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Abstract. In recent papers Ruhe [10], [12] suggested a rational Krylov method for nonlinear
eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov
method for the linearized problem. In this note we point out that the method can be understood
as an iterative projection method. Similar to the Arnoldi method presented in [13], [14] the search
space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate
that the rational Krylov method can be accelerated considerably by replacing an inner iteration by
an explicit solver of projected problems.

1. Introduction. In this note we consider the nonlinear eigenvalue problem

A(λ)x = 0 (1.1)

where A(λ) ∈ C
n×n is a family of matrices depending on a complex parameter λ ∈

D ⊂ C. As in the linear case a parameter λ is called an eigenvalue of problem (1.1)
if the equation (1.1) has a nontrivial solution x 6= 0 which is called an eigenvector
corresponding to λ. We assume in this note that the matrix A(λ) is large and sparse.

For sparse linear eigenproblems iterative projection methods where approxima-
tions to the wanted eigenvalues and corresponding eigenvectors are obtained from
projections to subspaces which are expanded in the course of the algorithm are very
efficient. Methods of this type are the Lanczos algorithm for symmetric problems, and
Arnoldi’s method and the Jacobi-Davidson method, e.g., for more general problems.
Taking advantage of shift–and–invert techniques in Arnoldi’s method one gets approx-
imate eigenvalues closest to the shift. Ruhe [11] generalized this approach suggesting
the rational Krylov method where several shifts are used in one run, thus getting good
approximations to all eigenvalues in a union of regions around the shifts chosen.

In some sense, Ruhe [10] generalized the rational Krylov approach to sparse non-
linear eigenvalue problems by nesting the linearization of problem (1.1) by Lagrangean
interpolation and the solution of the resulting linear eigenproblem by Arnoldi’s method.
Similar to the rational Krylov process he constructs a sequence Vk of subspaces of C

n,
and at the same time he updates Hessenberg matrices Hk which approximate the
projection of A(σ)−1A(λk) to Vk. Here σ denotes a shift (which similarly as in the
rational Krylov method for linear problems can be updated in the course of the al-
gorithm) and λk an approximation to the wanted eigenvalue of (1.1). Then a Ritz
vector xk of Hk corresponding to an eigenvalue of small modulus approximates an
eigenvector of the nonlinear problem from which a (hopefully) improved eigenvalue
approximation of problem (1.1) is obtained.

To make the method converge Ruhe in [12] introduced an inner iteration which
enforces the residual rk = A(σ)−1A(λk)xk to be orthogonal to the search space Vk,
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a property which is automatically satisfied for linear eigenproblems. This inner it-
eration is presented heuristically not noticing that it actually is nothing else but a
solver of the projected nonlinear eigenproblem V H

k A(σ)−1A(λ)Vks = 0. Thus, the ra-
tional Krylov method for nonlinear eigenproblems can be interpreted as an iterative
projection method, where the inner iteration can be replaced by any solver of dense
nonlinear eigenproblems, and numerical examples demonstrate that the method can
be accelerated considerably in this way.

Although motivated in a completely different manner the search space Vk is ex-
panded in the same way as in the Arnoldi method for nonlinear eigenproblems intro-
duced in [13], [14]. However, differently from rational Krylov in the Arnoldi approach
the original problem A(λ)x = 0 is projected to Vk. Thus, the nonlinear Arnoldi
method preserves symmetry properties of problem (1.1), which can be exploited when
solving the projected problems.

This note is organized as follows. Section 2 summarizes the rational Krylov
method as introduced by Ruhe [10], [12]. In Section 3 we give the interpretation as
an iterative projection method, and comment on modifications and improvements.
Section 4 compares the original method as implemented in [4] with its modification
where the inner iteration is replaced by a direct solver of the projected problem,
and with the Arnoldi method for a rational eigenproblem governing the mechanical
vibrations of a fluid–solid structure.

2. The rational Krylov method. In [10] Ruhe proposed the following rational
Krylov method which was used by Hager and Wiberg [3] to solve a rational eigenvalue
problem governing the damped vibrations of a structure using a constitutive law of a
standard linear viscoelastic solid.

Linearizing the nonlinear family A(λ) by Lagrange interpolation between two
points σ and µ one gets

A(λ) =
λ − σ

µ − σ
A(µ) +

µ − λ

µ − σ
A(σ) + higher order terms. (2.1)

Keeping σ fixed for several steps, iterating on µ and neglecting the remainder in the
Lagrange interpolation one obtains

(A(λj−1) − θA(σ))x = 0, θ =
λj − λj−1

λj − σ
, (2.2)

or equivalently the linear eigenproblem

(A(σ)−1A(λj−1) − θI)x = 0, λj = λj−1 +
θ

1 − θ
(λj−1 − σ). (2.3)

If the dimension n of problem (1.1) is small then this linear eigenproblem can be used
to approximate an eigenvalue of the nonlinear problem, and choosing the smallest
eigenvalue of (2.3) in modulus for every j one can expect convergence to an eigenvalue
close to the initial approximation λ1.

For large and sparse matrices Ruhe suggested to combine the linearization (2.3)
with an Arnoldi process. Assume that the method has performed j steps, yielding
approximations λ1, . . . , λj to an eigenvalue, orthonormal vectors v1, . . . , vj , and an
upper Hessenberg matrix Hj,j−1 ∈ C

j×(j−1) such that the Arnoldi recursion

T (λj−1)Vj−1 = VjHj,j−1, (2.4)
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is fulfilled (at least approximately), where T (λ) = A(σ)−1A(λ), and Vj = [v1, . . . , vj ].

In the linear case the Matrix Hj,j−1 would be expanded by adding one column at
the right, and a zero row at the bottom, such that

H̃j+1,j =

(

Hj,j−1 kj

0 ‖r⊥‖

)

(2.5)

where kj = V H
j rj , rj = T (λj)vj , and r⊥ = rj − VjV

H
j vj . Due to the nonlinearity of

T (·) however the next Arnoldi relation

T (λj)Vj = Vj+1H̃j+1,j (2.6)

with vj+1 = r⊥/‖r⊥‖ will not hold. From (2.1) it follows

T (λj) ≈
λj − σ

λj−1 − σ
T (λj−1) −

λj − λj−1

λj−1 − σ
I =

1

1 − θ
T (λj−1) −

θ

1 − θ
I.

Therefore, Ruhe suggested to update H according to

Hj+1,j =

(

1
1−θ

Hj,j−1 −
θ

1−θ
Ij,j−1 kj

0 ‖r⊥‖

)

(2.7)

to maintain the approximate fulfillment of the Arnoldi recurrence. He arrived at a
first version of the rational Krylov method in Algorithm 1. In step 5: Hj,j denotes
the submatrix of Hj+1,j which is obtained by dropping the last row.

Algorithm 1 Rational Krylov method; preliminary version

1: Start with initial vector v1 with ‖v1‖ = 1, and initial λ1 and σ
2: r = A(σ)−1A(λ1)v1

3: for j = 1, 2, . . . until convergence do

4: orthogonalize hj = V Hr, r⊥ = r − V hj , hj+1,j = ‖r⊥‖
5: θ = min eig Hj,j with corresponding eigenvector s
6: λj+1 = λj + θ

1−θ
(λj − σ)

7: Hj+1,j = 1
1−θ

Hj+1,j −
θ

1−θ
Ij+1,j

8: vj+1 = r⊥/‖r⊥‖
9: r = A(σ)−1A(λj+1)vj+1

10: end for

Since the method turned out to be inefficient Ruhe [12] suggested to modify λ,
H and s in an inner iteration until the residual r = A(σ)−1A(λ)Vjs is enforced to be
orthogonal to Vj , and to expand the search space only after the inner iteration has
converged.

If Hj,j has already been updated according to step 7: then Hj,js = 0, and with

kj = V H
j A(σ)−1A(λ)Vjs = V H

j r

we have approximately

A(σ)−1A(λ)Vj

[

Ij−1 s̃
0 sj

]

= Vj [Hj,j−1 , kj ] + reT
j
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where s̃ is the leading j − 1 vector of s. Multiplying by the inverse of the matrix in
brackets from the right and by V H

j from the left one gets the new Hessenberg matrix

Ĥj,j = [Hj,j−1 , kj ]

[

Ij−1 −s−1
j s̃

0 s−1
j

]

= [Hj,j−1 , −s−1
j Hj,j−1s̃ + s−1

j kj ],

and Hj,j−1s̃ + sjhs = 0 finally yields that the last column of Hj,j has to be replaced
by hj + s−1

j kj . Thereafter λ and H have to be updated according to steps 5: – 7: of
Algorithm 1, and these steps have to be repeated until (hopefully) the residual has
become orthogonal to the search space Vj .

The final version of the rational Krylov method is contained in Algorithm 2 where
we neglected details about locking of converged eigenvalues, purging of unwanted
directions in the search space, and updating of the pole σ.

Algorithm 2 Rational Krylov method; final version

1: start with initial vector V = [v1] with ‖v1‖ = 1, initial λ and σ ; set j = 1
2: set hj = 0j ; s = ej ; x = vj ;
3: compute r = A(σ)−1A(λ)x and kj = V H

j r
4: while ‖kj‖ >ResTol do

5: orthogonalize r = r − V H
j kj

6: set hj = hj + kjs
−1
j

7: θ = min eig Hj,j with corresponding eigenvector s
8: x = Vjs
9: update λ = λ + θ

1−θ
(λ − σ)

10: update Hj,j = 1
1−θ

Hj,j −
1

1−θ
I

11: compute r = A(σ)−1A(λ)x and kj = V H
j r

12: end while

13: compute hj+1,j = ‖r‖
14: if |hj+1,jsj | >EigTol then

15: vj+1 = r/hj+1,j ; j = j + 1; GOTO 2:
16: end if

17: Accept eigenvalue λi = λ and eigenvector xi = x
18: If more eigenvalues wanted, choose next θ and s, and GOTO 8:

3. Rational Krylov, an iterative projection method. Ruhe motivated the
inner iteration and the requirement to make sure that the residual is orthogonal to
the search space only by analogy to the linear case where it is satisfied automati-
cally. Hager in his thesis [2] states: “The inner iteration is heuristically proposed,
the condition for the inner iteration to converge and when it converges to what it
actually converges are left to the domain of future research, we are looking forward
to forthcoming papers of Ruhe.” So, obviously both authors were not aware that the
inner iteration is nothing else but a solver of the projected problem

V HA(σ)−1A(λ)V s = 0. (3.1)

We were not able to prove the local convergence of the inner iteration which can
be rewritten as Algorithm 3. However the following Lemma is obvious.

Lemma 3.1. If the inner iteration converges, then it converges to a solution
(λ̂, x), x = V s of the projected nonlinear eigenproblem (3.1).
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Algorithm 3 Inner iteration

1: Start with V such that V HV = Ij , initial λ and σ and H ≈ V HA(σ)−1A(λ)V
2: Replace last column of H by k = V HA(σ)−1A(λ1)vj

3: for j = 1, 2, . . . until convergence do

4: θ = min eig H with corresponding eigenvector s
5: λj+1 = λj + θ

1−θ
(λj − σ)

6: k = V HA(σ)−1A(λj+1)V s
7: H = 1

1−θ
H − 1

1−θ
I + 1

sj
keT

j

8: end for

Hence, the final version of rational Krylov is an iterative projection method where
in every step the nonlinear eigenproblem A(σ)−1A(λ)x = 0 is projected to a search
space V , and V is expanded by (the orthogonal complement of) the the residual
r = A(σ)−1A(λ)V s of the Ritz pair (with respect to V ), and one ends up with
Algorithm 4

Algorithm 4 Rational Krylov method, an iterative projection method

1: start with initial vector V = [v1] with ‖v1‖ = 1, initial λ and σ
2: for j = 1, 2, . . . until convergence do

3: solve projected eigenproblem V HA(σ)−1A(λ)V s = 0 for (λ, s)
4: compute Ritz vector x = V s and residual r = A(σ)−1A(λ)x
5: orthogonalize r = r − V V Hr
6: expand searchspace V = [V , r/‖r‖]
7: end for

Two observations are at hand. First, the inner iteration is a solver of a nonlinear
eigenproblem (3.1) of small dimension. Hence, it can be replaced in STEP 3: of
Algorithm 4 by any method for dense nonlinear eigenproblems like solvers taking
advantage of the characteristic equation [5], [6], [17], inverse iteration [9], the method
of successive linear problems [9] which are all quadratically convergent, or residual
inverse iteration [7].

Secondly, expanding the search space it is not necessary to use the residual of the
problem that is projected to the search space but every direction is fine which has
a high approximation potential for the eigenvector wanted next. Following this line
the second author in [13] proposed an iterative projection method for problem (1.1)
expanding the search space by the orthogonal complement of r = A(σ)−1A(λ)V s
where (λ, V s) is a Ritz pair of the projected problem

V HA(λ)V s = 0. (3.2)

This choice was motivated by the residual inverse iteration which is known to converge
linearly where the contraction constant satisfies O(|σ − λ|).

A further disadvantage when considering the projected problem (3.1) instead of
(3.2) is the fact that symmetry properties of the underlying problem (1.1) are de-
stroyed. If for instance A(·) is a family of real symmetric matrices such that the
eigenvalues of problem (1.1) allow a minmax characterization then this property is
inherited by the projected problems (3.2), and they can be solved efficiently by safe-
guarded iteration [15] which converges quadratically or even cubically. The Arnoldi
method for this type of problems was proposed in [14]. Similarly symmetry properties
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of the spectrum for conservative gyroscopic eigenproblems or Hamiltonian problems
which can be exploited in the solution process of the projected problem are destroyed
if problem (3.1) is used.

The numerical example in the next section demonstrates that the inner itera-
tion in Algorithm 3 usually does not converge very fast, and the original rational
Krylov method in Algorithm 2 is inferior to other iterative projection methods. How-
ever, there is one advantage of Ruhe’s approach. The solvers for dense nonlinear
eigenproblems need the explicit form of the projected problem (3.1) or (3.2) whereas
Algorithm 2 only needs a procedure that yields the vector A(σ)−1A(λ)x for a given
vector x.

4. Numerical experiments. To test the methods we consider a mathematical
model which describes the problem governing free vibrations of a tube bundle im-
mersed in a slightly compressible fluid under the following simplifying assumptions:
The tubes are assumed to be rigid, assembled in parallel inside the fluid, and elas-
tically mounted in such a way that they can vibrate transversally, but they can not
move in the direction perpendicular to their sections. The fluid is assumed to be
contained in a cavity which is infinitely long, and each tube is supported by an inde-
pendent system of springs (which simulates the specific elasticity of each tube). Due
to these assumptions, three-dimensional effects are neglected, and so the problem can
be studied in any transversal section of the cavity. Considering small vibrations of
the fluid (and the tubes) around the state of rest, it can also be assumed that the
fluid is irrotational.

Mathematically this problem can be described in the following way (cf. [8], [1]).
Let Ω ⊂ R

2 (the section of the cavity) be an open bounded set with locally Lipschitz
continuous boundary Γ. We assume that there exists a family Ωj 6= ∅, j = 1, . . . ,K,
(the sections of the tubes) of simply connected open sets such that Ω̄j ⊂ Ω for every
j, Ω̄j ∩ Ω̄i = ∅ for j 6= i, and each Ωj has a locally Lipschitz continuous boundary Γj .

With these notations we set Ω0 := Ω \
⋃K

j=1 Ωj . Then the boundary of Ω0 consists of
K + 1 connected components which are Γ and Γj , j = 1, . . . ,K.

We denote by H1(Ω0) = {u ∈ L2(Ω0) : ∇u ∈ L2(Ω0)
2} the standard Sobolev

space equipped with the usual scalar product. Then the eigenfrequencies and the
eigenmodes of the fluid-solid structure are governed by the following variational eigen-
value problem (cf. [8], [1])

Find λ ∈ R and u ∈ H1(Ω0) such that for every v ∈ H1(Ω0)

c2

∫

Ω0

∇u · ∇v dx = λ

∫

Ω0

uv dx +
K

∑

j=1

λρ0

kj − λmj

∫

Γj

unds ·

∫

Γj

vn ds. (4.1)

Here u is the potential of the velocity of the fluid, c denotes the speed of sound in
the fluid, ρ0 is the specific density of the fluid, kj represents the stiffness constant of
the spring system supporting tube j, mj is the mass per unit length of the tube j,
and n is the outward unit normal on the boundary of Ω0.

We consider the rational eigenvalue problem (4.1) where Ω is the ellipse with
center (0, 0) and length of semiaxes 8 and 4, and Ωj , j = 1, . . . , 9 are circles with
radius 0.3 and centers (−4,−2), (0,−2), (4,−2), (−5, 0), (0, 0), (5, 0), (−4, 2), (0, 2)
and (4, 2). We assume that all constants in problem (4.1) are equal to 1.

Discretizing problem (4.1) by finite elements one gets a rational matrix eigenvalue
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Fig. 1: Time consumption and convergence history for rational Krylov

problem

A(λ)x := −Ax + λBx +
λ

1 − λ
Cx = 0 (4.2)

where C collects the contributions of all tubes. A, B, and C are symmetric matrices,
A and C are positive semidefinite, and B is positive definite. In our example the
dimension is n = 36040.

Problem (4.2) has 28 eigenvalues λ1 ≤ · · · ≤ λ28 in the interval J1 = (0, 1) (cf.
[15]), and a large number of eigenvalues greater than 1.

We determined approximations to the eigenvalues in [0, 1) by the rational Krylov
method as implemented in [4], by the iterative projection method from Algorithm
4 where the projected rational eigenproblems were solved linearizing the equivalent
quadratic eigenproblem (1−λ)V T A(λ)V y = 0, and by the nonlinear Arnoldi method
from [14], i.e. the iterative projection method (3.2), where the projected problems
were solved by safeguarded iteration. All three methods were able to find all 28
eigenvalues.

The experiments were run under MATLAB 6.5 on an Intel Centrino M processor
with 1.7 GHz and 1 GB RAM. Figures 1 to 3 show the time consumption and the
convergence history of the three methods where in every case the initial pole was
chosen to be σ = 0.1, and the iteration was terminated if the residual was less than
10−6. In all plots plus signs indicate found eigenvalues, and circles mark changes of
the pole σ.

In the plots on the right the solid line indicates the total time consumption of the
iteration, and in plots 2. and 3. the dashed lines mark the the time needed for solving
the projected nonlinear eigenproblems, which is only a very small portion of the total
CPU time. Replacing the inner iteration in Ruhe’s approach by solving (3.2) directly
reduces the computing time by more than 50 %, and the nonlinear Arnoldi method
is even more efficient and needs only 11 % of the nonlinear rational Krylov method.

Neither the rational Krylov method in its original form nor its modification with
an explicit solver of the projected problem (3.1) was able to determine eigenvalues
larger than the pole of problem (4.2) in a systematic way. For different choices of initial
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Fig. 2: Time consumption and convergence history for Algorithm 4
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Fig. 3: Time consumption and convergence history for Arnoldi

approximations for σ and µ they both found only two or three eigenvalues before the
diverged. The nonlinear Arnoldi method taking advantage of the symmetry of problem
(4.2) and of the fact that its eigenvalues can be characterized as minmax values of a
Rayleigh functional (cf. [16]) computed eigenvalues greater than 1 one after the other
without problems. Figure 4 shows the time consumption and the convergence history
of Arnoldi’s method for the 15 eigenvalues in the interval (1, 2.5).
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