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Abstract
We derive necessary and sufficient criteria for the uniqueness and existence of solutions of
the abstract Cauchy problem in locally convex Hausdorff spaces. Our approach is based on
a suitable notion of an asymptotic Laplace transform and extends results of Langenbruch
beyond the class of Fréchet spaces.
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1 Introduction

We study the abstract Cauchy problem in locally convex Hausdorff spaces in the present
paper. This is an initial value problem of the form

x ′(t) = Ax(t), t > 0,

x(0) = x0 ∈ E,

where A : D(A) ⊂ E → E is a sequentially closed linear operator and E a sequentially
complete locally convex Hausdorff space over C.

One of the approaches to tackle the abstract Cauchy problem is the theory of C0-
semigroups. The classical theory of C0-semigroups on Banach spaces (see e.g. [14] and
the references therein) has already been extended in several ways. Beyond the realm of
Banach spaces it was extended to equicontinuous C0-semigroups on locally convex Haus-
dorff spaces in [1, 26, 65, Chap. IX], quasi-equicontinuous C0-semigroups in [1, 3, 8, 20,
52–54], locally equicontinuous C0-semigroups in [9, 32, 57], sequentially (locally) equicon-
tinuous C0-semigroups in [16] and smooth semigroups on convenient algebras in [61].
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Besides the extension of the theory of C0-semigroups to locally convex Hausdorff
spaces the continuity assumptions were weakened as well. Bi-continuous semigroups were
introduced in [40, 41], (locally equi-)tight bi-continuous semigroups in [15], integrable semi-
groups considered in [43], integrated semigroups in [63, 64], distribution semigroups on
Banach spaces in [7, 25, 42, 45, 51] and even on locally convex Hausdorff spaces in [58, 59],
and (Fourier) hyperfunction semigroups for Banach spaces in [55, 56] (and [18, 19]). We
note that most of the classical bi-continuous semigroups are actually quasi-equicontinuous
C0-semigroups with respect to the mixed topology and even quasi-equitight by [33, Theorem
7.4, p. 180] and [39, 3.17 Theorem, p. 13, Section 4].

Apart from the theory of semigroups some of the classical methods for initial value
problems were transferred to the setting in locally convex Hausdorff spaces in [46] and the
references therein.

A common problem in the mentioned approaches to the abstract Cauchy problem is
the development of a suitable notion of a Laplace transform for vector-valued generalised
functions. In [4, 5, 47] an appropriate (asymptotic) Laplace transform was developed for
Banach-valued locally integrable functions and applied to abstract Cauchy problems, and
in [27–31] under minimal regularity assumptions for Banach-valued hyperfunctions as well
as in [44] for Fréchet-valued hyperfunctions. This was extended in [38] beyond the class
of Fréchet spaces to a large variety of locally convex Hausdorff spaces containing common
spaces of distributions.

We use the asymptotic Laplace transform from [38] to study the abstract Cauchy problem
for vector-valued hyperfunctions. After recalling the necessary notions and results from [38]
in Sect. 2, we characterise the uniqueness of the solutions of the abstract Cauchy problem
in Sect. 3, in particular, we derive necessary and sufficient conditions in Theorem 3.2. We
use these conditions to phrase sufficient conditions for the uniqueness of solutions in terms
of asymptotic left resolvents in Theorems 3.3 and 3.4, generalising corresponding results
from [44] (for general notions of resolvents in locally convex Hausdorff spaces see [2] and
[12]). In Sect. 4, we turn to the solvability of the abstract Cauchy problem for vector-valued
hyperfunctions and present necessary and sufficient conditions for the solvability in Theorem
4.3. Here we use the Laplace transform for vector-valued Laplace hyperfunctions from [11]
in combination with the asymptotic Laplace transform for vector-valued hyperfunctions from
[38]. In Theorem 4.4, we give a sufficient condition for the solvability of the abstract Cauchy
problem in terms of asymptotic right resolvents. Our results on the solvability extend the
ones from [44].

2 Notation and preliminaries

We use essentially the same notation and preliminaries as in [38, Section 2]. In the following
E is always a locally convex Hausdorff space over C equipped with a directed system of
seminorms (pα)α∈A, in short, E is aC-lcHs. If E is a normed space, we often write ‖ ·‖E for
the norm on E . We denote by L(F, E) the space of continuous linear maps from a C-lcHs
F to E , write L(F) := L(F, F), sometimes use the notion 〈T , f 〉 := T ( f ), f ∈ F , for
T ∈ L(F, E) and the symbol T t for the dual map of T . If E = C, we write F ′ := L(F,C)

for the dual space of F . We denote by Lb(F, E) the space L(F, E) equipped with the locally
convex topology of uniform convergence on the bounded subsets of F .

We denote byO(�, E) the space of E-valued holomorphic functions on an open set � ⊂
C and by C∞(�, E) the space of E-valued infinitely continuously partially differentiable
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functions on an open set � ⊂ R
2 = C. We denote by ∂β f the partial derivative of f ∈

C∞(�, E) for a multiindex β ∈ N
2
0. We denote by CRe>0 := {z ∈ C | Re(z) > 0} the right

halfplane, by R := R ∪ {±∞} the two-point compactification of R and set C := R + iR.
We define the distance of z ∈ C to a set M ⊂ Cw.r.t. the Euclidean norm | · | via d(z, M) :=
infw∈M |z −w| if M �= ∅, and d(z, M) := ∞ if M = ∅. For a compact set K ⊂ R and c > 0
we define the sets

U 1
c
(K ) := {z ∈ C | d(z, K ∩ C) < c}

∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅, K ⊂ R,

]1/c,∞[+i] − c, c[, ∞ ∈ K , −∞ /∈ K ,

] − ∞,−1/c[+i] − c, c[, ∞ /∈ K , −∞ ∈ K ,

(] − ∞,−1/c[∪]1/c,∞[) + i] − c, c[, ∞ ∈ K , −∞ ∈ K ,

and for n ∈ N

Sn(K ) :=
(
C \ Un(K )

)
∩ {z ∈ C | | Im(z)| < n} .

Definition 2.1 [34, 3.2 Definition, p. 12–13] Let E be a C-lcHs and K ⊂ R compact.

(a) The space of vector-valued slowly increasing infinitely continuously partially differen-
tiable functions outside K is defined as

Eexp(C \ K , E) :=
{

f ∈ C∞(C \ K , E)|∀ n ∈ N, m ∈ N0, α ∈ A : ||| f |||n,m,α,K < ∞
}

where

||| f |||n,m,α,K := sup
z∈Sn(K )

β∈N2
0,|β|≤m

pα(∂β f (z))e− 1
n |Re(z)|.

(b) The space of vector-valued slowly increasing holomorphic functions outside K is defined
as

Oexp(C \ K , E) :=
{

f ∈ O(C \ K , E) | ∀ n ∈ N, α ∈ A : ||| f |||n,α,K < ∞
}

where

||| f |||n,α,K := sup
z∈Sn(K )

pα( f (z))e− 1
n |Re(z)|.

Furthermore, we set

bvK (E) := Oexp(C \ K , E)/Oexp(C, E).

Wenote that S1(R) = ∅ and ||| f |||1,m,α,R = −∞ = ||| f |||1,α,R for any f : C\R → E ,m ∈
N0 and α ∈ A. Other common symbols for the spaces Eexp(C \ K , E) resp.Oexp(C \ K , E)

are Ẽ(C \ K , E) resp. Õ(C \ K , E) (see [22, 1.2 Definition, p. 5]).

Definition 2.2 [34, p. 55] AC-lcHs E is called admissible, if the Cauchy–Riemann operator

∂ : Eexp(C \ K , E) → Eexp(C \ K , E)
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is surjective for any compact set K ⊂ R. E is called strictly admissible if E is admissible
and if, in addition,

∂ : C∞(�, E) → C∞(�, E)

is surjective for any open set � ⊂ C.

If E is strictly admissible and sequentially complete, then the sheaf of E-valued Fourier
hyperfunctions is flabby and can be represented by boundary values of exponentially slowly
increasing holomorphic functions (see [35, Theorem 5.9, p. 33]). In particular, its subsheaf
of E-valued hyperfunctions is flabby under this condition as well. Moreover, we may regard
bvK (E) as the space of E-valued Fourier hyperfunctions with support in K ⊂ R under this
condition by [35, 5.11 Lemma, p. 44].

Theorem 2.3 [34, 5.25 Theorem, p. 98] If

(a) E is a C-Fréchet space, or if
(b) E := F ′

b where F is a C-Fréchet space satisfying (DN ), or if
(c) E is a complex ultrabornological PLS-space satisfying (P A),

then E is strictly admissible.

The definitions of the topological invariants (DN ) and (P A) are given in [50, Chap. 29,
Definition, p. 359] and [6, Section 4, Eq. (24), p. 577], respectively. Besides everyC-Fréchet
space, the theorem above covers the space E = S(Rd)′b of tempered distributions, the space
D(V )′b of distributions and the space D(ω)(V )′b of ultradistributions of Beurling type and
many more spaces given in [6], [10, Corollary 4.8, p. 1116], [35, Example 4.4, p. 14–15] and
[62].

Definition 2.4 [38, 7.1 Definition, p. 106] Let E be a C-lcHs and a ∈ {0,∞}. We define the
space

LO[a,∞](E) :=
{

f ∈ O(CRe>0, E) | ∀ k ∈ N, α ∈ A : ‖ f ‖k,α,[a,∞] < ∞
}

where

‖ f ‖k,α,[0,∞] := sup
Re(z)≥ 1

k

pα( f (z))e− 1
k |z|

resp.

‖ f ‖k,α,{∞} := sup
Re(z)≥ 1

k

pα( f (z))e− 1
k |z|+k Re(z).

We omit the index α of the seminorms if E is a normed space, and write LO[a,∞] :=
LO[a,∞](C).

Let E be a sequentially complete C-lcHs, K := [0,∞] or K := {∞} and equip bvK (E)

with its usual quotient topology, which is Hausdorff locally convex by [37, Remark 14, p
22]. By [38, Theorem 7.2 (ii), p. 106] the Laplace transform

L : bvK (E) → LOK (E),L([F])(ζ ) :=
∫

γK

F(z)e−zζ dz,

where γK is the path along the boundary of U1/c(K ) with clockwise orientation (see Fig.
1), does not depend on the choice of c > 0 and is a topological isomorphism.
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Fig. 1 Path γ[0,∞] with c > 0
(cf. [38, Figure 1.2, p. 62]) γ[0,∞ ]

−c

c

−c

Re( z)

Im( z)

Let E be an admissible C-lcHs. Then the canonical (restriction) map

R[0,∞[ : Oexp(C \ [0,∞], E)/Oexp(C \ {∞}, E) → B([0,∞[, E), [F] �→ [F],
is a linear isomorphism by [38, Theorem 5.1, p. 96] where

B([0,∞[, E) := O(C \ [0,∞[, E)/O(C, E)

is the space of hyperfunctions with values in E and support in [0,∞[. The combination of
both results leads to the following theorem.

Theorem 2.5 [38, 7.4 Theorem, p. 106]Let E be an admissible sequentially completeC-lcHs.
Then the asymptotic Laplace transform

LB : B([0,∞[, E) → LO[0,∞](E)/LO{∞}(E), LB( f ) := [(L ◦ R−1
[0,∞[)( f )],

is a linear isomorphism.

3 Uniqueness of solutions of the ACP

In this section, we apply our results on the asymptotic Laplace transform of hyperfunctions
with support in [0,∞[ to the abstract Cauchy problem for hyperfunctions with values in
an admissible (sequentially) complete C-lcHs. We start with a generalisation of an abstract
Cauchy problem for hyperfunctions given in [44, p. 60–61]. Let (E, (pα)α∈A) be a sequen-
tially complete C-lcHs. We call

x ′(t) = Ax(t), t > 0, x(0) = x0 ∈ E, (1)

an abstract Cauchy problem (ACP) where

A : F := D(A) ⊂ E → E

is a sequentially closed linear operator with domain F := D(A). Then F is a sequentially
completeC-lcHswhen equippedwith the graph topology τA givenby the seminorms (pα,A :=
pα + pα(A·))α∈A, and A : FA := (F, τA) → E is continuous.

Remark 3.1 (a) If E is a C-Fréchet space and A and F are as above, then FA = (F, τA) is
also a Fréchet space and thus (strictly) admissibile by Theorem 2.3.

(b) If E is a (strictly) admissible space, F = E and A : F → E continuous, then FA = E
as locally convex spaces and so FA is (strictly) admissible.

An F-valued hyperfunction [u] ∈ B([0,∞[, FA) is called a solution of the ACP (1) (in
the sense of hyperfunctions) if

d

dt
[u] − A[u] = x0 ⊗ δ0 (2)
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where δ0 := [z �→ − 1
2π i z ] is the Dirac hyperfunction (see [38, 4.11 Example, p. 96]),

x0 ⊗ δ0 := x0δ0, d
dt [u] := [ d

dz u] and A[u] := [z �→ Au(z)].
We say that the ACP (1) has the uniqueness property (in the sense of hyperfunctions) if

[u] = 0 is the only solution of (2) for x0 = 0. Our next theorem generalises [44, Theorem
7.1, p. 61] and we note that its proof essentially remains the same.

Theorem 3.2 Let E be an admissible sequentially complete C-lcHs and A : F := D(A) ⊂
E → E a sequentially closed linear operator with admissible FA = (F, τA). Then the
following statements are equivalent:

(a) The ACP (1) has the uniqueness property (in the sense of hyperfunctions).
(b) If h ∈ LO[0,∞](FA) and (z − A)h ∈ LO{∞}(E), then h ∈ LO{∞}(FA).
(c) If h ∈ LO[0,∞](FA) and (z − A)h ∈ LO{∞}(E), then {h(t)ent | t ≥ ε} is weakly

bounded in FA for any n ∈ N and any (some) ε > 0.

Proof (a)⇒ (b): Due to Theorem 2.5 there is [u] ∈ B([0,∞[, FA) such that [h] = LB([u]) ∈
LO[0,∞](FA)/LO{∞}(FA). By [38, 7.10 Proposition, p. 108] and our assumption we have

LB
(

d

dt
[u] − A[u]

)

= (z − A)LB([u]) = (z − A)[h] = 0.

From Theorem 2.5 and (a) we deduce that [u] = 0, which implies [h] = 0 and thus h ∈
LO{∞}(FA).

(b) ⇒ (c): This follows from h ∈ LO{∞}(FA) by (b) and the definition of the space
LO{∞}(FA).

(c) ⇒ (a): Let [u] ∈ B([0,∞[, FA) such that d
dt [u] − A[u] = 0. Then [h] := LB([u])

satisfies

0 = LB
(

d

dt
[u] − A[u]

)

= (z − A)[h]

and thus (z − A)h ∈ LO{∞}(E). Next, we show that y ◦ h ∈ LO{∞} for any y ∈ F ′
A by the

Phragmén–Lindelöf theorem. Let k ∈ N and set S := {z ∈ C | − π
4 < arg(z) < π

4 } and
S0 := {z ∈ C | Re(z) > 1

k , Im(z) > 0}. We define the homeomorphism θ : S → S0 by

θ(z) := ei π
4 z + 1

k and the function

F0 : S → C, F0(z) := (y ◦ h)(θ(z))e(k+ i
k )θ(z).

Using y ◦ h ∈ LO[0,∞], we have for every z ∈ S that

|F0(z)| = |(y ◦ h)(θ(z))|ek Re(θ(z))− 1
k Im(θ(z))

≤ |(y ◦ h)(θ(z))|e− 1
k |θ(z)|+(k+ 1

k )|Re(θ(z))|

≤ |y ◦ h|k,[0,∞]e(k+ 1
k )|θ(z)| ≤ e

1+ 1
k2 |y ◦ h|k,[0,∞]e(k+ 1

k )|z|.

If arg(z) = −π
4 , then θ(z) = |z| + 1

k and by part (c) there is ε > 0 such that with εk :=
max(0, ε − 1

k ) we get

|F0(z)|
= |(y ◦ h)(θ(z))|ekθ(z)

≤ ekεk+1 max
arg(w)=− π

4|w|≤εk

|(y ◦ h)(θ(w))| + sup
arg(w)=− π

4|w|≥εk

|(y ◦ h)(θ(w))|ekθ(w) =: C0 < ∞
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where we use the continuity of y ◦ h ◦ θ as well. If arg(z) = π
4 , then θ(z) = i |z| + 1

k and we
get

|F0(z)| = |(y ◦ h)(θ(z))|e1− 1
k |z| ≤ e

1+ 1
k2 |(y ◦ h)(θ(z))|e− 1

k |θ(z)|

≤ e
1+ 1

k2 |y ◦ h|k,[0,∞] =: C1 < ∞.
Due to the Phragmén–Lindelöf theorem [60, Theorem 3.4, p. 124] (applied to F(z) :=

1
max(C0,C1)

F0(z)) we obtain

|F0(z)| ≤ max(C0, C1) =: C2, z ∈ S,

and hence

|(y ◦ h)(θ(z))| ≤ C2e−k Re(θ(z))+ 1
k Im(θ(z)) ≤ C2e−k|Re(θ(z))|+ 1

k |θ(z)|, z ∈ S,

which implies

sup
z∈S0

|(y ◦ h)(z)|e− 1
k |z|+k|Re(z)| ≤ C2 < ∞.

Similarly, we get

sup
z∈S1

|(y ◦ h)(z)|e− 1
k |z|+k|Re(z)| < ∞

for S1 := {z ∈ C | Re(z) > 1
k , Im(z) < 0} by choosing θ1 : S → S1, θ1(z) := e−i π

4 z + 1
k ,

and

F1 : S → C, F1(z) := (y ◦ h)(θ1(z))e
(k− i

k )θ1(z).

We conclude that y ◦h ∈ LO{∞}. The weak-strong principle [36, 3.20 Corollary c), p. 14]
yields h ∈ LO{∞}(FA) since FA = (F, τA) is sequentially complete and LO{∞} a nuclear
Fréchet space by [38, 7.3 Proposition, p. 106]. Hence [u] = 0 by Theorem 2.5. ��

Now, we generalise Langenbruch’s sufficient criterion [44, Theorem 7.2, p. 62] for the
uniqueness property, which itself is a generalisation of Lyubich’s uniqueness theorem [49,
Theorem 9.2, p. 40]. For this purposewe adapt the notion of an asymptotic left resolvent given
by Langenbruch [44, p. 62] (for general notions of resolvents in locally convex spaces see [2]
and [12]). Let A : F := D(A) ⊂ E → E be a sequentially closed linear operator. We denote
by Eα := (E/ ker pα)̂and Fα := (F/ ker pα,A)̂the canonical local Banach spaces for pα

resp. pα,A and by ‖x +ker pα‖α := pα(x), x ∈ E , resp. ‖x +ker pα‖α,A := pα,A(x), x ∈ F ,
the norms on E/ ker pα resp. F/ ker pα,A, which we extend to norms on the local Banach
spaces with the same symbol. Further, we denote by κ F

α : FA → Fα , x �→ x + ker pα,A,
the corresponding spectral map of FA for α ∈ A. A set of operators (Rα(t, A))α∈A is an
asymptotic left resolvent if for all α ∈ A there is tα > 0 such that Rα(t, A) ∈ L(E, Fα) for
all t ≥ tα and the continuous linear map Sα(t) : FA → Fα given by

Sα(t) := Rα(t, A)(t − A) − κ F
α , t ≥ tα, (3)

fulfils

∀ n ∈ N ∃ β ∈ A, tα,n ≥ tα, C1, C2 > 0 ∀ t ≥ tα,n, x ∈ F :
‖Sα(t)x‖α ≤ C1 pβ,A(x) and ‖Sβ

α (t)‖L(Fβ ,Fα) ≤ C2e−nt (4)

where Sβ
α (t) : Fβ → Fα is the continuous linear extension of the map F/ ker pβ,A → Fα ,

x + ker pβ,A �→ Sα(t)x .
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Theorem 3.3 Let E be an admissible sequentially complete C-lcHs and A : F := D(A) ⊂
E → E a sequentially closed linear operator with admissible FA = (F, τA). The ACP (1)
has the uniqueness property (in the sense of hyperfunctions) if there is an asymptotic left
resolvent (Rα(t, A))α∈A such that

∀ α ∈ A ∃ γ ∈ A, k ∈ N, C3, C4 > 0 ∀ t ≥ tα, x ∈ E :
‖Rα(t, A)x‖α ≤ C3 pγ (x) and ‖Rγ

α (t, C)‖L(Eγ ,Fα) ≤ C4ekt (5)

where Rγ
α (t, A) : Eγ → Fα is the continuous linear extension of the map E/ ker pγ → Fα ,

x + ker pγ �→ Rα(t, A)x.

Proof Let h ∈ LO[0,∞](FA), v := (z − A)h ∈ LO{∞}(E), α ∈ A and m ∈ N. Then there
are γ ∈ A and k ∈ N, and for any n ∈ N, n > m, there is β ∈ A such that

‖κ F
α (h(t))‖α,A ≤

(3)

‖Rα(t, A)v(t)‖α,A + ‖Sα(t)h(t)‖α,A

≤ ‖Rγ
α (t, A)‖L(Eγ ,Fα) pγ (v(t)) + ‖Sβ

α (t)‖L(Fβ ,Fα) pβ,A(h(t))

≤
(4),(5)

C4ekt pγ (v(t)) + C2e−nt pβ,A(h(t))

for all t ≥ tα,n . It follows that

‖κ F
α (h(t))‖α,Aemt ≤ C4 pγ (v(t))e(k+m)t + C2 pβ,A(h(t))e(m−n)t

≤ C4 pγ (v(t))e− 1
k+m+1 t+(k+m+1)t + C2 pβ,A(h(t))e− 1

m t

≤ C4|v|k+m+1,γ,{∞} + C2|h|m,(β,A),[0,∞]

for all t ≥ tα,n , which implies for ε > 0

sup
t≥ε

‖κ F
α (h(t))‖α,Aemt

≤ emtα,n max
min(ε,tα,n)≤t≤tα,n

‖κ F
α (h(t))‖α,A + C4|v|k+m+1,γ,{∞} + C2|h|m,(β,A),[0,∞]

< ∞
where we use the continuity of ‖ ·‖α,A ◦κ F

α ◦h as well. Thus {h(t)emt | t ≥ ε} is bounded
in FA and we apply Theorem 3.2 (c). ��

Langenbruch also formulated a sufficient criterion [44, Theorem 7.3, p. 62] for the unique-
ness property by means of an asymptotic existence assumption for the dual operator, which
we improve next.

Theorem 3.4 Let E be an admissible sequentially complete C-lcHs and A : F := D(A) ⊂
E → E a sequentially closed linear operator with admissible FA = (F, τA). Then the ACP
(1) has the uniqueness property (in the sense of hyperfunctions) if for any y ∈ F ′

A and any
n ∈ N there are k ∈ N, α ∈ A, C1 > 0 and ty,n > 0 such that for any t ≥ ty,n there are
ỹy,n(t) ∈ E ′, sy,n(t) ∈ F ′

A, such that for all t ≥ ty,n and x ∈ E, z ∈ F it holds that

(t − At)ỹy,n(t) = y + sy,n(t), |〈ỹy,n(t), x〉| ≤ C1 pα(x)ekt ,

|〈sy,n(t), z〉| ≤ C1(pα(z) + pα(Az))e−nt .
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Proof Let h ∈ LO[0,∞](FA) and v := (z − A)h ∈ LO{∞}(E). Due to our assumption we
have for any y ∈ F ′

A and n ∈ N

〈y, h(t)〉 = 〈(t − At)ỹy,n(t), h(t)〉 − 〈sy,n(t), h(t)〉 = 〈ỹy,n(t), v(t)〉 − 〈sy,n(t), h(t)〉
for t ≥ ty,n , implying

|〈y, h(t)〉| ≤ C1 pα(v(t))ekt + C1(pα(h(t)) + pα(Ah(t)))e−nt .

Let m ∈ N and choose n ∈ N with n > m. Then we get

|〈y, h(t)〉|emt ≤ C1 pα(v(t))e(k+m)t + C1 pα,A(h(t))e(m−n)t

≤ C1 pα(v(t))e− 1
k+m+1 t+(k+m+1)t + C1 pα,A(h(t))e− 1

m t

≤ C1|v|k+m+1,α,{∞} + C1|h|m,(α,A),[0,∞],

for t ≥ ty,n , which yields for ε > 0

sup
t≥ε

|〈y, h(t)〉|emt

≤ emty,n max
min(ε,ty,n)≤t≤ty,n

|〈y, h(t)〉| + C1|v|k+m+1,α,{∞} + C1|h|m,(α,A),[0,∞] < ∞

where we use the continuity of y ◦ h as well. Therefore {h(t)emt | t ≥ ε} is weakly bounded
in FA for any m ∈ N and we apply Theorem 3.2 (c). ��

As an application of Theorem 3.4 we consider the uniqueness of the ACP in the setting
where E := F := s(N)′b with the nuclear Fréchet space

s(N) := {x ∈ C
N | ∀ p ∈ N : |x |s(N)

p := sup
i∈N

|xi |i p < ∞}

of rapidly decreasing sequences and A : F → E is a continuous linear operator. Since s(N) is
reflexive, we have (s(N)′b)′b = s(N) and At ∈ L(s(N)) for the dual map by [50, Proposition
23.30 (b), p. 274]. Due to [50, Exercises 4, p. 377] the map At is given by an infinite matrix
At = (ai j )i, j∈N ∈ C

N×N such that

∀ σ ∈ R ∃ s ∈ R, C > 0 ∀ i, j ∈ N : |ai j | ≤ C jsi−σ

because s(N) coincides with the power series space �∞((ln( j)) j∈N). We also consider the
ACP in the classical sense in our next theorem, i.e. the problem

x ′(t) = Ax(t), t > 0, x(0) = x0 ∈ s(N)′, (6)

where x ∈ C1([0,∞[, s(N)′b).

Theorem 3.5 Let A ∈ L(s(N)′b) and At the infinite matrix that represents At ∈ L(s(N)). Let

(At)l = (a(l)
i j )i, j∈N ∈ C

N×N for all l ∈ N. Consider the following statements:

(a) ∀ p ∈ N ∃ q ∈ N, C > 0 ∀ l, i, j ∈ N : |a(l)
i j | ≤ Cl jq i−p

(b) The ACP (1) has the uniqueness property (in the sense of hyperfunctions).
(c) The ACP (6) has the uniqueness property (in the classical sense).

We have the chain of implications (a) ⇒ (b) ⇒ (c).
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  155 Page 10 of 23 K. Kruse

Proof (a) ⇒ (b): We will use Theorem 3.4. The complete space E := F := s(N)′b is
admissible by Theorem 2.3 (c) and [10, Corollary 4.8, p. 1116]. Since A ∈ L(s(N)′b) and
s(N) is reflexive, we have (s(N)′b)A = s(N)′b and s(N) = (s(N)′b)′b. Let y = (y j ) j∈N ∈
(s(N)′b)′b = s(N) and set

Y (t)(m) :=
m∑

l=0

(At)l yt−l−1 = yt−1 +
m∑

l=1

⎛

⎝
∞∑

j=1

a(l)
i j y j

⎞

⎠

i∈N
t−l−1 ∈ s(N)

for m ∈ N0 and t > 0. We claim that (Y (t)(m))m∈N0 converges in s(N) if t is big enough.
We note that for any m, n ∈ N, m ≥ n, and i, k ∈ N it holds
∣
∣
∣
∣
∣
∣

m∑

l=n

∞∑

j=1

a(l)
i j y j t

−l−1

∣
∣
∣
∣
∣
∣
i p ≤

m∑

l=n

∞∑

j=1

|a(l)
i j ||y j |t−l−1i p ≤

m∑

l=n

∞∑

j=1

Cl jq i−p|y j |t−l−1i p

=
∞∑

j=1

jq |y j |
m∑

l=n

Cl t−l−1 ≤
∞∑

j=1

j−2 sup
r∈N

|yr |rq+2t−1
m∑

l=n

(
C

t

)l

= π2

6
‖y‖s(N)

q+2 t−1
m∑

l=n

(C

t

)l
, (7)

which implies that (Y (t)(m))m∈N0 is a Cauchy sequence in s(N) if t > C . Hence the limit

Y (t) := lim
m→∞ Y (t)(m) =

∞∑

l=0

(At)l yt−l−1 =
∞∑

l=0

⎛

⎝
∞∑

j=1

a(l)
i j y j

⎞

⎠

i∈N
t−l−1

exists in the complete space s(N) if t > C . Furthermore, we have

(t − At)Y (t)(m) = tY (t)(m) − AtY (t)(m) =
m∑

l=0

(At)l yt−l −
m∑

l=0

(At)l+1yt−l−1

= y − (At)m+1yt−m−1

as well as

|((At)m+1y)i |t−m−1i p ≤
∞∑

j=1

|a(m+1)
i j ||y j |t−m−1i p ≤

∞∑

j=1

Cm+1 jq i−p|y j |t−m−1i p

≤ π2

6
|y|s(N)

q+2

(C

t

)m+1

for all m ∈ N0 and t > 0, yielding that

(t − At)Y (t) = lim
m→∞(t − At)Y (t)(m) = y − lim

m→∞(At)m+1yt−m−1 = y

in s(N) if t > C . The topology of s(N)′b is induced by the seminorms

pB(x) := sup
w∈B

|x(w)|, x ∈ s(N)′,
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for bounded sets B ⊂ s(N). We remark that

|Y (t)|s(N)
p = sup

i∈N
|Y (t)i |i p ≤

(7)

sup
i∈N

t−1|yi |i p + π2

6
|y|s(N)

q+2 t−1
∞∑

l=1

(C

t

)l

= t−1|y|s(N)
p + π2

6
|y|s(N)

q+2

C
t

t(1 − C
t )

≤ 1

2C
|y|s(N)

p + π2

12C
|y|s(N)

q+2 =: K p

if t > 2C . Thus Y (t) ∈ {w ∈ s(N) | ∀ p ∈ N : |w|s(N)
p ≤ K p} =: B0 if t > 2C , and B0 is

a bounded set in s(N). So for x ∈ s(N)′ we have

|〈Y (t), x〉| = |x(Y (t))| ≤ sup
w∈B0

|x(w)| = pB0(x)

if t > 2C . Hence we may apply Theorem 3.4 with ty,n := 2C , ỹy,n := Y , sy,n := 0 for
n ∈ N as well as k := C1 := 1 and α := B0.

(b) ⇒ (c): Let x ∈ C1([0,∞[, s(N)′b) be a solution of the ACP (6) for x0 := 0. Then x
defines a hyperfunction [u] in B([0,∞[, s(N)′b) (for instance by [10, Theorem 6.9, p. 1125]
as in [24, Theorem 1.3.10, p. 25] and [24, Theorem 1.3.13 b), p. 31]) which solves (2) for
x0 = 0. Thus [u] = 0 by the uniqueness property in the sense of hyperfunctions, implying
x = 0 on [0,∞[. ��

4 Solvability of the ACP

Let us turn to the question of existence of a solution of the ACP (1). Following [44, p. 64], this
boils down to solving the equation (λ− A)S(λ) = x0 only approximately near the half-circle
S∞ := {∞eiϕ | |ϕ| < π

2 } at ∞, and the approximate solution is needed only in the local
Banach spaces of FA = (F, τA). The precise characterisation of existence of a solution given
in Theorem 4.3 below uses the Laplace transform of E-valued Laplace hyperfunctions from
[11]. We recall what is needed. Let

H := lim−→
K∈N

(
lim←−
k∈N

HK ,k
)

be the inductive limit of the projective limit lim←−
k∈N

HK ,k where

HK ,k := { f ∈ O(�K ) | ‖ f ‖H
K ,k := sup

z∈�K

| f (z)|ek Re(z) < ∞}

and

�K :=
{

z ∈ C | | Im(z)| <
Re(z)

K
+ 1

K 2

}

(see Fig. 2). By [11,Definition 2.3, p. 133] an E-valuedLaplace hyperfunction (in the sense
of Domański and Langenbruch) is a continuous linear operator T : H → E for complete
E . Its Laplace transform L (T ) is not a single holomorphic function but a compatible fam-
ily of holomorphic functions, a so-called spectral-valued holomorphic function, for whose
definition we need to direct the index set A of the seminorms of E first.

Let E be a completeC-lcHswith adirected systemof seminorms (pα)α∈A, i.e. forα, β ∈ A

there are γ ∈ A and C1 > 0 such that max(pα, pβ) ≤ C1 pγ . We write α ≤ β for α, β ∈ A

if there is C2 > 0 such pα ≤ C2 pβ . Then ≤ is a preorder on A and (A,≤) a directed set due
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  155 Page 12 of 23 K. Kruse

Fig. 2 �K for K ∈ N

Fig. 3 �r ,ϕ for 0 < ϕ < π
2 and

r ≥ 0 (cf. [38, Figure 1.11, p.
111])

Γr,ϕ

ϕ

r

Re(λ)

Im(λ)

to the system of seminorms being directed. Furthermore, for α, β ∈ Awith α ≤ β we denote
by κ

β
α : Eβ → Eα the linking maps of the local Banach spaces, which are the continuous

linear extensions of the maps E/ ker pα → E/ ker pβ , x + ker pα �→ x + ker pβ , and
by κ E

α : E → Eα , x �→ x + ker pα , the spectral maps. With these definitions E becomes a
projective limit of its local Banach spaces Eα , i.e. E = lim←− α∈AEα (see [23, p. 151–152]).

Let E := (Eα)α∈A, and G := (Gα)α∈A be a directed family of non-empty domains in
C, i.e. they are open and connected sets and Gβ ⊂ Gα for α ≤ β (see [11, p. 131]). By
[11, Definition 2.1, p. 132] a family S := (Sα)α∈A is called a spectral-valued (or E-valued)
holomorphic function (denoted by S : G → E) if

(i) Sα : Gα → Eα is holomorphic for all α ∈ A, and
(ii) (compatibility) ∀ α, β ∈ A, α ≤ β : κ

β
α ◦ Sβ = Sα |Gβ

.

For 0 < ϕ < π
2 and r ≥ 0 we set

�r ,ϕ := {ρeiψ | ρ ≥ r , |ψ | ≤ ϕ}.
An open set U ⊂ C is called postsectorial (see [47, p. 37], [48, p. 150]) if

∀ 0 < ϕ <
π

2
∃ r > 0 : �r ,ϕ ⊂ U

(see Fig. 3). Further, we define the set Hexp(E) of all E-valued holomorphic functions
S : G → E where G consists of postsectorial domains and

∀ α ∈ A, K ∈ N, 0 < ϕ < π
2 ∃ r > 0 : �r ,ϕ ⊂ Gα and sup

λ∈�r,ϕ

‖Sα(λ)‖αe− 1
K Re(λ) < ∞

(see [11, Definition 2.6, p. 134]). Considering the elements of Hexp(E) as germs near S∞,
we note that Hexp(E) is a vector space canonically.
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Fig. 4 VK ,k for K , k ∈ N

VK,k

−K

K

k k + 1
Re(λ)

Im(λ)

Theorem 4.1 [11, Theorem 2.4, p. 134, Corollary 3.5, p. 145] Let E be a complete C-lcHs
which is the projective limit of a spectrum of Banach spaces E := (Eα)α∈A. Then the Laplace
transform L : L(H , E) → Hexp(E) is a linear bijection such that L ( d

dt T ) = λL (T ).

Remark 4.2 The definition of Hexp(E) in [11, Definition 2.6, p. 134] is actually phrased with
a family G of conoidal sets. An open set G ⊂ C is called conoidal if for every K ∈ N there
is k ∈ N such that

VK ,k :=
{
λ ∈ C | Re(λ) > k + | Im(λ)|

K

}
⊂ G

(see [11, Definition 2.7, p. 134] and Fig. 4). We note that an open set G ⊂ C is conoidal if
and only if G is postsectorial.

Proof First, we observe thatVK ,k = k+�0,ϕ(K ) withϕ(K ) := arctan(K ) for every K , k ∈ N.
Let G be conoidal and 0 < ϕ < π

2 . We choose K ∈ N such that ϕ(K ) > ϕ. Then there are
k ∈ N and r > 0 with �r ,ϕ ⊂ k + �0,ϕ(K ) = VK ,k ⊂ G because G is conoidal.

Let G be postsectorial and K ∈ N. Then 0 < ϕ(K ) < π
2 and there is r > 0 such that

�r ,ϕ(K ) ⊂ G. We choose k ∈ N with k > r and get VK ,k = k + �0,ϕ(K ) ⊂ �r ,ϕ(K ) ⊂ G. ��

Let E be as above and A : F := D(A) ⊂ E → E a closed linear operator. We equip F
with the graph topology τA, which makes it a complete space. We denote by κ

β
α : Fβ → Fα

for α, β ∈ A with α ≤ β the linking maps of its local Banach spaces. Then FA = (F, τA)

is a projective limit of its local Banach spaces Fα . By the definition of the graph topology
the map A : FA → E is continuous and for any α ∈ A there are β ∈ A and C1 > 0 such
that pα(Ax) ≤ C1 pβ,A(x) for all x ∈ F (e.g. any β ∈ A with α ≤ β). This defines a

continuous linear operator Aβ
α : Fβ → Eα as the extension of the continuous linear map

F/ ker pβ,A → E/ ker pα , x + ker pβ,A �→ Ax + ker pα (well-defined because ker pβ,A ⊂
ker pα ◦ A). Moreover, we call I β

α : Fβ → Eα the continuous linear extension of the map
F/ ker pβ,A → E/ ker pα , x + ker pβ,A �→ x + ker pα , for α ≤ β (well-defined because
α ≤ β implies ker pβ,A ⊂ ker pα).

Theorem 4.3 Let E be an admissible complete C-lcHs with local Banach spaces E :=
(Eα)α∈A, let A : F := D(A) ⊂ E → E be a closed linear operator and FA = (F, τA)

admissible with local Banach spaces F := (Fα)α∈A. For x0 ∈ E the following are equiva-
lent:

(a) The ACP (1) has a solution (in the sense of hyperfunctions).
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(b) There is a spectral-valued holomorphic function S := (Sα)α∈A ∈ Hexp(F) such that for
any α ∈ A there is β ∈ A, α ≤ β, such that

sβ
α : Gβ → Eα, sβ

α (λ) := (λI β
α − Aβ

α)Sβ(λ) − κ E
α (x0), (8)

is well-defined and

∀ j ∈ N, 0 < ϕ < π
2 ∃ r > 0 : �r ,ϕ ⊂ Gβ and sup

λ∈�r,ϕ

‖sβ
α (λ)‖αe j Re(λ)− 1

j | Im(λ)|
< ∞.

(9)

Proof (a) ⇒ (b): Let [u] ∈ B([0,∞[, FA) be a solution of (2) and [h] := LB([u]) ∈
LO[0,∞](FA)/LO{∞}(FA). It follows that

(λ − A)[h] = LB(x0 ⊗ δ0) = [x0]
in LO[0,∞](E)/LO{∞}(E). We set Gα := CRe>0 and Sα := κ F

α ◦ h for α ∈ A. Then there
is f ∈ LO{∞}(E) such that with β = α

κ E
α (x0) + sα

α (λ) = (λI α
α − Aα

α)Sα(λ) = (λI α
α − Aα

α)κ F
α (h(λ))

= (λI α
α − Aα

α)(h(λ) + ker pα,A) = λh(λ) − Ah(λ) + ker pα

= (λ − A)h(λ) + ker pα = x0 + f (λ) + ker pα = κ E
α (x0) + f (λ)

and thus sα
α (λ) = f (λ) for λ ∈ Gα . Let j ∈ N and 0 < ϕ < π

2 . We note that �r ,ϕ ⊂ Gα for
any r > 0 and with k ∈ N such that 1

k ≤ r and k ≥ j we obtain

sup
λ∈�r,ϕ

‖sα
α (λ)‖αe j Re(λ)− 1

j | Im(λ)| ≤ sup
Re(λ)≥ 1

k

pα( f (λ))e j |Re(λ)|− 1
j |λ|+ 1

j |Re(λ)|

≤ sup
Re(λ)≥ 1

k

pα( f (λ))e− 1
j+1 |λ|+( j+1)|Re(λ)|

≤ | f |k+1,α,{∞}.

(b) ⇒ (a): First, we observe that for α, β ∈ A with α ≤ β the map sβ
α : Gβ → Eα is

well-defined by our considerations above this theorem. In addition, sβ
α is holomorphic on Gβ

because I β
α and Aβ

α are linear and continuous and Sβ holomorphic by (i). We observe that for
λ ∈ Gβ there is (hn(λ))n∈N in F such that Sβ(λ) = limn→∞(hn(λ) + ker pβ,A) in Fβ and

sβ
α (λ) + κ E

α (x0) = (λI β
α − Aβ

α)Sβ(λ) = lim
n→∞((λ − A)hn(λ) + ker pα). (10)

Now, we want to construct an E-valued holomorphic function s̃ on a suitable family G̃ of
postsectorial domains using our maps sβ

α . For α ∈ A we set

Mα := {β ∈ A | α ≤ β and (9) is satisfied} and G̃α :=
⋃

β∈Mα

Gβ .

The sets G̃α ⊂ C are non-empty by assumption as well as open, connected and postsectorial
as they are unions of such sets. Next, we show that Mα ⊂ Mγ for α, γ ∈ A with γ ≤ α,
which then implies G̃α ⊂ G̃γ and means that G̃ := (G̃α)α∈A is directed. Let β ∈ Mα . Then
γ ≤ β and it holds by (10) that
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κα
γ (sβ

α (λ)) + κ E
γ (x0) = κα

γ (sβ
α (λ) + κ E

α (x0)) = lim
n→∞ κα

γ ((λ − A)hn(λ) + ker pα)

= lim
n→∞((λ − A)hn(λ) + ker pγ ) = sβ

γ (λ) + κ E
γ (x0)

and thus κα
γ (sβ

α (λ)) = sβ
γ (λ) for λ ∈ Gβ . We deduce that there is C1 > 0 such that

‖sβ
γ (λ)‖γ ≤ C1‖sβ

α (λ)‖α for any λ ∈ Gβ from the continuity of κα
γ : Eα → Eγ . There-

fore sβ
γ satisfies the estimate (9) with α replaced by γ , which means that β ∈ Mγ .

Now, let β1, β2 ∈ Mα . Then ∅ �= (Gβ1 ∩ Gβ2) ⊂ Gα as α ≤ β1, β2 and G is directed
and consists of postsectorial sets. For λ ∈ Gβ1 ∩ Gβ2 there are (hi,n(λ))n∈N in F such that
Sβi (λ) = limn→∞(hi,n(λ) + ker pβi ,C ) in Fβi and

sβi
α (λ) + κ E

α (x0) = lim
n→∞((λ − A)hi,n(λ) + ker pα)

by (10) for i = 1, 2. Due to the compatibility (ii) for S we get

Sα(λ) =
(i i)

(κβi
α ◦ Sβi )(λ) = lim

n→∞(hi,n(λ) + ker pα,A)

for i = 1, 2, which yields limn→∞(h1,n(λ) − h2,n(λ) + ker pα,A) = 0 in Fα and thus in
(F/ ker pα,A) as well. It follows that limn→∞(h1,n(λ) − h2,n(λ)) ∈ ker pα,A and so

sβ1
α (λ) − sβ2

α (λ) = (λ − A)( lim
n→∞(h1,n(λ) − h2,n(λ))) + ker pα = ker pα,

implying sβ1
α = sβ2

α on Gβ1 ∩ Gβ2 . Therefore the map s̃α : G̃α → Eα given by s̃α := sβ
α

on Gβ for β ∈ Mα is well-defined and holomorphic on G̃α . This gives us (i) for s̃ :=
(̃sα)α∈A : G̃ → E .

Let us turn to the compatibility condition (ii) for s̃. Let α, γ ∈ A with α ≤ γ . Then for
any β ∈ Mγ ⊂ Mα and λ ∈ Gβ we have by (10)

(κγ
α ◦ s̃γ )(λ) = (κγ

α ◦ sβ
γ )(λ) = lim

n→∞ κγ
α ((λ − A)hn(λ) − x0 + ker pγ )

= lim
n→∞((λ − A)hn(λ) − x0 + ker pα) = sβ

α (λ) = s̃α(λ)

and we conclude that s̃ fulfils (ii) and is an E-valued holomorphic function.
Let α ∈ A, K ∈ N and 0 < ϕ < π

2 and choose β ∈ Mα . Due to (9) for j = 2 there is
r > 0 such that �r ,ϕ ⊂ Gβ ⊂ G̃α . We observe that for λ ∈ �r ,ϕ it holds that Re(λ) > 0 and

− 1

K
Re(λ) ≤ 1

2
| Im(λ)| − 1

2
| Im(λ)| ≤ arctan(ϕ)

2
Re(λ) − 1

2
| Im(λ)|

≤ 2Re(λ) − 1

2
| Im(λ)|,

which implies

sup
λ∈�r,ϕ

‖̃sα(λ)‖αe− 1
K Re(λ) ≤ sup

λ∈�r,ϕ

‖sβ
α (λ)‖αe2Re(λ)− 1

2 | Im(λ)| < ∞.

We conclude that s̃ ∈ Hexp(E).
By Theorem 4.1 and the definition of s̃ in connection with (8) there are T ∈ L(H , FA)

and T̃ ∈ L(H , E) such that L (T ) = S and L (T̃ ) = s̃ as well as
( d

dt
− A

)
T = x0 ⊗ δ0 + T̃ (11)
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where δ0 is the Dirac distribution, i.e. δ0( f ) := f (0), and (x0 ⊗ δ0)( f ) := x0 f (0) for
f ∈ H . As in [44, Theorem7.6, p. 65]we translate this equation fromLaplace hyperfunctions

to hyperfunctions using the functions fλ(t) := −1
2π i

e(t−λ)2

t−λ
for λ /∈ [0,∞[. Since fλ ∈ H (for

every λ /∈ [0,∞[ there is K ∈ N such that λ /∈ �K ), the functions

uT : C \ [0,∞[→ FA, uT (λ) := 〈T , fλ〉,
and analogously uT̃ : C \ [0,∞[→ E are defined. The difference quotients of fλ w.r.t. λ

converge in H , which yields that uT is holomorphic and

d

dλ
uT (λ) =

〈
T ,

d

dλ
fλ

〉
=

〈
T ,− d

dt
fλ

〉
=

〈 d

dt
T , fλ

〉
, λ ∈ C \ [0,∞[.

Hence we get for λ ∈ C \ [0,∞[
( d

dλ
− A

)
uT (λ) =

〈( d

dt
− A

)
T , fλ

〉
=

(11)
〈x0 ⊗ δt=0 + T̃ , fλ〉 = x0

−1
2π i

eλ2

−λ
+ uT̃ (λ)

= −x0 f0(λ) + uT̃ (λ) = (x0 ⊗ (− f0))(λ) + uT̃ (λ).

Since [− f0] = −δ0 in B([0,∞[) by [38, 4.11 Example, p. 96], we only need to show that
uT̃ ∈ O(C, E) because then −[uT ] ∈ B([0,∞[, FA) is a solution of the ACP (1). Now, we
repeat the argument from [44, Theorem 7.6, p. 65]. For j ∈ N and R ∈ L(H , E) we set
〈τ− j R, f 〉 := 〈R, f (· + j)〉 for f ∈ H . Then

L (τ− j R) = e− j(·)L (R) (12)

by the definition of the Laplace transformL in [11, p. 133–134]. It follows from (9) that
e j(·)s̃ ∈ Hexp(E) and thus there exists T̃ j ∈ L(H , E) such that L (T̃ j ) = e j(·)s̃ by Theorem
4.1, implying

L (τ− j T̃ j ) =
(12)

e− j(·)L (T̃ j ) = s̃ = L (T̃ )

and therefore τ− j T̃ j = T̃ by Theorem 4.1 again. We deduce for any j ∈ N that

uT̃ (λ) = 〈τ− j T̃ j , fλ〉 = 〈T̃ j , fλ(· + j)〉 = 〈T̃ j , fλ− j 〉
is holomorphic for λ /∈ [ j,∞[ because T̃ j ∈ L(H , E), which proves our statement. ��

Our next goal is to generalise Langenbruch’s sufficient criterion [44, Theorem 7.7, p. 66]
for the solvability of the ACP (1), which is done by using a suitable notion of an asymptotic
right resolvent. Let E be a complete C-lcHs and A : F := D(A) ⊂ E → E a closed linear
operator. If E is bornological, i.e.

E = lim−→
B∈BE

EB

where BE is the system of bounded closed absolutely convex subsets of E and EB :=
span(B) equipped with the gauge norm induced byB ∈ BE , then the topological identities

Lb(E, E) = lim←−
(B ,α)∈BE ×A

L(EB , Eα) and Lb(E, FA) = lim←−
(B ,α)∈BE ×A

L(EB , Fα)

hold by [11, p. 136–137]. Thismeans that the localBanach spaces of Lb(E, E) and Lb(E, FA)

are the spaces L(EB , Eα) and L(EB , Fα) equipped with the operator norm, respectively.
We set C := BE × A. A spectral-valued holomorphic operator function

R := (RA ,α)(A ,α)∈C : G := (GA ,α)(A ,α)∈C → L(E, FA) := (L(EA , Fα))(A ,α)∈C
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is called an asymptotic right resolvent ifR ∈ Hexp(L(E, FA)) and if there is a spectral-valued
holomorphic function

T := (TA ,α)(A ,α)∈C : G̃ := (G̃A ,α)(A ,α)∈C → L(E) := (L(EA , Eα))(A ,α)∈C
such that for any (A , α) ∈ C there is (B, β) ∈ C, (A , α) ≤ (B, β), such that

(λI β
α − Aβ

α)RB ,β(λ) = κ E
α |EB

+ TB ,α(λ), λ ∈ GB ,β ∩ G̃B ,α, (13)

and for any j ∈ N and any 0 < ϕ < π
2 there is r > 0 with �r ,ϕ ⊂ (GB ,β ∩ G̃B ,α) and

sup
λ∈�r,ϕ

‖TB,α(λ)‖L(EB ,Eα)e
j Re(λ)− 1

j | Im(λ)|
< ∞. (14)

Theorem 4.4 Let E be an admissible complete bornological C-lcHs and A : F := D(A) ⊂
E → E a closed linear operator and FA = (F, τA) admissible. The ACP (1) has a solution
(in the sense of hyperfunctions) for any x0 ∈ E if A admits an asymptotic right resolvent.

Proof In order to apply Theorem 4.3 we have to construct a suitable spectral-valued holo-
morphic function S := (Sα)α∈A ∈ Hexp(F). For x0 ∈ E we choose A ∈ BE such that
x0 ∈ A . For α ∈ A we set

Mα := {(B, β) ∈ C | (A , α) ≤ (B, β), (13) and (14) are satisfied}
and

Gα :=
⋃

(B ,β)∈Mα

(GB ,β ∩ G̃B ,α).

The sets Gα ⊂ C are non-empty by assumption as well as open, connected and postsectorial
as they are unions of such sets. Next, we show that Mα ⊂ Mγ for α, γ ∈ A with γ ≤ α,
which then implies Gα ⊂ Gγ and means that G0 := (Gα)α∈A is directed. Let (B, β) ∈ Mα .
Then (A , γ ) ≤ (B, β) and we note that

κ
B ,α
B ,γ ( f ) = κα

γ ◦ f (15)

for all f ∈ L(EB , Eα) where κ
B ,α
B ,γ : L(EB , Eα) → L(EB , Eγ ) is the linking map of

the local Banach spaces. It holds by (13) and the compatibility condition (ii) for T that

(λI β
γ − Aβ

γ )RB ,β(λ) = κα
γ (λI β

α − Aβ
α)RB ,β(λ) = κα

γ (κ E
α |EB

+ TB ,α(λ))

= κ E
γ |EB

+ κα
γ ◦ TB ,α(λ) =

(i i),(15)

κ E
γ |EB

+ TB ,γ (λ) (16)

for all λ ∈ GB ,β ∩ G̃B ,α . Since (GB ,β ∩ G̃B ,α) ⊂ (GB ,β ∩ G̃B ,γ ), the identity
theorem implies that (16) holds on the connected set GB ,β ∩ G̃B ,γ as well. Moreover, from
the inclusion (GB ,β ∩ G̃B ,α) ⊂ (GB ,β ∩ G̃B ,γ ) and TB ,γ (λ) = (κα

γ ◦ TB ,α)(λ) for all

λ ∈ G̃B ,α it follows that (14) holds with α replaced by γ too. Hence (B, β) ∈ Mγ , implying
Mα ⊂ Mγ .

Now, let (B1, β1), (B2, β2) ∈ Mα . Then ∅ �= (GB1,β1 ∩ GB2,β2) ⊂ GA ,α and the
compatibility (ii) for R yields

〈κβi
α ◦ RB i ,βi (λ), x0〉 = 〈(κB i ,βi

A ,α ◦ RB i ,βi )(λ), x0〉 =
(i i)

RA ,α(λ)(x0)

for all λ ∈ GB i ,βi and i = 1, 2 where κ
B i ,βi
A ,α : L(EB i , Fβi ) → L(EA , Fα) is the linking

map of the local Banach spaces. This implies 〈κβ1
α ◦ RB1,β1(λ), x0〉 = 〈κβ2

α ◦ RB2,β2(λ), x0〉
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for all λ ∈ GB1,β1 ∩ GB2,β2 . Therefore the map Sα : Gα → Fα given by Sα(λ) := 〈κβ
α ◦

RB ,β(λ), x0〉 on GB ,β ∩ G̃B ,α for (B, β) ∈ Mα is well-defined and holomorphic on Gα .
This gives us (i) for S := (Sα)α∈A : G0 → F .

Let us turn to the compatibility condition (ii) for S. Let α, γ ∈ A with α ≤ γ . Then for
any (B, β) ∈ Mγ ⊂ Mα and λ ∈ GB ,β ∩ G̃B ,α we have

(κγ
α ◦ Sγ )(λ) = 〈κγ

α ◦ κβ
γ ◦ RB ,β(λ), x0〉 = 〈κβ

α ◦ RB ,β(λ), x0〉 = Sα(λ).

We derive that S fulfils (ii) and is an F-valued holomorphic function.
SinceR ∈ Hexp(L(E, FA)), for (B, β) ∈ Mα and any K ∈ N and any 0 < ϕ < π

2 , there
is r > 0 such that �r ,ϕ ⊂ GB ,β and

sup
λ∈�r,ϕ

‖RB ,β(λ)‖L(EB ,Fβ )e
− 1

K Re(λ) < ∞.

The set GB ,β ∩ G̃B ,α is postsectorial and so there is t ≥ r with �t,ϕ ⊂ �r ,ϕ and �t,ϕ ⊂
(GB ,β ∩ G̃B ,α). We remark that the continuity of κ

β
α implies that there is C1 > 0 such that

‖Sα(λ)‖α = ‖〈κβ
α ◦ RB ,β(λ), x0〉‖α ≤ C1‖RB ,β(λ)x0‖β,A

≤ C1‖RB ,β(λ)‖L(EB ,Fβ )‖x0‖EB

for all λ ∈ GB ,β ∩ G̃B ,α . It follows that

sup
λ∈�t,ϕ

‖Sα(λ)‖αe− 1
K Re(λ) ≤ C1‖x0‖EB sup

λ∈�r,ϕ

‖RB ,β(λ)‖L(EB ,Fβ )e
− 1

K Re(λ) < ∞

and we conclude that S ∈ Hexp(F).

We define sβ
α : Gβ → Eα for β with (B, β) ∈ Mα by (8) as before and note that for

(B1, γ ) ∈ Mβ ⊂ Mα

sβ
α (λ) = (λI β

α − Aβ
α)Sβ(λ) − κ E

α (x0) = (λI β
α − Aβ

α)κ
γ
β RB1,γ (λ)x0 − κ E

α (x0)

= (λI γ
α − Aγ

α )RB1,γ (λ)x0 − κ E
α (x0) =

(13)
κ E
α (x0) + TB1,α(λ)x0 − κ E

α (x0)

= TB1,α(λ)x0

for all λ ∈ (GB1,γ ∩ G̃B1,β) ⊂ (GB1,γ ∩ G̃B1,α). As (B1, γ ) ∈ Mβ , for any j ∈ N and
any 0 < ϕ < π

2 there is r > 0 with �r ,ϕ ⊂ (GB1,γ ∩ G̃B1,β) and

sup
λ∈�r,ϕ

‖TB1,β(λ)‖L(EB 1
,Eβ )e

j Re(λ)− 1
j | Im(λ)|

< ∞. (17)

From the compatibility condition (ii) of T we deduce that

sβ
α (λ) = TB1,α(λ)x0 = 〈(κB1,β

B1,α
◦ TB1,β)(λ), x0〉

for all λ ∈ GB1,γ ∩G̃B1,β where κ
B1,β

B1,α
: L(EB1 , Eβ) → L(EB1 , Eα) is the linkingmap

of the local Banach spaces. The continuity of the linking map implies that there is C2 > 0
such that

‖sβ
α (λ)‖α = ‖〈(κB1,β

B1,α
◦ TB1,β)(λ), x0〉‖α ≤ C2‖TB1,β(λ)x0‖β

≤ C2‖TB1,β(λ)‖L(EB 1
,Eβ )‖x0‖EB 1

for all λ ∈ GB1,γ ∩ G̃B1,β . In combination with (17) we get (9). Applying Theorem 4.3,
we obtain our statement. ��
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We illustrate Theorem 4.3 by an application to the one-dimensional heat equation in the
space of tempered distributions. Let S(R) be the Schwartz space, i.e.

S(R) := { f ∈ C∞(R) | ∀ n ∈ N0 : | f |S(R)
n < ∞}

where

| f |S(R)
n := sup

x∈R
m∈N0,m≤n

| f (m)(x)|(1 + |x |2)n/2.

Further, we equip the space C∞(R)with its usual topology of uniform convergence of partial
derivatives up to any order on compact subsets of R.

Theorem 4.5 Let x0 ∈ C∞(R)′. Then the ACP

x ′(t) = �x(t), t > 0, x(0) = x0,

has a solution x ∈ B([0,∞[,S(R)′b) in the sense of hyperfunctions.

Proof We set f : CRe>0 × R → C, f (λ, s) := 1
2
√

λ
e−√

λ|s|, where
√· is the principal

square root, i.e.
√

λ = √|λ|(cos( arg(λ)
2 )+ i sin( arg(λ)

2 ))with the principal argument arg(λ) ∈
(−π

2 , π
2 ) for λ ∈ CRe>0. Then f (λ, ·) is continuous and thus Borel-measurable for all

λ ∈ CRe>0 and
∫

R

| f (λ, s)|ds = 1

2
√|λ|

∫

R

e−√|λ| cos( arg(λ)
2 )|s|ds ≤ 1

2
√|λ|

∫

R

e−
√

|λ|
2 |s|ds =

√
2

|λ| , (18)

which means that f (λ, ·) ∈ L1(R,C) for all λ ∈ CRe>0. Therefore the distributional
convolution f (λ, ·) ∗ x0 ∈ S(R)′ for all λ ∈ CRe>0 by [17, Theorem 7.1.15, p. 166] where

〈 f (λ, ·) ∗ x0, ψ〉 := 〈 f (λ, ·), x̌0 ∗ ψ〉 =
∫

R

f (λ, s)(x̌0 ∗ ψ)(s)ds

and

(x̌0 ∗ ψ)(s) := 〈x0, ψ(s + ·)〉, s ∈ R,

for ψ ∈ S(R). The map λ �→ 〈 f (λ, ·) ∗ x0, ψ〉 is holomorphic for all ψ ∈ S(R) by
differentiation under the integral w.r.t. the parameter λ due to (18) and [13, 5.8 Satz, p.

148–149] with the majorant gK (s) := 1
2
√

CK
e−

√
CK
2 |s||(x̌0 ∗ ψ)(s)|, s ∈ R, where CK :=

minλ∈K |λ| for any compact disc K ⊂ CRe>0. As S(R) is reflexive and S(R)′b complete,
this means that λ �→ f (λ, ·) ∗ x0 is weakly holomorpic and thus holomorphic, i.e. (λ �→
f (λ, ·)∗x0) ∈ O(CRe>0,S(R)′b), by [21, 16.7.2 Theorem, p. 362–363]. Since x0 ∈ C∞(R)′,
there are C0 ≥ 0 and n ∈ N0 such that for all λ ∈ CRe>0 and ψ ∈ S(R) we have

|〈 f (λ, ·) ∗ x0, ψ〉| =
∣
∣
∣
∣

∫

R

f (λ, s)(x̌0 ∗ ψ)(s)ds

∣
∣
∣
∣

≤
√
2

|λ| sups∈R
|(x̌0 ∗ ψ)(s)| ≤

√
2C0

|λ| sup
s∈R

sup
y∈[−n,n]

m≤n

|ψ(m)(s + y)|

≤
√
2C0

|λ| sup
s∈R
m≤n

|ψ(m)(s)|(1 + |s|2) n
2 =

√
2C0

|λ| |ψ |S(R)
n ,

123



  155 Page 20 of 23 K. Kruse

implying for every bounded set β ⊂ S(R) that

sup
ψ∈β

|〈 f (λ, ·) ∗ x0, ψ〉| ≤
√
2C0

|λ| sup
ψ∈β

|ψ |S(R)
n =

√
2C0Cn,β

|λ|
with Cn,β := supψ∈β |ψ |Sn < ∞. We deduce that for all bounded sets β ⊂ S(R), K ∈ N,
0 < ϕ < π

2 and any r ≥ 1 it holds that �r ,ϕ ⊂ CRe>0 and

sup
λ∈�r,ϕ

sup
ψ∈β

|〈 f (λ, ·) ∗ x0, ψ〉|e− 1
K Re(λ) ≤ sup

λ∈�r,ϕ

sup
ψ∈β

|〈 f (λ, ·) ∗ x0, ψ〉||λ|

≤ √
2C0Cn,β < ∞. (19)

Furthermore, we have

(λ − �)( f (λ, ·) ∗ x0) = ((λ − �) f (λ, ·)) ∗ x0 = δs=0 ∗ x0 = x0 (20)

for all λ ∈ CRe>0 (cf. [31, p. 249–251]). The complete space E := F := S(R)′b is admissible
by [35, Example 4.4, p. 14–15], � : E → F continuous, in particular F = F�, and x0 ∈
C∞(R)′ ⊂ S(R)′ as linear spaces. Setting Sβ(λ) := κ E

β ( f (λ, ·) ∗ x0) for λ ∈ Gβ := CRe>0

and

sβ
α (λ) := (λI β

α − �β
α)Sβ(λ) − κ E

α (x0) =
(20)

0, λ ∈ Gβ,

for bounded sets α, β ⊂ S(R) with α ⊂ β, we conclude the existence of a solution x ∈
B([0,∞[,S(R)′b) in the sense of hyperfunctions from Theorem 4.3 and (19). ��
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