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Abstract

This article discusses a projection method for nonlinear eigenvalue problems. The
ansatz space is constructed by a Jacobi–Davidson type approach, and the arising
eigenproblems of small dimension are solved by safeguarded inverse iteration. The
method is applied to a rational eigenvalue problem governing the vibrations of tube
bundle immersed in an inviscid compressible fluid.

Key words: nonlinear eigenvalue problem, Jacobi–Davidson method, projection
method, Rayleigh functional, minmax characterization
PACS: 02.60.Dc

1 Introduction

In this paper we consider the nonlinear eigenvalue problem

T (λ)x = 0 (1)

where T (λ) ∈ Rn×n, λ ∈ J , is a family of real symmetric matrices, and J ⊂ R
is an open interval. As in the linear case, λ ∈ J is called an eigenvalue if
equation (1) has a nontrivial solution x 6= 0, and x is called a corresponding
eigenvector. Typically, we assume that n is large, and T (λ) is sparse.

For linear sparse eigenproblems T (λ) = λB − A the most efficient methods
(Lanczos method, Arnoldi method, Jacobi–Davidson method, e.g.) are itera-
tive projection methods, where approximations to the wanted eigenvalues and
eigenvectors are obtained from projections of the eigenproblem to subspaces
of small dimension which are expanded in the course of the algorithm.
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Ruhe [9] and Hager and Wiberg [4], [5] suggested a generalization of this
approach to nonlinear eigenvalue problems. Similarly as in the rational Krylov
process they construct a sequence Vk of subspaces of Rn and corresponding
Hessenberg matrices Hk which approximate the projection of T (σ)−1T (λk) to
Vk. Here σ denotes a shift and λk an approximation to the wanted eigenvalue
of (1). Then a Ritz vector of Hk corresponding to an eigenvalue of small
modulus approximates an eigenvector of the nonlinear problem from which a
(hopefully) improved eigenvalue approximation of problem (1) is obtained.

In this paper we propose a further projection method for problem (1). We
do not construct a sequence of linear approximations of the nonlinear prob-
lem but we update projections of the nonlinear problem to a sequence of
nested subspaces of small dimension which are expanded in a similar way
as in the Jacobi–Davidson method. Differently from Ruhe’s approach the pro-
jected problems inherit the symmetry from the original problem (1). Moreover,
if the eigenvalues of problem (1) can be characterized as minmax values of a
Rayleigh functional then the same holds for the eigenvalues of the projected
problem, and it can be solved efficiently by a safeguarded inverse iteration
method.

Our paper is organized as follows. Section 2 summarizes minmax properties for
nonlinear eigenvalue problems, and Section 3 briefly reviews numerical meth-
ods for finite dimensional nonlinear problems. Section 4 introduces the modi-
fication of the Jacobi–Davidson method for nonlinear eigenvalue problems, it
discusses the solution of the correction equation and a restart procedure to
keep the storage requirements at a reasonable size and which can be used to
purge unwanted directions as well. In Section 5 we report on our numerical
experience for a rational eigenvalue problem governing the the vibrations of a
tube bundle immersed in an inviscid compressible fluid.

2 Minmax characterization of eigenvalues

We consider the nonlinear eigenvalue problem T (λ)x = 0 where T (λ) ∈ Rn×n

is a family of real symmetric matrices for every λ in an open real interval J
which may be unbounded.

For a linear symmetric problem Ax = λx all eigenvalues are real, and if they
are ordered by magnitude λ1 ≤ λ2 ≤ . . . ≤ λn then it is well known that they
can be characterized by the minmax principle of Poincaré or by the maxmin
principle of Courant and Fischer.

Similar results hold for certain nonlinear eigenvalue problems, too. We assume
that the function f(λ, x) := xTT (λ)x is continuously differentiable on J ×Rn,
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and that for every fixed x ∈ Rn \ {0} the real equation

f(λ, x) = 0 (2)

has at most one solution in J . Then equation (2) implicitly defines a functional
p on some subset D of Rn \ {0} which replaces the Rayleigh quotient in the
variational characterization of eigenvalues of problem (1), and which we call
the Rayleigh functional.

Moreover, we assume that

∂

∂λ
f(λ, x)|λ=p(x) > 0 for every x ∈ D.

For nonlinear eigenvalue problems variational properties using the Rayleigh
functional were proved by Duffin, Rogers, Hadeler, andWerner for overdamped
problems, i.e. if the Rayleigh functional p is defined in the entire space Rn\{0}.
Nonoverdamped problems were studied by Barston for quadratic problems,
and by Werner and the author for general problems (c.f. [15] and the literature
given therein).

In the general case the natural enumeration for which the smallest eigenvalue
is the first one, the second smallest is the second one, etc. is not appropriate,
but the number of an eigenvalue λ of the nonlinear problem (1) is inherited
from the location of the eigenvalue 0 in the spectrum of the matrix T (λ).

If λ ∈ J is an eigenvalue of problem (1) then µ = 0 is an eigenvalue of the
linear problem T (λ)y = µy, and therefore there exists k ∈ N such that

0 = max
V ∈Sk

min
v∈V1

vTT (λ)v

where Sk denotes the set of all k–dimensional subspaces of Rn and V 1 := {v ∈
V : ‖v‖ = 1} is the unit sphere in V . In this case we call λ a k-th eigenvalue
of (1).

With this enumeration the following minmax characterization of the eigenval-
ues of the nonlinear eigenproblem (1) was proved in [15] (under an additional
compactness condition even for the infinite dimensional case):

Theorem 1: Under the conditions given above the following assertions hold:

(i) For every k ∈ N there is at most one k-th eigenvalue of problem (1) which
can be characterized by

λk = min
V ∈Sk

V ∩D 6=∅

max
v∈V ∩D

p(v). (3)
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The set of eigenvalues of (1) in J is at most countable.
(ii) If

λk = inf
V ∈Sk

V ∩D 6=∅

sup
v∈V ∩D

p(v) ∈ J

for some k ∈ N then λk is the k-th eigenvalue of (1) and the inf and sup
are attained by some V ∈ Sk and some v ∈ V ∩D, i.e. (3) holds.

(iii) If for k < ` there exist a k-th and an `-th eigenvalue λk and λ` in J , then J
contains an m-th eigenvalue λm for m = k, . . . , `, and λk ≤ λk+1 ≤ . . . λ`.

3 Solving nonlinear eigenvalue problems

In this section we briefly review numerical methods for finite dimensional
nonlinear eigenvalue problems T (λ)x = 0, where T (λ) is a family of real
symmetric n×n-matrices. We only consider methods for the general problem
(1), and do not take into account the rich literature on quadratic or polynomial
λ-matrices.

For dense problems algorithms are investigated in [6], [8] and [13] which are
all variants of inverse iteration

xk+1 = αkT (λk)
−1T ′(λk)x

k. (4)

Here αk is a suitable normalization factor, and λk is updated in some way.
Similarly as in the linear case inverse iteration converges locally. The conver-
gence is quadratical for simple eigenvalues, and it is even cubic if λk is updated
by the Rayleigh functional.

Moreover, under the conditions of Section 2 inverse iteration can be safe-
guarded in a similar way as for linear eigenproblems. Assume that problem
(1) has an m-th eigenvalue λm ∈ J , and let T (λ) = L(λ)D(λ)L(λ)T be an
LDLT -factorization of T (λ) for some λ ∈ J . If the number d+(λ) of positive
diagonal elements of D(λ) is less than m, then it can be shown that λ < λm,
and if d+(λ) ≥ m then λ ≥ λm (cf. [15]).

An essential disadvantage of inverse iteration is the fact that each eigenvalue
has to be determined individually by an iterative process, and that each step of
this iteration requires the solution of a linear system. Moreover, the coefficient
matrix T (λk) of system (1) changes in each step, and in contrast to the linear
case replacing (4) by xk+1 = αkT (σ)

−1T ′(λk)x
k with a fixed shift σ results

in convergence to an eigenpair of the linear system T (σ)x = γT ′(λ̃)x (γ 6= 0
depending on the normalization condition) from which we can not recover an
eigenpair of the nonlinear problem (1).
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A remedy against this wrong convergence was proposed by Neumaier [6] who
introduced the so called residual inverse iteration which converges linearly
with a fixed shift, and quadratically or cubically if the coefficient matrix is
altered in every iteration step according to reasonable updates of λk.

Closely related to safeguarded inverse iteration and of similar cost for small
dimensions is the following method introduced in [13]: For given σk ∈ J de-
termine an eigenvector xk corresponding to the m-largest eigenvalue of T (σk),
and evaluate σk+1 := p(xk). This method converges locally to the m-th eigen-
value λm ∈ J , and the convergence is quadratic. For positive definite T ′(λ) for
λ ∈ J it is even cubic, if xk is an eigenvector of the general eigenvalue problem
T (σk)xk = µkT

′(σk)xk corresponding to the m-largest eigenvalue µk.

For dense problems inverse iteration is a very capable method, however, for
large and sparse nonlinear eigenvalue problems inverse iteration is much too
expensive.

For sparse linear eigenvalue problems the most efficient methods are itera-
tive projection methods, where approximations of the wanted eigenvalues and
corresponding eigenvectors are obtained from projections of the eigenproblem
to subspaces which are expanded in the course of the algorithm. Methods of
this type for symmetric problems are the Lanczos method, rational Krylov
subspace methods, and the Jacobi–Davidson method, e.g. (cf. [1]).

In some sense, Ruhe [9] and Hager andWiberg [5], [4] generalized this approach
to sparse nonlinear eigenvalue problems by nesting the linearization of problem
(1) by Regula falsi and the solution of the resulting linear eigenproblem by
Arnoldi’s method, where the Regula falsi iteration and the Arnoldi recursion
are knit together. Similarly as in the rational Krylov process they construct
a sequence Vk of subspaces of Rn and corresponding Hessenberg matrices Hk

which approximate the projection of T (σ)−1T (λk) to Vk. Here σ denotes a
shift and λk an approximation to the wanted eigenvalue of (4). Then a Ritz
vector of Hk corresponding to an eigenvalue of small modulus approximates
an eigenvector of the nonlinear problem from which a (hopefully) improved
eigenvalue approximation of problem (1) is obtained.

In [4] Hager points out that the eigenvalues and eigenvectors are determined
one after another. After a Ritz value has converged only the approximate
eigenvectors from previous Arnoldi runs, the just converged Ritz vector, and
an approximation to a further eigenvector to be computed in the next Arnoldi
run are kept, and the rest of the current Krylov space is purged. Hence, each
eigenvalue of (1) is determined by an individual approximate Arnoldi process
essentially from scratch, and therefore the cost of the rational Krylov method
for nonlinear problems is similar to the cost of inverse iteration.

A further severe drawback of the approach of Ruhe, Hager and Wiberg is the
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fact that one does not take advantage of symmetry properties of the nonlinear
problem (1).

4 A Jacobi–Davidson type projection method

In this section we describe an algorithm which combines the fast convergence
of safeguarded inverse iteration with the efficiency of iterative projection meth-
ods. It is strongly related to the Jacobi–Davidson method for linear eigenvalue
problems.

4.1 The Jacobi–Davidson Method for Linear Eigenvalue Problems

The Jacobi–Davidson method introduced by Sleijpen and van der Vorst (cf.
[10], [11]) for the linear eigenvalue problem

Ax = λx (5)

is an iterative projection method. If V is a matrix with orthonormal columns,
and (σk, vk) is an eigenpair of the projected problem V TAV v = σv, then the
corresponding Ritz pair (σk, uk), uk = V vk, approximating an eigenpair of (5)
is improved as follows. The matrix V is expanded by an orthogonal correction
t of uk, and V is replaced by [V, t].

The most desirable orthogonal correction t solves the equation

A(uk + t) = λ(uk + t), t ⊥ uk. (6)

As t ⊥ uk the operator A can be restricted to the subspace orthogonal to uk
yielding (I − uku

T
k )A(I − uku

T
k ), and (6) can be rewritten as

(I − uku
T
k )(A− λI)(I − uku

T
k )t = −(A− σkI)uk.

Here we assumed that uk is normalized by ‖uk‖ = 1.

Approximating the unknown λ by σk we finally arrive at the Jacobi–Davidson
correction equation for the update t ⊥ uk:

(I − uku
T
k )(A− σkI)(I − uku

T
k )t = −rk (7)

where rk := (A− σkI)uk denotes the residual of (σk, uk).
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Implementation details of the Jacobi–Davidson method for various types of
eigenvalue problems can be found in [1]. In particular, numerical experiments
show (cf. [12]) that the correction equation only needs to be solved approx-
imately. Normally only a small number of steps of a preconditioned Krylov
subspace method are sufficient to obtain a good expansion t for the subspace
V .

4.2 Modifications for Nonlinear Eigenvalue Problems

To extend the idea of the Jacobi–Davidson method to nonlinear eigenvalue
problems of type (1) we use the correction equation

(I −
pku

T
k

uTk pk
)T (σk)(I −

uku
T
k

uTk uk
)t = −rk, t ⊥ uk, (8)

where pk := T ′(σk)uk and rk := T (σk)uk, and (σk, uk) is the current approxi-
mation to an eigenpair of T (λ)x = 0 obtained from a projected problem

V TT (λ)V v = 0, u = V v.

Equation (8) can be understood in the following way. It can be rewritten as

T (σk)t− αpk = −rk,

where α is chosen such that t ⊥ uk. Solving for t we obtain

t = −uk + αT (σk)
−1pk = −uk + αT (σk)

−1T ′(σk)uk, (9)

and since uk = V xk for some xk and t is orthogonalized against V to extend
the subspace, we can write equation (9) as

t = αT (σk)
−1T ′(σk)uk.

This equation demonstrates that the space spanned by the columns of V is
expanded by the direction obtained from inverse iteration, which converges
cubically if σk is chosen as Rayleigh-Functional of uk. Thus cubic convergence
can be expected if equation (8) is solved exactly. Numerical experiments have
shown that even a moderate approximate solution of (8) with some steps of
preconditioned GMRES also leads to fast convergence which is nearly cubic.

The view of Jacobi–Davidson as accelerated inverse iteration can be found
in [10] for the linear case. Equation (8) is already used in [2] for quadratic
eigenvalue problems. There the projected problem is solved by linearization of
the projected quadratic problem. Our approach is to combine the correction
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equation (8) with guarded inverse iteration for the projected problem to solve
general nonlinear eigenvalue problems of type (1). The resulting method is
given in Algorithm 1.

Algorithm 1 Nonlinear Jacobi-Davidson with guarded inverse iteration

1: Start with V = v1/‖v1‖
2: n = 1, k = 1
3: while n ≤ Number of wanted Eigenvalues do

4: Compute the n largest eigenvalue λn and the corresponding eigenvector
xn of V TT (λ)V x = 0 with guarded inverse iteration.

5: σk = λn, uk = V xn
6: if ‖T (σk)uk‖/‖uk‖ < ε then

7: PRINT σk,uk
8: n = n+ 1
9: GOTO 3

10: end if

11: Find an approximate solution for the correction equation

(I −
pku

T
k

uTk pk
)T (σk)(I −

uku
T
k

uTk uk
)t = −rk.

12: t = t− V V T t ,ṽ = t/‖t‖, V = [V, ṽ]
13: If necessary perform a purge-operation to reduce the size of the subspace

V .
14: k = k + 1
15: end while

Remarks

1-2: v1 is an initial approximation to the eigenvector corresponding to the first
eigenvalue of (1). If the algorithm shall not start to iterate for the first
eigenvalue of (1), but for the k-th eigenvalue, then a suitable k-dimensional
start space must be given to the algorithm.

4-5: Here the guarded inverse iteration for nonlinear eigenvalue problems, which
is described in Section 3 is used. It can be performed with low cost because
the dimension of the projected problem is small.

11: Will be discussed in Subsection 4.3
12: Due to the better numerical stability it is preferable to use modified Gram-

Schmidt in implementations of the algorithm.
13: See Subsection 4.4
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4.3 Solving the correction equation

The correction equation (8) is solved approximately with some steps of GM-
RES with an appropriate preconditioner K for T (σk).

The operator T (σk) is restricted to map the subspace {uk}
⊥ to {T ′(σk)uk}

⊥

in the correction equation (8). Therefore, the preconditioner also has to be
modified, and instead of K we use the preconditioner

K̃ := (I −
pku

T
k

uTk pk
)K(I −

uku
T
k

uTk uk
)

for the restricted operator

T̃ (σk) := (I −
pku

T
k

uTk pk
)T (σk)(I −

uku
T
k

uTk uk
).

With left-preconditioning equation (8) becomes

K̃−1T̃ (σk)t = −K̃
−1rk, t ⊥ uk. (10)

We apply a Krylov solver to equation (10) with initial guess t = 0. For the
linear case this was already discussed in [12], and the transfer to equation (10)
is straight forward.

Since the operator K̃−1T̃ (σk) maps the space {uk}
⊥ into itself all iterates

are contained in {uk}
⊥, and therefore in each step we have to perform the

matrix-vector product

y = K̃−1T̃ (σk)v (11)

for some v ∈ {uk}
⊥.

This can be done in 2 steps. First multiply v by T̃ (σk) which yields

ỹ = (I −
pku

T
k

uTk pk
)T (σk)v,

and then solve

K̃y = ỹ, y ⊥ uk.

This equation can be rewritten as

Ky − αpk = ỹ,
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where α is determined from the condition that y ⊥ uk. Thus, we finally obtain

y = K−1ỹ −
uTkK

−1ỹ

uTkK
−1pk

K−1pk (12)

To conclude, the approximate solution of the the linear system (8) by a precon-
ditioned Krylov solver requires one matrix-vector product to get K−1pk, and
one more product in each step to obtain K−1ỹ. Therefore, taking into account
the projections in the correction equation raises the number of matrix-vector
multiplications only by one.

4.4 Restarts

As the subspaces expand in the course of the algorithm the increasing storage
or the computational overhead may make it necessary to restart and purge
some of the basis vectors. An obvious way to restart motivated by the linear
theory is to take an orthonormal basis of the space spanned by the eigenvectors
of (1) already computed. However, for nonlinear problems this space is not
appropriate.

The proof of the minmax characterization

λ` = min
W∈S`

W∩D 6=∅

max
w∈W∩D

p(w)

in [15] shows that the minimum is attained by the invariant subspace W
of T (λ`) corresponding to the ` largest eigenvalues. Hence, if W denotes an
orthonormal basis of W as well the `-th eigenvalue of the projected problem

W TT (λ)Wx = 0

is λ`, and W or any subspace of Rn containing W yields a perfect restart.

If σk is the current approximation to λ` obtained from the projection of (1)
using the matrix V with orthonormal columns we therefore determine the
matrix S of eigenvectors corresponding to the ` largest eigenvalues of

V TT (σk)V x = µx (13)

and continue with the reduced basis Ṽ = V S. If we restart with this ` di-
mensional space we may cut off valuable information that is contained in the
discarted part of the subspace V . Actually in one of our examples we ob-
served that it took unusually many steps to determine the next eigenvalue
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after a restart. We therefore continued with ˜̀ eigenvectors of (13) where ˜̀ is
slightly larger than `, say ˜̀= `+ 3.

If T ′(λ) is positive definite then we replace S in the last paragraph by the
matrix containing ` or ˜̀ eigenvectors of generalized matrix eigenvalue problem

V TT (σk)V x = µV TT ′(σk)V x

of the ` or ˜̀ largest eigenvalues. This modification of the restart procedure can
be motivated by the linear maxmin theory. λ` is an `-th eigenvalue and x` a
corresponding eigenvector of problem (1) if and only if µ` = 0 is the `-largest
eigenvalue of the linear problem

T (λ`)x = µx

and x` is a corresponding eigenvector.

If σk is a good approximation to λ`, then

T (λ`) ≈ T (σk)− ηT ′(σk)

is a first order approximation, and we can approximate (1) by the generalized
eigenproblem

(T (σk)− ηT ′(σk))x` = 0. (14)

The ` largest eigenvalue η` is near 0, if σk is a good approximation to λ`, and
it can be characterized by a maxmin principle

0 ≈ η` = max
V ∈S`

min
v∈V \{0}

vTT (σk)v

vTT ′(σk)v
.

The maximum is attained by the subspace spanned by the eigenvectors cor-
responding to the ` largest eigenvalues of (14) which motivates the choice of
S.

5 Numerical example

To test our method we consider a mathematical model which describes the
problem governing free vibrations of a tube bundle immersed in a slightly
compressible fluid under the following simplifying assumptions: The tubes are
assumed to be rigid, assembled in parallel inside the fluid, and elastically
mounted in such a way that they can vibrate transversally, but they can not
move in the direction perpendicular to their sections. The fluid is assumed to
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be contained in a cavity which is infinitely long, and each tube is supported
by an independent system of springs (which simulates the specific elasticity of
each tube). Due to these assumptions, three-dimensional effects are neglected,
and so the problem can be studied in any transversal section of the cavity.
Considering small vibrations of the fluid (and the tubes) around the state of
rest, it can also be assumed that the fluid is irrotational.

Mathematically this problem can be described in the following way (cf. [7],
[3]). Let Ω ⊂ R2 (the section of the cavity) be an open bounded set with
locally Lipschitz continuous boundary Γ. We assume that there exists a family
Ωj 6= ∅, j = 1, . . . , K, (the sections of the tubes) of simply connected open
sets such that Ω̄j ⊂ Ω for every j, Ω̄j ∩ Ω̄i = ∅ for j 6= i, and each Ωj

has a locally Lipschitz continuous boundary Γj. With these notations we set
Ω0 := Ω \

⋃K
j=1Ωj. Then the boundary of Ω0 consists of K + 1 connected

components which are Γ and Γj, j = 1, . . . , K.

We denote by H1(Ω0) = {u ∈ L2(Ω0) : ∇u ∈ L2(Ω0)
2} the standard Sobolev

space equipped with the usual scalar product. Then the eigenfrequencies and
the eigenmodes of the fluid-solid structure are governed by the following vari-
ational eigenvalue problem (cf. [7], [3])

Find λ ∈ R and u ∈ H1(Ω0) such that for every v ∈ H1(Ω0)

c2
∫

Ω0

∇u · ∇v dx = λ
∫

Ω0

uv dx+
K∑
j=1

λρ0
kj − λmj

∫

Γj

un ds ·
∫

Γj

vn ds. (15)

Here u is the potential of the velocity of the fluid, c denotes the speed of
sound in the fluid, ρ0 is the specific density of the fluid, kj represents the
stiffness constant of the spring system supporting tube j, mj is the mass per
unit length of the tube j, and n is the outward unit normal on the boundary
of Ω0.

We consider the rational eigenvalue problem (15) where Ω is the ellipse with
center (0, 0) and length of semiaxes 8 and 4, and Ωj, j = 1, . . . , 9 are circles
with radius 0.3 and centers (−4,−2), (0,−2), (4,−2), (−5, 0), (0, 0), (5, 0),
(−4, 2), (0, 2) and (4, 2). We assume that all constants in problem (15) are
equal to 1.

Discretizing problem (15) by finite elements one gets a rational matrix eigen-
value problem

T (λ)x := −Ax+ λBx+
λ

1− λ
Cx = 0 (16)

where C collects the contributions of all tubes. A, B, and C are symmetric
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Fig. 1: Eigenvalues in (0,1); no restarts

matrices, A and C are positive semidefinite, and B is positive definite. In our
example the dimension is n = 36040.

Problem (16) has 28 eigenvalues λ1 ≤ . . . ≤ λ28 in the interval J1 = (0, 1) and
an infinite number of eigenvalues λ̃11 ≤ λ̃12 ≤ . . . in (1,∞), 20 of which are
contained in J2 := (1, 3).

We determined the approximations to the eigenvalues λ1, . . . , λ28 ∈ J1 without
restarts. We terminated the iteration for an eigenvalue if the relative residual
‖T (σk)uk‖/‖uk‖ was less than 10−12.

We solved the correction equations by preconditioned GMRES, and we ter-
minated the GMRES iteration after at most 10 steps or if the initial residual
was reduced by a factor 10−3. As preconditioner we chose the LU factoriza-
tion of T (σ) since this could be obtained quite inexpensively in our example.
We brushed the preconditioner up and replaced it by the LU factorization of
T (σk) with the current eigenvalue approximation σk if GMRES was not able
to obtain the required residual reduction by 10−3 within 5 steps. Since some
iterations are needed to gather information we applied this rule beginning with
the computation of λ3.

With these parameters the algorithm needed 16 LU decompositions and 438
GMRES steps in total to determine all 28 eigenvalues in J1. The dimension of
the subspace V grew only to 106. The convergence history is given in Figure
1.

We repeated the computation of the eigenvalues in J1 now restarting if the
dimension exceeded 40 and reducing it to min(10, 3 + #of eigenvalue). This
time the algorithm needed 13 LU factorizations and 470 GMRES steps. The

13



0 20 40 60 80 100 120
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

steps

re
sid

ua
l

Fig. 2: Eigenvalues in (0,1); restarted
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Fig. 3: Eigenvalues in (1,3); no restarts

convergence history in Figure 2 is very similar to that one without restarts.

Finally we determined the eigenvalues in the interval J2 := (1, 3). Since the
smallest eigenvalue in this interval is an eleventh eigenvalue we needed a sub-
space of dimension 11 that approximates the invariant subspace of T (λ̃11) cor-
responding to the 11 largest eigenvalues to start the algorithm. Not knowing
λ̃11 we started with the 11 dimensional subspace Kx = µMx corresponding
to the 11 smallest eigenvalues. In this case the algorithm needed 15 LU fac-
torizations and 340 GMRES steps. The convergence history is given in Figure
3.
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