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Summary

For problems involving cooperative control of multiple vehicle agents, it is
commonly proposed to divide the problem into a study of networks of simpli-
fied vehicle models (network dynamics) and apply local tracking controllers
on complex vehicles (tracking dynamics) such that these vehicles track the
trajectories generated by simplified models. Building on this paradigm, two
modular architectures are studied in this thesis.

The coupled architecture is studied first, where the tracking dynamics
module is embedded inside the network dynamics module in a cascaded struc-
ture and agents share their outputs (positions and/or velocities) with neigh-
boring agents. Non-convex flocking interaction potentials with additional
forcing terms are proposed to address the source-seeking problem, where
agents are required to locate the minimum of an external scalar field. The
proposed dynamics are experimentally tested with small quadrotors and an-
alyzed using dissipativity theory and integral quadratic constraints (IQCs).
Stronger performance analysis results are obtained with the so-called Zames-
Falb (ZF) a-IQCs when considering convex interaction potentials. A deriva-
tion of the general high order non-causal ZF a-1QCs along with a parameter-
ization is given making all arguments in time-domain and therefore allowing
straightforward extensions to linear parameter varying systems. Numerical
examples and simulation studies involving quadrotor models and underwater
robot models, among others, complement the theoretical results.

The decoupled architecture is studied thereafter, where the tracking dy-
namics module is connected in series with the network dynamics module such
that agents share virtual outputs (generated by the simplified models) with
neighboring agents while locally trying to follow these virtual trajectories.
The induced I to I, norm is used to analyze the extent to which the de-
coupled architecture is reasonable. The obtained peak tracking-error either
justifies the architecture or detects a possible collision. Finally, the focus
is brought on network dynamics module by considering packet dropouts. A
novel consensus protocol is proposed as a generalization of existing protocols
and its benefits are demonstrated on a representative example.
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Chapter 1

Introduction

The last few decades have witnessed a lot of work in the analysis and design of
distributed control laws for groups of mobile robots undergoing specific coor-
dination tasks. See [Chen and Ren, 2019}, [Bullo et al., 2009], [Bullo, 2021],
[Ren and Beard, 2008], [Mesbahi and Egerstedt, 2010] and the references
therein for examples. A major portion of the literature typically assumes
simple agent dynamics such as single or double integrator dynamics. When
considering interconnections of higher order non-linear agent dynamics such
as quadrotors, unicycle models or complex underwater robots, it is commonly
proposed (for example in [Cortés and Egerstedt, 2017], [Ren and Beard,
2008], [Francis and Maggiore, 2016], [Fax and Murray, 2004], [de Campos
et al., 2012]) to implement local tracking controllers on these complex vehi-
cles such that they track the trajectories generated by the simplified first or
second-order dynamics. The authors in [Cortés and Egerstedt, 2017] propose
to design cooperative control algorithms for interconnected systems assuming
single integrator agent dynamics and wrap local tracking controllers around
these trajectories so that agents with high-order complex dynamics act like
single integrators. This idea is further demonstrated for differentially flat
systems [van Nieuwstadt et al., 1998] with a simple example of a kinematic
unicycle in [Cortés and Egerstedt, 2017], without considering disturbances
on the agents. Similar architectures with local tracking controllers have been
proposed in [Francis and Maggiore, 2016]. For example, it is proposed that
a bicycle model under high gain feedback control can be approximated by a
unicycle, which can be feedback linearized to an integrator, thereby allowing
(in principle) the application of first-order consensus protocols on these com-
plex vehicle models. Such modular architectures have also been reported in
[Ren and Beard, 2008, Fig. 8.5 and Fig. 8.6], where the control architecture
is composed of a first-order consensus module, a formation keeping module
and so on. A consensus loop in series with a decoupled local tracking control
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loop is considered and the stability of the overall system is implied by the
series connection of two input-to-state stable systems (see Section 8.3.4 in
[Ren and Beard, 2008]). Such architectures with different degrees of coupling
between physical agents are discussed but a quantitative measure which can
act as a guideline for deciding on the architecture is absent in the litera-
ture. A decoupled architecture for extending the framework of flocking to
general vehicle models is pursued in [Z. Li et al., 2011] where an £; adaptive
control technique is used to guarantee tracking performance with the caveat
of having no bounds on the control input. Another closely related line of
work is to use arguments from singular perturbation theory and time-scale
separation as in [Awad et al., 2019], [Awad et al., 2015], where the tracking
dynamics are assumed to be much faster than the consensus dynamics and
vice-versa. A similar decoupled architecture in the continuous-time setting
is considered in [de Campos et al., 2012] where stability analysis is presented
without a discussion on the applicability of the decoupled architecture. In
a discrete-time setting, [Fax and Murray, 2004], [Pilz et al., 2011] consider
information flow filters that decouple information flow dynamics and local
tracking dynamics and present a stability analysis. A comparison between
two such architectures is presented in [Bartels and Werner, 2014].

One of the overarching goals of this work is to build on these ideas and

disturbance

-- Tracking dynamics module f------

: Slmpllﬁed reference' | Tracking Vehicle E i
| —| vehicle : , —
! . output ., | controller dynamics |+ |,
! dynamics : T ‘ |
i | | Information vehicle :
! exchange output E

Figure 1.1: Coupled architecture where each vehicle agent shares true outputs
with neighboring agents via the Information exchange block.
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analyze such modular control architectures. Figures 1.1 and 1.2 show two
such modular architectures considered in this work. The Tracking dynamics
module consists of high-order, possibly non-linear Vehicle dynamics subject
to local disturbances and a Tracking controller producing a desired closed-
loop behavior. The Network dynamics module on the other hand consists of
Simplified vehicle dynamics and an Information exchange block distributing
information among neighboring agents in the network. Based on the type
of architecture used, each agent either shares vehicle outputs with neighbor-
ing agents (see Fig. 1.1) or shares a virtual reference output generated by
simplified dynamics (see Fig. 1.2). This is described by the different input
signals going in to the Information exchange block.

The rationale behind such architectures is that if the tracking controllers
are well tuned and are able to track the generated reference trajectories well,
the output trajectories generated from the overall dynamics are close to the
trajectories generated from the dynamics with simplified models which are
well studied in the literature. Most of the work presented here can be seen
as analyzing (whenever possible) and testing the validity of the this rationale
for both architectures depicted in Fig. 1.1 and Fig. 1.2.

The decoupled architecture (as depicted in Fig. 1.2) considers a situa-
tion when only the references generated by the Simplified vehicle dynamics,
the virtual reference outputs, are shared between different vehicles and the

disturbance
1= N k i 1 -7 . .
| etwork dynamics module v Tracking dynamics module 4-------
: Sunphﬁed reference ., | Tracking Vehicle |
. —{ vehicle - R
! : output 1| controller dynamics |
! dynamics ' T ‘ .
E | | Information i
! exchange !

Figure 1.2: Decoupled architecture where each vehicle agent shares a virtual
output generated by Simplified vehicle dynamics with neighboring agents via
the Information exchange block.
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true output trajectories are not shared. This architecture is favorable in sce-
narios involving large inter-agent distances where the disturbances need to
be rejected locally at individual agents with no effects stemming from the
disturbances being propagated throughout the network. Since all agents are
oblivious to the true outputs (such as positions) of its neighboring vehicles, a
natural question that arises is if one can bound the worst case (peak) tracking
error at each vehicle and thereby provide bounds on the deviations of the ve-
hicles’” true outputs from the communicated one. This question is addressed
in Chapter 4, where a quantitative measure is provided which takes into ac-
count the disturbances acting at each individual agent. Such a quantitative
measure can assist in making the decision on the choice of architecture used
and is absent in the current literature. As part of the study of the decoupled
architecture, Chapter 5 focuses attention on the simplified first-order consen-
sus dynamics (Network dynamics module from Fig. 1.2), where the network
is considered to be non-ideal and involves packet dropouts. The more in-
volved (and arguably more interesting) coupled architecture (as depicted in
Fig. 1.1) considers the situation, where the true positions of the vehicles
are shared with neighboring vehicles. Scenarios involving tightly coupled
vehicle agents with small inter-vehicle distances necessitate the use of this
architecture since even small disturbances could possibly cause a collision
and the agents typically need to react to disturbances acting on neighboring
agents. To consider a concrete scenario for the analysis of the coupled archi-
tecture, Chapter 2 and Chapter 3 focus attention on the specific problem of
source-seeking.

With this short and general introduction to modular architectures con-
sidered in this work, the next two sections, viz., Section 1.1 and Section 1.2,
introduce the specific problems considered in this work along with the most
relevant literature, followed by a discussion on the adopted philosophy in
Section 1.3 and a list of main contributions and an outline in Section 1.4.

1.1 Source-Seeking Dynamics Under a Cou-
pled Architecture

One interesting application scenario of cooperative control of large groups of
mobile robots is termed as the source-seeking problem and this forms the focal
point for the work on coupled architecture considered here. This problem is
abstracted from practical problems such as that of finding the source of an
oil spill [Senga et al., 2007], [Aznar et al., 2014], the source of a gas leakage
[Burgués et al., 2019] or the source of light [Duisterhof et al., 2021], etc. For
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Figure 1.3: Radiation levels after the Fukushima disaster [Jeffrey Norris,
2012].

another concrete example, consider the Fukushima nuclear disaster of 2011
and the radiation levels depicted in Fig. 1.3. In such a scenario, in order
to not put humans at risk, it would be desirable to deploy a fleet of robots
with suitable sensors such that they cooperatively locate regions with highest
radiation levels. For example, each robot could measure the radiation level at
its respective location, communicate this with neighboring robots, estimate
the gradient and move along the gradient to hopefully locate the source.

The abstract mathematical problem then relates to designing distributed
control algorithms, that can be locally implemented on agents, that drive
them to the minimum (or maximum based on convention) of an external
scalar field (such as the radiation levels or luminosity). This needs to be
achieved by cooperating with nearby agents but without the presence of
a centralized control unit. Prior works addressing this problem include
[Leonard and Fiorelli, 2001], which is based on the flocking framework de-
veloped in [Ogren et al., 2004], where a high fidelity simulation with the
model of an underwater glider is used to demonstrate the approach. In [An-
gelico et al., 2021], the authors provide a gradient-free approach by using
ideas from extremum-seeking control [Zhang et al., 2007] and provide some
robot-in-loop experiments with an omni-wheel robot. Another gradient-free
approach based on flocking is presented in [Turgeman et al., 2019], where
experimental results were demonstrated with eight differential drive robots.
A recent work dealing with quadrotors [Parker et al., 2019] uses ideas from
particle swarm optimization and repulsive potential fields to deal with ob-
stacle avoidance which is typically not included in the literature on particle
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Figure 1.4: Non-convex pair-wise interaction potential ¢, = 5(|q; — | — 1)
(left) and convex pair-wise interaction potential ¢, = 3(g; — ¢; — 1)? (right).

swarm optimization. An algorithm to seek light sources has been recently
developed in [Duisterhof et al., 2021], whereas for localization of a gas source,
an additional olfactory sensor was developed and tested in [Burgués et al.,
2019]. Source-seeking with circular rotating formations is studied in [Moore
and Canudas-de Wit, 2010], [Sepulchre et al., 2007] where the agents are re-
quired to continuously revolve around a virtual point to estimate the gradient
at this point. Most of the literature on such source-seeking problems uses
tools from extremum-seeking control [Khong et al., 2014], [Li et al., 2020],
[Diirr et al., 2017], [Zhang et al., 2016], [Angelico et al., 2021]. One of the
ideas in these works is to inject an oscillating signal in order to collect data
for estimating the gradient of the external field. The approach taken in this
work deviates from the above approach in the sense that the gradient (and
the Hessian) is assumed to be cooperatively estimated by communicating
with neighbors and collecting relevant measurement data from neighboring
agents. This fairly intuitive idea is demonstrated in experiment under an ar-
tificially corrupted field measurement. Furthermore, in order to improve the
estimated gradients, a cooperative control strategy (flocking/ formation con-
trol) is deployed so that the vehicles spread out uniformly, thereby improving
the estimation. That being said, the aspects tied to gradient and Hessian
estimation are not the focus in this work and are not considered in analysis
but only tested in experiment, i.e., the theoretical results developed in this
work assume the availability of the gradient. The only exception to this is
Theorem 3.11 where a multiplicative noise in the gradient measurement is
explicitly considered.

Two cooperative control mechanisms are studied in this thesis, viz., the
flocking dynamics introduced by [Olfati-Saber, 2006] and formation control
dynamics presented in [Fax and Murray, 2004]. Since the flocking frame-
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work specifies the desired arrangement of agents based on distances (without
directions), it models the interactions by a non-convex pairwise interaction
potential such as the one shown in Fig. 1.4 (left) for agents i and j. Note
that the desired arrangement of agents which corresponds to the minima of
the interaction potential is achieved when ¢; = ¢; +1. In contrast, the forma-
tion control dynamics specifies the desired arrangement of agents based on
distances and directions which is modeled by a convex pair-wise interaction
potential such as the one shown in Fig. 1.4 (right). Note that the desired
arrangement of agents which corresponds to the minimum of the interaction
potential is achieved when ¢; = ¢; + 1.

The analysis of the more involved flocking dynamics for general, possibly
non-linear, vehicles specifically addressing the source-seeking problem is the
main goal of Chapter 2. Chapter 2 uses the flocking framework developed
in [Olfati-Saber, 2006] and proposes to add a forcing term that drives the
flock towards the source. The forcing term is motivated from momentum
methods in optimization [Alvarez et al., 2002], [Attouch and Redont, 2001].
The idea here is to modify the dynamics of typical methods such as steepest-
descent or Newton by adding some memory (or momentum). It is known that
this usually damps oscillations and accelerates the convergence. Motivated
by the second-order continuous-time dynamics of Newton-type methods [Al-
varez et al., 2002], a forcing term is defined that drives the flock of agents
towards the source. In the spirit of the coupled architecture discussed in the
previous section (see Fig. 1.1), fast velocity tracking controllers are wrapped
around simplified double integrator velocities as suggested in [Cortés and
Egerstedt, 2017]. This is analyzed in Section 2.1 first with double integrator
agent dynamics and experimentally tested with an indoor quadrotor setup
and reported in Section 2.1.3. The stability analysis, first presented for dou-
ble integrator agents, is extended to general non-linear agents with a given
input-output tracking performance in Section 2.2 and numerical simulations
with a complex underwater vehicle model are presented in Section 2.2.3. Al-
though the theoretical results are under the assumption of strictly convex
fields and availability of gradients, experimental results (see Section 2.1.3)
on non-convex fields with noisy measurements show that with a pre-filtering
step, these protocols perform well in practice. All the theoretical results
discussed above are presented in the framework of dissipativity [Scherer and
Weiland, 2000], where an energy-like function, called a storage function, is
sought which is used to show convergence of state trajectories to equilibria.
For the results presented above, the storage functions are constructed based
on physical intuition.

As a prelude to Chapter 3, a generalization of the stability analysis pre-
sented in Section 2.2.2 using the framework of integral quadratic constraints
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(IQC/IQCs) [Megretski and Rantzer, 1997] is given in Section 2.3. The
framework of IQCs is used for analyzing the stability of an interconnection
of two systems; a linear and stable nominal system and a possibly non-linear
uncertain system. The key idea is to capture the input-output properties of
the uncertain system in the form of integral quadratic constraints and use
these constraints to derive sufficient conditions on the nominal system that
certify stability of the interconnection. See [Veenman et al., 2016], [Jons-
son, 2001] for a tutorial. The results obtained from the so-called hard-IQCs
[Megretski and Rantzer, 1997] can be interpreted with dissipativity-based
arguments and vice-versa. This equivalence connects the results obtained in
Chapter 2 which are based on dissipativity arguments to the results from
Chapter 3 where hard-1QCs are used.

The standard formation control dynamics (an example of the coupled
architecture) is extensively studied in the literature (see [Fax and Murray,
2004], [Bartels and Werner, 2014], [Gonzalez et al., 2015], [Hoffmann and
Werner, 2017] for a few representative examples and [Chen and Ren, 2019]
for an example survey). Source-seeking dynamics with interactions based on
formation control is the focus of Chapter 3. Furthermore, convexity of the
interaction potential emerging from formation control dynamics allows for
analyzing exponential performance instead of merely stability. The main tool
for analyzing robust performance of source-seeking dynamics under formation
control interactions is the framework of IQCs.

The starting points for the theoretical work on 1QCs presented here are
[Lessard et al., 2016] and [Hu and Seiler, 2016] where the exponential ver-
sions of the IQCs are introduced for systems in discrete-time (p-1QCs) and
in continuous-time (a-IQCs), respectively. Zames-Falb (ZF) o-1QCs with
causal multipliers are introduced in [Hu and Seiler, 2016]. While [Zhang
et al., 2019] extends [Lessard et al., 2016] to less conservative non-causal ZF
multipliers in the discrete-time setting, [Freeman, 2018] presents the exten-
sion of [Hu and Seiler, 2016] to non-causal multipliers in the continuous-time
setting. The theory developed in [Freeman, 2018] is in a very general setting
of Bochner spaces and covers Lemma 3.12 in this work. Moreover, proof
of [Freeman, 2018, Lemma 3] (which corresponds to Lemma 3.12 here) is
not available and a proof, making all arguments in time-domain instead of
frequency-domain, is given here building on ideas presented in a sidebar in
[Scherer, 2022]. [Freeman, 2018] focuses on the derivation of the IQCs and
does not consider parameterizations of the multiplier to arrive at a quasi-
convex optimization problem for performance analysis. The present work
extends these results by considering a parameterization proposed in [Veen-
man et al., 2016] adapted to the a-IQCs setting. Different multiplier factor-
izations are compared in [Zhang et al., 2019] which includes the discrete-time
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analogue of the parameterization in [Veenman et al., 2016]. In the spirit of
[Zhang et al., 2019] and [Freeman, 2018|, which present examples showing
the benefit of non-causal multipliers, an example of a continuous-time sys-
tem with an integrator and an example of a linear parameter varying (LPV)
system demonstrating the benefit of non-causal higher order multipliers over
causal ones are presented. A closely related work is [Fazlyab et al., 2018],
where causal and static multipliers are used to obtain non-exponential con-
vergence rates when the dynamics are not exponentially stable. Finally,
previous works (such as [Lessard et al., 2016], [Hu and Seiler, 2016] and
[Freeman, 2018]) on the exponential version of IQCs present results for lin-
ear time invariant (LTI) systems. Since all arguments made here are with
hard-1QCs in time-domain, it is rather straightforward to extend these re-
sults to LPV [Shamma and Cloutier, 1992] systems as it is done in [Pfifer
and Seiler, 2015] for the standard IQCs. An example of such an extension
to LPV systems is demonstrated in Theorem 3.4. This opens the doors for
considering non-linear vehicle models with quasi-LPV representations. The
framework developed here can be applied to extremum-seeking control prob-
lems [Michalowsky and Ebenbauer, 2016], or problems involving realtime-
optimization [Nelson and Mallada, 2018]. Although the setup considered
in [Nelson and Mallada, 2018] is similar to the one considered here (except
for the LPV extension), the focus there is on designing an optimizer and
obtaining conditions for optimality and stability with static a—IQCs.

When considering formation control dynamics with a gradient-based forc-
ing term, the recent work on the analysis of distributed optimization algo-
rithms [Sundararajan et al., 2020] becomes relevant since the overall closed-
loop dynamics emerging there are almost identical. Assuming one correctly
translates the discrete-time results obtained in [Sundararajan et al., 2020] to a
continuous-time setting, the first key hindrance in directly applying the ideas
from [Sundararajan et al., 2020] is that the problem considered here allows
for a subset of agents (instead of all agents) to have the gradient information,
thereby making the dynamics heterogeneous in a sense. The requirement on
the connectedness of the graph is also relaxed and instead existence of a
path to at least one agent with gradient information is required. As a result,
the decomposition approach used in [Sundararajan et al., 2020] to obtain a
smaller linear matrix inequality (LMI/ LMIs) does not go through without
modification. More importantly, since time-varying graphs are not consid-
ered here, dynamic multipliers can be used instead of the static multipliers
used in [Sundararajan et al., 2020].

The monograph [Arcak et al., 2016] presents a dissipativity and IQC
based compositional approach to analyzing stability and performance of an
interconnected system by using properties of its sub-systems. Sparse LMIs
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with a known structure are derived that can be efficiently solved with dis-
tributed optimization algorithms. In contrast, the results presented in this
thesis derive LMIs that are independent of the network size and have a com-
plexity corresponding to the analysis of a single sub-system. Furthermore, the
interconnection structure is assumed to be uncertain. However, the results
presented here have a similar essence of decomposing the overall system into
dissipative subsystems interconnected through an uncertain operator char-
acterized via a dissipation inequality or an integral quadratic constraint.

1.2 Formation Control Under a Decoupled Ar-
chitecture

The goal of Chapter 4 is to analyze the decoupled architecture and under-
stand the extent to which the decoupled architecture is reasonable in the
context of a formation stabilization problem. Although [Z. Li et al., 2011]
presents a decoupled architecture for flocking of higher order vehicle models,
the technique proposes gain adaptation to ensure a guarantee on the tracking
performance which may come at the cost of high control input. This is not
addressed in [Z. Li et al., 2011]. Moreover, flocking dynamics are suitable
when agents have small inter-agent distances and are tightly coupled. This
tight coupling therefore necessitates that agents react to disturbances acting
on neighboring agents to avoid collisions and therefore a decoupled archi-
tectures seems unreasonable for scenarios involving flocking dynamics. The
decoupled architecture is hence studied in the context of formation stabiliza-
tion with slightly higher inter-agent distances. The [, norm (see Section 1.5.2
for the definition) is used as the performance measure of the local tracking
performance. Based on the inter-agent distances of the simplified dynamics,
this I, norm of the tracking error can be used to either argue that the tra-
jectories remain collision free or to decide on a coupled architecture in case
a collision is possible. A very closely related problem of consensus of gen-
eral non-linear vehicles modeled as quasi-LPV systems is considered in the
continuous-time setting in [Hespe et al., 2020]. In contrast to [Hespe et al.,
2020], a priori knowledge of the spectrum of the graph Laplacian is not re-
quired here. Instead, the recently developed results [Rantzer and Valcher,
2018], [Rantzer, 2015] on scalable analysis and control of positive systems
are used as the first main ingredient in our analysis. As a second ingredi-
ent, a local input-output performance is used for the tracking dynamics to
obtain one LMI condition per agent that guarantees the stability and perfor-
mance of the local tracking feedback loops in the sense of the Iy to [, norm
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(generalized Hs norm [Scherer and Weiland, 2000], [Rotea, 1993]).

Chapter 5 focuses on consensus of first-order dynamics (Network dynam-
ics module from Fig. 1.2) in the presence of packet dropouts. Consensus
problems in networks with non-ideal communication have gained increasing
attention in the last few decades [Fagnani and Zampieri, 2009], [Zhang and
Tian, 2010], [Li et al., 2011], [Liu et al., 2011], [Miinz et al., 2010], [Wu and
Shi, 2012] and references in [Chen and Ren, 2019]. The kinds of imperfec-
tions include time delays, quantized communication and packet dropouts to
name a few. These imperfections in communication render the fairly well
understood consensus dynamics with ideal communications challenging to
analyze and at the same time interesting.

There are two intuitive ways for an agent (say agent i) to act when a
packet from a neighboring agent (say agent j) is dropped. In such a sce-
nario, agent ¢ can consider the link to be broken and thereby remove agent j
from its neighbors for that instant. This can be interpreted as replacing the
state of neighboring agent j by its own state. Alternatively, agent ¢ can use
the most recent information that was received from agent j. These two ways
and their various interpretations have been studied mainly in distributed es-
timation and average consensus [Fagnani and Zampieri, 2009]. [Wang et al.,
2010] compares these two ideas for the simplified case that when a packet
is lost, the whole network loses a packet. A Memory Weighted Protocol is
proposed in Chapter 5 which encompasses these two different approaches.
The intuition behind the proposed protocol is that in case of a lost packet
from agent j, agent ¢ uses a convex combination of its own state and the
most recent received information from agent j. The convex coefficients are
free variables and can be tuned based on different network characteristics,
agent dynamics etc. The sampling time is an important factor while de-
signing communication protocols whenever communication is expensive or
in general, when less frequent communication is preferred. However, there
is a limit on the variation of this sampling time in order to maintain the
guarantee on stability. Finding the least possible communication frequency/
maximum possible sampling time such that stability could still be certified
is a central motivation behind the proposed protocol. An effective gain e,
called the discrete gain, is defined, which is the product of control gain K
and sampling time T'. It is shown that with the proposed protocol, the set of
stabilizing values of the discrete gain is enlarged which allows less frequent
communication. At the same time, the proposed protocol allows for selecting
higher control gains which could be used to increase the convergence speed.
A representative example showing the benefit of the proposed protocol is
presented eventually.
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1.3 Juggling Between Theory, Simulation and
Experiment: Adopted Philosophy

The aim of this work is to make progress on open problems analytically in
terms of theorems that can be proven under some assumptions, while not los-
ing sight of the practical problem that motivates the analysis. This is done
by studying an abstract (usually simplified) mathematical problem which
has the same fundamental issues and properties as the original problem but
removes the less relevant details. This approach makes the analysis possi-
ble (due to the simplifying assumptions) while increasing our understanding
of some fundamental aspects of the original problem. At best, such an ap-
proach leads to an efficient methodology/algorithm which can be applied,
not just on the simplified problem, but on the actual practical problem. In
order to achieve this goal, this work juggles between theory and simulation
(and sometimes experiments), each complementing the other. For example,
consider the practical source-seeking problem of locating the source of an
oil-spill with an underwater mobile robot. Realistic situations involve non-
stationary scalar fields that are governed by partial differential equations
[Aznar et al., 2014]. Furthermore, the control of underwater robotic agents
such as the HippoCampus (see Appendix B.2) brings out other difficulties
such as the non-holonomic constraint, state-estimation, etc. (see [Hackbarth
et al., 2015], [Diicker et al., 2018b]). An abstraction of this complex problem
focusing on source-seeking that is amenable to theoretical analysis considers
a convex, stationary and smooth scalar field with locally stabilized vehicles
driven along the gradient directions of the scalar field. First and foremost,
the analysis illustrates pitfalls and situations, where even the abstracted
problem fails to yield a solution, thereby demanding a different approach
altogether. When the abstracted problem provides a solution, it may seem
remote from the original practical problem, but it guides heuristic strategies
that can then be tested on the original problem. The analysis is therefore
typically followed by simulation studies involving situations closer to reality
than the one treated in theory. Finally, experimental results further validate
the approach. In some situations, simulations and experiments (successful or
otherwise) trigger a further theoretical investigation as a means to explain
the observations. This underlying philosophy is the basis and methodology
for the results developed in this thesis.



Chapter 1. Introduction 13

1.4 Contributions and Outline

The key contributions of this work are summarized in the following list which
also acts as an outline for the thesis together with a graph depicted in Fig.
1.5, where paths represent a recommendation on possible reading sequences
and a general organization of chapters in this work.

1 An extension of flocking dynamics with additional forcing terms to ad-
dress the source-seeking problem is proposed, analyzed and experimen-
tally tested (see Section 2.1). Specifically, Theorem 2.1 and Corollary
2.2 present a standard dissipativity-based analysis of asymptotic stabil-
ity for double integrator agents under strictly convex external fields by
manually constructing storage functions. A practical implementation
strategy is proposed in the form of Algorithm 2.1 and experimentally
tested in an indoor experimental setup with 7 quadrotors under differ-
ent virtual scalar fields artificially corrupted with measurement noise
(see Section 2.1.3). These results (with slight variations) have been
reported in [Datar et al., 2020].

2 Extension of flocking-based source-seeking dynamics to general, possi-
bly non-linear, vehicle models under strictly convex external fields is
proposed and analyzed in Section 2.2. Specifically, Theorem 2.3 proves
asymptotic stability of the proposed dynamics using typical small-
gain-type arguments and provides a qualitative understanding of the
involved dynamics supporting the numerical simulations presented in
Section 2.2.3 with a complex non-holonomic underwater robot model.
These results (with slight variations) have been reported in [Attallah
et al., 2020].

3 Theorems 2.1 and 2.3 are generalized by using the framework of IQCs
to present a local analysis of asymptotic stability in Theorem 2.4. The
sufficient condition here is presented in the form of an LMI (indepen-
dent of network size) which automates the search for storage functions
instead of prescribing them manually as in item 2. This analysis is
applied on the model of a linearized quadrotor in Section 2.3.3. These
results have been reported in [Datar et al., 2022, under review].

4 Moving from robust stability to robust performance analysis, source-
seeking dynamics with LTI agents under uncertain strongly convex
external fields and convex inter-agent interactions (typical formation
control dynamics) with uncertain interconnections are analyzed in The-
orem 3.10. Supporting this main result, Lemmata 3.7 and 3.8 charac-
terize the equilibria of the source-seeking dynamics and Lemma 3.9
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provides a decomposition result to obtain an LMI independent of the
network size. Representative examples are provided in Section 3.3 that
suggest that the obtained estimates can be tight. Finally, the analysis is
extended to include multiplicative noise in the gradient measurement
in Theorem 3.11 along with a numerical example with a quadrotor
demonstrating the nominal performance versus noise robustness trade-
off (see Section 3.5.1). These results have been reported in [Datar and
Werner, 2022] and [Datar et al., 2022, under review]

As one of the critical ingredients for the main IQC result in Theorem
3.10, a derivation of the general non-causal ZF a-1QC along with an
adaptation of a standard ZF parameterization to the a-IQC setting
is given via Lemma 3.12 and Theorems 3.1 and 3.3. Lemma 3.12 is
covered by [Freeman, 2018, Lemma 3] where the result is presented in
a very general setting of Bochner spaces. Moreover, since the proof of
[Freeman, 2018, Lemma 3] is unavailable, a proof is given here making
arguments purely in time-domain to facilitate a seamless application
to LPV systems (and possibly non-linear systems) as demonstrated in
Theorem 3.4. This has been reported in [Datar and Werner, 2022] and
[Datar et al., 2022, under review].

A scalable analysis of the decoupled architecture for heterogeneous net-
works is presented in the form of LMIs using the induced l5 to [, norm
in Theorem 4.3 along with the corresponding controller synthesis LMIs
in Theorem 4.5. Under bounded local disturbances, the analysis either
validates the decoupled architecture by showing that the trajectories
remain collision free as shown in the numerical example in Section 4.4
or demands a consideration of the coupled architecture by detecting
possible collisions. These results have been reported in [Datar and
Werner, 2021].

The problem of consensus under packet dropouts is considered in Chap-
ter 5 and a novel memory-weighted consensus protocol based on two
standard protocols from the literature is proposed in (5.5). The pro-
posed protocol generalizes the two existing protocols. A representative
example demonstrating situations where the proposed protocol outper-
forms the two existing protocols is given in Section 5.4. These results
have been reported in [Datar et al., 2018]
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zation of the chapters.

1.4.1 Remarks on Existence and Uniqueness of Solu-

tions

A majority of dynamical systems considered here are described by non-linear
differential equations and an important aspect in their study is the existence
and uniqueness of sufficiently smooth solutions [Logemann and Ryan, 2014].
Such aspects are not addressed in this work but instead, an approach adopted

from [Scherer, 2022] is taken which sidelines these questions of existence and

uniqueness.
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The key idea is to derive sufficient conditions which imply that solu-
tions to these non-linear differential equations, whenever they exist, satisty
some desirable property such as asymptotic convergence or exponential con-
vergence to an equilibrium. For a concrete example, Theorem 3.4 derives
sufficient conditions which imply that the solutions to the non-linear differ-
ential equations governed by (3.25), whenever they exist, satisfy a desirable
property of exponential convergence with a specified rate a. There might
exist multiple solutions, no solution or a unique solution but Theorem 3.4
neither requires the existence of unique solutions, nor proves it. In this spirit,
the reader may substitute the phrase ‘trajectories generated by the dynam-
ics satisfy property X by ‘sufficiently smooth solutions of the dynamics,
whenever they exist, satisfy property X .

On the same note, the property of well-posedness usually associated with
the existence and uniqueness of solutions to feedback loops involving dynam-
ical systems is not central in this work, i.e., well-posedness is neither required
nor implied by the results considered here.

1.5 Notation

The common notation spanning multiple chapters is now discussed.

1.5.1 General Notation

Let R be the set of real numbers, R, be the set of non-negative real numbers
and N be the set of natural numbers including 0. The notation X > (=)0
denotes that all entries of the matrix X are positive (non-negative) and X7
represents the transpose of matrix X. S™ denotes the set of symmetric real
matrices of size n. For X € §", X > (>) 0 means that X is positive
definite (semi-definite), and X < (<) 0 means that —X is positive definite
(semi-definite). For X € S™, let Apax(X) and Apin(X) be the maximum and
minimum eigenvalue of X, respectively. Let cond(X) denote the condition
number of a matrix X and p(M) denotes the spectral radius of an matrix M.
For z € R", diag(z) is the diagonal matrix formed by placing the entries of
x along the diagonal. Similarly, blkdiag(X;, X5, -+, Xy) is a block-diagonal
matrix formed by placing the matrices X;, X5 and so on, as the diagonal
blocks. For block matrices, * is used to denote entries needed to make the
matrix symmetric. Let 0 and 1 denote the column vectors or matrices of
all zeroes and ones of appropriate sizes, respectively. Let I; be the identity
matrix of dimension d and the subscript d is suppressed when the dimension
is clear from context. The i*" canonical basis vector (or i*! column of the



Chapter 1. Introduction 17

identity matrix) of appropriate size is denoted by e;. For z € R", ||z||,
denotes the standard Euclidean p-norm and if the subscript p is unspecified
as in ||z||, it denotes the standard Euclidean 2 norm. The average of a vector
is written as avg(z) = 117z,

1.5.2 System Theoretic Notation

The notation [ é lB; ] represents a continuous-time LTI system described
by

z(t) = Az(t) + Bu(t), z(0) = x,
y(t) = Ca(t) + Du(l),

(1.1)

where z(t), u(t) and y(t) represent the state, input and output vector signals
of appropriate dimension. The series interconnection of two LTT systems can
be computed as

Al 81C2 BlDQ Al ‘ Bl AQ ‘ B2
0 4 | B |- || e
Cy D\Cy | DD,

The notation for continuous-time LPV systems [Shamma and Cloutier, 1992]
is analogous to the L'TT case with the dependence on the scheduling parameter
explicitly shown in state-space matrices. The series interconnection of an
LTT system with constant matrices of appropriate size can be analogously

computed as
Al B [ A | BDL
Tllc D]Tg_[TlCTlDTQ ]

The space of measurable functions f : [0,7] — R™ which are square-integrable
over [0,T1], i.e., Sép || f(#)||?dt < oo is denoted by L3[0,7T] where the super-
script n is omitted when it is clear from context. The space of measurable
functions f : [0,00) — R™ which are square-integrable over [0, T] for any fi-
nite 7' < o0 is denoted by Ls.[0, 00) where the super-script is omitted when it
is clear from context. Let £;(—0, o) denote the set of measurable functions
h: R — R, such that §” |h(t)|dt < o0. Let the convolution operation be
denoted by a(t) = b(t) = Xé a(t — 7)b(7)dr. For any q € L.[0,0), and a fixed
T = 0, let the extension ¢r defined on (—o0,00) be defined by

wolt) = {q(t), if + € [0, 71, 12)

0, ifteR\[0,T].



18 Chapter 1. Introduction

Remark 1.1. Note that the word extension is used here to indicate an ez-
tension of the domain of the function from [0,00) to (—o0, ). Borrowing
convention from the robust-control literature, the sub-script T is used here to
denote that this extension operation is also truncating the function on (T, 00),
i.e., the extended function maps any inputs outside [0,T] to zero.

For a sequence of vectors w = (wy, wy, - - - ), define the [y norm by ||w]|;, =
Yo |Jwi||3. The space of real vector-valued signals w with ||w|];, < o is
denoted by l. Similarly, define the {; norm by |[|w|];, = >, ||wk||2 and the
space of signals with finite /; norm be denoted by [;. Let the [, norm be
defined by ||w||i,, = supy, [[wy]]2.

1.5.3 Graph Theoretic Notation

The number of agents is denoted by N and G = (V, £) denotes an undirected
graph of order N with the set of nodes given by V = {1,2,..., N} and the set
of edges £ € V x V. Assume that (i,7) € € if and only if (j,7) € £. The set
of informed agents is denoted by V; € V which represents a subset of nodes
with more information, such as the local gradient, and is used to differentiate
them from other agents V\V,. A path between nodes ¢ and j is a sequence
of vertices (vy,vs,...,v,) such that v; =i, v, = j and (v, Vme1) € € for
all m e {1,2,...,n — 1}. The adjacency matrix Az € {0, 1}"*V is a matrix
with the 4, j entry a;; = 1 <= (i,j) € £. The set of neighbors of node
i is denoted by N; = {j € V|(i,j) € £}. Let d; be the degree of node i, i.e.,
the number of edges at that node and let D € RV*V be a diagonal matrix
formed by the d;’s along the diagonal. The maximum degree max;(d;) is
denoted by dp.x and let |€] represent the total number of edges. Define the
graph Laplacian matrix £ € SV as £L =D — A,.

1.5.4 Notation Related to Kronecker Product

The Kronecker product is represented by &®. For convenience, let X denote
the matrix Iy ® X and let X4y denote the matrix X ® /; for any matrix
X. For an ordered set of vectors (z1,xs,...,2y), let the vector formed by

stacking these vectors be denoted by z = [« 2] ... azﬁ]T For any LTI

system G = l él, g ], the notation G ® I represents an LTI system given

b | AL B®I
Y CeT| DI

], whereas the notation I ® G represents an LTT system

. IQA|I®B
given by I®C"I®D :
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1.5.5 Notation Relevant for Source-Seeking Problems

The source-seeking problem is considered in Chapter 2 and Chapter 3 and
the notation relevant to it is discussed next. Consider N agents moving in
R? space (typically d € {1,2,3}) and embedded in an external differentiable
scalar field ¢ : R? — R which represents the spatial variation of a quantity of
interest, such as the radioactivity in a disaster scenario. It is assumed that
1 is well-defined on R, i.e., the domain of ¢ is R? and % is continuously
differentiable on RY. The precise assumptions on 1 are stated more formally
when presenting the main results. Informally, the scalar field is assumed to
be strictly convex and sufficiently smooth and it is assumed that ¢, € R?
uniquely minimizes v, which is called the source of the field. At spatial
position ¢; € R? (of agent i), Vi/(¢;) € R? and V?¢(g;) € R4 denote the
gradient and Hessian evaluated at ¢;, respectively. For a given configuration
of positions of all agents ¢ = [¢T ¢2 ... qL]", define ¥ : RV — R by ¥(q) =
SV ¥(g;). With this definition,

VU(q) = [Vo(q)" V(g)" ... V(o)

V*¥(q) = blkdiag(V*)(q1), V¥ (a2), -+ . V¥ (aw)).

The notions of strict and strong convexity (see [Nesterov, 2004] for details)
play a central role in the analysis and are reviewed next. A function ¢ :
R? — R is strictly convex if for any 6 € (0,1),

YOy + (1= 0)y2) < 0v(y1) + (1 — 0)Y(y2) Vyr,y2 € RY, y1 # 4.

It is strongly convex with parameter my > 0 if for any y;, y» € RY

my|lyr — y2H2 < (Vf(y) — Vf(yz))T(yl — 12).

Note that the class of strongly convex functions is a subset of the class
of strictly convex functions and an example of a strictly convex, but not
strongly convex function is ¢(y) = y*. More details can be found in [Nes-
terov, 2004]. Finally, the convex hull of a finite set of points {yi, - ,yn} is
the set {3 Ayi : SV A =1, Ay = for all 4}.
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Chapter 2

Source-Seeking Under Flocking
Dynamics: Stability Analysis
and Experimental Results

This chapter focuses on the problem of source-seeking with a coupled ar-
chitecture involving non-convex inter-agent interactions, typical from stan-
dard flocking dynamics [Olfati-Saber, 2006], [Leonard and Fiorelli, 2001],
[Su et al., 2009] or with distance-based cooperative control [Oh et al., 2015,
[Krick et al., 2008], [Dorfler and Francis, 2009]. Specifically, assuming double
integrator agent dynamics, an extension of flocking dynamics [Olfati-Saber,
2006] with a forcing term is proposed in Section 2.1.1, analyzed in Section
2.1.2 and experimental results with an indoor quadrotor setup are reported
in Section 2.1.3. An extension of the double integrator models involved in
flocking to general vehicle models with local velocity controllers is considered
in Section 2.2 with stability analysis given in Section 2.2.2 and simulation
results in Section 2.2.3. As a prelude to Chapter 3, a generalization of the
stability analysis presented in Section 2.2.2 using the framework of 1QCs is
given in Section 2.3. The key contributions of this chapter have been re-
ported (with slight variations) in [Datar et al., 2020], [Attallah et al., 2020]
and [Datar et al., 2022, under review].

2.1 Double Integrator Vehicle Models

This section assumes that vehicles can be modeled as double integrators and
presents an extension of the flocking dynamics to address the source-seeking
problem.
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2.1.1 Problem Setup

Consider N agents living in a d—dimensional space and let ¢;, p; € R? denote
their positions and velocities, respectively. Let ¢, p € RV be constructed
by stacking ¢; as ¢ = [¢l ¢2 ... q%]" and similarly, p = [pIp? ... pL]T. The
inter-agent interaction potential function between agent ¢ and j is denoted
by ¢(¢:, q;) (see [Olfati-Saber, 2006], [Leonard and Fiorelli, 2001] and [Dorfler
and Francis, 2009] for examples of interaction potentials) and the potential
for the complete system is then denoted by V' (q) = %Zl ;0(4i,q;)- To rep-
resent the spatial variation of a quantity of interest, let 1 : R — R be a
sufficiently smooth scalar field. For the theoretical analysis, the scalar field
is assumed to be strictly convex with the point ¢, € R?, called the source,
uniquely minimizing ¢. Even though the theoretical analysis deals with a
strictly convex and smooth field i) with perfect gradient and Hessian mea-
surements, experiments with non-convex fields and noisy measurements are
presented in Section 2.1.3 demonstrating the applicability of the proposed
approach to more general situations. Let Vi and V29 be the gradient and
Hessian of 1, respectively. As described in Section 1.5.5, let ¥ : RV? — R be
defined by ¥(q) = >, v(¢) and let V¥ and V¥ be its gradient and Hessian,
respectively.

The flocking dynamics as described in [Olfati-Saber, 2006] can be repre-
sented as

=P (2.1)

p=-VVg) = (Lw(q) +cl)p+ f,
with initial conditions ¢(0) and p(0), where V(g) is the non-negative inter-
agent interaction potential, £(q) is the state-dependent graph Laplacian,
Lay(q) = L(q) ® 14, c € R is a positive friction coefficient and f, represents
an external forcing term to drive the flock to a desired location. The state-
dependent Laplacian matrix £(q) is calculated by defining a communication
topology induced by the positions ¢ where (7, j) € £ if and only if ||¢; — ¢;|| <
Tsensings WHETe Tensing 18 the interaction range. See [Olfati-Saber, 2006] for
more details on flocking dynamics.

For the problem of minimizing a convex function ¢ (x), it has been shown
in [Alvarez et al., 2002], that, with positive constants k; and ks, the dynamics
of the continuous-time analogue of the second-order Newton-type method
with momentum are represented by

T =0,

0=~k V3(x)v — kVap(2) (22)
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and z(t) approaches the minimizer x* of ¢ asymptotically under some tech-
nical conditions. Refer to [Alvarez et al., 2002], [Wilson et al., 2021] for more
details. Motivated by this idea and the known convergence results of the
dynamics (2.2), let the forcing term in the flocking dynamics (2.1) be defined
as

fy ==k V*¥(q)p — kaVI(q), (2.3)

where ki > 0 and &y > 0 are tuning parameters. With the choice of f, as in
(2.3), the closed-loop dynamics with initial conditions ¢(0) and p(0) can be
written as

q=p,

p=-VV(g) — (Li(q) + cD)p = ;aV*T(q)p — k2VT(q).
Note that the interconnection between the different agents is state-dependent
and depends on the sensing radius 7sensing Which is built into the inter-agent
potential ¢(g;,q;) and the state-dependent Laplacian L4 (q). For more de-
tails on this, the interested reader is referred to [Olfati-Saber, 2006].

Problem 2.1. Derive sufficient conditions independent of the network size
N under which the trajectories q and p generated by dynamics (2.4) remain
bounded for all t = 0 and asymptotically converge to an equilibrium of the
dynamics.

(2.4)

2.1.2 Analysis

The interaction potential V(¢) has the form V(q) = %Z” #(qi, q;), where
#(gi, q;) is a function only depending on ||¢; — ¢;|| [Olfati-Saber, 2006] and is
therefore pair-wise symmetric, i.e., a%gzﬁ(qi,qj) = —%gb(qi,qj). This simply
means that the net force along each pair of agents balances out and sums
to 0. Similarly, the state-dependent graph Laplacian £(q) is symmetric if
all agents have the same interaction range rsensing. Therefore, the net force
cancels out for every pair of agents and the force acting on the center of
mass due to pair-wise interactions (—VV(q)) and from velocity alignment

(—=La)(q)p) is zero (see [Olfati-Saber, 2006]). This is summarized in
1y ®1y)-VV(g) =0 VgeRY
(1% ® La)(L(q) ® 1a) = (13 L(q)) ® La = 0.

By defining the center of mass position and velocity as in [Olfati-Saber, 2006]
by

(2.5)

1
o= (1 ® L)T
q N( N® d) q,

1
e = —(Iy® 1)
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the translational dynamics of the center of mass with appropriate initial
conditions can be derived from (2.4) and (2.5) as

qc = Pe,

. 1 . ) (2.6)
Pe=—pe — (v @ La)" (i V¥ (@)p + k2VE(q)).

Theorem 2.1 (Analysis for Problem 2.1). Let the flocking interaction po-
tential V : RV — R be a continuously differentiable function with a uni-
form lower bound Vi, i.e., V(q) = Viun Vq. Let all agents have the same
interaction range Tsensing, i-€., the state-dependent graph Laplacian L(q) is
symmetric for all q. For a twice continuously differentiable, strictly convex
field ¢ : RY — R with a unique minimum at g, the flocking dynamics (2.4)
with any ¢ > 0, ks > 0 and ky = 0 are stable, i.e., the trajectories generated
by these dynamics remain bounded for all t = 0. Moreover, for all initial
conditions (q(0),p(0)), the trajectories converge asymptotically to the set

W= {(q,0)[VV(q) + V¥(q) = 0}. (2.7)
Additionally, if

1) 1 is radially symmetric about the source qx, i.e., it has the form (q) =
Ur(|lg — g«l|) for some function ¥, : R — R,

2) V' is pairwise-symmetric, i.e., it has the form V(q) = %Z” o(llgi—a])
for some function ¢ : R - R,

then the source q, lies in the convex hull of equilibrium agent positions.

Proof. For the continuous-time dynamics (2.4), consider the energy-like non-
negative function £ : R — R defined as

1

E(t) ==V (q(t)) — Vinin + k2(¥(q(t)) — ¥(qx)) + §P(t)Tp(t)- (2.8)

Differentiating E(t) with respect to time,

E = (VV(q) +k:VU(q) 4+ p"p
= " (Lw(q) + el + k1 VT (q))p
< 0.
The last inequality is obtained by using £(g) > 0 and convexity of ¢ which

implies V2¥(q) > 0 for all ¢ € RN4, Thus, E(t) < E(0) Vt > 0. Finally
note that strict convexity of ¢ (and the existence of a unique minimizer g,)



Chapter 2. Source-Seeking Under Flocking Dynamics 25

implies that 1) has bounded sub-level sets. Therefore, the trajectories remain
bounded for all ¢ > 0.

Moreover, E = 0 if and only if p = 0. Hence, by using the LaSalle’s
invariance principle [Bullo, 2021, Theorem 14.7], the trajectories asymptoti-
cally converge to the the set W defined in (2.7).

Finally, if V' is pairwise-symmetric, i.e., V(q) = %Z” o(l|lgi — gjl|) for
some function ¢ : R — R and the state-dependent graph Laplacian £(q) is
symmetric, the discussion preceding this theorem shows that center of mass
dynamics is governed by (2.6). Therefore, the equilibrium ¢ must satisfy

1

N(lN ® 1;)"VV(q) = 0. (2.9)

Now let 1(q) = ¥, (||q¢ — g«||), which implies that

¥ (la—gxlD

V() = { lomad (@ =) g #q.

0 otherwise
Plugging this into (2.9), we obtain

Z ¢ HQZ Q*H>

1,Gi # Qs

Now assume that g, does not belong to the convex hull of {¢; : i € V}. This
implies that there is a separating hyperplane characterized by an h € R? and
an offset ¢, € R such that hq; + ¢, = 0 for all ¢ € V, and for some ¢ > 0,
h'q, + ¢, = —e < 0. Multiplying both sides of equation (2.10) from the left
by hT, we get

0 = Z Q/} ||ql q*H)hT(qz—q*)

o la—al
Uo(llai — g
= Z H! 4 ’*|H) ((hTQz + Ch> — (th* + Ch))
1€V,qi #qx ! *
Z Q/} ||ql q*H)«thi-i-Ch) +€)
o, N

Now, strict convexity of ¢ implies that for all ¢ # g¢., ¥(q.) > ¥(q) +

Vi (q)T (¢« — q) which implies that (¢ — ¢.)TV(q) > ¥(q) — ¥(g.) > 0.
Therefore, for all ¢ # g, (¢ — ¢:)"V¥(q) = ¥p(llg — a:l])-llg — a.l] > 0.
Putting this together, we have that for all ¢ # ¢, ¥/.(||¢ — ¢«||) > 0 and each
term inside the sum above is positive leading to a contradiction. Therefore,
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there exists no hyperplane separating {¢;|i € V} and ¢, which implies that ¢,
is in the convex hull of {¢;|i € V}.
[

Another desirable property of the equilibrium for the case of quadratic
fields is presented in the next corollary.

Corollary 2.2. Assume that the field ) : RY — R is strictly convex, quadratic
and has a unique minimum at q.. The center of mass governed by dynamics
(2.6) corresponding to the overall dynamics (2.4) converges asymptotically to
the source, i.e., limy_,o qe(t) = Gy-

Proof. Let ¢(y) = sy Hy + "y + ¢co with H € R*>*? and H > 0 due to strict
convexity. Thus, ¢, = —H g is the unique minimizer of ). Characterization
of the equilibrium ¢, = [qul qu2 .. .quN]T under given dynamics gives

1 . 1Y 1
~ (v @ L) V¥(ge) = NZ(H% +9) = H(N;qei) +g9=0,

i=1

which implies %Zfilqei = —H'g = ¢,. Finally, using Theorem 2.1 to
imply asymptotic stability of the equilibrium, we get, lim; o ¢.(t) = q.. O

2.1.3 Experiments with Indoor Quadrotors

The ideas developed in the last section are tested in an indoor experimen-
tal platform with Crazyflie 2.1 (see Appendix A), the details of which are
discussed next before presenting the experimental results.

Experimental Setup

The experiments were conducted on an open-source experimental platform
from Bitcraze AB called the Crazyflie 2.1 along with an indoor positioning
based on the Decawave DWM1000 chip called the Loco-positioning system.
A peer-to-peer communication protocol, sufficient for the purposes of the ex-
periment, was developed and deployed on the software along with a heuristic
control mechanism to avoid clock drifts [Paulsen, 2018], [Paulsen, 2019]. For
implementing the source-seeking Algorithm 2.1 (presented later in the cur-
rent section), the analytic function ¢ was stored on-board but only queried
to get a corrupted field strength at the agent location. The position, velocity
and the measured field values were broadcast to neighboring agents. More
details are given in Appendix A.
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Figure 2.1: Control architecture representing the experimental implementa-
tion on quadrotors.

Control Architecture With a Local Velocity Controller

Initial experiments with Crazyflie 2.1 show that the onboard velocity con-
troller shows satisfactory tracking performance for low frequency references
[Paulsen, 2019]. This local velocity controller is used to track the desired
velocities and these closed-loop dynamics are represented by G,e with the
desired velocity input pges. A nested control architecture with a fast attitude
controller and a relatively slow velocity controller (although faster than the
flocking dynamics) wrapped around the attitude controller is used. Such a
nested control architecture is standard in quadrotor control [Powers et al.,
2015]. More specifically, a proportional-integral-derivative (PID) attitude
controller runs at 500 Hz and an outer proportional-integral (PI) velocity
controller runs at 100 Hz. Some preliminary tests on the velocity controller
revealed that the tracking performance within the linear regime leads to a
rise time of around half a second for reference steps in velocities and this
makes a plausible case for modeling a quadrotor as a double integrator if the
flocking dynamics are slow-enough. The output of G is then the position
and velocity vectors, ¢ and p, respectively. This is shown in Fig. 2.1, where
the computed flocking control input (force) is integrated to obtain desired
velocity pges, which is fed in to the velocity controller.

Gradient and Hessian Estimation Heuristic

In order to estimate the gradient and the Hessian locally at each agent, two
dictionaries of 30 points each are maintained and each agent solves two least
squares problems at each sampling time. For the gradient estimation, the
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dictionary is updated locally by each agent by collecting measurements as it
moves through space. The dictionary for the Hessian estimation is built and
maintained by communication with neighbors. A new data point (locally
measured or received from the neighbor) is only added to the dictionary if it
is novel enough. A simple heuristic of adding a data point only if it is at least
some fixed distance away from the last one collected from the same agent is
used. Additionally, the Hessian is discarded if it is not positive definite.

For the experimental results, the local field measurement is artificially
corrupted by five percent noise relative to the field strength (multiplicative
noise). A formal analysis that explicitly considers multiplicative noise is pre-
sented later in Section 3.5. For a typical source-seeking experiment with a
quadratic field v, Figure 2.2 shows histograms of errors in degrees between
the estimated and the true gradient direction Vi(¢;) (in orange) and be-
tween the estimated and true direction ky V29(q;) + k2 V1(g;) (in blue) for a
typical agent. The data is collected over about 11-13 seconds at 50 Hz. It
can be seen that the distribution of error angles (in degrees) for the direction
k1V2(q;) + k2 Vb (g;) is roughly centered about zero with most of the errors
falling between -40 and 40 degrees which means that the estimated direction
belongs to the same quadrant as the true direction. The errors for the gra-
dient direction V(¢;) show a spread out distribution. The areas under the
histograms also represent the number of times each direction is used using
the heuristic mentioned above. Because of the inertia of the agents, it can
be seen that, some erroneous outliers at isolated time instances do not cause
a significant problem (see Fig. 2.3, Fig. 2.4 and Fig. 2.5).

Implementation Algorithm

Algorithm 2.1 describes the key steps in the implementation code that runs
on an arbitrary agent ¢. It is divided into five steps. At each execution
time k, agent ¢ starts by measuring the agent’s own position g;, velocity p;
and the field value at the current location v(g;) corrupted by some zero-
mean white noise process 7. This information is then exchanged with all
neighbors j. A dictionary is maintained by collecting novel measurements
(in the sense of distance) from neighbors and local measurements. Once
the dictionary is full, the oldest measurements are replaced with new ones
(the old measurements are discarded). Each agent then solves a linear least-
squares problem based on local measurements to fit a plane and estimate the
gradient g. Another least-squares problem to fit a paraboloid is then solved
to estimate the Hessian at the current location. If the obtained Hessian is
not positive semi-definite, it is discarded for this time step and only gradient
information is used. Finally, the flocking force f, is computed based on the
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Figure 2.2: Histograms of angle errors (in degrees) between the true direc-
tion and estimated direction (with noisy field measurements and estimated
gradients and Hessians).

positions and velocities of the neighbors. The net force u is then used to
calculate the desired velocity pges based on the sampling time T'. This pges is
then passed on to the internal velocity controller as the desired velocity.

Experimental Results

The details on the experimental platform are discussed in the Appendix A.
The results are now reported for a strictly convex field 11, a non-convex field
o with a single minimum and a non-convex field with two minima 3 given

by

wle) == [ ] (=)
a(q) = —exp (—||(qg — c)|?) ,
P3(q) = —exp (—|(g — e1)[]?) —exp ((=[l(g — e2)[*))

where ¢o = [2 1.5]", ¢; = [3 2]" and ¢, = [1 1]". The field strength mea-
surement is corrupted by zero mean noise with an amplitude of five percent
of the field strength. Figures 2.3, 2.4 and 2.5 show the flight trajectories

(2.11)
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Algorithm 2.1 Runs on agent ¢ at 20Hz

1: Initialize offline:

i Flocking parameters (see [Olfati-Saber, 2006]) such as equilibrium
distance d, friction-coefficient ¢

i ky, ko
i VjeN;u{i}, ¢ ={}
2: Measure:
i Measure g;, p;
ii Measure 9(q;) < ©(q;)+ noise (corrupted)
3: Communicate:
i Broadcast (¢;, pi, ¥(q;))
ii Receive (gj, pj, ¥(q;)) VieN;
4: Estimate:

i Estimate the gradient g by fitting a plane with locally measured
data.

ii Update dictionary:
ifVjeN; uli}, llg;— gl >d or ¢ ={},
then: add (g;, ¥(g;)) to dictionary and ¢; < g;

iii Estimate the Hessian H by fitting a paraboloid on the dictionary

data.
5: Compute:
i fo < —=AV(q)/0qi — cpi— X jen. i Lijpj (where Ly is (4,7)™ element
of L)
1 fy < —kag

ii if H > 0, then: f7 <« f,y — lepz
i ow e fot fy
iv Calculate pges < p; + T - u (where T is the sampling time)

6: Pass pges to the velocity tracking controller (100 Hz)
7. Repeat (go to step 2)
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Figure 2.3: Experimental results: Trajectories of 7 agents for 1, as de-
fined in (2.11). The solid dot marker shows the initial position and the
X marker shows the end position. https://www.tuhh.de/ics/institute/peo-
ple/personal-pages/adwait-datar /source-seeking-experimental-videos.html


https://www.tuhh.de/ics/institute/people/personal-pages/adwait-datar/source-seeking-experimental-videos.html
https://www.tuhh.de/ics/institute/people/personal-pages/adwait-datar/source-seeking-experimental-videos.html
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Figure 2.4: Experimental results: Trajectories of 7 agents for vy as de-
fined in (2.11). The solid dot marker shows the initial position and the
X marker shows the end position. https://www.tuhh.de/ics/institute/peo-
ple/personal-pages/adwait-datar /source-seeking-experimental-videos.html


https://www.tuhh.de/ics/institute/people/personal-pages/adwait-datar/source-seeking-experimental-videos.html
https://www.tuhh.de/ics/institute/people/personal-pages/adwait-datar/source-seeking-experimental-videos.html
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Figure 2.5: Experimental results: Trajectories of 7 agents for 13 as de-
fined in (2.11). The solid dot marker shows the initial position and the
X marker shows the end position. https://www.tuhh.de/ics/institute/peo-
ple/personal-pages/adwait-datar /source-seeking-experimental-videos.html


https://www.tuhh.de/ics/institute/people/personal-pages/adwait-datar/source-seeking-experimental-videos.html
https://www.tuhh.de/ics/institute/people/personal-pages/adwait-datar/source-seeking-experimental-videos.html
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of 7 Crazyflie quadrotors for these fields. The solid dot marker shows the
initial position and the X marker shows the end position. It can be seen
that the agents locate the source in all cases. For 13, both minima are lo-
cated by two disconnected groups of agents based on their initial conditions.
Note that interconnection graph between the agents for these experiments is
state-dependent and therefore time-varying and not displayed in the above
figures.

2.2 Extension to General Vehicle Models

The theoretical results so far assumed that the vehicles can be modeled as
double integrators. Drawing motivation from successful experimental results
with quadrotors, this section provides a theoretical analysis by explicitly in-
cluding general vehicle models with local tracking controllers in the dynamics.

2.2.1 Problem Setup

It is assumed that a local tracking controller is designed such that the closed-
loop system takes as input, the desired position ¢ and the desired velocity p
and outputs the position y and velocity v of the vehicle. This can be modeled
by closed-loop non-linear dynamics of the form

m =g(z)

for suitable functions f and g. Let G&o, denote the operator that mod-
els this closed-loop system and maps trajectories [qT pT]T into trajectories

[y" UT]T. The overall dynamics (with k& = k; = 1 for simplicity) can be
represented as in Fig. 2.6 and are governed by

q=p,
p==VV(y) = (Lg(y) +cl —V>T(y))v — VI(y),

-

with initial conditions ¢(0) and p(0). Observe that if G is an identity

map, these dynamics reduce to dynamics (2.4) which have been analyzed in

Theorem 2.1.

(2.12)
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Figure 2.6: Control architecture with a general vehicle dynamics block rep-

resented by G, .

Problem 2.2. Derive sufficient conditions independent of the network size
N under which trajectories q, p, y and v generated by the dynamics (2.12)
remain bounded for all t = 0 and asymptotically converge to an equilibrium
of the dynamics.

2.2.2 Analysis

The following assumptions on the external scalar field v, the interaction
potential V' and the state-dependent graph are required for the stability
analysis presented thereafter.

Assumption 2.1. The scalar field ¢ : R — R is twice continuously dif-
ferentiable, strictly convex, has a unique minimum at q. and satisfies the
Lipschitz condition

IV(a) = Vgl < Llla: — il Vai, g5 € R (2.13)
with a non-negative constant L.

Assumption 2.2. The flocking interaction potential V : RN% — R is contin-
uously differentiable, has a uniform lower bound Viin, i.e., V(q) = Vi Yq
and satisfies the Lipschitz condition

IVV(g) = VV(@)|| < Lvllg — ql| Yg,GeR™ (2.14)

with a non-negative constant Ly, .
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Assumption 2.3. The state-dependent graph Laplacian L(y(t)) is symmet-
ric and uniformly bounded by Ly for any feasible trajectory y(t) under the
dynamics (2.12), i.e., ||L(y(t))]| = Amax(L(y(t))) < Ly for all t = 0.

Note that Assumption 2.1 implies ||V (q) — V¥(q)|| < Lyll¢ — q|| and
V2¥(q) < Ly for all ¢, G € RV and can be seen as a bound on the curvature
of the field. Assumption 2.3 can be verified in practice by looking at the max-
imum number of possible neighbors (maximum degree dy,.,) and bounding

/\maX<’C(y(t))) < 2dmax-

Remark 2.1. This chapter focuses on stability analysis under strictly convex
fields 1 and non-convex interactions V. Performance analysis under convex
interactions V' of the form (q —r) ' La(q —r) and strongly convez fields 1
is deferred to Chapter 3, where a guaranteed exponential convergence rate
can be verified with an LMI via ZF a-1QCs. A local version of the following

result within the framework of IQ)Cs is presented later in Section 2.3.

Theorem 2.3 (Analysis for Problem 2.2). Let Assumptions 2.1, 2.2 and 2.3
hold. Further assume that a local tracking controller has been designed at
each agent i to achieve a closed-loop Ly tracking performance described by

T T
1 1
[ (Sl - w + Sl ~ w1 de < [ lnolPae @19
0 ’Yq ’Yp 0

for all T =0 with 7, <1 and ¢ > = (v + ) Ly + YLy + 3La). Then,
the dynamics (2.12) are stable, i.e., the trajectories generated by these dy-
namics remain bounded for t = 0. Moreover, trajectories q and y converge
asymptotically to the set W := {q|VV (q) + V¥(q) = 0} and trajectories p
and v converge to 0.

Proof. Let W(y) = V(y) + U(y) and H(y) = L@(y) + cI + V*U(y). The

dynamics described in (2.12) can then be represented as

q=p
) = — —H
p=-VW(y) — H(y)v, (2.16)
Yyl _ q
[J-on)
Let the local tracking error be defined by
=17y (2.17)

ep =p—U.
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With these error variables,

q =D,
, (2.18)
p=-VW(q) — H(y)p +d,
where
d=VW(q) —VW(q—e,) + H(y)e,. (2.19)
Since
N
el = [l = yll> = > llgi — will®
i—1
and

N
eyl = 1lp = vlI* = > lIps — vl >,
1=1

(2.15) implies

T /1 ) 1 ) T )
f (7—q2!|eq(t>|\ +lle®l )dmfo Ip(t)]|%dt. (2.20)

0

Assumptions 2.1, 2.2 and 2.3 along with the triangle inequality can be
used to obtain the following bounds on ||[VW (q) — VW (q —e,)|| and ||He,||.

IVW(q) = VW (g —eg)|| = [[VV(q) = VV (g —¢;) + VU(q) — V¥(q —¢)]|
VV(q) = VV(q—eg)ll
+[IV¥(g) = V¥(q — ¢,)]]
< Lylleg|| + Lylleg||
= (Lv + Ly)|[eq]]-
LH (v)epl| = 1L (1)ep + V2E(y)e, + ceyl
L (@)epll + [V (y)ey|| + clley|
LW + Ly + o)lep]
(L + Ly + o)lep|].

N

NN

With k1 = Ly + Ly and ko = Ly + Ly + ¢, d(t) can be bounded for all t > 0
as ||d(t)]| < ralleg(t)l] + rollep(t)]] which implies [|d(t)|[* < &flleq(t)]]* +
k3 lep (D)2 + 2k1k2|leq()]]]|ep(t)]]. Integrating both sides from 0 to T and
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using (2.20) along with Cauchy-Schwartz inequality for £,[0, 77,

T T
fo ()| Pdt < j (R llea®I + 2llen(®)]P + 2emallea(®)]] - lep(t)]]) de
T T
< j (k292 + 5202)|[p(1) Pdt + f Drrrilleq (1) - [ley(0)]dt

< (K19 + K377) f |Ip(t)||*dt

n 2\/ f ||eq<t>||2dt\/ f ey (8)|2dt

< mﬂpf O

T
+2W\/vg f ||p<t>||2dt\/vg j Ip()|2dt
0 0

T
< (5o + Ky + k) f p(t)|Pdt.
0

Therefore, Sng(t)szt < (K1yg + K2Yp) So [p(¢)||?dt. Now, consider the
energy function F : R, — R defined by

1

E(t) = W(g(®) + 5p()"p(t) (2.21)

Differentiating with respect to time (and suppressing the notation for showing
the dependence on time), we get,

E=VW(q) p+p'p
VW(g)"p—VW(g)'p—p"H(y)p+d'p
= —p" (Lay(y) +cl +V*U(y))p+dp

< —c[lpl* + d"p.

Integrating on both sides, and using Cauchy-Schwartz inequality for £5[0, 7],
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the following holds VT > 0:

T

E(T) < E(0) =l )P+ | ooy

<50 < [ 1) rdt+\/f ) |2dt\/f Io(0) 2t
Jo

< B0) e [ 101 + g+ ) [ 01 Pat

< B(0) — (c— (17 + mp»fo (b)) dt.

Noting that v, < 1 and ¢ > ﬁ ((vg + vp) Ly + vqLv + 1 Ly) implies (¢ —
(K17q + K2Yp)) > 0, we get,

Vimin + W(q(T) < V(q(T)) + ¥(q(T)) + %HP(T)HQ = E(T) < E(0) (2.22)

for all T" = 0 and therefore, U(q(7T)) < E(0) — Viyn. Strict convexity of
1 implies that of ¥ and this, together with the existence of a minimizer
implies that ¥ has bounded sub-level sets which implies that ¢ stays bounded.
Furthermore, since the inequality,

E(T) + (¢ — (kv + F)) f ()] dt < E(0)

holds for any 7' > 0, we get §° ||p(t)||?dt < oo which implies (using (2.20))

o0
f leg(8)|Pdt < oo

0

and

f e, ()])?dt < 0.

0
Therefore, whenever smooth solutions (uniformly continuous) ¢(t), p(t), y(t),
v(t) to the dynamics (2.12) exist, we have that lim;_,., v(t) = lim;—o p(t) = 0
and limy_,, y(t) = limy_,, ¢(¢). Finally, due to an integral invariance principle
[Byrnes and Martin, 1995], the trajectories ¢ and y converge to the set W
defined in the statement of Theorem 2.3. ]

Remark 2.2. Theorem 2.3 gives a qualitative understanding of the stability
of flocking dynamics. Observe that when Gyen 15 the identity operator, 7,
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and 7y, can be chosen arbitrarily small and Theorem 2.3 reduces to Theorem
2.1. This means that as v, and v, approach 0, i.e., as the local tracking
performance improves, the condition on the damping constant reduces to
¢ > 0. In other words, the poorer the local tracking performance, the higher
the damping should be and the slower the reference trajectories p and q should
evolve to accommodate for poor tracking.

Remark 2.3. Note that Theorem 2.3 does not consider internal dynamics
of the plant Gyen and asks only for an input-output performance prescribed
by (2.15).

2.2.3 Simulation Studies

Theorem 2.3 prompts for the following heuristic strategy for designing a
distributed controller for possibly non-linear vehicles in order to address the
source-seeking problem.

« Start by designing a local tracking controller for different vehicle models
with any method of choice such that the tracking performance (ideally
measured by an induced L5 norm) is optimized.

« Design a suitable interaction potential satisfying Assumption 2.2 (see
e.g. [Olfati-Saber, 2006] which provides an interaction potential satis-
fying the assumption).

o Theorem 2.3 suggests that if the tracking performance in the sense of
the induced L5 norm is good enough and the damping coefficient ¢
is chosen large enough, asymptotic stability is guaranteed for external
fields satisfying Assumption 2.1. Starting from a large value, ¢ can thus
be tuned to obtain reasonable performance.

This heuristic strategy is next demonstrated on a non-linear, non-holonomic
underwater robot model of the HippoCampus [Hackbarth et al., 2015]. De-
tails on the vehicle model and the design of local tracking controller are
deferred to Appendix B. In what follows, it is assumed that a local tracking
controller has been designed and the closed-loop vehicle dynamics are now
tested in a source-seeking scenario with the architecture described in Fig.
2.6. Consider three underwater robots embedded in a quadratic field given
by

1
Yquadratic(Y) = 5“(9 — )|, (2.23)

where p is the minimizer (source). Furthermore, consider the inter-agent in-
teraction potential typically found in the literature on distance-based control
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Figure 2.7: Three HippoCampus agents under quadratic interaction V; flock-
ing towards the source of a quadratic external field ©quadratic (solid lines:
z-coordinate and dashed lines: y-coordinate) for different values of c.

[Oh et al., 2015], [Krick et al., 2008], [Dérfler and Francis, 2009]) be described
by

Vi) = ) 5l — e — ) (2.24)
(i.9)

where the sigma-norm is a function defined in [Olfati-Saber, 2006] by ||y||, =
v/1+||y||?—1 and can be interpreted as a smoothed differentiable version of
the usual euclidean 2-norm!. Simulation trajectories with different values of
¢ are shown in Fig. 2.7 shows. As can be seen from Fig. 2.7 the trajectories
converge to an equilibrium if ¢ is large enough. Note that although Theorem
2.3 cannot be readily applied since the assumptions cannot be a priori veri-
fied, the simulation results agree qualitatively with the theoretical result in

INote that this is not a valid norm.
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Figure 2.8: Flocking trajectories for ¢ = 4 (top) and ¢ = 10 (bottom) with
3 HippoCampus agents under quadratic interaction Vy flocking towards the
source of a quadratic external field ¥quadratic- The hollow circle marker shows
the initial position and the X marker shows the end position (time= 150 sec).

the sense that if ¢ is large enough, the dynamics are asymptotically stable.
Figure 2.8 shows the trajectories and the contour lines of the external scalar
field for two different values of c.

The experiment is now repeated with the same interaction potential but
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Figure 2.9: Three HippoCampus agents under quadratic interaction V; flock-
ing towards the source of an external field ey, (solid lines: z-coordinate and
dashed lines: y-coordinate) for different values of c.

an external field which is a sum of multivariate Gaussian fields given by

5
¢exp(y> = —30 Z 6—5”(1/—/%)”2, (225>

i=1

where f; are the minimizers/centers of individual fields that are added to-
gether. Figure 2.9 shows simulation trajectories with different values of c.
As can be seen from Fig. 2.9, the trajectories for ¢ = 1 and ¢ = 4 do not
seem to converge, whereas with ¢ = 7 or higher, the trajectories converge to
an equilibrium. Note that although Theorem 2.3 is not applicable here since
the external field is even non-convex, the simulation results agree qualita-
tively with the theoretical result in the sense that if ¢ is large enough, the
dynamics are asymptotically stable. This is because, global convexity is not
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Figure 2.10: Flocking trajectories for ¢ = 4 (top) and ¢ = 10 (bottom) with
3 HippoCampus agents under quadratic interaction Vy flocking towards the
source of an external field t)ey,. The hollow circle marker shows the initial
position and the X marker shows the end position (time=150 sec).

a critical assumption when showing asymptotic stability and this assumption
is removed later in Theorem 2.4. Figure 2.10 shows the trajectories and the
contour lines of the external scalar field for two different values of c. Finally,
repeating the above simulation with the interaction potential proposed in
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Figure 2.11: Three HippoCampus agents flocking with Olfati-Saber interac-
tion field under external quadratic field ©quadratic (solid lines: z-coordinate
and dashed lines: y-coordinate) for different values of c.

[Olfati-Saber, 2006] produces Fig. 2.11 and leads to the same qualitative
observations and conclusions as before.

More systematic controller synthesis procedures are possible by using
techniques from LPV systems theory. For example, a controller minimizing
the induced L5 norm can be synthesized with LMIs which also provides an
estimate of v, and v,. An upper-bound on L, can be obtained using an
estimate on the maximum-degree of agents as Apax(L(y(t))) < 2dpax. These
estimates can go into the choice for ¢ based on Theorem 2.3 to produce an a
priori guarantee on asymptotic stability for all interaction fields and external
fields satisfying Assumptions 2.1 and 2.2, respectively. Results along these
lines are reported in [Attallah et al., 2020] and [Attallah and Werner, 2022].
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2.3 Local Analysis with IQCs

As a prelude to the Chapter 3, the framework of IQCs is next deployed for the
stability analysis of flocking dynamics to extend the earlier results in several
ways such that the results of this section can be seen as a generalization
of the results from the last section. To elaborate on this, Theorem 2.3 can
be seen as an application of the incremental small-gain theorem [Scherer and
Weiland, 2000] and the analysis of this section can be seen as a generalization
in the same sense as [QC analysis can be seen as a generalization of the small-
gain theorem. Concretely, (2.13) from Assumption 2.1 (for instance) can be
equivalently written as

[ G~ g rlLi OH “=6 |20 vg,qeR!
Vola) = Vi) | |0 —I] V@) = Vilg)] =5 TR
The upcoming analysis replaces the central matrix with a general matrix M
that encodes the assumption. Furthermore, instead of requesting an a priori
induced L, gain for the local controllers as in Theorem 2.3, an LMI that
is independent of the size of the network NN is given that verifies stability.
Finally, the result is presented as a local result such that the above condition
is required to hold only on a set S < R?.

That being said, in order to simplify the discussion, the vehicle agents
are assumed to be governed by LTI dynamics and each agent is assumed
to share (by sensing or communication) only the positions of neighboring
vehicles. Extension to LPV vehicle dynamics is possible along the same
lines as in Section 3.2.3 and extensions to include velocity alignment are also
possible in a rather straightforward manner.

2.3.1 Problem Setup

Assume that a local tracking controller has been designed and the closed-
loop dynamics of the i*® vehicle agent with desired reference position ¢;(t),
desired reference velocity p;(t) can be described for a given initial condition

@i(t) = Ai(t) + [B, B, [qg(t)] |

pi(t)
yi(t) = Cy(t),

where y;(t) is the position output of agent i. These closed-loop vehicle dy-
namics are augmented, as shown in Fig. 2.12, by the second-order dynamics,

¢i(t) = pi(t),
pi(t) = —ka - pi(t) — kp - ui(t),

(2.26)

(2.27)
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Al[B, B, ] yz

Figure 2.12: Local control architecture on agent i.

where u;(t) € R? denotes external input, ¢;(0) = Cx;(0), p;(0) = 0 such that
qi(t) and p;(t) are fed as inputs to dynamics (2.26).

Remark 2.4. The main motivation behind introducing these second order
dynamics is two fold. On one hand, these dynamics can be thought of as a
crude approximation of the vehicle model that provides smooth trajectories to
the higher order complex vehicle dynamics. Intuitively, if the vehicle is able
to track these generated trajectories well enough, i.e., y; ~ q;, then from the
simple dissipativity analysis for double integrator agents that was presented
earlier, one can expect a stable behavior. This argument is made rigorous
in this section and an LMI is derived as a sufficient condition for stability.
Secondly, these augmented dynamics provide us with simple interpretable
tuning knobs, specifically the damping co-efficient kq, which can be used to
slow-down or speed up the vehicle dynamics.

The overall dynamics with state n; = [z] ¢ pﬂT and suitable initial

condition 7;(0) can be represented by

ni(t) = Aemi(t) + Baui(t),

(2.28)
yi(t) = Cami(t),
where
A B, B, 0
AG BG . 0 0 [d 0
ColDa | | 0 0 —kyly|—kyy
c o o0 | o

Let V : RV — R denote the interaction potential (typically non-convex)
among agents (such as the one introduced in [Olfati-Saber, 2006]). It was
so-far assumed that all agents have access to the gradient of the scalar field v
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Figure 2.13: Contour plot of an example f,c(y) = 3(Jy1 —ya| —1)? + 2 (y1 —1)?
with N = 2 and d = 1, where minimizers [1 0]7 and [1 2]7 are denoted by
red stars.

25 3

evaluated at their respective locations. This assumption is now relaxed. Let
V, denote the subset of agents (called informed agents) that have access to
the gradient at their respective positions. Define a function f,. : RV — R
as follows?.

Definition 2.1. For a given interaction potential V', the set of informed
agents V; and a scalar field 1, define a function f,.: RN4 — R by

FacW) = V() + >, (). (2.29)

2%

A contour plot of an example fn.(y) = 2(|y1 — yo| — 1)? + 3(y1 — 1)* with
N =2, d = 1is depicted in Fig. 2.13. Note that since agent 1 is the informed
agent, the desired arrangements which correspond to the minima of f,. are
y=[1 0]Tandy=[1 2], ie., the informed agent at the source and the
agent 2 at a distance of 1 unit from the informed agent in either direction.

Using the notation described in Section 1.5.4, flocking dynamics with
gradient-based forcing terms on the informed agents with initial condition

2subscript stands for non-convex in contrast to a convex function f. defined later in
Chapter 3
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n(0) can be described by

0(t) = Aan(t) + Baul(t),
y(t) = Can(t), (2.30)
u(t) =V fre(y(t)).

Problem 2.3. Derive sufficient conditions independent of the network size

N under which the state trajectories generated by the dynamics (2.30) remain
bounded for allt = 0 and y converges asymptotically to a local minimizer of

e

2.3.2 Analysis

Before presenting the main analysis results, the dynamics described in (2.30)
are transformed into a suitable form in two steps. First, an additional input
and output channel is introduced to represent the dynamics (2.30) in an
equivalent form as

n(t) Ag Be —Bca| [ n(t)
q(t) =|1C: 0 0 di(t) |,
q(t) —y(t) ¢, 0 0 da(t) (2.31)

dl(t) = anc(Q(t )7
d2(t) = anc(Q(t)) - vfnc(y(t))a

where C7 = [O I O] and Cy = [—C I O]. As the second step, the the

state vector n = [n -+ k)T = [2T ¢ pT - 2L ¢k p%]7 is permuted to ob-
tain dynamics in the new variable 7 = [z -+ 2% ¢f - ¢4 pt - L] =
[2T ¢T pT]T via a similarity transformation to obtain
i(t) A¢ Be —Bea i(t)
q(t) = CG’I 0 0 d1 (t) s
q(t) —y(t) Ccz 0 0 da(t) (2.32)

dy(t) = V fuclq(t)),
dy(t) = V fue(q(t)) = V fuc(y(t)),

where
A B, B, 0 0
Ag | Bo —Bg 0 O Ing 0 0
Csr] 0 0 —| 0 0 —kilna|—kpIng Kplnag
Ceo| 0 0 0 Ing O 0 0
—C Iyng O 0 0
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Assumption 2.4. The function f,. : RN — R and an open set S containing
a local minimizer y, of fne satisfy the following conditions:

1) fne is differentiable on S.

2) y. € S is a local minimizer of fne on S, i.e., V fne(ys) = 0 and
fae(Y) = fae(ys) = fmin VY€ S.

3) For a given symmetric matriz My, and for ally € S,

[vyf;%’;f S [Vyf;c%;)] >0

4) For a given symmetric matric My and for all x,y € S,

T
r—=1yY r—=1y
M. 1 > 0.
[anc<x) - anc(y)] ( 20 ®© Nd) [anc(x) - anc(y)]
5) There exist constants ¢y and co such that

80 = {y + e‘(fnc(y) - fmin) < 0, ||€H2 < 62}
1s bounded and contained in S.

Remark 2.5. The knowledge about f,. needs to be captured via a suitable
selection of matrices Myg and Mayy in Assumption 2.4 items 3) and /). See
[Fazlyab et al., 2018, Section 6.2] for a few examples. If global properties of
fne are known, one can set S = RN, Since this section attempts to provide
a local result, Assumption 2.4 item 5) is required to ensure an invariance
property for set S such that trajectories do not exit this set to regions of RN4
where properties of fn.. are not known.

An additional assumption on the vehicle dynamics is made which states
that the local tracking controller is stabilizing and has zero steady state error
for step position references.

Assumption 2.5. The vehicle dynamics (2.26) are such that every eigen-
value of the matriz A has strictly negative real part and —CA™'B, = I.

For given matrices A, B, and symmetric matrix variables R and (), con-
struct &y with a block 3 x 3 partition as

I 000 X X Al
Xo=R+ | BTAT|Q[I A7'B, 0]+ |0 0 0| =Xy Ay A
0 0 0 Iy X3 Agp Asg
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Now, let 7, = =A™ Bys, ¢+ = s, p+ = 0 and define the storage function

/‘?11 )?12 )€13 T — Ty
Vs(%q,p) = (*) 9‘{21 /’\522 9?23 q—Gqx | + ZN(fnc(@ - fmin)7 (2-33)
Xgl ng ng D — P«

Finally, let

Aq | B —Bg
ci | 0 0
o1 o (2.34)
| 0 0
0 0 I

The analysis is based on the following chain of arguments. A non-
negative energy function is defined based on the storage function as E(t) :=
Vi(z(t),q(t), p(t)) and it is shown that if this energy is bounded below some
prescribed value, the state is bounded and the output belongs to the sub-
set Sgp of S. An LMI is then derived which implies that if the output is in
the set S, the energy function is non-increasing. If the initial conditions are
such that the initial energy is small enough and initial output starts in Sy,
a forward invariance of set Sy and thus boundedness of state and output
trajectories is established. The convergence of trajectories is then implied
with the help of the LaSalle’s invariance principle. This is made precise in
the following theorem and it’s proof.

Theorem 2.4 (Analysis for Problem 2.3). Let f,. : R¥Y — R and an open
set S < RN satisfy Assumption 2.4 and let the vehicle dynamics (2.26)
satisfy Assumption 2.5. If there exist R >0, Q >0, u >0, A\ =0, Ay =0
and € > 0 such that

00 O 0o O
00 O 0 O
T

Z = lAU‘);%;XXOAO X%BO:|+ 0 0 ¢ly puly O
00 00 ul, 0 O

00 O 0 O

2
+ Z(*)()‘iMiO ®14) [Co Dio] <0 (2.35)

i=1
and if the initial conditions xg, qo, po are such that

CQAmin(Q)

e (2:36)

Vi(zo, qo, po) < min{2c;p,
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where ¢1 and ¢y are constants involved in Assumption 2.4 item 5), then the
state trajectory n generated by the dynamics (2.30) remains bounded for all
t =0 and y(t) converges to the set {ys € S|V fuc(ys) = 0}.

Proof. With V; as defined in (2.33), define a function £ : R — R as
E(t) = Vi(z(t), q(t), p(t))
> (x(t) + A7 Bya(1) Qa(t) + A7 Byq(t)) + 20 fue(a(t)) — fnin)-
Note that if E(t) < Vi(xg, qo,po), then
fnc<Q<t>> - fmin < —‘/S(xoéq()?p(]) < and
1
ly(t) — a(®)[1* = [|C(x(t) + A7 Bya(t))|?
< [IC]1? - |=(t) + A7 Bya(t)|[?
< ||C[*Vi (o, g0, Po) < 0.
Amin(Q)

This together with the fact that Sy is bounded and contained in S (Assump-
tion 2.4 item 5)) implies that ¢(¢),y(¢) are bounded and contained in S if

E(t) < Vi(xo, g0, po)-

(2.37)

Now, let
Ac | B —Bg
Al B Cara|l O 0
Cl Dl = 0 INd 0
CQ Dg CG2 0 0
0 | 0 Ing

Using the structure of the mutipliers (M9 ® Ing) and (Mag ® Ing), it can be
shown that if there exist R > 0, @ > 0, u > 0, Ay = 0, Ay = 0 such that Z
defined in (2.35) is negative semi-definite, then

/?11 /1:’12 /?13
X = 9\f21 /'\522 /?23
g1 Asg A3
is positive semi-definite and implies
00 O 0O O
Arx+x4 xg) (000 0 00
y: T 00 EINd ,uINd 0
BYX 0
00 O 0O O

2

+Z(*)()‘iMi0®[Nd> [C; Di] <o.

=1
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This can be seen by observing that ) and Z are block 5 x 5 matrices with
Vij=INn®2Z;; fori,je {1, ---,5}. Hence, there exists a permutation matrix

such that T7YT = Iy ® Z.
Differentiating E'(t) with respect to ¢ and using ) < 0, we get

q — qx

' A Mo ® Ing 0 Vf(g)
E+ellp|lP + (=) |71 <0

ellpl+ () [ 0 Ao Mao ® Ina q—y

vfnc(Q) - vfnc(?J)

for all ¢ > 0. Using Assumption 2.4, observe that if ¢(t), y(¢) are in S,
then E(t) < 0. Altogether, if E(t) < V(qo,qo,po), then q(t),y(t) € So <
S which implies F(t) < 0 and finally E(t + s) < E(t) < V(zo,90,p0)
for all s > 0. In other words, & is an invariant set. Finally, observe
that g,y are in Sy and hence E(t) < —el|p(t)||* for all ¢ > 0. Apply-
ing LaSalle’s invariance principle, the trajectory 7(¢) converges to the set
{[(~A"By.)" 4T O]T IV frc(ys) = 0, 4 € S} and since —CA™'B, = I,
y(t) converges to the set {y, € S|V fuc(y«) = 0}. O

Remark 2.6. Note that the sufficient condition (2.35) contains model ma-
trices appearing in the dynamics of a single agent and is independent of the
size of the network N.

Corollary 2.5. Let fn., S = RN? satisfy Assumption 2.4 and assume that
the vehicle dynamics (2.26) satisfy Assumption 2.5. Additionally, let f. be
proper, i.e., {q|fnc(q) < ¢} is compact for all ¢ € R [Bullo, 2021]. If there
exist R >0, Q@ >0, p >0, Ay =0, Ay =0 such that Z defined in (2.35) is
negative semi-definite, then, for any initial condition, the state trajectory n
under dynamics (2.30) remains bounded for all t = 0 and y(t) converges to

the set {y.|V fne(ys) = 0}.

Proof. Since f,. is proper and S = RV?, the set Sy is bounded and contained
in S for any ¢, co. Therefore, the requirement on the initial condition is
satisfied. Applying Theorem 2.4 with the above observation gives the result.

O

Remark 2.7. Theorem 2.4 and Corollary 2.5 are presented under general
assumptions on f,. without specifying the My and Msy. Examples considered
L* 0

later specialize to Mg = Myy = [ 0 —1l
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Figure 2.14: Flocking trajectories (solid lines: x-coordinate and dashed
line: y coordinate) for different values of k; with 3 quadrotor agents un-
der quadratic interaction and quadratic external field with source located at
(60,30).

2.3.3 Numerical Example

Consider a linearized quadrotor model with a linear quadratic regulator
(LQR)-based state-feedback controller tuned for zero steady-state error when
tracking step references in position (see Appendix B.1 for details). As dis-
cussed in Section 2.3.1, let this closed-loop system be represented by state-
space realization (2.26) and augment it with dynamics (2.27) to obtain the
system (G. Now consider three quadrotors embedded in a strongly con-
vex scalar field ¢ with the minimizer at y,,, = [60 30]" and satisfying
V2(y) < I for all y € R% The interaction between the agents is mod-
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Figure 2.15: Flocking trajectories for kg = 2 (top) and k4 = 5 (bottom) with
3 LTI quadrotors under quadratic interactions and external quadratic field.
The hollow circle marker shows the initial position and the X marker shows
the end position (time=50 sec).

eled with non-convex flocking interaction potential of the form

1
Vity) = 3, k5w = willo — d)*, (2:39)
(i:7)
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where £ is uncertain with 0 < & < 1. Further assume that at least one agent
has access to the gradient. With these assumptions, it is easy to see that f,.
(see Definition 2.1) is proper since 1 is strongly convex, V; is non-negative
and agents that are not informed agents, if any, are connected to the informed
agent at all times. Furthermore, it can be shown that

V2 fuey) = VAVi(y) + V? (Z ¢(yi)) <2I+1=3lI,

%

which implies f,. satisfies Assumption 2.4 with S = RV and

Mg = My = [90[ _O]] :
Furthermore, the local LQR-based controller is designed to satisfy Assump-
tion 2.5. Therefore, applying Corollary 2.5, a sufficient condition for stability
of the overall dynamics is the satisfaction of Z < 0. For this example, R = 0
and Ao = 0 are fixed, although that is not required in general. With these
choices, T} can be analytically computed such that 7 ZT, = 0 and com-
pute Ty (by Gram-Schmidt orthogonalization) such that 7" = [17 T3] is an
orthonormal matrix. Finally, impose T4 ZT, < 0 which implies Z < 0.
Considering k4 as the tuning gains, numerical studies verify that Z < 0
for k; > 4.8. Figure 2.14 shows trajectories with different values of k; for
¥(2) = ||z — yopt||* and k = 1. Figure 2.15 shows the trajectories and the
contour lines of the external scalar field for two different values of k4. As
can be seen from Fig. 2.14 and Fig. 2.15, the trajectories for k; < 3 do not
seem to converge, whereas with k; = 4, the trajectories converge in spite of
the fact that Z is not negative semi-definite showing a possible conservatism
in the sufficient condition. However, this example demonstrates a possible
way to tune the gains for maintaining stability of flocking dynamics. More
elaborate local results with multiple minima and complex interaction fields
are obtainable with Theorem 2.4 and is deferred to future work.



Chapter 3

Source-Seeking Under
Formation Control Dynamics:
Performance Analysis with

Dynamic IQCs

The overarching goal of this chapter is to extend the stability analysis of
source-seeking dynamics considered in Chapter 2 to performance analysis and
estimate the exponential convergence rate. This goal is reached at the cost of
some additional assumptions on the interaction field and the external scalar
field. The main tool is the framework of integral quadratic constraints with
dynamic Zames-Falb multipliers, well known from the literature on robust
control theory. The main difficulty in analyzing the problem with interaction
potentials of Chapter 2 via ZF IQCs is the non-convexity of the flocking-based
interaction potentials. The focus of this chapter is therefore set on the convex
interaction potentials of the form 3(y — r)"(£ ® I4)(y — r), common in the
literature on formation control. Furthermore, since the goal is to estimate
the exponential convergence rate, the external scalar field is now additionally
assumed to be strongly convex, instead of just strictly convex as in Chapter
2. Specifically, the external scalar field ¥ : R — R is now restricted to the
class S(my, Ly) of continuously differentiable functions which are strongly
convex with parameter m,,, and have Lipschitz gradients with parameter L

for given constants 0 < my, < Ly, i.e., Yy, y2 € R4,

myllyr — vl > < (Vf (1) = Vi (52)" (51 — y2) < Lyl — v2l*-

The key contributions of this chapter have been reported in [Datar and
Werner, 2022] and [Datar et al., 2022, under review| and the outline of this
chapter is as follows. After discussing the problem setup in Section 3.1, the



58 Chapter 3. Source-Seeking Under Formation Control Dynamics

main theoretical results are presented in Section 3.2 followed by numerical
examples in Section 3.3 and 3.4. Finally, results showing a trade-off between
nominal performance and robustness against gradient measurement noise are
presented in Section 3.5.

3.1 Problem Setup

Consider again a source-seeking scenario where N vehicle agents moving in
R? space (typically d € {1,2,3}) are embedded in an external differentiable
scalar field ¥ : R? — R satisfying the following assumption.

Assumption 3.1. The scalar field ¢ : R* — R is a continuously differen-
tiable function that is strongly convex with parameter my, and has Lipschitz
gradients with parameter Ly, i.e., 1 € S(my, Ly) and let Yopr minimize 1,

i.e., Y(y) = ¥(Yopt) Yy € RY.

The interconnections between the vehicle agents are modeled with an
undirected graph G = (V, £) such that each vertex i € V represents a vehicle
and vehicles ¢ and j communicate if and only if (¢,j) € £. It is assumed
that a non-empty subset V;, € V of informed agents (agents with additional
information) have access to the local gradient Vi evaluated at their respec-
tive positions. The dynamics of the these informed agents can therefore be
augmented with a forcing term in the direction of the negative gradient that
drives them towards the source. The following assumption on the connectiv-
ity of the graph is made, the necessity of which is discussed later in Lemma
3.6.

Assumption 3.2. For every node i € V, there is a node j € V; such that G
contains a path from i to j.

For convenience, the details of the architecture discussed in the previous
chapter is repeated next. Since this chapter deals primarily with analysis
(compared to controller synthesis), it is assumed that a local tracking con-
troller has been designed and identical to the setup in Section 2.3.1, the
closed-loop dynamics of the i*" vehicle agent with desired reference position
¢;(t), desired reference velocity p;(t), internal state z;(t) and position output
y;(t) can be described for a given initial condition x;(0) by

&:(t) = Axi(t) + [B, B, [qi(t)] |

pi(t) (3.1)
yi(t) = Czy(t).
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Figure 3.1: Local control architecture on agent 1.

These closed-loop vehicle dynamics are augmented by the second-order dy-
namics,

¢(t) = pi(t),
pi(t) = —ka pi(t) — Ky - wi(?),

where u;(t) € R? denotes external input, ¢;(0) = C;(0), p;(0) = 0 such that
¢i(t) and p;(t) are fed as inputs to dynamics (3.1). The motivation behind the

augmented dynamics is discussed in Remark 2.4. The overall dynamics with

state n; = [2] ¢ p;fr]T and suitable initial condition 7;(0) can be depicted as

in Fig. 3.1 and represented by
i(t) = Aami(t) + Baui(t),

(3.2)

3.3
ilt) = Comi(0) (33)
where
A B, B, 0
o Ag¢|Be]l |0 0o I 0
| CelDe | | 0 0 —kaly|—k,I4
c o o0 | o

With the notation introduced in Section 1.5, let n(t), u(t) and y(t) be ob-
tained by stacking the states, inputs and outputs of the agents, respectively.
The full system can be described by

0(t) = Agn(t) + Beu(t), — n(0) = np,
y(t) = Can(t).
Defining u,, by stacking up
(1) = {Wy"“”’ e (35

0 otherwise,

(3.4)
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Figure 3.2: Control architecture under formation control dynamics.

standard formation control dynamics [Fax and Murray, 2004] with the for-
mation reference r and an additional forcing term on the informed agents as
depicted in Fig. 3.2 can be represented by

u = ,C(d) (y - T) + Uy (3.6)
The overall closed-loop system is now described by

0(t) = Agn(t) + Beu(t), — n(0) = o,
y(t) = Canl(t), (3.7)
u(t) = L) (y — 1) + uy.

In order to pose the analysis of dynamics (3.7) as a standard robust
control problem with the scalar field and communication graph modeled as
an uncertainty, define a function f, : R¥4 — R as follows.

Definition 3.1. For a given graph G of order N (with its corresponding
Laplacian L), the set of informed agents V;, a scalar field ¢ and a given
formation reference vector r € RN, define a function f.: RV — R by

) = 2 - @I - 1)+ 3 (). (3.8)

2 1€V
Consider an example with 2 connected agents living on R, ie., d = 1

andﬁzll -1

11 ] Let the first agent be an informed agent, i.e., V, = {1}
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y

5 1 15 2 2
U1

Figure 3.3: Contour plot of an example fo(y) = 3(y1 —y2 — 1)® + 2(y1 — 1)?
with N = 2 and d = 1, where minimizer [1 2]7 is denoted by red star.

and the desired formation specified by r = [0 1]7. Finally, let the external
scalar field be given by 1 (y) = 3(y — 1)%. For this example setup, f. can be
computed as

o) = 3y~ L@ L)y — 1)+ D ()
1 1 -1 1 1 2
=5 [y y2 — 1] [_1 1] [y2y_ 1] + §(y1 —-1)
1
2

1
(y1 —yoa —1)* + 5(91 —1)?

and is depicted in Fig. 3.3. Note that since agent 1 is the informed agent,
the desired arrangement corresponding to the minimum of f.isy = [1 2]7.

Observe that u(t) = Vf.(y(t)). So the overall dynamics can be described
by

0(t) = Agn(t) + Bau(t),  n(0) = no,
y(t) = Can(t), (3.9)
u(t) = V1u(y(t)).
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Problem 3.1. Assuming v, G and V), satisfy Assumptions 3.1 and 3.2, char-
acterize the equilibria of dynamics (3.9) and derive sufficient conditions in-
dependent of the network size N under which the state trajectories generated
by the dynamics (3.9) remain bounded for all t = 0 and y converges expo-
nentially with a rate o to the minimizer y. of f., i.e., Ik = 0 such that
y(t) — y«(t)|| < ke~ holds for all t = 0.

Note that the formation control law uses a convex interaction field (y —
r)7(L ® I;)(y — r) whereas flocking interaction potentials are typically non-
convex as they are based on distance.

3.2 Robust Performance Analysis

Problem 3.1 can be posed as a standard robust control problem described by

i(t) = Aen(t) + Baul(t), n(0) = no,
y(t) = Can(t), (3.10)
u(t) = A(y(t)).

The operator A (V f. for Problem 3.1) is not explicitly known but is only
assumed to belong to a set A which characterizes our knowledge about the
uncertainty in the model. The first step in carrying out an IQC analysis
involves using the knowledge of the set A to derive properties of the input
and output signals v and y in the form of integral inequalities. These integral
inequalities, specified by a given matrix P and a given LTI system

| An | Bn
n- [ ]

T
J T (P@Da(t)dt >0 VT > 0, (3.11)
0

typically take the form

where z(t) is given by

2(t) = f Crent=7) By ly( )] dr + Dn lz@] .

0 u(7) (t)

One aims to derive properties which exactly characterize the set A. For
Problem 3.1, we use the ZF a-1QCs.

The analysis for Problem 3.1 is first presented by postulating that f. e
S(m, L) in Sections 3.2.1, 3.2.2 and 3.2.3 followed by a study of properties of
fe (including conditions ensuring f. € S(m, L)) in Sections 3.2.4 and 3.2.5.
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3.2.1 ZF o-IQC Parameterization

This section is devoted to deriving properties between the signals v and y
related by the map u = V f(y) where f is an arbitrary function in S(m, L)
and y, minimizes f such that V f(y,) = 0. The standard (non-exponential)
ZF 1QCs have been well studied. The main contribution of this section is to
give a purely time-domain derivation of the general non-causal higher order
ZF a-1QCs with a modification of the parameterization from [Veenman et al.,
2016] adapted to the a-1QC setting. A discussion on closely related literature
is given in Section 1.1.

To simplify the discussion, the properties between the deviation signals
J=y—ysand & =u—u, = Vf(y) = Vf(ys) = Vf(y) = V(G + ys) are
derived instead of the signals u and y. It is convenient to derive properties of
some new signals (defined below) related to the input and output signals @
and g. For constants m, L and for any @, 7 € L4.[0, 20), define for t € [0, ),

p(t) = alt) — my(t),
q(t) = Ly(t) —u(t).

It can be shown just from basic convexity properties (for example using
Proposition 5 from [Lessard et al., 2016]) that if f € S(m, L), then p(¢)Tq(t) >
0 for all ¢ > 0 which implies that § e***p(t)7q(t)dt > 0 for any T > 0 and
any « € R. This corresponds to the well-known sector condition involved
in the circle criterion [Scherer, 2022]. The aim of this section is to derive
more general properties which include the sector condition mentioned above
in order to better characterize the class of functions f € S(m, L).
Let h € £1(—00,0) such that

(3.12)

0

h(s) 20 VseR and J h(s)ds < H, (3.13)

—00

for some H € R and define signals w; and wy as shown in Fig. 3.4 by

wy (t) = Jt e 22Dt — 1)q(7)dr,
° (3.14)
ws(t) = J 2T (_ (1 = 1))p(r)dr.

0

Theorem 3.1. Let h satisfying (3.13) be fized and let « > 0. Let 4,y €
L]0, 0) be related by i = V f(§ + y«), where f € S(m, L) and y, minimizes
f. Then, the signals defined in (3.12) and (3.14) satisfy

| et e a®) = sy o - a w0y @tz 0. (315)
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p wWo

i r [e™2*"h(—t)] « p(t) |——

- —-ml I
u Lr -1

E’ [e7***h(t)] * q(t) ——

Figure 3.4: Signal definitions for p, ¢, wq, ws.

VI = 0.

Proof. With the signal definitions (3.14), an appropriate change of integra-

tion variable, signal extension as defined in (1.2) and Fubini’s theorem, we
obtain,

[ et = [ exte ([ i - natrrar ) a

_ f ' f L R h()g(t — s)dsdl

_ J ' f T 21 h(s)qr(t — s)dsds

- [ b ([ o ante - i) as. 10

Similarly,

fTe2atq(t)Tw2(t)dt— f T ) < fT eQMp(T)TqT(T—s)dT) ds. (3.17)

0 §=—00 7=0

Putting (3.16) and (3.17) together and using a Lemma 3.12 (proven in Section
3.6),

fT > (p(t) wy(t) + q(t) wo(t))dt
T ) ( f " Potmin( 1, e 2 p(0) T gr (t s)dt> ds
: h(s) ( f ' ezo‘tp(t)Tq(t)dt) ds
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where the first inequality follows from Lemma 3.12 and h(t) = 0 and the
second inequality follows from (3.13).

Note that the asymmetry of the function 5(s) = min{1, e~2**} about the
point time s = 0 arises effectively from the asymmetry generated by the
factor €2** in the integrand of the a-IQC formulation. This factor is absent
in the standard non-exponential versions of the the ZF IQC. Also note that
this asymmetry is present in the exponential ZF IQCs presented in [Freeman,
2018]. 0

Remark 3.1. A factor of 2H is typically found in the literature instead of
the factor H in the first term of the inequality (3.15). This is because h
is typically assumed to be symmetric about t = 0, i.e., h(t) = h(—t) and a
bound of the form §; h(s)ds < H is assumed (instead of the upper-bound in

(3.13)) which implies §*_ h(s)ds = SO_OO h(s)ds + §; h(s)ds < 2H.

Note that if h(t) = 0 for all ¢, (which implies w;(t) = 0 and wsy(t) = 0
for all ¢), one can pick H = 1 to obtain S(:)F e*p(t)q(t)dt = 0, the sector
IQC involved in the circle criterion, discussed before the theorem. Theorem
3.1 thus produces a larger set of IQCs depending on the choice of h. The
parameterization of h in the following discussion proceeds along the lines of
[Veenman et al., 2016] (with the same notation). Observe that w; and ws
defined in (3.14) can be seen as the outputs of fictitious LTI systems with
impulse responses e~2*¢="h(t — 7) and e~ 22" h(—(t — 7)) and excited by
inputs ¢ and p, respectively. Consider a fictitious LTI systems of order v (to
be chosen) as follows. Let

A0 0 .
1 A 0 0
A, — . B, = | |. (3.18)
0 0 :
0 1 A 0

Choosing the A\ appropriately is an open-problem as noted in [Veenman et al.,
2016] and for all numerical experiments in this thesis, A is set to —1 and the
multiplier order v is chosen from the set {1,2,--- 5} with most applications
showing good results already with first order multipliers, i.e., v = 1 (see Sec-
tion 3.3). Due to this small size, the numerical conditioning issues typically
associated with these Jordon blocks are not observed. Let

Qu(t) =B, =MR2[1 ¢ ... '],
where . ) .
R, = diag(——, —— -, — ),
0 V1! (Vv — 1)
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Parameterize h by variables P, € RY” and P; € R as

(PQu(—t) ift<0,
) = {P?,Qy(t) if t > 0. (3.19)

A, | B,
C, | D,

space realization of 7,. It has been shown in [Veenman et al., 2016] that if
H, P, P5 are such that

v—1

Let 7,(s) = [1 —5__ . 3—]T and let [

(s—a)v—T (s—A)r—1 ] be a state-

H+ (Po+ P)A'B, >0 (3.20)
and 3X], X3 € S~! such that for i = {1,3},

o % 0 [ 1 0
“|x o o A, B, | >0 (3.21)
0 0 diag(P)| |R,C, R.,D,

then, h defined in (3.19) satisfies (3.13). Thus, every element in the set

00 H -P )
_pT
P= S ? (])31 8 |H, Py, P satisfy (3.20) and (3.21) » .
® % 0 0 )
corresponds to an h satisfying (3.13).
A% | B,
Now, let A2 = A, —2al, Q%(t) = e ?Q,(t) and 7 = | 0 | 1
I, | 0
With
A* 0 | -mB, B, |
0 A°| LB, -B,
|7 O] |-m 1] 0O O —m 1
L= | L 1T | L o] o 0 |
0O O L —1
0o ,| 0o o0 |

let Iy = 7, ® Iy and II = lﬁ‘ﬁ] = T ® Ing.  As shown in Fig.
) CH DH )

3.5, let us define for any @, g € Lo.[0, 0),

A1) = Jot Crefnt-n g lzgg] dr + Dy [Z%l . (3.22)
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Figure 3.5: Structure of Il = (7, 1 ® Ina).

Theorem 3.2. Let 4,7 € Lo.[0,00) be related by
f e S(m,L) and y, minimizes f. Then, for any «
defined in (3.22) satisfies

V(g + ys), where
0

> 0, the signal z as

T
f 2T ()(PRIE()dt > 0 VP e PYT > 0. (3.23)
0

Proof. From the state-space realization of II (shown in Fig. 3.5), the signal
definitions (3.12), (3.14) and (3.19) and the block structure of matrices P € P,
we get,

Z()(P®IZ(t) =2(Hp(t) q(t) — p(t) wi(t) — q(t) wa(t)),

which can be used together with Theorem 3.1 to finish the proof.
O

Remark 3.2. In the classical robust control literature, the transfer function
H*(P@ I)H is the called general non-causal ZF multiplier, where I1 is the
transfer function corresponding to the LTI system 11, P is a matriz belonging
to P and the superscript = represents complex conjugate transpose. When
enforcing P, = 0 (Py = 0), the multiplier is called causal (anti-causal) ZF
multiplier and when enforcing P, = 0 and P3 = 0, one ends up with static
multipliers which correspond to the well-known circle-criterion (CC) [Scherer,
2022]. The conservatism in these specializations is investigated in Section
3.83. Since all the arguments made here are in time-domain, the transfer
function f[*(P ® ])f[ does not appear at any point in this thesis. The order
v of the LTI system 7 is called the order of the ZF multiplier.
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Remark 3.3. Eztension of these results to cases when the map from y to
u 1s additionally known to be odd is possible along the same lines but is not
pursued here.

3.2.2 Analysis for LTI Systems

Finally, applying the standard IQC machinery, the analysis result is presented

next which leads to a computational procedure for obtaining convergence

rate estimates. Let li‘ﬁ} = (Tm.r ® Ing) lIN ®G]. The following
C|D ’ Ing

theorem from [Hu and Seiler, 2016] adapted to the current setting gives the

performance analysis condition, the proof of which follows along the lines of

the proof of Theorem 3.4.

Theorem 3.3 (adapted from [Hu and Seiler, 2016]). If 3X > 0, P € P such
that

ATX + XA +2aX XB cT
BTy 0 ] + lDT] P(Nd)(*) <0, (3.24)

then, state trajectories generated by the dynamics (3.9) with any f. € S(m, L)
remain bounded and the output trajectory y converges exponentially to the
minimizer ys of f. with rate «, i.e., Ik = 0 such that ||y(t) — y«(t)|| < ke
holds for all t = 0.

Remark 3.4. Note that (3.24) is not linear in o and X due to the product
aX. It falls into the class of quasi-convexr optimization problems which can
be solved efficiently using a bisection over o as commonly suggested in the
literature such as in [Lessard et al., 2016].

Remark 3.5. Note that for large networks, i.e., when N is large, the LMI
(3.24) becomes computationally intractable. However, it can be decomposed
into a smaller LMI independent of N as described in Section 3.2.6.

3.2.3 Analysis for LPV Systems

Extensions of the results obtained in the previous section to LPV systems
is straightforward and one such extension is demonstrated next when N =
1. Instead of the LTI system G, let G(p) denote an LPV system with n,
scheduling parameters [Shamma and Cloutier, 1992], where, for a compact
set P < R™, the function p : [0,00) — P captures the time-dependence
of the model parameters. Assume that the system G(p) still has the same
structure as depicted in Fig. 3.1 with the difference being that the matrices
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A, By, B,, C' may be parameter dependent. The overall dynamics can be
represented by

1(t) = Ac(p(t))n(t) + Ba(p(t))u(t), — n(0) = no,
y(t) = Calp())n(t), (3.25)
u(t) = Vip(y(t)),

where 17 € R™ is the state vector and p : [0,00) — P is an arbitrary scheduling
trajectory. If the rate of parameter variation p is bounded and this bound is
known, it could be included by considering parameter-dependent Lyapunov
functions (see [Scherer and Weiland, 2000] for details), but this case is not
treated here.

Let the series interconnection of the LTI system (7, 1 ® I;) and the LPV
system G(p) be denoted by

AL = o1 | Y],

The following theorem gives a sufficient condition for performance analysis.

Theorem 3.4. If 3X > 0, P € P such that, for any p € P < R™ (p is a
vector, whereas p is a function),

[A(p) Xg()ﬁc)étg)wax Xl;ﬁ‘)(ﬁ)] . [g(é))T] Pay(x) <0,  (3.26)

then, the state trajectories generated by the dynamics (3.25) with any ¢ €
S(m, L) remain bounded and the output trajectory y converges exponentially
to the minimizer yopy of Y with rate o, i.e., 3k = 0 such that ||y(t) — Yopt|| <
ke~ holds for all t = 0.

Proof. Consider the equilibrium 7,, u. = 0, yYopt such that for any trajectory
p:[0,00) > P,

0 = Ac(p(t))ns,
Yopr = Ci(p(t)) 1, (3.27)
0= Vw(yopt)-

Note that since the system G(p) has the structure depicted in Fig. 3.1, it
contains an integrator. Therefore, by following the same arguments as in
[Scherer and Ebenbauer, 2021, Theorem 2.1], the existence of an equilibrium
N, satisfying the equations (3.27) is guaranteed by quadratic detectability,
i.e., if there exists a matrix L, such that (Ag(p) + L,Cq(p)) is Hurwitz for
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all p e P. Note that the (1,1) block of LMI (3.26) ensures that there exists
an Xg > 0 such that

Aa(p)T Xe + XaAc(p) — Calp)' Calp) < 0

which implies that the detectability condition [Caverly and Forbes, , Section
3.12.1] is verified so that the existence of the equilibrium is established. Now

let & = [77 ; ?7*] , where 7 is the state of G(p), x, is the filter state and

™

74 is the equilibrium defined above. For any trajectory p, such that, p(t) €
P Vte[0,00), the dynamics of £ can be represented by

E-AQO)E+BO, O = o
zZ=C(pt))§ + D(p(t))a.
Since (3.28) is the serial interconnection (7, ® I4) Ggp ) , the output 2

of (3.28) can be obtained from (3.22) with signals @ and g, where g is the
output of G(p) for input @. Furthermore, dynamics (3.25) imply that @,y
satisfy @ = V(7 + yopt). Hence, Theorem 3.2 implies

T
f 2T () (P @ I,)3()dt = 0 WP eP, VT = 0. (3.29)
0

Define a storage function V(¢) = £7X¢. Using (3.28), (3.26) and the as-
sumption that p(t) e PVt € [0,0), we get

d

L wiem) + 2av ()
e o) [AOT g 20 g
o)X o |l
<~ [¢ al|[ g0 P o) Pl |
) (P®I)2(t)
Rearranging, multiplying by €?** and integrating from 0 to 7', we obtain

d 2at 2at~T
S (ETVI(ER))) + e (O(P @ 1a)2(t) < 0,

T

STV(ED) + | T ()P © L)Er)dr < V(EO)).

0

Using (3.29) and X succ0, we get that V(£(t)) < e 22TV (£(0)) implying
9(T)[| < H%HWH& )|e=oT for all T = 0. 0
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O——C)

Figure 3.6: Example graph with agent 2 as the informed agent for illustration
of Definition 3.2 and Lemma 3.5.

An attempt to apply Theorem 3.3 to Problem 3.1 when N > 1 prompts
the following questions:

1. Is f. € S(m, L) for some m, L if ) € S(my, Ly) for some my, Ly and
how to verify it?

2. How to characterize minimizers of f.?

3. The size of the LMI (3.24) grows with N, but has a lot of structure.

Can we exploit this structure and derive equivalent LMIs independent
of N7

These questions are addressed in Sections 3.2.4, 3.2.5 and 3.2.6, respectively.

3.2.4 Smoothness and Convexity Properties of f.

For convenience, let us define two grounded Laplacians.

Definition 3.2. For a given graph G of order N (with its corresponding
Laplacian L), a set of informed agents V; and constants 0 < my < Ly, let
the grounded Laplacians Ls and Ly be defined by

Es =L + me and Eb =L + LwE, (330)

where E is a diagonal matriz with the i'" diagonal entry equal to 1 if i € V),
and equal to 0 otherwise.

Remark 3.6. To illustrate the compatibility with the conventional definition
of grounded Laplacian from the literature, consider an undirected super graph
G, of the given graph G by adding an (N + 1) node which is grounded and
has an edge with all informed agents in V; with an edge weight my. The
grounded Laplacian for Gy as defined in [Xia and Cao, 2017] then equals L.

To illustrate the above definition, consider a graph depicted in Fig. 3.6
where the informed agent 2 is shown in red. Furthermore, let constants
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my = 1 and Ly, = 2. The grounded Laplacians for this setup as defined
above are given by

1 -1 0 000 1 -1 0
L;=L+1E=|-1 2 —-1|+]010|=|-1 3 -1],
| 0 —1 ] [0 0 0] |0 —1 |
1 —1 0] Jo o O] 1 —1 0]
Ly=L+2E=|-1 2 —-1|+f0 2 0|=]-1 4 -1
|0 -1 1| 0 0 0] 0 -1 1

Lemma 3.5. For a given graph G of order N (with its corresponding Lapla-
cian L), a set of informed agents V,, a scalar field 1, a formation reference
vector © and constants my, Ly such that 0 < my < Ly, let f. be as defined in
Definition 3.1 and L, Ly, be as defined in Definition 3.2. Then, for constants
m, L such that 0 < m < L, the following statements are equivalent:

1) foe S(m, L) for all ¢ € S(my, Ly),
2) mI < Ly and Ly < LI.

Proof. From Definition 3.1 and u, as defined in (3.5), we have, for any z,y €
RNd,

(Vfelz) = V) (@ —y) = (¢ =) (LO L)z — y) + (z = y) uy,

where

(z =) uy = 3 (2 = 4)" (Vo (2:) = Vi (y).

%

Let us first show that statement 2) implies statement 1). For any ¢ €
S(my, Ly),

myll; — yil | < (20 = 9:)" (VY (@) = VY (9:)) < Lyl — il
Using Definition 3.2, this implies

(Vela) = V) (z —y) < (2 —y) (Lo @ La) (2 — y) (3.31)
and

(Viela) = V) (x —y) = (z = y) (L ® L) (z — y). (3.32)

Finally, mI < L, £, < LI, equations (3.31), (3.32) and the fact that the
spectrum of X and X ® I is identical together imply that f. € S(m, L). The
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reverse direction, i.e., statement 1) implies statement 2), can be shown by
choosing the functions

Us(2) = myl|z]]* and y(2) = Ly|l2|I",

defining functions fs and f, using Definition 3.1 for functions ¢, and vy,
respectively,

(Vi) = V) (x—y) = (z —y)" (L ® La)(x — ),
(Vio(z) = V) (z —y) = (x — )" (Ly @ Ig) (z — y).

This implies statement 2) using the fact that fs, f, € S(m, L). O

(3.33)

Continuing our example from Fig. 3.6 with m, = 1 and L,, = 2, observe
that 0.2679 - I < L, < L, < 4.5616 - I, which implies because of Lemma 3.5
that f. € §(0.2679,4.5616) for all ¢ € S(1,2)

The next lemma shows that Assumption 3.2 is necessary and sufficient
for f to belong to S(m, L).

Lemma 3.6. Let 0 < my, < Ly be fized. There exist constants m, L with
0 <m < L such that f. € S(m, L) for every ¢ € S(my, Ly) if and only if the
graph G and the set of informed agents V; satisfy Assumption 3.2.

Proof. Let G and V) satisfy Assumption 3.2. This implies that every con-
nected component of G contains at least one node from V,. Therefore, L,
according to Definition 3.2, can be transformed with a permutation of node
numbering (similarity transformation), into a block diagonal matrix with
each diagonal block being a grounded Laplacian corresponding to each con-
nected component. Since each diagonal block is a grounded Laplacian with
at least one grounded node, the smallest eigenvalue m; of each diagonal block
is positive [Xia and Cao, 2017]. By defining m as the minimum over all m,,
we obtain mI < L with m > 0. On the other hand, defining L as the
maximum eigenvalue of L, we obtain £, < LI. Using Lemma 3.5, mI < L,
and L, < LI implies f; € S(m, L). This proves the first part of the lemma.

Let us now show the necessity of Assumption 3.2. Without loss of gen-
erality, let v; € V' be such that G contains no path from v; to any node in
V, and let V) = {vy,v9,- -+ ,v,,} be the set of nodes that have a path from
vy. Thus, the grounded Laplacian L, as defined in Definition 3.2 is a block
diagonal matrix of the following form

oo
e-% L)
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where £; € R™*™ is a Laplacian without any grounded nodes. Therefore,
L1, = 0. Hence, a y € RY can be constructed as y = [121 O]T, with
the property that ||y||> > 0 and y” L,y = 0. Hence, there does not exist an
m > 0 such that mI < L,. From Lemma 3.5, this means that if Assumption
3.2 is violated, there does not exist an m > 0 such that f; € S(m, L). O

3.2.5 Minimizers of f,

Lemma 3.7 characterizes the minimizers for the case of consensus (r = 0)
and formation control with a single informed agent (|V;| = 1) as depicted in
Fig. 3.7 and only necessary conditions are obtained for the general case in
Lemma 3.8.

Lemma 3.7. Let ¢ satisfy Assumption 3.1, G and V), satisfy Assumption 3.2
and f. be as defined in Definitions 3.1. Then the following statements hold:

1) If r =0, then z is the minimizer of f. if and only if z = 1§ ® Yopt-

2) If V; = {i} for some i€V, then z is the minimizer of f. if and only if
2 = Yopt + (rj —1i) for all je V.

Proof. First, let r = 0. Using Definition 3.1, we get, for all y € RV,

L) = sy Ly + S () = 0 = Vil (sepe),

2 ievl ’iEV[

where the first inequality is obtained by using the fact that the Laplacian £
(and (L®1I4)) is positive semi-definite [Bullo, 2021] and the second inequality
is obtained using Assumption 3.1. Since L1y =0, f(1n®Yopt) = |Vi|¢)(Yopt)
which together with the above argument implies f.(y) = fo(1n ® Yopt) for
all y € RV ie., 1y ® yopt minimizes f.. Since Assumption 3.1 also implies
uniqueness of the minimizer, this already completes the proof for part 1).

For part 2), let us assume without loss of generality that 1 € V. Similar
to the arguments in part 1), we get, for all y € RV9,

1

fey) = 5y =) "Ly =) + (1) = (51) = Y (Yop)-

Let 21 = yYopt and 2z; = Yopt + (r; — 1) as specified in the statement of the
lemma. Thus, 2 = (I1x QYopt) + 7 — (Ixy ®71) and z — 7 = 1n @ (Yopt — 71)-
Since L1y = 0, fo(2) = ¥(21) = ¥ (yopt) Which implies f.(y) = f.(z) for all
y € RV ie., z minimizes f. As in part 1), uniqueness of the minimizer
(implied by Assumption 3.1) completes the proof for part 2).

O
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Figure 3.7: Sketch depicting the minimizers for the case of consensus (r = 0)
(left) and formation control with a single informed agent (|V,| = 1) (right)
considered in Lemma 3.7. Black solid circles represents the informed agents,
orange solid circles represent the non-informed agents, red cross represents
the minimizer of the field.

Remark 3.7. Note that if r is chosen such that r; = 0 for the informed
agent © € V;, then r just encodes the desired positions of the agents with the

coordinate system such that the source and the informed agent are located at
the origin (see Fig. 3.7 (right)).

Remark 3.8. Scenarios involving multiple informed agents and a non-zero
formation reference v are difficult to characterize because the terms %(y —
'Ly —r) and Diey, V(Yi) have competing objectives. The equilibrium
can thus result in a situation where none of the informed agents are at the
source and agents are not at desired relative distances.

Lemma 3.8. Let ¢ satisfy Assumption 3.1, G and V, satisfy Assumption
3.2 and f. be as defined in Definition 3.1 with z minimizing f.. Then

Figure 3.8: Sketch depicting minimizer for the case of a quadratic field. Black
solid circles represents the informed agents, orange solid circles represent
the non-informed agents, red cross represents the minimizer of the field as
considered in Lemma 3.8 item 2).
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{y|[V(2:)"(zi —y) = 0 for all i € V}} contains yopy. Furthermore, we obtain
the following stronger conclusions if 1 is quadratic or radially symmetric.

1) If4 is radially symmetric around the source, i.e., it has the form ¥ (y) =
Ur(||ly — Yopt||) for some function 1, : R — R, then the minimizer z of
fe is such that yop lies in the convex hull of {z;|i € V;}.

2) If ) is quadratic, i.e., it has the form ¢¥(y) = y* Qy+b'y + ¢, then, the
minimizer z of f. satisfies Yopr = ﬁZiew z;, i.e., the center of mass
of informed agents is at the minimizer yopy of ¢ (see Fig. 3.8).

Proof. Convexity of ¢ implies that Ve (y)(y — yopt) = 0 for all y € RY. This
implies that for any z; € R? ., belongs to the half-space {y|Vi(z;)(z; —
y) = 0}. Repeating this argument for each informed agent, we get that
Yopt belongs to the intersection of N half-space defined above, i.e., yopt €
{y|V(2)(zi —y) = 0 for all i € V}}.

The proof for part 1) involves identical arguments to the ones used in the
proof of Theorem 2.1 item 1) and are repeated here only for convenience.

Assume that ¥(y) = ¥ (||y — yopt||), which implies that if y # yopt, V(y) =

¥ (ly=vopt )
[1y—Yopt||
implies ¥, (||y — yopt||) > 0 for all y # yopt. Using the fact that 1y is a left

eigenvector of £ with eigenvalue 0, we get

(¥ — Yopt) annd V)(yopt) = 0. Additionally, strong convexity of ¢

(AR @ L)V fe(2) = ), Vib(z)

iEVl
1/)7/" Zi — yo
3 (I ptll)( o),
i€V],2i A Yopt sz - yopt||
If z minimizes f., then Vf.(z) = 0 and we obtain
¢;«(||Zz — Yo ||)
0= Z pt (2i — Yopt)- (3.34)

1€V, 2; Yopt | |Z’L - yopt | ‘

Now assume that y,,; does not belong to the convex hull of {z;]i € V;}. This
implies that there is a separating hyperplane characterized by an h € R? and
an offset ¢, € R such that h7z; + ¢, = 0 for all i € V; and hlyep + ¢ < 0.
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Multiplying both sides of equation (3.34) from the left by k', we get

0= Z w;(Hzl_yoptH)hT(

Zi —
o —gopl] (51 Yort)

1€V,2i #Yopt

_ Z 1/}7/"(sz - yopt||> ((hTZi + Ch) B (hTyopt + Ch))

Hzi _?JOptH

1€V, 2i #Yopt

> Z w;q‘zl_yoptH)

Tl o] Yo )
) op

eV 12 #Yopt

If hTyopt + ¢, < 0, each term in the sum above is positive and we have a
contradiction. Therefore, there exists no hyperplane separating {z;|i € V;}
and Yope which implies that y,p is in the convex hull of {z;|i € V;}.

For part 2) assume that ¢(y) = $y”Qy + b"y + ¢ which implies Vi) (y) =
Qu + b and the unique minimizer is given by yop, = —Q'b. Defining E to
be a diagonal matrix of size N such that the i"* diagonal entry is equal to 1
if © € V; and equal to 0 otherwise, we get,

Vi) = (L®I)2+ (E®Q)z + (Ely) ®b. (3.35)

Multiplying both sides from the left by 1% ® I, and using the fact that 1y
is a left eigenvector of £ with eigenvalue 0, we get,

(Iy ® L)V fe(z) = Q(Z zi) + [Vilb.

E€V)

Finally, if z is a minimizer of f., then V f.(z) = 0 which implies V%(Zievl zi) =

_Qilb = Yopt-
O

Remark 3.9. One can construct examples of strongly convex non-quadratic
and non-radially symmetric fields such that yop, does not belong to the convex
hull of {z;|i € Vi} showing that specializations of quadratic and radially sym-
metric cases in Lemma 3.8 cannot be extended to the general case without
further assumptions on . See Fig. 3.9 for a sketch of a non-smooth strongly
convex example field.

3.2.6 Decomposition of the Analysis Condition

This section finally addresses Remark 3.5. Using the structure of matrices
in the LMI (3.24), it can be reduced without any additional conservatism
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Figure 3.9: A sketch of a strongly convex (albeit non-differentiable) scalar
field of the form ¢ (y) = max(cly + b;) +m|Jy||* with an equilibrium configu-
ration such that the source is outside the convex hull of agent positions (see
Remark 3.9).

to a smaller LMI independent of N. Note that this is possible due to the
specific diagonal and repeated structure of the multiplier and the plant and
is common in the literature on robust control. The key idea is that once the
uncertainty consisting of the interconnections is characterized by an IQC with
a diagonal repeated multiplier, the nominal plant and the multiplier form
repeated decoupled systems leading to repeated decoupled system matrices
entering the verification LMIs.

Lemma 3.9. The following statements are equivalent:
1. 3X > 0, P € P such that (3.24) is satisfied.
2. A&, > 0, P € P such that

AT Xy + XoAo + 20X, XoBo|  [CT
[ B§ X, o | |pr Pay(x) <0, (3.36)

B G
where [?—S‘D—z] = (T ® 1) lld]

Proof. It can be shown that there exist permutation matrices T}, T, of ap-
propriate dimensions such that T{ (X ® I'T, = I ® X holds for any real
matrix X [Magnus and Neudecker, 1979]. This can be used together with
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the equivalence of LTT systems under similarity transformations to show that
there exist permutation matrices 7" and T, such that,

In®G Ao | B
m 1y [ 2] = (b @ T B @ mr

Substituting in LMI (3.24) and using properties of the Kronecker products,
the condition reduces to

(Ao@[N)TX + X(A()@IN) + 2aX X(B()@[N)T
TT(By® Iy)" X 0

+ (PRI, Iy) [(Co®1In) (Dy®Iy)T] <0,

where we have used (Ir41) @ Tr)' (P ® Is ® In)(Io(41) ® Tx) = (PR 14 ®
TI'T,) = (P®1;® Ix). Now, applying a congruence transformation using

(3.38)

I
the permutation matrix 0 79T , we obtain the following equivalent LMI,

[(Ao RIN)TX + X(A® Iy) + 20X X(By® Iy)
(Bo® Iy)"X 0 (3.39)

+ [(*)(—P®Id> [CO Do] ®IN] < 0.

The equivalence between statements 1) and 2) can now be shown by making
an argument exactly as in [Lessard et al., 2016, Section 4.2]. []

3.2.7 Main Robust Analysis Result

Before presenting the main result, let us define an appropriate uncertainty
set for the dynamics (3.9). Let the underlying graph G, the set of informed
agents V; and the external field ¢ be such that f. (see Definition 3.1) belongs
to §(m, L). This can be verified by looking at spectrum of the grounded
Laplacians defined in Definition 3.2 (see Lemma 3.5).

Definition 3.3.
A =GV, Y)|fee S(m, L)}. (3.40)

Remark 3.10. Note that with V =V, = {1} and € = {}, we get f. = ¢ and
the setup reduces to the scenario of a single agent embedded in a scalar field.

Theorem 3.10 (Analysis for Problem 3.1). Let graph G, set of informed
agents V; and scalar field ¢ be such that (G, V,, ) € A, 1 for some 0 < m <
L. Let y, be the minimizer of f.. If 3X, > 0, P € P such that (3.36) is
satisfied, then the state trajectories generated under dynamics (3.9) remain
bounded and the output trajectory y converges exponentially to y. with rate
a, i.e., 3k = 0 such that, ||y(t) — y.|| < ke™®" holds for all t = 0.
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Proof. Since (G, V,¥) € Ay, fo € S(m,L). Using the hypothesis of this
theorem and Lemma 3.9, 3X > 0, P € P such that (3.24) is satisfied. Finally,
application of Theorem 3.3 completes the proof. 0

3.3 Numerical Examples: Single Agent

3.3.1 Single Quadrotor in ¢ € S(1, L)

A 12 order linear model of a quadrotor is considered with an LQR-based
state-feedback controller tuned for zero steady-state error for step references.
See Appendix B.1 for more details on the quadrotor modeling and control.
As discussed in Section 3.1, we let this closed-loop system be represented by
state-space realization (3.1) and augment it with dynamics (3.2) to obtain
the system G.

The following questions are addressed next to demonstrate the applica-
bility of the theoretical results.

1 How robust is the given controller with respect to different fields ¢ €
S(my, Ly)?

2 How can the gain k; be designed for the given closed-loop quadrotor
system?

3 How conservative are the estimates of the convergence rates given by
our analysis for static multipliers (circle criterion) and causal/anti-
causal/non-causal ZF multipliers (See Remark 3.2)?

For fixed gains k, and kq and given closed-loop quadrotor dynamics, Fig.
3.10 shows the convergence rate estimates provided by different multipliers
for fields ¢ € S(1, L) with increasing L. Since increasing L, enlarges the
set of allowable fields, i.e., S(1,L1) < S(1,Ls) VL; < Lo, the estimates
are non-increasing with increasing L,. It can be seen that while the circle
criterion can certify stability (o = 0) for fields ¢ € S(1,5.1), the general non-
causal ZF multipliers along with the ZF multipliers restricted to the causal
case (P3 = 0) can certify stability for all fields ¢ € £(1,8.1). Furthermore,
for each Ly,
1

o(a) = 5 =" [ 1 0w

achieves the convergence rate guaranteed by the analysis showing that, in this
example, the estimates are tight. The conservatism incurred by restricting
the search to causal multipliers is minor in this example. Since performance
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Figure 3.10: Convergence rate estimates for quadrotor dynamics provided by
different multipliers (see Remark 3.2) for fields ¢ € S(1, L,,) and convergence
rates for example fields ¢(2) = 2 (@ — Yop) " diag(1, Ly) (@ — Yopt)-

analysis was not included in Chapter 2, this example illustrates the extension
to a non-conservative performance analysis. Note that this comes at the cost
of the additional assumption of strong convexity of ¢ (in comparison to only
strict convexity as required in Chapter 2).

The effect of varying k, on the performance estimates for a fixed allowable
field set S(1, 10) is shown in Fig. 3.11, where k, = 1. It shows that the highest
convergence rate of 0.148 can be achieved for k; = 8.2 and demonstrates a
method for tuning the gains for optimal convergence rates. It can also be
observed that tuning the gains by using static multipliers (circle criterion)
would lead to a rather slower performance. Sample trajectories of a quadrotor
locating the source at (-50,-50) is shown in Fig. 3.12, where ky is chosen
optimal with respect to the circle criterion (dashed lines) and ZF (solid lines).
Although leading to a higher overshoot, the gains tuned with respect to ZF
lead to faster convergence.
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Figure 3.11: Performance estimates for quadrotor dynamics provided by dif-
ferent multipliers for ¢ € §(1,10) and varying k.

3.3.2 Example Showing the Benefit of Non-Causal Mul-
tipliers

An academic example is now presented that brings out the benefit of using
general non-causal multipliers over causal multipliers. Let G(s) = 5%
and consider fields ¢ € S(1, Ly). The convergence rate estimates provided
by different multipliers for increasing L are shown in Fig. 3.13. It can be
seen that while the circle criterion and causal ZF multipliers certify stability
for fields ¥ € S§(1,1.9), the anti-causal ZF multipliers can certify stability
for fields 1) € S§(1,2) and the general non-causal ZF multipliers can certify
stability for fields ¢ € S(1,2.4). Furthermore, convergence rates with ¢y(z) =
%waQ hit the convergence rate estimates showing that these estimates are
tight. Note that the gap between the actual convergence rates for example
fields and the estimates obtained from non-causal ZF multipliers for L, €
{1.1,1.2,--- 1.6} does not imply conservatism since the example field used
at Ly = 1 is included for any larger L.

3.3.3 LPV Generic Vehicle Model
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Figure 3.12: Sample trajectories of a quadrotor in a 2D-field with minimum

at (-50,-50) with optimal k; based on CC (dashed lines) and optimal k,; based
on ZF (solid lines).

We now consider an LPV system G(p) described by

T =0,

v =—p(t)v —u, (3.41)

where p(t) € P = [0.8,1.2] V¢t € [0,00). The scheduling parameter p can
be seen as a time-varying or adaptive damping coefficient and can be either
fixed and unknown or time-varying. It can be verified that (3.26) for this
example is affine in p and hence satisfaction of the inequality for p = 0.8 and
p = 1.2 implies the satisfaction for any p € [0.8,1.2] [Scherer and Weiland,
2000]. This reduces the condition (3.26) to a finite dimensional feasibility
problem that is implemented to produce the results discussed next. Figure
3.14 shows the convergence rate estimates provided by different multipliers
for fields ¢ € S(1,L,) with increasing L,. As in the previous examples,
example fields (quadratic) are chosen to get an upper bound on the conver-
gence rate. The reduction in conservatism with increasing order of multiplier
can be clearly seen. For this example, fifth order ZF multipliers show negli-
gible conservatism. This analysis essentially guarantees that for this chosen
example, poorly conditioned fields do not affect the convergence rate. For

constant trajectories, i.e., p(t) = p € [0.8,1.2] V¢, and for quadratic fields
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Figure 3.13: Convergence rate estimates for G(s) = 56— __ provided by

T s(s2+s+25)
different multipliers (see Remark 3.2) for fields ¢ € S(1, L,,) and convergence

rates for example fields ¢g(x) = %L¢x2.

(linear gradients), a root-locus argument can be used to show that a = 0.4
for any Ly > my. With the current performance analysis, we can see that
this holds even for any non-constant trajectories p restricted to the allowable
parameter range and for any strongly convex field ¢ € S(my, Ly). This ex-
ample also illustrates the benefit of non-causal multipliers over causal ones
and the reduction in conservatism with increasing order of the ZF multiplier.

3.3.4 Quadrotor with two Modes

The next scenario is that of a quadrotor, as in Section 3.3.1, but with two
operating modes. One operating mode corresponds to the quadrotor carry-
ing some load and the other mode corresponds to no-load. This is modeled
by considering two masses m € {0.2,2} with LQR controllers designed as
in Section 3.3.1 for each mode separately. Consider an arbitrary switching
between the two modes and this can be modeled as an LPV (or switching)
system with P = {1,2} and p(t) e P Vt. Figure 3.15 shows the convergence
rate estimates provided by different multipliers for fields ¢ € S(1,Ly). In
comparison to the LTT case (Fig. 3.10 from Section 3.3.1), the performance is
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Figure 3.14: Convergence rate estimates for LPV system (3.41) provided by
different multipliers (see Remark 3.2) for fields ¢ € S(1, L,,) and convergence
rates for example fields ¢(2) = 2 (@ — Yop) " diag(1, Ly) (@ — Yopt)-

slightly reduced due to the possibility of arbitrary switching between modes.
Furthermore, the estimates with first-order ZF multipliers are not tight any-
more and better results are obtained with second-order ZF multipliers. No
further improvement in the estimates was observed up to 5th order ZF mul-
tipliers.

3.4 Numerical Examples: Formation Control

The LQR-based quadrotor model considered in Section 3.3.1 is now used in
a scenario with multiple quadrotors embedded in a field 1) with a given com-
munication graph G and a set of informed agents V,. This scenario is posed
in Problem 3.1 and the conservatism involved in the analysis condition is first
investigated for this example. Assume that the bounds on the spectrum of
Laplacians are known for the conservatism analysis in Section 3.4.1. When
the bounds on the spectrum of the Laplacians are unknown, these bounds
could be estimated using the maximum degree, a minimal graph consisting
of edges that are present in all allowable graphs, the set of informed agents
and the constants my, Ly from the assumption on ¢ € S(my, Ly). This is
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Figure 3.15: Convergence rate estimates for quadrotor dynamics with un-
certain or switching mass m € {0.2,2} provided by different multipliers
(see Remark 3.2) for fields ¢ € S(1,L,) and convergence rates for fields

o(x) = %(I - yopt)Tdiag(l, Lw)(x - yOpt>‘

considered in Section 3.4.2. For convenience, let the star and the cycle graphs
be denoted by

M= ({1 NL{ D), (1L, N))),

star

Nele = <{17"' 7N}7{(172)7(273)7"' 7(N_1>N)7(N71)})'

cycle

3.4.1 Conservatism Analysis: Known Laplacian Spec-
trum

The theoretical results are applied to the uncertainty set
Agsr ={(G,V,¢)|f. € S(0.3,L)}.

In order to estimate the conservatism, worst-case examples are sought and
presented along with the performance guarantees given by the theory. For
this purpose, define

Ay = {(Q,Vl,wﬂg = ggtarvvl = {1}71/} € S(de?Lw)}' (342>
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Figure 3.16: Convergence rate estimates for quadrotor dynamics under
formation control provided by different multipliers (see Remark 3.2) for
fe € 8(0.3, L) and convergence rates for examples in Ay and As.

The graph is kept fixed to a star graph in A; with the first agent as the
informed agent and the central node in the star topology. Constants m,, and
L, are chosen such that A; < A,, . Let Ay be constructed with a fixed
scalar field and graphs G*° consisting of 25 nodes such that Ay € A, 1, i.e.,

Ay = {(G* Vi, ) = 1.85|ly — y.l[*}. (3.43)

Figure 3.16 shows the exponential performance estimates for increasing L
guaranteed by the ZF multipliers and the circle criterion along with some
examples that achieve the worst case performance bounds. It can be noted
that while the circle criterion can certify stability for any (G,V;,¢) such
that f. € §(0.3,7), the ZF multipliers can certify stability for any (G, V;, ¥)
such that f. e §(0.3,17.64). Examples achieving the worst case performance
show that performance estimates given by the ZF multipliers are tight in this
example.

3.4.2 Robust Analysis: Unknown Laplacian Spectrum

If the spectrum of the Laplacian is unknown, it can be estimated by using
some structural properties of the graph. Assume that ¢ € S(my, Ly) and a
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Figure 3.17: Three examples of graphs satisfying Assumption 3.3 where the
informed agents are shown in red and worst case examples from the set Aj
(bottom right) and A4 (bottom left) defined in (3.44).

minimal structure in the graph is known in the form of essential edges that are
present in all allowable graphs. This means that all allowable graphs could
be obtained by adding edges to the minimal graph. Let the graph Laplacian
associated with this minimal graph be denoted by Lj. As defined in 3.2, let
the grounded graph Laplacian associated with this minimal graph be denoted
by L., = Lo+ myE. Using the fact that adding edges can only increase the
eigenvalues of the graph Laplacian (see Lemma 6.9 from [Bullo, 2021]), we
have that £, = Lo + myE < L+ myE = L,. Furthermore, assuming that
the maximum degree, denoted by d.x, is known and using the fact that
2dmax is an upper bound on the largest eigenvalue of the graph Laplacian
(apply Gersgorin Disks theorem [Bullo, 2021, Theorem 2.8]) together with
e S(my, Ly), we get, Ly < (2dmax + Ly)In. The uncertainty set can then
be defined to be A, 1, with m = A\pin (L) and L = (2dpmax + Ly).

This is now illustrated on a concrete example. Let A be the set of all
(G, V), ¥) that satisfy the Assumption 3.3 (see Fig. 3.17).

Assumption 3.3. 1. At least one third of total number of agents are
informed agents (have access to the gradient).

2. FEvery agent that is not an informed agent has an edge with at least one
informed agent.

3. Maximum degree of all agents is 2.

4. @Z) € S(?), Lw)

As outlined in the paragraph above, a minimal Laplacian for graphs sat-
isfying the above properties needs to be constructed. Since any informed
agent ¢ € V) is either connected to 0, 1 or 2 other agents, a suitable or-
dering of the agents will lead to a minimal grounded Laplacian of the form
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,Cm = blkdlag(mwl, £1, te ,El, £2, ce 752), where

24my —1 —1
£1—l1t71n¢ _11],@_ 110
0 -1 1

Therefore,

m = )\mln(ﬁm) = min(mw, >\min<£1)7 )\min(»CQ)) = 041167
L=Ly+2%dpax = Ly + 4.

In other words, A < Ag4116,1 s+4. Figure 3.18 shows performance curves for
increasing values of L. As in previous examples, worst-case examples that
achieve the theoretical estimates are found showing again that the analysis
is without any conservatism. The worst case examples are found here in the
sets A3 € A and Ay € A, given by,

A3 = {(gavlaw)’g = gf‘,lyclmvl = Vaw = wO}a

3.44
A4 = {(Q,Vl,W’g = gs?)taravl = {1},¢ = ¢0}, ( )

where
Yo(z) = (T = Yopt)” [3 LJ (T = Yopt)-

It is emphasized that the robust analysis demonstrated here requires no
knowledge of the spectrum but general structural properties that can be
verified locally by every agent in a distributed manner.

3.5 Robustness Against Noisy Gradients

This section demonstrates how information about noise involved in the gra-
dient measurements can be incorporated in the analysis. For simplicity, it is
assumed that N = 1, i.e., there is a single agent measuring a noisy gradient
as u,(t) = Vi(y(t)) + e(t) with multiplicative noise e such that the overall
vehicle dynamics from u to y denoted by G, can be represented by

n(t) = Aen(t) + Bau(t) + Bge(t), n(0) = no,
y(t) = Can(t), (3.45)
u(t) = Vi (y(t)).

The knowledge about the multiplicative noise is assumed to be available in
the form of the following assumption.
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Figure 3.18: Convergence rate estimates for quadrotor dynamics under for-
mation control provided by different multipliers (see Remark 3.2) for fields

(G, V,v) satisfying Assumption 3.3 and convergence rates for examples in
A3 and A4.

Assumption 3.4. For a non-negative constant 0 and arbitrary trajectories
y(t) and e(t) under dynamics (3.45), let ||e(t)|| < 0|V (y(t))], i.e.,

le;((ﬁt))r [_()[d 59@] leZ((;)(t))] =0 forallt >0.  (3.46)

The following theorem provides a performance analysis of dynamics (3.45).

Theorem 3.11. Let the multiplicative noise e satisfy Assumption 3.4. If
there exists X > 0, Pe P, a > 0 and X\ = 0 such that

ATX + XA+ 20X (%) PRI, ¢ Dy
l Bl x o |+ | |e Dy <0, (347)
AG BG BG ]
Al B Col 0 0
where | C; | Dy | = [ me’Lg ® 1y IO ] o|I; O and
Cy | Dy 2d 00 I,
0/, 0 |

[~ 0
M‘lo 5%]’
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then the state trajectories generated by the dynamics (3.45) with any 1 €
S(m, L) remain bounded and the output trajectory y converges exponentially
to the minimizer yopy of 1 with rate v, i.e., Ik = 0 such that ||y(t) — Yopt (t)|| <
ke~ holds for all t = 0.

Proof. Similar to the proof of Theorem 3.4, let £ = [77 N 77*] , Where 7 is the

T
state of G, x, is the filter state and 7, is the equilibrium state satisfying

0 = AGn*,
Yopt = CGn*y (348)
0 = VY (Yopt)-

Since Vi)(yopt) = 0, & = u and therefore é = e. The dynamics of £ can be
represented by

é=A§+B[Z], &0) = ol

|- e [T

where Z can be obtained from (3.22) with signals @ and g, where g is the
output of G for input @. Furthermore, dynamics (3.45) imply that @, 7 satisfy
@ = V(7 + Yopt). Hence, Theorem 3.2 implies

(3.49)

T
J T (P®I)2(t)dt =0 YPeP VT = 0. (3.50)
0

Define a storage function V(&) = ££X€. Using (3.47), we get,

. £(t)
J AT X + XA+ 20X XB| |2
(V1) + 20V (£(t) = (*)l BTX 0 ] [Zfﬁi
£(t)
P® I, G Dl g
< —(*>[ AM] [cz DJ Zéf;]
= (PR IL)E() ~ Ale" "] M m

< () (P® I,)A(L),
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where the last inequality follows from Assumption 3.4. Rearranging, multi-
plying by €2** and integrating from 0 to T', we obtain,

%@MW&@))) + e (1) (P® 1,)2(t) <0,

FTVET) + | 0P R L0 < V(ED).

Using (3.50) and X > 0, we get that V(£(T)) < e 2*TV(£(0)) implying
7(T)|] < ||Cgl]A/cond(X)][£(0)||e=2T for all T = 0. O

3.5.1 Numerical Example

Consider again, the quadrotor example from Section 3.3.1 but now with noisy
gradient measurements. Let 0 vary in the set {0.1,---,0.9}. Figure 3.11 is
now reproduced using Theorem 3.11 for each of the above values of § in Fig.
3.19 when using first-order ZF multipliers. The trade-off between nominal
performance and robustness against noise can be clearly seen. The optimal
values of k; increases as 0 increases (thereby demanding more robustness)
and the estimated performance therefore reduces.

3.6 Proof of a Supporting Lemma

This section proves a lemma that is central in the derivation of the ZF 1QCs
and is used in the proof of Theorem 3.1. It is covered by [Freeman, 2018,
Lemma 3 | where the result is presented in a very general setting of Bochner
spaces. Moreover, since the proof of [Freeman, 2018, Lemma 3] is unavailable,
we present a self-contained proof here making all arguments in time-domain.

Lemma 3.12. Let o = 0 be fized and let 3(7) = min{l,e **"} for 7 € R.
Let 4,y € Lo[0,00) be related by u = Vf(y + y«), where f € S(m,L) and
Y. minimizes f. Then, the signals p and q defined in (3.12) satisfy, V1 € R,
YT >0,

jo e22tp(t)T (q(t) — B(r)qr(t — 7))dt > 0, (3.51)

where qr denotes the extension defined in (1.2).

Proof. The proof goes along the lines of [Lessard et al., 2016] and borrows
some ideas from [Scherer and Ebenbauer, 2021].
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Figure 3.19: Performance estimates for quadrotor dynamics provided by first
order ZF multipliers for ¢ € §(1,10) and varying ky with different bound
0 €{0.1,0.2--- 0.9} on the multiplicative noise (see Assumption 3.4).

The central idea behind the proof is to exhibit a non-negative function
F : R — R with support [0,7"] such that the integrand of (3.51) can be
lower-bounded for all 7 € R and all ¢ € [0,T] as

*'p(t)" (q(t) = B(r)ar(t — 7)) = F(t) - F(t — 7). (3.52)

If such a function F' exists, integrating both sides of (3.52) from 0 to 7" and
using the non-negativity of F' along with the fact that F is zero outside [0, T'],
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we get the desired result as
T

f (1) (q(t) — B(r)art — ))dt > j (F(t) — F(t — 7))t

0 0
T T—7
= | F)dt —f F(t)dt
L " L (3.53)
§p  F(t)dt=0 ifr>0,

§,  F(tydt =0 if 7 <O0.

The arguments that follow serve to produce this function F' discussed above.
For convenience, let the dimension of § be denoted by n,, i.e., y € R™.
Let g : R™ — R be defined for any § € R™ by

9) = 15+ ) = F) — 113l (3.54)

where f € S(m, L) and y, minimizes f. This can be used to show that
g€ S(0,L—m), g(0) =0 and Vg(0) = 0. It can be further shown [Lessard
et al., 2016] that for all g, 91, g2 € R™,

(L —m)g(y )——HVQ( )II* =0, (3.55)
(L—=m)Vg(5)" 5= (L—m)g(y) + —||V9( I, (3.56)
Vo(G)" (1 — G2) = 9(ih) — 9(52) + ||Vg(g1()L—_an)(:&g)||2. (3.57)
Using (3.55), we define a non-negative function 7 : R™ — R as
(@) = (L —m)g(y )——HVQ( I (3.58)
Using definitions (3.12), we verify that for @, ¢ satisfying @ = V f(§ + y«),
(1) = V(i (1) 59)

q(t) = (L =m)y(t) — Vg(y(t))-

Consider for t; € [0, o0),

p(t)"q(t) = V()" (L — m)j(t) — Vg ((tr)))
= (L =m)Vy(y(t ))T”(tl) — Vgt

> (L —m)g(y(t ))——HVg( (t)I”
=r(g(t1)) =0, (3.60)
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where the inequality in the third line above is obtained using (3.56). We now
consider signal extensions ur, yr, pr and gr as defined in (1.2) and since the
map f is static, we have Vt € R,

pr(t) = tr(t) — myr(t),

gr(t) = Ljr(t) — ar(t). (3.61)

So, for t1,ty € R,

pr(t) [ar(t) — qr(ts)]
= Vg(rt:)" (L = m)gr(ty) = Vg(ir(t)) — (L —m)ir(ta) + Vg(r(t2)))
= (L —m)Vy(Gr(tr))" (Gr(t) — r(t2))

— IV (gr(t)|]* + VQ(QT(tl))TVQ(@T(t2))

> (L =m)(g(gr(t)) — 9(9r(t2))) + —||Vg(?3 (t1) = V(g (t))|I*

— ||V9(yT(t1))||2+V9(yT(t1)) 9(Gr(t2))
= ((L—m)g @T(tl))——HVSJ( r(t))]1?) = (L —m)g(gr(ts))
— —IIVg( 7(t2))|%)
=r(yr(t1)) — T(yT(t2))a (3.62)

where the inequality in the third line above is obtained using (3.57). For any
g € [0,1], multiplying (3.60) by (1 — ), multiplying (3.62) by 8 and adding
the so-obtained equations together, we can show that

pr(t) [ar(t) — Bar(t2)] = r(Gr(t1)) — Brir(ts)). (3.63)

For any 7 € R, let 3(7) = min{l,e 2*"}. Noting that 3(7) € [0,1] and
B(T) < e 7 VreR, we use (3.63) and non-negativity of r to obtain

pr()" lar(t) = B(T)ar(t — 7)) = r(Gr(t)) — B(7)r(Gr(t — 7))
= r(fr(t) —e (et — 7). (3.64)

Multiplying both sides by €2** and using that signal extensions are equal to
the non-extended signals on [0, 7], we get for all 7 € R and ¢ € [0, 77,

(1) (g(t) — B(T)ar(t — 7)) = U (r(t) — > Ir(r(t 7)),

Observe that the function F(t) := e***r(gp(t)) is non-negative on its support
[0, T'] and satisfies the desired property (3.52) completing the proof. O
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Chapter 4

Distributed Control Over a
Decoupled Architecture

In this chapter, the decoupled architecture (see Fig. 1.2), introduced in Sec-
tion 1, is closely investigated. The goal is to understand the extent to which
the decoupled architecture is reasonable. The key tools used in this chapter
are the induced [y to [, norm for obtaining a measure of local tracking per-
formance and the recent results on scalable analysis and control of positive
systems [Rantzer and Valcher, 2018], [Rantzer, 2015] which are used to ana-
lyze the simplified dynamics. The results presented in this chapter have been
reported in [Datar and Werner, 2021] along with the extension to quasi-LPV
systems in continuous time systems in [Hespe et al., 2020)].

4.1 Problem Setup

Consider a large-scale interconnected system of N vehicles governed by gen-
eral discrete-time LTI dynamics with state z?, input u’ and output y* (for
agent i) neither of which are communicated with neighboring agents. At the
same time, the interaction mechanism between different agents is modeled by
first-order protocols with the virtual state p’ (for agent 4) which is communi-
cated with neighboring agents. The key idea is to see the first-order protocol
as a reference generator, generating the reference trajectory p. Local feed-
back controllers are wrapped around the reference so that complex vehicles
with higher order dynamics track these references. The resulting system dy-
namics and the controller structure for agent i are depicted in Fig. 4.1 and
Fig. 4.2, respectively, and is discussed next in detail.
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Figure 4.1: Interconnected system (4.7) under a decoupled architecture.

4.1.1 First Order Protocols

Let pi € R be a virtual state of the i*" agent at time k that is communi-
cated with neighboring agents. Let the interconnection topology between
the agents be represented by an undirected graph G with the corresponding
Laplacian matrix £. The 15" agent is assumed to be the leader. The leader is
externally controlled to the desired state which is assumed without the loss
of generality to be the origin. Define £, = £ + Kjeaq - e1€] for some given
Kieaa > 0. Discrete-time first-order protocols [Bullo, 2021] can be represented
by

P = w'pj + Y wpl, (4.1)

JEN;

where w¥ € R represent the weights corresponding to the edge between node
i and j, and w® represents the weight associated with the self-state. Let W
be matrix of weights w” with w” = 0, if the edge (i,7) ¢ £. By defining
pe = [pL---pY]", the dynamics in (4.1) can be represented by

Pr+1 = Wpy. (4.2)

W is further assumed to be of the form W = [ — EL., where K)..q is assumed
fixed and F is a diagonal matrix seen as a design parameter (control variable)
such that W > 0. Using a bound on the maximum degree d,.., one can
ensure that Kj.,q and F are such that W > 0 and it does not require the
knowledge of the spectrum of the Laplacian. The requirement of W > 0 is
justified by scalability aspects from the theory of positive systems analysis
[Rantzer, 2015], which is discussed briefly in the following section.
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Remark 4.1. Generalizing this to the vector-valued case, i.e., when pi, € R"
wheren, > 1, could be done by running independent first-order protocols along
each canonical direction, i.e., ppr1 = (W & I, D

4.1.2 Wrapping Local Tracking Controllers

The physical dynamics of the N vehicles are now considered along with local
tracking controllers wrapped around the simplified first-order dynamics (4.2).
Forie {1,---, N}, the i-th vehicle is modeled as a discrete-time LTI system

2} = A'z} + Bluj, + BLw, (4.3)
yp = C'zy,

where 7§ € R ui € R™, wi € R™ and y; € R are the state, the control
input, the disturbance and the output of the i'" system at time &, respectively
and A’, B!, B! and C" are constant matrices of appropriate dimensions.

Remark 4.2. The system defined above is a multi-input single output system.
In the light of Remark 4.1, it is possible to generalize the results to multiple
outputs, whenever pt is a vector-valued signal.

Assumption 4.1. The disturbance signal w' for all vehicles is bounded in
the sense of the ly norm and this bound is known a priori, i.e, ||w'|[;, < .

The controller running on board communicates with neighboring agents
and first calculates p}_, according to (4.1) which is the desired output at
time k + 1 and uses this to compute the control input ut, i.e., the controller
implements

wy = iz + Fypj, + Fiphy = Flaj + Fph + Fy(w''pl + ) wpp). (g
JeN;

where I} € R F! e R™ and Fj € R™ represent the control variables.

)
k

state and the tracking error e} = p% — y& as output can then be represented
along with (4.1) by

This is shown in Fig. 4.2. The closed-loop agent dynamics with 7}, = [xk] as

VZ . { 7754:-&-1 = _/4; ; qQk + Bzuwlin (45)
€k - C M



100 Chapter 4. Distributed Control Over a Decoupled Architecture
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Figure 4.2: Controller implementation on agent .

where ¢} = p},, and

;. |A"+ BLF} BiF; i B} F; . | B,
e | R e o

c'=[-C" 1].

(4.6)

The overall interconnected system is shown in Fig. 4.1 and is governed
by

Di+1 = Wpk,
vi { M1 = A+ Bigh + By, (4.7)
e, =Cny,

where ¢} = pi.,, nh = [Zz’;] and initial conditions are such that pj) = y =

Cxf for all i.

4.1.3 Objectives

The goal is to design controllers (E, {F}, Fi, Fi}¥, ) and analyze stability
and performance of the interconnected system (4.7). More precisely, an up-
per bound is found on the peak norm of the tracking error, i.e., ||€’|;, , under
bounded disturbances (see Assumption 4.1). This bound can be seen as a
measure of how far the actual trajectories of the vehicles are as compared
to their virtual (communicated) trajectories generated by the first-order pro-
tocols. This can then be used to conclude that the actual trajectories are
collision-free by simply looking at the virtual trajectories generated by the
first-order protocols. It can also serve to validate or invalidate the applica-
bility of the decoupled architecture. For example, if the tracking errors are
large, it would make sense to communicate rather the actual outputs of the
vehicles and change the architecture. For more details on a comparison be-
tween these architectures, see [Hespe, 2020]. A coarse-grained performance
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measure is next defined to quantify the deviation of the actual system in
comparison to the simplified system as

G = lave(yr) — ave(pr)|- (4.8)

If the desired relative displacements between agents ¢ and j are denoted by
r (which for consensus can be set to 0), a measure for cooperation is defined
for the actual system and the simplified system as

1 i ij
=1 DUl =i =),
(i.7)e€
1 J i ij (4'9)
My, = E Z by, — Pk — 1),
(i.7)e€

respectively.

Problem 4.1. Derive sufficient conditions in the form of LMIs to search
for control gains E, {F}, F3, Fi}YN | guaranteeing an upper bound on ||e'||,,
under dynamics (4.7) for all bounded disturbances satisfying Assumption 4.1
such that the size of the LMIs grows at most linearly with network size N.

4.2 Theoretical Results

In this section, two preliminary theorems (Theorem 4.1 and Theorem 4.2) are
first presented which are needed as building blocks in the analysis. Analogous
to the result reported in [Scherer and Weiland, 2000] and [Rotea, 1993], for
continuous-time dynamical systems, an LMI condition is derived to find a
bound on ||e||;,, for inputs with a finite ||w||;, for discrete-time dynamical
systems which corresponds to the generalized H, norm of the system. The
following theorem is a straight-forward translation of [Scherer and Weiland,
2000, Proposition 3.15] to the discrete-time setting.

Theorem 4.1 (Discrete-time analogue of Proposition 3.15 from [Scherer and
Weiland, 2000] ). For a discrete-time dynamical system governed by

M1 = A + Beqi, + Bywy, no = 0,

4.10
€ = an’a ( )

where mi, € R™, g, € R™, wy, € R™ and e, € R™, if 3K >0, 7, > 0, 7, >0
such that

AT K 0 0
Bl | K|[A By By]< |0 721 0 (4.11)
B 0 0 ~2I
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and

[K C]T] -0 (4.12)

hold, then, Yw,q € ls, Vk,

(Vallalliz + ywllwl]i)
>\min<K)

llerllz < vqllalle, + Yollw]]s,-

[Inel| <

)

Proof. Condition (4.11) is equivalent to the existence of ¢ > 0 such that
V’f}k S Rn", Ywy € Rn“’, qu S an,

Mot K < i (K — el + (7 — e)llawll3 + (v — )l lwil3-
Considering the storage function V;, = nl Kny,, we have

Vieer < Vi + 9 llanl 2 + i [l 2
k k

<Vo+ 72 Do llaill3 + 2 ) [fewil 5.
i=0 i=0

Then, using 79 = 0, a bound on V) can be obtained Yw, q € [ as
k—1 k—1
Vi <72 2 llaill3 + 72 X Hlwill3 < 22 llall7, + vallwl[Z,- (4.13)
i=0 i=0

Using Auin (F)|[7el[3 < Vi,

(vallall?, + vallwll?)
/\min<K)

[l ” <

Since va2 + b2 < vVa? + b2 +2ab = a + b holds for any a > 0,b > 0, the
above implies
anH < (IVQ||q||l2 + /ywHwa) .
Amin(K)
Using the Schur complement [Scherer and Weiland, 2000, Proposition 1.27],
condition (4.12) can be converted to the equivalent condition

K- C0TC >0, (4.14)
which implies

Vi = mg K = 0 CTCy, = efle. Yy, € R™
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and together with equation (4.13), we get that Yw, g € ls, VE,
lexll3 < Vi < vgllallz, +vallwlli,

and
llexll2 < vgllall, + Yullwl]i,-
0

The next theorem forms the second main ingredient of the analysis and
allows for non-conservative analysis conditions that scale linearly with the
network size (See Remark 4.3) for a large interconnected system.

Theorem 4.2 ([Rantzer, 2015]). Consider a discrete-time autonomous sys-
tem governed by

Pk+1 = ka, (4.15)

where p, € RN and W > 0.
The following statements are equivalent:

(1) The spectral radius of W is less than 1, i.e., W is Schur.
(2) lim pr =0 Vpo e RV,
k—o0

(3) There exists a diagonal matriz P > 0 such that P — W7TPW > 0.

T
P WP] 0

(4) There exists a diagonal matriz P such that lPW P

Remark 4.3. As P is a diagonal matriz, the matriz in condition (4) is sparse
based on the sparsity structure of W. Sparse techniques for Semi-Definite
Programs (SDP) can be exploited to decompose this problem into smaller
SDPs [Mason and Papachristodoulou, 2014] and the verification of condition
(4) leads to an analysis condition that scales linearly with N under some
conditions on the sparsity structure of W. Details can be found in [Mason
and Papachristodoulou, 2014].

Building on Theorem 4.1 and Theorem 4.2, one of the main results of this
chapter is presented next.

Theorem 4.3. For the interconnected system (4.7) with given control vari-
ables F}, Fi, Fi and E and matrices defined in (4.6), if for some 0 < a < 1,
there exists a diagonal matriz P such that

2 T
lO‘PWP]>0, (4.16)

PW P
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and for all i, there exist K' > 0 and 7; >0, v% > 0 such that

AT K 0 0
BT | K'[A" Bl Bi]< |0 ~'I 0 | (4.17)
B." 0 0 71
i il
[K CI ] > 0, (4.18)

then the interconnected system, defined in (4.7), is stable, i.e., the trajectories
remain bounded for disturbances satisfying Assumption 4.1 and for all k = 0,

i ; [cond(P ;
leklz < g 1_—(aQ)||poH2 + Yol (4.19)
il < 2V T ol + 737 o
(2 < )
il /\mln(Kz)

Proof. Condition (4.16) is equivalent to the existence of a diagonal P > 0
such that

AP —WTPW >0

which implies
Prs1Ppri1 < &PppPpr, Vpp € R™.

Therefore,
[lpel3 < @ cond(P)|[poll5 ¥po € R™.

The infinite sum for a converging geometric series gives

1
2 2
lIpllz, < 1_—Oé2€0nd(P)Hpng

and therefore,

cond(P)
2

ol

1p']]e < [Pl <

The bounds (4.19) and (4.20) are then obtained by simply applying Theo-
rem 4.1 and using the bound derived above on ||p'[|;,. O
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Corollary 4.4. If condition (4.19) holds, the loss in performance due to
imperfect tracking can be bounded as

ond( )

G <® T

7~ lpoll2 + 76, (4.21)

> vi-d [cond(P) oy di
Jp < My, + =2 |polle + =~a7—5, (4.22)
€] (1—-a?) €]
where Y¥& and 3¢ denote the arithmetic mean of {~,,--- , vy} and {7y, -, 70},

respectively.

Proof. Using definitions (4.8) and bound (4.19), the bound on v can be
derived as

Cr = lavg(yr) — avg(pr)|

= |an( k)|
N
Cond
2 O ol + 44,9
av cond av
< 1—<)Hpon+v :

Now using definition (4.9) and bound (4.19), we can derive the bound on
Ji. as

1
Ji, = ’— Z — Uil
Z — (el — &)
)
< My, + Z |6k| + |6k| (4 23)
z])eg '
dl
Zi g d' [cond(P) 20 Ve d'
< My + |£| (1_a2)‘|p0||2+T5-
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The analysis conditions (4.16), (4.17) and (4.18) can be converted into
synthesis conditions for finding optimal control variables F}, Fi, Fi and E.
For this purpose, define matrices

.40

=l i

. [B: (4.24)
sl

F'=|F Fi].

The following theorem gives LMI conditions for synthesis.

Theorem 4.5 (Solution to Problem 4.1). For the interconnected system
(4.7), if there exist diagonal matrices P > 0 and X, such that, for an
ae (0,1),

a?P  PT_[TXT
[P_X& s ]>0, (4.25)
and Yi, there exist Q" > 0, Y*, F§, v, > 0,9}, > 0 such that
N B S
AL 0
0 o ;2. 1 ¥
L0 AT > 0, (4.26)
BN ;1) o By Ju R
Aonz 4 Bzyz : ul 3 0 : Qz
Q' E

then Fi = YiQ' ', Fy and E = P~'X stabilize the networked system, i.e.,
(4.19) and (4.20) hold and performance bounds (4.21) and (4.22) hold.

Proof. Using the Schur complement, condition (4.17) can be written in a
compact form as

K 0 0 1mﬁw
i2 i1 i
0 7 1 % l@ff >0
0 0 I B, K
”f(ileR?B;"KBj;?"}(TW

A congruence transformation with a non-singular matrix

K0 o0
0 I 0
0 0 Ki'
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gives us the equivalent condition

Qz’ 0 0 : QzAzT
i2 ;T
0l 0 1 B |, (4.28)

0 0 ~7° 1 B

AQ1 B B, 1 Q

where QF = K¢ ",
Similarly, condition (4.18), i.e.,

i il
[K c] ] >0
is equivalent to
i iniT
[c%i v ]>0. (4.29)

With definitions (4.6), (4.24) and F'Q" = Y, equivalent conditions (4.26)
and (4.27) are obtained. By substituting W = I — EL. in condition (4.16)
and defining X = PFE, condition (4.25) can be obtained. The proof then
follows simply as a consequence of Theorem 4.3.

]

Remark 4.4. It should be noted that although (4.16) and (4.25) are not LMIs
in a and P, a standard bisection algorithm can be used to find the minimum
« that renders the LMIs feasible [Boyd et al., 1994]. See Remark 3.4.

Extension of the analysis and synthesis results to more general non-linear
agent dynamics modeled as quasi-LPV systems is straightforward and is
demonstrated in the continuous-time setting in [Hespe et al., 2020].

4.3 Practical Aspects and Scalability

4.3.1 Remarks on Tuning

In order to consider control input in the performance channel, one could
replace the LMI condition (4.27) by

[-Cc" 1], [0],0, | =0, (4.30)
Lo oferseliri
where p > 0 acts as a tuning knob punishing the control effort in the perfor-
mance channel.
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4.3.2 Synthesis with H, Techniques

Alternatively, one could use standard H,, loop-shaping techniques to obtain
a controller and then use the analysis LMIs to obtain /., bounds on the error.
A controller that guarantees a finite H,, norm (induced I3 to Iy norm) of the
closed-loop necessarily leads to a finite induced Iy to l,, norm (See [Hespe
et al., 2020], [Hespe, 2020]).

4.3.3 Scalability

The feasibility LMI conditions (4.16) and (4.25) for analysis and synthesis of
first-order protocols are large SDPs with a sparsity structure that depends
on the sparsity structure of W (which depends on the underlying graph
G). Referring to Remark 4.3, these LMIs can be decomposed into N smaller
LMTIs using ideas from [Mason and Papachristodoulou, 2014] thereby allowing
a scalable analysis. Knowledge of the spectrum of the graph Laplacian, if
available, can be used to avoid solving (4.16). The analysis LMIs (4.17)
and (4.18) and synthesis LMIs (4.26) and (4.27) are N separate conditions
with the size of each LMI corresponding to the respective order of the agent
dynamics. The complexity thus scales linearly with the network size N. This
also means that if the network is homogeneous with identical agent dynamics,
these LMIs are identical for all ¢ which reduces to a single LMI.

4.4 Illustrative Examples

In this section, the theoretical results are applied on illustrative examples.

4.4.1 Perfect Tracking Controller

Together with a general first-order protocol (4.2), consider the following dy-

namics for all first-order agents i € {1,2,--- , N}
IZH = a'z, + blul + b wi, (4.31)
Y = Tps
along with the controller
uj, = fix), + fobhir- (4.32)

It can be seen that for f! = —a’/bl and fi = 1/b, the closed-loop agent
dynamics are
Tiop1 = Pyt T Ui

; ; (4.33)
Y = T
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along with the first-order protocol (4.2). It can be shown that minimizing +;

subject to constraint (4.17) gives 7;* = 0. This can be easily seen intuitively

by observing that we have perfect tracking for arbitrary p; whenever wj, = 0.
Thus applying Theorem 4.3, we get the following Vk

leklz < 7.8, (4.34)

Cr <7580, (4.35)
N

Ty < M, + erg—|5. (4.36)

This result can be interpreted as follows. For scenarios with very good track-
ing controllers acting locally on the agents, i.e., when v, ~ 0, the perfor-
mance loss due to input disturbances acting on the agents can be estimated
a priori by (4.35) and (4.36). Moreover, the boundedness of trajectories is
implied just by analyzing the system of simple agents as seen in (4.34). It
also has an interesting implication for non-linear differentially flat systems
[van Nieuwstadt et al., 1998] where it is possible to achieve perfect tracking
in the absence of disturbances. This needs to be investigated further.

4.4.2 Generic Vehicle Model

A slightly more realistic example of a generic second-order vehicle model is
considered next, where the governing equations are

mg+bg =u+w (4.37)

where m, b, ¢, u and w represent the mass, damping coefficient, position,
forcing input and disturbance input, respectively. This model can be written
in a state space form and discretized using Zero-Order-Hold (ZOH) with a
time-step of 0.1 to obtain a discrete-time state space model.

Disturbance Rejection in Platooning

A platooning scenario is first considered with a heterogeneous network of
agents perturbed by an [l input disturbance. A heterogeneous group of five
agents modeled by (4.37) is considered with the following parameter values:

e Agent 1: m!=1,0' =3
o Agent 2: m?=1,0>=10

e Agents 3,4 and 5: m3 =0.1, 0% =1
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Figure 4.3: Disturbance rejection in platooning.

A desired platoon velocity of 0.1 units is considered. In the absence of dis-
turbances, a constant feed-forward control input will lead to the desired tra-
jectory. The error dynamics are again governed by (4.37) where the control
input is the deviation from the feed-forward control input. A controller for
the error dynamics of each agent is designed by solving the following convex
optimization problem for each :

min v} + 7, s.t. (4.26) and (4.30) hold.

The closed-loop dynamics under a disturbance signal with § = 100 along
with theoretical bounds (depicted by shaded regions) are shown in Figure
4.3. Note that because agents 3, 4 and 5 have the least mass and are identi-
cal, the deviation bound are the greatest whereas agents 1 and 2 are heavy,
leading to a smaller bound. it can be concluded that as long as the bounds
on the input disturbances are valid, the trajectories will remain collision free.
Note that if 8- (v, 4+ +2) is higher than the distance between the nominal
trajectories of agents ¢ and j, generated by the first-order protocol,the bound-
ing boxes would intersect allowing the possibility of a collision and thereby
demonstrating a need for a coupled architecture or a redesign.
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Figure 4.4: Formation stabilization.

Formation Forming at Arbitrary Locations

The problem of formation attainment is considered next with a network of
the above described five agents with a first-order protocol as the interaction
mechanism. A graph is randomly generated by setting the probability of
having an edge between any two nodes to 0.6. We assume that the agent
1 is externally controlled as in (4.2) with Kjeaq = 5. The following convex
optimization problem is solved to obtain controllers.

min v, + e s.t. (4.25), (4.26), (4.27) hold.

Figure 4.4 shows the trajectories for the formation attainments problem
along with the theoretical bounds depicted by shaded regions. The dashed
trajectories are the trajectories of the simplified dynamics (first-order proto-
col) which are reasonably well tracked. Since the shaded regions do not inter-
sect, the actual trajectories can be declared collision free by simply studying
the simplified dynamics. On the contrary, if the shaded regions do inter-
sect, there would be a possibility of a collision which calls for a redesign or a
coupled architecture.
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Chapter 5

Consensus Under Packet
Dropouts

This chapter focuses on the interaction dynamics with simplified agent mod-
els (left feedback loop from Fig. 1.2). Moving away from ideal communication
channels treated so far, this chapter deals with network imperfections in the
form of packet dropouts. A novel first-order consensus protocol is proposed
in Section 5.2 as a generalization of two standard consensus protocols used
in the literature on lossy networks. Analysis of the proposed protocol along
with simulation results demonstrate the benefit of the proposed protocol in
terms of allowing for large sampling times. These results have been reported
in [Datar et al., 2018].

The standard deterministic consensus protocol with ideal communication
is first reviewed in Section 5.1. Section 5.2 introduces the mathematical
framework which formalizes the proposed protocol followed by a review of
the available tools for mean-square stability analysis in Section 5.3. The anal-
ysis tools are applied to an example illustrating the benefit of the proposed
protocol in Section 5.4 and Section 5.5 presents the numerical simulations to
validate the results.

5.1 Consensus Protocol in Lossless Networks

Consider an undirected graph G of order N characterized by the adjacency
matrix A € RV*Y . First order integrator dynamics with states z; € R for
agent ¢ are given by

Zi(t) = u;(t), x(0) = xo, (5.1)

where u € R is the output from a sampled-data controller together with a
zero order hold implemented on each agent with a uniform sampling time
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T. Let t; denote the sampling instants such that ¢y, — t, =T Vk € N.
Applying the control protocol similar to the one suggested in [Olfati-Saber
et al., 2007] for a sampled data controller with gain K € R and followed by
a ZOH, the control law can be obtained as

wit) = K >0 (a(te) = 2i(t), YVt [t trg). (5.2)
vieN;

Using exact ZOH discretization, the discrete-time dynamics are given by

x(k+1)=(—-KT-L)x(k)

— (I — ¢ L)a(k) = Px(k), (5:3)

where the discrete gain € € R is defined as e = KT, L is the graph Laplacian
and P € RV*N given by P = I — ¢ L, is called the Perron matrix induced
by the graph G [Olfati-Saber et al., 2007].

Remark 5.1. Note that for a fized discrete gain €, the discrete time response
sequences are identical for different combinations of K and T as long as
KT = e. However, the same value of discrete gain € leads to significantly
different responses in the continuous time. This is illustrated in Fig. 5.1 for
an example of a group of 3 agents connected in a line-topology.

Remark 5.2. The agents of a network are said to have reached consensus if
and only if v; = x; Vi, j € V, i # j. For connected graphs, it can be shown that
the dynamics in equation (5.3) lead to consensus if and only if € < m
Let this bound be denoted by €4 = /\m;(ﬁ). This work investigates such
bounds in lossy networks.

5.2 Memory Weighted Protocol for Lossy Net-
works with Packet Dropouts

As one of the important aspects of non-ideal communication, packet dropouts
are considered next and a novel consensus protocol specifically geared towards
packet loss is proposed. Let r denote the probability that a message in an
arbitrary communication link in the network is lost. Although the formalism
allows for different loss rates r;; in different links (4,j) € &£, this work is
restricted to a global loss rate r;; = r. For any link (¢,7) € &, let 0;;(k) be
a stochastic Bernoulli process modeling the packet loss in the following way.
A packet from agent j to agent 7 is considered lost at instance k if and only
if 0;;(k) = 1 and the packet is considered received at instance k if and only
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Figure 5.1: Continuous time responses for different values of discrete gain,
sampling times 7" and gains K. Each color represents a fixed value of discrete

qgain.

if 6;;(k) = 0 and thus, the probability that 6;;(k) = 1 is r for all k € N and
for all (4,j) € £. The motivation behind this notation is to be able to define
the lossy adjacency matrix at time k as Ap(k) = A — 0(k), where A is the
adjacency matrix if the communication is ideal. Therefore, for all pairs of
agents without a link, (m,n) ¢ £ (even in the case of ideal communication),
let 0, (k) = 0, i.e., the probability that 6,,,(k) = 0is 1 for all £ € N and for
all (m,n) ¢ £. The overall packet loss in the network can now be modeled
by composing an (N x N) stochastic matrix process 0(k) whose entries are
0;;(k) as defined above. For convenience, let 6,;(k) = 1 — 6,;(k) and the
argument k is suppressed in (k) when it is clear from context.

Consider a scenario when a packet containing the information x; sent by
agent 7 is not received at agent ¢. Agent ¢ can either disregard agent j by
considering the link in the topology as broken or use the most recent stored
information ig about agent j. The latter needs an available memory storage.
These two ideas can be expressed as the switching protocol and the memory
protocol as follows:
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Figure 5.2: A packet from agent 3 containing information 3 is lost at agent
2. Agent 2 therefore uses a convex combination of 23, the last information
received by agent 2 from agent 3, and the self state x5 depending on the
memory weight ¢ € [0,1], i.e., 283 = (1 — q)xy + g2 as a replacement for

the lost package.

’l)jENi ”U]'G./\/i (5 4)
uzmem =K Z [ngl’j + Hwﬁ:f — :17%] .
UjE./\fi

Comparing this with the standard protocol in equation (5.2), the lost in-
formation x; in the switching protocol is replaced by x; whereas as in the
memory protocol, the lost information z; is replaced by ii . A previous work
[Wang et al., 2010] has compared these two protocols in a simplified case,
where at any time, all packets in a network are either lost or received.

A free parameter called as the memory weight ¢; is introduced which could
be chosen such that 0 < ¢; < 1. The following memory weighted protocol is
proposed as a generalization and defined by

u™P = K Y [0 + (i — 1)0imi + qifijd] — 2], (5.5)
’UJE./\/:;

The stored information is assigned a memory weight ¢; € R which can be
tuned based on the agent dynamics, network characteristics like the loss
rate, discrete gain, etc., and this can be interpreted as saying that at agent ¢,
the lost state of the neighbor is assumed to be somewhere on the line segment
joining the past state of the neighbor and present state of agent 7. This idea
is depicted in Fig. 5.2. The ideas discussed above are now formalized to
represent the update equations of the complete system in a compact form.



Chapter 5. Consensus Under Packet Dropouts 117

Assume that there is a fixed underlying communication topology rep-
resented by a graph G characterized by the adjacency matrix A. Existing
links from this fixed topology can be broken and reconnected but no new
links which are not present in the underlying topology can be created. The
instantaneous adjacency matrix is then given by Ag(k) = A — 0(k).

Assume that each agent has an available memory storage and it stores
the most recent state of its neighbors. Let d; denote the in-degree at node ¢
(number of neighbors agent i is listening to) and let Z; € R% be the stored
positions of neighbors of agent i and #; € R% be the vector of the binary
variables representing the success/failure of packet reception at the incoming
channels of agent i. Let the projection matrix B; € R%*" be constructed
from d; canonical unit basis vectors as rows such that it selects the d; number
of neighbors of agent ¢ from the total number of agents N. So the matrix B;
contains all zeros except for exactly one entry equal to 1 in each row.

Let the vectors of stacked Z; and 6, be denoted by Z and 6y, € RO ++dn
respectively, and the block matrix of stacked B; be B € R(@+-+dx)xN Fach
agent assumes its own location as the initial condition for its stored variable,
i.e., 2(0) = blkdiag(14,, 14y, -, Lay )2 (0). Define z,,, € RY such that z,,, =
[T 2T]T where N = N +d; + dy + ... + dy. Define the memory weight
matriz Q € RV*N as diag(qi, o, - . ., qn). Using (5.5), one can work out the
system dynamics as in equation (5.3) and show that the network dynamics
with appropriate initial condition z,,.(0) are

we  We
Touelk +1) = 101 102] Toue (K
= Waug(k),

where

We =P — e+ e(I — Q)(diag(f - 1)),
¢, =¢- Q- blkdiag(67,05,...,0%),
W3 = (I — diag(bec)) - B,
5o = diag(fyec)-

For convenience, define a model as follows:

Definition 5.1 (Model). For a given undirected graph G characterized by the
adjacency matriz A, loss probability r for the Bernoulli random variables 0;;
as defined above, discrete gain € and given memory weight matriz ), a model
is defined uniquely by a tuple (e,Q, A, r) which leads to network dynamics as
in equation (5.6) and is abbreviated as M(e,Q, A,r).
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Note that M(e,0,A,r) and M(e, I, A,r) correspond to the models due
to switching protocol and memory protocol respectively. These are referred
to as the switching model and the memory model respectively. The results
in this chapter are restricted to @) of the form ¢/ and the following problem
precisely states the objectives.

Problem 5.1. Compare the different models M (e, qI, A,r) by analyzing the
network dynamics (5.6) and demonstrate, if any, the advantage of the gen-
eralized memory-weighted protocol (0 < q < 1) over the standard first-order
consensus protocols (¢ =0 orq=1).

5.3 Mean Square Consensus Analysis

This section defines mean-square consensus and presents necessary and suf-

ficient conditions to assess mean-square consensus of dynamics (5.6) which

facilitate a comparison between different protocols presented in Section 5.4.

It can be seen (from the definition of W¢) that Wl = 1. Defining the
1

projection matrix P, = I — 5117, observe that

1 1
PWeP. = (I — =11HYywe(1 — =117
(I - 1w — 117

1 1
= (I - =11"W° - =117
(1 = (W - <11h)
1 1 1

= ([ — =110YW* — (I — =117)=117
( N W ( N )N
1
= (I - S1W* = RW*, (5.7)

Therefore, if the deviation variable ¢ is defined as d(k) = P,xaug(k), the
dynamics of the deviation variables can be derived to be

Sk + 1) = P.W xaug(k) = PWPotrayg(k) = BWS(K).  (5.8)

Definition 5.2. M(s,Q, A,r) is said to achieve mean square consensus if
there exist M = 0 and 0 < ¢ < 1 such that

B[ - 11D O] - B[00 < i 59

holds for all k = 0 under dynamics (5.6).

A necessary and sufficient condition for mean square exponential stability
from [Costa et al., 2010] is summarized in the next result adapted to the
setting in this chapter.
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Figure 5.3: Maximum allowable € with varying loss rates considering a line
topology for N = 9 agent for different values of the memory weights.

Theorem 5.1 (adapted from [Costa et al., 2010]). M(e,Q, A,r) achieves
mean square consensus if and only if

ro(6,Q, A, 1) := p(E [(I - %HT)WC@ (I - %11T)Wc]) <1. (5.10)

5.4 Analysis of Different Protocols for Line
Topology

The network dynamics for an example of 9 agents connected in a line topol-
ogy is now analyzed. Let the standard adjacency matrix of the line topology
be denoted by Ajme € R?*Y. Additionally, assume a structure Q = ¢/. Qual-
itatively similar behavior is observed for N = 3,5, 7 agents and with a cycle
and star topology. Figure 5.3 show the maximum allowable discrete gain
that still achieves mean square consensus for 9 agents in a line topology.
One can see that the allowable € increases for higher loss rates. Additionally,
if € is smaller than e€,,,,, the value of maximum allowable ¢ for the loss-free
situation (r = 0), all models lie within the stability region. This agrees with
[Fagnani and Zampieri, 2009], where it is shown that if € < €4, (see Re-
mark 5.2), packet losses cannot cause divergence. Interestingly, the bound on
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Figure 5.4: Effect of variation in ¢ on ry for e = 1.25.

the discrete gain is increased in the presence of network losses. Intuitively,
since the maximum eigenvalue of the averaged graph Laplacian over a large
number of steps is reduced because of losses, the upper bound is increased.
Figure 5.4 shows the effect of the variation of the memory weight ¢ on o
for a high value of ¢ = 1.25. It can be seen that the minimum value of ry is
achieved approximately near ¢ = 0.25 and in fact, mean square consensus is
achieved only for a limited range of ¢. It is in this high € regime, that the
memory weighted models M (e,q-1, Ag,r) with 0 < ¢ < 1 seem most effective.
For a low value of € = 0.1, Fig. 5.5 shows that the memory model is better
than the switching model and the memory weighted models do not show any
special advantage in this low € regime. Numerical simulations verify these
analytical calculations in the next section.

5.5 Numerical Studies

In order to further investigate these different protocols, numerical simula-
tions are presented that validate the theoretical observations. Consider 9
agents connected in a line topology and as before, let Ag denote the stan-
dard adjacency matrix for the line topology.

Figure 5.6 shows the empirical mean (top) and empirical variance (below)
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Figure 5.5: Effect of variation in ¢ on ry for € = 0.1.

of the norm of the disagreement vector over 1000 simulations for e = 1.25.
The initial conditions of the agents are z(0) = [1,2,...,9]. The trajectories
from the switching model and the memory model diverge and one can see
that trajectories from M (1.25,0.3, Ag,0.8) converge faster than the other
two weighted models. This agrees well with the analytical results obtained
in Fig. 5.4 which shows that ry is minimized around ¢ = 0.3. Further
numerical investigations are reported in [Datar et al., 2018].
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Chapter 6

Summary and Open Directions

This work studies modular architectures introduced in Chapter 1 from an
analytical standpoint with simulations and experiments complementing the
theory. The coupled architecture introduced in Fig. 1.1 is studied in Chapter
2 and Chapter 3 with a focus on gradient-based cooperative control. On the
other hand, results on the decoupled architecture introduced in Fig. 1.2 are
presented in Chapter 4 and Chapter 5. The next section summarizes the
presented work and proposes possible extensions requiring further study and
Section 6.2 presents open research directions on a broader level.

6.1 Summary and Possible Extensions

The standard flocking dynamics are augmented to address the source-seeking
problem and analyzed in Chapter 2 along with experimental results on the
Crazyflie 2.1 platform. This is done by adding a forcing term using the
local gradient and/or Hessian information. The analysis first addresses sim-
ple double integrator models and presents experimental results with quadro-
tors by using a fast velocity controller and gradient and Hessian estimation
heuristics. Motivated by the successful experimental results, the theoretical
results on stability analysis with double integrator models are extended by
explicitly considering general vehicle dynamics with a guaranteed tracking
performance. Although qualitative in nature, these theoretical results pro-
vide a rationale for the proposed architecture. Complementing the stability
analysis, simulation results with complex non-holonomic vehicle dynamics
are presented as a proof-of-concept showing the effectiveness of the proposed
architecture for various situations. Finally, as a first step towards automatic
stability verification with LMIs and as a prelude to the Chapter 3, a gen-
eralization of the stability analysis results using the framework of IQCs is
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finally presented along with an application example with quadrotors. The
qualitative stability analysis results are extended to more quantitative perfor-
mance analysis results with the help of dynamics IQCs in Chapter 3, where
sufficient conditions (independent of the size of the network) are presented
for the verification of robust exponential performance of source-seeking dy-
namics with convex interaction potentials among agents and strongly convex
external fields. By extending the ZF parameterization to the a-1QC setting,
a quasi-convex feasibility problem which can be used to obtain estimates
on exponential convergence rates. Various numerical examples including an
LTI quadrotor model with an LQR-based controller and two LPV examples
are presented in Chapter 3, where the conservatism can be reduced by in-
creasing the order of the ZF multiplier demonstrating the effectiveness of
the approach. The reduction in conservatism by searching over general non-
causal multipliers is also evident in some of the examples considered. All
sufficient conditions developed are independent of the size of the network
owing to the diagonal repeated structure in the multipliers thereby allowing
the analysis of large networks.

A number of interesting directions as possible extensions of the presented
results are open for further study. These include extending the results to non-
differentiable fields using sub-gradients/sub-differentials, controller synthesis
(possibly based on [Holicki and Scherer, 2021]), extension to the stochastic
setting based on [Hu et al., 2017] and performance analysis with flocking in-
teractions using sum-of-squares (SOS) [Papachristodoulou and Prajna, 2005]
tools. Furthermore, when considering obstacles in the source-seeking prob-
lem, recent results on the use of control barrier functions [Seiler et al., 2022],
[Ames et al., 2019] may open the doors to prove that trajectories remain col-
lision free and this looks like a promising direction for research. Extension of
the analysis results to controller synthesis is highly desirable and a starting
point for this direction could be [Scherer and Ebenbauer, 2021]. A system-
atic synthesis procedure based on quasi-LPV systems using the analysis from
Chapter 2 is proposed in [Attallah and Werner, 2022], where scenarios such
as level surface tracking and level surface monitoring are considered.

On the theoretical front, various models of flocking with continuum agents
are studied in the literature. For example, [Shu and Tadmor, 2020] considers
continuum agents with external fields exactly in the same class as the one
studied here. It would be exciting to see if the results developed here can be
extended to such models of flocking. In addition, the Cucker-Smale [Cucker
and Smale, 2007], [Choi et al., 2020] flocking models consider only velocity
alignment terms and it is worth investigating if the analysis via [QCs pursued
here can be extended to such models.

On a somewhat parallel track, Chapter 4 considers a decoupled network
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architecture of LTT vehicles and analyzes the performance by considering
first-order protocols as the interaction mechanism and wrapping local con-
trollers around these dynamics. LMIs that scale linearly with the number
of agents can be obtained for bounding the [, norm of local tracking error.
Initial steps towards extending analysis LMIs to synthesis for local controller
design and protocol design have been presented. The applicability of the syn-
thesized controllers on generic second-order vehicle models is demonstrated
in simulations.

Extension along the lines of [Hespe et al., 2020] to quasi LPV vehicle
models is straightforward. An extension of these results to the class of dif-
ferentially flat non-linear systems where the interaction mechanism gener-
ates perfectly trackable trajectories can be further investigated with possible
applications to non-holonomic models. On another note, extension of the
results to networks with non-ideal communications can be made by model-
ing the first-order protocols within the framework of Markovian jump linear
systems along with deterministic tracking agent dynamics. Extensions of the
results to more involved flocking dynamics [Olfati-Saber, 2006] is an interest-
ing open problem especially relevant in applications where local closed-loop
tracking dynamics of the agent can be well approximated with linear second-
order systems and the disturbances acting on agents are low. An [, bound
on the tracking error can be possibly used with energy-based arguments from
[Olfati-Saber, 2006] to prove that the actual trajectories remain collision free.
This closely related architecture, albeit with a different techniques from high
gain adaptive control is considered in [Mastellone et al., 2008].

Focusing on the interaction dynamics of the simplified agent models,
Chapter 5 proposes a generalization in the form of the memory weighted pro-
tocol emerging from the two standard consensus protocols for networks with
packet dropouts. An example with a group of 9 agents in a line-topology
is presented which shows the benefit of the proposed protocol. A further
generalization using heterogeneous memory weights instead of assuming the
diagonal structure in weighting matrix can help tackle heterogeneous loss
rates and needs to be investigated further. Although not presented in this
work, initial experiments with a decoupled architecture using first-order con-
sensus protocols as the simplified dynamics have been successfully conducted
[Paulsen, 2019], where artificial packet loss is introduced by dropping mes-
sages with a specified probability and the different consensus protocols intro-
duced in Chapter 5 have been tested. More elaborate experimental work on
these lines is required to compare the different architectures studied in this
work.
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6.2 Broader Open Directions

Taking a bird’s eye view, a number of different research directions that are
not merely extensions of the presented work are presented next.

6.2.1 Modeling Aspects in Modular Architectures

This work considers first or second-order agents in the Simplified Dynamics
(see Fig. 1.1 and Fig. 1.2). The reason for this is that networks of first
and second-order dynamics have been very well studied in the literature and
the ideas presented in this work leverage on this knowledge. However, it
is not clear how to systematically model this abstracted simplified model.
A systematic modeling methodology on capturing the necessary phenomena
(such as inertia) in the simplified network dynamics and precise measures
for comparing the obtained performance with different levels of abstraction
is highly desirable from a practical standpoint and this direction seems to be
largely unexplored.

6.2.2 Architectures with Predictive Controllers

This work considers non-predictive controllers and the study of control archi-
tectures involving real-time optimization (such as model predictive control
(MPC)) blocks is becoming increasingly relevant owing to fast computation
capabilities on hardware. This brings with it an interesting set of mathemat-
ical problems and the framework of distributed optimization is foundational
in this context. A simple extension of the current work to include predic-
tive controllers is to use MPC as the local velocity tracking controller on
each vehicle in the decoupled architecture. Some promising experimental re-
sults with such an architecture have been obtained on the Crazyflie platform
discussed in this work [Dio, 2021]. Consideration of more involved predic-
tive control strategies for the coupled architecture with flocking protocols is
another exciting direction.

6.2.3 Non-ideal Communication Aspects

Finally, in addition to the packet dropouts considered in this work, time-delay
and finite data-rate (quantization) play a critical role especially when consid-
ering scenarios involving underwater communication. Explicit consideration
of these communication aspects typically requires a stochastic framework for
analysis and the extension of the results obtained here in these directions
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is an important research direction. Another interesting direction in this re-
gard is to develop a framework involving stochastic network dynamics with
simplified agents as a module in combination with a module containing de-
terministic tracking dynamics of vehicles with local controllers. Speculating
a little bit, the results from Chapter 5 may be used in conjunction with the
results from Chapter 4 in a decoupled architecture to derive a bound on
the local tracking error E [||ex||?] and may help in computing probability of
collisions for example. As an intermediate step, moving from mean square
consensus analysis of the memory weighted protocol considered in Section 5.3
to specific performance measures such as an appropriate stochastic version
of Hy, performance (studied in [Seiler and Sengupta, 2005]) is an interest-
ing direction. Results on coupled architectures that include stochastic and
deterministic modules seem harder to analyze and opens up possibilities for
further study.
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Appendix A

Crazyflie Platform for Indoor
Experiments

The Crazyflie 2.1, shown in Fig. A.l, is an open-source experimental plat-
form of a small 27gm quadrotor developed by the company Bitcraze AB,
allowing modifications to the firmware of both micro-controllers of its double-
MCU architecture, an nRF51 radio chip and an STM32 that runs the main
firmware. An indoor positioning based on the Decawave DWM1000 chip
called the Loco-positioning system also developed by Bitcraze AB is used in
all experiments. At each corner of a 3m x 4m area, two Loco positioning
anchors are placed at different heights. This is depicted in Fig. A.2 and
Fig. A.3. The anchors are configured with their positions. To determine
the positions, each Crazyflie uses the method of time difference of arrival.
Because the anchors are configured to send synchronous messages and based
on the different times at which these messages are received, the position can
be locally estimated onboard. The firmware was modified to allow peer to

Figure A.1: Crazyflie 2.1 developed by Bitcraze AB.



142 Appendix A. Crazyflie Platform for Indoor Experiments

Figure A.2: Indoor positioning system setup schematic.

peer communication in a prior work [Paulsen, 2018], [Paulsen, 2019]. Each
Crazyflie broadcasts its message along with an ID that identifies the sender
uniquely and a time stamp. A heuristic approach of adjusting to the slowest
clock is used to address the problem of clock drift [Paulsen, 2018], [Paulsen,
2019]. To avoid message collisions, time slots are used. To maintain the
same time between packets it is necessary to compensate for clock drift. For
this purpose the messages carry timestamps and the Crazyflie adjust to the
one with the slowest clock. To identify the sender, each Crazyflie has an ID
that is included in each message. Additionally, data for logging purposes is
broadcast which is logged by a computer. The computer serves only to send
a start command and then passively log the data for later analysis.

Figure A.3: Picture of an experiment with 7 Crazyflie.



Appendix B

Vehicle Models and Local
Controllers

B.1 Quadrotor Model and LQR Control

Quadrotor dynamics have been well studied and the details on modeling as-
pects could be found, for example, in [Powers et al., 2015]. A very brief review
is given next and the interested reader is pointed to [Powers et al., 2015]. A
non-linear quadrotor model is linearized about the stable hover position to
obtain a linear state space model that corresponds to the small-angle approx-
imation, typically found in the literature. With this linearized model, the
state of quadrotor can be described completely in an inertial frame by three
position coordinates Tpos, Ypos aNd 2pos, respective velocities Zyel, Yvel and 2yel,
roll, pitch and yaw angles 6, ¢ and v and respective angular velocities wy, w
and wy. Neglecting the fast motor dynamics in the four propellers, the angu-
lar velocities of the rotors can be assumed to be instantaneously controlled
(instead of the motor torques) and using a bijective mapping [Powers et al.,
2015], the control input can be considered to be u = [Fthrust To To Tw]T,
where Fipust is the total thrust force in the Z direction and 7y, 74 and 7, are
the torques in the roll, pitch and yaw rotations respectively. The state space
model is of the form

r = Ar + Bu,
y = Cu,
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where
(01000000 0 00 0] [0 0 0 0]
00000000 -9 000 0000
00010000 0 00O 0000
00000000 0 0gO0 0000
00000100 0 00O 0000

400000000 0 000 5 |5 000
00000001 0 00O 0000
00000000 0 00O 0100
00000000 0 100 0000
00000000 0 00O 0010
00000000 0 001 0000
00000000 0 00 O] [0 0 0 1)
(100000000000

c_1001000000000
010000000O0O0O["
(000100000000

T
T = I:xpos Lvel Ypos Yvel Rpos Rvel 0 Wo Qb We w Ww] )

T
Y= I:xPOS ypos Tvel yvel] 5

the control input u is as defined above, g is the gravitational acceleration
and m is the mass of the quadrotor. An LQR controller is designed with
the above model and tuning parameters () = I and R = 0.01/. With the
obtained optimal gain Fy, a feed forward gain F% is designed such that the
static gain C(A — BF,)"'BF; = I.

B.2 HippoCampus Model and Tracking Con-
trol

Details on the modeling aspects of the HippoCampus underwater robot can
be found at [Hackbarth et al., 2015, Section III] and a summary of the kine-
matic and dynamics equations is now given below for completeness following
the notation exactly from [Hackbarth et al., 2015]. Let p = [N E D]"
denote the position (in an inertial frame) of the origin of the body frame
(different from the center of gravity) represented in an inertial frame and let
O=[¢ 0 ¢]T be the Euler angles representing the vehicle orientation. Let
v=[u v w]T represent the linear velocity of the origin of the body frame
and w = [p ¢ T’]T represent the angular velocity, both represented in the
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Figure B.1: HippoCampus with Inertial and Body coordinates [Attallah et al.,
2020].

body frame. For convenience, let n = [pT @T]T and v = [VT wT]T. The

kinematics and dynamics are described by
. |R(©) 0 5
=1 0 TO)]"
Mv + C(v)v = Thya — g(1) + sat(.),

(B.1)

where R(©) is the rotation matrix and 7(®) is a matrix that transforms
angular velocities from the body frame to the derivatives of Euler angles,
hydrodynamic loads are modeled as m,,q = —M a2 — C4(v)v, g(n) represents
the hydrostatic load and control input is denoted by 7.. Parameter values are
available in [Dicker et al., 2018b] and [Attallah et al., 2020] and more details
on the modeling aspects could be found in references [Hackbarth et al., 2015]
and [Fossen, 2011]. Note that the control input 7. = [f 0 0 74 75 7] is
passed through a saturation operation denoted here by sat(7.), which trans-
forms the control input into motor thrusts which are saturated and then
transformed back to obtain the control input.

A cascaded control structure with an inner geometric attitude PD con-
troller and an outer position PD controller is implemented. The attitude con-
troller is described in [Dtcker et al., 2018a] (and is motivated from [Mellinger
and Kumar, 2011}, [Lee et al., 2010]). The orientation error is described in
the special orthogonal group SO(3) and the intuition behind the control law
is discussed next leaving the details to the cited references. Since the rota-
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tion matrix R encodes orientation, R, can be used to denote the desired
rotation matrix with the desired orientation and the Frobenius norm of the
difference 3||R —Ref]|3 = Tr(I —RL;R) represents a Lyapunov like positive-
definite function (analogous to the typical Lyapunov function %HeHQ, where
e is the error state). The derivative (appropriately defined) of this function
is then defined as the orientation error e,;. The error in the angular velocity
is defined as e, = w — wyer. The control input for the attitude dynamics is
then computed as [1, Ty m]T = —Kpeas — Kqey,, for positive gains K, and
K,;. Wrapped around the attitude controller is a position controller which
computes the desired orientation as the one directly pointing towards the
reference position and provides this to the attitude controller. Additionally,
the position error e,os is computed as the difference between the reference
position and the position of the origin of the body frame and the forward
thrust is computed as f = K;j(||epos||) — Kou (recall that w is the forward
velocity), for positive gains K; and K.
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List of Abbreviations

IQC/ IQCs Integral quadratic constraints

ZF Zames-Falb

CC Circle criterion

LTI Linear time-invariant
LPV Linear parameter varying
LMI Linear matrix inequality
LQR Linear quadratic regulator
Z0OH Zero order hold

TDOA Time difference of arrival
PD Proportional-derivative

SDP Semi-definite programming
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