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OTHER ARTICLE

Comparison of hp-adaptive
methods in finite element
electromagnetic wave

propagation
Marc Schober and Manfred Kasper

Institute of Micro Systems Technology, Hamburg University of Technology,
Hamburg, Germany

Abstract

Purpose – This paper aims to show that simple geometry-based hp-algorithms using an explicit
a posteriori error estimator are efficient in wave propagation computation of complex structures
containing geometric singularities.

Design/methodology/approach – Four different hp-algorithms are compared with common h- and
p-adaptation in electrostatic and time-harmonic problems regarding efficiency in number of degrees of
freedom and runtime. An explicit a posteriori error estimator in energy norm is used for adaptive
algorithms.

Findings – Residual-based error estimation is sufficient to control the adaptation process.
A geometry-based hp-algorithm produces the smallest number of degrees of freedom and results in
shortest runtime. Predicted error algorithms may choose inappropriate kind of refinement method
depending on p-enrichment threshold value. Achieving exponential error convergence is sensitive to
the element-wise decision on h-refinement or p-enrichment.

Research limitations/implications – Initial mesh size must be sufficiently small to confine
influence of phase lag error.

Practical implications – Information on implementation of hp-algorithm and use of explicit error
estimator in electromagnetic wave propagation is provided.

Originality/value – The paper is a resource for developing efficient finite element software for
high-frequency electromagnetic field computation providing guaranteed error bound.

Keywords Electromagnetic fields, Finite element analysis, Algorithmic languages

Paper type Research paper

Introduction
It is natural to perform simulations in frequency domain, when structures are designed
for a specific operation frequency or a frequency band. The FE-FD method is well
suited for this task. Literature is vast about this method. The mathematical side of
finite element method (FEM) is well explained (Brenner and Ridgway Scott, 2002). See
Salazar-Palma et al. (1998), Jin (2002) and Monk (2003) for FEM application in
electromagnetics.

Any discretisation method suffers from discretisation error (Salazar-Palma et al.,
1998), thus mesh adaptation and self adaptivity are appealing issues for simulation
algorithms. Adaptation methods have to rely on some local (element-wise) a posteriori
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error estimate. Different estimators are in use (Verfürth, 1996; John, 2000; Babuška and
Strouboulis, 2001; Melenk and Wohlmuth, 2001; Verfürth, 2005). There are explicit and
implicit residual estimators as well as the method of patch recovery, which was
originally proposed by Zienkiewicz and Zhu (1987) (ZZ estimator). During adaptation,
the number of degrees of freedom (DOF) in an element with error greater than a given
tolerance is increased in order to obtain the largest possible error reduction. There are
two possible means for increasing the number of DOF. The first widely used type is the
h-refinement (with h being the mesh size), where an element is split up into
sub-elements. Neighbouring elements need to be subdivided to retain mesh conformity,
when not using hanging nodes. Earlier approaches (Ratnajeevan and Hoole, 1990;
Fernandez et al., 1993; Golias et al., 1994; Dı́az-Morcillo et al., 2000; Tsuji and Koshiba,
2000) concentrate on h-adaptivity by introducing error estimates and criteria whether
to refine a mesh cell or not. h-refinement is needed in case of singularities or phase lag
at high wave numbers (Ihlenburg and Babuška, 1997; Babuška and Strouboulis, 2001;
Monk, 2003; Ainsworth, 2004) and results in polynomial convergence. The
second method to reduce error is to increase polynomial order p of the shape
functions. This method is called p-enrichment and results in exponential error
convergence OðhpÞ if the solution is smooth and phase lag error can be neglected
(Salazar-Palma et al., 1998; Monk, 2003; Ainsworth, 2004). Thus, we favour local
p-enrichment whenever possible. The hp-version combines both methods as an
up-to-date but less common adaptation method in engineering. New algorithms are still
evolving in the mathematic and engineering community using different approaches
(Melenk and Wohlmuth, 2001; Bangerth and Rannacher, 2003; Heuveline and
Rannacher, 2003; Eibner and Melenk, 2004; Rachowicz et al., 2004). hp-algorithms are
often tested for functionality on standard examples like the unit square, slit or
L-shaped domain. Their practical use in wave propagation is not well established due
to difficulties in implementation and the decision whether to use local h-refinement or
p-enrichment.

We compare four different fully hp-adaptive algorithms for 2D computations of
wave propagation problems showing that simple algorithms using an explicit error
estimate in energy norm are sufficient for electromagnetic wave propagation.
The finite element software PolyDE, which is currently developed at the Institute of
Micro Systems Technology (Hamburg University of Technology), is used as the
simulation platform. It facilitates solving different scalar partial differential equations
in lossy, anisotropic, inhomogeneous media using shape function polynomial order of
up to p ¼ 20. Besides the hp-adaptive algorithm, the program offers pure h- and
p-adaptation.

Subsequently, we first introduce the wave propagation problem and notations.
Then, we examine the error estimator used by the software and present selected
hp-adaptation strategies. The performance of algorithms is studied on four examples,
comparing error convergence and numerical efficiency in terms of number of DOF and
runtime.

Electromagnetic wave propagation problem and notation
The scalar wave equation for the electric or magnetic field strength is used for
computing 2D electromagnetic wave propagation. We solve for the z-component of the
field, which is continuous in the xy-plane.
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There are two types of scalar wave equations, defined on the domain V which is
polygonally bounded by Dirichlet boundary conditions on ›VD and Neumann or mixed
boundary conditions on ›VN. The first is the transverse electric (TE) wave equation
solved for the electric field strength Ez:

7 · ðm21
r;x; y7EzÞ þ k2

01r;zEz ¼ jvm0 J z ð1Þ

with boundary conditions defined by:

Ez ¼ ED on ›VD ð2Þ

½m21
r;x; y7Ez�jn ¼ pN þ qNEz on ›VN ð3Þ

and m21
r;x; y being the inverse of relative permeability rank two tensor to take anisotropic

materials into account, relative dielectric permittivity 1r;z, current density Jz as a scalar
source term and free space wave number k0 ¼ v

ffiffiffiffiffiffiffiffiffiffi
m010

p
with angular frequency v. ED,

pN and qN are scalar values used for setting the boundary conditions. Material data are
considered to be complex valued in order to allow for lossy media.

The transverse magnetic (TM) wave equation is solved for the magnetic field
strength Hz. It is similar to the TE-wave – only terms for permittivity and permeability
are interchanged and source terms need a slightly different treatment (change
jvm0J z ! 7 £ ð121

r;x; yJÞÞ:
Error estimation is presented for the case of TE-waves. The derivation of an

estimator for a TM-wave is analogous.

Error estimator
Explicit error estimators compute an error indicator directly from the residual for each
element K in the mesh, while the implicit method solves a local problem on a patch of
elements with higher computational cost compared to the explicit one. Being a method of
recovered gradients, the ZZ estimator is widely used although it is possible to construct a
simple problem where it fails completely. It might happen that this estimator computes
an error estimate of nearly zero while the real error may be arbitrarily large. See
Ainsworth and Oden (2000) for a deeper explanation. Implicit methods are more reliable
in presence of pollution, however, they are costly especially in the case of high order
methods. Explicit methods are known to be reliable as long as the solution has high
regularity but do not result in guaranteed error bounds at corner singularities or in the
case of phase lag. Recovery methods may not be reliable for high order methods and
likewise are not able to treat pollution effects (Babuška and Strouboulis, 2001).
We restrict our analysis to explicit residual error estimates due to the fact that implicit
estimators are excessive in run time. However, we are faced with potentially non-reliable
error prediction in the case of pollution because the error estimator does not recognize
numerical phase lag. Recent error estimators had been derived only for the case of
convection-diffusion or reaction-diffusion equations (Melenk and Wohlmuth, 2001;
Verfürth, 2005) and thus may fail in the case of the wave equation. One of the aims of this
paper is to test whether explicit estimators are at least sufficient to serve as an error
indicator in the adaptation process for wave propagation problems.

John (2000) numerically compares various error estimators concerning their
efficiency and behaviour in the mesh h-adaptation process. Although, explicit residual
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estimators in H 1-semi norm and L 2-norm produce well refined meshes, he concludes
that none of the estimators worked satisfactory in all examples. The explicit error
estimator of Melenk and Wohlmuth (2001) incorporates the polynomial degree in local
error estimation contrarily to John (2000), Ainsworth and Oden (2000) and Verfürth
(2005). This indicator does not underestimate the error for the Poisson equation.
The refinement procedure leads to graded meshes at singularities of reentrant
corners. For this reason, an explicit residual error estimator seems to be suited for
practical use.

Error estimation delivers local error indicators h2
K in energy norm for all elements K

in a discretisation T and a relative error estimate er for the whole solution.
The common approach is to sum up internal contribution h2

iK
and boundary

contribution h2
bK
:

The interior error indicator h2
iK

depends on element size hK ¼ diam(K) and
polynomial order pK:

hiK

�� ��2

eng;K
¼

h2
K

p2
K

m21
r;x; y

��� ��� ·

Z
K

j jvm0 J z 2 7 · ðm21
r;x; y7Ez;hÞ2 k2

01r;zEz;hj
2
dAK ð4Þ

with element area AK and the norm of inverse permeability tensor computed by
km21

r;x; yk ¼ maxjm21
r;x; yj:

The second contribution to the local error indicator h2
bK

consists of the field gradient
jump ½m21

x;y7Ez;h�nK
with respect to the unit outward normal vector nK ’ ›K:

hbK

�� ��2

eng;K
¼ �mr;x;y

�� ��
g[›K–›V

X hgK
hgK þ hgK0

lg

2pg
·

Z
g

½m21
x;y7Ez;h�nK

��� ���2dlg

0
@

þ
g[›K>›VN

X lg

2pg

Z
›K>GN

jpN þ qNEz;h 2 nK · ðm21
x;y7Ez;hÞj

2
dlg

1
A

ð5Þ

with shared edge polynomial degree pg ¼ min( pK, pK0), hgK ; hgK0 being the heights
over common edge g with length lg of element K and its neighbour K0 and permeability
mean value �mr;x;y of K and K0. A weighting factor depending on hgK ; hgK0 is included to
distribute the error between neighbouring elements.

The global error h composed of element contributions is defined by:

khk U
K[T

X
khKk

2

0
@

1
A

1=2

¼
K[T

X
ðkhiKk

2
þ khbK

k
2
Þ

2
4

3
5

1=2

ð6Þ

In measuring the error, we use the energy norm similar to Verfürth (1996, 2005) as
reference:

Ezk k
2
eng;V U

Z
V

jm21
r;x;y7Ez ·7Ezj þ jk2

01r;zEz ·EzjdV ð7Þ

Relative error estimate er can be expressed as a dimensionless quantity by:
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kerkeng ¼ 100 percent
khjj

2
eng

kEzjj
2
eng

 !1=2

ð8Þ

The relative error er is used as a stopping criterion in the adaptation process, while the
local error hK for each element K controls the local refinement of DOF.

Usually, initial values for mesh size h and polynomial degree p are chosen in order
to control pollution error related to phase lag. Ainsworth (2004) distinguishes between
oscillatory, transition and exponential zone. For optimum convergence, it is desirable
to stay in the exponential zone. In approaching this zone, h-refinement is more
economically, while error reduction is larger with p-enrichment in the exponential
zone. Dispersion error decreases at an exponential rate at kh , 2p þ 1. Thus, mesh
size and polynomial order have to be chosen such that the following condition is
fulfilled:

kkh , 2pþ 1 ) h , k21 2pþ 1

2p

l0

n
ð9Þ

with constant k . 1, free space wavelength l0 ¼ c0/f and refractive index n of the
material. This criterion is sharp – meaning if not fulfilled, the error oscillates despite
increasing polynomial order. In first order FE or FD methods, it is a common practice to
use mesh size h < l0/(10 · n) (Monk, 2003), leading to highly refined meshes.

It had been shown by Babuška and Sauter (1997) that it is possible to modify the
usual FEM procedure in a way that the effect of pollution is eliminated in one
dimension. In two dimensions, it is possible to substantially reduce but not avoid
pollution with an appropriate modification. However, the construction of such a
method seems not to be straightforward. If the error of an element exceeds the error
criterion, an additional check for the mesh-size and polynomial order according to
equation (9) could be included in the hp-adaptive algorithm to reduce phase lag for
initially coarse meshes. The element requires h-refinement, if the actual element
diameter hK is larger than the required mesh-size.

hp-algorithms
In the course of adaptation, we aim to achieve exponential convergence of the error and
reach a prescribed error tolerance TOL in energy norm for the whole solution. The
paradigm of adaptive meshing is equipartition of error in the mesh. It had been shown,
that numerical efficiency and convergence speed of h-adaptation are not very sensitive
to mesh topology as long as the criterion of error equilibration is fulfilled (Babuška and
Strouboulis, 2001). At corner singularities, the optimal mesh should have a geometric
density distribution of mesh size h and linearly decreasing polynomial order p in
approaching the singularity. Singularities are caused by adjacent Dirichlet and
Neumann boundary conditions, reentrant or material interface corners and interfaces
between perfectly matched layers (PMLs) of different directions.

Two decisions based on error estimation are to be made in hp-adaptation – whether
the element should be refined and which kind of refinement (either h or p) should be used.
Typically, p-enrichment is preferred due to the higher convergence rate in regions of a
smooth solution. If material coefficients are smooth or element-wise constant, it is
guaranteed that singularities demanding h-refinement only appear at material
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interfaces or at the boundary. An approach preferred by Rachowicz et al. (2004) is to test
both refinement strategies on a local patch of elements and to choose the remedy, which
leads to the larger error reduction. Simpler explicit residual error estimators only give
one information requiring some additional criterion, which can be extracted from
geometry, error distribution or adaptation history.

There are different strategies for choosing h-refinement or p-enrichment. A simple
adaptation strategy is to use p-enrichment and to switch to h-refinement if this is not
successful. For instance, we may use h-refinement only for the few elements, whose
error is significantly larger than the mean error. This strategy is simple, robust and
only uses information, which is easily available. However, it may not be optimal in the
number of DOF, since it possibly produces more h-refined elements than are needed
even in the case of a smooth solution. Thus, a further criterion, which excludes
h-refinement in regions of high regularity, would be beneficial.

In the following, we present four algorithms. The first is a simple algorithm that
bases the kind of refinement on a sorted list of element error, the second is a geometry
based algorithm, the third is based on articles from Melenk and Wohlmuth (2001) and
Eibner and Melenk (2004) and the last is a mixture of the algorithms presented by
Heuveline and Rannacher (2003) and Eibner and Melenk (2004).

Top 5 percent h-refine and keypoint-based strategy
The simplesthp-algorithm always refines the top 5 percent of the sorted local element error
list ifh2

K is greater than a prescribed value. All other elements, having an error larger than
the tolerance, are p-refined. The algorithm assumes that singularities possess the highest
local error and thus have to be h-refined. In this way, singularities should always
be sufficiently resolved independently of geometry while other elements are p-refined.
The percentage of elements, which have to be h-refined depends on the geometry and can
be estimated in advance. An empirical value of 5 percent has proved its usefulness on the
average of various examples. This algorithm is denoted by T5.

The keypoint-based algorithm depends on structure. Corner singularities which
require h-refinement are assumed to be located at intersection points of two or more
geometry objects, which we refer to as keypoints. Further, it is assumed that corner
singularities possess the largest errors. While this algorithm is well suited for corner
singularities, it might fail for singularities located in the domain caused by
inhomogeneous material distributions. Narrow arcs or circles, as in the case of photonic
crystals, have to be well refined initially to suppress singularities caused by polygonal
approximation of arcs when not using isoparametric elements. This algorithm is
denoted by KP. Both strategies are included in the algorithm below:

(1) Sort error vector h2
K by decreasing error.

(2) For the worst 5 percent elements, check whether h2
K #

s½TOL=ð#K · 100 percentÞ�2kEzjj
2
eng:

. If YES, exit loop.

. ELSE, decide by algorithm:
. for top 5 percent strategy, mark element K for h-refinement and set

polynomial degree to pK/2 if pK $ 2.
. for keypoint strategy, check if at least one element node is a keypoint.
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. If YES, mark element K for h-refinement and set polynomial degree to
pK/2.

. ELSE, raise pK to pK þ 1 and leave element unchanged.
. For the worst 5-50 percent elements, check whether h2

K #
s½TOL=ð#K · 100 percentÞ�2kEzjj

2
eng:

. If YES, exit loop.

. ELSE, raise pK to pK þ 1.

Parameter s can be used to set the stopping criterion of element adaptation.
The polynomial degree is decreased for the worst 5 percent elements when starting at a
polynomial degree of pinit $ 2. This leads to an optimal polynomial order distribution
at corner singularities. At the end of the adaptation the polynomial order at the
singularity should be one.

Predicted error strategy by Melenk and Wohlmuth
This adaptation process uses error prediction for the subsequent refinement cycle.
During the actual cycle, it is assumed that the solution is smooth and a predicted error
h

pred
K based on the current solution is computed for the next adaptation cycle. If the

computed error in the next cycle is higher than the predicted error from the preceding
cycle, the assumption of a smooth solution must have been wrong. Now h-refinement is
used. Otherwise the algorithm proceeds with p-enrichment, assuming a smooth
solution. Variables gh and gp (Melenk and Wohlmuth, 2001) are introduced as a
threshold for controlling the amount of h-refinement or p-enrichment. Increasing one or
both variables leads to increased p-enrichment, while decreasing leads to increased
h-refinement. The initial value for the predicted error determines refinement in the first
adaptation step. A value of hpred

K;init ¼ 0 leads to h-, while setting h
pred
K;init !1 leads to

p-enrichment for all elements. The algorithm is denoted by M07 and M04 for gp ¼ 0.7
and gp ¼ 0.4, respectively. gh was chosen to be 4 in both algorithms.

The article from Melenk and Wohlmuth (2001) describes the algorithm in detail.
Error prediction is modified for green h-refinement corresponding to Eibner and
Melenk (2004) and for the case of restoring polynomial order conformity.

Refinement history with predicted error strategy
A refinement history for the last step is used for the algorithm based on the proposal
from Heuveline and Rannacher (2003), which is similar to the one proposed by Melenk
and Wohlmuth (2001). Error prediction based on the kind of refinement of the
preceding adaptation step is used for all elements. Since, the algorithm by Heuveline
uses a different error estimator, error prediction based on the earlier type of refinement
had been modified according to Melenk and Wohlmuth.

The kind of refinement is chosen according to the predicted error. Refinement
information is stored for the next step, which is the major difference to Melenk
and Wohlmuth (2001). p-enrichment is used for elements which have not
been refined before and is generally preferred for elements which have been refined
earlier.

Initially, p-enrichment is used for marked elements in the first cycle, since there was
no previous refinement. Variables gh and gp control the adaptation process similar to
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Melenk and Wohlmuth (2001). They were set to gh ¼ 4 and gp ¼ 0.7. The algorithm is
denoted by RH.

Comparison of algorithms
The algorithms of the previous section are compared with respect to their use in
microphotonics using four examples. The results are given as estimated relative error
over number of DOF.

Computations were done on an Athlon 64 X2 Dual Core 4200 þ and 4 GB RAM
running Windows XP. The vacuum wavelength was fixed at l0 ¼ 1.55mm for wave
propagation examples, being common in optical communication. This leads to
l ¼ l0/n in material with isotropic refractive index n. All structures were computed for
TE waves with excitation given by Dirichlet boundary Ez ¼ sin(p/w) for waveguide
width w. Initial mesh size hinit was chosen, such that equation (9) is fulfilled with k ¼ 2
and pinit ¼ 1 staying in the superexponential decay zone.

Adaptation was stopped after 20 steps or if relative errors of 0.01 percent for sharp
bend and etalon example and 0.1 percent for sphere-cone and photonic crystal example
were reached. These relative errors seem to be large compared to errors reached when
solving the Laplace or Poisson equation on the unit square. Hence, it is indeed a
demanding criterion to reach for wave propagation in complex structures, because of
the moderate number of singularities that might occur. Results for p- and h-adaptation
algorithms are added for comparison with the hp-versions.

Sphere-cone example
We chose the electrostatic sphere-cone example (Solin et al., 2005) as a structure
containing one singularity at the tip of the cone (width w ¼ 200 mm, height
h ¼ 500 mm) located 100 mm above the sphere (radius r ¼ 200 mm). The potentials are
set to 0 V at the cone and 100 kV at the sphere in the geometry center. Top and bottom
boundaries are set to homogeneous Dirichlet, left and right to homogeneous Neumann
boundary conditions. We chose this example to compare hp-algorithms with respect to
resolving singularities located at reentrant corners.

The structure was triangulated with mesh as coarse as possible and sphere
approximated by 30 nodes per 908. SSOR-conjugate gradient solver with linear solver
error of 10216 was used for solving system matrices. Observed field is smooth except
for the singularity located at the cone tip.

Error convergence of relative estimated error in energy norm over number of DOF for
h-, p- and different hp-adaptation algorithms is shown in Figure 1. h-adaptation shows
algebraic convergence as expected stopping after 20 steps with an error of 2.42 percent.
p-adaptation was not able to reduce error lower than 10.8 percent despite raising
polynomial order, indicating that the singularity cannot be refined by p-enrichment.
hp-algorithms M04, M07 and RH approximately show the same slope as h-adaptation
while needing more DOF. The best hp-algorithm in this example is KP followed by T5.
KP was able to reach the desired tolerance in 19 steps needing approximately 80,000
DOF.T5was able to reach TOL ¼ 0.0761 percent with 225,527 DOF using one step less.

Sharp bend example
The second structure is a w ¼ 0.2 mm wide waveguide with a sharp bend using a
square resonator with a side length of 0.7mm and a chamfer at the main reflection
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corner. It is intended for silicon with a refractive index of n ¼ 3.2 surrounded by air
demonstrating wave propagation. See Pollock and Lipson (2003) and continuative
reference for further details. The structure is surrounded by PML with thickness l0/2
and truncated by homogeneous Dirichlet boundaries. The geometry was initially
meshed with hinit;Si ¼ 0.115mm and hinit;air ¼ 0.37mm. Resulting field pattern for
phase f ¼ 08 is shown in Figure 2.

Figure 1.
Error convergence based

on estimated error in
energy norm for sphere

cone example
(TOL ¼ 0.1 percent)
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Equipotentials of electric
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Strongest singularities are supposed to reside at the input port at the left and interfaces
between perfectly matched layers of different direction. Weaker singularities appear at
the corners of the resonator. These areas are expected to be h-refined while the rest
of the geometry is anticipated to be p-enriched.

Figure 3 shows the results of the estimated relative error in dependence of number
of DOF. Pure p-adaptation reduces error successfully up to tenth adaptation step.
After the second adaptation step, all hp-algorithms show better – almost exponential –
error convergence (Figure 3) than h-adaptation with the most effective algorithm being
the KP. It needs 100,000 DOF less than the second best algorithm M04. Algorithms
KP, M04 and T5 show almost the same slope with different number of DOF. Graphs
for M07 and RH bend up during adaptation, which indicates higher amount of
p-enrichment when comparing to p-adaptation graph. The algorithm first proposed by
Melenk and Wohlmuth (2001) requires a careful choice of gh and gp, which have a
strong effect on the number of elements generated. The polynomial degree for this
algorithm is always higher than one, which deviates from the optimal polynomial
degree distribution at corner singularities, while the mesh grading is good.

It is interesting to observe the connection between relative error kerkeng and
physical quantities in electromagnetics like the relative phase connected to
propagation speed. Relative phase plays an important role for designing optical
components like Mach-Zehnder interferometers. Figure 4 shows the dependence of
phase f on relative error, which can be seen as an indicator for phase lag. A value
of w ¼ arctan (Im(Ez)/Re(Ez)) ¼ 23.0804662788 with a relative error estimate of
kerkeng ¼ 0.00482 at coordinates (0, 0) (Figure 2) using the KP algorithm was taken as
the reference value for Dw. The graph can be linearly fitted in double-logarithmic scale
by log Dw ¼ 23.42 þ 1.87 · logkerkeng.

All algorithms except M07 were able to decrease the error at corners of the bend by
h-refinement. The KP-algorithm decreases the polynomial degree at corners which
leads to a polynomial degree of p ¼ 1 at stronger singularities. Together with T5, it is

Figure 3.
Error convergence based
on estimated error in
energy norm for
sharp bend
(TOL ¼ 0.01 percent)
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the only algorithm that shows a linear increase of polynomial degree away from the
singularity together with a geometric mesh (Figure 5).

Etalon
An etalon in terms of a resonant cavity in a w ¼ 0.4mm wide waveguide (n ¼ 3.45)
truncated by air spacings was chosen as the third example. The resonator has length
l ¼ 2.246mm with adjacent air spacing (dair ¼ 387.5 nm). Perfectly matched layers of
thickness l0/2 with bordering homogeneous Dirichlet boundaries were used for
domain truncation. The geometry was initially meshed with hinit;wg ¼ 0.1mm and

Figure 4.
Dependence of phase Df
on relative error estimate

kerkeng using KP
algorithm for sharp bend
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Figure 5.
Meshing of sharp bend

using KP algorithm:
(a) final mesh showing

refined geometric
singularities at

TOL ¼ 0.01 percent; and,
(b) magnification of lower
input port singularity with

polynomial order
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hinit;air ¼ 0.37mm. UMF direct solver was used for computation. Weaker singularities
are located at waveguide or resonator vertices at the air spacing (Figure 7(b)). This
example was chosen to show a drawback of all hp-algorithms except from KP with
respect to resonator refinement.

Results for error convergence are shown in Figure 6. Like in the preceding example,
KP is the most efficient algorithm with respect to number of DOF followed by M04,
M07 and RH. These algorithms need 100,000 to 150,000 DOF more than KP, with RH
spending 295,852 to reach kerkeng ¼ 0, 00424 percent. Except for a small upward bend
in graph of M07, they show similar curvature. Although needing 394,111 DOF,
T5 shows exponential convergence up to an error of 0.1 percent and comparable
computation time to M07 and RH (Table I).

The drawback addressed earlier occurs during adaptation in the resonator region.
Predicted error algorithms show local h-refinement in immediate vicinity of standing
wave nodes (Figure 7(a)) inside the resonator, where field gradient is large (Figure 7(c)).
M04 additionally shows h-refinement in scattering region near the output. As the
field is still smooth in these regions, a mesh as generated by the KP algorithm
(Figure 7(b)) – only using h-refinement at corner singularities – is expected. T5
produces a mesh with improper local agglomerations of h-refinements (Figure 7(d)).

Figure 6.
Error convergence based
on estimated error kerkeng

for etalon (TOL ¼ 0.01
percent)
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Example M04 M07 RH T5 KP kerkeng (percent)

Sphere-cone 21.33 28.73 18.67 1.33 1.00 1.00
Sharp bend 1.30 5.52 3.05 2.45 1.00 0.01
Etalon 1.67 2.70 2.63 2.52 1.00 0.01
Photonic crystal 6.25 2.87 2.88 2.08 1.00 0.30

Table I.
Comparison of CPU time
for presented examples
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Photonic crystal bend
The fourth example is a 908 bend in a dielectric rod (1z ¼ 11.4) photonic crystal with a
square lattice (lattice parameter a ¼ 620 nm) of 14 £ 16 rods with radius r ¼ 124 nm.
Domain is truncated by absorbing boundary conditions (ABC) of the first kind. The
problem was solved using SSORCG solver accuracy 1029. The example was chosen to
demonstrate a drawback of the keypoint-based algorithm, which can be shown in
Figure 8. Photonic crystals consist of rods of or holes in high refractive material, which
are defined by keypoints in our program. Usually, circles are approximated by
polygons whose corners result in weak singularities. Consequently, the initial mesh has

Figure 7.
Comparison of meshing

results for etalon resonator
display detail:

(a) equipotentials of
electric field strength Ez at
w ¼ 08; (b) KP algorithm

showing homogeneous
mesh inside resonator; (c)
M07 algorithm showing

h-refinement in vicinity of
standing wave nodes; and,
(d) T5 algorithm showing
local mesh agglomerations

(a) (b)

(c) (d)

Figure 8.
Display detail of final

mesh for keypoint
algorithm at photonic

crystal bend

hp-adaptive
methods in wave

propagation

443

D
ow

nl
oa

de
d 

by
 H

am
bu

rg
 U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y 

A
t 0

1:
40

 0
2 

Fe
br

ua
ry

 2
01

8 
(P

T
)



to be sufficiently refined at circles. If the error is still high at these polygons, the
algorithm only splits elements at keypoints, which is not appropriate for properly
approximated circles.

Despite this drawback, the KP-algorithm shows its practical usefulness in Figure 9
with the least number of DOF used to reach the required error bound in nine steps.
p-adaptation works efficiently up to a relative error of 0.8 percent due to low number of
singularities and well refined circles. T5 needs approx. 300,000 DOF more than KP to
reach an error of 0.121 percent showing exponential, although slow, error convergence
in parts of the graph. Algorithms M07 and RH need additional 150,000-200,000 DOF to
reach an error of 0.103 percent.

Algorithm run time
Another requirement for adaptation is efficiency in terms of run time. Table I shows
CPU times to reach kerkeng for given examples. Timing is given relative to KP
algorithm.

Considering the number of adaptation steps needed to reach the error bound for the
sharp bend example (Figure 3), M04-algorithm needs three steps less than the other
hp-algorithms. This cannot be strictly set in comparison to CPU time, as shown in
Table I. Although M04 needs less steps, KP is 23 percent faster. Long runtime for M04
in the photonic crystal example is caused by poor solver convergence. KP is the fastest
algorithm in all examples.

Conclusion
Different hp-algorithms were tested for efficiency and practical use on various examples.
Although theoretically not being safe in the case of wave propagation problems and
singularities at reentrant corners, results show that explicit residual error estimation is
sufficient for guiding the adaptation process. Considering the computational effort of
explicit error estimators, they are a reasonable choice in practice.

Figure 9.
Error convergence based
on estimated relative error
kerkeng for photonic
crystal bend
(TOL ¼ 0.1 percent)
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As expected, all hp-algorithms are superior to h- or p-adaptation with respect to the
treatment of wave propagation problems in presence of geometric singularities.
Comparing results of the tested algorithms, the geometry-based algorithm performs best
and in some cases results in error being smaller by a factor of ten for the same number of
DOF. According to expectations, we observed an increase in convergence order in the
course of adaptation. However, convergence behaviour seems not to have overall
exponential characteristic for any of the algorithms. This probably is attributed to wrong
decisions in the kind of refinement leading to an unnecessary increase in the number of
DOF. Mesh generation was not optimal in all examples. Unnecessary h-refinement
occurred for predicted error and top 5 percent algorithms in etalon example and keypoint
algorithm at curved interfaces. It should be noted that instead of using hanging nodes, the
FEM code modifies the mesh in order to maintain mesh quality in successive steps. This
could be the source of inappropriate decisions in predicted error algorithms.
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