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Abstract
Let Ω be an open subset of R

2 and E a complete complex locally convex Hausdorff space.
The purpose of this paper is to find conditions on certain weighted Fréchet spaces EV(Ω)

of smooth functions and on the space E to ensure that the vector-valued Cauchy–Riemann
operator ∂ : EV(Ω, E) → EV(Ω, E) is surjective. This is done via splitting theory and
positive results can be interpreted as parameter dependence of solutions of the Cauchy–
Riemann operator.
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1 Introduction

Let E be a linear space of functions on a set U and P(∂) : F(Ω) → F(Ω) be a linear
partial differential operator with constant coefficients which acts continuously on a locally
convex Hausdorff space of (generalized) differentiable scalar-valued functions F(Ω) on an
open set Ω ⊂ R

n . We call the elements of U parameters and say that a family ( fλ)λ∈U in
F(Ω) depends on a parameter w.r.t. E if the map λ �→ fλ(x) is an element of E for every
x ∈ Ω . The question of parameter dependence is whether for every family ( fλ)λ∈U in F(Ω)

depending on a parameter w.r.t. E there is a family (uλ)λ∈U in F(Ω) with the same kind of
parameter dependence which solves the partial differential equation

P(∂)uλ = fλ, λ ∈ U .

In particular, it is the question of Ck-smooth (holomorphic, distributional, etc.) parameter
dependence if E is the space Ck(U ) of k-times continuously partially differentiable functions
on an open set U ⊂ R

d (the space O(U ) of holomorphic functions on an open set U ⊂ C,
the space of distributions D(V )′ on an open set V ⊂ R

d where U = D(V ), etc.).
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The question of parameter dependence has been subject of extensive research varying
in the choice of the spaces E , F(Ω) and the properties of the partial differential operator
P(∂), e.g. being (hypo)elliptic, parabolic or hyperbolic. Even partial differential differential
operators Pλ(∂) where the coefficients also depend Ck([0, 1])-smoothly [49], C∞-smoothly
[61], holomorphically [50,61] or differentiable resp. real analytic [13] on the parameter λ

were considered. The case that the coefficients of the partial differential differential operator
P(x, ∂) are non-constant functions in x ∈ Ω was treated for F(Ω) = A (Rn), the space of
real analytic functions on R

n , as well [3].
The answer to the question of Ck-smooth (holomorphic, distributional, etc.) parameter

dependence is obviously affirmative if P(∂)has a linear continuous right inverse. The problem
to determine those P(∂) which have such a right inverse was posed by Schwartz in the early
1950s (see [21, p. 680]). In the case that F(Ω) is the space of C∞-smooth functions or
distributions on an open set Ω ⊂ R

n the problem was solved in [51,52] and in the case of
ultradifferentiable functions or ultradistributions in [53] bymeans of Phragmén-Lindelöf type
conditions. The case thatF(Ω) is aweighted space of C∞-smooth functions onΩ = R

n or its
dualwashandled in [40], even for some P(x, ∂)with smooth coefficients, the case of tempered
distributions in [38] and of Fourier (ultra-)hyperfunctions in [44,45]. For Hörmander’s spaces
Bloc
p,κ (Ω) as F(Ω) the problem was studied in [25].
The necessary condition of surjectivity of the partial differential operator P(∂) was stud-

ied in many papers, e.g. in [1,23,28,48,67] on C∞-smooth functions and distributions, in
[9,26,43] on real analytic functions, in [8,14] on Gevrey classes, in [10,12,41,42,55] on
ultradifferentiable functions of Roumieu type, in [22] on ultradistributions of Beurling type,
in [7,11] on ultradifferentiable functions and ultradistributions and in [47] on the multiplier
space OM .

However, if P(∂) : C∞(Ω) → C∞(Ω), Ω ⊂ R
n open, is elliptic, then P(∂) has a linear

right inverse (bymeans of aHamel basis ofC∞(Ω)) and it has a continuous right inverse due to
Michael’s selection theorem [56, Theorem 3.2”, p. 367] and [29, Satz 9.28, p. 217], but P(∂)

has no linear continuous right inverse if n ≥ 2 by a result of Grothendieck [62, Theorem C.1,
p. 109]. Nevertheless, the question of parameter dependence w.r.t. E has a positive answer
for several locally convex Hausdorff spaces E due to tensor product techniques. In this case
the question of parameter dependence obviously has a positive answer if the topology of E
is stronger than the topology of pointwise convergence on U and

P(∂)E : C∞(Ω, E) → C∞(Ω, E)

is surjective where C∞(Ω, E) is the space of C∞-smooth E-valued functions on Ω and
P(∂)E the version of P(∂) for E-valued functions. From Grothendieck’s classical theory of
tensor products [24] and the surjectivity of P(∂) it follows that P(∂)E is also surjective if E is
a Fréchet space. In general, Grothendieck’s theory of tensor products can be applied if P(∂)

is surjective and F(Ω) a nuclear Fréchet space. However, the surjectivity of P(∂)E , n ≥ 2,
can even be extended beyond the class of Fréchet spaces E due to the splitting theory of Vogt
for Fréchet spaces [64,65] and of Bonet and Domański for PLS-spaces [4,6] if, in addition,
ker P(∂) has the property (Ω) and E is the dual of a Fréchet space with the property (DN )

or an ultrabornological PLS-space with the property (PA). The splitting theory of Bonet
and Domański can also be applied if F(Ω) is a non-Fréchet PLS-space and for PLH-spaces
F(Ω), e.g. DL2 and Bloc

2,κ (Ω) which are non-PLS-spaces, the splitting theory of Dierolf and
Sieg [15,16] is available. For applications we refer the reader to the alreadymentioned papers
[4,6,15,16,64,65] as well as [5,18] where F(Ω) is the space of ultradistributions of Beurling
type or of ultradifferentiable functions of Roumieu type and E , amongst others, the space
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of real analytic functions and to [30] where F(Ω) is the space of C∞-smooth functions or
distributions.

Notably, the preceding results imply that the inhomogeneous Cauchy–Riemann equation
with a right-hand side f ∈ E(Ω, E) := C∞(Ω, E), where Ω ⊂ R

2 is open and E a
locally convex Hausdorff space over C whose topology is induced by a system of seminorms
(pα)α∈A, given by

∂
E
u := (1/2)(∂E

1 + i∂E
2 )u = f (1)

has a solution u ∈ E(Ω, E) if E is a Fréchet space or E := F ′
b where F is a Fréchet

space satisfying the condition (DN ) or if E is an ultrabornological PLS-space having the
property (PA). Among these spaces E are several spaces of distributions like D(V )′, the
space of tempered distributions, the space of ultradistributions of Beurling type etc. In the
present paper we study this problem under the constraint that the right-hand side f fulfils
additional growth conditions given by an increasing family of positive continuous functions
V := (νn)n∈N on an increasing sequence of open subsets (Ωn)n∈N ofΩ withΩ =⋃n∈N Ωn ,
namely,

| f |n,m,α := sup
x∈Ωn

β∈N2
0, |β|≤m

pα

(
(∂β)E f (x)

)
νn(x) < ∞

for every n ∈ N, m ∈ N0 and α ∈ A. Let us call the space of such functions EV(Ω, E). Our
interest is in conditions on V and (Ωn)n∈N such that there is a solution u ∈ EV(Ω, E) of (1),
i.e. we search for conditions that guarantee the surjectivity of

∂
E : EV(Ω, E) → EV(Ω, E).

Using Grothendieck’s theory of tensor products, this was already done in [33] in the case
that E is a Fréchet space. In the present paper we want to extend this result beyond the class
of Fréchet spaces E . Concerning the sequence (Ωn)n∈N, we concentrate on the case that it
is a sequence of strips along the real axis, i.e. Ωn := {z ∈ C | | Im(z)| < n}. The case that
this sequence has holes along the real axis is treated in [35].

Let us briefly outline the content of our paper. In Sect. 2 we summarise the necessary
definitions and preliminaries which are needed in the subsequent sections. In Sect. 3 we recall
the definitions of the topological invariants (Ω), (DN ) and (PA) and provide some examples
of spaces E having these invariants. Then we prove our main result on the surjectivity of
Cauchy–Riemann operator on EV(Ω, E) which depends on these invariants (see Theorem
5). To apply our main result, the kernel ker ∂ needs to have (Ω) and in Sect. 4 we provide
sufficient conditions on the weights and the sequence (Ωn)n∈N which guarantee (Ω) (see
Theorem 10 and Corollary 13). We close this section with a special case of our main theorem
where (Ωn)n∈N is a sequence of strips along the real axis (see Corollary 17) and for example
νn(z) := exp(an |Re(z)|γ ) for some 0 < γ ≤ 1 and an ↗ 0 (see Corollary 18).

2 Notation and preliminaries

The notation and preliminaries are essentially the same as in [33,36, Sect. 2]. We define the
distance of two subsets M0, M1 ⊂ R

2 w.r.t. a norm ‖ · ‖ on R
2 via

d‖·‖(M0, M1) :=
{
inf x∈M0, y∈M1 ‖x − y‖, M0, M1 �= ∅,

∞, M0 = ∅ or M1 = ∅.
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Moreover, we denote by ‖ · ‖∞ the sup-norm, by | · | the Euclidean norm on R
2, by Br (x) :=

{w ∈ R
2 | |w − x | < r} the Euclidean ball around x ∈ R

2 with radius r > 0 and identify
R
2 and C as (normed) vector spaces. We denote the complement of a subset M ⊂ R

2 by
MC := R

2\M , the closure of M by M and the boundary of M by ∂M . For a function
f : M → C and K ⊂ M we denote by f|K the restriction of f to K and by

‖ f ‖K := sup
x∈K

| f (x)|

the sup-norm on K . By L1(Ω) we denote the space of (equivalence classes of) C-valued
Lebesgue integrable functions on a measurable set Ω ⊂ R

2 and by Lq(Ω), q ∈ N, the space
of functions f such that f q ∈ L1(Ω). If (an)n∈N is a strictly increasing real sequence, we
write an ↗ 0 resp. an ↗ ∞ if an < 0 for all n ∈ N and limn→∞ an = 0 resp. an ≥ 0 for all
n ∈ N and limn→∞ an = ∞.

By E we always denote a non-trivial locally convex Hausdorff space over the field C

equipped with a directed fundamental system of seminorms (pα)α∈A. If E = C, then we
set (pα)α∈A := {| · |}. Further, we denote by L(F, E) the space of continuous linear maps
from a locally convex Hausdorff space F to E and sometimes write 〈T , f 〉 := T ( f ), f ∈ F ,
for T ∈ L(F, E). If E = C, we write F ′ := L(F, C) for the dual space of F . If F and E
are (linearly topologically) isomorphic, we write F ∼= E . We denote by Lt (F, E) the space
L(F, E) equipped with the locally convex topology of uniform convergence on the finite
subsets of F if t = σ , on the precompact subsets of F if t = γ , on the absolutely convex,
compact subsets of F if t = κ and on the bounded subsets of F if t = b.

The so-called ε-product of Schwartz is defined by

FεE := Le(F
′
κ , E) (2)

where L(F ′
κ , E) is equipped with the topology of uniform convergence on equicontinuous

subsets of F ′. This definition of the ε-product coincides with the original one by Schwartz
[59, Chap. I, Sect. 1, Définition, p. 18].

We recall the following well-known definitions concerning continuous partial differen-
tiability of vector-valued functions (c.f. [34, p. 237]). A function f : Ω → E on an open
set Ω ⊂ R

2 to E is called continuously partially differentiable ( f is C1) if for the n-th unit
vector en ∈ R

2 the limit

(∂en )E f (x) := (∂n)
E f (x) := lim

h→0
h∈R,h �=0

f (x + hen) − f (x)

h

exists in E for every x ∈ Ω and (∂en )E f is continuous on Ω ((∂en )E f is C0) for every
n ∈ {1, 2}. For k ∈ N a function f is said to be k-times continuously partially differentiable
( f is Ck) if f is C1 and all its first partial derivatives are Ck−1. A function f is called infinitely
continuously partially differentiable ( f is C∞) if f is Ck for every k ∈ N. The linear space
of all functions f : Ω → E which are C∞ is denoted by C∞(Ω, E). Let f ∈ C∞(Ω, E).
For β = (βn) ∈ N

2
0 we set (∂

βn )E f := f if βn = 0, and

(∂βn )E f := (∂en )E · · · (∂en )E
︸ ︷︷ ︸

βn -times

f

if βn �= 0 as well as

(∂β)E f := (∂β1)E (∂β2)E f .
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Due to the vector-valued version of Schwarz’ theorem (∂β)E f is independent of the order of
the partial derivatives on the right-hand side, we call |β| := β1+β2 the order of differentiation
and write ∂β f := (∂β)C f .

A function f : Ω → E on an open set Ω ⊂ C to E is called holomorphic if the limit

(
∂

∂z

)E

f (z0) := lim
h→0

h∈C,h �=0

f (z0 + h) − f (z0)

h

exists in E for every z0 ∈ Ω and the space of such functions is denoted by O(Ω, E). The
exact definition of the spaces from the introduction is as follows.

Definition 1 [34, Definition 3.2, p. 238] Let Ω ⊂ R
2 be open and (Ωn)n∈N a family of

non-empty open sets such that Ωn ⊂ Ωn+1 and Ω = ⋃n∈N Ωn . Let V := (νn)n∈N be a
countable family of positive continuous functions νn : Ω → (0,∞) such that νn ≤ νn+1 for
all n ∈ N. We call V a directed family of continuous weights on Ω and set for n ∈ N

(a)

Eνn(Ωn, E) := { f ∈ C∞(Ωn, E) | ∀ α ∈ A, m ∈ N
2
0 : | f |n,m,α < ∞}

and

EV(Ω, E) := { f ∈ C∞(Ω, E) | ∀ n ∈ N : f|Ωn ∈ Eνn(Ωn, E)
}

where

| f |n,m,α := sup
x∈Ωn

β∈N2
0, |β|≤m

pα

(
(∂β)E f (x)

)
νn(x).

(b)

Eνn,∂ (Ωn, E) :=
{
f ∈ Eνn(Ωn, E) | f ∈ ker ∂

E
}

and

EV∂ (Ω, E) := { f ∈ EV(Ω, E) | f ∈ ker ∂
E }.

(c)

Oνn(Ωn, E) := { f ∈ O(Ωn, E) | ∀ α ∈ A : | f |n,α < ∞}

and

OV(Ω, E) := { f ∈ O(Ω, E) | ∀ n ∈ N : f|Ωn ∈ Oνn(Ωn, E)}
where

| f |n,α := sup
x∈Ωn

pα( f (x))νn(x).

The subscript α in the notation of the seminorms is omitted in the C-valued case. The
letter E is omitted in the case E = C as well, e.g. we write Eνn(Ωn) := Eνn(Ωn, C) and
EV(Ω) := EV(Ω, C) .
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A projective limit F of a sequence of locally convex Hausdorff spaces (Fn)n∈N is called
weakly reduced if for every n ∈ N there is m ∈ N such that πn(F) is dense in Fm w.r.t.
the topology of Fn where πn : F → Fn is the canonical projection. The spaces FV(Ω, E),
F = E , O, are projective limits, namely, we have

FV(Ω, E) ∼= lim←−
n∈N

Fνn(Ωn, E)

where the spectral maps are given by the restrictions

πk,n : Fνk(Ωk, E) → Fνn(Ωn, E), f �→ f|Ωn , k ≥ n.

3 Main result

In this section we prove our main result that the surjectivity of the vector-valued Cauchy–
Riemann operator on EV(Ω, E) is inherited from the surjectivity on EV(Ω) if the kernel
EV∂ (Ω) in the scalar-valued case has (Ω), and E := F ′

b where F is a Fréchet space satisfying
the condition (DN ) or E is an ultrabornological PLS-space having the property (PA).
Therefore we recall the definitions of the topological invariants (Ω), (DN ) and (PA) and
give some examples.

A Fréchet space F with an increasing fundamental system of seminorms (|||·|||k)k∈N sat-
isfies (Ω) if

∀ p ∈ N ∃ q ∈ N ∀ k ∈ N ∃ n ∈ N, C > 0 ∀ r > 0 : Uq ⊂ CrnUk + 1

r
Up (3)

where Uk := {x ∈ F | |||x |||k ≤ 1} (see [54, Chap. 29, Definition, p. 367]).
A Fréchet space (F, (|||·|||k)k∈N) satisfies (DN ) by [54, Chap. 29, Definition, p. 359] if

∃ p ∈ N ∀ k ∈ N ∃ n ∈ N, C > 0 ∀ x ∈ F : |||x |||2k ≤ C |||x |||p|||x |||n .
A PLS-space is a projective limit X = lim←−

N∈N
XN , where the XN given by inductive limits

XN = lim−→
n∈N

(XN ,n, |||·|||N ,n) are DFS-spaces (which are also called LS-spaces), and it satisfies

(PA) if

∀ N ∃ M ∀ K ∃ n ∀ m ∀ η > 0 ∃ k,C, r0 > 0 ∀ r > r0 ∀ x ′ ∈ X ′
N :

∣
∣
∣
∣
∣
∣
∣
∣
∣x ′ ◦ i MN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∗
M,m

≤ C
(
rη
∣
∣
∣
∣
∣
∣
∣
∣
∣x ′ ◦ i KN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∗
K ,k

+ 1

r

∣
∣
∣
∣
∣
∣x ′∣∣∣∣∣∣∗

N ,n

)

where |||·|||∗ denotes the dual norm of |||·||| and i MN , i KN the linking maps (see [6, Sect. 4, Eq.
(24), p. 577]).

Due to [63, 1.4 Lemma, p. 110] and [6, Proposition 4.2, p. 577] we have the following
relation between the properties (DN ) and (PA).

Remark 2 Let F be a Fréchet-Schwartz space. Then F satisfies (DN ) if and only if the
DFS-space E := F ′

b satisfies (PA).

Let us summarise some examples of ultrabornological PLS-spaces satisfying (PA) and
spaces of the form E := F ′

b where F is a Fréchet space satisfying (DN ). The majority of
them is already contained in [6], [19] and [64].
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Example 3 (a) The following spaces are ultrabornological PLS-spaces with property (PA)

and also strong duals of a Fréchet space satisfying (DN ):

– the strong dual of a power series space of inifinite type Λ∞(α)′b,
– the strong dual of any space of holomorphic functionsO(U )′b whereU is a Steinmanifold

with the strong Liouville property (for instance, for U = C
d ),

– the space of germs of holomorphic functions O(K ) where K is a completely pluripolar
compact subset of a Stein manifold (for instance K consists of one point),

– the space of tempered distributions S(Rd)′b and the space of Fourier ultra-hyperfunctions
P ′∗∗ (with the strong topology),

– the weighted distribution spaces (K {pM})′b of Gelfand and Shilov if the weight M
satisfies

sup
|y|≤1

M(x + y) ≤ C inf|y|≤1
M(x + y), x ∈ R

d ,

– D(K )′b for any compact set K ⊂ R
d with non-empty interior,

– C∞(U )′b for any non-empty open bounded set U ⊂ R
d with C1-boundary.

(b) The following spaces are ultrabornological PLS-spaces with property (PA):

– an arbitrary Fréchet-Schwartz space,
– a PLS-type power series space Λr ,s(α, β) whenever s = ∞ or Λr ,s(α, β) is a Fréchet

space,
– the spaces of distributions D(U )′b and ultradistributions of Beurling type D(ω)(U )′b for

any open set U ⊂ R
d ,

– the kernel of any linear partial differential operator with constant coefficients in D(U )′b
or in D(ω)(U )′b when U ⊂ R

d is open and convex,
– the space Lb(X , Y ) where X has (DN ), Y has (Ω) and both are nuclear Fréchet spaces.

In particular, Lb(Λ∞(α),Λ∞(β)) if both spaces are nuclear.

(c) The following spaces are strong duals of a Fréchet space satisfying (DN ):

– the strong dual F ′
b of any Banach space F ,

– the strong dual λ2(A)′b of the Köthe space λ2(A) with a Köthe matrix A = (a j,k) j,k∈N0

satisfying

∃ p ∈ N0 ∀ k ∈ N0 ∃ n ∈ N0,C > 0 : a2j,k ≤ Ca j,pa j,n .

Proof The statement for the spaces in (a) and (b) follows from [19, Corollary 4.8, p. 1116],
[54, Proposition 31.12, p. 401], [54, Proposition 31.16, p. 402] and Remark 2. The first part of
statement (c) is obvious since Banach spaces clearly satisfy the property (DN ). The second
part on the Köthe space λ2(A) follows from [29, Satz 12.11 a), p. 305]. ��

Since wewill use the ε-product EV(Ω)εE to pass the surjectivity from ∂ to ∂
E
, we remark

the following which is not hard to prove (see [31, Sect. 39]).

Proposition 4 (a) Let X be a semi-reflexive locally convex Hausdorff space and Y a Fréchet
space. Then Lb(X ′

b, Y
′
b)

∼= Lb(Y , (X ′
b)

′
b) via taking adjoints.

(b) Let X be a Montel space and E a locally convex Hausdorff space. Then Lb(X ′
b, E) ∼=

XεE where the topological isomorphism is the identity map.

Theorem 5 Let EV(Ω) be a Schwartz space and EV∂ (Ω) a nuclear subspace satisfying
property (Ω). Assume that the scalar-valued operator ∂ : EV(Ω) → EV(Ω) is surjective.
Moreover, if
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(a) E := F ′
b where F is a Fréchet space over C satisfying (DN ), or

(b) E is an ultrabornological PLS-space over C satisfying (PA),

then

∂
E : EV(Ω, E) → EV(Ω, E)

is surjective.

Proof Throughout this proof we use the notation X ′′ := (X ′
b)

′
b for a locally convexHausdorff

space X . In both cases, (a) and (b), the space E is a complete locally convexHausdorff space.
The space EV(Ω) is a Fréchet space by [34, Proposition 3.7, p. 240] and so its closed subspace
EV∂ (Ω) as well. Further, EV(Ω) is a Schwartz space and EV∂ (Ω) nuclear, thus both spaces
are reflexive. As the Fréchet-Schwartz space EV(Ω) is a Montel space,

S : EV(Ω)εE → EV(Ω, E), u �−→ [z �→ u(δz)],
is a topological isomorphism by [36, 3.21 Example b), p. 14] where δz is the point-evaluation
at z ∈ Ω . We denote by J : E → E ′∗ the canonical injection in the algebraic dual E ′∗ of
the topological dual E ′ and for f ∈ EV(Ω, E) we set

Rt
f : EV(Ω)′ → E ′�, y �−→ [

e′ �→ y(e′ ◦ f )
]
.

Then the map f �→ J−1 ◦ Rt
f is the inverse of S by [36, 3.17 Theorem, p. 12]. The sequence

0 → EV∂ (Ω)
i→ EV(Ω)

∂→ EV(Ω) → 0, (4)

where i means the inclusion, is a topologically exact sequence of Fréchet spaces because ∂

is surjective by assumption. Let us denote by J0 : EV∂ (Ω) → EV∂ (Ω)′′ and J1 : EV(Ω) →
EV(Ω)′′ the canonical embeddings which are topological isomorphisms since EV∂ (Ω) and
EV(Ω) are reflexive. Then the exactness of (4) implies that

0 → EV∂ (Ω)′′ i0→ EV(Ω)′′ ∂1→ EV(Ω)′′ → 0, (5)

where i0 := J0◦ i ◦ J−1
0 and ∂1 := J1◦∂ ◦ J−1

1 , is an exact topological sequence. Topological
as the (strong) bidual of a Fréchet space is again a Fréchet space by [54, Corollary 25.10, p.
298].

(a) Let E := F ′
b where F is a Fréchet space with (DN ). Then Ext1(F, EV∂ (Ω)′′) = 0

by [65, 5.1 Theorem, p. 186] since EV∂ (Ω) satisfies (Ω) and therefore EV∂ (Ω)′′ as well.
Combined with the exactness of (5) this implies that the sequence

0 → L(F, EV∂ (Ω)′′)
i∗0→ L(F, EV(Ω)′′)

∂
∗
1→ L(F, EV(Ω)′′) → 0

is exact by [57, Proposition 2.1, p. 13-14] where i∗0 (B) := i0 ◦ B and ∂
∗
1(D) := ∂1 ◦ D for

B ∈ L(F, EV∂ (Ω)′′) and D ∈ L(F, EV(Ω)′′). In particular, we obtain that

∂
∗
1 : L(F, EV(Ω)′′) → L(F, EV(Ω)′′) (6)

is surjective.Via E = F ′
b andProposition 4 (X = EV(Ω) andY = F)we have the topological

isomorphism

ψ := S ◦ t (·) : L(F, EV(Ω)′′) → EV(Ω, E), ψ(u) = (S ◦ t (·))(u) = [z �→ t u(δz)
]
,

123



Parameter dependence of the Cauchy–Riemann equation Page 9 of 24   141 

and the inverse

ψ−1( f ) = (S ◦ t (·))−1( f ) = (t (·) ◦ S−1)( f ) = t (J−1 ◦ Rt
f ), f ∈ EV(Ω, E).

Let g ∈ EV(Ω, E). Then ψ−1(g) ∈ L(F, EV(Ω)′′) and by the surjectivity of (6) there is
u ∈ L(F, EV(Ω)′′) such that ∂

∗
1u = ψ−1(g). So we get ψ(u) ∈ EV(Ω, E). Next, we show

that ∂
E
ψ(u) = g is valid. Let x ∈ F , z ∈ Ω and h ∈ R, h �= 0, and ek denote the kth unit

vector in R
2. From

(δz+hek − δz

h

)
( f ) = f (z + hek) − f (z)

h
→
h→0

∂ek f (z),

for every f ∈ EV(Ω) it follows that
δz+hek −δz

h converges to δz ◦ ∂ek in EV(Ω)′σ . Since the
Fréchet–Schwartz space EV(Ω) is in particular a Montel space, we deduce that

δz+hek −δz

h
converges to δz ◦ ∂ek in EV(Ω)′γ = EV(Ω)′b by the Banach–Steinhaus theorem. Let B ⊂ F
be bounded. As t u ∈ L(EV(Ω)′b, F ′

b), there are a bounded set B0 ⊂ EV(Ω) and C > 0 such
that

sup
x∈B
∣
∣
( t u(δz+hek ) − t u(δz)

h

)
(x) − t u

(
δz ◦ ∂ek

)
(x)
∣
∣

= sup
x∈B
∣
∣t u
(δz+hek − δz

h
− δz ◦ ∂ek

)
(x)
∣
∣ ≤ C sup

f ∈B0

∣
∣
(δz+hek − δz

h
− δz ◦ ∂ek

)
( f )
∣
∣ →
h→0

0,

yielding to (∂ek )E (ψ(u))(z) = t u(δz ◦ ∂ek ). This implies ∂
E
(ψ(u))(z) = t u(δz ◦ ∂). So for

all x ∈ F and z ∈ Ω we have

∂
E
(ψ(u))(z)(x) = t u(δz ◦ ∂)(x) = u(x)(δz ◦ ∂) = 〈δz ◦ ∂, J−1

1 (u(x))〉
= 〈δz, ∂ J−1

1 (u(x))〉 = 〈[J1 ◦ ∂ ◦ J−1
1 ](u(x)), δz〉 = 〈(∂1 ◦ u)(x), δz〉

= 〈(∂∗
1u)(x), δz〉 = ψ−1(g)(x)(δz) = t (J−1 ◦ Rt

g)(x)(δz)

= (J−1 ◦ Rt
g)(δz)(x) = J−1(J (g(z))(x) = g(z)(x).

Thus ∂
E
(ψ(u))(z) = g(z) for every z ∈ Ω , which proves the surjectivity.

(b) Let E be an ultrabornological PLS-space satisfying (PA). Since the nuclear Fréchet
space EV∂ (Ω) is also a Schwartz space, its strong dual EV∂ (Ω)′b is a DFS-space. By [6,
Theorem 4.1, p. 577] we obtain Ext1PLS(EV∂ (Ω)′b, E) = 0 as the bidual EV∂ (Ω)′′ satisfies
(Ω), E is a PLS-space satisfying (PA) and condition (c) in the theorem is fulfilled because
EV∂ (Ω)′b is the strong dual of a nuclear Fréchet space.Moreover, we have Proj1 E = 0 due to
[66, Corollary 3.3.10, p. 46] because E is an ultrabornological PLS-space. Then the exactness
of the sequence (5), [6, Theorem 3.4, p. 567] and [6, Lemma 3.3, p. 567] (in the lemma the
same condition (c) as in [6, Theorem 4.1, p. 577] is fulfilled and we choose H = EV∂ (Ω)′′
and F = G = EV(Ω)′′), imply that the sequence

0 → L(E ′
b, EV∂ (Ω)′′)

i∗0→ L(E ′
b, EV(Ω)′′)

∂
∗
1→ L(E ′

b, EV(Ω)′′) → 0

is exact. The maps i∗0 and ∂
∗
1 are defined like in part (a). Especially, we get that

∂
∗
1 : L(E ′

b, EV(Ω)′′) → L(E ′
b, EV(Ω)′′) (7)

is surjective.
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By [19, Remark 4.4, p. 1114] we have Lb(EV(Ω)′b, E ′′) ∼= Lb(E ′
b, EV(Ω)′′) via taking

adjoints since EV(Ω), being a Fréchet–Schwartz space, is a PLS-space and hence its strong
dual an LFS-space, which is regular by [66, Corollary 6.7, 10. ⇔ 11., p. 114], and E is an
ultrabornological PLS-space, in particular, reflexive by [17, Theorem 3.2, p. 58]. In addition,
the map

T : Lb(EV(Ω)′b, E ′′) → Lb(EV(Ω)′b, E),

defined by T (u)(y) := J−1(u(y)) for u ∈ L(EV(Ω)′b, E ′′) and y ∈ EV(Ω)′, is a topological
isomorphism because E is reflexive. Due to Proposition 4 (b) we obtain the topological
isomorphism

ψ := S ◦ J−1 ◦ t (·) : Lb(E
′
b, EV(Ω)′′) → EV(Ω, E),

ψ(u) = [S ◦ J−1 ◦ t (·)](u) = [z �→ J−1(t u(δz))
]
,

with the inverse given by

ψ−1( f ) = (S ◦ J−1 ◦ t (·))−1( f ) = [t (·) ◦ J ◦ S−1]( f ) = t (J ◦ J−1 ◦ Rt
f ) = t (Rt

f )

for f ∈ EV(Ω, E).
Let g ∈ EV(Ω, E). Then ψ−1(g) ∈ L(E ′

b, EV(Ω)′′) and by the surjectivity of (7) there

exists u ∈ L(E ′
b, EV(Ω)′′) such that ∂

∗
1u = ψ−1(g). So we have ψ(u) ∈ EV(Ω, E). The

last step is to show that ∂
E
ψ(u) = g. Like in part (a) we gain for every z ∈ Ω

∂
E
(ψ(u))(z) = J−1(t u(δz ◦ ∂))

and for every x ∈ E ′

t u(δz ◦ ∂)(x) = u(x)(δz ◦ ∂) = (∂
∗
1u)(x)(δz) = ψ−1(g)(x)(δz) = t (Rt

g)(x)(δz)

= δz(x ◦ g) = x(g(z)) = J (g(z))(x).

Thus we have t u(δz ◦ ∂) = J (g(z)) and therefore ∂
E
(ψ(u))(z) = g(z) for all z ∈ Ω . ��

By Remark 2 case (a) is included in case (b) if F is a Fréchet–Schwartz space. Therefore
(a) is only interesting for Fréchet spaces F which are not Schwartz spaces. In the next more
technical section we will present sufficient conditions for EV∂ (Ω) to have (Ω) as well as
concrete examples of such spaces.

4 (Ä) forOV-spaces on strips and applications of themain result

In this section we give some sufficient conditions such that the assumptions of our main
result Theorem 5 are fulfilled. The outline is as follows. First, we show that OV(Ω) and
EV∂ (Ω) coincide topologically under mild assumptions on the weights V and the sequence
of sets (Ωn). These mild conditions also imply that EV(Ω) is nuclear, in particular Schwartz,
and thus its subspace EV∂ (Ω) = OV(Ω) too. Second, we reduce the problem whether the
projective limitOV(Ω) has (Ω) to the problem whether it is weakly reduced in the case that
the Ωn are strips along the real axis and the weights have a certain structure. Third, we use
a similar result for EV∂ (Ω) which was obtained in [33] to prove the weak reducibility of
OV(Ω). For corresponding results in the case that Ωn = Ω for all n ∈ N see [20, Theorem
3, p. 56], [39, 1.3 Lemma, p. 418] and [58, Theorem 1, p. 145]. We close this section with
some examples of our main result. Let us start with the sufficient conditions, guaranteeing
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that the projective limit EV(Ω) is nuclear (if q = 1). They also allow to switch from sup- to
weighted Lq -seminorms which is important for the proof of surjectivity of the scalar-valued
∂-operator given in [33], using Hörmander’s L2-machinery (if q = 2).

Condition (PN) ([33, 3.3 Condition, p. 7]) Let V := (νn)n∈N be a directed family of con-
tinuous weights on an open set Ω ⊂ R

2 and (Ωn)n∈N a family of non-empty open sets
such that Ωn ⊂ Ωn+1 and Ω = ⋃n∈N Ωn . For every k ∈ N let there be ρk ∈ R such that
0 < ρk < d‖·‖∞({x}, ∂Ωk+1) for all x ∈ Ωk and let there be q ∈ N such that for any n ∈ N

there is ψn ∈ Lq(Ωk), ψn > 0, and N � Ji (n) ≥ n and Ci (n) > 0 such that for any x ∈ Ωk :

(PN .1) supζ∈R2, ‖ζ‖∞≤ρk
νn(x + ζ ) ≤ C1(n) infζ∈R2, ‖ζ‖∞≤ρk

νJ1(n)(x + ζ )

(PN .2)q νn(x) ≤ C2(n)ψn(x)νJ2(n)(x)

Example 6 Let Ω := R
2 and Ωn := {x = (xi ) ∈ R

2 ||x2| < n}. Let 0 < γ ≤ 1 and (an)n∈N
be strictly increasing such that an ≥ 0 for all n ∈ N or an ≤ 0 for all n ∈ N. The family
V := (νn)n∈N of positive continuous functions on Ω given by

νn : Ω → (0,∞), νn(x) := ean |x1|γ ,

fulfils νn ≤ νn+1 all n ∈ N and (PN ) for every q ∈ N with ψn(x) := (1+ |x |2)−2, x ∈ R
2,

for every n ∈ N.

The space OV(C) with this kind of weights consists of functions which are entire and
exponentially growing (an < 0) resp. decreasing (an > 0) with order γ on strips along the
real axis. This example of weights and many more are included in [33, 3.7 Example, p. 9].
We restrict to this particular weights because we use it in an example for our main result.

Proposition 7 Let V := (νn)n∈N be a directed family of continuous weights on an open
set Ω ⊂ R

2 and (Ωn)n∈N a family of non-empty open sets such that Ωn ⊂ Ωn+1 and
Ω =⋃n∈N Ωn. If (PN .1) is fulfilled, then

(a) for every n ∈ N and m ∈ N0 there is C > 0 such that

| f |n,m ≤ C | f |2J1(n), f ∈ Oν2J1(n)(Ω2J1(n)).

(b) EV∂ (Ω) = OV(Ω) as Fréchet spaces.

Proof (a) Let n ∈ N andm ∈ N0. We note thatΩn+1 ⊂ Ω2J1(n) and ∂β f (x) = iβ2 f (|β|)(x),
x ∈ Ω2J1(n), holds for all β = (β1, β2) ∈ N

2
0 and f ∈ Oν2J1(n)(Ω2J1(n)) where f (|β|) is the

|β|th complex derivative of f . Then we obtain via (PN .1) and Cauchy’s inequality

| f |n,m = sup
x∈Ωn

β∈N2
0, |β|≤m

|∂β f (x)|νn(x) ≤ sup
x∈Ωn

β∈N2
0, |β|≤m

|β|!
ρ

|β|
n

max
ζ∈R2

|ζ−x |=ρn

| f (ζ )|νn(x)

≤
(PN .1)

C1 sup
x∈Ωn

β∈N2
0, |β|≤m

|β|!
ρ

|β|
n

max
ζ∈R2

|ζ−x |=ρn

| f (ζ )|νJ1(n)(ζ )

≤ C1 sup
β∈N2

0, |β|≤m

|β|!
ρ

|β|
n

sup
ζ∈Ωn+1

| f (ζ )|νJ1(n)(ζ ) ≤ C1 sup
β∈N2

0, |β|≤m

|β|!
ρ

|β|
n

| f |2J1(n).

(b) The space EV∂ (Ω) is a Fréchet space since it is a closed subspace of the Fréchet space
EV(Ω) by [34, Proposition 3.7, p. 240]. From part (a) and | f |n = | f |n,0 for all n ∈ N and
f ∈ EV∂ (Ω) follows the statement. ��
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Let us come to the second part. Using special weight functions, strips along the real axis
asΩn and a decomposition theorem of Langenbruch, we will see that answering the question
whether OV(Ω) satisfies the property (Ω) of Vogt boils down to answering whether the
projective limit OV(Ω) is weakly reduced. The special weights we want to consider are
generated by a function μ with the following properties.

Definition 8 (strong weight generator) A continuous function μ : C → [0,∞) is called a
weight generator if μ(z) = μ(|Re(z)|) for all z ∈ C, the restriction μ|[0,∞) is strictly
increasing,

lim
x→∞
x∈R

ln(1 + |x |)
μ(x)

= 0

and

∃ Γ > 1, C > 0 ∀ x ∈ [0,∞) : μ(x + 1) ≤ Γ μ(x) + C .

If μ is a weight generator which fulfils the stronger condition

∃ Γ > 1 ∀ n ∈ N ∃ C > 0 ∀ x ∈ [0,∞) : μ(x + n) ≤ Γ μ(x) + C,

then μ is called a strong weight generator.

Weight generators are introduced in [46, Definition 2.1, p. 225] and strong weight gen-
erators in [60, Definition 2.2.2, p. 43] where they are simply called weight functions resp.
strong weight functions. For a weight generator μ we define the space

Hτ (St ) := { f ∈ O(St ) | ‖ f ‖τ,t := sup
z∈St

| f (z)|eτμ(z) < ∞}

for t > 0 and τ ∈ R with the strip St := {z ∈ C | | Im(z)| < t} .
Theorem 9 [46, Theorem 2.2, p. 225] 1 Letμ be a weight generator. There are t̃ , K1, K2 > 0
such that for any τ0 < τ < τ2 there is C0 = C0(sign(τ )) such that for any 0 < 2t0 < t <

t2 < t̃ with

t0 ≤ min
[
K1, K2

√
τ − C0τ0

τ2 − C0τ0

]

there is C1 ≥ 1 such that for any r ≥ 0 and any f ∈ Hτ (St ) with ‖ f ‖τ,t ≤ 1 the following
holds: there are f2 ∈ O(St2) and f0 ∈ O(St0) such that f = f0 + f2 on St0 and

‖ f0‖C0τ0,t0 ≤ C1e
−Gr and ‖ f2‖τ2,t2 ≤ er

where

G := K1 min
[
1,

t − t0
2̃t

,
τ − C0τ0

τ2 − C0τ0

]
.

To apply this theorem, we have to know the constants involved. In the following the
notation of [46] is used and it is referred to the corresponding positions resp. conditions for
these constants. We have

t̃ := 1

4 ln(Γ )

1 A superfluous constant depending on sign(τ0) is omitted.
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by [46, Lemma 2.4, (2.15), p. 228] with Γ from Definition 8 such that Γ ≥ e1/4. The choice
Γ ≥ e1/4 comes from wanting t̃ ≤ 1 in [46, Lemma 2.4, p. 228]. By [46, Corollary 2.6, p.
230-231] we have

C0 :=
{
4Γ B3 = 64 cosh(1)

cos(1/2) Γ 2 > 1 , τ < 0,
1

4Γ B3
= cos(1/2)

64 cosh(1)Γ 2 < 1 , τ ≥ 0,

where B3 := 16 cosh(1)
cos(1/2) Γ by [46, Lemma 2.4, p. 228–229].2 To get the constants K1 and K2,

we have to analyze the conditions for t0 in the proof of [46, Theorem 2.2, p. 225]. By the
assumptions on τ0, τ and τ2 and the choice of C0 we obtain

τ2 − C0τ0 > τ2 − C0τ ≥ τ2 − τ > 0 (8)

and

τ − C0τ0 > τ − C0τ = τ(1 − C0) > 0. (9)

By choosing D > 0 in the proof of [46, Theorem 2.2, (2.22), p. 232–233] as D :=
τ−C0τ0

(τ2−C0τ0)2Γ0
, the estimate

D = τ − C0τ0

(τ2 − C0τ0)2Γ0
= min

( 1

2Γ̃
,

1

2Γ̂

) τ − C0τ0

τ2 − C0τ0
≤

(8), (9)
min
( 1

2Γ̃
,

1

2Γ̂

)τ − C0τ0

τ2 − C0τ

holds where Γ0 := max(Γ̃ , Γ̂ ) with Γ̃ , Γ̂ > 1 from the proof. With θ ≥ t−t0
2̃t (p. 232) we

get on p. 233, below (2.24), due to the condition t0 ≤ T0 := min( t2 ,
1

4a2B1 t̃
),

min
(θ

2
, D, 1

)
≥ min

(1

2
,

1

2Γ0

)
min
(
θ,

τ − C0τ0

τ2 − C0τ0
, 1
)

≥ 1

2Γ0
min
( t − t0

2̃t
,

τ − C0τ0

τ2 − C0τ0
, 1
)

≥ min
( 1

2Γ0
,

1

4a2B1̃t

)
min
( t − t0

2̃t
,

τ − C0τ0

τ2 − C0τ0
, 1
)

= min
( 1

2Γ0
,

1

2 cosh(1) ln(Γ )

)

︸ ︷︷ ︸
=:K1

min
( t − t0

2̃t
,

τ − C0τ0

τ2 − C0τ0
, 1
)

=: G

where a := ln(Γ ) (in the middle of p. 231) and B1 := 2 cosh(1) by the proof of [46, Lemma
2.3, p. 226–227]. The assumptions 2t0 < t and t0 ≤ K1 in Theorem 9 guarantee that the

condition t0 ≤ T0 is satisfied. Looking at the condition t0 ≤ T1 :=
√

D
a2B1

(p. 232), we

derive

T1 = 1
√
2Γ0a2B1

√
τ − C0τ0

τ2 − C0τ0
= 1

2
√
cosh(1)Γ0 ln(Γ )

︸ ︷︷ ︸
=:K2

√
τ − C0τ0

τ2 − C0τ0
.

For the subsequent theorem we merge and modify the proofs of [60, Satz 2.2.3, p. 44] 3

(an = n, n ∈ N, andμ a strong weight generator) and [32, 5.20 Theorem, p. 84] (an = −1/n,
n ∈ N, and μ = |Re(·)|).
2 An error in part b) of this lemma, p. 229, is corrected here such that the term cos(1/2) =
min|y|≤̃t=1/(2C1)

cos(C1y) appears.
3 The proof of [60, Satz 2.2.3, p. 44] relies on [60, Satz 2.2.1, p. 43] which is an announced version (without
a proof) of our result Corollary 13 on weak reducibility.
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Theorem 10 Let μ be a strong weight generator, an ↗ 0 or an ↗ ∞, V := (exp(anμ))n∈N
and Ωn := Sn for all n ∈ N. If OV(C) is weakly reduced, then OV(C) satisfies (Ω).

Proof Since OV(C) is weakly reduced, for every n ∈ N there exists mn ∈ N such that
πn(OV(C)) is dense in Oνmn (Ωmn ) w.r.t. the topology of Oνn(Ωn) where

πn : OV(C) → Oνn(Ωn), πn( f ) := f|Ωn ,

is the canonical projection. Let p, k ∈ N. As (an)n∈N is strictly increasing and limn→∞ an =
0 or limn→∞ an = ∞, we may choose q ∈ N such that amp/C0 < aq and 2mp < q . To use
the decomposition from Theorem 9, we need a linear transformation between strips to get
the decomposition on the desired strip Smp . We choose Γ ≥ e1/4 and T ∈ R such that

0 < T <
1

4max(q + 1,mk) ln(Γ )
(10)

which also fulfils

T ≤ 1

mp
min

(
1

2Γ0
,

1

2 cosh(1) ln(Γ )
,

1

2
√
cosh(1)Γ0 ln(Γ )

√
aq − amp

max(aq+1, amk ) − amp

)

.

(11)

Let

τ0 := amp

C0
, τ := aq , τ2 := max(aq+1, amk ),

t0 := mpT , t := qT , t2 := max(q + 1,mk)T .

By the choice of q we have

τ0 = amp

C0
< aq = τ < max(aq+1, amk ) = τ2.

By the choice of q and (10) we get

0 < 2t0 = 2mpT < qT = t < max(q + 1,mk)T = t2 <
1

4 ln(Γ )
= t̃ .

Further, we deduce from (11) that

t0 = mpT ≤ min
[
K1, K2

√
τ − C0τ0

τ2 − C0τ0

]
.

Let r ≥ 0 and f ∈ OV(C) such that | f |q = ‖ f ‖aq ,q ≤ 1. We set f̃ : SqT → C, f̃ (z) :=
f (z/T ), and define

H∼
τ (St ) := {g ∈ O(St ) | ‖g‖∼

τ,t := sup
z∈St

|g(z)|eτ μ̃(z) < ∞}

where μ̃ := μ(·/T ). We note that for ñ := �1/T �, where �·� is the ceiling function, there is
C > 0 such that for all x ≥ 0

μ̃(x + 1) = μ
( x + 1

T

)
≤ μ
( x

T
+
⌈ 1

T

⌉)
= μ
( x

T
+ ñ
)

≤ Γ μ
( x

T

)
+ C = Γ μ̃(x) + C
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because μ is a strong weight generator. We conclude that μ̃ is also a weight generator with
the same Γ as μ which is independent of T . Moreover, from

‖ f̃ ‖∼
τ,t = sup

z∈SqT
| f̃ (z)|eaq μ̃(z) = sup

z∈Sq
| f (z)|eaqμ(z) = | f |q ≤ 1

it follows by Theorem 9 that there are f̃ j ∈ O(St j ), j ∈ {0, 2}, such that

f̃ (z) = f̃0(z) + f̃2(z), z ∈ St0 , (12)

and

C1e
−Gr ≥ ‖ f̃0‖∼

C0τ0,t0 = sup
z∈St0/T

| f̃0(T z)︸ ︷︷ ︸
=: f0(z)

|eC0τ0μ̃(T z) = sup
z∈Smp

| f0(z)|eampμ(z) = | f0|mp ,

(13)

where f0 ∈ O(Smp ), as well as

er ≥ ‖ f̃2‖∼
τ2,t2 = sup

z∈St2/T

| f̃2(T z)︸ ︷︷ ︸
=: f2(z)

|eτ2μ̃(T z) ≥ sup
z∈Smk

| f2(z)|eamk μ(z) = | f2|mk (14)

where f2 ∈ O(St2/T ) ⊂ O(Smk ) and the inclusion is justified by the identity theorem.
Furthermore, for z ∈ St0/T = Smp the equation

f (z) = f̃ (T z) =
(12)

f̃0(T z) + f̃2(T z) = f0(z) + f2(z)

holds, thus f = f0 + f2 on Smp . By virtue of the weak reducibility ofOV(C) and the choice
of mp,mk the following is valid:

∀ ε > 0 ∃ f̂0, f̂2 ∈ OV(C) : (i) | f̂0 − f0|p < ε and (i i) | f̂2 − f2|k < ε. (15)

Now, we have to consider two cases. Let ε := C1e−Gr . For k ≤ p we get via (15) (i) that
f = f̂0 + ( f2 + f0 − f̂0) on Smp so

f2 + f0 − f̂0 = f − f̂0 =: f 2 on Smp (16)

where the function f 2 ∈ OV(C) and thus is a holomorphic extension of the left-hand side
on C. Hence we clearly have f = f̂0 + f 2 and

| f̂0|p ≤ | f̂0 − f0|p + | f0|p ≤
(15)(i)

ε + | f0|p ≤ ε + | f0|mp ≤
(13)

2C1e
−Gr =: C2e

−Gr (17)

as well as

| f 2|k ≤ | f 2 − f2|k + | f2|k ≤
(16), k≤p

| f0 − f̂0|p + | f2|mk ≤
(15)(i)

ε + | f2|mk

≤
(14)

C1e
−Gr + er ≤ (C1 + 1)er =: C3e

r . (18)

Analogously, for k > p we obtain via (15) (i i) that f = f̂2 + ( f0 + f2 − f̂2) on Smp so

f0 + f2 − f̂2 = f − f̂2 =: f 0 on Smp (19)
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where the function f 0 ∈ OV(C) and thus is a holomorphic extension of the left-hand side
on C. Hence we clearly have f = f 0 + f̂2 and

| f 0|p = | f − f̂2|p =
(19)

| f0 + f2 − f̂2|p ≤ | f2 − f̂2|p + | f0|p ≤
k>p

| f2 − f̂2|k + | f0|mp

≤
(15)(i i)

ε + | f0|mp ≤
(13)

2C1e
−Gr = C2e

−Gr (20)

as well as

| f̂2|k ≤ | f̂2 − f2|k + | f2|k ≤
(15)(i i)

ε + | f2|mk ≤
(14)

C1e
−Gr + er ≤ C3e

r . (21)

Next, we set n := �1/G� and C := C3eln(C2)/G . Let r̃ > 0. For r̃ ≥ 1 there is r ≥ 0 such
that

r̃ = eGr−ln(C2) = eGr

C2

and we have by (17) and (18) for k ≤ p

| f̂0|p ≤ C2e
−Gr = 1

r̃
, | f 2|k ≤ C3e

r = C3e
1
G ln(C2)e

1
G (Gr−ln(C2)) = C r̃

1
G ≤̃

r≥1
C r̃ n,

as well as by (20) and (21) for k > p

| f 0|p ≤ 1

r̃
, | f̂2|k ≤ C r̃ n .

For 0 < r̃ < 1 we have, since q ≥ p,

| f |p ≤ | f |q ≤ 1 <
1

r̃
.

Thus our statement is proved. ��
Let us remark that the choice of the sequence (an)n∈N in the preceding theorem does not

really matter.

Remark 11 Let μ : C → [0,∞) be continuous, an ↗ 0 or an ↗ ∞, V := (exp(anμ))n∈N
and Ωn := Sn for all n ∈ N. Set V− := (exp((−1/n)μ))n∈N and V+ := (exp(nμ))n∈N.
Then

OV(C) ∼= OV−(C), if an ↗ 0, and OV(C) ∼= OV+(C), if an ↗ ∞,

which is easily seen. Thus one may choose the most suitable sequence (an)n∈N for one’s
purpose without changing the space.

Let us turn to the third part. The following quite technical conditions guarantee a kind of
weak reducibility of the projective limit EV(Ω) and in combination with (PN .1) the weak
reducibility of OV(Ω) too.

Condition (WR) Let V := (νn)n∈N be a directed family of continuous weights on an open set
Ω ⊂ R

2 and (Ωn)n∈N a family of non-empty open sets such that Ωn �= R
2, Ωn ⊂ Ωn+1 for

all n ∈ N, dn,k := d|·|(Ωn, ∂Ωk) > 0 for all n, k ∈ N, k > n, and Ω =⋃n∈N Ωn .
(WR.1) For every n ∈ N let there be gn ∈ O(C) with gn(0) = 1 and N � I j (n) > n such

that

(a) for every ε > 0 there is a compact set K ⊂ Ωn with νn(x) ≤ ενI1(n)(x) for all x ∈ Ωn\K .
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(b) there is an open set XI2(n) ⊂ R
2\Ω I2(n) such that there are Rn, rn ∈ R with 0 < 2Rn <

d|·|(XI2(n),ΩI2(n)) := dX ,I2(n) and Rn < rn < dX ,I2(n)−Rn aswell as A2(·, n) : XI2(n)+
BRn (0) → (0,∞), A2(·, n)|XI2(n)

locally bounded, satisfying

max{|gn(ζ )|νI2(n)(z) | ζ ∈ R
2, |ζ − (z − x)| = rn} ≤ A2(x, n)

for all z ∈ ΩI2(n) and x ∈ XI2(n) + BRn (0).
(c) for every compact set K ⊂ R

2 there is A3(n, K ) > 0 with
∫

K

|gn(x − y)|νn(x)
|x − y| dy ≤ A3(n, K ), x ∈ Ωn .

(WR.2)Let (WR.1a) be fulfilled. For every n ∈ N let there beN � I4(n) > n and A4(n) > 0
such that

∫

ΩI4(n)

|gI14(n)(x − y)|νp(x)

|x − y|νk(y) dy ≤ A4(n), x ∈ Ωp,

for (k, p) = (I4(n), n) and (k, p) = (I14(n), I14(n)) where I14(n) := I1(I4(n)).
(WR.3) Let (WR.1a), (WR.1b) and (WR.2) be fulfilled. For every n ∈ N, every closed

subset M ⊂ Ωn and every component N of MC we have

N ∩ Ω
C
n �= ∅ ⇒ N ∩ XI214(n) �= ∅

where I214(n) := I2(I14(n)), fulfilling I214(n) ≥ I14(n + 1).

(WR) is [33, 4.2 Condition, p. 10] combined with the assumption I214(n) ≥ I14(n + 1),
n ∈ N. We will see that Ωn := {z ∈ C | | Im(z)| < n} and νn(z) := exp(an |Re(z)|γ ) for
some 0 < γ ≤ 1 and an ↗ 0 or an ↗ ∞ fulfil the conditions abovewith gn(z) := exp(−z2).

Theorem 12 [33, 4.3 Theorem, p. 10] Let n ∈ N. Then πI214(n),n(EνI214(n),∂ (ΩI214(n))) is
dense in πI14(n),n(EνI14(n),∂ (ΩI14(n))) w.r.t. (| · |n,m)m∈N0 if (WR) is fulfilled.

As a consequence of this theorem, whose proof does not need the assumption I214(n) ≥
I14(n + 1), we obtain that the projective limit OV(Ω) is weakly reduced, which is a gener-
alisation of [32, 5.6 Corollary, p. 69] and [32, 5.11 Corollary, p. 75].

Corollary 13 OV(Ω) is weakly reduced if (WR) and (PN .1) are satisfied.

Proof Let n ∈ N. We show that πn(OV(Ω)) is dense in π2J1 I14(n),n(Oν2J1 I14(n)(Ω2J1 I14(n)))

w.r.t. | · |n where J1 I14(n) := J1(I14(n)) and

πn : OV(Ω) → Oνn(Ωn), πn( f ) := f|Ωn .

We omit the restriction maps in our proof. Due to Proposition 7 (a) the restrictions to ΩI14(n)

of functions from Oν2J1 I14(n)(Ω2J1 I14(n)) are elements of EνI14(n),∂ (ΩI14(n)). Let ε > 0 and
f0 ∈ Oν2J1 I14(n)(Ω2J1 I14(n)). For every j ∈ N there exists

(i) f j ∈ EνI214(n+ j−1),∂ (ΩI214(n+ j−1)) with
(ii) f j |ΩI14(n+ j)

∈ EνI14(n+ j),∂ (ΩI14(n+ j)) ⊂ OνI14(n+ j)(ΩI14(n+ j))

such that

| f j − f j−1|n+ j−1 = | f j − f j−1|n+ j−1,0 <
ε

2 j+1 (22)
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by Theorem 12 and the condition I214(k) ≥ I14(k + 1) for all k ∈ N from (WR). Therefore
we obtain for every k ∈ N

| fk − f0|n = ∣∣
k∑

j=1

f j − f j−1
∣
∣
n ≤

k∑

j=1

| f j − f j−1|n ≤
k∑

j=1

| f j − f j−1|n+ j−1

≤
(22)

k∑

j=1

ε

2 j+1 = ε

2

(
1 − 1

2k
)

<
ε

2
. (23)

Now, let ε0 > 0 and l ∈ N. We choose l0 ∈ N, l0 ≥ l, such that ε

2l0+1 < ε0. Similarly, we get
for all p ≥ k ≥ l0

| f p − fk |l ≤ ∣∣ f p − fk
∣
∣
l0

= ∣∣
p∑

j=k+1

f j − f j−1
∣
∣
l0

≤
p∑

j=k+1

∣
∣ f j − f j−1

∣
∣
l0

≤
l0≤k≤ j−1
<n+ j−1

p∑

j=k+1

| f j − f j−1|n+ j−1 ≤
(22)

p∑

j=k+1

ε

2 j+1
= ε

2

( 1

2k
− 1

2p
)

<
ε

2k+1
≤ ε

2l0+1
< ε0.

Hence ( fk)k≥n0 is a Cauchy sequence in the Banach spaceOνI14(n+n0)(ΩI14(n+n0)) for every
n0 ∈ N0 and thus has a limit Fn0 ∈ OνI14(n+n0)(ΩI14(n+n0)). These limits coincide on their
common domain because for every n1, n2 ∈ N0 with I14(n + n1) < I14(n + n2) and ε1 > 0
there exists N ∈ N such that for all k ≥ N

|Fn1 − Fn2 |I14(n+n1) ≤ |Fn1 − fk |I14(n+n1) + | fk − Fn2 |I14(n+n1)

≤ |Fn1 − fk |I14(n+n1) + | fk − Fn2 |I14(n+n2) <
ε1

2
+ ε1

2
= ε1.

We deduce that the glued limit function f given by f := Fn0 on ΩI14(n+n0) for all n0 ∈
N0 is well-defined and we have f ∈ ⋂n0∈N0

OνI14(n+n0)(ΩI14(n+n0)) = OV(Ω) since
I14(n + n0) ≥ n + n0. By the definition of f there exists N ∈ N such that for every k ≥ N

| f − f0|n ≤ | f − fk |n + | fk − f0|n <
n≤I14(n+0)

ε

2
+ | fk − f0|n ≤

(23)

ε

2
+ ε

2
= ε,

which proves our statement. ��
Combining Theorem 10 and Corollary 13, we obtain the following corollary.

Corollary 14 Let an ↗ 0 or an ↗ ∞, V := (exp(anμ))n∈N and Ωn := Sn for all n ∈ N

where

μ : C → [0,∞), μ(z) := |Re(z)|γ ,

for some 0 < γ ≤ 1. Then OV(C) satisfies (Ω).

Proof We only need to check that the conditions of Theorem 10 are fulfilled. Obvi-
ously, μ(z) = μ(|Re(z)|) for all z ∈ C, μ is strictly increasing on [0,∞) and
limx→∞, x∈R ln(1+|x |)

μ(x) = 0. The observation

μ(x + n) − μ(x) = |x + n|γ − |x |γ ≤ |x + n − n|γ = nγ , n ∈ N, x ∈ [0,∞),

implies that μ is a strong weight generator with any Γ > 1 and C := nγ by Definition 8.
Let us turn to the conditions (WR) and (PN .1) which we need for the weak reducibility
of OV(C) by Corollary 13. Condition (PN .1) is fulfilled by Example 6. If an < 0 for all
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n ∈ N, then (WR) is fulfilled by [33, 4.10 Example a), p. 22] where we used μ̃(z) := |z|γ
instead of μ, which does not make a difference since

|Re(z)|γ ≤ |z|γ ≤ |Re(z)|γ + nγ , z ∈ Ωn = Sn .

If an ≥ 0 for all n ∈ N, we only have to modify [33, 4.10 Example a), p. 22] a bit. We choose

I j (n) := 2n for j ∈ {1, 2, 4} and define the open set XI2(n) := S
C
4n . Then we have

I214(n) = 8n ≥ 4n + 4 = I14(n + 1), n ∈ N.

Furthermore, we have dn,k = |n − k| for all n, k ∈ N.
(WR.1a) and (WR.3): Verbatim as in [33, 4.10 Example a), p. 22].
(WR.1b): We have dX ,I2 = 2n. We choose gn : C → C, gn(z) := exp(−z2), as well

as rn := 1/(4n) and Rn := 1/(6n) for n ∈ N. Let z = z1 + i z2 ∈ ΩI2(n) = S2n and
x ∈ XI2(n) + BRn (0). For ζ = ζ1 + iζ2 ∈ C with |ζ − (z − x)| = rn we have

|gn(ζ )|ea2nμ(z) = e−Re(ζ 2)ea2n |Re(z)|γ ≤ e−ζ 21 +ζ 22 ea2n(1+|z1|)

≤ e(rn+|z2|+|x2|)2+a2n(1+rn+|x1|)e−|ζ1|2+a2n |ζ1|

≤ e(rn+2n+|x2|)2+a2n(1+rn+|x1|) sup
t∈R

e−t2+a2n t

= e(rn+2n+|x2|)2+a2n(1+rn+|x1|)+a22n/4 =: A2(x, n)

and observe that A2(·, n) is continuous and thus locally bounded on XI2(n).
(WR.1c): Let K ⊂ C be compact and x = x1 + i x2 ∈ Ωn . Then there is b > 0 such that

|y| ≤ b for all y = y1 + iy2 ∈ K and from polar coordinates and Fubini’s theorem it follows
that
∫

K

|gn(x − y)|
|x − y| dy

≤ sup
w∈K

ea2n |Re(w)|

︸ ︷︷ ︸
=:C1

∫

K

e−Re((x−y)2)

|x − y| e−a2n |y1|dy

≤ C1
(
∫

B1(x)

e−Re((x−y)2)

|x − y| e−a2n |Re(y)|dy +
∫

K\B1(x)

e−Re((x−y)2)

|x − y| e−a2n |Re(y)|dy
)

≤ C1
(
∫ 2π

0

∫ 1

0

e−r2 cos(2ϕ)

r
e−a2n |x1+r cos(ϕ)|rdrdϕ +

∫

K\B1(x)
e−Re((x−y)2)e−a2n |Re(y)|dy

)

≤ C1
(
2πe1+a2n e−a2n |x1| +

∫ b

−b
e(x2−y2)2dy2

∫

R

e−(x1−y1)2+a2n |x1−y1|dy1e−a2n |x1|)

≤ C1
(
2πe1+a2n + 2be(|x2|+b)2

∫

R

e−y21+a2n |y1|dy1
)
e−a2n |x1|

= C1
(
2πe1+a2n + 2be(|x2|+b)2ea

2
2n/4
∫

R

e−(|y1|−a2n/2)2dy1
)
e−a2n |x1|

= C1
(
2πe1+a2n + 4be(|x2|+b)2ea

2
2n/4
∫ ∞

−a2n/2
e−y21 dy1

)
e−a2n |x1|

≤ C1
(
2πe1+a2n + 4

√
πbe(n+b)2+a22n/4

)
e−a2n |x1|.
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We conclude that (WR.1c) holds since

e−a2n |x1|ean |Re(x)|γ ≤ e(an−a2n)|x1|+an ≤ ean .

(WR.2): Let p, k ∈ N with p ≤ k. For all x = x1 + i x2 ∈ Ωp and y = y1 + iy2 ∈ ΩI4(n)

we note that

ap|Re(x)|γ − ak |Re(y)|γ ≤ ak |x1 − y1|γ ≤ ak(1 + |x1 − y1|)
because (an)n∈N is non-negative and increasing and 0 < γ ≤ 1. Like before we deduce that
∫

ΩI4(n)

|gn(x − y)|νp(x)

|x − y|νk(y) dy

=
∫

Ω2n

e−Re((x−y)2)

|x − y| eap |Re(x)|γ −ak |Re(y)|γ dy ≤
∫

Ω2n

e−Re((x−y)2)

|x − y| eak |Re(x)−Re(y)|γ dy

≤
∫ 2π

0

∫ 1

0

e−r2 cos(2ϕ)

r
eakr

γ

rdrdϕ +
∫

Ω2n\B1(x)
e−Re((x−y)2)eak |Re(x)−Re(y)|γ dy

≤ 2πe1+ak + eak
∫ 2n

−2n
e(x2−y2)2dy2

∫

R

e−(x1−y1)2+ak |x1−y1|dy1

≤ 2πe1+ak + 8
√

πneak+(|x2|+2n)2+a2k /4

≤ 2πe1+aI14(n) + 8
√

πne
aI14(n)+(I14(n)+2n)2+a2I14(n)

/4

for (k, p) = (I4(n), n) and (k, p) = (I14(n), I14(n)) as (an)n∈N is non-negative and increas-
ing. ��

We close this section with a special case of our main result on the surjectivity of the
Cauchy–Riemann operator on EV(Ω, E). We recall the corresponding result for E = C

which we will need for the application of our main result. It is a consequence of the approxi-
mation Theorem 12 in combination with Hörmander’s solution of the ∂-problem in weighted
L2-spaces [27, Theorem 4.4.2, p. 94] and the Mittag–Leffler procedure.

Theorem 15 [33, 4.8 Theorem, p. 20] Let (PN ) with ψn(z) := (1 + |z|2)−2, z ∈ Ω , and
(WR) be fulfilled and − ln νn be subharmonic on Ω for every n ∈ N. Then

∂ : EV(Ω) → EV(Ω)

is surjective.

A consequence of this theorem is the following corollary.

Corollary 16 [33, 4.10 Example a), p. 22] Let (an)n∈N be strictly increasing, an < 0 for all
n ∈ N, V := (exp(anμ))n∈N and Ωn := {z ∈ C | | Im(z)| < n} for all n ∈ N where

μ : C → [0,∞), μ(z) := |Re(z)|γ ,

for some 0 < γ ≤ 1. Then

∂ : EV(C) → EV(C)

is surjective.
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The restriction to negative an comes from the condition that − ln νn should be subhar-
monic. We note that the E-valued versions of Theorem 15 and Corollary 16 where E is
a Fréchet space over C hold as well by the classical theory of tensor products for nuclear
Fréchet spaces (see [33, 4.9 Corollary, p. 21]). Now, we use the results obtained so far to
obtain a special case of our main result.

Corollary 17 Let μ be a subharmonic strong weight generator and V := (exp(anμ))n∈N
with an ↗ 0. Let (PN ) with ψn(z) := (1 + |z|2)−2, z ∈ C, and (WR) with Ωn := {z ∈
C | | Im(z)| < n} for all n ∈ N be fulfilled. If

(a) E := F ′
b where F is a Fréchet space over C satisfying (DN ), or

(b) E is an ultrabornological PLS-space over C satisfying (PA),

then

∂
E : EV(C, E) → EV(C, E)

is surjective.

Proof The space EV(C) is nuclear, in particular Schwartz, by [37, Theorem 3.1, p. 188], [37,
Remark 2.7, p. 178-179] and [37, Remark 2.3 (b), p. 177] because (PN .1) and (PN .2)1 from
(PN ) are fulfilled. Hence the subspace EV∂ (C) = OV(C) is nuclear by Proposition 7 (b)
as well. Further, OV(C) is weakly reduced by Corollary 13 due to (WR) and thus satisfies
(Ω) by Theorem 10. Therefore, the assertion is a consequence of the surjectivity of ∂ in the
C-valued case by Theorem 15 and our main result Theorem 5. ��

Corollary 17 generalises a part of [32, 5.24 Theorem, p. 95] (K = ∅) which is the case
γ = 1 of the next corollary.

Corollary 18 Let an ↗ 0, V := (exp(anμ))n∈N and Ωn := {z ∈ C | | Im(z)| < n} for all
n ∈ N where

μ : C → [0,∞), μ(z) := |Re(z)|γ ,

for some 0 < γ ≤ 1. If

(a) E := F ′
b where F is a Fréchet space over C satisfying (DN ), or

(b) E is an ultrabornological PLS-space over C satisfying (PA),

then

∂
E : EV(C, E) → EV(C, E)

is surjective.

Proof Follows from Corollary 17, (the proof of) Corollary 14 and Example 6. ��
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