0.031 0.027 2.62 6.3s/(17.8s) 733/(992) 304/(121)

Υ̂(υ̂) 0.48 0.022 0.030 0.034 0.029 2.64 6.9s/(28.6s) 659/(992) 216/(121)

D/G-Ss
∆̂Υ(δ̂) 0.51 0.025 0.072 0.060 0.052 2.60 20.3s/(117.9s) 691/(1892) 280/(169)

Υ̂Υ(υ̂) 0.48 0.023 0.054 0.051 0.042 2.65 6.2s/(20.2s) 617/(1056) 192/(125)

CTC Υ(ρ) 1.00 0.058 0.053 0.086 0.066 2.64 3.5s 300/(810) 84/(54)

The FBM-based controllers of reduced scheduling order achieve significantly im-

proved performance over the full scheduling order controllers at only slightly ele-

vated control effort. All reduced scheduling order LPV controllers perform better

than the CTC design at reduced or lower control effort. The figures indicating

the synthesis complexity are still consistently higher than the LTI-H∞ CTC design.

However, they are reduced over the full scheduling order cases.
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Differences between the parameterizations in terms of δ̂ and υ̂ appear to show

improved performance for the latter. When visualizing the amount of overbound-

ing induced by the respective parameterizations, cf. Fig. 6.5, it becomes obvious

that evaluating υ̂ over all admissible δ incurs a larger amount of overbounding

than evaluating υ̂ over all admissible υ. The reason resides in the fact that in the

course of the automated parameterization as per Alg. 4.1 on p. 137 in Sect. 4.5, the

extrema of each newly introduced set of parameters are determined via a dense

gridding of the measurable set of signals. Due to this approach, the conservatism

introduced initially by covering transcendental terms as parameters δ is slightly

amended.
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Figure 6.5: Compact sets of admissible values of the parameters υ1 and υ2 resulting from

different parameterizations of υ
(
•
)
.

6.1.4.2 Implementation Complexity

Tab. 6.4 lists the implementation complexity of each synthesized controller in terms

of the required arithmetic operations a[•] and scalar variables m[•] to be stored.

The reduced number of arithmetic operations and memory requirements for the

respective approximate blocks is again taken from Tab. 4.4 on p. 144.

By selecting a D/G-Ss-based reduced scheduling order controller synthesized via

the parameterization in terms of the parameter block Υ̂Υ(υ̂), the implementation

complexity is reduced to about a third of that of the least costly full scheduling

order controller. The CTC design still requires significantly less implementation

effort, but results in twice the average root mean square error (RMSE).
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Table 6.4: Implementation complexity for OF controllers synthesized on reduced schedul-

ing order robot models.

No. of Arith. Ops./Mem. Req.

Blk. ∆̂K
(
•
)

LFT Matrices Total

Syn. Blk. a[•] m[•] a[•] a[•] m[•] a[•] m[•] a[•] m[•]
FBMs

(+ D/G-Ss)
Υ̂(•̂) 75 52 468 294 111 5310 990 5679 1336

D/G-Ss
∆̂Υ(δ̂) 7 8 — — 15315 37350 1890 52972 383

Υ̂Υ(υ̂) 56 30 — — — 3294 924 3350 954

CTC Υ(ρ) 245 120 — — — — 810 245 930

6.1.5 Summary and Discussion

LPV controller synthesis for both full and reduced scheduling order plant represen-

tations is successfully conducted yielding very good performance. The two-stage

multiplier approach for PiDLF-based OF LPV controller synthesis as per Thm. 2.17

using FBMs in the first and D/G-Ss in the second multiplier stage via the applica-

tion of Cor. 5.1 on p. 160 significantly reduces the implementation and synthesis

complexity in almost all cases.

Full Scheduling Order Control

The application of systematic modeling tools from Chap. 4 for exact, low complex-

ity model representations makes it possible to synthesize controllers that can pro-

vide closed-loop stability and performance guarantees. In a previous publication

[E37], this was considered impractical. Furthermore, the conservatism introduced

through the automated affine parameterization of the block Υ
(
•
)

is seemingly re-

duced over the manual parameterization approach presented in [E48].

The proposed methods reduce the number of arithmetic operations for online

implementation by 96% from 244 095 to 10 407, when comparing the best perform-

ing controllers synthesized via the standard D/G-S-based LFT-LPV approach to

the novel two-stage multiplier approach. Control performance is maintained (even

slightly improved), while the respective associated total time consumed during

synthesis is reduced by 95% from 754.2 s to 36.7 s.

In conclusion, the option for full scheduling order synthesis with the best per-

formance, synthesis and implementation complexity is found to be an OF LPV

controller synthesized by a two-stage multiplier approach using the parameteriza-

tion in terms of Λ
(
δ
)
. The synthesis and complexity analysis results clearly show a

disadvantage of fully affine parameterizations and a synthesis approach that aims

for affine scheduling via D/G-Ss for plants with a high number of parameters. The

benefits in implementation complexity due to the small-in-size full parameter block
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representations render the seemingly more intutitive gains from affine scheduling

void.

Reduced Scheduling Order Control

The application of systematic modeling tools from Chap. 4 and novel approxima-

tion methods introduced in Sect. 4.5 yield approximate, low complexity model

representations that appear to maintain relevant plant information for high perfor-

mance control. The conservatism of the design is reduced, which may be either a

result of the truncation of scheduling parameters that are less relevant for the con-

trol problem or better numerical conditions due to the reduction of the synthesis

complexity.

The implementation complexity of the FBMs-based controllers is reduced by

about a half over the full scheduling order case. However, the conventional D/G-S-

based LFT-LPV synthesis using the parameterization in terms of the automatically

derived affine parameters υ̂ is now less costly to implement. This is mainly a con-

sequence of the approximation rendering the generalized inertia matrix parameter-

independent, thus resulting in a fully affine plant parameterization.

The loss of closed-loop stability and performance guarantees can be amended

by recovery via an a posteriori analysis along the lines of [E46]. In this work, an

iterative approach at solving the associated bilinear matrix inequalities (BMIs) for

performance optimization has been performed successfully for the case that only

2-DOF are controlled. The method of parameter set mapping [79] was used to

obtain an approximate plant model. Due to the fact that the performance using the

novel approximation in the venue of Sect. 4.5 does in fact yield improved control

performance, such an iteration is not expected to result in further improvements

without the use of PDLFs. In light of this, the proposed methods can be regarded as

an efficient tool to synthesize high performance, low complexity initial controllers

for structured LPV control with a pre-specified scheduling policy.

Tab. 6.5 summarizes the above-mentioned synthesis options and compares exper-

imental control performance, synthesis complexity in terms of the total solver time

as well as implementation complexity for online computation of the controllers’

state space matrices. The results are grouped by full/reduced scheduling order

and ordered by increasing performance.

The state-of-the-art CTC design outperforms all LPV controllers in terms of im-

plementation complexity. It is assumed that by some retuning, the performance

disadvantage may be reduced. However, the proposed LPV control methodology

can also be applied for plants, in which only a partial cancellation of nonlinear

terms via feedback or feedforward control is possible. In light of this, the methods

achieve a significant improvement in terms of both synthesis complexity and im-

plementation complexity that approaches the CTC methodology. A combination of

both approaches to the extent possible therefore promises to result in an efficient

high performance controller design methodology. The CMG is a plant that allows

such an approach and will be considered in the next section.
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Table 6.5: Summary of synthesis results obtained for the robot model. Tracking accu-

racy from simulation results, solver time and implementation complexities ares

shown.

Perf. Syn. Impl.

Sched.
Order

Block Syn. RMSE [°] Eu t[•] a[•] m[•]

Full ∆Υ(δ) OF-PiDLF, FBM+D/G-S 0.050 2.60 33.7s 10042 2184

Red.
Υ̂Υ(υ̂) OF-PiDLF, D/G-S 0.042 2.65 26.4s 3350 954

Υ̂(δ̂) OF-PiDLF, FBM+D/G-S 0.027 2.62 24.1s 5679 1336
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6.2 A Four-Degrees-of-Freedom Control Moment Gyroscope

I
n the following, experimental real-time LPV control of a laboratory scale control

moment gyroscope will be investigated. Sect. 6.2.1 will outline the problem setup

and matters of investigation. Sects. 6.2.2 and 6.2.3 consider the application of SF

LPV control techniques on both full and reduced scheduling order models, whereas

Sect. 6.2.4 considers OF LPV control based on the reduced scheduling order models.

A summary is provided in Sect. 6.2.5.

6.2.1 Problem Setup

Reconsider the LPV model representations of the CMG derived in Sect. 4.7, pp. 145

for use in both OF as well as SF control settings.

Throughout the sections, the controller designs are based on the following con-

trol objectives:

(i) Guaranteed closed-loop performance and stability,

(ii) Fast reference tracking in gimbals three and four,

(iii) Fast input disturbance rejection,

(iv) Low synthesis and implementation complexity.

Item (i) will only be strictly guaranteed for synthesis results based on the full

scheduling order models under the assumption that the models are exact. How-

ever, the suitability of the controllers synthesized based on the reduced scheduling

order for a posteriori analysis in the venue of [E45] will be discussed. In connection

to items (ii) to (iv), the CMG will prove an illustrative example of a trade-off be-

tween potentially conservative full scheduling order control and high performance

reduced scheduling order control. W. r. t. synthesis complexity, a comparison be-

tween standard LFT-LPV-based state-feedback and improved conditions derived

in Sect. 5.2 that exploit a descriptor-style LPV model representation will illustrate

significant advantages. However, the best performance is still achieved by reduced

scheduling order controllers.

Tab. 6.6 provides an overview about the respectively synthesis options that will

be conducted. Each of these can in turn be performed on one of the factorization/-

modeling options FMax/FMin, PFCMax/PFCMin and MOP.

Preliminary results of this section have been previously published in [E49]. The results are extended by

considering additional models and synthesis options, complete experimental validation and improved achieved

performance.
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Table 6.6: Synthesis options conducted on the CMG models.

OF SF

D/G-S FBM Std., Thm. 5.1 Impr’d., Prop. 5.1

Sched.
Order

Model Block PiDLF PiDLF PiDLF PDLF PiDLF PDLF

Full

FMax ∆Υ(δ)

FMin ∆Υ(δ)

PFCMax ∆Υ(δ)

PFCMin ∆Υ(δ)

Red.

PFCMin Υ̂(υ̂)

PFCMin Υ̂Υ(υ̂)

MOP ∆̄Υ(δ̄)

Quantitative performance criteria assessed in the following will consist of the

rise times in both gimbals three and four, trq3 and trq4 , respectively, as well as the

total average RMSE. In addition, the control effort will be accounted for by

Eu
△
=
1

T

∫T

0

2∑

i=1

u2i dt.

6.2.2 Full Scheduling Order State-Feedback Linear Parameter-Varying Control

State-feedback controller synthesis is considered for the full scheduling order plant

model of the CMG. I. e., synthesis will be based on the exact plant representations

FMax/FMin and PFCMax/PFCMin. For minimum conservatism, parameteriza-

tions in terms of the respective blocks ∆
(
δ
)

are used.

6.2.2.1 Generalized Plant Configuration and Controller Implementation

A standard S/KS weighting scheme—borrowed from [E94]—is employed for the

generalized plant in state-feedback configuration, which is depicted in Fig. 6.6. The

shaping filters

WS(s) =

[
WS3

WS4

]
, WKS(s) =

[
WKS1

WKS2

]
,

WS3(s) = 4.5
1
s , WKS1(s) = 5 · 105 s+0.83

s+4.59·105 ,

WS4(s) = 4.0
1
s , WKS2(s) = 5 · 105 s+0.23

s+2.31·105 ,

are used, which have been derived after fine tuning.

The augmentation of the CMG plant model by dynamic weighting filters requires

the implementation of these filters as part of a dynamic controller of which only
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Figure 6.6: Generalized plant configuration of the SF gain controller synthesis for the CMG.

the time-varying state-feedback gain F
(
δ
)

is synthesized by convex optimization.

For implementation, the shaping filters’ output gains are set to identity, s. t. their

respective states are fed to the state-feedback gain. Consequently, the resulting

state-feedback-based dynamic controller is implemented as indicated in Fig. 6.7.

The access to the state vector of a dynamic system is indicated by the diagonal

line crossing the border of the block.

u- e
y

x

r

xS

xKS

F
(
ρ
)

WS

WKS

Figure 6.7: Implementation scheme of the SF gain controller for the CMG.

6.2.2.2 Design of the Parameter-Dependent Lyapunov Function

Based on prior attempts at controlling the CMG [E94], a PDLF is expected to be

required. Indeed, the attempt of synthesizing a state-feedback controller with a

PiDLF based on the exact plant models fails and is discarded. The following basic

parameterization of the Lyapunov matrix is used.

S
(
δ
)
= Q⊤

(
δ
)
SQ
(
δ
)
∈ C1(δ, S

nx), S
(
δ
)
≻ 0 ∀δ ∈ δ,

= S00+

3∑

i=1


δi



[
Si0
0

]
+
[
S⊤i0 0

]
+

3∑

j=1

δj

2

[(
Sij+S

⊤
ij

)
0

0 0

]


 (6.5)
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This structure is achieved by the factorization

Q
(
δ
) △
=




δ1InGx ×nPx
δ2InGx ×nPx
δ3InGx ×nPx
InPx



=




δ1

[
InGx 0

]

δ2

[
InGx 0

]

δ3

[
InGx 0

]

InPx




, S
△
=




S11 S12 S13 S10
• S22 S23 S20
• • S33 S30
• • • S00


, (6.6)

where Sij ∈






RnGx ×nPx , i ∈ {1, 2, 3} , j = 0,

RnGx ×nGx , i, j ∈ {1, 2, 3} , i 6= j,
Sn

G
x ×nGx , i = j ∈ {1, 2, 3} ,

Sn
P
x×nPx , i = j = 0

.

Tests on possible parameter-dependencies of the Lyapunov function are per-

formed based on the model PFCMin with full scheduling order and a state-

feedback synthesis performed by improved LMI conditions as per Prop. 5.1. During

synthesis D/G-scalings are used to render the synthesis problem tractable. In each

case, the parameter-dependency is restricted to the part of the Lyapunov matrix

corresponding to the physical states, as defined in (6.6). Figure 6.8 illustrates the

results in terms of the achieved performance indices γ versus all combinations of

including the parameters δi, i ∈ {1, 2, 3} in a PDLF of the form (6.6). Here, e. g., ¬δi
indicates that δi is not included. It turns out that parameters ρ1 = q2, ρ2 = q3 and

ρ3 = q̇1, cf. Tab. 4.7 on p. 154, contribute significantly to an improved performance,

which is in accordance to the findings in [E94], where the approximate plant model

based on a linearization about a MOP is considered.

 .!". 

 . 
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Figure 6.8: SF synthesis results in terms of the achieved performance index γ for different

PDLF parameterizations for the CMG PFCMin plant model with full scheduling

order.

Based on these findings, the effects of considering only the part of the Lyapunov

matrix that corresponds to the physical states and the inclusion of mixed/quadratic

terms is further investigated. The results are presented in Tab. 6.7.
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Table 6.7: SF synthesis results using the improved synthesis conditions from Prop. 5.1 in

terms of the achieved performance index γ for different PDLF parameterizations

for the CMG PFCMin plant model with full scheduling order.

SF Control/Synth. Performance

Mixed/Quadr.
Terms

Gen. Plant
States

γ trq3 trq4 RMSE Eu t[•] d[•] s[•]

5.7 3.3s 2.4s 17.8 1.6 15.1min 5100 342

6.0 3.5s 2.6s 18.2 1.4 2.5min 3099 248

7.1 4.2s 2.9s 19.5 1.3 12.1min 4080 342

7.1 4.2s 2.9s 19.5 1.3 2.8min 2979 284

As apparent from Tab. 6.7 the inclusion of quadratic and mixed terms has a

strong beneficial effect on the control performance without significantly affecting

the synthesis time or number of decision variables. This is in contrast to the claim

mentioned in [E94], which may be explained by the additional conservatism in-

duced by D/G-scalings that is alleviated through a more complex PDLF parame-

terization. In fact, the increase in decision variables is only small compared to the

number incurred by the multiplier-based synthesis technique.

Moreover, the benefit of including parameter-dependencies in the portions of the

PDLF that correspond to generalized plant filter states is negligible compared to

the strongly increased synthesis complexity. W. r. t. the implementation complexity

assessed by the evaluation of the number of arithmetic operations a
[
F
(
δ
)]

necessary

to compute the state-feedback gain in each time instant, the restriction of the PDLF

according to (6.6) is negligible.

6.2.2.3 Improved vs. Standard State-Feedback Synthesis

Throughout the above-shown sets of synthesis data (Tab. 6.7), SF synthesis con-

ditions improved for descriptor LPV systems according to Prop. 5.1 have already

been used. To indicate the potential in reducing the number of decision variables,

size of LMIs and, consequently, synthesis time, various SF controller synthesis op-

tions are compared in Tab. 6.8. For this purpose, the PDLF is selected as (6.6) and

D/G-Ss are used to evaluate multiplier conditions.

As expected, control performance is not affected by the use of the improved

conditions. Synthesis complexity, however, is strongly reduced. Tab. 6.9 lists the

relative reductions, revealing that in average the number of decision variables, size

of LMIs and synthesis time is reduced by 43.4%, 17.6% and 88.9%, respectively.

Tab. 6.10 lists synthesis data for the cases that a PDLF with mixed/quadratic

terms and parameter-dependency w. r. t. all generalized plant states is used in con-

junction with the PFCMin CMG model. Even though, the major part of the synthe-
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Table 6.8: PDLF-based SF controller synthesis options for the various CMG models of full

scheduling order.

SF Control/Synth. Performance

Synth. Model PDLF γ trq3 trq4 RMSE Eu t[•] d[•] s[•]

Prop. 5.1

FMax
∆Υ(δ) 6.1 3.5s 2.9s 18.3 1.3

4.6min 3495 260

FMin 5.1min 3604 266

PFCMax
∆Υ(δ) 6.0 3.5s 2.6s 17.2 1.5

3.1min 3294 254

PFCMin 2.5min 3099 248

Thm. 5.1

FMax
∆Υ(δ) 6.1 3.5s 2.9s 18.3 1.3

39.2min 6459 320

FMin 46.7min 6610 326

PFCMax
∆Υ(δ) 6.0 3.5s 2.6s 17.2 1.5

28.3min 5745 304

PFCMin 22.7min 5214 294

Table 6.9: Reduction in synthesis complexity due to application of Prop. 5.1 for the PDLF-

based SF controller synthesis for various full scheduling order CMG models .

Relative Reduction

Model Block d[•] s[•] t[•]

FMax ∆Υ(δ) 45.9% 19.8% 88.4%

FMin ∆Υ(δ) 44.5% 18.4% 89.1%

PFCMax ∆Υ(δ) 42.7% 16.5% 89.1%

PFCMin ∆Υ(δ) 40.6% 15.6% 88.9%

Average 43.4% 17.6% 88.9%

sis complexity is incurred through the use of fully parameterized Lyapunov matrix,

the improvements still amount to 68.4% reduction in synthesis time.
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Table 6.10: Comparison of SF controller synthesis options for the PFCMin CMG model of

full scheduling order with fully PDLF.

SF Synth. Performance Reduction

Model Block Std., Thm. 5.1 Impr’d., Prop. 5.1

PFCMin ∆Υ(δ)

γ 5.7 5.7

t[•] 47.7min 15.1min 68.4%

d[•] 7549 5100 32.4%

s[•] 388 342 11.9%

6.2.2.4 Implementation Complexity

Due to the generalized plant configuration and model structure, most of the gener-

alized plant matrices are parameter-independent and it remains to compute

F
(
δ
)
= −

(
D⊤puDpu

)−1 (
γB⊤u

(
δ
)
S−1
(
δ
)
+D⊤puCp

)
. (6.7)

The input gain matrix Bu
(
δ
)

only contains non-zero entries in the third to fifth

row. The leading term −
(
D⊤puDpu

)−1
amounts to a constant, scalar gain and the

term D⊤puCp is zero except for a diagonal 2 × 2 matrix in the last two columns.

The implementation complexity is therefore approximately assessed by considering

a
[
F
(
ρ
)]
≈ a
[
S−1
(
ρ
)]

.

A look-up table (LUT)-based implementation can trade the number of arithmetic

operations against memory. It turns out that storing the state-feedback gain in 45

different grid points (810 scalar variables) from taking three for δ1 and δ2, as well as

five for δ3, respectively, results in consistent control performance, although rigorous

closed-loop guarantees are rendered void.

In order to further reduce the memory requirements, the SF controller synthesis

using a PDLF dependent on δ1 and δ2 only can also be considered. As indicated

in Fig. 6.8, the drop in performance by omitting δ3 from the Lyapunov matrix

parameterization is not severe. At the cost of increased synthesis effort, a PDLF with

parameter-dependence included also in portions associated with the generalized

plant states may partially recover the performance deterioration. Tab. 6.11 indicates

that by this reasoning a performance index of γ = 6.17 is attained and rise times

lower accordingly. Consequently, storing the SF gain in 9 different grid points (162

scalar variables) from taking three for δ1 and δ2, results in adequate performance.

Tab. 6.12 provides a comprehensive list of both required arithmetic operations

and stored scalar variables for the full scheduling order SF controllers. Both the

cases when the parameter-dependent Lyapunov matrix is constructed and inverted

online (Comp.), as well as a look-up table-based implementation (LUT) are consid-

ered. The inversion of the 9× 9 Lyapunov matrix requires 486 operations not con-

sidering positive definiteness. Due to mixed/quadratic parameter-dependencies in
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the matrices, an additional 495 (for a PDLF dependent on δ1, δ2 and δ3) and 225 (for

a PDLF dependent on δ1 and δ2 only) operations are required for the construction

of the matrix to be inverted.

In conclusion, controllers based on the PFCMin CMG model involve a negligible

amount of extra implementation complexity due to the partial feedback cancella-

tion at significantly reduced synthesis effort and slightly improved performance.

If a fully parameterized PDLF dependent on δ1 and δ2 only is used in conjunc-

tion with the PFCMin CMG model, a slight deterioration in performance is traded

against significantly reduced LUT-based implementation complexity.

Table 6.11: SF synthesis result comparison for reduced implementation complexity using

the improved synthesis conditions from Prop. 5.1 in terms of the achieved per-

formance index γ for different PDLF parameterizations for the CMG PFCMin

plant model with full scheduling order.

SF Control/Synth. Performance

PDLF Gen. Plant
States γ trq3 trq4 RMSE Eu t[•] d[•] s[•]

δ1, δ2, δ3

5.7 3.3s 2.4s 17.8 1.6 15.1min 5100 342

6.0 3.5s 2.6s 18.2 1.4 2.5min 3099 248

δ1, δ2, ¬δ3

6.2 3.6s 2.8s 18.7 1.4 9.7min 4218 270

6.6 3.8s 2.9s 19.0 1.2 2.7min 2779 208

Table 6.12: Implementation complexity for SF controllers synthesized on full scheduling

order CMG models.

No. of Arith. Ops./Mem. Req.

Parameters SF Gain PFC Total

Type PDLF Model a[•] m[•] a[•] m[•] a[•] m[•] a[•] m[•]

Comp.
δ1, δ2, δ3

F ∆Υ
(
δ
)

4 4 985 300 — — 989 304

PFC ∆Υ
(
δ
)

4 4 985 300 73 6 1062 310

δ1, δ2, ¬δ3 PFC ∆Υ
(
δ
)

2 2 711 378 73 6 786 386

LUT
δ1, δ2, δ3

F ∆Υ
(
δ
)

4 2 — 810 — — 4 812

PFC ∆Υ
(
δ
)

4 2 — 810 73 6 77 818

δ1, δ2, ¬δ3 PFC ∆Υ
(
δ
)

4 2 — 162 73 6 77 243
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6.2.2.5 Simulation Results

Figure 6.9 depicts an exemplary closed-loop simulation using a SF controller syn-

thesized based on the full scheduling order CMG PFCMin model and a PDLF

dependent on δ1, δ2 and δ3 in portions associated with the physical states includ-

ing mixed/quadratic dependence. As apparent from the results, all scheduling pa-

rameters remain within the prespecified bounds and the control performance is

satisfactory. Further performance data is listed in Tab. 6.8 on p. 195.

-60

-30

0

30

60

-50

0

50

-1

-0.5

0

0.5

1

40

50

60

0 5 10 15 20 25 30 35 40 45
-15

0

15

q̇
1

[r
a
d
/
s]

q
2

[°
]

q
3

[°
]

q
4

[°
]

u
1

(
)

u
2

(
)

Time t [s]

Figure 6.9: Simulation results of reference tracking of the CMG with full scheduling order.

( ) Solid lines indicate signals.

( ) Dashed lines indicate the reference trajectory.



6.2 A 4-DOF Control Moment Gyroscope 199

6.2.2.6 Experimental Validation

The SF controllers synthesized via improved LMIs and based on the full sched-

uling order CMG models PFCMin and FMin are tested in real-time experiments,

cf. Fig. 6.10. Tab. 6.13 lists the achieved performance indices.

Table 6.13: Experimental performance for SF controllers on the full scheduling order CMG.

Exp. SF Ctrl. Perf.

Model trq3 trq4 RMSE Eu

PFCMin ∆Υ(δ) 3.46s 2.63s 18.1306 2.1659

FMin ∆Υ(δ) 3.52s 2.89s 18.2056 2.1997
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Figure 6.10: Experimental results of reference tracking control of the CMG using a SF con-

troller synthesized based on the full scheduling order CMG PFCMin model.

( ) Solid lines indicate signals.

( ) Dashed lines indicate the reference trajectory.
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6.2.3 Reduced Scheduling Order State-Feedback Linear Parameter-Varying Control

The previous section showed that for the CMG satisfactory control performance

can be achieved by synthesizing a state-feedback controller based on the full non-

approximate plant model. The incurred implementation complexity matches the

one obtained in [E94], which used the approximate model obtained through lin-

earization about a moving operating point (MOP) in order to render the gridding-

based LPV controller synthesis tractable. As a comparison, in this section LPV con-

troller synthesis is based on the approximate plant model of the CMG derived in

Sect. 4.7, p. 145, for the purpose of reducing both synthesis and implementation

complexity. In this section state-feedback controller synthesis is considered and a

generalized plant configuration identical to the one described in Sect. 6.2.2.1 and

depicted in Fig. 6.6 on p. 192 is used.

6.2.3.1 Choice of Lyapunov Functions and Shaping Filters

It turns out that the approximate plant model of the CMG derived in Sect. 4.7,

p. 145, in terms of Υ̂Υ(υ̂) does not require a PDLF during synthesis to achieve

feasibility and good performance. Thus, besides reducing the synthesis effort by

an approximate plant model, the implementation complexity of the resulting con-

troller is also reduced. However, the shaping filters have been retuned to

WS(s) =

[
WS3

WS4

]
, WKS(s) =

[
WKS1

WKS2

]
,

WS3(s) = 14
1
s , WKS1(s) = 3 · 103 s+0.77s+9295 ,

WS4(s) = 14
1
s , WKS2(s) = 1 · 104 s+0.57s+7559 ,

in order to achieve the best control performance.

Due to the low complexity of the reduced scheduling order model, a PDLF is

expected to not incur strongly increased synthesis complexity. Consequently, the

following parameterization is chosen

Q
(
υ
) △
=



δ1InGx ×nPx
δ2InGx ×nPx
InPx


, S

△
=



S11 S12 S10
• S22 S20
• • S00


, (6.8)

where Sij ∈






RnGx ×nPx , i ∈ {1, 2} , j = 0,

RnGx ×nGx , i, j ∈ {1, 2} , i 6= j,
Sn

G
x ×nGx , i = j ∈ {1, 2} ,

Sn
P
x×nPx , i = j = 0

.
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Again, a retuning to

WS(s) =

[
WS3

WS4

]
, WKS(s) =

[
WKS1

WKS2

]
,

WS3(s) = 5.5
1
s , WKS1(s) = 5 · 102 s+1.15s+1155 ,

WS4(s) = 3.5
1
s , WKS2(s) = 6 · 102 s+0.57s+695 ,

is performed for optimizing the resulting performance in the cases where a PDLF

is used.

The approximate model based on linearization (MOP) requires PDLFs, in order

to yield acceptable results [E94]. Therefore, a PDLF dependent on δ1, δ2 and δ3
in portions associated with the physical states including mixed/quadratic depen-

dence as in Sect. 6.2.2 is used. Consequently, implementation of a controller based

on the CMG MOP model is as costly as the controllers synthesized based on the

full scheduling order models (partial feedback cancellation (PFC)/full model (F))

derived in this thesis. Controller synthesis schemes based on the CMG MOP model

therefore serve the purpose of reducing the synthesis complexity.

6.2.3.2 Synthesis Results and Complexity

Tab. 6.14 lists data on the synthesis complexity with respect to the models of re-

duced scheduling order. While synthesis based on the novel approximation takes

less than a second due to PiDLFs, synthesis time based on the MOP model is sig-

nificantly reduced by application of Prop. 5.1. However, the use of PDLF w. r. t. the

CMG PFCMin model also incurs significantly less synthesis complexity than in the

case of the CMG MOP model, while the performance characteristics are improved.

Table 6.14: SF controller synthesis options for CMG models of reduced scheduling order.

SF Control/Synth. Performance

Synth. Model PDLF γ trq3 trq4 RMSE Eu t[•] d[•] s[•]

Prop. 5.1
PFCMin Υ̂Υ(υ̂)

5.3 2.4s 2.5s 17.3 1.6 7.1s 579 112

17.4 3.4s 2.7s 17.2 1.5 0.7s 54 32

MOP ∆̄Υ(δ̄) 5.8 3.4s 2.8s 18.0 1.3 1.0min 2033 212

Thm. 5.1
PFCMin Υ̂Υ(υ̂)

5.3 2.4s 2.5s 17.3 1.6 7.4s 579 112

17.4 3.4s 2.7s 17.2 1.5 0.8s 54 32

MOP ∆̄Υ(δ̄) 5.8 3.4s 2.8s 18.0 1.3 5.8min 3597 256
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6.2.3.3 Implementation Complexity

For PiDLFs, no inverse is required for the computation of the state-feedback gain

F
(
δ
)
= −

(
D⊤puDpu

)−1 (
γB⊤u

(
δ
)
S−1 +D⊤puCp

)
. (6.9)

Consequently, a symbolic expression can be found that requires a minimum num-

ber of arithmetic operations during online implementation. The SF gain resulting

from PiDLF-based synthesis w. r. t. the reduced scheduling order model PFCMin is

F
(
υ
)
=

[
1.10 0.00 0.00 0.12 0.00 −0.23 0.00 2.10 0.00

0.00 0.34 −0.04 0.00 0.11 0.00 −0.07 0.00 0.82

]

+
υ2·10−6

3.3·10−3υ2−1.0

[
−27.0 0.0 0.0 −3.0 0.0 5.5 0.0 4.1 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

]
. (6.10)

As apparent from (6.10), the SF gain is nearly constant. In contrast—as mentioned

above—implementing the controller synthesized based on the MOP model is as

costly as the full scheduling order controllers. Comparable performance is only

achieved, if the Lyapunov matrix is chosen to depend on δ1, δ2 and δ3. As before,

the controller can be stored in a LUT using 810 scalars. Recall that in constrast

to this, the PDLF-based controller synthesized with the reduced scheduling order

CMG PFCMin model is only scheduled on two parameters, υ1 and υ2. It turns

out that a look-up table implementation with 162 scalars is sufficient for main-

taining the controlled response. However, the parameters υ1
(
ρ
)

and υ2
(
ρ
)

need

to be computed online, which amounts to a
[
υ̂
(
ρ
)]

= 126 arithmetic operations,

cf. Tab. 4.10 on p. 157. An additional a
[
uF

(
ρ
)]

= 73 operations are required for the

PFC. Tab. 6.15 lists a comprehensive enumeration of both required arithmetic ope-

rations and stored scalar variables for the reduced scheduling order SF controllers.

Both the cases when the parameter-dependent Lyapunov matrix is constructed and

inverted online (Comp.), as well as a look-up table-based implementation (LUT)

are considered. The inversion of the 9 × 9 Lyapunov matrix requires 486 opera-

tions not considering positive definiteness. Due to mixed/quadratic parameter-

dependencies in the matrices, an additional 495 (MOP) and 225 (MOP) operations

are required for the construction of the matrix to be inverted. As before, the num-

ber of arithmetic operations required to compute the SF gain is approximated by

a
[
F
(
ρ
)]
≈ a
[
S−1
(
ρ
)]

due to the constant performance channel matrices.

In conclusion, a LUT-based implementation is considerably more efficient in all

cases. While the PDLF-based online computations in both PFCMin and MOP cases

are within the same order, the LUT-based implementation in the PFCMin case

shows a clear advantage. However, since υ̂ is a function of all six measurable sig-

nals, a gridding has to be performed in terms of υ̂1 and υ̂2. This prevents further

considerations to trade online computations versus LUTs. The PiDLF-based con-

troller with SF gain (6.10) may also be approximated by the nominal constant SF

gain for even further reduced implementation complexity (not shown).
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Table 6.15: Implementation complexity for SF controllers synthesized on reduced schedul-

ing order CMG models.

No. of Arith. Ops./Mem. Req.

Parameters SF Gain PFC Total

Type PDLF Model a[•] m[•] a[•] m[•] a[•] m[•] a[•] m[•]

Comp.

PFCMin Υ̂Υ
(
υ̂
)

126 51 11 16 73 6 210 73

PFCMin Υ̂Υ
(
υ̂
)

126 51 711 190 73 6 910 320

MOP ∆̄Υ
(
δ̄
)

4 4 981 300 — — 985 304

LUT

PFCMin Υ̂Υ
(
υ̂
)

126 51 — 54 73 6 199 111

PFCMin Υ̂Υ
(
υ̂
)

126 51 — 162 73 6 199 219

MOP ∆̄Υ
(
δ̄
)

4 4 — 810 — — 4 814

In light of the simulation results and synthesis complexity shown in Tab. 6.14,

both PDLF- and PiDLF-based controllers synthesized based on the PFCMin CMG

model are superior to the one synthesized based on the MOP CMG model.

6.2.3.4 Experimental Validation

Tab. 6.16 lists quantities that indicate the experimental control performance for

the respective controllers. From this evaluation, the PDLF-based SF controller syn-

thesized based on the reduced scheduling order CMG PFCMin model performs

significantly better than the other controllers, which show similar performance.

The experimental results are in accordance with the simulation results shown in

Tab. 6.14.

Table 6.16: Experimental performance for SF controllers on the reduced sched. order CMG.

Exp. SF Ctrl. Perf.

PDLF Model trq3 trq4 RMSE Eu

PFCMin Υ̂Υ(υ̂) 2.49s 2.54s 16.8 2.1

MOP ∆̄Υ(δ̄) 3.38s 2.76s 17.9 1.9

PFCMin Υ̂Υ(υ̂) 3.42s 2.81s 17.1 2.1

Figure 6.11 shows experimental results of reference tracking control of the CMG

using the PiDLF-based SF controller synthesized based on the reduced scheduling

order CMG PFCMin model. For comparison, Fig. 6.12 indicates the improvement

in performance via the PDLF-based SF controller synthesized based on the reduced
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scheduling order CMG PFCMin model. As apparent, the decreased rise time in q3
comes at the price of increased cross-coupling effects.
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Figure 6.11: Experimental results of reference tracking of the CMG using a SF controller

synthesized based on the reduced scheduling order CMG PFCMin model.

( ) Solid lines indicate signals.

( ) Dashed lines indicate the reference trajectory.
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Figure 6.12: PDLF vs. PiDLF: Comparison of experimental results of reference tracking con-

trol of the CMG using a SF controller synthesized based on the reduced sched-

uling order CMG PFCMin model.

( ) Black lines: PDLF-based SF controller.

( ) Gray lines: PiDLF-based SF controller.

( ) Dashed lines indicate the reference trajectory.

6.2.4 Reduced Scheduling Order Output-Feedback Linear Parameter-Varying Control

The previous sections illustrated the synthesis of SF controllers for both full and re-

duced scheduling order models. It has been shown that—with tractable effort—SF

controllers providing closed-loop guarantees can be designed either by considering

exact complex models or by synthesizing controllers that render a posteriori analysis

for recovering closed-loop stability and performance guarantees particularly sim-

ple [E45]. These designs resulted in satisfactory control performance.

The synthesis of OF controllers is more involved, as it generally requires twice

the number of LMIs and hence decision variables. Furthermore, implementation

complexity is increased in both PiDLF- and PDLF-based synthesis over the SF case.

However, OF control schemes are conceptually appealing as they integrate the op-

timization of state observation and filtering into the controller design process. For

this reason, in the following, an OF controller is designed for the CMG PFCMin

and FMin model.

6.2.4.1 Generalized Plant Configuration and Implementation Complexity

The best output-feedback controller synthesis results have been obtained by a four-

block design [141], which takes into account input disturbances explicitly and pro-
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vides the angular velocity states xq̇ =
[
q̇2, q̇3, q̇4

]⊤
as additional feedback signals

over the controlled variables yq =
[
q3, q4

]⊤
. The corresponding generalized plant

configuration is shown in Fig. 6.13.

-

PSfrag

e
zS

zKS

yq

xq̇

u

r

d

Kρ

Gσρ

Pσρ

WS

WKS

Vd

Figure 6.13: Generalized plant configuration for OF controller synthesis for the CMG.

The shaping filters are tuned to

WS(s) =

[
WS3(s)

WS4(s)

]
, WKS(s) =

[
WKS1(s)

WKS2(s)

]
,

WS3(s) =
4
5
s+7.5
s+0.006 , WKS1(s) = 100

s+5.33
s+666.6 ,

WS4(s) =
4
5

s+3.0
s+0.0024 , WKS2(s) = 100

s+1.33
s+166.7 ,

Vd(s) =

[
Vd1(s)

Vd2(s)

]
,

Vd1(s) = 5,

Vd2(s) = 10.

In contrast to the SF design, the OF controller does not require manual aug-

mentation by dynamic weighting filters and the controller dynamics are explicitly

synthesized through convex optimization. The output-feedback controller is syn-

thesized via the LFT-LPV synthesis technique presented in [124] by using FBMs

and D/G-S directly due to the low number of parameters in the reduced sched-

uling order parameter set. Consequently, the controller’s scheduling function will

vary and be based on the approximate plant’s parameter block. Based on the results

from Sect. 3.1 the implementation complexity for the OF controllers is assessed a

priori in Tab. 6.17 for both the CMG PFCMin and FMin model. Synthesis complex-

ity is not assessed a priori, as it is expected to be tractable for all reduced scheduling

order cases. Details and sizes w. r. t. the respective blocks for the CMG PFCMin and

FMin model are given in Tabs. 4.8 and 4.9 on p. 154.

As apparent from Tab. 6.17, the implementation complexity resulting from OF

controllers synthesized based on the CMG PFCMin model is the lowest. Any con-

troller design based on the CMG FMin model would therefore have to show in-

creased performance to be preferable.
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Table 6.17: Implementation complexity for OF controllers synthesized on reduced schedul-

ing order CMG models.

No. of Arith. Ops./Mem. Req.

Υ̂
(
ρ̂
)

∆̂K
(
Υ̂
)

LFT Matrices PFC Total

Syn. Model a[•] m[•] a[•] m[•] a[•] a[•] m[•] a[•] m[•] a[•] m[•]

D/G-S
FMin Υ̂

(
υ̂
)

141 47 — — 538 2480 336 — — 3159 383

PFCMin Υ̂
(
υ̂
)

126 51 — — 271 1856 300 73 6 2326 357

FBM
FMin Υ̂

(
υ̂
)

156 62 1764 630 210 1584 308 — — 3714 1000

PFCMin Υ̂
(
υ̂
)

138 62 1277 504 87 1056 286 73 6 2631 858

Note, however, that a LUT-based implementation incurs about the same complex-

ity for each controller. In this case the computation of the reduced scheduling order

parameters υ̂ requires a[υ̂] = 126 (PFCMin) or a[υ̂] = 141 (FMin), respectively. For

each grid point, 176 scalars need to be stored, which amounts to nnυ̂g · 176 scalars

in total for a regular gridding. Since nυ̂ = 2 and ng = 3 leads to 1584 scalars, while

for four grid points the number of scalars to be stored already exceed the number

of online arithmetic operations for implementation as the LFT-based controller.

6.2.4.2 Synthesis Complexity and Simulation Results

Tab. 6.18 lists data on the synthesis complexity and nonlinear simulation results

w. r. t. the reduced scheduling order OF controllers in closed loop with the full

nonlinear model1. As apparent from the data, synthesis options based on the CMG

PFCMin model perform better with the same multiplier constraints. Furthermore,

a significant improvement of FBMs over D/G-Ss can be observed in the case of

both models.

6.2.4.3 Experimental Validation

Tab. 6.19 lists the experimental results of both OF controllers synthesized based on

the reduced scheduling order CMG PFCMin model with FBMs and D/G-Ss. Some

downtuning was required to maintain stable closed-loop behaviour during the ex-

periments, since the high performance achieved in q3 incurred more pronounced

coupling effects than during simulation. The FBM-based controller still achieves

a significantly shorter rise time in q3, whereas differences in trq4 diminish. The

increased RMSE is due to stronger coupling effects. However, the FBM-based con-

1 For a fair comparison the shaping filters for all but the FBM PFCMin case were relaxed to WS3(s) =
4
5

s+3.75
s+0.003 , WS4(s) = 4

5
s+1.65

s+0.00132 , i. e., allowing for some overshoot that, however, does not occur.
This significantly improved the results.
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Table 6.18: OF controller synthesis options for CMG models of reduced scheduling order.

•/(•): The first value indicates quantities associated with the LMI-based exis-

tence conditions, cf. Thm. 2.17, p. 66, whereas values in parentheses indicate

quantities associated with the LMI-based derivation of controller parameters.

OF Control/Synth. Performance

Syn. Model γ trq3 trq4 RMSE Eu t[•] d[•] s[•]

D/G-S
FMin Υ̂Υ(υ̂) 11.1 3.6s 5.7s 21.2 1.1 1.1s/(3.2s) 117/(338) 102/(120)

PFCMin Υ̂Υ(υ̂) 8.9 2.5s 3.6s 18.9 1.3 0.9s/(3.9s) 107/(302) 94/(112)

FBM
FMin Υ̂Υ(υ̂) 3.3 2.5s 2.5s 16.4 1.7 1.0s/(3.8s) 181/(325) 134/(152)

PFCMin Υ̂Υ(υ̂) 2.7 0.8s 2.1s 15.1 1.9 1.1s/(5.8s) 163/(308) 126/(144)

troller shows less excessive control action. This is confirmed in a comparison of the

experimental signals in Fig. 6.11.

Table 6.19: Experimental performance for OF controllers on the reduced scheduling order

CMG plant.

Exp. OF Ctrl. Perf.

Synth. Model trq3 trq4 RMSE Eu

D/G-S PFCMin Υ̂
(
υ̂
)

2.0s 2.6s 16.6 2.5

FBM PFCMin Υ̂
(
υ̂
)

1.2s 2.6s 15.7 2.1

6.2.5 Comparison and Summary

LPV controller synthesis for both full and reduced scheduling order plant represen-

tations is successfully conducted yielding satisfactory performance. In all cases the

use of the PFCMin CMG model has resulted in the best or equal performance as

well as synthesis and implementation complexity characteristics. In the following,

the results of this section are summarized and discussed.

Full Scheduling Order State-Feedback Control

The application of systematic modeling tools from Chap. 4 for exact, low com-

plexity model representations makes it possible to synthesize controllers that can

provide closed-loop stability and performance guarantees. Synthesis complexity is

significantly reduced, when the standard synthesis conditions as per Thm. 5.1 are

combined with the improved outer factor representations for descriptor LPV sys-

tems via Prop. 5.1. In the case of the CMG, the reduction in complexity amounts
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Figure 6.14: Comparison of experimental results of reference tracking control of the CMG

using an OF controllers synthesized based on the reduced scheduling order

CMG PFCMin model with FBMs and D/G-Ss (transparent overlay).

( ) Solid lines indicate signals.

( ) Dashed lines indicate the reference trajectory.

to an average of 88.9% in synthesis time at maintained performance levels. Via

the use of PFC and the possibilities of the automated factorization and descriptor

LPV modeling framework, the solver time is therefore reduced from a worst case

of 46.7min to 2.5min. Several PDLFs are investigated and a trade-off between syn-

thesis and implementation complexity at only minor differences in performance is

discussed. In conclusion, the best options for full scheduling order synthesis are

(i) Best Performance/Synthesis Complexity: SF controller synthesis based on the

PFCMin CMG model with a PDLF parameterized in parts associated with

physical plant states in δ1, δ2 and δ3 with mixed/quadratic terms,
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(ii) Best Performance/Implementation Complexity: SF controller synthesis based

on the PFCMin CMG model with a fully parameterized PDLF in δ1, δ2 and δ3
with mixed/quadratic terms.

Reduced Scheduling Order Control

The application of systematic modeling tools from Chap. 4 and novel approxima-

tion methods introduced in Sect. 4.5 yield approximate, low complexity model rep-

resentations that maintain relevant plant information for high performance control.

In the case of the CMG, the automated affine parameterization of the small-in-size

descriptor LPV parameter blocks yields exact models that appear to be too con-

servative to be used for synthesis. However, conservatism is reduced in the course

of approximation by truncating parameters from parameter blocks that appear to

contribute only negligibly to the relevant nonlinear characteristics. Closed-loop sta-

bility and performance guarantees are rendered void if these models are used for

synthesis, but may be recovered analytically, verified experimentally or via simu-

lations. Synthesis complexity is significantly reduced, which facilitates the tuning

process. In the case of the CMG, the reduction in complexity amounts to synthesis

times well below 10 s in all cases making use of the novel approximations. In con-

trast, the quantitative characteristics of synthesis and implementation results using

an approximation based on a moving operating point essentially range in the order

of the newly obtained full scheduling order results described above, while—strictly

speaking—not providing closed-loop guarantees.

The low complexity plant representations permit further design choices in the

trade-off between performance versus implementation complexity: While a PiDLF-

based SF controller can maintain the performance levels of the full scheduling order

controllers at very low synthesis and implementation complexity, both PDLF-based

SF and PiDLF-based OF controllers achieve significantly better performance at the

cost of increased implementation complexity. The PiDLF-based OF controllers incur

an implementation complexity of approximately twice the number of arithmetic op-

erations and stored variables compared to the PDLF-based SF controllers, the use

of FBMs results in the best performance of all controllers tested in both simula-

tion and experiments. In conclusion the best options for reduced scheduling order

controllers are

(i) Best Performance/Synthesis Complexity: OF controller synthesis based on

the approximate PFCMin CMG model with a PiDLF and FBMs,

(ii) Best Performance/Implementation Complexity: SF controller synthesis based

on the approximate PFCMin CMG model with a PiDLF.

Tab. 6.20 summarizes the above-mentioned synthesis options and compares ex-

perimental control performance, synthesis complexity in terms of the total solver

time as well as implementation complexity for either LUT-based implementation or

online computation (Comp.). The results are grouped by full/reduced scheduling

order and SF/OF control approaches and ordered by increasing performance.
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Table 6.20: Summary of synthesis results obtained for the PFCMin CMG model. Experi-

mentally validated rise times, solver time and implementation complexities are

shown.

Perf. Syn. Impl. Cmplx.

LUT Comp.

Sched.
Order

Block Syn. trq3 trq4 t[•] a[•] m[•] a[•] m[•]

Full
∆Υ(δ) SF-PDLF, (δ1,δ2) 3.6s 2.8s 9.7min 77 243 786 386

∆Υ(δ) SF-PDLF, (δ1,δ2,δ3) 3.5s 2.6s 2.5min 77 818 1062 310

Red.

Υ̂Υ(υ̂) SF-PiDLF 3.4s 2.7s 0.7s 199 111 210 73

Υ̂Υ(υ̂) SF-PDLF, (υ1,υ2) 2.4s 2.5s 7.1s 199 219 910 320

Υ̂Υ(υ̂) OF-PiDLF, D/G-Ss 2.0s 2.6s 4.8s — — 2326 357

Υ̂(υ̂) OF-PiDLF, FBMs 1.2s 2.6s 6.9s — — 2631 858





Part II

C O N T R O L O F I N T E R C O N N E C T E D L I N E A R

PA R A M E T E R - VA RY I N G S Y S T E M S

The centralized control of complex systems that are derived from the

composition of a multitude of individual subsystems is often suscepti-

ble to failures, inefficient or even intractable. The second part of this

thesis extends the linear parameter-varying (LPV) control methodology

to enable the synthesis of resilient distributed control schemes that can

handle heterogeneous LPV subsystem dynamics as well as arbitrary, di-

rected and time-varying interconnection topologies at synthesis com-

plexity levels in the order of a single subsystem.





7
S TAT E O F T H E A RT I N I N T E R C O N N E C T E D S Y S T E M S

C O N T R O L

≪/’k amplǫks/, adjective.

Consisting of many different and

connected parts.≫

Microsoft Bing Search Engine

A
s an introduction to the extensive field of research on the analysis and con-

trol of interconnected systems, this chapter first defines and reviews impor-

tant terminology, as well as basic graph theoretic fundamentals in Sect. 7.1.

Section 7.2 then continues with a brief survey on distributed controller synthesis

approaches. Special emphasis is put on classifying literature with respect to subsys-

tem and topology properties considered as well as specific features of the associated

synthesis approach, e. g., scalability.

The informed reader may skip to Tab. 7.1 on p. 228 for a concise summary over

the related publications and a rough classification of the present work.
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7.1 Interconnected Systems

M
any complex systems can be regarded as assemblies of subsystems intercon-

nected through some topology. The entirety of such an interconnected system

usually has a high number of states, inputs and outputs, for which classical con-

troller synthesis approaches are intractable. Therefore, the common approach to

most methods that can handle interconnected systems resides in the exploitation

of the interconnection topology’s structure and similarities between subsystems.

As a means of denomination, consider the following terminology.

≪Distributed System (DS)≫: A distributed system (DS) is a system with spatial

states, such as a system that can be represented by partial differential equa-

tions (PDEs).

≪Interconnected System (IS)≫: An interconnected system (IS) is a general term

for a set of subsystems combined or coupled through some topology.

≪Multi-Agent System (MAS)≫: A multi-agent system (MAS) is a subclass of ISs,

for which the subsystems are ≪agents≫. Such agents are required to be au-

tonomous in the sense that they are not coupled but incorporate their own

actuation and sensing capabilities and usually work towards achieving some

goal. Their interconnection serves the purpose of information exchange only.

≪Spatially Interconnected System (SIS)≫: A spatially interconnected system (SIS)

is a subclass of ISs, for which the subsystems incorporate spatial states inher-

ently or through discretization and there exists coupling in the spatial states.

Remark 7.1 In a game-theoretic interpretation, agents might also have diverging interests

[139].

In this thesis, the terms ≪information exchange≫ and ≪communication≫ are used

to describe the transmission of non-physical data only, as opposed to physical cou-

pling, which allows the exchange of energy and thus interconnection in terms of

subsystem states. As such, the author is well aware that information exchange

through some sort of wireless networks is usually subject to time-delays. How-

ever, time-delays are not covered in this thesis. Figure 7.1 visualizes the possible

intersections in the system classes defined above.

Remark 7.2 Over the available literature, the terminology employed is often inconsistent.

E. g., [24], assume regular grid topologies when considering SIS. Figure 7.1 provides an

attempt to showcase possible extensions.

For the purpose of modeling ISs and DSs, essentially two approaches have

emerged for system representations that are then associated with certain distrib-

uted controller synthesis methods.

(i) Systems interconnected through an arbitrary, finite topology,

(ii) Systems interconnected through a regular, infinite or periodic, grid topology.
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IS

MASSISDS

(a)

(b)

(c)

(d)
(e)

(f)

(g)

Figure 7.1: Classes of interconnected/distributed systems.

While methods related to systems interconnected through an arbitrary topology

usually exploit graph theory to describe the interaction between subsystems, see,

e. g., [40, 97], systems that are regularly interconnected over a grid topology are

often described using shift operators to maintain information about a subsystem’s

location in the interconnection array, see, e. g., [24].

7.1.1 Examples

In order to develop an almost intuitive understanding of the terminology intro-

duced above, consider the following examples for the respective sets and intersec-

tions.

(a) DS \ IS: A flexible beam or plate that is considered by continuous, i. e., non-

discretized PDEs is an example that is found to be in the set of DSs but is not

an IS, cf. Fig. 7.2a.

(b) DS ∩ SIS: If such a flexible beam or plate is discretized in space, e. g., based

on the positions of piezo patches acting as both actuators and sensors [90], the

system can be considered a DS and an SIS, cf. Fig. 7.2b.

(c) (DS ∩ IS) \ SIS: If a distributed system is not discretized in space, but some

other dimension, e. g., time or a different abstract dimension, the system can

be considered a DS and an IS but not an SIS. By slightly abusing terminology,

these systems may also be discretized in space, while the actual distance is not

a matter of interest. Examples can be found in virtual network topologies, or

even distributed algorithms, cf. Fig. 7.2c.

(d) (SIS \ DS) \ MAS: An example for an SIS that is not modeled from discretizing

a DS and does not involve autonomous agents is a train, where only the lead-

ing car is powered and the following wagons are connected, e. g., via spring-

damper systems, cf. Fig. 7.2d.
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(e) SIS ∩ MAS: A fleet of quadrotor helicopters that are physically coupled, e. g.,

via ropes or rigid links can be regarded as an MAS that is also an SIS. Another

example can be found in swarm-like algorithms that use virtual agents to solve,

e. g., NP-hard problems [64], cf. Fig. 7.2e.

(f) MAS \ SIS: A physically decoupled fleet of quadrocopters that exchange infor-

mation on their position to achieve some formation is a pure MAS, cf. Fig. 7.2f.

(g) IS \ (DS ∪ SIS ∪MAS): An IS that is neither a DS, SIS, or MAS must incorpo-

rate entities that are incapable of acting on the environment on their own, are

distributed in a non-spatial sense and do not result from the discretization of a

continuum. As an example, consider a distributed algorithm with entities that

can directly influence another autonomous entity, which amounts to a virtual

coupling, cf. Fig. 7.2g.

x1

x2

w

(a) DS \ IS.

x1

x2

w

(b) DS ∩ SIS. (c) (DS ∩ IS) \ SIS. (d) (SIS \ DS) \ MAS.

(e) SIS ∩ MAS. (f) MAS \ SIS. (g) IS \ (DS ∪ SIS ∪
MAS).

Figure 7.2: Examples of classes of interconnected/distributed systems.

7.1.2 Basic Graph Theory

Graph theory has become a useful tool for the purpose of describing networks

among agents [40, 109]. In addition, the framework of ≪decomposable systems≫ in-

troduced in [99] as well as the even more general framework introduced in [80],

is facilitated by graph representations of the considered interconnections. Only the

concepts most relevant for understanding the contents of this thesis are presented

here. The interested reader is referred to [109] for an in-depth coverage of graph

theory.
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7.1.2.1 Definitions

First, a set of the most relevant definitions is presented that establishes graph the-

ory as a fundamental mathematical framework to represent interaction between

subsystems.

Definition 7.1 (Weighted and Directed Time-Varying Graph)

A weighted and directed time-varying graph (TVG) is defined as a triple

G(t) = (V, E(t), W(t)) , (7.1)

consisting of a set of h vertices, V = {v1, . . . , vh}, h ∈ H ⊆N, a time-varying set of edges

E(t) ⊂ V×V and a time-varying set of associated weights W(t) ∈ Rcard(E(t)).

In the above definition, the vertices vk, k ∈ H, correspond to the subsystems,

where the index set H = {1, 2, . . . ,h} collects the indices of all subsystems. An edge

eji =
(
vi, vj

)
∈ E(t), (i, j) ∈ H×H, indicates a connection from subsystem i to j

with weight wij(t) ∈W(t). All weights wij(t) are assumed nonnegative, piecewise

continuous and bounded functions of time, i. e., wij(t) ∈ {0}∪ [a,b], ∀ (i, j) ∈ H×H,

∀t ∈ R+ and 0 < a 6 b. Consequently, eji =
(
vi, vj

)
∈ E(t) iff wij(t) > a. W. l. o. g.

self-loops are disallowed.

Remark 7.3 To formally accommodate cases, in which the number of subsystems may be

unknown a priori or time-varying, consider h a number of arbitrary size, already including

those subsystems that will eventually join the interconnected system.

Definition 7.2 (Weighted Adjacency Matrix of a TVG)

A time-varying weighted adjacency matrix A (t) is associated with a weighted and directed

time-varying graph G(t). It is defined as

A (t)
△
=






wij(t), if eji =
(
vi, vj

)
∈ E(t),

0, otherwise.
(7.2)

For each time instant, the weighted adjacency matrix A (t) completely charac-

terizes a given graph G(t) and consequently its variation over time. Since permu-

tations of vertices do not alter the spectral properties of the weighted adjacency

matrix A (t), all results of this thesis are invariant over different enumerations of

vertices.

A special case of Def. 7.1 is an ≪undirected≫ graph.

Definition 7.3 (Weighted and Undirected Time-Varying Graph)

A weighted and undirected TVG is defined as a graph according to Def. 7.1, where

wij(t) = wji(t), ∀ (i, j) ∈ H×H, ∀t ∈ R
+. (7.3)

An important observation for undirected graphs consists in the fact that A (t) =

A ⊤(t), ∀t ∈ R+. The set of neighbors of a subsystem k at some time t ∈ R+ is

defined as follows.
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Definition 7.4 (Index Set of Neighbors of a Vertex in a TVG)

The set of indices of neighbors of a vertex i at time t is denoted as

Hi(t)
△
= {k ∈ H | wik(t) > a} . (7.4)

Consequently, the set of vertices that mark neighbors to vertex k is given by

Ni(t)
△
= {vk ∈ V | k ∈ Hi(t)}. At a particular time instant t, a ≪directed path≫ is a

sequence of distinct directed edges from E(t). A directed graph G(t) is ≪strongly

connected≫ at time t, if it contains a directed path from every vertex to every other

vertex. A ≪directed spanning tree≫ is said to exist at time t, if there exists a vertex

vk—denoted the ≪root≫—, from which there is a directed path to every other vertex.
≪Weak connectedness≫, in turn, denotes the existence of an undirected path from

every vertex to every other vertex. A ≪rooted directed spanning tree≫ at time t of

a graph G(t), is a subgraph, where every vertex has exactly one parent except for

the root, which has no parent, but has a directed path to every other node.

The ≪in-degree≫ and ≪out-degree≫ of vertex vk are defined as

din
k (t)

△
=

h∑

j=1

wkj(t), dout
k (t)

△
=

h∑

j=1

wjk(t) (7.5)

A graph is called ≪balanced≫ at time t if din
k (t) = dout

k (t), ∀k ∈ H. Consequently,

an undirected graph is also a balanced graph for all times.

A diagonal in- and out-degree matrix can be defined as

D
in(t)

△
=

h

diag
k=1

(
din
k (t)

)
, D

out(t)
△
=

h

diag
k=1

(
dout
k (t)

)
, (7.6)

respectively. For most purposes and if not stated otherwise, the in-degree matrix

will be considered and written in short-hand notation as D(t)
△
= D in(t), as well

as dk(t)
△
= din

k (t), k ∈ H. Consequently, one may obtain D†(t) by application of

Cor. A.1 on p. 316.

The (combinatorial) graph Laplacian matrix is defined using the in-degree matrix

and the adjacency matrix.

Definition 7.5 (Graph Laplacian [109])

The graph Laplacian matrix I (t) is defined as

I (t)
△
= D(t) −A (t), (7.7)

i. e.,

Iij(t) =






∑h
i=1 wij(t), if i = j and card (Ni(t)) 6= 0,

−wij(t), if j ∈ Hi(t),

0, otherwise.

(7.8)
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The Laplacian matrix can be normalized by various ways. Here, a row normal-

ization by means of the in-degree is presented.

Remark 7.4 Row-normalizing the Laplacian or adjacency matrix usually requires each

subsystem to know the number of incoming signals during implementation. Knowing the

number of recipients on the other hand is generally undesired.

Definition 7.6 (Normalized Graph Laplacian [154])

The normalized graph Laplacian matrix IN(t) is defined as

IN(t)
△
= D

†(t)(D(t) −A (t)), (7.9)

i. e.,

INij(t) =






1, if i = j and card (Ni(t)) 6= 0,
−card (Ni(t))

−1 , if j ∈ Ni(t),

0, otherwise.

(7.10)

As a consequence, define the row-normalized adjacency matrix as AN(t)
△
=

D†(t)A (t). Note that for undirected graphs, the adjacency matrix A (t) is sym-

metric, whereas symmetry is lost after normalization. This also holds true for the

Laplacian and its row-normalized version.

Furthermore, for graphs where the in-degree of each vertex is nonzero,

D†(t)D(t) = Ih, s. t. in this case

IN(t) = Ih −AN(t), AN(t) = Ih −IN(t). (7.11)

Let the symbols AAA
(
G(t)

)
, AAA N

(
G(t)

)
, III

(
G(t)

)
and III N

(
G(t)

)
denote the sets

of all admissible (row-normalized) adjacency and Laplacian matrices associated

with a given time-varying graph G(t), respectively. In the following, the association

with the graph will be dropped in notation, despite the fact that a particular graph

relevant to some specific problem formulation needs to be considered.

7.1.2.2 Spectral Properties

Denote the set ΛΛ
(
A(t)

)
as the union of the sets of momentary eigenvalues λ

(
A(t)

)

of a time-varying matrix A(t) ∈ Cn×n, ∀t > 0. By construction, the row sums of the

combinatorial and row-normalized Laplacian are zero, from which it follows that

1k is their right-hand eigenvector corresponding to the zero eigenvalue.

By Geršgorin’s circle theorem [43], the spectrum of the normalized Laplacian

matrix fulfills

ΛΛ
(
IN(t)

)
⊂ {λ ∈ C | |λ− 1| 6 1} , (7.12)
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whereas, in the case of graphs with all vertices having non-zero in-degree, one has

due to (7.11)

ΛΛ
(
AN(t)

)
⊂ {λ ∈ C | |λ| 6 1} . (7.13)

For the combinatorial graph Laplacian, however, one has

ΛΛ
(
I (t)

)
⊂

{

λ ∈ C

∣∣∣∣ |λ− din | 6 din , din = max
k∈H, t∈R+

din
k (t)

}

, (7.14)

and for the unnormalized adjacency matrix

ΛΛ
(
A (t)

)
⊂

{

λ ∈ C

∣∣∣∣ |λ| 6 din , din = max
k∈H, t∈R+

din
k (t)

}

. (7.15)

For undirected graphs, the above statements (7.14) and (7.15) apply when restrict-

ing the spectrum to be real, λ ∈ R.



7.2 Distributed Controller Synthesis Approaches 223

7.2 Distributed Controller Synthesis Approaches

I
n the following distributed controller synthesis approaches are surveyed. First

a classification is introduced that allows to relate the existing literature to the

contributions of this thesis.

7.2.1 Classification

An overview of some existing approaches for the synthesis of distributed con-

trollers is presented. The overview does not claim to be exhaustive, but covers

the most prominent work, while neglecting certain extensions.

An attempt to classify the achievements in terms of their applicability to certain

classes of distributed control problems is made. Such a classification can only be

regarded as a crude outline and is restricted to the actual results stated in the

respective publications, rather than the potential outlined or implied. The latter are

therefore considered open research directions, some of which are catered to in this

thesis.

The classification is divided into three main categories that regard admissible

properties of the subsystems, of the topology through which these are interconnected

and specific features of the respective synthesis approach. In the following, the cate-

gories and subcategories are briefly discussed.

7.2.1.1 Subsystem Properties

Admissible subsystem properties are evaluated based on whether nonlinear sub-

systems can be handled (mostly in LPV form). It is distinguished between the

admissible type of LPV parameter-dependence, i. e., polytopic (Poly.) or LFT-based.

It is further indicated, whether subsystems are allowed to incorporate ≪heteroge-

neous system dynamics≫ (HD) and/or may be ≪heterogeneously scheduled≫ (HS).

Heterogeneous dynamics refer to differences in the state space system matrices,

whereas heterogeneous scheduling (HS) refers to different LPV scheduling policies.

A system may be allowed to also have both heterogeneous subsystem dynamics

and scheduling (HDS). Furthermore, it is considered whether or not subsystem in-

teraction may be restricted to be purely virtual as, e. g., in most MAS setups, or

may exhibit physical coupling.

7.2.1.2 Topology Properties

Admissible topologies are categorized based on directedness, graph structure and

time-variance. Topologies may be allowed to be fully directed (Full) or directed

under the restriction of diagonalizability (Diag.). Furthermore, topologies may also

be limited to be directed only between prespecified groups of subsystems (Grp.).

The limiting case, when groups are considered to consist of single subsystems is

discussed below.
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The allowed structure of the topologies is distinguished between arbitrary (Arb.)

structures usually based on graph representations and the tools from graph theory

and regular (Reg.) structures that make use of shift operators to represent mostly

infinite or periodic interconnections.

The time-varying nature of topologies is classified by the way, in which allow-

able sets of topologies are defined. Graph representations may be allowed to range

within a set that is implicitly (Impl.) described, e. g., by the range of eigenvalues of

the interconnection matrix. Alternatively, topologies may be allowed to explicitly

(Expl.) range within a specific predetermined set of distinct graphs.

7.2.1.3 Properties of the Synthesis Method

The synthesis method is classified by the kind of feedback (FB) considered, namely

output-feedback (OF) or state-feedback (SF). Depending on whether nonlinear sub-

systems are covered by the respective method, the classification also indicates

whether the synthesis method is considered in a gain-scheduling (GS) or robust (Rb)

control fashion.

After synthesis, the guarantees available through the synthesis algorithm are

listed as stability (Stab.) and performance (Perf.) guarantees separately. Finally, the

degree of scalability of the approaches are estimated in the sense as how much syn-

thesis complexity increases with the number of subsystems. Here, ( ) indicates

that synthesis complexity scales at least polynomially with h, while ( ) indicates

a linear increase. A single plus ( ) indicates synthesis complexity scales favorably

with increasing number of subsystems, while ultimately the consideration of arbi-

trarily many subsystems will still lead to complexity issues. While the latter cer-

tainly also holds true for the evaluation with two plusses ( ), in these cases the

respective priors of the method allow for virtually infinite subsystems.

7.2.2 Survey

The following brief survey aims to highlight noteworthy research in the area of

both multi-agent systems and interconnected systems.

7.2.2.1 Multi-Agent Systems-Related Work

Fax and Murray [40] consider homogeneous interconnected linear time-invariant

(LTI) subsystems, interconnected by a time-invariant interconnection topology.

They make use of graph theory by modeling the interconnection by the graph

Laplacian. A signal transformation in the form of a Schur transformation is ap-

plied that turns the graph Laplacian into upper triangular form, which eventually

allows to analyze cooperative control loops for their stability by conditions that

incorporate the complexity of only a single agent. Thus, stability can be analyzed

for h decoupled systems, each of the dimension of a single agent differing only
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in the graph Laplacian eigenvalues. After transformation, the approach therefore

essentially consists in a robust controller synthesis problem.

Seyboth, Schmidt, and Allgöwer [132] present a similar approach, modified for

homogeneous interconnected LPV systems. The idea of the signal transformation

is applied here for the case of homogenous scheduling to decouple the system,

s. t. analysis and distributed scheduled controller synthesis for achieving consen-

sus can be done for h decoupled systems. The work of [132] does not, however,

present convexly verifiable conditions for heterogeneous scheduling and limits the

heterogeneously scheduled parts of the agents’ system matrix to those that do not

contribute to the interaction. Neither Fax and Murray nor Seyboth et al. consider

performance in their conditions and consequently do not reveal the fact that lower

and upper performance bounds, in terms of the H∞-/induced L2-gain, depend on

the condition number of the signal transformation matrix [34, 100].

In [117], analysis results for general interconnected systems with infinite intercon-

nection time-delays is presented based on an L1-norm condition. This is extended

to controller synthesis in [116].

Non-holonomically constrained subsystems may be encountered in MASs, e. g.,

when the agent network consists of wheeled vehicles or jet planes. A variety of

publications consider the case of interconnected non-holonomic agents and present

specialized solutions that do not draw from a general framework, [29, 31, 101]. In

[165] the framework of LPV systems is used to model non-holonomic agents, while

a similar LPV formulation is already successfully applied in the distributed control

framework of [54] in [107].

7.2.2.2 Interconnected Systems-Related Work

Bamieh et al. [11] consider homogeneous regularly interconnected LTI subsystems

that can be described as PDEs. A Fourier transform is used to block diagonalize

the systems from a regular array interconnection. Thus, the infinite dimensional

control problem can be solved by finite algebraic riccati equations (AREs), param-

eterized over frequency. The resulting controller does not necessarily inherit the

interconnection of the plant, but the influence decays exponentially with spatial

distance. Thus, by spatial truncation a desired degree of decentralization can be

traded off against a loss in optimality.

The framework of ≪decomposable systems≫ has been introduced by Massioni

and Verhaegen [99]. Homogeneous interconnected LTI subsystems are considered,

interconnected by a time-invariant and diagonalizable interconnection topology.

Using a signal transformation, similar to [40], a diagonalization of the interconnec-

tion matrix is achieved that allows to render the synthesis particularly efficient, as it

can be reduced to the complexity of the order of only a single subsystem. However,

this results in a restriction to time-invariant topologies. Controllers are not only syn-

thesized for stabilization, but performance is considered in an H∞-norm optimal

framework via the Bounded Real Lemma (BRL), cf. Thm. 2.6 on p. 38. Furthermore,

interconnections are allowed with respect to all signals of the generalized plant,
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effectively enabling to consider physically coupled system. Solutions are given in

terms of Riccati equations [99] as well as linear matrix inequalities (LMIs) [100],

the latter of which are derived by the full-block S-Procedure (FBSP), cf. Thm. 2.4

on p. 34. This results in convex conditions for distributed state-feedback controller

synthesis for interconnected homogeneous LTI subsystems with low complexity.

An extension to heterogeneous subsystems has been proposed and conceived by

Massioni in [98] simultaneously and independently to the present thesis and re-

lated associated research [55, 56, 61]. The authors’ modeling framework remains

confined to the class of decomposable systems, but instead of a signal transforma-

tion, a singular value decomposition (SVD) of the interconnection matrix is con-

sidered. Possibly conservatively, the proposed approach guarantees stability and

performance through the use of D-scaling (D-S) constraints for scalar repeated

time-varying interconnection matrices ℓ(t) and it is discussed that the involved

multiplier condition holds for both ℓ(t) and −ℓ(t). The method is developed in the

discrete-time LTI case.

A more general framework is proposed by Langbort, Chandra, and D’Andrea

[80], where distributed output-feedback controller synthesis is considered for in-

terconnected heterogeneous LTI subsystems on the basis of individual intercon-

nection operators, assembled in a diagonal linear fractional transformation (LFT)-

based feedback block with possible repetitions. This allows arbitrary, directed and

time-varying interconnection topologies at the price of high synthesis complexity.

Although not explicitly stated, nonlinear subsystems can be represented by exploit-

ing self-loops, effectively resulting in LFT-LPV subsystem descriptions. By struc-

tural constraints on Lyapunov and multiplier matrices, the synthesis conditions

can be decoupled into conditions for each subsystem. As stated in [80], large scale

systems may result in intractable conditions as complexity increases quickly with

the number of subsystems.

Stemming from the field of SIS, [24] presents a special case of the work detailed

in [80], where instead of heterogeneous LTI systems homogeneous ones are con-

sidered. Furthermore, the interconnection is restricted to regularly structured ones.

The representation of the interconnection as an LFT with diagonal block as in [80]

and with the same structural constraints on the Lyapunov and multipliers leads

again to a decoupling of the synthesis conditions. Due to the homogenous nature

of the subsystems and the regular interconnection, only a single set of conditions of

the complexity of a single subsystem needs to be solved. Langbort et al. [81] extend

[24] to regularly structured but finite interconnections, e. g., finite grid structures.

For this purpose, boundary conditions are introduced. It is proven that in case of

spatially reversible boundary conditions, the analysis and synthesis conditions for

the finite system are equivalent to the infinite case, s. t. the results from [24] can be

applied.

Dullerud et al. and Wu, [32, 162], extend [24] to heterogeneous interconnected

subsystems with regularly structured interconnections. While in [32] general het-

erogeneous interconnected subsystems are considered, [162] restricts the subsys-
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tems to be heterogeneously scheduled LPV subsystems. The latter work has re-

cently been extended by reducing conservatism through parameter-dependent Lya-

punov functions (PDLFs) and D/G-scaling (D/G-S) in [90, 91].

7.2.2.3 Contributions

The contents of Part II of this thesis mainly draw from the publications [54–56, 61].

The objective of the research, whose results are presented in the following, consists

in extending the ideas presented in [97] to provide and allow for

• LPV subsystems that are both heterogeneously scheduled and have heteroge-

neous dynamics,

• arbitrary directed and switching interconnection topologies,

• a high degree of scalability,

• synthesis conditions that are posed as a convex optimization problem in terms

of LMIs, providing guaranteed upper bounds on the achievable control per-

formance and guaranteed stability,

• physical and virtual interconnections.

As a result, the presented methods are applicable to the general class of ISs, while

exploiting graph theory to render synthesis conditions significantly less complex

than the comparably general techniques presented in [80]. In addition, they are not

restricted to regularly structured interconnection topologies as in [90, 162]. By com-

bining the results of this thesis with work published in [38], also explicit topology

models can be taken into account.

7.2.3 Summary

Tab. 7.1 provides an overview of selected distributed controller synthesis ap-

proaches. This thesis’ contributions are listed at the bottom for comparison1.

1 The subsystem property HS of the work [132] is provided by necessary and sufficient conditions
that can be checked a posteriori only. All other indicators are assessed in terms of what properties
and guarantees are provided immediately after the proposed synthesis algorithm.



Table 7.1: Overview about distributed synthesis approaches.

Subsystems Topologies Synthesis

NL Het. Cpl’d. Direct. Struct. TV Meth. Guarant. Scal.

Arb. Reg. Impl. Expl. FB GS Stab. Perf.

Bamieh et al., [11] Full SF LTI

Wu, [162] LFT HS Full OF GS

Liu et al., [90] LFT HS Full OF GS

D’Andrea et al., [24] Full OF LTI

Dullerud et al., [32] HD Full OF LTI

Langbort et al., [80] LFT HDS Full OF GS

Massioni, [97] Diag. SF LTI

Massioni, [98] HD Full SF/OF LTI

Seyboth et al., [132] Poly. HS∗ Diag. SF GS

Pilz et al., [116] Full OF LTI

Eichler et al., [38] LFT Full OF Rb

Hoffmann et al., [54] LFT HS OF GS

Hoffmann et al., [55, 56] LFT HDS Grp. OF GS

Present Work, [61] LFT HDS Full OF GS

Legend

Subsystems

NL nonlinear (NL) subsystem dynamics allowed by type: LFT-LPV, polytopic LPV

Het. heterogeneous subsystem dynamics (HD), scheduling (HS) or both (HDS) allowed

Cpl’d. Physically coupled subsystems allowed

Directed topology
Full Fully directed topologies allowed

Diag. Only diagonalizable directed topologies allowed

Grp Directed topologies between groups of subsystems allowed

Structured topology
Arb. Arbitrary topologies allowed

Reg. Regularly structured topologies allowed

TV topology
Impl. Time-varying topologies are implicitly (conservatively) allowed

Expl. Time-varying topologies can be explicitly (less conservatively) considered

Synthesis method
FB output-feedback (OF) or state-feedback (SF) synthesis method

GS gain-scheduling (GS), robust (Rb)-LTI or LTI controller

Guarantees
Stab. Stability guaranteed after synthesis

Perf. Performance guaranteed after synthesis

Scalability Degree in which synthesis complexity scales with the number of subsystems
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A C O M PA C T M O D E L I N G F R A M E W O R K F O R

I N T E R C O N N E C T E D L I N E A R PA R A M E T E R - VA RY I N G

S Y S T E M S

≪Entities must not be multiplied

beyond necessity.≫

John Punch, 1639,
≪lex parsimoniae≫,

or ≪Occam’s Razor≫

T
he contents of this chapter are devoted to establish a compact framework

for the modeling of a rather general class of interconnected LPV subsys-

tems. Sect. 8.1 introduces this framework by formally defining heteroge-

neous LPV subsystem representations and their interconnection (Sect. 8.1.1), the

interconnected closed-loop (Sect. 8.1.2) and considered classes of interconnec-

tions (Sect. 8.1.3), followed by a note on the density of diagonalizable matrices

(Sect. 8.1.4).

The chapter continues with a discussion on special cases of the general frame-

work in Sect. 8.2, most notably the class of ≪decomposable systems≫ [97] and some

extensions.

Preliminary results of this chapter have been previously published in [36, 54–56, 61].
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8.1 General Interconnected Linear Parameter-Varying Systems

F
or the purpose of aligning the framework of interconnected LPV system repre-

sentations with results presented in the subsequent sections, an MAS with the

sets G1 and G2 as groups of leaders and followers, respectively, will be considered

for motivation. The framework will naturally extend to both a larger number of

groups as well as the special case of a single group of interconnected subsystems.

Despite the motivational MAS setup, physical interconnection between the subsys-

tems is explicitly allowed within the framework.

In the following, each subsystem’s dynamics will be defined within the LPV

framework, as well as the entirety of the systems interconnected through an opera-

tor L .

8.1.1 Interconnected Linear Parameter-Varying System Representation

Define G as a partition of the set of subsystem indices H, i. e., G = {G1, G2, . . . , Gg}

contains pairwise disjoint sets with
⋃g
f=1 (Gf) = H and cardinalities card (H) = h

and card (Gf) = hf,∀f = 1, . . . ,g, g 6 h. The set Gf ⊂ H contains the indices of

subsystems belonging to group number f ∈ N. For further notational purposes,

define the column vector

ef
△
=

h

col
k=1

(δf(k)) , with δf(k) =






1, k ∈ Gf

0, otherwise
, Gf ⊂ H,

i. e., a vector with ones in the rows corresponding to the indices in Gf and zeros

otherwise. Associate the matrix Ef via Ef
△
= diag(ef).

Consider Ex. 8.1 as the above-mentioned leader-follower configuration.

Remark 8.1 Choosing a virtual agent as a leader is an intuitive way to impose a reference

for the center of gravity of a formation.

Example 8.1 (MAS with Two Groups of Agents)

Consider an example, cf. Fig. 8.1, where G = {G1, G2} = {{1, 2, 3} , {4, 5, 6, 7}}. Note that

particular to this configuration, subsystems are interconnected with directed signal flow

between and undirected communication within the groups. Further, observe that from the

definitions, one has

e1 =

[
13×1
04×1

]
, E1 =

[
I3 0

0 04

]
e2 =

[
03×1
14×1

]
, E2 =

[
03 0

0 I4

]
.
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P1

P2
P3P4

P5

P6
P7

G1

G2

Figure 8.1: Exemplary interconnection of two groups of agents.

Consider LPV subsystems Pk, k ∈ Gf, whose state space models depend on the

respective group of subsystems Gf to which the subsystem index k belongs. That

means, for all k ∈ Gf, Pk is described by the following state space representation

Pk :









ẋk

pk
dk
zk
yk



=




Af Bf,∆ Bf,i Bf,p Bf,u

Cf,∆ Df,∆∆ Df,∆i Df,∆p Df,∆u

Cf,i Df,i∆ Df,ii Df,ip Df,iu

Cf,p Df,p∆ Df,pi Df,pp Df,pu

Cf,y Df,y∆ Df,yi Df,yp 0







xk

qk
vk
wk
uk



=Pf




xk

qk
vk
wk
uk




,

qk = ∆f

(
δk(t)

)
pk, δk(t) ∈ F

η
δ ,k,

(8.1)

where xk∈Rnf,x , pk∈Rnf,p , qk∈Rnf,q , dk∈Rnf,d , vk∈Rnf,v , zk∈Rnf,z , wk∈Rnf,w ,

yk∈Rnf,y , uk∈Rnf,u and δk ∈ Rnf,δ is the LPV parameter vector. Within each group,

the signal sizes are identical. For the purpose of simpler notation, introduce for

each subsystem symbols associated with channel sizes n•k = nf,•, ∀k ∈ Gf, where

• represents the respective channel.

The scheduling parameters of the kth subsystem are collected in a vec-

tor δk(t) =
nf,δ

col
i=1

(δk,i(t)) with all admissible parameter values and rates ranging in

compact sets δf and ηf, ∀f ∈ {1, . . . ,g}, respectively. The parameter block ∆k is an

analytic matrix-valued function of the scheduling signal vector

∆k(t) = ∆f

(
δk(t)

)
: R

nf,δ 7→ R
nf,q×nf,p

and may typically assume either a block-diagonal form

∆k(t) =
nf,δ

diag
i=1

(
δk,i(t)Irf,i

)
, k ∈ Gf,

or a general full parameter block as considered in Part I. The framework therefore

does not preclude the consideration of complex LPV subsystems, as the synthesis

methods based on full block parameterizations and the resulting efficient LFT-LPV

controller implementation will apply on a subsystem level. A block diagram of a

single LPV subsystem is shown in Fig. 8.2.

Recall that the state space model matrix Pf from (8.1) is related to the symbol

representing the dynamic LTI system as Pk =
1
sInf,x ⋆ Pf, k ∈ Gf. As before, the

symbol Pk, in turn, represents the LPV system as an input-output map given by

Pk = ∆k(t) ⋆ Pk, δk(t) ∈ δk k ∈ H.
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Pk
vk dk

qk pk

wk zk

uk yk

∆k

Pk

Figure 8.2: LPV subsystem representation.

The interconnected LPV system in its general form can be considered as being
≪heterogeneous≫ in two distinct ways:

Heterogeneous Scheduling: Within each group f, the parameter block retains

the same structure, i. e., functional dependence on the scheduling parameters

δk ∈ δf via ∆f
(
δk
)
. Furthermore, the parameter values are confined to the

same compact sets δf for all entities in the group. In contrast, the schedul-

ing parameters δk(t) may be elements of individual admissible trajectories

F
η
δ ,k, and may therefore take individual values at time instant t for differ-

ent subsystems k from the set of all subsystems H. This local dependence of

each subsystem on its individual parameters will be denoted ≪heterogeneous

scheduling≫.

Heterogeneous Dynamics: The fact that the system descriptions in terms of the

state space matrices Pf may vary between groups will be considered as ≪het-

erogeneous dynamics≫ of the LPV subsystems.

The entirety of the subsystems is regarded as a system of h interconnected sub-

systems as shown in Fig. 8.3a, denoted

P :









ẋ

p

d

z

y



=




A B∆ Bi Bp Bu

C∆ D∆∆ D∆i D∆p D∆u

Ci Di∆ Dii Dip Diu

Cp Dp∆ Dpi Dpp Dpu

Cy Dy∆ Dyi Dyp 0







x

q

v

w

u



=P




x

q

v

w

u




,

q = ∆p, v = L (d), δ(t) ∈ F
η
δ

, L (t) ∈ FLLL ,

(8.2)

where

x=
h

col
k=1

(xk)∈Rnx , p=
h

col
k=1

(pk)∈Rnp , q=
h

col
k=1

(qk)∈Rnq ,

d=
h

col
k=1

(dk)∈Rnd , v=
h

col
k=1

(vk)∈Rnv , z=
h

col
k=1

(zk)∈Rnz ,

w=
h

col
k=1

(wk)∈Rnw , y=
h

col
k=1

(yk)∈Rny , u=
h

col
k=1

(uk)∈Rnu ,

∆=
h

diag
k=1

(∆k)∈Rnp×nq .
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(a) Interconnected LPV system com-
posed of LPV subsystems.

P
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w z

u y

L
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v

(b) Interconnected LPV system in com-
pact representation.

P

d

q p

w z

u y

∆

L

P

v

(c) Interconnected LPV system as an LFR in both param-
eter block and interconnection operator.

Figure 8.3: The interconnected LPV system.

Via the above signal definitions, it can be inferred that the state space matrices

of (8.2) consist of block-diagonally concatenated subsystem matrices from (8.1).

Due to the heterogeneity in the subsystem dynamics, each matrix A, B∆, . . . , in (8.2)

can be written in the form

M =

g∑

f=1

(Ef ⊗ Mf)

Any coupling between the subsystems is therefore solely represented by the in-

terconnection signals dk and vk, ∀k ∈ H and an interconnection operator L . In

analogy to the LPV representation related notation, the interconnection operator

can be regarded as both an element of a function space of admissible ≪topology

variations≫ L (t) ∈ FLLL as well as being confined to a compact set of admissi-

ble operator values, i. e., L ∈ LLL , which may be, e. g., real-valued matrices, s. t.

LLL ⊆ Rnv×nd .

Remark 8.2 In this thesis, the introduction of bounds on the rate of change of the inter-

connection matrix is dispensed with, as the focus of the developed methods is on switching

topologies.

Definition 8.1 (Topology Variation Set)

Given a compact set LLL , the topology variation set FLLL denotes a set of piecewise continuous

functions, mapping R+ into LLL with a finite number of discontinuities in any interval.
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Note that, even though the coupling information is represented by an LFT com-

prising an interconnection operator and respective signals, such an interconnection

needs not be solely virtual, i. e., a communication of information over networks. In

fact, the system representation allows state, input and output signals to be included

in the interconnection, which enables the modeling of physical couplings as well.

Again, denote the dynamic LTI system P = 1
sInx ⋆ P and the LPV representa-

tion P = ∆(t) ⋆ P. Further, the interconnected LPV system is denoted P = L ⋆P.

The scheduling parameters are collected in a vector δ(t) =
h

col
k=1

(δk(t)) with all ad-

missible parameter values and rates ranging in the compact sets

δ = δ1 × δ2 × . . .× δg
△
=

g

×
f=1

(δf) , η = η1 ×η2 × . . .× ηg
△
=

g

×
f=1

(ηf) .

Accordingly, the admissible trajectories are ranging in the set

F
η
δ
= F

η
δ ,1 ×F

η
δ ,2 × . . .×F

η
δ ,g

△
=

g

×
f=1

(
F
η
δ ,f

)
.

Several block diagram representations of the entire interconnected system (8.2) are

depicted in Fig. 8.3 for illustration.

8.1.2 The Interconnected Closed-Loop System

Consider controllers associated with Pk given by Kk =
1
sInKf,x

⋆ Kf, Kk = ∆
K
k (t) ⋆Kk,

k ∈ Gf, with

Kk :









ẋKk
uk
dKk
pKk


=




AKf BKf,y BKf,i BKf,∆

CKf,u DKf,uy D
K
f,ui D

K
f,u∆

CKf,i DKf,iy D
K
f,ii D

K
f,i∆

CKf,∆ DKf,∆y D
K
f,∆i D

K
f,∆∆







xKk
yk
vKk
qKk


=Kf




xKk
yk
vKk
qKk


 ,

qKk = ∆Kkp
K
k , δk(t) ∈ F

η
δ ,f,

(8.3)

where xKk ∈R
nKf,x , pKk ∈R

nKf,p , qKk ∈R
nKf,q , dKk ∈R

nKf,d , vKk ∈R
nKf,v , k ∈ Gf and concate-

nated signals

xK=
h

col
k=1

(
xKk
)
∈RnKx , pK=

h

col
k=1

(
pKk
)
∈R

nKp ,

qK=
h

col
k=1

(
qKk
)
∈R

nKq , dK=
h

col
k=1

(
dKk
)
∈RnKd ,

vK=
h

col
k=1

(
vKk
)
∈RnKv , ∆K=

h

diag
k=1

(
∆Kk
)
∈R

nKp×nKq .
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Each controlled subsystem is described by Pk ⋆Kk. The entirety of interconnected

controllers is denoted

K :









ẋK

u

dK

pK


=




AK BKy BKi BK∆

CKu DKuy D
K
ui D

K
u∆

CKi DKiy D
K
ii D

K
i∆

CK∆ DK∆y D
K
∆i D

K
∆∆







xK

y

vK

qK


=K




xK

y

vK

qK


 ,

qK = ∆KpK, vK = L K(dK), δK ∈ F
η
δ

, L K ∈ FK
LLL

.

(8.4)

Again, denote the dynamic LTI system K = 1
sInKx ⋆ K and the LPV representa-

tion K = ∆K(t) ⋆K. The interconnected LPV controller is denoted K = L K
⋆K.

The complete interconnected system is simply formed by T = P ⋆K , such that

after permutation of channels one may write

T :









ẋ

p

d

z


=




A B∆ Bi Bp

C∆ D∆∆ D∆i D∆p

Ci Di∆ Dii Dip

Cp Dp∆ Dpi Dpp




︸ ︷︷ ︸
T=T0+WKV




x

q

v

w


 ,

q = ∆p, v = L (d), δ ∈ F
η
δ

qK = ∆KpK, vK = L K(dK)
(
L , L K

)
∈ FLLL ×FK

LLL
,

(8.5)

where

x=

[
x

xK

]
∈Rnx , p=

[
p

pK

]
∈Rnp , q=

[
q

qK

]
∈Rnq ,

d=

[
d

dK

]
∈Rnd , v=

[
v

vK

]
∈Rnv .

Ultimately, it is the goal to synthesize a set of interconnected controllers that

use only local information and a communication topology L K to achieve a cer-

tain global objective. Irrespective of any potential physical couplings between the

subsystems, the interaction between the controllers will turn out purely virtual,

i. e., it will consist of information that will be communicated among the respective

controllers. In most applications, e. g., when the topology is determined by commu-

nication links limited by maximum transmission distance—consider, e. g., a prox-

imity graph—the controllers should inherit the topology of the plant, i. e., L K = L ,

FK
LLL
≡ FLLL and consequently LLL K ≡LLL , which is assumed in the following.

For strictly proper plants P, the closed-loop state space model matrices are linear

in the controller:

T = T0 + WKV =




A B∆ Bi Bp

C∆ D∆∆ D∆i D∆p

Ci Di∆ Dii Dip

Cp Dp∆ Dpi Dpp


 (8.6)
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T =




A 0 B∆ 0 Bi 0 Bp

0 0 0 0 0 0 0

C∆ 0 D∆∆ 0 D∆i 0 D∆p

0 0 0 0 0 0 0

Ci 0 Di∆ 0 Dii 0 Dip

0 0 0 0 0 0 0

Cp 0 Dp∆ 0 Dpi 0 Dpp




+




0 Bu 0 0

I 0 0 0

0 D∆u 0 0

0 0 0 I

0 Diu 0 0

0 0 I 0

0 Dpu 0 0




×




AK BKy BKi BK∆
CKu DKuy D

K
ui D

K
u∆

CKi DKiy D
K
ii D

K
i∆

CK∆ DK∆y D
K
∆i D

K
∆∆







0 I 0 0 0 0 0

Cy 0 Dy∆ 0 Dyi 0 Dyp

0 0 0 0 0 I 0

0 0 0 I 0 0 0


 , (8.7)

The interconnected closed-loop configuration is visualized in Figs. 8.4a–8.4c.

8.1.3 Classes of Interconnections

The subsystems are interconnected by an interconnection topology, modeled by the

operator L as shown in Fig. 8.3. Denoting L a general interconnection operator

allows for a wide range of different system theoretic, structural and graph theoretic

properties. In the following, the discussion will be limited to specific subclasses.

8.1.3.1 System Theoretic Classification

In general, one may allow L to be a linear/nonlinear, static/dynamic and time-

invariant/-varying operator to encompass all cases considered in [80], as illustrated

in Fig. 8.5. The major difference to the present work is a structural one: It resides

in the fact that the interconnection operator L is not restricted to be diagonally

structured, consequently allowing a more compact interconnected system repre-

sentation. Thus note that the above formulation of interconnected LPV systems

includes the one proposed in [80].

However, the discussion will be limited to the cases, when L is static, linear, real-

valued and possibly time-varying, as indicated by the gray box in Fig. 8.5. Formally,

the following assumption is made.

(A8.1) Real-Valued, Static, Linear and Time-Varying Interconnection:

The interconnection operator L is static, linear, time-varying and ranges in a

compact set, i. e.,

L
(
t,d
)
: R

+ ×R
nd → R

nv , (t,d) 7→ v
△
= L (t)d,

where L (t) : R+ →LLL ⊂ Rnv×nd , ∀t ∈ R+.

However, the modeling framework—and to some extent the results discussed

below—also apply to a wider class. For instance, nonlinear operators can also be
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(a) Interconnected closed-loop LPV system composed from LPV subsystems.
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(b) Interconnected closed-loop LPV sys-
tem in compact representation.
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(c) Interconnected closed-loop LPV system as
LFRs in both parameter block and inter-
connection operator.

Figure 8.4: The interconnected closed-loop LPV system.

treated in a quasi-linear parameter-varying (q-LPV)-fashion by considering the in-

terconnection operator a function of the interconnection input or output signals,

v or d, respectively. Certain (potentially nonlinear) operators that can be modeled

by integral quadratic constraints (IQCs) and handled by multipliers in the form

of D/G-S [80, 104] can already be considered by the techniques presented in this

thesis, as well. Furthermore, along the lines of [36], the interconnection operator

can sometimes be factorized, s. t. a real-valued matrix L ∈ LLL emerges as the es-

sential item to bear information on connectivity, while other operators incorporate

dynamics, such as time delays.

For brevity of notation, time dependency will often be dropped.
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Figure 8.5: Classes of interconnection operators.

8.1.3.2 Structural Classification

Restricting the interconnection operator to exhibit special structural properties is

the key to considerably reduce the complexity of the synthesis approach presented

later on—more specifically—by imposing similar structural properties on multi-

plier decision variables.

For this purpose, first assume that the operator L (t) can be partitioned as

L (t) =




L11(t) L12(t) · · ·L1h(t)

L21(t) L22(t) · · ·L2h(t)...
. . .

...

Lh1(t)Lh2(t) · · ·Lhh(t)


, (8.8)

with Lij

(
t
)
: R

+ →LLL ij ⊆ R
nvi×ndj , (i, j) ∈ H×H.

The following structural properties of the interconnection are assumed.

(A8.2) Square Interconnection Operators Lij:

An invariant number of interconnection in- and output channels is assumed,

i. e., nL

△
= nf,d = nf,v, f = 1, . . . ,g.

(A8.3) Scalar Repeated Interconnection Operators:

A single scalar interconnection operator ℓij(t) encodes each connection be-

tween two subsystems, i. e., Lij(t) = ℓij(t)InL
, with ℓij(t) : R+ → ℓℓℓij ⊆ R.

Under the Ass. (A8.2) and (A8.3), one can write

L (t) = ℓ(t) ⊗ InL
, with ℓ(t) =




ℓ11(t) ℓ12(t) · · · ℓ1h(t)
ℓ21(t) ℓ22(t) · · · ℓ2h(t)...

. . .
...

ℓh1(t) ℓh2(t) · · · ℓhh(t)


,

ℓ(t) : R
+ → ℓℓℓ ⊆ R

h×h. (8.9)
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The compactness of the set LLL is implied by the compactness of a set ℓℓℓ, in which

the real-valued, time-varying matrix ℓ(t) remains for all times.

8.1.3.3 Graph Theoretic Classification

The fundamental graph theoretic property used for classification in this thesis re-

sides in ≪directedness≫. Methods that can cover matrix representations L (t) of

directed or undirected graphs will be developed. More specifically, assume scalar

repeated interconnection operators according to (A8.3) and a partitioning of ℓ(t)

based on the definition of subsystem groups

ℓ(t) =




ℓG1G1
(t) ℓG1G2

(t) · · · ℓG1Gg
(t)

ℓG2G1
(t) ℓG2G2

(t) · · · ℓG2Gg
(t)

...
. . .

...
ℓGgG1

(t) ℓGgG2
(t) · · · ℓGgGg

(t)


 , (8.10)

ℓGiGj
(t) : R

+ → ℓℓℓGiGj
⊆ R

hi×hj .

The transformation of matrix inequalities that allow to arrive at conditions with a

complexity in the order of a single subsystem usually require the interconnection

matrix to be diagonalizable or normal as technical assumptions. For this purpose,

introduce the following notation.

(A8.4) Diagonalizable Matrix, ℓ ∈ ℓℓℓh×hD :

A real diagonalizable h× h matrix is an element of the set

ℓℓℓh×hD

△
=

{

ℓ ∈ R
h×h

∣∣∣ ∃F, s. t. F−1ℓF = Λ is diagonal
}

.

(A8.5) Normal Matrix, ℓ ∈ ℓℓℓh×hN :

A real normal h× h matrix is an element of the set

ℓℓℓh×hN

△
=

{

ℓ ∈ R
h×h

∣∣∣ ∃F, F−1 = F∗, s. t. F∗ℓF = Λ is diagonal
}

.

The definition of sets that regard the matrix representations of the interconnec-

tion topologies as elements of function spaces then follows as:

(A8.6) Arbitrary Interconnection, ℓ(t) ∈ Fh×hℓℓℓ,R :

A matrix representation of an arbitrary time-varying (TV) topology is an ele-

ment of the set

Fh×hℓℓℓ,R

△
=

{

ℓ(t)
∣∣∣ ℓ(t) : R

+ → R
h×h

}

.

(A8.7) Symmetric Interconnection, ℓ(t) ∈ Fh×hℓℓℓ,S :

A matrix representation of a symmetric TV topology is an element of the set

Fh×hℓℓℓ,S

△
=

{

ℓ(t)
∣∣∣ ℓ(t) : R

+ → S
h×h

}

.
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(A8.8) Skew-Symmetric Interconnection, ℓ(t) ∈ Fh×hℓℓℓ,AS
:

A matrix representation of an anti-symmetric topology is an element of the

set

Fh×hℓℓℓ,AS

△
=

{

ℓ(t)
∣∣∣ ℓ(t) : R

+ → AS
h×h

}

.

(A8.9) Groupwise Symmetric Interconnection, ℓ(t)∈Fh×hℓℓℓ,G,S:

A matrix representation of a topology that is symmetric within groups is an

element of the set

Fh×hℓℓℓ,G,S

△
=

{

ℓ(t) partitioned as (9.11)
∣∣∣

ℓGfGf
(t) ∈ F

hf×hf
ℓℓℓ,S , ∀f = 1, . . . ,g

}

.

It is obvious that a TV topology that is undirected can be written as an element

of the set Fh×hℓℓℓ,S . As a relaxation, a topology that is undirected within and poten-

tially directed between groups can be written as an element of the set Fh×hℓℓℓ,G,S. In this

case, it will be shown that one may always rewrite the interconnection as a fully

symmetric matrix by the introduction of virtual interconnection channels. How-

ever, even for undirected topologies, symmetry is lost after (row-) normalization of

the corresponding Laplacian or adjacency matrix. In distributed formation control,

the use of the (row-) normalized Laplacian matrix in distributed formation control

problems is attractive from the point of view of an a priori knowledge on the ei-

genvalue locations being within a circle with radius one about the point 1+ j0, the

Perron disc, irrespective of the number of subsystems involved. In light of this, the

definition of the further following sets will be useful.

(A8.10) Diagonalizable Interconnection, ℓ(t) ∈ Fh×hℓℓℓ,D :

The matrix representation of a diagonalizable topology is an element of the

set

Fh×hℓℓℓ,D

△
=

{

ℓ(t)
∣∣∣ ℓ(t) : R

+ → ℓℓℓh×hD

}

.

(A8.11) Normal Interconnection, ℓ(t) ∈ Fh×hℓℓℓ,N :

The matrix representation of a unitarily diagonalizable (normal) topology is

an element of the set

Fh×hℓℓℓ,N

△
=

{

ℓ(t)
∣∣∣ ℓ(t) : R

+ → ℓℓℓh×hN

}

.

Note that Fh×hℓℓℓ,S ⊂ Fh×hℓℓℓ,G,S ⊂ Fh×hℓℓℓ,N ⊂ Fh×hℓℓℓ,D . The sets Fh×h
LLL ,S , Fh×h

LLL ,G,S, Fh×h
LLL ,N, Fh×h

LLL ,D,

and Fh×h
LLL ,R are defined accordingly, implying scalar repeated interconnection opera-

tors with an interconnection channel width nL . When clear from the context, the

superscript indicating the matrix dimensions is omitted.
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8.1.3.4 Summary

After having established the fundamental constraints to linear, static, scalar re-

peated interconnection operators, the remaining classes are found to consist in

dynamic/nonlinear interconnections. Of these, time-delayed interconnections are

of special interest, for which preliminary work is presented in [36].

The representation developed above is more compact than the one in [80], since

the operator L is not required to be (block-)diagonal. In cases where a subsystem’s

output signals are received by different subsystems, or linear combinations of sev-

eral subsystems’ output signals are received via a single input channel by another

subsystem, this effectively decreases the size of the system matrices. Otherwise,

output and input signals would have to occur repeatedly in d and v.

8.1.4 On the Density of Diagonalizable Matrices over the Set of Complex Matrices

While the set of diagonalizable (or simple) matrices ℓℓℓh×hD is dense over the set of

complex-valued matrices Ch×h, [50], the set of normal matrices ℓℓℓh×hN is not dense

due to the requirement on the existence of a unitary transformation, or equivalently

ℓ ∈ ℓℓℓh×hN ≡
{

ℓ ∈ ℓℓℓh×hD

∣∣∣ ℓ∗ℓ = ℓℓ∗
}

.

Density in the mathematical sense means that the Lebesgue measure of the re-

spective complementary set is zero. With respect to the question of density of di-

agonalizable matrices, loosely speaking, this means that from a large set of random

matrices, the probability that a matrix is non-diagonalizable is zero. Even more

practically, this means that any given matrix in Ch×h can be approximated arbi-

trarily closely by a diagonalizable matrix. Similar to popular lines of reasoning

with respect to non-singular matrices, which are also dense over Ch×h [51] a per-

turbation argument could thus be employed to assume diagonalizability of any

interconnection matrix w. l. o. g.

Most approaches use some kind of transformation on the interconnection matrix

to reduce the complexity of the analysis or synthesis problem. While for stability

analysis, it may be sufficient to consider, e. g., a Schur decomposition, [40], which

always exists, the consideration of performance in an efficient analysis/synthesis

problem of low complexity requires some form of diagonalization, see, e. g., [54,

56, 97]. The approach presented in [97] makes use of a signal transformation to

decouple subsystems. However, even if such an argument on the density of diago-

nalizable matrices would be employed, the signal transformation method used in

[97] would possibly suffer from arbitrary large deteriorations in the tightness of the

performance bounds, which are determined by the condition number of the associ-

ated transformation matrix. Close to non-diagonalizability, such a transformation

may become ill-conditioned.

In subsequent sections, results will be presented that employ a transformation

on multiplier conditions associated with the interconnection. Such a transformation
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on an LMI dispenses with the idea of a signal transformation, while maintaining

both a guaranteed upper bound on the performance level and further also allowing

time-varying interconnections. This transformation is required to be a congruence

transformation to preserve the symmetry of the LMI. As a congruence transforma-

tion consists of unitary matrices, the interconnection matrix is therefore required

to be normal. It will be shown that by the introduction of virtual interconnection

channels, this can always be achieved.
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8.2 Special Cases and Extensions

T
he rather general framework for representing interconnected LPV subsystems

is motivated by exploiting graph theory for a compact representation of the

interconnection similar to the work of [97], while maintaining the flexibility of

the LFT-based modeling approach presented in [80]. As such, ≪decomposable sys-

tems≫ emerge as a natural special case of the proposed modeling framework. Sys-

tems with regular grid topologies will also be shown to be a special case.

Remark 8.3 In [97, 99, 100], diagonalizability of a constant ℓ is assumed, instead of con-

sidering a Schur decomposition as in, e. g., [40], for the purpose of including performance

optimization in addition to stability as a synthesis objective.

8.2.1 Decomposable Systems

Massioni et al. [99] introduced the notion of ≪decomposable systems≫ in the con-

text of an interconnected LTI system, whose system matrices are structured as a

decentralized and an interconnected part. In order not to introduce unnecessary

limitations, the notion of ≪decomposable systems≫ is straightforwardly extended

to cover time-varying interconnections. For this purpose, first consider the follow-

ing definition.

Definition 8.2 (Decomposable Matrix [99])

Given a TV diagonalizable topology ℓ(t) ∈ Fh×hℓℓℓ ⊆ Fh×hℓℓℓ,D , a matrix M̌(t) : R+ →
Rhn×hm is said to be ≪decomposable≫, if for all t ∈ R+ there exist Md,Mi ∈ Rn×m, s. t.

M̌(t) = Ih ⊗ Md + ℓ(t) ⊗ Mi. (8.11)

Superscripts •d and •i identify the local and the interconnected portions of a

decomposable matrix. While being slightly informal, the notation •̌ will indicate

that a matrix is decomposable. The special case when the interconnected part is

zero is included in that notation.

Due to the assumption that ℓ(t) is diagonalizable for all t ∈ R+, one may find a

time-varying, invertible matrix F(t), s. t.

(F(t) ⊗ In)−1 M̌(t) (F(t) ⊗ Im) = Ih ⊗ Md +Λ(t) ⊗ Mi. (8.12)

As a straightforward extension from [99], consider the following definition of a
≪decomposable LFT-LPV system≫.
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Definition 8.3 (Decomposable LFT-LPV System, extended from [99])

Consider the system

P̌ :









˙̌x

p̌

ž

y̌


=




Ǎ(t) B̌∆(t) B̌p(t) B̌u(t)

Č∆(t) Ď∆∆(t) Ď∆p(t) Ď∆u(t)

Čp(t) Ďp∆(t) Ďpp(t) Ďpu(t)

Čy(t) Ďy∆(t) Ďyp(t) 0







x̌

q̌

w̌

ǔ


=Pd




x̌

q̌

w̌

ǔ


,

q̌ = ∆̌p̌, δ ∈ δ.

(8.13)

System (8.13) is called ≪decomposable≫, iff all of its system matrices Ǎ(t), B̌∆(t), . . . , are

decomposable matrices.

The approach presented in [97, 99, 100] exploits the so-called ≪decomposition

property≫ by introducing signal transformations of the form x̌ = (F(t) ⊗ I)x̂ to

obtain a modal decomposition of system (8.13). As an immediate consequence, a

time-varying transformation F(t) would lead to the introduction of its time deriva-

tive into the system description. A signal transformation approach thus precludes

time-varying interconnections. Furthermore, the same signal transformation (now

considered constant) on the LFT-LPV parameter channel requires homogeneous

scheduling as

q̂ = (F ⊗ I)−1∆̌(F ⊗ I)p̂ = ∆̌p̂,

where it has been assumed that the interconnected part of ∆̌, is zero, ∆i = 0.

However, in order to identify the system representation (8.13) as a special case

of (8.2), first consider a reordering of the system signals to obtain

P̌ = Ih ⊗ Pd + ℓ(t) ⊗ Pi = ΨyPdΨu,

Ψuζu =




x̌

q̌

w̌

ǔ


 , Ψ⊤y ζy =




˙̌x

p̌

ž

y̌


 . (8.14)

Such a permutation can be derived by means of Lma. A.3 on p. 317. As a result, the

interconnection matrix can be extracted via an LFT, s. t. the system can be rewritten

as

P̌ :






[
ζy

d

]
=

[
Ih ⊗ Pd Ih ⊗ Pi

I 0

][
ζu

v

]
,

q̌ = ∆̌p̌, δ ∈ δ, v = (ℓ(t) ⊗ InL
)d, ℓ(t) ∈ Fℓℓℓ.

(8.15)

Since usually not all signals contribute to the interconnection of the entire system

and consequently some, if not many, system matrices will have an interconnected

part equal to zero, the dimension of the interconnection channel nL can often be

drastically reduced. When reverting the signal permutation (8.14) in (8.15) a special

case of the interconnected LFT-LPV system (8.2) is obtained in the sense that
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• the subsystems have homogeneous dynamics,

• the interconnection is of scalar repeated nature according to Ass. (A8.3).

Apart from that, the results in subsequent sections will show that by avoiding

the above-mentioned signal transformation

• the subsystems may be heterogeneously scheduled,

i. e., ∆̌ =
h

diag
k=1

(∆k),

• the interconnection may be time-varying.

Furthermore, by dispensing with the rather artificially restricted notion of ≪de-

composable systems≫, i. e., by directly formulating the interconnected system

within an LFT framework via concatenation of individual subsystems, heteroge-

neous dynamics may be allowed in the modeling stage. As it turns out, heterogene-

ity in both dynamics and scheduling can be easily handled also in the analysis and

synthesis conditions.

8.2.2 Systems Interconnected Through a Regular Grid Topology

Regular grid topologies in ng dimensions can be modeled by choosing ℓ accord-

ingly from an interconnection of h =
∏ng

i=1 hxi subsystems, where hx1 to hxng
are the

numbers of subsystems in the—possibly virtual—xi directions, i ∈
{
1, 2, . . . ,ng

}
, re-

spectively. Consequently, an undirected grid graph Gg can be regarded as a graph

Cartesian product, cf. Fig. 8.6,

Gg = G1 ×G2 × . . .Gng (8.16)

of ng undirected path graphs Gi of lengths hxi , i ∈
{
1, 2, . . . ,ng

}
[49]. The spectra

× =

Figure 8.6: Graph Cartesian product of two path graphs to form a grid graph.

of the combinatorial graph Laplacian and the adjacency matrix of a path graph Gi

are [18]

ΛΛ
(
I
(
Gi
))

=

{

λ ∈ R

∣∣∣∣ λj = 2− 2 cos

(
π
j

hi

)
, j ∈ {1, 2, . . . ,hi − 1}

}

,

ΛΛ
(
A
(
Gi
))

=

{

λ ∈ R

∣∣∣∣ λj = 2 cos

(
π

j

hi + 1

)
, j ∈ {1, 2, . . . ,hi}

}

.
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For simplicity, consider a two-dimensional grid array, ng = 2 and h1 = h2 = hg.

Then, the adjacency matrix of the grid topology can be computed by [70]

A
(
Gg

)
= A

(
G1
)
⊗ Ih2 + Ih1 ⊗ A

(
G2
)

(8.17)

For λ1,i and λ2,j denoting the eigenvalues of A
(
G1
)

and A
(
G2
)
, respectively, the

corresponding spectrum of A
(
Gg

)
is then given by

ΛΛ
(
A
(
Gg

))
=

{
λ ∈ R

∣∣ λg = λ1,iλ2,j, i ∈ {1, . . . ,h1} , j ∈ {1, . . . ,h2}
}

,

from which the maximum and minimum eigenvalue can be easily inferred. Sub-

sequent normalization of the Laplacian or adjacency matrix, however, recovers the

immediate knowledge of the eigenloci to reside inside the unit, or Perron disc,

respectively.

8.2.3 Multi-Topology Systems

Multi-topology systems can simply be realized by relaxing Ass. (A8.3) to the more

general case of multiple scalar interconnection operators

(A8.12) Multiple Scalar Repeated Interconnection Operators:

Multiple scalar interconnection operators ℓijl(t) encode each connection be-

tween two subsystems, i. e.,

Lij(t) =
nL

diag
l=1

(
ℓijl(t)

)
, with ℓijl(t) : R

+ → R.

A reordering of the interconnection channels then yields a block diagonal intercon-

nection operator. Such a framework may be useful for the following cases, amongst

others:

• A combination of representing physical coupling as well as communication

interaction in scenarios, such as (d) and (e), shown in Figs. 7.2d and 7.2e on

p. 218,

• Separate topologies for formation control and general distance keeping (colli-

sion avoidance) in MAS settings,

• Fault-diagnosis and isolation for systems with redundant interconnection

channels.







9
S Y N T H E S I S O F D I S T R I B U T E D L I N E A R

PA R A M E T E R - VA RY I N G C O N T R O L L E R S F O R

I N T E R C O N N E C T E D H E T E R O G E N E O U S S U B S Y S T E M S

≪The welfare of each is bound up in the

welfare of all.≫

Helen Keller

T
his chapter aims at developing a capable framework for the synthesis of dis-

tributed LPV controllers for heterogeneous systems interconnected through

arbitrary directed and time-varying topologies.

In Sect. 9.1, it will be shown how directed topologies can be normalized, i. e.,

time-varying, directed interconnection matrices can be represented as a combina-

tion of matrices with the property of being diagonalizable by a unitary transforma-

tion. This requires the introduction of virtual interconnection channels, which do

not contribute to the control objectives, but allow to pull out a symmetrized1—or

more generally, normalized—interconnection matrix in an LFR.

In Sect. 9.2, this technique is applied in the context of multiplier-based synthesis

conditions.

1 In the publications [55, 56] the term ≪symmetrification≫ was adopted initially. The authors noticed
only later that the proper english term is ≪symmetrization≫, a notion encountered in various math-
ematical publications and—in its core—related to the idea presented in this thesis.

Preliminary results of this chapter have been previously published in [54–56, 61].
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9.1 Symmetrization and Normalization of Directed Interconnection

Topologies

T
he interconnection operator L will be considered as a parameter block within

an LFT-LPV robust gain-scheduling analysis and controller synthesis frame-

work. Within that framework the use of D/G-S [E21] allows to copy the plant’s

parameter block to the controller as described in Lma. 2.6 and Cor. 2.3 on pp. 70

and 70, respectively. Symmetry of the parameter block and its commutativity with

the scalings are necessary conditions for this. This allows to let the synthesized dis-

tributed controllers inherit the interconnection topology from the plant representa-

tion. Furthermore, normal real-valued interconnection matrices provide a guaran-

tee for the existence of a diagonalizing transformation and real eigenvalues of L ,

s. t. the synthesis problem can eventually be transformed to an LFT-LPV controller

synthesis problem with a diagonal parameter block, cf. Sect. 9.2. More generally, a

real-valued interconnection matrix is required to be ≪normal≫, thus diagonalizable,

for such a diagonalizing transformation to exist. If an appropriate structure is im-

posed on the multiplier matrix variables and in addition, the Lyapunov matrices

are chosen to be structured as well, the synthesis complexity can be reduced to be

of the order of a single subsystem. In order to guarantee stability and performance

in the face of time-varying interconnection topologies, knowledge about the ad-

missible range of eigenvalues of the normalized interconnection matrix is required.

Furthermore, the masking matrix structure due to the normalization is required to

be invariant.

For this purpose, consider a real-valued, static, linear and possibly time-varying

interconnection operator that is given by the matrix ℓ(t) derived from a scalar re-

peated structure. Further, let ℓ(t) represent a directed topology, i. e., ℓ(t) ∈ Fh×hℓℓℓ,R . It

is the objective to find a representation

ℓ(t) = Vℓℓ̃(t)Wℓ = ℓ̃(t) ⋆

[
0 Wℓ

Vℓ 0

]
, where ℓ̃(t) ∈ Fh̃×h̃ℓℓℓ,N , (9.1)

with VℓWℓ = Ih (9.2)

and VℓWℓ = Ih. In general h̃ > h. Consequently, one has

L (t) = VL L̃ (t)WL = L̃ (t) ⋆

[
0 WL

VL 0

]
, (9.3)

where L̃ (t) ∈ Fh×h
L̃̃L̃L ,N

△≡ Fh̃×h̃
LLL ,N and VLWL = IhnL

, VL = Vℓ ⊗ InL
, WL = Wℓ ⊗

InL
. Denote λ and λ̃ the sets of unique admissible eigenvalues of the possibly time-

varying interconnection matrices (unnormalized and normalized) and let the sets

be defined by the respective union of the sets of unique momentary eigenvalues

ΛΛ
(
ℓ(t)

)
and ΛΛ

(
ℓ̃(t)
)

for all time instants. I. e.,

λ
△
=

⋃

∀t∈R+

ΛΛ
(
ℓ(t)

)
, λ̃

△
=

⋃

∀t∈R+

ΛΛ
(
ℓ̃(t)

)
. (9.4)
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Note that in general λ 6≡ λ̃, whereas due to the scalar repeated structure of the

interconnection

λ = Λ
△
=

⋃

∀t∈R+

ΛΛ
(
L (t)

)
, λ̃ = Λ̃

△
=

⋃

∀t∈R+

ΛΛ
(
L̃ (t)

)
. (9.5)

Analogously, consider set σ of unique admissible singular values of the possibly

time-varying interconnection matrix and let it be defined by the union of the set of

unique momentary singular values ΣΣ
(
ℓ(t)

)
for all time instants. I. e.,

σ
△
=

⋃

∀t∈R+

ΣΣ
(
ℓ(t)

)
=

⋃

∀t∈R+

ΛΛ
(
ℓ⊤(t)ℓ(t)

)
(9.6)

σ = Σ
△
=

⋃

∀t∈R+

ΣΣ
(
L (t)

)
=

⋃

∀t∈R+

ΛΛ
(
L
⊤(t)L (t)

)
. (9.7)

With regard to the question of finding a time-varying normalized interconnection

matrix ℓ̃(t) in accordance with the time-invariant transformation given in (9.1) with

the constraint (9.2), the following problem is formulated.

Problem 9.1 (Normalization of an Interconnection Matrix)

For an interconnection operator L (t) = ℓ(t) ⊗ InL
, i. e., satisfying Ass. (A8.1), (A8.3),

with ℓ(t) ∈ Fh×hℓℓℓ,R , find a representation (9.1), satisfying (9.2).

The usefulness of the identity condition (9.2) will become clear in Sect. 9.2. As

a prerequisite, the transformation given in (9.1) is first attributed to the constant

state space matrices of the LFR of the closed-loop system, illustrated by Fig. 9.1. In

conjunction with assuming that the controller inherits the interconnection topology,

i. e., L K = L , a normalization of the form (9.3) allows to define augmented closed-

loop matrices by

T̃ = T̃0 + W̃K̃Ṽ = WL (T0 + WKV)VL ,

or more specifically

T̃ =




A B∆ B̃i Bp

C∆ D∆∆ D̃∆i D∆p

C̃i D̃i∆ D̃ii D̃ip

Cp Dp∆ D̃pi Dpp


=




I

I

I2 ⊗ WL

I




︸ ︷︷ ︸
WL

T




I

I

I2 ⊗ VL

I




︸ ︷︷ ︸
VL

.
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This is illustrated in Fig. 9.1. The interconnected closed-loop system, augmented by

a normalized interconnection matrix is therefore defined as

T̃ :









ẋ

p

d̃

z


=




A B∆ B̃i Bp

C∆ D∆∆ D̃∆i D∆p

C̃i D̃i∆ D̃ii D̃ip

Cp Dp∆ D̃pi Dpp




︸ ︷︷ ︸
T̃=T̃0+W̃K̃Ṽ




x

q

ṽ

w


 ,

q = ∆p, ṽ = L̃ d̃, δ ∈ F
η
δ

qK = ∆KpK, ṽK = L̃ d̃K, L̃ ∈ Fh̃×h̃
LLL ,N,

(9.8)

where

d̃=

[
d̃

d̃K

]
∈Rnd̃ , ṽ=

[
ṽ

ṽK

]
∈Rnṽ ,

and

T̃ = T̃0 + W̃K̃Ṽ =




A B∆ B̃i Bp

C∆ D∆∆ D̃∆i D∆p

C̃i D̃i∆ D̃ii D̃ip

Cp Dp∆ D̃pi Dpp


 (9.9)

T =




A 0 B∆ 0 B̃i 0 Bp

0 0 0 0 0 0 0

C∆ 0 D∆∆ 0 D̃∆i 0 D∆p

0 0 0 0 0 0 0

C̃i 0 D̃i∆ 0 D̃ii 0 D̃ip

0 0 0 0 0 0 0

Cp 0 Dp∆ 0 D̃pi 0 Dpp




+




0 Bu 0 0

I 0 0 0

0 D∆u 0 0

0 0 0 I

0 D̃iu 0 0

0 0 I 0

0 Dpu 0 0




×




AK BKy B̃Ki BK∆
CKu DKuy D̃

K
ui D

K
u∆

C̃Ki D̃Kiy D̃
K
ii D̃

K
i∆

CK∆ DK∆y D̃
K
∆i D

K
∆∆







0 I 0 0 0 0 0

Cy 0 Dy∆ 0 D̃yi 0 Dyp

0 0 0 0 0 I 0

0 0 0 I 0 0 0


 . (9.10)

For the purpose of reordering the interconnected system according to the hetero-

geneous subsystem dynamics, one can find further permutations, s. t.

T̆ = ΨT ,1T̃Ψ
⊤
T ,2 =

g∑

f=1

Ef ⊗




Af Bf,∆ B̆f,i Bf,p

Cf,∆ Df,∆∆ D̆f,∆i Df,∆p

C̆f,i D̆f,i∆ D̆f,ii D̆f,ip

Cf,p Df,p∆ D̆f,pi Df,pp


=

g∑

f=1

Ef ⊗ T̆f,
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v

v

d

d ṽ

ṽ

d̃

d̃

q

q

q p

p

p

w

w

w z

z

z

[
∆

∆K

]

[
∆

∆K

]

[
∆

∆K

]

[
L

L K

] [
L̃

L̃ K

]

[
L̃

L̃ K

]

TT

T̃

VL WL

Figure 9.1: Interconnected LPV system structure with normalized interconnection topology.

with

T̆f=




I

I

I2 ⊗ WLf

I




︸ ︷︷ ︸
WLf




Af Bf,∆ Bf,i Bf,p

Cf,∆ Df,∆∆ Df,∆i Df,∆p

Cf,i Df,i∆ Df,ii Df,ip

Cf,p Df,p∆ Df,pi Df,pp




︸ ︷︷ ︸
Tf




I

I

I2 ⊗ VLf

I




︸ ︷︷ ︸
VLf

.

Note that since G contains only pairwise disjoint sets, using suitable permutations

Ψ⊤K,2ΨK,1 = I one can write

T̆f =
(
ΨT ,1T̃0Ψ

⊤
T ,2

)
+
(
ΨT ,1W̃Ψ

⊤
K,2

)(
ΨK,1K̃Ψ

⊤
K,2

)(
ΨK,1ṼΨ

⊤
T ,2

)
,

=

g∑

f=1

Ef ⊗
(

WLf
(Tf,0 + WfKfVf)
︸ ︷︷ ︸

Tf

VLf

)
.

In the above equations, WLf
and VLf

denote corresponding portions of the mask-

ing matrices WL and VL introduced during normalization.

9.1.1 Symmetrization of Groupwise Directed Topologies

When considering groups of subsystems with undirected interconnections within

and directed between the groups, one can find a symmetrized representation of the

scalar interconnection operator ℓ as follows:

Proposition 9.1 (Groupwise Symmetrization [55, 56])

Let the interconnection operator L (t) = ℓ(t) ⊗ InL
be real-valued, static, linear and
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possibly time-varying, of scalar repeated structure according to Ass. (A8.1) and (A8.3) on

p. 236 as well as subdivided into blocks corresponding to groups as in (9.11) on p. 254. I. e.,

ℓ(t) ∈ Fh×hℓℓℓ,G,S satisfies Ass. (A8.9) on p. 240. From the partition G = {G1, G2, . . . , Gg} of

H, this means

ℓ(t) =




ℓG1G1
(t) ℓG1G2

(t) · · · ℓG1Gg
(t)

ℓG2G1
(t) ℓG2G2

(t) · · · ℓG2Gg
(t)

...
. . .

...
ℓGgG1

(t) ℓGgG2
(t) · · · ℓGgGg

(t)


 , (9.11)

ℓGiGj
(t) : R

+ → ℓℓℓGiGj
⊆ R

hi×hj .

Then one can find operators ℓf(t) ∈ Fh×hℓℓℓ,S with Wℓf , Vℓf , s. t.

ℓ(t) = ℓ̃(t) ⋆

[
0 Wℓ

Vℓ 0

]
, ℓ̃(t) =

g∑

f=1

Ef ⊗ ℓf(t), (9.12)

with VℓWℓ = Ih, Vℓ =
∑g
f=1 Vℓf , Wℓ =

∑g
f=1Wℓf , and where h̃ = gh and masking ma-

trices Ef ∈ Rg×g indicate the block-matrix position of the operator ℓf on the diagonal.

Consequently, ℓ̃(t) ∈ Fh̃×h̃ℓℓℓ,S .

Proof: The proof follows by mathematical induction. Dependence on time is omit-

ted for brevity.

Basis

Assume g = 2. A possible symmetrization can then be derived as

ℓ =

[
ℓG1G1

ℓG1G2

ℓG2G1
ℓG2G2

]
= ℓ̃ ⋆

[
0 Wℓ

Vℓ 0

]
=

[
ℓ1
ℓ2

]
⋆


 0

Ih
Ih

E1 E2 0


 , (9.13)

where ℓ1 = ℓ
⊤
1 =

[
ℓG1G1

ℓG1G2

ℓ⊤G1G2
•

]
, ℓ2 = ℓ

⊤
2 =

[
• ℓ⊤G2G1

ℓG2G1
ℓG2G2

]
.

Note that VℓWℓ = Ih.

Inductive Step

Assume that for g groups a symmetrization has already been derived as

ℓ = ℓ̃ ⋆

[
0 Wℓ

Vℓ 0

]
,
ℓ̃ ∈ Fh̃×h̃ℓℓℓ,S

ℓf ∈ Fh×hℓℓℓ,S

, (9.14)
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with h̃ = gh and VℓWℓ = Ih. Consider a further group, s. t. there are g+ 1 groups

in the interconnection matrix ℓ+ containing an additional h(g+1) subsystems, i. e.,

h1:(g+1) = h+ h(g+1). Then, one can write

ℓ+ =




ℓ̃ ⋆

[
0 Wℓ

Vℓ 0

] ℓG1G(g+1)

ℓG2G(g+1)...
ℓGgG(g+1)

ℓG(g+1)G1
ℓG(g+1)G2

· · · ℓG(g+1)Gg
ℓG(g+1)G(g+1)




=

[
ℓ ℓG1:gGg+1

ℓGg+1G1:g
ℓGg+1Gg+1

]
.

Rewrite this as

ℓ+ =

[
Vℓ 0

0 Ih(g+1)

][
ℓ̃ WℓℓG1:gGg+1

ℓGg+1G1:g
Vℓ ℓGg+1Gg+1

][
Wℓ 0

0 Ih(g+1)

]

and observe that a symmetrization exists in

ℓ+ =

[
ℓ+,1

ℓ+,2

]
⋆




0
[
Ih

Ih

][
Wℓ 0

0 Ih(g+1)

]

[
Vℓ 0

0 Ih(g+1)

][
∑g

f=1 Ef E(g+1)

]
0




=

[
ℓ+,1

ℓ+,2

]
⋆




0

Wℓ 0

0 Ih(g+1)

Wℓ 0

0 Ih(g+1)

Vℓ 0 0 0 0 0

0 0 0 Ih(g+1)
0 0




Consequently, one may employ the short-hand notation

ℓ+ = ℓ̃+ ⋆

[
0 Wℓ+

Vℓ+ 0

]

where ℓ+,1 = ℓ
⊤
+,1 =

[
ℓ̃ WℓℓG1:gGg+1

ℓ⊤G1:gGg+1
W⊤ℓ •

]

ℓ+,2 = ℓ
⊤
+,2 =

[
• V⊤ℓ ℓ

⊤
Gg+1G1:g

ℓGg+1G1:g
Vℓ ℓGg+1Gg+1

]
.

Note that as before Vℓ+Wℓ+ = Ih1:(g+1)
.

Remark 9.1 It will become clear in Sect. 9.2.3.1 that the technical assumption VℓWℓ = Ih
is due to Lma. A.9 and Cor. A.2 in the appendix.
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By observing

L̃ =

g∑

f=1

(1g×g ⊗ ℓf) ⊛
(
Ef ⊗ InL

)
(9.15)

Accordingly, we have

L̆ = ΨiL̃Ψ⊤i = Ψi

(
g∑

f=1

Ef ⊗ Lf

)
Ψ⊤i

= Ψi

(
g∑

f=1

Ef ⊗ (ℓf ⊗ InL
)

)
Ψ⊤i =

g∑

f=1

ℓf ⊗ (Ef ⊗ InL
).

VLΨ
⊤
i =

g∑

f=1

Ef ⊗
(
vℓf ⊗ InL

)
=

g∑

f=1

Ef ⊗ VLf
(9.16)

ΨiWL =

g∑

f=1

Ef ⊗
(
wℓf ⊗ InL

)
=

g∑

f=1

Ef ⊗ WLf
. (9.17)

9.1.2 Optimal Symmetrization and Conservatism

Note that the symmetrization, i. e., the choice of both the masking matrices Wℓ and

Vℓ and the symmetric virtual interconnection operators ℓf is not unique.

Example 9.1 (Leader-Follower Setup I)

In a leader-follower configuration where communication is undirected within, but directed

between both groups G = {G1, G2}, a 2× 2 block partition for the interconnection operator

may be imposed, which can be decomposed as

ℓ =

[
ℓG1G1

ℓG1G2

ℓG2G1
ℓG2G2

]
=

[
ℓ1
ℓ2

]
⋆


 0

Ih
Ih

E1 E2 0


 , (9.18)

where ℓ1 = ℓ
⊤
1 =

[
ℓG1G1

ℓG1G2

ℓ⊤G1G2
•

]
, ℓ2 = ℓ

⊤
2 =

[
• ℓ⊤G2G1

ℓG2G1
ℓG2G2

]
.

Here ℓG1G1
, ℓG2G2

encode undirected communication among leaders or followers, respec-

tively. The off-diagonal blocks encode directed communication between groups. In this

case, one has E1 =
[
1
0

]
, E2 =

[
0
1

]
, wℓ1 =

[
1 1

]⊤
, wℓ2 =

[
1 1

]⊤
, vℓ1 =

[
1 0

]
and

vℓ2 =
[
0 1

]
. Note that matrix entries given by • denote symmetric block matrices that drop

out.
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Example 9.2 (Leader-Follower Setup II)

As for the agents depicted in Fig. 8.1 on p. 231, communication from followers to leaders is

now disallowed. With scalar repeated identity interconnection operators one has

ℓ =




0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 0 0 0

0 0 0 0 0 1 1

0 1 0 0 0 1 1

1 0 0 1 1 0 1

0 0 0 1 1 1 0




=

[
ℓG1G1

0

ℓG2G1
ℓG2G2

]
, ℓ1=

[
ℓG1G1

ℓ⊤G2G1

ℓG2G1
ℓG2G2

]
,

L =
[
ℓ1 ⊗ InL

ℓ1 ⊗ InL

]
⋆

[
0 0 Ih ⊗ InL

0 0 E1 ⊗ InL

E2 ⊗ InL
E1 ⊗ InL

0

]

Here, one has wℓ1 =
[
1 1

]⊤
, wℓ2 =

[
1 0

]⊤
, vℓ1 =

[
0 1

]
and vℓ2 =

[
1 0

]
.

The degrees of freedom during symmetrization should be used to minimize con-

servatism, by using as few as possible different virtual symmetric interconnection

operators ℓf. Note that in Ex. 9.2 only a single virtual interconnection operator is

necessary with two repetitions. This allows for fewer multiplier constraints in the

LMI conditions and consequently less conservatism. Furthermore, the completion

of the virtual symmetric interconnection operators should not extend the range of

eigenvalues. In fact, an LMI optimization problem can be formulated for minimiz-

ing the range of eigenvalues of any virtual interconnection operator ℓf
(
Ξ
)

over the

resp. symmetrically completing entries collected in the decision variable matrix Ξ,

where ℓf
(
Ξ
)

is linear in Ξ and is otherwise known a priori.

min
Ξ
λ − λ ≻ 0, s.t. λIh ≺ ℓf(Ξ) ≺ λIh. (9.19)

If all possible topologies are known, between which there occurs switching, the

optimization problem (9.19) can be solved in each of these independently.

Note that in the leader-follower setup, the bounds on the eigenvalues can al-

ways be preserved. To see this, recall that for symmetric matrices ℓf ∈ Sh×h one

has |λi(ℓf)| = σi(ℓf), with i = 1, . . . ,h. The problem can therefore be posed as a

norm-preserving matrix dilation problem. Again, symmetrically completing entries

are collected in Ξ and one has [166]

min
Ξ
σ

([
0 ℓ⊤G2G1

ℓG2G1
ℓG2G2

]
+

[
I

0

]
Ξ
[
I 0

])
=σ

([
ℓ⊤G2G1

ℓG2G2

])
.



258 Synthesis of Distributed LPV Controllers

9.1.3 Normalization of General Directed Topologies

When considering unstructured subsystems with directed interconnections, one

can find a symmetrized representation of the scalar interconnection operator ℓ as

follows:

Proposition 9.2 (Normalization I)

Let the arbitrary interconnection operator L (t) = ℓ(t) ⊗ InL
, with ℓ(t) ∈ Fh×hℓℓℓ,R be

real-valued, static, linear and possibly time-varying as well as of scalar repeated structure

according to Ass. (A8.1) and (A8.3) on p. 236.

Then one can find matrices Wℓ, Vℓ, s. t. with the operators

ℓ(t) = ℓ̃(t) ⋆

[
0 Wℓ

Vℓ 0

]
, ℓ̃(t) =

[
ℓ(t) −ℓ⊤(t)
ℓ⊤(t) ℓ(t)

]
∈ Fh̃×h̃ℓℓℓ,N , (9.20)

with VℓWℓ = Ih, h̃ = 2h.

Proof: For each ℓ ∈ ℓℓℓ, the matrix ℓ̃ is normal, since ℓ̃ℓ̃⊤ = ℓ̃⊤ℓ̃. In fact, it is easy to

check that if a parameterization is introduced, such as

ℓ̃ =

[
cSℓ −cASℓ

⊤

c̃Sℓ
⊤ c̃ASℓ

]
,

from the normality condition it follows that cS = c̃S = cAS = c̃AS. A particular

choice with vS, vAS,wS,wAS ∈ R is

Vℓ =
[
vSIh vASIh

]
, Wℓ =

[
wSIh
wASIh

]
, (9.21)

which requires

vSwS + vASwAS = 1, (9.22)

and yields

ℓ =
[
vSIh vASIh

] [
ℓ −ℓ⊤

ℓ⊤ ℓ

][
wSIh
wASIh

]

= vSwSℓ− vSwASℓ
⊤ + vASwSℓ

⊤ + vASwASℓ,

which in addition to (9.22) requires

vASwS − vSwAS = 0. (9.23)

By setting wS = vS and wAS = vAS, (9.22) is the sole constraint. Let wAS = vAS = 0

to simply introduce virtual zero channels.
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Proposition 9.3 (Normalization II)

Let the arbitrary interconnection operator L (t) = ℓ(t) ⊗ InL
, with ℓ(t) ∈ Fh×hℓℓℓ,R be

real-valued, static, linear and possibly time-varying as well as of scalar repeated structure

according to Ass. (A8.1) and (A8.3) on p. 236.

Then one can find matrices Wℓ, Vℓ, s. t. with the operators

ℓS(t) = ℓ
⊤
S
(t)

△
= cS

(
ℓ(t) + ℓ⊤(t)

)
, (9.24)

ℓAS(t) = −ℓ⊤
AS

(t)
△
= cAS

(
ℓ(t) − ℓ⊤(t)

)
, (9.25)

where cS, cAS ∈ R, one has

ℓ(t) = ℓ̃(t) ⋆

[
0 Wℓ

Vℓ 0

]
, ℓ̃(t) =

[
ℓS(t)

ℓAS(t)

]
∈ Fh̃×h̃ℓℓℓ,N , (9.26)

with VℓWℓ = Ih, h̃ = 2h.

Proof: Firstly, since for each ℓ ∈ ℓℓℓ, ℓ̃ ∈ ℓℓℓh̃×h̃N ⊆ ℓℓℓh̃×h̃D , ℓ̃(t) ∈ Fh̃×h̃ℓℓℓ,N . A particular

choice with vS, vAS,wS,wAS ∈ R is

Vℓ =
[
vSIh vASIh

]
, Wℓ =

[
wSIh
wASIh

]
, (9.27)

which requires

vSwS + vASwAS = 1, (9.28)

and yields

ℓ =
[
vSIh vASIh

] [
ℓS

ℓAS

][
wSIh
wASIh

]

= vSwScS

(
ℓ+ ℓ⊤

)
+ vASwAScAS

(
ℓ− ℓ⊤

)
.

From the required conditions

vSwScS + vASwAScAS = 1,

vSwScS − vASwAScAS = 0,

follows vSwScS = vASwAScAS = 1
2 and with (9.28), it follows that cAS =

cS

2cS−1
.

It is possible that only particular portions of the interconnection matrix are non-

symmetric and require normalization. In such a case, the normalization can be

chosen such as not to overly increase the size of the virtual interconnection matrix

over the actual one.

Definition 9.1 (Degree of Asymmetry [87])

Given an interconnection matrix ℓ, define the ≪degree of asymmetry≫ as the maximum

singular value of ℓAS

△
= 1

2

(
ℓ− ℓ⊤

)
, i. e., as

σ
AS

△
= σ(ℓAS) = sup

‖x‖=1
‖ℓASx‖2 (9.29)
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By defining ℓS
△
= 1

2

(
ℓ+ ℓ⊤

)
, note that

ℓ = ℓS + ℓAS and ℓ⊤ = ℓS − ℓAS.

According to [87], ℓAS thus captures the difference between ℓ and ℓ⊤.
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9.2 Application of Standard Multiplier-Based Gain-Scheduling

Techniques Through Problem Transformation

I
n the following, it is assumed that an an arbitary interconnection topology is

present, i. e., ℓ(t) ∈ Fh×hℓℓℓ,R according to Ass. (A8.6). It is assumed that Prob. 9.1 has

been solved. If ℓ is normal in the first place, i. e., ℓ ∈ ℓℓℓh×hN , the trivial transformation

Vℓ =Wℓ = Ih, h = h̃ is used and the state space system matrices remain unchanged,

i. e., T̃ = T. Note that in any case, T̃ and T exhibit identical input-output behavior.

The following theorem is a rewritten version of the FBSP-based parameter-

dependent Bounded Real Lemma (PDBRL) with parameter-independent Lyapunov

function (PiDLF) for interconnected LPV systems.

Theorem 9.1 (Analysis of Interconnected LPV Systems [55])

The system T as defined in (8.5) is asymptotically stable over δ and for all admissible

interaction topologies L ∈ FLLL ⊆ FLLL ,R normalized according to a solution to Prob. 9.1,

s. t. L̃ (t) ∈ F
L̃̃L̃L ,N, with L2 gain on the channel w→ z bounded from above by

γ 6
g

max
f=1

(γf), γf > 0, f = 1, . . . ,g

if there exist MX ∈ Snx , Mp ∈ Snz+nw , M∆ ∈ Snp+nq and M̃i ∈ Snd̃+nṽ that satisfy




•
•
•
•




⊤


MX

M∆

M̃i

Mp







A B∆ B̃i Bp

I 0 0 0

C∆ D∆∆ D̃∆i D∆p

0 I 0 0

C̃i D̃i∆ D̃ii D̃ip

0 0 I 0

Cp Dp∆ D̃pi Dpp

0 0 0 I




≺ 0, (9.30)

[
•
•

]⊤
M̃i




I

I

L̃

L̃ K


≻ 0, ∀

(
L̃ , L̃ K

)
∈ L̃LL × L̃LL

K
, (9.31)

[
•
•

]⊤
M∆




I

I

∆

∆K


≻ 0, ∀δ ∈ δ, (9.32)

Mp =

g∑

f=1

(I2 ⊗ Ef) ⊛ Mf,p, Mf,p =

[
1
γf
I 0

0 −γfI

]
, (9.33)
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Proof: Following [125], the theorem simply states a closed-loop analysis condition

for the complete interconnected system, in which both the LPV parameter block,

as well as the interconnection matrix have been taken into account via respective

full-block multiplier conditions and in which each of the respective different het-

erogeneous subsystem dynamics is associated with a performance index γf.

The following corollary is a useful ingredient for obtaining the controller param-

eters with the proper sparsity structure imposed by a normalization in accordance

to Prob. 9.1. It relies on the fact that imposed matrix structure can be reverted by

considering the respective matrix inequalities on a certain subspace.

Corollary 9.1 (IS Analysis Restricted to a Subspace [55])

Under the assumption that there exist MX ∈ Snx , Mp ∈ Snz+nw , M∆ ∈ Snp+nq

and M̃i ∈ Snd̃+nṽ that satisfy Cond. (9.30) of Thm. 9.1, the conditions




•
•
•
•




⊤


MX

M∆

Mi

Mp







A B∆ Bi Bp

I 0 0 0

C∆ D∆∆ D∆i D∆p

0 I 0 0

Ci Di∆ Dii Dip

0 0 I 0

Cp Dp∆ Dpi Dpp

0 0 0 I




≺ 0, (9.34)

[
•
•

]⊤
Mi




I

I

L

L K


≻ 0, ∀

(
L , L K

)
∈LLL ×LLL

K, (9.35)

hold true.

Proof: Condition (9.34) is merely Cond. (9.30) restricted to the subspace spanned

by WL , while Cond. (9.35) is Cond. (9.37) restricted to the subspace spanned by

(I2 ⊗ VL ). More explicitly, one has

(I2 ⊗ V⊤L )

[
•
•

]⊤
M̃i




I

I

L̃

L̃ K


(I2 ⊗ VL ) ≻ 0, ∀

(
L̃ , L̃ K

)
∈ L̃LL × L̃LL

K
,
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with Mi =
[
•
]⊤
M̃i diag((I2 ⊗ VL ), (I2 ⊗ WL )) and

W⊤L




•
•
•
•




⊤


MX

M∆

M̃i

Mp







A B∆ B̃i Bp

I 0 0 0

C∆ D∆∆ D̃∆i D∆p

0 I 0 0

C̃i D̃i∆ D̃ii D̃ip

0 0 I 0

Cp Dp∆ D̃pi Dpp

0 0 0 I




WL ≺ 0.

Conds. (9.34) and (9.35) are obtained, due to VLWL = IhnL
. For a general formu-

lation of this result, consult Cor. A.2 on p. 322 in the appendix.

9.2.1 Reduction of Analysis and Synthesis Complexity via Structural Constraints on the

Multipliers

In Theorem 9.1 the analysis of an interconnected LPV system is considered via

matrix inequality constraints of the size of the entire interconnected system. Such

problems may be tractable for interconnected systems, where only a few subsys-

tems are involved. By imposing particular constraints on the structures of both

multipliers and Lyapunov variables, the complexity of the analysis conditions can

be drastically reduced. If the subsystems involved are allowed to be heterogeneous,

this amounts to a separation into several conditions only slightly coupled via the

interconnection multiplier. By using the formalism to distinguish between groups

of subsystems that share common dynamics introduced in (8.1) in Sect. 8.1.1 on

p. 8.1.1 redundant conditions are revealed and can be eliminated.

Theorem 9.2 (Analysis of Het. Grps. of LPV Systems [55])

The system T as defined in (8.5) is asymptotically stable over δ and for all admissible

interaction topologies L (t) ∈ FLLL ⊆ FLLL ,R normalized according to a solution to Prob. 9.1,

s. t. L̃ (t) ∈ F
L̃̃L̃L ,N, with L2 gain on the channel w→ z bounded from above by

γ 6
g

max
f=1

(γf), γf > 0, f = 1, . . . ,g
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if there exist Mf,X ∈ Snf,x , Mf,p ∈ Snf,z+nf,w , Mf,∆ ∈ Snf,p+nf,q and M̃f,i ∈ S
nf,d̃+nf,ṽ that

satisfy for all f = 1, . . . ,g




•
•
•
•




⊤


Mf,X

Mf,∆

M̃f,i

Mf,p







Af Bf,∆ B̃f,i Bf,p

I 0 0 0

Cf,∆ Df,∆∆ D̃f,∆i Df,∆p

0 I 0 0

C̃f,i D̃f,i∆ D̃f,ii D̃f,ip

0 0 I 0

Cf,p Df,p∆ D̃f,pi Df,pp

0 0 0 I




≺ 0, (9.36)

[
•
•

]⊤
M̃i




I

I

L̃

L̃ K


≻ 0, ∀

(
L̃ , L̃ K

)
∈ L̃LL × L̃LL

K
, (9.37)

[
•
•

]⊤
Mf,∆




I

I

∆k
∆Kk


≻ 0, ∀δk ∈ δf, (9.38)

where

M̃i =

g∑

f=1

(14×4 ⊗ Ef) ⊛ M̃f,i, (9.39)

Mf,X=




Xf X12f
X12

⊤

f X2f
Xf X12f
X12

⊤

f X2f


, M̃f,i=




Rf,i R12f,i S⊤f,i S12
⊤

f,i

R12
⊤

f,i R2f,i S21
⊤

f,i S2
⊤

f,i

Sf,i S21f,i Qf,i Q12f,i
S12f,i S2f,i Q12

⊤

f,i Q2f,i




,

Mf,∆=




Rf,∆ R12f,∆ S⊤f,∆ S12
⊤

f,∆

R12
⊤

f,∆ R2f,∆ S21
⊤

f,∆ S2
⊤

f,∆

Sf,∆ S21f,∆ Qf,∆ Q12f,∆
S12f,∆ S2f,∆ Q12

⊤

f,∆ Q2f,∆




, Mf,p =

[
1
γf
I 0

0 −γfI

]
.
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Proof: By imposing the multiplier structures

Mp =

g∑

f=1

(I2 ⊗ Ef) ⊛ Mf,p, (9.40)

MX =

g∑

f=1

(14×4 ⊗ Ef) ⊛ Mf,X, (9.41)

M∆ =

g∑

f=1

(14×4 ⊗ Ef) ⊛ Mf,∆, (9.42)

and (9.39) on the conditions of Thm. 9.1 and suitable permutations—cf. Lma. A.3

on p. 317— Cond. (9.30) of Thm. 9.1 on p. 261 can be written in the form of (9.43)

below.




•
•
•
•




⊤





g∑

f=1


Ef ⊗




Mf,X

Mf,∆

M̃f,i

Mf,p









(9.43)

×






g∑

f=1




Ef ⊗




Af Bf,∆ B̃f,i Bf,p

I 0 0 0

Cf,∆ Df,∆∆ D̃f,∆i Df,∆p

0 I 0 0

C̃f,i D̃f,i∆ D̃f,ii D̃f,ip

0 0 I 0

Cf,p Df,p∆ D̃f,pi Df,pp

0 0 0 I







+Ih ⊗




0 0 0 0

I 0 0 0

0 0 0 0

0 I 0 0

0 0 0 0

0 0 I 0

0 0 0 0

0 0 0 I









≺ 0.

Condition (9.43) decouples into h independent conditions, of which g are distinct

by construction of the multiplier variables. Each of these is of the form shown in

Lemma A.9, Eq. (A.12) in the appendix.

Theorem 9.2 provides analysis conditions that are attractive due to a significant

reduction in complexity—at the price of increase conservatism. The conditions are

of the size of single LPV subsystems coupled via the interconnection multiplier

condition. In Thm. 9.2 each group of distinct subsystem dynamics is explicitly al-

lowed to be analyzed in terms of a group specific multiplier M̃f,i associated with

the interconnection. Cond. (9.37) remains of the size associated with the entire in-

terconnected system, constituting the coupling.

Eichler et al. [38] elaborate on the application of the FBSP on the interconnection

multiplier condition along the lines of Cor. 5.12. This allows to consider explicit

LFT-based models for the interconnection matrix L (t) and a more explicit defini-

tion of admissible topologies. In these cases, the complexity of both synthesis and

analysis scales strongly with the number of subsystems. However, further structural

2 The result of Cor. 5.1 has been developed in cooperation with A. Eichler as a straightforward exten-
sion. Its application has been investigated simultaneously in the field of interconnected systems by
A. Eichler and in the field of LPV control by C. Hoffmann.
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constraints on the second multiplier stage amend this and rather large numbers of

subsystems can be considered at the price of some conservatism. The interested

reader is referred to [38] for details, whereas this thesis focuses on maintaining

scalability of analysis and synthesis conditions under time-varying interconnection

topologies.

9.2.2 Diagonalizing Transformation on Multiplier Matrix Inequalities

In the following, two lemmas are presented that allow to consider arbitrary in-

terconnection topologies in analysis and synthesis problems of reduced complexity.

The reduction is achieved by straightforward structural assumptions on multipliers

associated with the interconnection. The results are presented in a rather general

context, whereas their usefulness to further reduce the analysis complexity associ-

ated with Thm. 9.2 is formalized afterwards.

Lemma 9.1 (Diagonalizing Transformation)

Let the normal interconnection topology L (t) = ℓ(t) ⊗ InL
, with ℓ(t) ∈ Fh×hℓℓℓ,N be real-

valued, static, linear and possibly time-varying as well as of scalar repeated structure ac-

cording to Ass. (A8.1) and (A8.3) on p. 236. Further consider the associated compact set

of admissible interconnection matrices ℓ ∈ ℓℓℓ ⊆ ℓℓℓN and the associated set of admissible

eigenvalues (9.4)

λ
△
=

⋃

∀t∈R+

ΛΛ
(
ℓ(t)

)
,

i. e., for each time instant ℓ(t) has eigenvalues λk ∈ λ ⊆ C, k = 1, . . . ,h. Then the

following two inequalities are equivalent

(i)

[
•
•

]⊤ [
Ih ⊗ R Ih ⊗ S⊤
Ih ⊗ S Ih ⊗ Q

][
IhnL

L

]
≻ 0, ∀ℓ ∈ ℓℓℓ

(ii)

[
•
•

]∗ [
R S⊤

S Q

][
InL

λInL

]
≻ 0, ∀λ ∈ λ.

Proof: Consider a unitary diagonalizing transformation F∗ℓF = Λ, which is guar-

anteed to exist, since ℓ ∈ ℓℓℓ ⊂ ℓℓℓh×hN , for all t ∈ R+. Note also that F∗ℓ⊤F = Λ∗. Thus

for each ℓ ∈ ℓℓℓ with Z = F ⊗ InL
, one has that (i) is equivalent to

Z∗
[
•
•

]⊤[
Z

Z

][
Z

Z

]∗[
Ih ⊗ R Ih ⊗ S⊤
Ih ⊗ S Ih ⊗ Q

][
Z

Z

][
Z

Z

]∗[
IhnL

ℓ ⊗ InL

]
Z ≻ 0.
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Due to F∗ = F−1, the inner matrices Z cancel after commuting with the structured

multiplier. Consequently,

Z∗
[
•
•

]⊤[
Z

Z

][
Ih ⊗ R Ih ⊗ S⊤
Ih ⊗ S Ih ⊗ Q

][
Z

Z

]∗[
IhnL

ℓ ⊗ InL

]
Z ≻ 0,

⇐⇒
[
•
•

]∗[
Ih ⊗ R Ih ⊗ S⊤
Ih ⊗ S Ih ⊗ Q

][
IhnL

Λ ⊗ InL

]
≻ 0.

Since Λ =
h

diag
k=1

(λk), the last inequality is equivalent to

[
•
•

]∗[
R S⊤

S Q

][
InL

λkInL

]
≻ 0, k = 1, . . . ,h,

which is the same as satisfying (ii).

Remark 9.2 As discussed in Sect. 8.1.4, the set of normal matrices is not dense over Ch×h

and therefore poses a non-negligible restriction on the allowable interconnection matrices.

This necessitates the application of Props. 9.1, 9.3 or 9.2.

The arguments of Lma. 9.1 fail for the more general case of diagonalizable matrices

ℓ ∈ ℓ ⊂ ℓℓℓh×hD , since the diagonalizing transformation would then amount to a similar-

ity transformation F−1ℓF = Λ, rather than a congruence transformation. Accordingly, one

would have F∗ℓ⊤F−∗ = Λ∗. The congruence transformation is required, however, to main-

tain the hermitian nature of the matrix inequality. In the way, the proof is formulated above,

the issue becomes most obvious when considering the transformed multiplier

[
Z

Z

]∗[
Ih ⊗ R Ih ⊗ S⊤
Ih ⊗ S Ih ⊗ Q

][
Z

Z

]
=

[
F∗F ⊗ R F∗F ⊗ S⊤
F∗F ⊗ S F∗F ⊗ Q

]

6=
[
Ih ⊗ R Ih ⊗ S⊤
Ih ⊗ S Ih ⊗ Q

]
.

Corollary 9.2 For the case of λ ⊂ R, necessity in Lma. 9.1 is lost, if only the extrema of λ

are checked.

Corollary 9.3 For the case of λ ⊂ C, necessity in Lma. 9.1 is lost, if vertices of the convex

hull conv (λ) of λ are checked.

Lemma 9.1 can be applied to interconnected systems, for which a solution of

Prob. 9.1 has been used to obtain the system representation (9.8) with a normalized

scalar repeated interconnection matrix L̃ (t) = ℓ̃(t) ⊗ InL
in LFT-based feedback.

It is an extension of the lemma proposed in [55, 56], in which only symmetric inter-

connection matrices have been considered that, e. g., are the result of the application

of Prop. 9.1.
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An alternative to the normalization of interconnection matrices along the lines

of Prob. 9.1—or more specifically Props. 9.1, 9.3 and 9.2—has been proposed by

Massioni in [98]. At the price of limiting the multipliers associated with the inter-

connection matrix to D-scalings, an SVD-based diagonalization technique does not

require the introduction of virtual interconnection channels.

Lemma 9.2 (Diagonalizing Transformation via SVD [98])

Let the arbitrary interconnection topology L (t) = ℓ(t) ⊗ InL
, with ℓ(t) ∈ Fh×hℓℓℓ,R be

real-valued, static, linear and possibly time-varying as well as of scalar repeated structure

according to Ass. (A8.1) and (A8.3) on p. 236. Further consider the associated compact set

of admissible interconnection matrices ℓ ∈ ℓℓℓ ⊆ ℓℓℓh×h
R

and the associated set of admissible

singular values (9.6)

σ
△
=

⋃

∀t∈R+

ΣΣ
(
ℓ(t)

)

i. e., for each time instant ℓ(t) has singular values σk ∈ σ ⊆ R, k = 1, . . . ,h. Then the

following two inequalities are equivalent

(i)

[
•
•

]⊤ [
Ih ⊗ R 0

0 Ih ⊗ Q

][
IhnL

L

]
≻ 0, ∀ℓ ∈ ℓ

(ii)

[
•
•

]⊤ [
R 0

0 Q

][
InL

σInL

]
≻ 0, ∀σ ∈ σ.

Proof: For each ℓ ∈ ℓℓℓ, consider an SVD ℓ = UΣV⊤, where V⊤V = I, U⊤U = I. Thus

with ZU = U ⊗ InL
and ZV = V ⊗ InL

, one has that (i) is equivalent to

[
•
•

]⊤[
Ih ⊗ R 0

0 Ih ⊗ Q

][
IhnL

UΣV⊤ ⊗ InL

]
≻ 0.

By application of a congruence transformation ZV = V ⊗ InL
, it follows that

[
•
•

]⊤[
ZV
ZU

]⊤[
Ih ⊗ R 0

0 Ih ⊗ Q

][
ZV
ZU

][
IhnL

Σ ⊗ InL

]
≻ 0,

⇐⇒
[
•
•

]⊤[
Ih ⊗ R 0

0 Ih ⊗ Q

][
IhnL

Σ ⊗ InL

]
≻ 0.

Since Σ =
h

diag
k=1

(σk), the last inequality is equivalent to

[
•
•

]⊤[
R 0

0 Q

][
InL

σkInL

]
≻ 0, k = 1, . . . ,h,

which is the same as satisfying (ii).
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Corollary 9.4 Necessity in Lma. 9.2 is lost, if only the extrema of σ are checked.

A possible significant disadvantageous effect of the limitation to D-scalings in

Lma. 9.2 exists in the fact that any multiplier shiftings as per Lma. 2.3, or Cor. 2.4 for

use in synthesis, respectively, are disallowed. D-Ss without shifts therefore require

to consider ball-shaped regions about the origin, which may be potentially very

conservative.

In contrast, Props. 9.3 in conjunction with Lma. 9.1 separates the real and imagi-

nary parts of eigenvalues associated with interconnection matrices and fully allows

the use of D/G-scalings and D/G∗-scalings—introduced in Cor. 2.2 on p. 54—, re-

spectively. Proposition 9.2 does not introduce such a separation via symmetric and

skew-symmetric parts, but offers a general normalization. The resulting complex

eigenvalues could then be covered by D-scalings shifted along the real axis. It has

to be investigated, whether the introduction of virtual channels or the change in

eigenvalue locations due to any method aligned with Prob. 9.1 introduces further

conservatism than the method proposed by [98], given in Lma. 9.2.

Further advantages and disadvantages with respect to the separate methods will

be considered in the examples.

By application of Lma. 9.1 on the conditions of Thm. 9.2, conditions can be

formulated, whose purpose resides in turning the multiplier condition (9.37) of

Thm. 9.2 on p. 263, formulated on the entirety of the interconnected subsystems,

into a smaller one by restricting the multiplier M̃f,i = M̃0,i, ∀f ∈ {1, 2, . . . ,g}, i. e.,

rendering it the same for all of the different subsystems.

The following theorem formalizes this fact.

Theorem 9.3 (Efficient Analysis of Het. Grps. of LPV Systems [55])

The system T as defined in (8.5) is asymptotically stable over δ and for all admissible

interaction topologies L (t) ∈ FLLL ⊆ FLLL ,R, L K(t) ∈ FK
LLL
⊆ FK

LLL ,R normalized according

to a solution to Prob. 9.1, s. t. L̃ (t) ∈ F
L̃̃L̃L ,N, L̃ K(t) ∈ FK

L̃̃L̃L ,N
, with L2 gain on the

channel w→ z bounded from above by

γ 6
g

max
f=1

(γf), γf > 0, f = 1, . . . ,g

if there exist Mf,X ∈ Snf,x , Mf,p ∈ Snf,z+nf,w , Mf,∆ ∈ Snf,p+nf,q

and M̃0,i = M̃f,i ∈ S
nf,d̃+nf,ṽ , structured as in Thm. 9.2, that satisfy for all f = 1, . . . ,g,

Conds. (9.36) and (9.38), as well as

[
•
•

]⊤
M̃0,i




I

I

λ̃I

λ̃KI


≻ 0, ∀

(
λ̃, λ̃K

)
∈ λ̃λλ× λ̃λλK, (9.44)

Proof: Follows immediately from Lma. 9.1.

Similarly, the application of Lma. 9.2 on the conditions of Thm. 9.2 leads to

conditions reduced in complexity based on the singular values associated with

the interconnection matrix. In this case, no normalization is required.
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Theorem 9.4 (SVD-Based Analysis of Het. Grps. of LPV Systems)

The system T as defined in (8.5) is asymptotically stable over δ and for all admissible

interaction topologies L (t) ∈ FLLL ⊆ FLLL ,R, L K(t) ∈ FK
LLL
⊆ FK

LLL ,R with L2 gain on the

channel w→ z bounded from above by

γ 6
g

max
f=1

(γf), γf > 0, f = 1, . . . ,g

if there exist Mf,X ∈ Snf,x , Mf,p ∈ Snf,z+nf,w , Mf,∆ ∈ Snf,p+nf,q structured as in Thm. 9.2

and M̃0,i = M̃f,i ∈ S
nf,d̃+nf,ṽ structured as

M̃0,i=




R0,i R120,i 0 0

R12
⊤

0,i R20,i 0 0

0 0 Q0,i Q120,i
0 0 Q12

⊤

0,i Q20,i




,

that satisfy for all f = 1, . . . ,g, Conds. (9.36) and (9.38), where Vℓ = Ih and Wℓ = Ih, as

well as

[
•
•

]⊤
M̃0,i




I

I

σI

σKI


≻ 0, ∀

(
σ,σK

)
∈ σσσ×σσσK, (9.45)

Proof: Follows immediately from Lma. 9.2.

9.2.3 Interconnected Controller Synthesis

Pursuing the transition from analysis to conditions for the synthesis of intercon-

nected LPV controllers is straightforward: Starting with the conditions of Thm. 9.3,

a dualization and subsequent elimination of the controller via Lmas. A.7 and A.8 on

p. 321, respectively, yields matrix inequalities that are essentially of the form shown

in Thm. 2.17 on p. 66. These conditions are the standard PiDLF/FBSP-based LFT-

LPV controller synthesis conditions [124, 125], which offer a novel gain-scheduling

perspective on the synthesis of interconnected LPV controllers. For completeness,

the resulting synthesis conditions are presented in the following.

Theorem 9.5 (Interconnected Controller Existence Conditions)

There exists a distributed controller K that renders the closed-loop system T as defined

in (8.5) asymptotically stable over δ and for all admissible interaction topologies L (t) ∈
FLLL ⊆ FLLL ,R normalized according to a solution to Prob. 9.1, s. t. L̃ (t) ∈ F

L̃̃L̃L ,N, with L2
gain on the channel w→ z bounded from above by

γ 6
g

max
f=1

(γf), γf > 0, f = 1, . . . ,g
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if there exist the primal multipliers Mf,X ∈ Snf,x , Mf,p ∈ Snf,z+nf,w , Mf,∆ ∈ Snf,p+nf,q

and M̃f,i ∈ S
nf,d̃+nf,ṽ , as well as the dual multipliers Nf,X ∈ Snf,x , Nf,p ∈ Snf,z+nf,w ,

Nf,∆ ∈ Snf,p+nf,q and Ñf,i ∈ S
nf,d̃+nf,ṽ , with

Mf,p =

[
1
γf
I 0

0 −γfI

]
, Nf,p =

[
γfI 0

0 − 1
γf
I

]
,

that satisfy for all f = 1, . . . ,g,

N⊤M




•
•
•
•




⊤


Mf,X

Mf,∆

M̃f,i

Mf,p







Af Bf,∆ B̃f,i Bf,p

I 0 0 0

Cf,∆ Df,∆∆ D̃f,∆i Df,∆p

0 I 0 0

C̃f,i D̃f,i∆ D̃f,ii D̃f,ip

0 0 I 0

Cf,p Df,p∆ D̃f,pi Df,pp

0 0 0 I




NM≺ 0,

N⊤N




•
•
•
•




⊤


Nf,X
Nf,∆

Ñf,i
Nf,p







I 0 0 0

−A⊤f −C⊤f,∆ −C̃⊤f,i −C⊤f,p
0 I 0 0

−B⊤f,∆ −D⊤f,∆∆ −D̃⊤f,i∆ −D⊤f,p∆
0 0 I 0

−B̃⊤f,i −D̃⊤f,∆i −D̃⊤f,ii −D̃⊤f,pi

0 0 0 I

−B⊤f,p −D⊤f,∆p −D̃⊤f,ip −D⊤f,pp




NN≺ 0,

[
•
•

]⊤
M̃i

[
I

L̃

]
≻ 0,

[
•
•

]⊤
Ñi

[
−L̃ ⊤

I

]
≻ 0, ∀L̃ ∈ L̃̃L̃L , (9.46)

[
•
•

]⊤
Mf,∆

[
I

∆k

]
≻ 0,

[
•
•

]⊤
Nf,∆

[
−∆⊤k
I

]
≺ 0, ∀δk ∈ δf, (9.47)

M̃i =

g∑

f=1

(12×2 ⊗ Ef) ⊛ M̃f,i, Ñi =

g∑

f=1

(12×2 ⊗ Ef) ⊛ Ñf,i,

where

M̃f,i=

[
M11
f,i M12

f,i

M12⊤

f,i M22
f,i

]
, Ñf,i=

[
N11f,i N12f,i
N12

⊤

f,i N22f,i

]
,
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and further

NM = ker(
[
Cf,y Df,y∆ D̃f,yi Df,yp

]
),

NN = ker(
[
B⊤f,u D

⊤
f,∆u D̃

⊤
f,iu D

⊤
f,pu

]
).

Proof: The proof follows from application of the Parameter Elimination

Lemma A.8 on p. 321 on the conditions of Thm. 9.2 and its dual [125].

Conditions 9.46 can be reduced in size by application of either Lma. 9.1 or

Lma. 9.2 at the cost of coupling the matrix inequalities by the same multiplier

associated with the interconnection. Alternatively, two-stage multiplier approaches

can be applied for explicitly modeled time-varying interconnection matrices [38]. In

the following, only the result following the from diagonalization of a normalized

interconnection according to Lma. 9.1 is presented.

Theorem 9.6 (Efficient Intercon. Controller Existence Conds.)

There exists a distributed controller K that renders the closed-loop system T as defined

in (8.5) asymptotically stable over δ and for all admissible interaction topologies L (t) ∈
FLLL ⊆ FLLL ,R normalized according to a solution to Prob. 9.1, s. t. L̃ (t) ∈ F

L̃̃L̃L ,N, with L2
gain on the channel w→ z bounded from above by

γ 6
g

max
f=1

(γf), γf > 0, f = 1, . . . ,g

if there exist the primal multipliers Mf,X ∈ Snf,x , Mf,p ∈ Snf,z+nf,w , Mf,∆ ∈ Snf,p+nf,q

and M̃0,i = M̃f,i ∈ S
nf,d̃+nf,ṽ , as well as the dual multipliers Nf,X ∈ Snf,x ,

Nf,p ∈ Snf,z+nf,w , Nf,∆ ∈ Snf,p+nf,q and Ñ0,i = Ñf,i ∈ S
nf,d̃+nf,ṽ , structured as in

Thm. 9.5, that satisfy for all f = 1, . . . ,g, all the Conds.of Thm. 9.5, except for Cond. (9.46)

exchanged by

[
•
•

]⊤
M̃0,i

[
I

λI

]
≻ 0,

[
•
•

]⊤
Ñ0,i

[
−λ∗I

I

]
≻ 0, ∀λ ∈ λ, (9.48)

Proof: Follows immediately from Lma. 9.1.

9.2.3.1 A Convex Solution to Special Structured Controller Synthesis Problems

In comparison to the standard PiDLF/FBSP-based LFT-LPV controller synthesis

conditions, a subtle technical difference appears in the way, the controller needs to

be constructed. To begin with, the use of multiplier constraints like, for instance,

D/G-Ss, is prescribed that allow the controller to receive a copy of the plant’s

parameter block—and hence inherit the interconnection topology—according to

Lma. 2.6 on p. 70. A symmetrization or normalization along the lines of Props. 9.1
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9.3 or 9.2, however, alters the parameter block that is copied to the virtual sym-

metrized or normalized one. In order to be able to revert the symmetrization or nor-

malization for the controller, structural constraints on the controller’s state space

matrices need to be imposed, which take the form of a repeated sparsity structure

in the controller matrices. Such structural constraints would normally render the

problem non-convex. However, Cor. 9.1 on p. 262 already provides the solution. The

insight that the existence of a controller of this particular structure is guaranteed

is based on Lma. A.9 in the appendix on p. 322. It turns out that the null spa-

ces used for eliminating the controller variables in Thm. 9.5 indeed take the form

shown in Lma. A.9. By Cor. A.2 (appendix, p. 322), the conditions of Cor. 9.1 with a

modified multiplier associated with the interconnection emerge and the controller

parameters can be obtained by convex optimization.

9.2.3.2 Alternative Controller Constructions — Shaping the Topology

As noted earlier, it is from Lma. A.9 and Cor. A.2 that the technical assumption

WLVL = I arises. If this assumption and consequently the approach to revert the

symmetrization or normalization w. r. t. the controller’s interconnection topology is

dispensed with, the interconnection topology to be implemented with the distrib-

uted control scheme can be shaped by the control designer. For instance, assume

that a normalization according to Prop. 9.2 has been constructed. Then a controller

can be synthesized that inherits the interconnection matrix

ℓK(t)
△
= ℓ̃(t) =

[
ℓ(t) −ℓ⊤(t)
ℓ⊤(t) ℓ(t)

]
.

As long as a symmetrized or normalized topology is constructed from operators

that carry interpretable meaning, such as ℓ(t) or ℓ⊤(t), the actual real-time distrib-

uted controller implementation is tractable. For this purpose, the controller param-

eters are derived for the augmented channel widths, i. e., in this case twice the

interconnection channel size. From

ℓK(t) =

[
ℓ(t) −ℓ⊤(t)
ℓ⊤(t) ℓ(t)

]
=

[
I 0 0 −I

0 I I 0

]



ℓ(t)

ℓ(t)

ℓ⊤(t)
ℓ⊤(t)







I 0

0 I

I 0

0 I


 ,

it is obvious that the distributed controller implements an undirected interconnec-

tion topology even for possibly directed topologies in the interconnected plant rep-

resentation.

9.2.4 Discussion

In essence, the above results offer a convex solution to the synthesis of distributed

LPV controllers for heterogeneous LPV subsystems interconnected through arbi-

trary topologies. The essential tools stem from a shift in perspective that allow the
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exploitation of well-known LFT-LPV gain-scheduling controller synthesis methods.

The output-feedback case is discussed, but, e. g., [98] shows that state-feedback

synthesis is easily possible, as well. In fact, while in [98] output-feedback synthesis

is still handled iteratively, but with small-in-size representations of the intercon-

nection, in [80] output-feedback synthesis is performed by convex optimization,

but with large-scale interconnected system representations. Therefore, the present

work can be regarded as a combination of the advantages of both works.

In the next chapter, the benefits of the novel alternatives to handle arbitrary and

time-varying interconnections will be assessed in application examples.







10
A P P L I C AT I O N E X A M P L E S

≪We are all dependent on one another,

every soul of us on earth.≫

George Bernhard Shaw

A
fter establishing the theory for the efficient synthesis of distributed con-

trollers, the following chapter presents application examples for the synthe-

sis of distributed controllers via the methods developed in this thesis:

(i) The distributed control of a heterogeneous marginally stable LTI system

(Sect. 10.1),

(ii) The leader-follower formation control and reference tracking problem using

nonlinear quadrotor helicopter models, (Sect. 10.2).

The first example illustrates the applicability of the methods for unstable systems

as well as showing the relatively little conservatism that may be introduced through

a distributed control scheme as compared to a centralized one. Furthermore, it is

shown that the novel methods can be less conservative than existing ones available

for LTI systems. The second example highlights new capabilities: Formation control

of nonlinear LPV models are considered using directed and switching topologies

in a scalable framework is synthesized using convex optimization.

Preliminary results of this chapter have been previously published in [45, 61].
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10.1 A Distributed Heterogeneous Marginally Stable System

A
n academic example is borrowed from [98].1 In the following, the setup of the

numerical example is detailed in Sect. 10.1.1 and achievable performances in

distributed control is analyzed in Sect. 10.1.2.

10.1.1 Setup of the Numerical Example

The original example is posed in a discrete-time state space representation and

can be found in the appendix in Sect. C.1. For the purpose of alignment with

the continuous-time presentation of the results of this thesis, the example has

been converted by a bilinear transformation—known as the Tustin approximation—

assuming a sampling time of 0.1 s. The resulting distributed LTI system is com-

posed from two groups of systems—a system containing an integrator and a system

in the form of an undamped oscillator.

The subsystems have the form

Pk :









ẋk

dk
zk
yk


=




Af Bf,i Bf,p Bf,u

Cf,i Df,ii Df,ip Df,iu

Cf,p Df,pi Df,pp Df,pu

Cf,y Df,yi Df,yp 0







xk

vk
wk
uk


 , (10.1)

where xk∈R2, dk∈R3, vk∈R3, zk∈R3, wk∈R5, yk∈R4, uk∈R2. The respective

matrices are

A1 =

[
0 0

10.26 −0.51

]
, A2 =

[
0 9.27

−9.27 0

]
,

B1,i =

[
0 0 10

10.26 0 −5.17

]
, B2,i =

[
−4.64 0 9.27

9.27 0 4.64

]
,

B1,p =

[
10 0 0 0 0

−5.17 0 0 0 0

]
, B2,p =

[
9.27 0 0 0 0

4.63 0 0 0 0

]
,

B1,u =

[
10 0

−5.17 0

]
, B2,u =

[
9 0

4.64 0

]
,

and for f = 1, 2,

Cf,i =



1 0

0 1

0 0


 , Cf,p =



0 1

0 0

0 0


 , Cf,y =




1 0

0 1

0 0

0 0


 ,

Df,ii = O3, Df,ip = O3×5, Df,iu = O3×2,

1 The explicit set of system matrices is not provided in [98], but it has been kindly provided in its
entirety by Paolo Massioni upon request.
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Df,pi = O3×3, Df,pp = O3×5, Df,pu =



0 0

1 0

0 1


 ,

Df,yi =




0 0 0

0 0 0

1 0 0

0 1 0


 , Df,yp = 0.1




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


 ,

Df,yu = O4×2.

Note that due to the conversion to continuous-time, the heterogeneity in the sys-

tem matrices over the original discrete-time versions presented in the appendix in

Sect. C.1 increases.

Each group is assumed to consist of hf agents, s. t. h = h1 + h2 and H =

{1, 2, . . . ,h}, G = {G1, G2}, with G1 = {1, 2, . . . ,h1} and G2 = {h1 + 1, . . . ,h2}. The

complete interconnected system P is thus composed from block-diagonal matrices

of the form

M =

g∑

f=1

(Ef ⊗ Mf).

In [98], h1 = h2 = 5 is imposed, consequently rendering P a 20th order system with

20 inputs and 40 outputs.

An interconnection matrix derived from scalar-repeated, real-valued, directed

and row-normalized Laplacian matrices is considered, s. t.

L (t)
△
= IN(t) ⊗ I3.

Due to Geršgorin’s circle theorem [43], the spectrum is known a priori to be confined

to the Perron disc given in (7.12) on p. 221 for an arbitary number of subsystems.

10.1.2 Performance Comparison: Distributed Vs. Centralized Control

The following example is based on a preliminary study published in [56]. The

discussion will be extended in various ways:

• Comparison of distributed control performances against achievable perfor-

mance through centralized control,

• Comparison of performances for the methods to normalize arbitrary directed

interaction topologies,

• Comparison with recent results published in [98].
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10.1.2.1 Centralized Reference Controller Design

As a reference, centralized H∞-norm optimal controllers are computed for vary-

ing sizes of the respective groups h1 = card (G1) = h2 = card (G2) ∈ {1, 2, . . . , 10}

and 100 randomly generated interconnection matrices each, in order to serve as

an indication of potential loss in performance versus an increasing number of sub-

systems. The overall system order thus ranges between four and 40. A centralized

control strategy achieves a relatively constant control performance ranging in the

interval [1.0031, 1.0444]. Figure 10.1 depicts the resulting performance indices over

the number of subsystems in each group.

1 2 3 4 5 6 7 8 9 10
1.03

1.035

1.04

1.045

h1 = h2

γ

Figure 10.1: Centralized control performance index in terms of the achieved closed-loop

H∞-norm.

10.1.2.2 Normalization

In the following, the distributed formation control system’s performance will be

evaluated under the different cases that

(i) Normalization, as per Prop. 9.2,

(ii) Normalization, as per Prop. 9.3,

(iii) Direct SVD-based diagonalization as per Lma. 9.2 [98]

is used. Normalization, as per Prop. 9.2 is performed by defining

ℓ(t)
△
= IN(t) =

[
Ih 0

] [
IN(t) −IN(t)

⊤

IN(t)
⊤ IN(t)

][
Ih
0

]
.

Normalization, as per Prop. 9.3 is performed by defining

ℓ(t)
△
= IN(t) =

[
1
2Ih

1
2Ih

] [
IN(t)+IN(t)

⊤ 0

0 IN(t)−IN(t)
⊤

][
Ih
Ih

]
.
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Tab. 10.1 lists the ranges of eigenvalues and singular values of the interconnec-

tion matrices versus normalization and SVD-based diagonalization obtained from

10, 000 randomly generated interconnection matrices for the cases of h1 = h2 ∈
[2, . . . , 30].

Table 10.1: Ranges of eigenvalues and singular values of the interconnection matrices and

versus normalization and SVD-based diagonalization in the numerical example

borrowed from [98].

Eigenvalues Sing. values

Re
(
•
)

Im
(
•
)

Row-normalized Laplacian IN(t) [0.000, 2.000] [−1.000, 1.000] [0.000, 2.750]

Method

(ii) Normalization, Prop. 9.2 [−1.100, 2.650] [−2.650, 2.650] [0.000, 3.750]

(iii) Normalization, Prop. 9.3 [−1.200, 5.000] [−2.250, 2.250] [0.000, 4.550]

(iv) SVD-based, Lma. 9.2 [0.000, 2.750]

-1

3

-3

3-1-1

Re
(
λ
)

Im
(
λ
)

(a) (i) Normalization,
Prop. 9.2.

-1

3

-3

3

Re
(
λ
)

Im
(
λ
)

(b) (ii) Normalization,
Prop. 9.3.

Figure 10.2: Ranges of eigenvalues and singular values in the complex plane for the origi-

nal and the respective normalizedinterconnection matrices.

( ) Black lines indicate the original range of singular values.

( ) Dashed black lines indicates the Perron disc..

( ) Fat grey lines indicate the range of eigenvalues of the normalizedinter-

connection matrices.

10.1.2.3 Distributed Controller Synthesis Results

Tab. 10.2 lists the achieved performance indices for the respectively groups versus

the methods applied to render the distributed controller synthesis problem effi-
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ciently solvable according to the results presented in Chap. 9. The employed con-

troller synthesis machinery essentially relies on the analysis results of Thm. 9.3 for

the cases (i)–(iii) and Thm. 9.4 for case (iv) and the respective extension to synthesis

made explicit in Thm. 9.6 for the cases (i)–(iii).

Table 10.2: Achieved performance indices in the numerical example versus normalization

and SVD-based diagonalization.

Method Performance γf Rel. Perf. Loss γ1
γc

f = 1 f = 2

Centralized controller γc = 1.0444

(i) Normalization, Prop. 9.2 1.0562 1.0346 1.1%

(ii) Normalization, Prop. 9.3 1.0675 1.0467 2.2%

(iii) SVD-based, Lma. 9.2 1.0928 1.0766 4.6%

For reference, Tab. 10.2 states the worst case performance achieved by a central-

ized controller and the respectively relative loss in performance due to the dis-

tributed control approach. The relative loss is considered w. r. t. the performance

indices of the first subsystem type, γ1, since it is consistently larger than γ2 in all

methods (i)–(iii). Note that in contrast to the distributed controllers, the centralized

controller does not provide guarantees for time-varying interconnection topologies.

As evident from Tab. 10.7, the best performance is achieved by normalization

method (i) (Prop. 9.2), where the virtual interconnection channel is set to zero.

No difference is observed, if the virtual channel is constructed via the choice

Wℓ =
1
2

[
Ih, Ih

]⊤
and Vℓ =

[
Ih, Ih

]
. Normalization method (ii) (Prop. 9.3), which

separates real and imaginary eigenvalues by splitting the interconnection matrix

into two virtual interconnection matrices—one symmetric, one skew-symmetric—,

results in a drop in performance by a factor of 2, while with the SVD-based method

(iii) (Lma. 9.2) [98] the performance drops by a factor of 4.2. Overall, the considered

methods appear to involve only mild conservatism w. r. t. the present problem.

10.1.2.4 Comparison of Achieved Performance for Specific Topologies

In the present example, relatively little conservatism is introduced by using a dis-

tributed control approach with synthesis complexity on a subsystem level, which

allows for time-varying interconnection matrices. In the following, it will be investi-

gated how the achieved performance of the respective approaches (i)-(iii) correlates

to the data for specific interconnection matrices.

A configuration with h1 = h2 = 5 is considered with 55 randomly generated, di-

rected, row-normalized Laplacian matrices representing the interconnection topolo-

gies. The results are depicted in Figs. 10.3
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Figure 10.3: Performance indices γ1 and γ2, max/min real and imaginary parts of the

normalized interconnection matrices vs. the index of the randomly generated

Laplacians ordered by performance achieved by method (i), Prop. 9.2.

( ) Black solid lines: Method (i), Prop. 9.2.

( ) Grey solid lines: Method (ii), Prop. 9.3.

( ) Black dashed lines: Method (iii), Lma. 9.2. Instead of the real part, the

maximum singular value is indicated.

For each of the interconnection matrices ℓ̃ normalized by methods (i) or (ii), i. e.,

according to Props. 9.2 or 9.3, respectively, both the maximum and minimum real

and imaginary parts of the eigenvalues are presented. With respect to method (iii),

only the maximum singular value is provided. The performance index achieved

for subsystem type 1 is consistently larger than the one for type 2, i. e., γ1 > γ2. In

addition Fig. 10.3 shows the degree of asymmetry as defined in Def. 9.1 on p. 259.

10.1.3 Discussion

The numerical example indicates that the method of normalization has the potential

of introducing less conservatism than the SVD-based method proposed in [98].

The latter is employed in this thesis in the framework of a convex optimization

problem for the synthesis of distributed output-feedback controllers by the use of D-
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scalings. In [98], at the time of publication, the author admits to not have knowledge

about a convex solution to the distributed output-feedback problem and an iterative

approach for the solution of bilinear matrix inequalities (BMIs) is followed. The

published results state an increase by 6% in terms of the performance index of

a distributed output-feedback controller w. r. t. the performance achieved by the

centralized controller, which is roughly in accordance with the figure of 4.6% stated

in this thesis. Presumably, the difference can be attributed to the iterative approach,

the discrete-to-continuous-time conversion and LMI solver settings, resulting in

slight numerical inconsistencies.

For the normalization method (i) (Prop. 9.3) D-scalings are required due to the

complex eigenvalues of the virtual interconnection matrix resulting from normal-

ization. The ball in which the eigenvalues may reside can be shifted about the

real axis. The fact that the normalization allows the diagonalization according

to Lma. 9.1, which relies on a unitary transformation, explicitly allows for non-

zero off-diagonal blocks in the multiplier resulting from such a shift. In contrast,

Lma. 9.2 relies on the SVD and therefore prescribes zero off-diagonal blocks under

all circumstances. Consequently, the multiplier conditions are posed in such a way

that not only the range from zero to the maximum singular value, but also the

reflection to the negative real axis is considered [98]. Presumably, this is the rea-

son for the stronger decrease in distributed control performance of the SVD-based

method (iii) (Lma. 9.2).

The comparison of the respectively methods for specific interconnection matri-

ces documented in Fig. 10.3 reveals that method (i) is consistently providing lower

performance indices that methods (ii) and (iii). Figure 10.3 depicts almost constant

performance indices γ1 ≈ γ2 in the case of method (i). While method (iii) also pro-

vides almost equal performance for both subsystem types, the performance indices

vary much stronger with method (ii). The index γ1 achieved by method (ii) is in

some cases larger and in some cases smaller than the one achieved by method (iii).

All methods, however, show a relatively consistent decrease in performance with

decreasing real and imaginary eigenvalue ranges. Furthermore, there appears to

be a reciprocal correlation between the achieved performance indices and the de-

gree of asymmetry, which is in accordance with [127]. In this work, performance

improvements via asymmetric weights on interconnections are discussed. The data

presented here suggests that method (i) is more resilient to drops in performance

that are due to symmetric interconnections. Method (ii) on the other hand involves

a part of the virtual interconnection that is always symmetric, which may account

for the stronger deterioration in performance.
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10.2 A Leader-Follower Formation of Quadrocopters

A
s an example that draws from MASs—an important subclass of interconnected

systems control that can be handled with the proposed framework and tools—

the leader-follower formation control and reference tracking control problem is in-

vestigated for a fleet of nonlinear quadrotor helicopter models and a virtual leader

agent. The problem is thus posed as the synthesis of an interconnected control

scheme considering heterogeneous LPV subsystem dynamics.

The nonlinear LPV model is first derived in Sect. 10.2.1, after which achievable

performances in distributed formation control is analyzed in Sect. 10.2.2.

10.2.1 LPV Modeling of a Quadrotor Helicopter

Quadrotor helicopters are frequently employed in MASs-based research as they

provide a platform for testing cooperative control schemes that is often associated

with a multitude of real world applications. The quadrocopters’ dynamics are not

subject to non-holonomic constraints—a research field that is interesting in its own

right. In fact, some of the methods proposed in this thesis, including symmetriza-

tion as per Prop. 9.1, have already been successfully applied in [107] to cooperative

ground vehicle control, in which a rolling disc acts as a simple agent model with

non-holonomic constraints.

Linearized quadrocopter models are often used in publications associated with

MASs, as smooth and steady formation flight does often not involve aggressive

maneuvers. In [0, 46], however, the potential of gain-scheduled LPV control for

quadrocopters has been demonstrated. In this section, an LFT-LPV model of a

quadrocopter is developed for use in conjunction with the methods presented in

Chap. 9 in a cooperative control setting. Despite the fact that the afore-mentioned

methods can easily handle physical couplings, the focus on the subsequent simula-

tion examples will be on the demonstration of including LPV subsystem dynamics

into the distributed synthesis problem, as well as offering a ≪gain-scheduling per-

spective≫ on the synthesis of formation control schemes.

10.2.1.1 Nonlinear LPV Model

Consider the quadrocopter model illustrated in Fig. 10.4. In this thesis, the angular

limits shown in Tab. 10.3 will be considered. In [0, 46], it was shown that enlarging

the angular limits up to 60° strongly benefits from PDLFs and improved agility via

high-performance LPV controllers can be achieved. As the methods presented in

this thesis are currently limited to PiDLFs, or static multipliers, respectively, smaller

angular limits are considered.

A set of nonlinear differential equations is taken from [16], where the generalized

coordinates are identified as the position (x,y, z) and the orientation (q1, q2, q3)

in standard yaw-pitch-roll convention. The inertial coordinate system is denoted
(x1, x2, x3), whereas the body coordinate system is denoted (X1,X2,X3). The direc-
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Table 10.3: Angular limits of the Quadrocopter.

Angle Range [°]

q1 [−40, . . . , 40]

q2 [−40, . . . , 40]

q3 [−180, . . . , 180]

q1

q2

q3

ũ1

ũ2ũ3

ũ4

X1

X2

X3

x1

x2

x3

U

Figure 10.4: Isometric view of a quadrocopter.

tions of both of the angles q2 and q3 do not correspond to the axis directions—a

convention which has been adopted from the definitions of the commercial quadro-

copter Hummingbird designed by Astec. As mentioned in [0, 46], the hub forces

and moments defined in [16] are omitted due to their small magnitude and the

difficulty involved in their experimental identification.

The force in the inertial frame can be calculated as

u = RX1
(q1)RX2

(q2)RX3
(q3)U, U =

4∑

i=1

ui,

with

RX1
(q1)=



1 0 0

0 cos(q1) − sin(q1)

0 sin(q1) cos(q1)


, RX2

(q2)=




cos(q2) 0 sin(q2)

0 1 0

− sin(q2) 0 cos(q2)


,

RX3
(q3)=




cos(q3) − sin(q3) 0

sin(q3) cos(q3) 0

0 0 1


.
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The resulting nonlinear differential equations of the dynamic model of 12th-order

with four inputs is given in (10.2) below.

Abbreviations:

si
△
= sin(qi)

ci
△
= cos(qi)




m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 J11 0 0

0 0 0 0 J22 0

0 0 0 0 0 J33







ẍ1

ẍ2

ẍ3

q̈1

q̈2

q̈3




(10.2)

+




0

0

0

(J22 − J33)q̇2q̇3

(J33 − J11)q̇1q̇3

(J11 − J22)q̇2q̇2 −mg



=




−(c1s2c3 + s1s3) 0 0 0

(c1s2s3 − s1c3) 0 0 0

(c1c2) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







ũ1

ũ2

ũ3

ũ4


 ,

The moments of inertia I•• and mass m are taken from [122] to reflect realis-

tic values for the Hummingbird quadrocopter model. Tab. 10.4 lists the identified

values.

Table 10.4: Physical and grouped parameters of the quadrocopter [122].

Parameter Value Parameter Value

m 0.640 00 kg b1 = m 0.64000

J11 0.004 20 kgm2 b2 = J11 = J22 0.00420

J22 0.004 20 kgm2 b3 = mg 6.27840

J33 0.008 15 kgm2 b4 not used

g 9.810 00 kgm/s2

l 0.280 00m

10.2.1.2 Input Transformation and LPV Model Representation

Define the input vector as

u
△
=
[
u1 u2 u3 u4

]

=
[
U+mg, l(ũ1 − ũ3), l(ũ2 − ũ4), b4(−ũ1 + ũ2 − ũ3 + ũ4)

]
,

where u2, u3, u4 represent torques about the axis q1, q2 and q3, respectively, and l is

the distance from the quadrocopter’s center of gravity to a rotor. A shift in the first

input direction about the gravitational force is suggested in [82] to make u1 = 0

the input associated with steady hovering. In the LFT-LPV model derived in the

following, it also makes couplings between states explicit [0, 46].

By making the assumption that the inertial coordinate system rotates on the x3
axis along with the quadrocopter, one can set q3 = 0. The rotation around the
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x3,k axis is further assumed to be controlled by some other control loop, which

eventually reduces the quadrocopter model to 10 states and 3 inputs. Consequently,

the nonlinear differential equations simplify to (10.3) below.



m 0 0 0 0

0 m 0 0 0

0 0 m 0 0

0 0 0 J11 0

0 0 0 0 J22







ẍ1

ẍ2

ẍ3

q̈1

q̈2


 =




−c1s2 0 0

−s1 0 0

c1c2 0 0

0 1 0

0 0 1




[
u1 +mg

u2

u3

]
−

[
mg

0

0

]
, (10.3)

An LFT-LPV model is obtained by employing the Taylor approximations

sin(q) ≈ q−
1

6
q3, cos(q) ≈ 1− 1

2
q2.

In [0, 46], relative modeling errors of the magnitude of the differential equations

in ẍ1, ẍ2 and ẍ3 w. r. t. the magnitude of u1 of about 5% at the angular limits are

reported.

As it turns out, control performance for a single quadrocopter increases by choos-

ing a factorization approach that penalizes sparsity, according to Sect. 4.3.2 [0, 46].

The model is simple enough to perform a manual factorization, instead of solving

the problem given in (4.17) on p. 112. Since a maximum of two states are multiplied

with each other, weights of 1
2 are chosen to introduce as many coupling terms as

possible.

The resulting rational model can be represented in general LPV form as given

in (10.4) below. For simplicity, a motor model is not included.



b1 0 0 0 0

0 b1 0 0 0

0 0 b1 0 0

0 0 0 b2 0

0 0 0 0 b2







ẍ1

ẍ2

ẍ3

q̈1

q̈2


+ b3




0 0 0 1
4q1q2

(
1
4q

2
1 − 1

)

0 0 0 −1 0

0 0 0
(
1
8q

2
2 − 1

2

)
q1

(
1
8q

2
1 − 1

2

)
q2

0 0 0 0 0

0 0 0 0 0







x1

x2

x3

q1

q2




=




(
1
2q

2
1 − 1

)
q2 0 0

−q1 0 0

1− 1
2q

2
1 − 1

2q
2
2 + 1

4q
2
1q

2
2 0 0

0 1 0

0 0 1




[
u1

u2

u3

]
, (10.4)

10.2.1.3 Parameterization

With the parameters δ from Tab. 10.6a and the polynomial expansion of the trigono-

metric terms, the matrices are naturally rendered polynomial in δ. Even though a

full-block LFT-LPV parameterization detailed in Sect. 4.4 would result in a parame-

ter block of size 3× 3 and hence would reduce the computational burden online, a

standard parameterization with a diagonal parameter block is used. The diagonal

parameter block turns out to be of size 8× 8 with repetitions listed in Tab. 10.6b.

Note that the commonly available tools for the exact reduction of LFRs of Matlab

[149] as well as the n-D (Kalman like) decomposition or the generalized Gramian

approach [13, 14, 25, 93] available through the ONERA LFR Toolbox do not yield

any further reduction in repetitions than the ones reported in Tab. 10.6a.
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Table 10.5: Measurable signals and LPV parameter block information for the quadrocopter.

δ1
△
= q1

δ2
△
= q2

(a) Measurable signals.

Block Size Par. No. Repetitions ri

∆(δ) 8× 8 nδ = 2 rδ = [3, 5]

(b) Parameter block information for the quadro-
copter model.
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10.2.2 A Leader-Follower Formation Control and Reference Tracking Problem

The following example is based on a preliminary study published in [56]. The

discussion will be extended in various ways:

• Consideration of a high-fidelity LPV agent model,

• Comparison of performances for the methods to normalize arbitrary directed

interaction topologies,

• Comparison with recent results published in [98].

10.2.2.1 Problem Setup

Consider a leader-follower setup with a single leader and five followers. Agent 1

assumes the role of the virtual leader with an integrator model H1(s) =
1/sI3 in each

of the three degrees of freedom with state space model detailed in (10.5). However,

to simplify, the reference for the altitude, i. e., the x3,k direction will be held constant

at 0.

H1 :

{[
ẏ1

y1

]
=

[
03×3 I3×3
I3×3 03×3

][
y1

u1

]
. (10.5)

The agents’ model Hk, k = 2, 3, . . . , 6 is taken as the LFT-LPV quadrocopter

model from the previous Sect. 10.2.1. The positions are to be controlled in a dis-

tributed fashion and the individual agents’ coordinates are denoted

yk =
[
x1,k, x2,k, x3,k

]⊤
, qk =

[
q1,k, q2,k

]⊤

for the position and orientation, respectively. Figure 10.5 shows the generalized

plants used for synthesis. Shaping filters

WS =
5

s+ 0.05
I3, and WKS,k =

s+ 0.1

s+ 10000
I3

are used to consider tracking and to penalized the control input.

The interconnection matrix is chosen as

ℓ(t) =

[
0 0

ℓG2G1
(t) ℓG2G2

(t)

]
.

In the following, the distributed formation control system’s performance will be

evaluated under the different cases that

(i) Normalization, as per Prop. 9.2,

(ii) Normalization, as per Prop. 9.3,
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P1

K1

v1

vK1

d1

dK1

w1

zS,1

zKS,1
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−
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(a) Leader, k = 1.

Hk

Pk

Kk

vk

vKk

dk

dKk

wk

zS,k

zKS,k

uk

yk

ek

WS,k

WKS,k

−
−

(b) Followers, k ∈ {2, . . . , 6}.

Figure 10.5: Generalized plant configuration for the leader-follower distributed control con-

figuration of a group of quadrocopters with virtual leader.

(iii) Direct SVD-based diagonalization as per Lma. 9.2 [98]

is used.

As a practical consideration, it is assumed that the position information of each

agent is simply broadcasted, which implies that the individual agents have no

knowledge about the number of recipients. In contrast to this, each agent has in-

formation about the number of incoming transmissions to process. In terms of a

graph theoretical interpretation, this means that the interconnection matrix may

be row-normalized, but not column-normalized. In [56], simultaneous row- and

column-normalization is considered to allow the use of symmetrization. However,

in order to maintain scalability this technique is not considered.

Consequently, the interconnection ℓ(t) is constructed as a time-varying row-

normalized adjacency matrix AN(t), where ℓG2G1
(t) is chosen, s. t. the leader is

either sending information to the first two or last three followers and the matrix

ℓG2G2
(t) is time-varying and ensures connectedness between the followers. The in-

terconnection is set to randomly switch every 5 s.

10.2.2.2 Normalization

Tab. 10.6 lists the ranges of eigenvalues and singular values of the interconnec-

tion matrices versus normalization and SVD-based diagonalization obtained from

randomly generated interconnection matrices. As in the previous Sect. 10.1, Nor-

malization, as per Prop. 9.2 is performed by defining

ℓ(t)
△
= AN(t) =

[
Ih 0

] [
AN(t) −AN(t)

⊤

AN(t)
⊤ AN(t)

][
Ih
0

]
.
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Normalization, as per Prop. 9.3 is performed by defining

ℓ(t)
△
= AN(t) =

[
1
2Ih

1
2Ih

] [
AN(t)+AN(t)

⊤ 0

0 AN(t)−AN(t)
⊤

][
Ih
Ih

]
.

Table 10.6: Ranges of eigenvalues and singular values of the interconnection matrices and

versus symmetrization/normalization and SVD-based diagonalization in the

quadrocopter formation control problem.

Eigenvalues Sing. values

Re
(
•
)

Im
(
•
)

ℓ(t) [−1.000, 1.000] [ 0.000, 0.000] [0.000, 1.600]

Method

(i) Normalization, Prop. 9.2 [−1.000, 1.125] [−1.125, 1.125] [0.000, 1.600]

(ii) Normalization, Prop. 9.3 [−2.000, 2.000] [−1.000, 1.000] [0.000, 2.000]

(iii) SVD-based, Lma. 9.2 [0.000, 1.600]

-1

1

1

Re
(
λ
)

Im
(
λ
)

(a) (i) Normalization, Prop. 9.2.

-2

1

2

Re
(
λ
)

Im
(
λ
)

(b) (ii) Normalization, Prop. 9.3.

1

1

Re
(
σ
)

Im
(
σ
)

(c) (iii) SVD-based, Lma. 9.2.

Figure 10.6: Ranges of eigenvalues and singular values in the complex plane for the origi-

nal and the respective normalizedinterconnection matrices.

( ) Black lines indicate the original range of eigenvalues/singular values.

( ) Fat grey lines indicate the range of eigenvalues of the normalized inter-

connection matrices.
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10.2.2.3 Distributed Controller Synthesis

Tab. 10.7 lists the achieved performance indices for the respectively groups ver-

sus the methods applied to render the distributed controller synthesis problem

efficiently solvable according to the results presented in Chap. 9. The employed

controller synthesis machinery essentially relies on the analysis result of Thm. 9.3

for the cases (i) and (ii) and the respective extensions to synthesis made explicit in

Thm. 9.6. Case (iii) relies on Thm. 9.4 and its respective extension to synthesis.

Table 10.7: Achieved performance indices versus symmetrization/normalization and SVD-

based diagonalization in the quadrocopter formation control problem.

Method Performance

f = 1, k = 1 f = 2, k = 2, 3, . . . , 6

(i) Normalization, Prop. 9.2 1.126 3.299

(ii) Normalization, Prop. 9.3 1.791 4.158

(iii) SVD-based, Lma. 9.2 4.824 7.059

As evident from Tab. 10.7, the best performance by the normalization method

(i) (Prop. 9.2), where the virtual interconnection channel is zero. If the virtual

channel is constructed via the choice Wℓ = 1
2

[
Ih, Ih

]⊤
and Vℓ =

[
Ih, Ih

]
, the

performance index drops to 3.0176. Normalization method (ii) (Prop. 9.3), which

separates real and imaginary eigenvalues by splitting the interconnection matrix

into two virtual interconnection matrices—one symmetric, one skew-symmetric—

, already shows a significant deterioration in performance, while the SVD-based

method (iii) (Lma. 9.2) [98] results in an even stronger loss of performance.

10.2.2.4 Simulation Results

A formation reference wk(t) = r(t)rk, for k ∈ {2, . . . , 6} is fed to the followers with

r2 = [1 1 0]⊤, r3 = [−1 − 1 0]⊤, r4 = [−1 1 0]⊤, r5 = [1 − 1 0]⊤, r6 = [0 1 0]⊤. It is de-

activated when the leader is not to be tracked (r(t) = 0), in order to let the follow-

ers perform a rendezvous maneuver. The response of the interconnected system

[x1,k(t) x2,k(t)]
⊤ is shown in Fig. 10.8 for controllers synthesized based on normal-

ization method (i) (Prop. 9.2). It can be observed, that in the interval [35, 45] s, the

followers stop tracking the leader and rendezvous. For comparison the simulation

results for controllers synthesized with the SVD-based method (iii) (Lma. 9.2) are

shown in dotted lines. As apparent from the plot, the tracking accuracy deteriorates

significantly as a result of the higher performance index. Finally, Fig. 10.7 shows

the position of the subsystems in Cartesian coordinates.
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Figure 10.7: Interconnected system response in Cartesian coordinates. Leader-follower con-

figuration of a virtual leader and LPV quadrocopter models. Coordinates

[x1,k(t) x2,k(t)]
⊤.

( ) Virtual leader agent, normalization method (i) (Prop. 9.2).

( ) LPV quadrocopter follower agents, normalization method (i) (Prop. 9.2).
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Figure 10.8: Interconnected system response. Leader-follower configuration of a virtual

leader and LPV quadrocopter models. Coordinates [x1,k(t) x2,k(t)]
⊤.

( ) Virtual leader agent, normalization method (i) (Prop. 9.2).

( ) LPV quadrocopter follower agents, normalization method (i) (Prop. 9.2).

( ) LPV quadrocopter follower agents, SVD-based method (iii) (Lma. 9.2).
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10.2.3 Discussion

10.2.3.1 Decomposition Methods

The normalization method (i) (Prop. 9.2) strongly benefits from the potential to

render the newly introduced virtual interconnection channel completely zero. D-

scalings are required due to the complex eigenvalues of the virtual interconnection

matrix resulting from normalization. The ball in which the eigenvalues may re-

side can be shifted about the real axis. The fact that the normalization allows the

diagonalization according to Lma. 9.1, which relies on a unitary transformation, ex-

plicitly allows for off-diagonal blocks in the multiplier resulting from such a shift.

In contrast, Lma. 9.2 used in method (iii) relies on the SVD and therefore prescribes

zero off-diagonal blocks under all circumstances. Consequently, the multiplier con-

ditions are posed in such a way that not only the range from zero to the maximum

singular value, but also the reflection to the negative real axis is considered [98].

Presumably, this is the reason for the relatively bad performance of the SVD-based

method (iii) (Lma. 9.2).

The separation of real and imaginary eigenvalues in normalization method (ii)

(Prop. 9.3) requires the application of both D/G-Ss and D/G∗-scalings (D/G∗-Ss)

for the symmetric and skew-symmetric virtual interconnection matrix, respectively.

This results in a sparsity structure of the interconnection multiplier that is similar

to the D-Ss required in normalization method (i) without a shift. In method (ii),

however, only the D/G-S can be shifted. The ball, in which the union of the sets of

real and imaginary eigenvalues is inscribed, is therefore a larger one, which may

account for the slight loss in performance. However, it may be possible to achieve

better performance by adjusting the coefficients involved in the normalization.

10.2.3.2 Comparison with Standard Approaches

The example illustrates that a formation control problem with arbitrary, time-

varying topologies and with LPV agents can be efficiently solved as a convex

optimization problem, whereas existing approaches, e. g., [115], essentially con-

sider non-convex robust controller synthesis. It is in light of this that the ≪gain-

scheduling perspective≫ on the synthesis of distributed formation controllers is

stressed.

As depicted in Fig. 10.9c, in the novel formation control configuration, the con-

troller is provided with an additional channel that corresponds to communication

between the subsystem controllers. The generalized plant configuration is posed in

such a way that the formation error ef is not a direct feedback signal received by

the controller. This is in contrast to the configuration shown in Fig. 10.9a, which

corresponds to a robust formation control framework [115].

In the present thesis, controller coefficients synthesized via LMIs determine what

information is exchanged in-between controllers. This configuration is chosen in
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the present example, as can be inferred by inspecting the generalized plant from

Fig. 10.5.

While this makes for a less transparent control scheme, it allows to synthesize

distributed controllers using convex optimization, instead of by, e. g., iterative tech-

niques, such as µ-synthesis [10]. The essential—and frankly, simple—ingredient

consists in the introduction of a dedicated interconnection channel for the con-

troller. One may, however, still provide ef as a direct feedback signal as depicted

in Fig. 10.9b. Such a configuration might aid in improving the performance of the

formation control loop, but results in twice the information to be processed for

interaction.
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(a) Closed-loop configuration for robust interconnected controller synthesis.
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(b) Closed-loop configuration for ≪gain-scheduled≫ interconnected controller
synthesis with direct feedback of the formation error.
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(c) Closed-loop configuration for ≪gain-scheduled≫ interconnected controller
synthesis without direct feedback of the formation error.

Figure 10.9: Closed-loop configurations for cooperative control of MASs.



Part III

S U M M A RY, C O N C L U S I O N S A N D O U T L O O K

The novel methods detailed in Part I and II have been shown to be

effective and lead to more efficient controller designs for complex non-

linear systems. This part summarizes the results, draws conclusions and

presents further possible research opportunities.





11
S U M M A RY A N D C O N C L U S I O N S

I
n this work the analysis and control of systems of high complexity by means of

techniques taken and extended from the field of linear parameter-varying (LPV)

control is examined. In particular, the items considered that induce ≪complex-

ity≫ into a system are twofold:

• A lumped system is complex in the sense that a number of nonlinear effects

leads to an LPV representation with many parameters, rendering standard

synthesis approaches as well as controller implementations costly and/or

time consuming.

• An interconnected system is complex in the sense that it consists of a poten-

tially large number of interconnected subsystems that may be nonlinear and

heterogeneous in their dynamics, rendering centralized control schemes as

well as synthesis conditions that scale with the number of subsystems ineffi-

cient or intractable.

As the items are divided into areas with regard to the modeling of and controller

synthesis for complex lumped and interconnected systems, the results of this thesis

will first be summarized separately in Sect. 11.1. After that, conclusions are drawn

in Sect. 11.2.
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11.1 Summary

T
he following provides a brief overview about the advances and proposed meth-

ods of this thesis.

11.1.1 Part I—LPV Control of Complex Lumped Systems

Figure 1.2 in Sect. 1.2 on p. 4 marked a first attempt at a decision tree guiding con-

trol designers to the successful synthesis of LPV controllers for the cases in which

model and implementation complexity is an issue. This perspective once again il-

lustrates that many of the obstacles still present in LPV theory have their source in

the domain of modeling and realization [E60, 146]. An analysis of the synthesis and

implementation complexity induced by the respective modeling approaches, com-

plemented by an extensive survey on practical applications in Chap. 3, comprises

both quantitative and empirical evidence of the complexity issues in the field of

LPV control. As a result, a set of tools derived from an elaborate enumeration of

quantifiers for implementation and synthesis complexity allows the a priori assess-

ment of the most suitable combination of modeling and synthesis techniques for

a given problem. Such complexity figures are easily derived if all types of model

representations—general, linear fractional transformation (LFT)-based and affine—

are available. This preliminary research culminates in the summaries given in Ta-

bles 3.1 and 3.2 on pp. 83 and 84 as well as Tabs. 3.3 and 3.4 on pp. 89 and 90, for

implementation and synthesis complexities, respectively.

Modeling is often the most time consuming aspect of controller design, This issue

has sparked the development of a semi-automated modeling framework. Motivated

by challenging examples in the form of a three-degree of freedom robotic manip-

ulator and a four-degree of freedom control moment gyroscope, a novel modeling

framework for systems governed by systems of nonlinear, second order ordinary

differential equations (ODEs) is first derived in Chap. 4. This tool heavily draws

from descriptor representation approaches and the possibility to exploit these in

multiplier-based synthesis frameworks using the full-block S-Procedure (FBSP). An

approach for automated factorization into LPV form presented in Sect. 4.3.1 and

Alg. 4.1 on p. 137 that provides semi-automated rational or affine parameteriza-

tions are inspired by previous research and issues that remained unsolved in [E60,

146]. A particular open question has consisted in the necessity for data-free approx-

imation tools, for which a solution is proposed in this thesis in terms of a singular

value decomposition (SVD)-based approximation of the coefficients associated with

a monomial basis of the parameter block of the model. These developments have

essentially been driven by Prop. 4.2 on p. 126.

In light of the possibilities of multiplier-based LPV synthesis tools—especially in

conjunction with the use of full-block multipliers (FBMs)—Chap. 5 introduces tech-

niques that exploit the novel modeling framework, in order to reduce complexity in

synthesis and implementation for both parameter-independent Lyapunov function-
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based output-feedback and parameter-dependent Lyapunov function-based state-

feedback controller synthesis. Two key enablers are responsible for these improve-

ments. Corollary 5.1 on p. 160 is used as a means to convexly evaluate small-in-

size, FBMs-based scaling constraints to keep implementation complexity low in

LFT-LPV output-feedback (OF) controller synthesis. Proposition 5.1 on p. 172 sig-

nificantly reduces multiplier sizes in cases where the generalized inertia matrices

incorporate complex parameter-dependency.

Application examples are thoroughly discussed in Chap. 6 that reveal reduc-

tions in synthesis time of up to 90%, while maintaining full closed-loop stability

and performance guarantees in case of the control moment gyroscope (CMG) due

to proper application of the novel and improved methods. Even without the im-

proved synthesis conditions, the novel modeling framework allows the synthesis

of controllers based on an exact model of the CMG. Such a controller design has

not been reported before. Similar achievements are obtained for the robotic ma-

nipulator in an OF control setting, while for both plants the novel approximation

method results not only in reduced synthesis and implementation complexity, but

also significantly improves the control performance.

11.1.2 Part II—Control of Interconnected LPV Systems

Part II of this thesis first provides an overview about the associated synthesis tech-

niques for interconnected system control in Chap. 7. This part furthermore illus-

trates the results of this work as a synthesis of ideas from multiplier-based distrib-

uted controller design [80] and graph theory [109]. The combination is facilitated

by an embedding into a compact modeling framework in Chap. 8 that encompasses

known subclasses, such as ≪decomposable systems≫ [99].

By rigorously exploiting degrees of freedom in the multiplier-based analysis and

synthesis conditions, Chap. 9 provides efficient synthesis conditions for the design

of distributed control schemes for virtually and/or physically coupled, heteroge-

nenous and nonlinear LPV subsystems interconnected through arbitrary directed

and switching topologies. The tools rely on imposing structural constraints on mul-

tipliers only where necessary, in order to keep the induced conservatism low. At

the heart of these methods are proposed solutions to Prob. 9.1 posed on p. 251. A

particular one is Prop. 9.2 on p. 258, which formulates the method to introduce

virtual interconnection channels in order to arrive at a normal interconnection ma-

trix. Such matrices are unitarily diagonalizable, which allows the application of

congruence transforms directly on the matrix inequalities that constrain the inter-

connection multiplier, see Lma. 9.1 on p. 266. This approach is an alternative to

more restrictive methods proposed in the literature, e. g., [100], and circumvents

issues that require topologies to be constant and undirected as well as subsystems

to be homogeneous. For the novel methods to be effective, full advantage of prelim-

inary research on the choice of scalings and the consequences for the controller’s
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parameter block in an LFT-LPV control setting has to be taken. This background is

provided in-depth in Sects. 2.2.5 and 2.3.5.

Chap. 10 presents simulation examples illustrating that the novel methods intro-

duce less conservatism than the ones proposed in [98]. While the first example con-

sists in a fictitious system of marginally stable plants with interconnections in the

states, the second one is a nonlinear multi-agent system setting purely set up with

only communcation interconnections. In the literature, such problems are seldomly

solved using essentially the same set of methods as distributed control problems,

but are often tackled by dedicated techniques. The implications of this unification

will be discussed in the concluding remarks.
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11.2 Concluding Remarks

T
he proposed methods of this thesis and achievements in the corresponding

examples have various implications for the respective fields. In what follows,

the relevancy and impact of this thesis is discussed.

11.2.1 A Set of Tools for Efficient LPV Synthesis

LPV synthesis techniques have been shown to be of high relevance for control prob-

lems that require a capable framework for performance specifications and rigorous

closed-loop guarantees. Such guarantees only hold in so far as the model can be

deemed to be exact, which in turn often induces high levels of complexity. This

thesis provides elegant methods to directly use such exact models in a streamlined

and coherent modeling and synthesis framework with tractable effort. The scope of

plants for which LPV methods can be applied is therefore significantly broadened,

which opens new control opportunities for researchers from a variety of disciplines,

such as the chemical and process industry.

Furthermore, the degree of automation within the proposed modeling and pa-

rameterization framework is dramatically increased. This lowers the level of ambi-

guity within the LPV paradigm and reduces the amount of manual errors as well as

the involved modeling effort. The underlying mathematical tools are surprisingly

simple, such that further extensions and combinations with optimization criteria

appear feasible and lead to future research directions.

11.2.2 A Novel Decision Tree for LPV Modeling

The initial decision tree depicted in Fig. 1.2, Sect. 1.2 on p. 4 is revised in Fig. 11.1.

As part of the integrated approach of modeling and synthesis—most notably—the

decision tree now includes feedback, or more precisely, the visualization of iterations

in the design phase. Decisions, as required due to the heuristic factorization algo-

rithm, can be revised in cases of excessive model complexity. With the underlying

descriptor structure in mind, parameter dependence is kept polynomial or affine

in the generalized inertia and system matrices. The coherent framework allows ap-

proximations for each type of parameter-dependency, which is an option in the

case of excessive conservatism or implementation complexity.

In conclusion, the synthesis and modeling methods proposed in this thesis have

mostly replaced the traditional LFT-LPV formulations using diagonal parameter

blocks for complex systems by the more compact full parameter block represen-

tations. Retaining models in the latter form until the eventual controller synthesis

has been proven to enhance the number of design options and ≪tuning knobs≫ for

the control designer. Polytopic representations are rendered nonpreferential allto-

gether, while gridding-based synthesis retains justification due to the ability to

consider non-convex parameter regions. However, in the case of many parameters
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to be measured, it is ruled out. LPV controller design is thus rendered both more

straightforward and more flexible at the same time.
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Figure 11.1: An updated decision tree for LPV modeling and controller synthesis for com-

plex LPV systems.

( ) Directly available through the tools of this thesis.

( ) Block may be replaced by its approximate version.
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11.2.3 Convexification of a Robust Control Problem

In Part II of this thesis, distributed controller synthesis is elegantly posed as a

problem solvable via standard LPV techniques. A leader-follower-based formation

control scheme provides further insight into the implications of the generality of

the proposed framework: A change in perspective leads to the conclusion that a

formation control algorithm can be perceived as a ≪scheduled≫ controller instead

of as a robust one. The ≪scheduling≫ in this instance takes the form of the intercon-

nection topology—an entity that does not need to be known explicitly, but happens

to allow controllers equipped with an additional interconnection channel to com-

municate among each other by broadcasting. If proper care is taken in the problem

formulation, i. e., for instance the topology is modeled via a row-normalized ad-

jacency matrix, the distributed formation algorithm is scalable in the sense that

agents might be added at any time.

The implications of this convexification are possibly quite large and the effective-

ness in further distributed control scenarios is currently under investigation.





12
O U T L O O K

T
he results of this thesis lead to a wealth of further research opportunities,

some of which are described below. The items are divided into ideas with

regard to the modeling of and controller synthesis for complex lumped and

interconnected systems.
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12.1 Part I—LPV Control of Complex Lumped Systems

A
part from the natural need for further experimental validation of the tech-

niques proposed in this thesis on additional plants, such as, e. g., a copolymer-

ization reactor [2], the following items appear to be promising directions that may

lead to significant improvements.

Optimization-Based LPV Factorizations

The formalism for characterizing all LPV factorizations via selector coefficients in-

troduced in Sect. 4.3 may be the first step towards optimization-based derivations

of LPV models. For instance, for plants of moderate complexity, yet difficult-to-

factorize nonlinear ODEs, cf. Ex. 4.2 on p. 110, such a set of selector coefficients can

be used as decision variables directly in LPV controller synthesis algorithms—an

idea loosely based on [19, H25]. Such synthesis conditions turn out non-convex in

the form of bilinear matrix inequalities (BMIs). However, non-smooth optimization

techniques [7] may be employed. The results might provide further insight into the

conservatism incurred by the non-uniqueness of LPV factorizations and may mark

a first step from heuristics towards more rigorous methods.

Utilization of the Coprime Factor Structure

The exploitation of coprime factorization-like structures used in Props. A.1 and A.2

in the appendix on p. 319 for the modeling tools proposed in this thesis proved to be

vital for the reduction of synthesis and implementation complexity. It also suggests

a deeper mathematical connection to existing model order reduction techniques,

e. g., [86], and further ways to utilize them. While it is relatively straightforward

to add those parts omitted by the parameter block approximation procedure as

unstructured uncertainties for use in a mixed gain-scheduled robust controller syn-

thesis framework, or in less computationally expensive a posteriori stability and

performance tests, more sophisticated methods may be developed that provide a

priori guarantees for closed-loop stability and performance, for instance, based on

the so-called ν-gap [157].

Automated Coprime Factorization

For general LPV plants in which the coprime factorization does not emerge natu-

rally from the explicit knowledge of the generalized inertia matrix, an automated

algorithm for deriving a coprime factorization may be developed, based on [12].

Such an approach might further increase the degree of automation and reduce the

amount of ambiguities in the LPV modeling phase, while extending the applicabil-

ity to an even wider class of systems that is not restricted to second order nonlinear

ODEs. Together with an optimization-based LPV factorization as described above,

such an approach could yield fully automated and efficient LPV modeling and syn-

thesis tools that are attractive for use in industry and challenging control problems

in research.
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Approximate Relaxations on Multiplier Conditions

An aspect that has not been explicitly explored in this thesis—although the SVD-

based approximation of parameter blocks can be viewed as such—is the approxi-

mate relaxation of the multiplier conditions for use in synthesis. Crude approaches

could consider the evaluation of vertices spanned by only some of the parame-

ters in which the parameters are affine, followed by an a posteriori check (gridded

or vertex based) of only the multiplier condition. Further approaches can involve

sum-of-squares (SOS) or Pólya’s relaxations for polynomial matrix inequalities [27].

Improved Output-Feedback Synthesis

Based on the results of Sect. 5.2, the dual problem of designing (gain-scheduled)

observers for LPV plants can be explicitly worked out in a similarly improved

manner. As pointed out in [E83], observer-based state-feedback control makes

for a highly structured, systematic output-feedback controller design process. The

findings from this thesis suggest that such an approach is also beneficial both in

terms of synthesis and implementation complexity when compared to parameter-

dependent Lyapunov function (PDLF)-based OF controller synthesis as per [163].

However, the fully improved PDLF-based OF controller synthesis conditions mak-

ing use of the plant’s descriptor structure as in Prop. 5.1 on p. 172 can be worked

out and applied straightforwardly for further investigation.

Dynamic Multiplier-Based Output-Feedback Synthesis

The use of dynamic D/G-scalings (D/G-Ss) promises to significantly reduce the

amount of conservatism in gain-scheduled output-feedback controller synthesis

at the cost of a significantly increased controller order [126]. The usefulness of

the two-stage multiplier approach presented in this thesis mainly draws from the

possibility to use FBMs in the first stage, which allows for small-in-size scheduling

blocks of the controller. As both a theoretically and mathematically demanding

question, it is still unclear how to solve gain-scheduling problems with dynamic

FBMs. However, it may be of interest to investigate to which degree the use of

dynamic D/G-Ss in a second multiplier stage can reduce conservatism without

affecting implementation complexity. More straightforwardly, it is interesting to

assess the increase in implementation complexity due to the methods proposed in

[126] and compare these with the standard PDLFs-based methods.
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12.2 Part II—Control of Interconnected LPV Systems

I
n addition to the obvious experimental validation of the techniques proposed in

this thesis, the following items appear as attractive directions for future research.

Validation for Distributed Systems

The methods for interconnected LPV controller synthesis developed in this thesis

have been validated via a fictitious numerical and a realistic multi-agent system

(MAS)-based simulation example. While showing promising results in both cases,

an evaluation on a distributed control setting, such as the vibration control of a

beam or plate, should be performed. The results can then be benchmarked against

methods specialized for regular-grid topologies, e. g., [90, 162]. Since the latter are

well-advanced in the sense that they have been extended to employ PDLFs [90]

further research might be required. Some examples are given below.

Dynamic Multiplier-Based Synthesis

The effectiveness and applicability of dynamic D-scalings and D/G-scalings [126]

for distributed controller synthesis can be investigated using diagonalization tech-

niques based on normalization. A significant improvement in performance is ex-

pected in scenarios in which the interconnection topology is known to be fixed.

This is often the case in the above-mentioned regular-grid topology-based formula-

tions of distributed systems resulting from spatial discretization. In this line of re-

search, the drawback of the proposed method to always implicitly consider switch-

ing topologies can be alleviated and a rigorous comparison with tools based on

PDLFs that are limited to fixed regular-grid topologies can be performed.

Shaping the Controllers’ Interconnection Topology

In this thesis, a technical assumption on the masking matrices is imposed that

guarantees the normalization to be revertible and consequently allows the synthe-

sis of controllers that inherit the interconnection topology from the plant. If this

technical assumption on the masking matrices is dispensed with, alternatives to

the normalization techniques of Props. 9.2 and 9.3 can be developed that shape

the interconnection topology of the controller in desired ways, cf. Sect. 9.2.3.2—a

question that has been raised in [155]. As indicated in the comparison performed

in Sect. 10.1.2.2 on p. 280, the conservatism incurred may vary and needs to be as-

sessed systematically, in order to show the benefits of, e. g., an undirected controller

interaction as opposed to the inherited directed one.

Design of LPV Information Flow Filters

The methods developed in this thesis have been applied on the illustrative example

of gain-scheduled formation control of a fleet of quadrotor helicopters. For MASs,

the information flow filter (IFF) approach [115] is often preferable, since the design

of consensus-based formation and local reference tracking control of the agents
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can be separated. However, such a separation is only an approximation for the case

of agents subject to non-holonomic constraints. Research is already underway to

integrate the non-holonomically constrained dynamics within an LPV representa-

tion using a simple rolling disc model [106, 107]. Such an approach can be used

to design formation controllers that take into account the constraints via the meth-

ods developed in this thesis, while high-performance, potentially PDLF-based local

agent controllers are designed separately. As a result, the formation control of air-

planes and cars can be considered and efficiently implemented, hence individual

control loops can be maintained separately.

Interconnection Time-Delays

In interconnected systems control, communication links are often subject to vari-

able time-delays, due to transport delays or non-ideal networking structures [111].

By employing an integral quadratic constraint (IQC) framework, based on [36], fur-

ther research can yield synthesis algorithms that extend the work of this thesis to

explicitly consider time-delays in the interconnection with known upper bounds.

The synthesis framework presented in [151] appears to be straightforward to adapt,

while a collection of IQC multiplier parameterizations for time-delays is presented

in [114, 153].





A P P E N D I X

The appendix contains auxiliary mathematical tools and technical mate-

rial, as well as detailed proofs.
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A U X I L I A RY M AT H E M AT I C A L M AT E R I A L

a.1 General Notation

The symbol 1n×m denotes an n×m matrix of ones; 1n
△
= 1n×1 and In

△
= diag(1n).

Vertical and horizontal concatenation of matrices with conformable dimensions

is denoted by

h

col
k=1

(Mk) =
[
M⊤1 . . . M

⊤
h

]⊤
,

h
row
k=1

(Mk) =
[
M1 . . . Mh

]
.

a.2 Algebraic Tools and Matrix Calculus

Lemma A.1 (2× 2 Block Matrix Inversion [166])

Consider a non-singular square matrix M of the form

M =

[
M11 M12

M21 M22

]
, M11 ∈ C

n×n, M22 ∈ C
m×m

Then with

N =
(
M22 −M21M

−1
11M12

)−1
,

L =
(
M11 −M12M

−1
22M21

)−1
,

one has

M−1 =

[
M−1
11 +M−1

11M12NM21M
−1
11 −M−1

11M12N

−NM21M
−1
11 N

]

=

[
L −LM12M

−1
22

−M−1
22M21L M−1

22 +M−1
22M21LM12M

−1
22

]

Lemma A.2 (Derivative of a Matrix Inverse [166])

Consider a matrix-valued functionM(t) : R 7→ Cn×n. The derivative of its inverse is given

by

dM−1(t)

dt
= −M−1(t)

dM(t)

dt
M−1(t). (A.1)
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Definition A.1 (Moore-Penrose Pseudoinverse [166])

Consider a matrix M ∈ Cm×n. Its Moore-Penrose Pseudoinverse (pseudoinverse) M† is

unique and fulfills the following conditions

(i) MM†M =M,

(ii) M†MM† =M†,

(iii) (MM†)∗ =MM†,

(iv) (M†M)∗ =M†M.

It can be defined via

M†
△
= lim
ε→0

(M∗M+ εI)−1M∗ = lim
ε→0

M∗(MM∗ + εI)−1

Corollary A.1 (Pseudoinverse for Singular Diagonal Matrices)

From Def. A.1, it follows that the pseudoinverse of a singular diagonal matrix M =
n

diag
i=1

(mii) is given by

M† =
n

diag
i=1

(
m
†
ii

)
, m

†
ii

△
=






0, if mii = 0,

m−1
ii , otherwise.

a.2.1 The Kronecker and Khatri-Rao Product

The operator ⊗ denotes the Kronecker product. I. e., with

A = [aij] ∈ Cn
A×mA

,aij ∈ C and block-matrix structures

A = [Aij] ∈ C
nA×mA

, Aij ∈ C
nAi ×mA

j ,

B = [Bij] ∈ C
nB×mB

, Bij ∈ C
nBi ×mB

j ,

A ⊗ B =



a11B· · ·a1mB

...
. . .

...

an1B· · ·anmB


 .

The operator ⊛ denotes the Khatri-Rao product.

A ⊛ B =



A11 ⊗ B11 · · ·A1m ⊗ B1m

...
. . .

...

An1 ⊗ Bn1· · ·Anm ⊗ Bnm


 .
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Lemma A.3 (Kronecker/Khatri-Rao Permutation)

Let a matrix N and a pair of permutation matrices Ψp and Ψq be given, such that

N =




L ⊗ M11· · ·L ⊗ M1q...
. . .

...

L ⊗ Mp1· · ·L ⊗ Mpq


 = (1p×q ⊗ L ) ⊛



M11· · ·M1q

...
. . .

...

Mp1· · ·Mpq


,

ΨpNΨ
⊤
q = L ⊗



M11· · ·M1q...

. . .
...

Mp1· · ·Mpq


,

where Mij ∈ Cpi×qj , L ∈ Ch×h. Then Ψp, Ψq are given by

Ψf =
f

row
j=1

(
h

diag
1

([
δf1fjIf1×fj...

δfpfjIfp×fj

]))
, f ∈ {p,q}

where δij is the Kronecker delta and

Ii×j =






[
Ii×i 0

]
, if i < j,[

Ii×i
0

]
, if i > j,

[
Ii×i
]

, if i = j

Remark A.1 Lemma A.3 can be understood as transforming a particular Khatri-Rao prod-

uct, i.e. one where the left factor is a block matrix with identical blocks, into an equivalent

Kronecker product.

a.3 Linear Fractional Transformations

Definition A.2 (Upper linear fractional transformation (LFT) [166])

Let M be a matrix partitioned as

M =

[
M11 M12

M21 M22

]
∈ C

(nz,1+nz,2)×(nw,1+nw,2)

Then an upper linear fractional transformation with respect to ∆ ∈ Cnw,1×nz,1 is defined as

the map

M(∆) = ∆ ⋆M : C
nz,1×nw,1 7→ C

nz,2×nw,2

with

M(∆) = ∆ ⋆M = ∆ ⋆

[
M11 M12

M21 M22

]
=M22 +M21∆(I−M11∆)

−1M12,

provided that the inverse of (I−M11∆) exists.
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Definition A.3 (Lower LFT [166])

LetM partitioned as in Def. A.2. Then a lower linear fractional transformation with respect

to ∆ ∈ Cnw,2×nz,2 is defined as the map

M(∆) =M ⋆∆ : C
nz,2×nw,2 7→ C

nz,1×nw,1

with

M(∆) =M ⋆∆ =

[
M11 M12

M21 M22

]
⋆∆ =M11 +M12∆(I−M22∆)

−1M21,

provided that the inverse of (I−M22∆) exists.

Figures A.1a and A.1b provide graphical representations of both upper and lower

LFTs.

[
M11 M12

M21 M22

]
∆ M(∆)

(a) Upper LFTs.

[
M11 M12

M21 M22

]

∆
M(∆)

(b) Lower LFTs.

Figure A.1: Linear fractional transformations.

Remark A.2 Compact graphical representations for LFTs are commonly employed. The

respective channel sizes can then be inferred from the context.

M

∆

M(∆)

(a) Upper LFTs.

M

∆

M(∆)

(b) Lower LFTs.

Figure A.2: Compact representations of linear fractional transformations.

Often, the feedback interconnection shown in Figs. A.1a and A.1b is made with

a time dependent matrix ∆(t). For simplicity of notation, time dependence is regu-

larly dropped, e. g., ∆ = ∆(t).

A multiplication of two LFTs is another LFT [166]

(∆M ⋆M) (∆N ⋆N) =

(
∆M ⋆

[
M11 M12

M21 M22

])(
∆N ⋆

[
N11 N12

N21 N22

])

=

[
∆M 0

0 ∆N

]
⋆



M11 M12N21 M12N22
0 N11 N12

M21 M22N21 M22N22


 , (A.2)
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where ∆M, ∆N as well as M, N have appropriate dimensions.

The inverse of an LFT [166] can be computed by

(
∆ ⋆

[
M11 M12

M21 M22

])−1

= ∆ ⋆

[
M11 −M12M

−1
22M21 −M12M

−1
22

M−1
22M21 M−1

22

]
, (A.3)

while it is assumed that the inverse of M22 exists.

Lemma A.4 (Nullspace of a linear fractional representation (LFR) [163])

Consider an LFR in the form

M(∆) = ∆ ⋆M = ∆ ⋆

[
M11 M12

M21 M22

]
,

where M11 ∈ Cnz,1×nw,1 , M12 ∈ Cnz,1×nw,2 , M21 ∈ Cnz,2×nw,1 ,

M22 ∈ Cnz,2×nw,2 . Assume that M22 has rank nz,2 6 nw,2, s. t.

M22 = U
[
Σ 0

]
V∗.

Partition V =
[
V1 V2

]
, with V1 ∈ Cnz,2×nz,2 , V2 ∈ Cnw,2×(nw,2−nz,2). Then, the

nullspace of M(∆) is 1

ker (M(∆)) = im

(
∆ ⋆

[
M11 −M12V1Σ

−1U∗M21 M12V2

−V1Σ
−1U∗M21 V2

])

Compact LFRs can be derived for matrices parameterized reminiscent of coprime

factor uncertainty representations [44].

Proposition A.1 (Left Coprime Factor LFR)

For matrices M0, N0, ∆M, ∆N ∈ Cn×n with M0 non-singular, the term
(M0+∆M)−1 (N0+∆N) can be written as an LFR as

(M0+∆M)−1 (N0+∆N)=
[
∆M ∆N

]
⋆



−M−1

0 −M−1
0 N0

0 I

M−1
0 M−1

0 N0


 . (A.4)

1 Note that there is a sign error in [163], which leads to the (2, 1) entry of the LFT matrix to be
V1Σ

−1U∗M21.
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Proposition A.2 (Right Coprime Factor LFR)

For matrices M0, N0, ∆M, ∆N ∈ Cn×n with N0 non-singular, the term
(M0+∆M) (N0+∆N)

−1 can be written as an LFR as

(M0+∆M) (N0+∆N)
−1=

[
∆N
∆M

]
⋆

[
−N−1

0 0 N−1
0

−M0N
−1
0 I M0N

−1
0

]
. (A.5)

Figure A.3 establishes a block diagram interpretation of Prop. A.1.

∆N

N0

∆M

M−1
0

−

(a) Left coprime factorization [166].

∆N

N0

∆M

M−1
0

−M−1
0

(b) Intermediate step to establish plausibility
of Prop. A.1.

N0

[
∆M ∆N

]

M−1
0

[
−M−1

0 0

0 I

]

(c) Left coprime factorization as an LFR.

Figure A.3: Left coprime factorization. Transformation into LFR.

a.4 Manipulation of Matrix Inequalities

The symmetric/hermitian completion of blocks of a matrix M partitioned into n×
n blocks is denoted by •, s. t.




M11 M12 · · · M1n

M∗12 M22 M2n
...

. . .
...

M∗1n M
∗
2n · · ·Mnn


 =




M11 M12 · · · M1n

• M22 M2n
...

. . .
...

• • · · ·Mnn


 .

The notation sym (M) denotes M+M⊤, herm (M) denotes M+M∗, respectively.

For a matrix M to be positive (semi-)definite, we write

M ≻ 0, or M < 0, and M ≺ 0, or M 4 0
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for M to be negative (semi-)definite.

Lemma A.5 (Complex Matrix Inequalities)

For a complex-valued hermitian matrix L ∈ Hn×n, the following two matrix inequalities

are equivalent

(i) L = ReL+ j ImL ≻ 0 (ii)

[
ReL − ImL

ImL ReL

]
≻ 0 (A.6)

Lemma A.6 (Dualization Lemma [125])

Assume R is a nonsingular matrix and S a subspace with in0R|S = 0, i. e., S⊤RS is non-

singular for any basis S of S. Then in (R|S) + in
(
R−1|

S⊥

)
= in (R).

Lemma A.7 (Dual Quadratic Inequalities [125])

Consider the matrix inequality in K

[
Im

T +W⊤KV

]⊤
R

[
Im

T +W⊤KV

]
≺ 0 (A.7)

with A ∈ Rn×m, in(R) = (m, 0,n). Therefore S = R−1 exists. Then, due to Lma. A.6 on

page 321, (A.7) is equivalent to

[
−(T +W⊤KV)⊤

In

]⊤
S

[
−(T +W⊤KV)⊤

In

]
≻ 0 (A.8)

Lemma A.8 (Parameter Elimination Lemma [125])

Inequality (A.7) is solvable iff

V⊥
⊤
[
Im

T

]⊤
R

[
Im

T

]
V⊥ ≺ 0, (A.9)

and W⊥
⊤
[
−T⊤

In

]⊤
S

[
−T⊤

In

]
W⊥ ≻ 0, (A.10)

with R = S−1.

The next lemma follows from the Elimination Lemma [125], cf. Lma. A.8, and

can be regarded as a particular solution to the problem of recovering eliminated

parameters for structured problems.
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Lemma A.9 (Parameter Elimination for Structured Problems [56])

The quadratic matrix inequality

[
I

W(A⊤XB+C)V

]⊤
M

[
I

W(A⊤XB+C)V

]
≺ 0. (A.11)

in the unknown X is solvable iff

[
WB⊥ V⊥

]⊤
[

I

WCV

]⊤
M

[
I

WCV

] [
WB⊥ V⊥

]
≺ 0,

[
V⊤A⊥ W⊤

⊥
]⊤
[
−(WCV)⊤

I

]⊤
M−1

[
−(WCV)⊤

I

] [
V⊤A⊥ W⊤

⊥
]
≻ 0.

where VW = I, W, V⊤ have full column rank and B⊥ = ker(B), A⊥ = ker(A),

V⊥ = ker(V), W⊤
⊥
= ker

(
W⊤

)
.

Corollary A.2 (Solution on Subspace [56])

Assume VW = I and W, V⊤ have full column rank. The feasibility of the quadratic matrix

inequality

[
I

W(A⊤XB+C)V

]⊤
M

[
I

W(A⊤XB+C)V

]
≺ 0. (A.12)

in the unknown X, implies the feasibility of

[
•
]⊤
[

I

A⊤XB+C

]⊤[
W 0

0 W

]⊤
M

[
W 0

0 W

][
I

A⊤XB+C

]
≺ 0. (A.13)

Proof: Definiteness on a subspace is implied by definiteness on the entire space.

Thus (A.13) is simply (A.12) pre- and postmultiplied by W⊤ and W, respectively.

a.5 Estimates for Computational Costs

The big O notation is used to describe complexities. More specifically, a[f(x)] ∈
O(g(x)) means that there exists m > 0 and x0, such that |a[f(x)] | 6 m|g(x)|,∀x > x0.

Tab. A.1 lists upper bounds on the number of arithmetic computations, denoted

by a[·], for elementary matrix operations. Similarly, the number of scalar variables

to be stored m[·], which is used as a measure for the memory requirements, is

displayed in Tab. A.2.
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Table A.1: Complexity of matrix operations.

Operation Sizes a[A]

Multiplication A=BC B ∈ Rn×m, C ∈ Rm×p n(2m−1)p

Scaling A=
n

diag
i=1

(bi)C bi ∈ R, C ∈ Rn×m nm

Addition A=B+C B ∈ Rn×m, C ∈ Rn×m nm

Inversion∗ A=B−1 B ∈ Rn×n, 2
3n

3

∗Gauss elimination provides an upper bound for the cost.

Table A.2: Memory requirements of matrix types.

Matrix structure Sizes m[A]

Full A A ∈ Rn×m, nm

Symmetric A = A⊤ A ∈ Rn×n,
∑n+1
k=1 k = n(n+ 1)/2

Skew-sym. A = −A⊤ A ∈ Rn×n,
∑n−1
k=1 k = n(n− 1)/2
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a.6 Barycentric Coordinates for Polytopic Models

For determining the barycentric coordinates αl,∀l ∈ {1, . . . ,nv} for a parameter vec-

tor θ(t) ranging in a simple polytope is given by [158]

αl(θ) =
α̃l
(
θ(t)

)
∑nv
l=1 α̃l

(
θ(t)

) , α̃l(θ) =

∣∣∣∣det

(
row
k∈Jl

(vk)

)∣∣∣∣
∏
k∈Jl(v

⊤
k (θv,l − θ(t))

, (A.14)

where Jl denotes the set of indices k, such that the facet normal to vk contains vertex

θv,l and row
k∈Jl

(vk) denotes the horizontal concatenation of the respective vectors.

Remark A.3 A ≪simple polytope≫ is a polytope whose vertices are adjacent to a number

of edges or facets that is exactly the dimension of the space the polytope is defined in, e. g.,

card (Jl) = nθ [158].

θ1

θ2

ρ

∣∣∣∣det

(
row
k∈Jl

(vk)

)∣∣∣∣

θv,1 θv,2

θv,3

θv,4

v1
v2

θ(t)

(a) Barycentric coordinates
from parameter.

θ1

θ2

θ3

θv,1 θv,2

θv,3θv,4

θv,5

θv,6
θv,7θv,8

hyp (θ)

(b) A hypercube resulting from
three parameters.

Figure A.4: Examples of barycentric coordinates.

Figure A.4a shows an example and a geometric interpretation. Fig. A.4b shows

an exemplary hyperbox of eight vertices resulting from three parameters.

Under the assumption that the parameters are taken to reside in the hyper-

box hyp (θ), the computation of the barycentric coordinates can be performed more

efficiently. In the Matlab function polydec this is performed iteratively according to

Alg. A.1.

Algorithm A.1 Barycentric coordinates from parameter θ(t) varying in a hyper-

cube hyp (θ).

Initialization:

1: Define c0
△
= 1.

Iteration: i← 1, number of iterations nθ

2: Compute ti =
θi(t)−θi

θi−θi

, ci =
[
ci−1(1− ti), ci−1ti

]
.

Return:

3: Extract barycentric coordinates from cnθ
=
[
α1, α2, · · · , αnv

]
.
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b.1 Auxiliary Material for Theorem 2.8

Quadratic LFR of Lyapunov Matrices

The result for an LFR of the outer blocks in a quadratic parameter-dependent Lya-

punov function (PDLF) shown in [163] is given without proof. The following shows

how the result is obtained. Observe that for

X
(
δ
)
= Q

(
δ
)⊤

XQ
(
δ
)

factorizations of the matrix blocks related to the Lyapunov matrices occurring in

the Bounded Real Lemma can be obtained as

[
∂X
(
δ,η
)
X
(
δ
)

X
(
δ
)

0

]
=

[
Q
(
δ
)

0

∂Q
(
δ,η
)
Q
(
δ
)
]⊤ [

0 X

X 0

][
Q
(
δ
)

0

∂Q
(
δ,η
)
Q
(
δ
)
]

[
0 X

(
δ
)

X
(
δ
)
∂X
(
δ,η
)
]
=

[
Q
(
δ
)
∂Q
(
δ,η
)

0 Q
(
δ
)
]⊤ [

0 X

X 0

][
Q
(
δ
)
∂Q
(
δ,η
)

0 Q
(
δ
)
]

Then, given

Q
(
δ
)
= ∆ ⋆

[
Q11 Q12

Q21 Q22

]
= Q22 +Q21∆ (I−Q11∆Q)

−1
U12,

and using (A.1) one has for

d

dt
Q
(
δ
)
= Q21

(
∆̇+∆ (I−Q11∆)

−1
Q11∆̇

)
(I−Q11∆)

−1
Q12

= Q21 (I−∆Q11)
−1 ∆̇ (I−Q11∆)

−1
Q12,

which gives

∂Q
(
δ,η
)
= Q21 (I−∆Q11)

−1 ∂∆ (I−Q11∆)
−1

Q12 (B.1)
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Using

Q21 (I−∆Q11)
−1 = Q21

(
∆ ⋆

[
0 −Q11

I I

])−1

= ∆ ⋆

[
Q11 Q11

Q21 Q21

]

(I−Q11∆)
−1

Q12 =

(
∆ ⋆

[
0 I

−Q11 I

])−1

Q12 = ∆ ⋆

[
Q11 Q12

Q11 Q12

]

and by (A.2), one can obtain

∂Q
(
δ,η
)
=



∂∆

∆

∆


 ⋆




0 0 Q11 Q12

Q11 Q11 0 0

0 0 Q11 Q12

Q21 Q21 0 0




From here it is easy to see that

[
Q
(
δ
)

0

∂Q
(
δ,η
)
Q
(
δ
)
]
=



∂∆

∆

∆


 ⋆




0 0 Q11 Q12 0

Q11 Q11 0 0 Q12

0 0 Q11 Q12 0

0 0 Q21 Q22 0

Q21 Q21 0 0 Q22




[
Q
(
δ
)
∂Q
(
δ,η
)

0 Q
(
δ
)
]
=



∂∆

∆

∆


 ⋆




0 0 Q11 0 Q12

Q11 Q11 0 Q12 0

0 0 Q11 0 Q12

Q21 Q21 0 Q22 0

0 0 Q21 0 Q22




Compact LFR of Lyapunov Matrices

A more compact LFR of the outer blocks in a quadratic PDLF than those shown in

[163] can be obtained as follows. First observe that

∂Q
(
δ,η
)
=

[
0 ∆

∆ ∂∆

]
⋆



0 Q11 0

Q11 0 Q12

0 Q21 0


 .

From here, the LFR of the outer factor of the quadratic PDLF can be written com-

pactly as

[
Q
(
δ
)

0

∂Q
(
δ,η
)
Q
(
δ
)
]
=

[
0 ∆

∆ ∂∆

]
⋆




0 Q11 0 Q12

Q11 0 Q12 0

Q21 0 Q22 0

0 Q21 0 Q22


 . (B.2)
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To see this, expand
[

Q
(
δ
)

0

∂Q
(
δ,η
)
Q
(
δ
)
]
=

[
Q22 0

0 Q22

]
+

[
Q21 0

0 Q21

][
0 ∆

∆ ∂∆

]

×
[
I−Q11∆ −Q11∂∆

0 I−Q11∆

]−1 [
0 Q12

Q12 0

]

=

[
Q22 0

0 Q22

]
+

[
0 Q21∆

Q21∆ Q21∂∆

]

×
[
(I−Q11∆)

−1 (I−Q11∆)
−1Q11∂∆(I−Q11∆)

−1

0 (I−Q11∆)
−1

]

×
[
0 Q12

Q12 0

]
,

which—considering (B.1)—yields the proof. Similarly, one can show that

[
Q
(
δ
)
∂Q
(
δ,η
)

0 Q
(
δ
)
]
=

[
∂∆ ∆

∆ 0

]
⋆




0 Q11 0 Q12

Q11 0 Q12 0

Q21 0 Q22 0

0 Q21 0 Q22


 . (B.3)

b.2 Proof of Theorem 2.14

First observe that from

NR
(
ρ
)
= ker

([
I 0

])
=

[
0

I

]

Condition (2.122) simply reduces to the requirement γ > 0 and just the dual

Cond. (2.123) remains. Note that a parameter-dependent kernel representation

NS
(
ρ
)

can be found in

NS
(
ρ
)
= ker

([
B⊤u
(
ρ
)
D⊤pu

(
ρ
)])

=


 I −

(
B⊤u
(
ρ
))†
D⊤pu

(
ρ
)

−
(
D⊤pu

(
ρ
))†

B⊤u
(
ρ
)

I




=

[
I NS,2

(
ρ
)

NS,1

(
ρ
)

I

]
.

Observe that NS,1

(
ρ
)
NS,2

(
ρ
)
= I and define

W =W⊤ = N⊤S,1

(
ρ
)
NS,1

(
ρ
)

= Bu
(
ρ
) (
D⊤pu

(
ρ
)
Dpu

(
ρ
))−1

B⊤u
(
ρ
)
.
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Using this representation of the kernel, expand Cond. (2.134) to obtain

[
•
•

]⊤


0 S

(
ρ
)

S
(
ρ
)
∂S
(
ρ,σ
)

Γ−1


 (B.4)

×




−A⊤
(
ρ
)
−C⊤p

(
ρ
)
NS,1

(
ρ
)

−A⊤
(
ρ
)
NS,2

(
ρ
)
−C⊤p

(
ρ
)

I NS,2

(
ρ
)

−B⊤p
(
ρ
)

−B⊤p
(
ρ
)
NS,2

(
ρ
)

NS,1

(
ρ
)

I


≻0,

From the state-feedback gain

F
(
ρ
)
= −

(
D⊤pu

(
ρ
)
Dpu

(
ρ
))−1

×
(
γB⊤u

(
ρ
)
S−1
(
ρ
)
+D⊤pu

(
ρ
)
Cp

(
ρ
))

,

one has

Dpu

(
ρ
)
F
(
ρ
)
= γNS,1

(
ρ
)
S
(
ρ
)−1

−Cp

(
ρ
)
,

Bu
(
ρ
)
F
(
ρ
)
= −γWS

(
ρ
)−1

+N⊤S,1

(
ρ
)
Cp

(
ρ
)
.

Thus, inserting the closed-loop matrices into Cond. (2.70) yields

[
•
•

]⊤


0 S

(
ρ
)

S
(
ρ
)
∂S
(
ρ,σ
)

Γ−1


 (B.5)

×




−A⊤
(
ρ
)
−C⊤p

(
ρ
)
NS,1

(
ρ
)
+ γS

(
ρ
)−1
W −γS

(
ρ
)−1

N⊤S,1

(
ρ
)

I 0

−B⊤p
(
ρ
)

0

0 I


≻0.

In order to show equivalence between Conds. (B.4) and (B.5), apply a congruence

transformation by multiplying (B.5) from the right by

TS
(
ρ
)
=

[
I NS,2

(
ρ
)

NS,1

(
ρ
)

I

]

and from the left by T⊤S
(
ρ
)
, respectively. This concludes a simple sketch of the

proof.
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b.3 Auxiliary Material for Theorem 2.15

BR(δ) = UR(δ)GR(δ)NR(δ) = ∆BR ⋆

[
BR,11 BR,12

BR,21 BR,22

]
, ∆BR ∈ R

(nRq∆
×nRp∆)

UR(δ) =




QR
(
δ
)

0

∂QR
(
δ,η
)
QR
(
δ
)

I 0

0 I


 = ∆UR

⋆

[
UR,11 UR,12

UR,21 UR,22

]

∆BR =



∆UR

∆P

∆P




GR(δ) =




I 0

A
(
δ
)
Bp

(
δ
)

0 I

Cp

(
δ
)
Dpp

(
δ
)


 = ∆P ⋆

[
GR,11 GR,12

GR,21 GR,22

]
,

[
GR,11 GR,12

GR,21 GR,22

]
=




D∆∆ C∆ D∆p

0 I 0

B∆ A Bp

0 0 I

Dp∆ Cp Dpp




, (B.6)

NR
(
δ
)
= ker

([
Cy
(
δ
)
Dyp

(
δ
)])

= ∆P ⋆

[
NR,11 NR,12

NR,21 NR,22

]
,

[
BR,11 BR,12

BR,21 BR,22

]
=




UR,11 UR,12GR,21 UR,12GR,22NR,21 UR,12GR,22NR,22

0 GR,11 GR,12NR,21 GR,12NR,22

0 0 NR,11 NR,12

UR,21 UR,22GR,21 UR,22GR,22NR,21 UR,22GR,22NR,22


 ,

BS(δ) = US(δ)GS(δ)NS(δ) = ∆BS ⋆

[
BS,11 BS,12

BS,21 BS,22

]
, ∆BS ∈ R

(nSq∆
×nSp∆) (B.7)

US(δ) =




QS
(
δ
)
∂QS

(
δ,η
)

0 QS
(
δ
)

I 0

0 I


 = ∆US

⋆

[
US,11 US,12

US,21 US,22

]

∆BS =



∆US

−∆P
⊤

∆P
⊤



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GS(δ) =




−A⊤
(
δ
)
−C⊤p

(
δ
)

I 0

−B⊤p
(
δ
)
−D⊤pp

(
δ
)

0 I


 = −∆P

⊤
⋆

[
GS,11 GS,12

GS,21 GS,22

]
,

[
GS,11 GS,12

GS,21 GS,22

]
=




−D⊤∆∆ −B⊤∆ −D⊤p∆
−C⊤∆ −A⊤ −C⊤p
0 I 0

−D⊤∆p −B⊤p −D⊤pp

0 0 I




(B.8)

NS
(
δ
)
= ker

([
B⊤u
(
δ
)
D⊤pu

(
δ
)])

= ∆P
⊤
⋆

[
NS,11 NS,12

NS,21 NS,22

]
,

[
BS,11 BS,12

BS,21 BS,22

]
=




US,11 US,12GS,21 US,12GS,22NS,21 US,12GS,22NS,22

0 GS,11 GS,12NS,21 GS,12NS,22

0 0 NS,11 NS,12

US,21 US,22GS,21 US,22GS,22NS,21 US,22GS,22NS,22




BRS(δ) =




QR
(
δ
)

0

0 QS
(
δ
)

I 0

0 I


 = ∆BRS ⋆

[
BRS,11 BRS,12

BRS,21 BRS,22

]
,

∆BRS = diag(∆R,∆S) ∈ R
(nRSq∆

×nRSp∆)

[
BRS,11 BRS,12

BRS,21 BRS,22

]
=




QR,11 0 QR,12 0

0 QS,11 0 QS,12

QR,21 0 QR,22 0

0 QS,21 0 QS,22

0 0 I 0

0 0 0 I




,

b.4 Controller Construction for Theorem 2.16

Theorem B.1 (Mixed General/Affine LFT-LPV Controller [161])

Under Ass. (A2.1)–(A2.6), and given that the conditions of Thm. 2.16 are satisfied for a

mixed general/LFT-linear parameter-varying (LPV) plant,

• affine in the parameters δ(t), i. e., D∆∆
(
ρ
)
= 0,

• with performance channel independent of δ(t), i. e., D∆p

(
ρ
)
= 0, Dp∆

(
ρ
)
= 0, and
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•

[
D∆u

(
ρ
)

Dpu

(
ρ
)
]

and
[
Dy∆

(
ρ
)
Dyp

(
ρ
)]

full column and row rank, respectively, ∀ρ ∈ ρ,

and given a reconstructed closed-loop multiplier M according to Lma. 2.4, there exists a

controller Kσ,η
ρ,δ affine in the parameter block ∆K

(
∆P
)

constructed via the following steps

(i) Let M
(
ρ
)
N⊤
(
ρ
)
= I− S

(
ρ
)
R
(
ρ
)

(ii) Solve for B̂K
(
ρ
)

and ĈK
(
ρ
)

[
0 DΓ1

(
ρ
)

D⊤Γ1
(
ρ
)

MΓ

][
B̂K

⊤(
ρ
)

•

]
=−




Cy
(
ρ
)

0

B⊤∆
(
ρ
)
R
(
ρ
)

0

B⊤p
(
ρ
)
R
(
ρ
)

Cp

(
ρ
)




, (B.9)

[
0 DΓ2

(
ρ
)

D⊤Γ2
(
ρ
)

MΓ

][
ĈK
(
ρ
)

•

]
=−




B⊤u
(
ρ
)

0

B⊤p
(
ρ
)

C∆
(
ρ
)
S
(
ρ
)

0

Cp

(
ρ
)
S
(
ρ
)




(B.10)

DΓ1
(
ρ
)
=

[
Dy∆

(
ρ
)
0 Dyp

(
ρ
)
0

0 I 0 0

]
, DΓ2

(
ρ
)
=

[
0 D⊤∆u

(
ρ
)
0 D⊤pu

(
ρ
)

0 0 I 0

]
,

MΓ =




M−1
22 0 M12M

−1
11 0

0 −γI 0 0

M−1
11M

⊤
12 0 −M−1

11 0

0 0 0 −γI




(iii) Set

ÂK
(
ρ,σ
)
= R

(
ρ
)
∂S
(
ρ
)
+N

(
ρ
)
∂M⊤

(
ρ
)
−A⊤

(
ρ
)

(B.11)

+

(
R
(
ρ
) [
B∆
(
ρ
)
0 Bp

(
ρ
)]

+ B̂K
(
ρ
)
[
Dy∆

(
ρ
)
0 Dyp

(
ρ
)

0 I 0

] [
C⊤∆
(
ρ
)
0 C⊤p

(
ρ
)])

×M−1
Γ

([
B∆
(
ρ
)
0 Bp

(
ρ
) ]

S
(
ρ
) [
C⊤∆
(
ρ
)
0 C⊤p

(
ρ
)]

+ ĈK
⊤(
ρ
)
[
D⊤∆u

(
ρ
)
0 D⊤pu

(
ρ
)

0 I 0

])⊤
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AK
(
ρ,σ
)
= N−1

(
ρ
)(
ÂK
(
ρ,σ
)
− R
(
ρ
) [
Bu
(
ρ
)
0

]
ĈK
(
ρ
)

(B.12)

− B̂K
(
ρ
)
[
Cy
(
ρ
)

0

]
S
(
ρ
)
− R
(
ρ
)
A
(
ρ
)
S
(
ρ
))
M−⊤(ρ

)
,

[
BKy
(
ρ
)
BK∆
(
ρ
)]

= N−1
(
ρ
)
B̂K
(
ρ
)
, (B.13)

[
CKu
(
ρ
)

CK∆
(
ρ
)
]
= ĈK

(
ρ
)
M−⊤(ρ

)
, (B.14)

[
DKuy

(
ρ
)
DKu∆

(
ρ
)

DK∆y
(
ρ
)
DK∆∆

(
ρ
)
]
= 0. (B.15)

Proof: Details of the proof can be found in [161].

b.5 Proof of Lemma 2.5

The extension is derived based on the requirement that the closed-loop multiplier

condition and its dual should be fulfilled.
[
I

∆
(
δ
)
]∗
M

[
I

∆
(
δ
)
]
≻ 0, ∀δ ∈ δ, (B.16)

[
−∆∗

(
δ
)

I

]∗
N

[
−∆∗

(
δ
)

I

]
≺ 0, ∀δ ∈ δ.

Additional inertia requirements on the closed-loop multiplier are given as

M22 ≺ 0, N11 ≻ 0. (B.17)

Note that due to the requirement 0 ∈ {∆(δ) | δ ∈ δ}, M11 ≻ 0 and N22 ≺ 0 are

implied.

However, as opposed to the reconstruction of the Lyapunov matrix, the positivity

and negativity constraints are more involved. From the inertia hypotheses one has

[
•
•

]⊤([
I

T⊤

][
M I

I
(
M−N−1

)−1

][
I

T

])



In∆ 0

0 0

0 In∆
0 0


 ≻ 0,

[
•
•

]⊤([
I

T⊤

][
M I

I
(
M−N−1

)−1

][
I

T

])



0 0

In∆ 0

0 0

0 In∆


 ≺ 0,
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from which by application of Schur complements (2.160) and (2.161) follow.

To construct the controller’s parameter block observe that

[
I

∆
(
δ
)
]∗[

M11 M12

M⊤12 M22

][
I

∆
(
δ
)
]
≻ 0, ∀δ ∈ δ,

is equivalent to

[
M11 +M12∆

(
δ
)
+∆∗

(
δ
)
M⊤12 ∆∗

(
δ
)

∆
(
δ
)

−M−1
22

]
≻ 0, ∀δ ∈ δ.

A congruence transform results in

[
I 0

−M12 I

]⊤ [
M11 +M12∆

(
δ
)
+∆∗

(
δ
)
M⊤12 ∆∗

(
δ
)

∆
(
δ
)

−M−1
22

][
I 0

−M12 I

]

=

[
M11 −M12M

−1
22M

⊤
12 ∆∗

(
δ
)
+M12M

−1
22

∆
(
δ
)
+M−1

22M
⊤
12 −M−1

22

]

=

[
U ∆∗

(
δ
)
+W⊤

∆
(
δ
)
+W V

]
≻ 0

=




U11 U12 W⊤11 +∆
P∗ W⊤21

U⊤12 U22 W⊤12 W⊤22 +∆
K∗

W11 +∆
P W12 V11 V12

W21 W22 +∆
K V⊤12 V22


 ≻ 0

Applying the permutation Ψ yields




U11 W⊤11 +∆
P∗ U12 W⊤21

W11 +∆
P V11 W12 V12

U⊤12 W⊤12 U22 W⊤22 +∆
K∗

W21 V⊤12 W22 +∆
K V22


 ≻ 0,

while a further Schur complement results in

[
U22 W⊤22 +∆

K∗

W22 +∆
K V22

]

−

[
U⊤12 W⊤12
W21 V⊤12

][
U11 W⊤11 +∆

P∗

W11 +∆
P V11

]−1 [
U12 W⊤21
W12 V12

]
≻ 0.

In order to render this inequality fulfilled by eliminating the off-diagonal blocks,

choose (2.162).
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b.6 Proof of Lemma 2.6

Define

N−1 =

[
Ñ11 Ñ12
Ñ⊤12 Ñ22

]
,

Consider the (1, 1) and (2, 2) blocks of

M−N−1 =

[
M11 − Ñ11 M12 − Ñ12

• M22 − Ñ22

]
,

and observe that due to (2.163)

M11 −
(
N11 −N12N

−1
22N

⊤
12

)−1
<M11 −N

−1
11 ≻ 0,

M22 −
(
N22 −N

⊤
12N

−1
11N12

)−1
4M22 −N

−1
22 ≺ 0.

This results in

M11 =

[
M11 M11 − Ñ11

M11 − Ñ11 M11 − Ñ11

]
≻ 0,

M22 =

[
M22 M22 − Ñ22

M22 − Ñ22 M22 − Ñ22

]
≺ 0,

which can be shown by Schur complements leading to the equivalent conditions

Ñ11 ≻ 0 and Ñ22 ≺ 0, which are true due to the dual of Cond. (2.154). Inserting the

reconstructed closed-loop multiplier into Cond. (2.158) gives

[
•
•

]∗[
M M−N−1

M−N−1 M−N−1

]



I

∆P
(
δ
)

I

∆K
(
δ
)


 ≻ 0, ∀δ ∈ δ,

which by choosing ∆K
(
δ
)
= ∆P

(
δ
)

and (2.164) allows the application of a Schur

complement to obtain

[
•
•

]∗
N−1

[
I

∆P
(
δ
)
]
≻ 0, ∀δ ∈ δ,

which holds by assumption.
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b.7 Parameters of the Robotic Manipulator

The grouped parameters of the 3-DOF robotic manipulator model used in Sect. 4.6

and Sect. 6.1 are taken from [47] and are listed in Tab. B.1. Here, I11,n, I22,n and

I33,n are the moments of inertia, mn and an are the mass and length, M1,n and

M2,n are the first moments of inertia in direction of the respective axis On − x1n
and On − x2n, where On is the origin, and Im,n and fv,n are the motor moment of

inertia and viscous friction coefficient of the nth link respectively. The notation is in

accordance with the modified Denavit-Hartenberg convention. More information

on base parameters of manipulators can be found in [72].

Table B.1: Estimated inertial and friction parameters of the 3-DOF robotic manipulator

(with non-SI units) [47].

Parameter Value

b1 = fv,1 0.4701

b2 = 2(m3a
2
2 − I11,2 + I22,2) 0.1094

b3 =M2,3a2 0.0151

b4 = 2(I11,3 − I22,3) 0.0591

b5 = m3a
2
2 + I11,3 + I22,2 + I33,1 0.0626

b6 = I11,2 − I22,2 −m3a
2
2 0.0229

b7 = I22,3 − I11,3 -0.0054

b8 = −(Mx,2 + a2m3)g -0.0051

b9 = −M2,3g 0.0097

b10 = fv,2 0.7741

b11 =
1/2 (I11,2 − I22,2 −m3a

2
2) 0.2345

b12 =
1/2 (I22,3 − I11,3) 0.0731

b13 = m3a
2
2 + I33,2 0.1991

b14 = I33,2 0.0603

b15 = fv,3 0.7218

b16 = I33,3 + Im,3 0.1033

b17 = −Im,3 0.0906

b18 = fc,1 0.2814

b19 = fc,2 0.1610

b20 = fc,3 0.3249
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b.8 Parameters of the Control Moment Gyroscope

The physical and grouped parameters of the 4-DOF control moment gyroscope

(CMG) listed in Tab. B.2 and used in Sect. 4.7 and Sect. 6.2 are kindly provided by

the authors of [1].

Table B.2: Physical and grouped parameters of the CMG.

Parameter Value Parameter Value

KA 0.0670 kgm2 b1 = JD 0.0273

IB 0.0119 kgm2 b2 = ID−JC−JD+KC -0.0135

JB 0.0178 kgm2 b3 = IC+ID 0.0240

KB 0.0297 kgm2 b4 = JB+JC+JD 0.0681

IC 0.0092 kgm2 b5 = IB+IC−KB−KC -0.0306

JC 0.0230 kgm2 b6 = ID+KA+KB+KC 0.1335

KC 0.0220 kgm2 b7 = ID−JD -0.0125

ID 0.0148 kgm2 b8 = IC−JC+KC+ID 0.0230

JD 0.0273 kgm2 b9 = KC−JC -0.0010

KD 0.0148 kgm2 b10 = JC−KC−ID+JD 0.0135

fv,1 0.000 187Nms/rad b11 = JC−IC−ID−IB+JD+KB 0.0441

fv,2 0.0118Nms/rad b12 = KC−JC−JD−IC -0.0375

fv,3 0.0027Nms/rad b13 = fv,1

fv,4 0.0027Nms/rad b14 = fv,2

τ1 0.666Nm b15 = fv,3

τ2 2.440Nm b16 = τ1
b17 = τ2
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c.1 Discrete-Time Numerical Example for Sect. 10.1

In [98], Massioni proposed a numerical example for a distributed linear time-

invariant (LTI) system composed from two groups of systems—a system containing

an integrator and a system in the form of an undamped oscillator. The original sys-

tem is proposed in discrete-time and the full matrices have been provided upon

request. For completeness, they are reproduced here.

The subsystems have the form

Pk :









xk(n+ 1)

dk(n)

zk(n)

yk(n)


=




Af Bf,i Bf,p Bf,u

Cf,i Df,ii Df,ip Df,iu

Cf,p Df,pi Df,pp Df,pu

Cf,y Df,yi Df,yp 0







xk(n)

vk(n)

wk(n)

uk(n)


 , (C.1)

where xk∈R2, dk∈R3, vk∈R3, zk∈R3, wk∈R5, yk∈R4, uk∈R2 and n ∈ N is

the discrete time instant as a multiple of the sampling time Ts, i. e., t = nTs. The

respective matrices are

A1 =

[
1 0

1 0.95

]
, A2 =

[
0.6 0.8

−0.8 0.6

]
,

and for f = 1, 2,

Bf,i =

[
0 0 1

1 0 0

]
, Bf,p =

[
1 0 0 0 0

0 0 0 0 0

]
, Bf,u =

[
1 0

0 0

]
,

Cf,i =



1 0

0 1

0 0


 , Cf,p =



0 1

0 0

0 0


 , Cf,y =




1 0

0 1

0 0

0 0


 ,
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Df,ii = O3, Df,ip = O3×5, Df,iu = O3×2,

Df,pi = O3×3, Df,pp = O3×5, Df,pu =



0 0

1 0

0 1


 ,

Df,yi =




0 0 0

0 0 0

1 0 0

0 1 0


 , Df,yp = 0.1




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


 ,

Df,yu = O4×2.

The matrix Df,pu has been scaled by 1
100 , in order to shift the lower bound on the

achievable H∞-norm to 1.
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MIMO multiple-input multiple-output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
MOP moving operating point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
NASA National Aerospace Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
NL nonlinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
NREL National Renewable Energy Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
ODE ordinary differential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
OF output-feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
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PFCMin PFC model, promoted sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
PID proportional integral derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
PIL pilot-in-the-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
PSM parameter set mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
PiDLF parameter-independent Lyapunov function. . . . . . . . . . . . . . . . . . . . . . . .261
q-LPV quasi-linear parameter-varying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Rb robust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
RMSE root mean square error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
SF state-feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
SISO single-input single-output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
SIS spatially interconnected system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
SDP semi-definite program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SOS sum-of-squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309
SP S-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
SVD singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
TV time-varying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
TVG time-varying graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
VISTA Variable stability In-flight Simulator Test Aircraft . . . . . . . . . . . . . . . . . . . 91
VAAC Vectored thrust Aircraft Advanced flight Control . . . . . . . . . . . . . . . . . . . 95
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Linear Algebra

∆ ⋆M Upper LFT.

M ⋆∆ Lower LFT.

M ≻ 0, M < 0 Positive (semi-)definiteness.

M ≺ 0, M 4 0 Negative (semi-)definiteness.

1n×m Matrix of ones with dimensions n×m.

1n
△
= 1n×1

In
△
= diag(1n) Identity matrix of dimensions n×n.

A ⊗ B Kronecker product.

A ⊛ B Khatri-Rao product.

Re (a) Real part of some complex number a ∈ C.

Im (a) Imaginary part of some complex number a ∈ C.

tr(M) Trace of matrix M.

adj(M) Adjoint of matrix M.

rank (M) Rank of matrix M.

dim (M) Dimensions of matrix M, s. t. if M ∈ Cn×m, dim (M) = (n,m).

in (M) Inertia of a matrix M, s. t. if with n−,n0,n+ being the eigenvalues with nega-
tive, zero and positive real part, respectively, in (M) = (n−,n0,n+).

Π Projection.

λ Eigenvalue.

σ, Σ Singular value and matrix of singular values, s. t. an SVD of a matrix M yields
M = UΣV∗.

ΛΛ
(
M
)

Spectrum of matrix M.

ΣΣ
(
M
)

Set of singular values of matrix M.

M⊤,M∗ Transpose and conjugate transpose of a matrix.

M−1,M† Inverse and pseudo-inverse of a matrix.
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Matrices

A,B,C,D / A,B,C,D / A , B, C , D

System, input, output and feed-through matrix of an open-loop/closed-
loop/specially denoted state space model, respectively.

i=1

diag
n

(Mi) Diagonal concatenation of matrices M1, M2, . . . , Mn.

i=1

col
n

(Mi) Vertical concatenation of M1, M2, . . . , Mn, s. t. M1 is on top.

i=1
row
n

(Mi) Horizontal concatenation of M1, M2, . . . , Mn, s. t. M1 is left-most.

Spaces, Sets and Mappings

N, N+ Set of whole numbers {0, 1, 2, 3, . . .} and set of whole numbers without zero.

Z Set of integers, i. e., set of whole numbers with additive inverses.

Rn×m Set of real-valued n×m matrices.

R+ Set of non-negative real-valued scalars.

Cn×m Set of complex-valued n×m matrices.

Sn Set of real-valued symmetric n×n matrices.

Hn Set of complex-valued hermitian n×n matrices.

AS
n Set of real-valued skew-symmetric n×n matrices.

AH
n Set of complex-valued skew-hermitian n×n matrices.

jRn×m Set of purely imaginary-valued n×m matrices.

C0(F1, F2) Set of continuous functions mapping from some field F1 into another F2.

Ck(F1, F2) Set of k-times continuously differentiable functions mapping from some field F1

into another F2.

A Typical typeset for a set.

A×B Cartesian product of the sets A and B.

conv (A) Convex hull of the set A, i. e., a set conv (A) ⊇ A containing A, but enlarged to
form the smallest possible convex set.

hyp (A) Hyperbox of the set A, i. e., a set hyp (A) ⊇ A containing A, but enlarged to form
a convex set that contains all combinations of maximum and minimum values of
independent dimensions.
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Spaces, Sets and Mappings, cont’d

im(M) Image or column space of a matrix M. Instead of a space, it can also denote a
matrix containing a basis of the image space, i. e., if N = im(M) ∈ Cn×m, then
∃α ∈ Cm, s. t. M = Nα.

ker(M) Kernel or null space of a matrix M. Instead of a space, it can also denote a matrix
containing a basis of the null space, i. e., if N = ker(M), then MN = 0.

Signals and Systems

P, P, P Generalized plant—LPV system, input-output operator, system matrix.

T, T , T Closed-loop plant—LPV system, input-output operator, system matrix.

K, K, K Controller—LPV system, input-output operator, system matrix.

G, G, G Physical plant model—LPV system, input-output operator, system matrix.

Gσ
ρ , Gσ

ρ , Gσ
ρ Physical plant model associated with the parameter set and rates (ρ,σ)—LPV

system, input-output operator, system matrix.

G =

[
A B

C D

]
Rosenbrock notation. G(s) = D+C(sI−A)−1B.

(ρ,σ), (δ,η), (θ,ν), (φ,ψ), (υ, ζ)

LPV scheduling signals and associated rates of change. Typically denoting param-
eters (from left to right) that incur general, rational or affine parameter depen-
dency. The last tupel denotes parameters in which a system’s inertia, damping
and stiffness matrix is affine.

(ρ,σ), (δ,η), (θ,ν), (φ,ψ), (υ, ζ)

Compact set of admissible values of the signal ρ(t) and compact set of admissible
values of the rates of change σ(t) of the signal ρ(t) as well as for parameters δ(t),
θ(t), φ(t), υ(t) and associated rates η(t), ν(t), ψ(t), ζ(t).

Fρ,Fδ,Fθ,Fφ,Fυ, Fσρ ,Fη
δ

,Fνθ,Fψ
φ

,Fζυ

Set of admissible trajectories of the signal ρ(t), or parameter δ(t), θ(t), φ(t) or
υ(t), respectively, and with bounds on the respective rates η(t), ν(t), ψ(t) or ζ(t).

s = σ+ jω Complex frequency variable, Laplace operator.

σ, ω Real part of complex frequency variable σ and frequency ω .

Ln
2 Space of n-dimensional signals square integrable over t ∈ [−∞,∞].

‖ · ‖p Vector p-norm. If p = 2, ‖ · ‖2 = ‖ · ‖.
‖ · ‖2 Induced L2-norm.

x(t) State vector.

x(t) Closed-loop state vector.

u(t) Input vector.

y(t) Output vector.
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Signals and Systems, cont’d

w(t) Performance input vector.

z(t) Performance output vector.

q•(t) LFT input vector w. r. t. the parameter block associated with • ∈ {∆,Θ,Φ,Υ,Λ}.

p•(t) LFT output vector w. r. t. the parameter block associated with • ∈ {∆,Θ,Φ,Υ,Λ}.

v(t) Interconnection input vector.

d(t) Interconnection output vector.

x̄(t) Equilibrium of signal x(t).

∂x(t) Deviation ∂x(t)
△
= x(t) − x̄(t) of signal x(t) from the equilibrium x̄(t).

Miscellaneous Symbols

m
(
•
)
, mj

(
•
)

Vector of monomials m
(
•
)

and jth monomial mj

(
•
)

as the jth entry.

p
(
•
)
, pj

(
•
)

Vector of polynomials p
(
•
)

and jth polynomial pj

(
•
)

as the jth entry.

k̃
(
•
)
, k̃ij

(
•
)

Matrix k̃
(
•
)

resulting from factoring out a monomial vector from the vector of
generalized forces. Matrix entry k̃ij

(
•
)

for ith row and jth monomial.

k̃ijk
(
•
)

Matrix entry k̃ijk
(
•
)

of LPV representation, resulting from multiplication of
k̃ij
(
•
)

with the kth state.

c
(l)
ijk, c

(l)
ij Selector coefficient c

(l)
ijk of the lth choice for the ith row, jth monomial and kth

state. Selector coefficient vector c
(l)
ij

△
=

nx
row
k=1

(
c
(l)
ijk

)
.

C
(l)
ij , C

(l)
i Selector coefficient matrix C

(l)
ij

△
=

nx

diag
k=1

(
c
(l)
ijk

)
of the lth choice for the ith row and

jth monomial. Selector coefficient matrix C
(l)
i

△
=

nm

diag
j=1

(
C
(l)
ij

)
of the lth choice for

the ith row.

⌊
a
b

⌋ ⌊
a
b

⌋ △
=






a/b, if b is a factor of a

0, otherwise.

ẋ(t) Time derivative of signal x(t), i. e., ẋ(t)
△
=

dx(t)
dt .

Complexity

a[M] Number of arithmetic operations necessary to calculate M.

m[M] Number of scalar variables necessary to store M.

d[L] Number of decision variables in LMI L.

s[L] Size of LMI L.

t[K] Synthesis time associated with the controller K.
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Interconnected Systems

G(t) Time-varying graph G(t) = (V, E(t), W(t)) defined as a tupel of a vertex set V, a
time-varying edge set E(t) and a time-varying set of weights W(t).

H Set of subsystem indices.

Hk Index set of neighboring subsystems to subsystem k.

Nk Vertex set of neighboring subsystems to subsystem k.

G Partition G = {G1, G2, . . . , Gg} of subsystem indices. The index sets Gf, f = 1, . . . ,g,
associate some subsystem index k ∈ H with a group index f.

dk In-degree matrix.

ef Column vector with zeros everywhere and ones in the entries, whose indices corre-
spond to the ones in the set Gf.

Ef Matrix with zeros everywhere and ones in the entries on the diagonal, whose indices

corresponds to the ones in the set Gf. Formal definition: Ef
△
= diag(ef).

L , L̃ Interconnection matrix or operator and its normalized version, respectively.

ℓ, ℓ̃ Interconnection matrix with scalar entries, s. t. L = ℓ ⊗ I and its normalized version,
respectively.

A , AN Adjacency matrix; row-normalized adjacency matrix.

I , IN Graph Laplacian; row-normalized graph Laplacian.

AAA
(
G(t)

)
,AAA N

(
G(t)

)
,III
(
G(t)

)
,III N

(
G(t)

)

Sets of admissible (row-normalized) adjacency and Laplacian matrices associated with
a time-varying graph G(t).

LLL , ℓℓℓ

Compact sets of admissible interconnection operator values.

FLLL , Fℓℓℓ

Sets of admissible topology variations.

ℓℓℓh×h
D , ℓℓℓh×h

N

Sets of diagonalizable and normal matrices of size h× h, respectively.

F
h×h
ℓℓℓ,R , Fh×h

ℓℓℓ,S , Fh×h
ℓℓℓ,AS

, Fh×h
ℓℓℓ,G,S , Fh×h

ℓℓℓ,D , Fh×h
ℓℓℓ,N ,

Sets of admissible topology variations, where the time (R+) is mapped into arbitrary,
symmetric, skew-symmetric, groupwise-symmetric, diagonalizable and normal matri-
ces of size h× h, respectively.

M̌ Decomposable matrix.

F Diagonalizing transformation.
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Interconnected Systems, cont’d

λ (Λ), λ̃ (Λ̃) Range of admissible eigenvalues of a possibly time-varying interconnection ma-
trix ℓ (L ) and its normalized version, respectively.

σ (Σ) Range of admissible singular values of a possibly time-varying interconnection
matrix ℓ (L ).

d, d, d̃, d̃, v, v, ṽ, ṽ

Interconnection output and input channels for the open- and closed-loop system
and their counterparts due to normalization.

σ
AS

Degree of asymmetry.

Matrix Inequalities

L LMI identifier.

N Matrix containing the basis of a null space.

V , ∂V Lyapunov function and derivative along a trajectory.

X, ∂X, X, ∂X Open- and closed-loop Lyapunov matrix X and X as well as their derivatives
along a trajectory.

Y, ∂Y, Y, ∂Y Dual open- and closed-loop Lyapunov matrix Y and Y as well as their derivatives
along a trajectory.

R, S Lyapunov matrices R and S of primal and dual projected BRL matrix inequality
conditions, respectively.

QR

(
•
)
, Parameter-dependent outer factor Q

(
•
)

of quadratically parameter-dependent
Lyapunov matrix R

(
•
)
= Q⊤

R

(
•
)
RQR

(
•
)
.

U
(
•
)

Parameter-dependent outer factor of some quadratically parameter-dependent
matrix inequality.

Γ Performance multiplier/IQC coefficient matrix.

M, M Multiplier in primal matrix inequality condition. The notation M refers to a
closed-loop analysis condition.

N, N Multiplier in dual matrix inequality condition. The notation N refers to a closed-
loop analysis condition.

P, P Multiplier in parameter-dependent Lyapunov matrix positive-definiteness condi-
tion. The notation P refers to a closed-loop analysis condition.

M̆, N̆ Higher-stage multipliers in primal/dual matrix inequality conditions.

R, S, Q Block-matrices of multipliers.

• Symmetric completion in a symmetric matrix, i. e.,

[
M11 M12

• M12

]
=

[
M11 M12

M⊤
12 M22

]
and

[
•
]⊤
QN = N⊤QN.
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cl, ol Closed-loop, open-loop.

p Performance channel.

u Input channel.

y Output channel.

∆, Θ, Φ, Υ, Λ LFT-LPV channel w. r. t. the parameter block ∆, Θ, Φ, Υ or Λ.

e Error signal channel.

r Reference signal channel.

i Interconnection signal channel.

v Vertex.

g Grid.

0 Nominal value.

N Normalized value.

w Weighted value.

mu
(
•
)
, mm

(
•
)

Monomial vector with univariate and multivariate monomials.

x̂, P̂, ∆̂ Approximated signal x, system P or matrix ∆.
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[43] S. Geršgorin. ≪Über die Abgrenzung der Eigenwerte einer Matrix.≫ In: Bulletin de
l’Académie des Sciences de l’URSS 6 (1931), pp. 749–754 (cit. on pp. 221, 279).

[44] K. Glover and D. McFarlane. ≪Robust Stabilization of Normalized Coprime Factor Plant
Descriptions with H-Infinity-Bounded Uncertainty.≫ In: IEEE Trans. Automat. Contr. 34.8
(1989), pp. 821–830. issn: 0018-9286 (cit. on pp. 119, 319).

[45] P. S. Gonzalez Cisneros, C. Hoffmann, M. Bartels, and H. Werner. ≪Linear Parameter-
Varying Controller Design for a Nonlinear Quad-Rotor Helicopter Model for Use in Dis-
tributed Formation Control Schemes.≫ In: Proc. 54th IEEE Conf. Decision Control. 2015 (cit.
on p. 277).

[46] P. S. Gonzalez Cisneros, C. Hoffmann, M. Bartels, and H. Werner. ≪Linear Parameter-
Varying Controller Design for a Nonlinear Quad-Rotor Helicopter Model for High Speed
Trajectory Tracking.≫ In: Proc. Amer. Control Conf. 2016 (cit. on pp. 285–288, 378).
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[153] J. Veenman, C. W. Scherer, and H. Köroglu. ≪Robust Stability and Performance Analysis
With Integral Quadratic Constraints.≫ In: Preprint Series Stuttgart Res. Centre Sim. Technol.
(2015) (cit. on p. 311).

[154] J. J. P. Veerman, G. Lafferriere, J. S. Caughman, and A. Williams. ≪Flocks and Formations.≫

In: J. Stat. Phys. 121.5-6 (2005), pp. 901–936. issn: 0022-4715. doi: 10.1007/s10955-005-6999-9
(cit. on p. 221).

[155] P. Viccione, C. W. Scherer, and M. Innocenti. ≪LPV Synthesis with Integral Quadratic Con-
straints for Distributed Control of Interconnected Systems.≫ In: Proc. 6th IFAC Symp. Robust
Control Des. 2009, pp. 13–18. doi: 10.3182/20090616-3-IL-2002.00003 (cit. on p. 310).

[156] M. Vidyasagar. Nonlinear Systems Analysis. 2nd. Classics in Applied Mathematics. 3600

University City Science Center, Philadelphia, PA 19104-2688: SIAM, 2002. isbn: 0898715261

(cit. on pp. 29–31).

[157] G. Vinniecombe. ≪A n-Gap Distance for Uncertain and Nonlinear Systems.≫ In: Proc. 38th
IEEE Conf. Decision Contr. 1999 (cit. on p. 308).

[158] J. Warren, S. Schaefer, A. N. Hirani, and M. Desbrun. ≪Barycentric Coordinates for
Convex Sets.≫ In: Adv. Comput. Math. 27.3 (2007), pp. 319–338. issn: 1019-7168. doi:
10.1007/s10444-005-9008-6 (cit. on pp. 25, 79, 324).

[159] S. Wollnack, C. Hoffmann, and H. Werner. ≪Affine LPV Controller Design with Linear
Growth of the Number of LMI Constraints.≫ In: Proc. Amer. Control Conf. 2013 (cit. on
p. 378).

[160] F. Wu. ≪Control of Linear Parameter Varying Systems.≫ Ph.D. Thesis. California and USA:
University of Berkeley, 1995 (cit. on pp. 16, 17, 31–34, 38, 60, 61, 95, 169).

[161] F. Wu. ≪A Generalized LPV System Analysis and Control Synthesis Framework.≫ In: Int.
J. Contr. 74.7 (2001), pp. 745–759. issn: 0020-7179 (cit. on pp. 4, 22, 36, 43, 44, 59, 64, 65, 67,
92, 117, 118, 167, 330, 332).

[162] F. Wu. ≪Distributed Control for Interconnected Linear Parameter-Dependent Systems.≫

In: IEE Proc., Control Theory Appl. 150.5 (2003), pp. 518–527. issn: 13502379. doi:
10.1049/ip-cta:20030706 (cit. on pp. 226–228, 310).

[163] F. Wu and K. Dong. ≪Gain-Scheduling Control of LFT Systems Using Parameter-
Dependent Lyapunov Functions.≫ In: Automatica 42.1 (2006), pp. 39–50. issn: 00051098.
doi: 10.1016/j.automatica.2005.08.020 (cit. on pp. 4, 6, 36, 41, 42, 58, 59, 63, 64, 92, 117, 170,
173, 309, 319, 325, 326).

http://dx.doi.org/10.1109/CDC.1998.758548
http://dx.doi.org/10.2514/6.2009-5637
http://dx.doi.org/10.1016/j.automatica.2014.10.002
http://dx.doi.org/10.2514/6.2009-5636
http://dx.doi.org/10.1007/s10955-005-6999-9
http://dx.doi.org/10.3182/20090616-3-IL-2002.00003
http://dx.doi.org/10.1007/s10444-005-9008-6
http://dx.doi.org/10.1049/ip-cta:20030706
http://dx.doi.org/10.1016/j.automatica.2005.08.020


Bibliography 365

[164] F. Wu, X. Yang, A. K. Packard, and G. Becker. ≪Induced L2-Norm Control for LPV Systems
with Bounded Parameter Variation Rates.≫ In: Int. J. Robust Nonlinear Contr. 6.9-10 (1996),
pp. 983–998. issn: 10498923 (cit. on pp. 4, 92).

[165] T. Yang, Z. Liu, H. Che, and R. Pei. ≪Distributed Robust Control of Multiple Mobile Ro-
bots Formations via Moving Horizon Strategy.≫ In: Proc. Amer. Control Conf. 2006. doi:
10.1109/ACC.2006.1656654 (cit. on p. 225).

[166] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall, N.J., USA,
1996. isbn: 0134565673 (cit. on pp. 27, 38, 257, 315–320).

Experimental LPV Control Applications

[E1] H. S. Abbas, A. Ali, S. M. Hashemi, and H. Werner. ≪LPV Gain-Scheduled Control of a
Control Moment Gyroscope.≫ In: Proc. Amer. Control Conf. 2013 (cit. on pp. 92–94, 96–98,
145, 147, 149).

[E2] H. S. Abbas, S. M. Hashemi, and H. Werner. ≪Decentralized LPV Gain-Scheduled PD
Control of a Robotic Manipulator.≫ In: Proc. ASME Dyn. Syst. Control Conf. 2009. doi:
10.1115/DSCC2009-2651 (cit. on pp. 92, 93, 97).

[E3] A. Abdullah and M. Zribi. ≪Control Schemes for a Quadruple Tank Process.≫ In: Int. J.
Comput. Commun. 7.4 (2012), pp. 594–605. issn: 1841-9836 (cit. on pp. 92–95, 97).

[E4] E. Alfieri, A. Amstutz, Onder, Christopher H., and L. Guzzella. ≪Automatic Design and
Parametrization of a Model-Based Controller Applied to the AF-Ratio Control of a Diesel
Engine.≫ In: 5th IFAC Symp. Adv. Automotive Control. 2007 (cit. on pp. 93, 97).

[E5] D. Andreo, V. Cerone, D. Dzung, and D. Regruto. ≪Experimental Results on
LPV Stabilization of a Riderless Bicycle.≫ In: Proc. Amer. Control Conf. 2009. doi:
10.1109/ACC.2009.5160397 (cit. on pp. 92, 93, 97).

[E6] H. M. N. K. Balini, J. Witte, and C. W. Scherer. ≪Synthesis and Implementation of Gain-
Scheduling and LPV Controllers for an AMB System.≫ In: Automatica 48.3 (2012), pp. 521–
527. issn: 00051098. doi: 10.1016/j.automatica.2011.08.061 (cit. on pp. 92, 93, 95, 97).

[E7] P. Ballesteros and C. Bohn. ≪A Frequency-Tunable LPV Controller for Narrowband Active
Noise and Vibration Control.≫ In: Proc. Amer. Control Conf. 2011 (cit. on pp. 92–95, 97).

[E8] P. Ballesteros and C. Bohn. ≪Disturbance Rejection through LPV Gain-Scheduling Control
with Application to Active Noise Cancellation.≫ In: Proc. 18th IFAC World Congr. 2011 (cit.
on pp. 92–95, 97).

[E9] P. Ballesteros, X. Shu, and C. Bohn. ≪A Discrete-time MIMO LPV Controller for the Re-
jection of Nonstationary Harmonically Related Multisine Disturbances.≫ In: Proc. Amer.
Control Conf. 2014, pp. 4464–4469 (cit. on pp. 92, 93, 95, 97).

[E10] P. Ballesteros, X. Shu, and C. Bohn. ≪Active Control of Engine-Induced Vibrations in Au-
tomotive Vehicles through LPV Gain Scheduling.≫ In: SAE Int. J. Passeng. Cars – Electron.
Electr. Syst. 7.1 (2014), pp. 264–272. issn: 1946-4622. doi: 10.4271/2014- 01- 1686 (cit. on
pp. 92, 93, 95, 97).

[E11] P. Ballesteros, X. Shu, W. Heins, and C. Bohn. ≪LPV Gain-Scheduled Output Feedback for
Active Control of Harmonic Disturbances with Time-Varying Frequencies.≫ In: Advances
on Analysis and Control of Vibrations. Ed. by M. Zapateiro de la Hoz and F. Pozo. InTech,
2012, pp. 65–86. isbn: 9789535106999. doi: 10.5772/50294 (cit. on pp. 92–95, 97).

[E12] P. Ballesteros, X. Shu, W. Heins, and C. Bohn. ≪Reduced-Order Two-Parameter pLPV Con-
troller for the Rejection of Nonstationary Harmonically Related Multisine Disturbances.≫

In: Proc. Europ. Control Conf. 2013 (cit. on pp. 92–95, 97, 98).

http://dx.doi.org/10.1109/ACC.2006.1656654
http://dx.doi.org/10.1115/DSCC2009-2651
http://dx.doi.org/10.1109/ACC.2009.5160397
http://dx.doi.org/10.1016/j.automatica.2011.08.061
http://dx.doi.org/10.4271/2014-01-1686
http://dx.doi.org/10.5772/50294


366 Bibliography

[E13] J. D. Bendtsen and K. Trangbæk. ≪Discrete-Time LPV Current Control of an Induction
Motor.≫ In: Proc. 42nd IEEE Conf. Decision Contr. 2003, pp. 5903–5908 (cit. on pp. 92–95, 97).

[E14] F. D. Bianchi, C. Kunusch, C. Ocampo-Martinez, and R. S. Sanchez-Pena. ≪A Gain-
Scheduled LPV Control for Oxygen Stoichiometry Regulation in PEM Fuel Cell Sys-
tems.≫ In: IEEE Trans. Contr. Syst. Technol. 22.5 (2014), pp. 1837–1844. issn: 1063-6536. doi:
10.1109/TCST.2013.2288992 (cit. on pp. 92, 93, 96, 97).
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