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The paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method
and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady
viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort
aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without compromising the
predictive accuracy. Accordingly, the viscous method is used to calculate the global flow field, while the inviscid method predicts
the forces acting on the propeller. The corresponding reaction forces are employed as body forces to mimic the propeller influence
on the viscous flow field. Examples included refer to simple verification cases for an isolated propeller blade, open-water validation
simulations for a complete propeller, and more challenging investigations of a manoeuvring vessel in seaways. Reported results
reveal a fair predictive agreement between the coupled approach and fully viscous simulations and display the efficiency of the

coupled approach.

1. Introduction

The design of propellers is usually confined to the analysis of
open-water, deeply submerged, and steady-state conditions.
When attention is directed to the dynamics of ships operating
in harsh conditions, for example, offshore supply vessels,
a more sophisticated investigation might be necessary to
adequately determine the propeller loads. Offshore supply
vessels are frequently employed with pod propulsors and
feature a pronounced influence of the ship, the pod housing,
and the free surface on the blade loads when the ship is
exposed to heavy seas. Such complex phenomena can only
be addressed by (at least) Reynolds-averaged Navier-Stokes
(RANS) simulation methods for turbulent flows, which are
fairly expensive due to the wide range of involved time
scales. Hence, only few examples associated to propeller
operations behind a ship (e.g., Carrica et al. [1]) or off-
design conditions (e.g., Sileo and Steen [2]) were reported
for viscous flow simulations. Furthermore, multiple domain
approaches using sliding or overlapping grid techniques (see,

e.g., Muscari and Di Mascio [3]) are necessary to simulate
the relative motions between propeller and the hull. On the
contrary, methods based on the potential-flow theory are not
able to predict the frictional contributions to the wake flow
and cannot therefore be used for the simulation of propeller
flows in behind conditions.

A viable solution to reduce the computational effort
without compromising the predictive accuracy is to couple
a potential-flow method for the analysis of the propeller with
a RANS method for the simulation of the flow around the
vessel in seaways.

The basic coupling principle is fairly mature, thus
only few examples are mentioned here. First approaches
to model propeller effects by means of a force field in
an inviscid flow have been described as early as 1972 by
Sparenberg [4, 5], who aimed to find the optimum actuator
disc for a given thrust. Schetz and Favin [6, 7] reported
attempts to model propeller forces in an axisymmetric flow
field employing a one-way coupling to the Navier-Stokes
equations in a stream-function formulation. A more general



two-way coupling was firstly reported by Stern et al. in 1988
[8]. Computations were performed in steady-state based
on circumferential averages of the propeller forces. The
propeller forces were determined by a vortex-lattice lifting-
surface method and adjusted to the flow field upstreaming
the propeller in an iterative procedure.

Several two-way coupling approaches with different
levels of complexity have recently been developed. Typically
the ship and the appendages are resolved (i.e., geometrically
modeled) by the RANS mesh, and the effect of the propeller
is computed externally to limit the computational and
mesh generation effort. In most cases, steady potential-flow
methods or even more simple assumptions, for example,
prescribed force parameterisations [9] are used to determine
the propeller influence.

An example for such an approach was presented by
Phillips et al. [10]. The authors describe a coupling proce-
dure using the blade element momentum theory (BEMT)
to model the propeller forces. These forces are applied in a
RANS domain with a ship hull and a rudder included. An
averaged RANS-calculated nominal wake fraction evaluated
at prescribed radial positions serves as input to the BEMT.
The calculated thrust and torque values obtained from the
BEMT are transformed into radius-averaged momentum
source terms acting in a cylindrical region at the propeller
position inside the RANS domain. With these body forces,
the steady RANS simulation is iterated to convergence. The
authors employ the method to compute the forces acting on
a rudder with fair accuracy.

Another possibility to model the propeller forces in
a RANS computation is described by Miiller et al. [11].
The authors compare the performance of a coefficient-
based force model with a geometrically resolved propeller.
The propeller influence is not computed from an inviscid
numerical analysis but modeled based on established force
coefficients evaluated in different sections of the blade. They
studied the influence of the propeller representation on
the velocity distribution in the aft ship region as well as
the associated computational and grid-generation efforts.
Good accuracy was observed for the velocity distributions
in conjunction with a significantly smaller computational
effort for the simulations with the propeller model due to
the smaller and nonsliding grids. In the approach of Miiller,
a simplified velocity distribution located at a short-distance
upstream, the propeller serves as input for the coefficient
model. The thrust and torque contributions are determined
for prescribed radial blade sections. The propeller model thus
considers the variation of the thrust and torque in radial and
circumferential direction but not the actual blade positions.

The present paper reports the development and appli-
cation of a coupling procedure between a RANS method
and a boundary element method (BEM) with respect to
pronounced unsteady behavior of the propeller thrust and
torque due to large amplitude ship motions. To achieve
this the time-accurate propeller loads computed by the
inviscid method are applied to the RANS method without
any circumferential or radial averaging. Additionally, no
rotating meshes are required to simulate the propeller and
significantly smaller grids for the RANS simulation can be
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used—a feature which is of particular relevance for unsteady
simulations involving multiple time scales.

The remainder of the paper is structured as follows. The
second and third sections are devoted to the viscous and
inviscid baseline methods. The fourth section outlines the
rationale of the coupling strategy, while Section 5 refers to
grid studies for both involved solvers and to a verification
study based on a comparison of the propeller-induced
velocities. Subsequently, a validation of the coupling method
for a free-running propeller and the application for an
investigation of propeller-hull interaction effects in seaways
is described. The objective of this study is to compute the
speed losses and the additional resistance for a maneuvering
vessel in waves. The paper ends with an outline of the
conclusions and future aims in Section 7.

2. Viscous Method

The coupling approach introduced in the present paper
uses the finite-volume Navier-Stokes procedure FreSCo" as
viscous baseline method. The tool is a spin-off of the FreSCo
suite [12], a joint development of Hamburg University
of Technology (TUHH), the Hamburg ship model basin
(HSVA), and the Maritime Research Institute Netherlands
(MARIN), which was developed under the aegis of the FP6
EU-initiative VIRTUE [13]. The simulation package is sup-
plemented by an adjoint flow solver AD-FreSCo*, dedicated
to shape optimization [14], an overset-grid technique OVER-
FreSCo™ [15] and a dynamic grid-adaptation approach [16].
The algorithm solves the Navier-Stokes equations for an
incompressible fluid composed of two (or more) immiscible
phases (i.e., air and water), namely,
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with

p=cpat(l=clpw,  p=pa+(l-cuw, (2)
where Uj, x;, and f; represent the Cartesian coordinates of
the velocity vector, the spatial coordinates and the body-
force vector, and ¢, p, p, y, y; denote to the time, pressure,
fluid density, molecular and turbulent dynamic viscosity. The
property ¢ refers to the local volumetric air concentration
(a.k.a. mixture fraction), the suffix A refers to air, and the
suffix W refers to water.

The segregated algorithm is based on the strong con-
servation form of the momentum equations and employs
a cell-centered, colocated storage arrangement for all trans-
port properties. Structured and unstructured grids with
arbitrary polyhedral cells or hanging nodes can be used.
The implicit numerical approximation is of second-order
accuracy in space and time. Integrals are approximated using
the conventional mid-point rule. The solution is iterated
to convergence using a SIMPLE-type pressure-correction



International Journal of Rotating Machinery

scheme. Various turbulence-closure models using statisti-
cal (RANS) or scale-resolving (LES and DES) approaches
are available. Two-phase flows are modeled by interface-
capturing methods based upon the level-set or volume-of-
fluid (VOF) technique. To obtain the solution for the linear
equation systems, methods offered by the PETSc library are
employed. The algorithm is parallelized using a domain-
decomposition technique based on a single program mul-
tiple data (SPMD) message-passing model. Interprocessor
communication employs the MPI communications protocol.
Load balancing is achieved using the ParMETIS partitioning
software.

3. Inviscid Method

The potential-flow method panMARE [17] is developed at
the Hamburg University of Technology. It uses a BEM to
solve Laplace’s equation: VO* = 0, describing a potential
flow field. The total velocity potential ®* = @, + ©
consists of the potential due to the inflow velocity ®. and
the perturbation potential ® due to the presence of the
body. The latter is modeled using a linear combination of
sources and doublets distributed on the surface of all physical
boundaries present in the simulated fluid domain. When
applying Green’s third identity to Laplace’s equation, the
velocity potential at a point x in the fluid domain becomes

plx) = - 411(Z ,[ r](x)

Np+Nw

1
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where N denotes the number of quadrilateral panels on the
body surface and Ny the number of panels on the trailing
wake surface of the propeller blade. The source strength of
panel j is 0}, and the dipole strength is y;. A; is the panels
area, and n; is its normal vector pointing into the flow. The
distance from the evaluation point x to the panel j is r;(x).

(3)

The Neumann boundary condition requires the velocity
normal to a boundary surface to be equal to zero (VO* -
n = 0). The source strength is calculated based on the inflow
velocity:

0 = —NVg. (4)

Further, the dipole strength of the trailing wake panels
is defined by the linear Kutta condition. It is applied on the
panels directly connected to the trailing edge and the dipole
strength of the first panel in the trailing wake of the blade
(pte) becomes

UTE = Hupper — Hlower> (5)
with the dipole strengths of the directly attached panels of
the body surface on the suction (“upper”) and pressure side
(“lower”) of the propeller blade. The panels in the propeller
wake sheet are deformed to align with the local flow.

0.5R -

R 0.5R 0 0.5R R

Figure 1: Exemplary distribution of locations used to transfer
velocities from the viscous to the inviscid method.

Using the above-described boundary conditions the
equation system with the unknown dipole strengths can
be solved. The panel pressure is determined by evaluating
Bernoulli’s equation at the collocation point x:

_px) ou(x)

= VO(x)? + VDL, VD(x) + 5

(6)

To take into account viscous effects, an empirical friction-
correction formulation is implemented. For calculating
the forces acting on a propeller behind a ship arbitrary
distributions of inflow velocities (e.g., nonaxisymmetric) can
be used as inflow condition.

4. Coupling Strategy

The present approach models the propeller by a set of
equivalent body forces embedded in the viscous flow. The
body forces are derived from the propeller loads computed
by the inviscid method which in turn requires a prescribed
velocity distribution upstream the propeller. The strategy
is based on the exchange of two properties, that is, the
transfer of inviscid propeller-induced body forces to the
viscous solver and the transfer of the wake velocities to the
inviscid solver. As regards the implementation, two details
of the coupling procedure related to the (a) spatial and
(b) temporal transfer of information are of specific interest.
The former issue is associated to mapping techniques
between two grids of substantially different nature. For the
velocity transfer a plane which is typically located 0.5R-1.0R
upstream of the propeller—where R denotes the propeller
radius—is defined. Inside this plane, the velocities computed
by the RANS method are mapped onto a predefined set of
locations in a circular domain (specified by corresponding
angular and radial positions) as depicted in Figure 1.



Figure 2: Illustration of RANS mesh cells containing propeller
blade body forces (approximately 2500 cells are involved).

The spatial transfer of body forces from the potential
flow solver to the viscous solver follows a different route.
Since one force per BEM panel is transferred, the forces of
the pressure- and suction-side of the blade are transferred
separately. These forces are then distributed on the adjacent
fluid cell centers of the RANS mesh as volumetric body
forces (Figure 2). Although the grids of the viscous and the
inviscid method are significantly different, in particular with
respect to the grid density, the mapping procedure maintains
force conservation. It utilizes a cell-search algorithm [15]
that connects each panel to the closest cell center and the
corresponding neighboring cells in a conservative way.

For the temporal transfer of information, three different
techniques are developed. The first refers to an explicit
strategy, where one data transfer per time-step is performed,
while in the implicit mode, the respective data is transferred
several times per time-step as illustrated in the flowchart in
Figure 3.

At the beginning of each coupling cycle, the viscous
velocity distribution upstream of the propeller plane is
transferred to the inviscid method. In the explicit mode,
these viscous wake velocities are based on the informations
of the previous time-step. The wake field computed by the
viscous solver inheres the influence of the propeller by means
of the induced velocities. As the inviscid solver requires the
effective wake as inflow condition, the propeller induced
velocities have to be subtracted from the viscous wake.
Hence, in each coupling cycle the inviscid method starts with
a calculation of these induced velocities to obtain the effective
wake. The algorithm then proceeds with the solution of the
equation system inside panMARE to determine the propeller
forces. The force distribution is transferred to the viscous
method, and in the explicit mode the time-step is finalized
by the solution of the governing equations in FreSCo™.

In the implicit mode, multiple coupling cycles are
performed in each time-step. Here, the inviscid solution is
embedded into the outer iteration process of the segregated
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F1GURE 3: Flowchart of the employed coupling algorithm.

viscous solver. For each time-step, a sequence of outer
iterations is performed in line with the description for the
explicit mode. An updated time-accurate viscous velocity
distribution is transferred to the BEM in every outer iteration
of FreSCo*. The effective and induced wake velocities
employed by panMARE are, therefore, also determined in a
time-accurate manner. The solution advances in time after a
converged solution is achieved in both solvers.

The third mode refers to a semiexplicit technique, where
the global coupling procedure follows the explicit mode, but
the propeller induced velocities are iterated to convergence
in each coupling cycle. Using the inviscid solution of the
previous time-step as an initial guess for the induced
velocities, the latter are updated for a sequence of new
inviscid solutions. The respective effective wake field is thus
composed from the former viscous wake field and the present
induced velocities.

5. Verification

This section is devoted to a comparison between the
implicit, explicit, and semi-implicit coupling approach as
described in Section 4. Emphasis is given to the attainable
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FIGURE 4: Geometry of investigated propeller.

TaBLE 1: Deviation of kt to value of finest grid for the BEM grid
study.

] 8 x 18 16 X 36 24 X 54 32X 72 40 X 90
0.5 +4.7% +2.0% +0.8% +0.2% 0.351
0.7 +2.2% +0.8% +0.0% +0.0% 0.290
0.9 -1.5% —-0.8% —0.6% -0.2% 0.220

computational efficiency by means of the time-step size
and the upstream position of the velocity transfer plane.
The results are primarily analyzed in terms of the induced
velocities computed for an exemplary one-blade propeller.
Comparison is made between the induced velocities derived
from the velocity field in the RANS-domain and the induced
velocities computed by panMARE. Both are obtained from
one coupled simulation for a deeply submerged propeller.
For this case, two grid studies are conducted beforehand,
where the first refers to open water calculations using only
the BEM and the second to different RANS-grids in a coupled
open-water simulation. Finally, results for the corresponding
four-blade propeller and a comparison between a coupled
and a viscous simulation with a geometrically modelled
propeller are presented. The investigated propeller and the
applied coordinate system can be found in Figure 4. More
details about the test case can be found in Section 6.1.

5.1. Grid Study

5.1.1. BEM Grid. Inside the BEM, the blade geometry is
discretised with n X m panels, where n refers to the number
of panels in radial direction and m to the number in
circumferential direction of the blade section. The hub
geometry is not modeled. Five different grids are used, and
the deviation of the calculated kt value to the value for the
finest grid is shown in Table 1.

With increasing number of panels in the radial direction,
the shape of the trailing wake surfaces especially the blades
tip vortex shape can be determined more accurately. The grid
with 16 X 36 panels is chosen for further investigations.

TABLE 2: Deviation of blade thrust to value of finest grid for the
RANS grid study (J = 0.5).

grid 27k 65k 152k 300k 662k
Thrust (N) 71.94 71.92 72.48 72.56 72.55
Deviation (%) -0.9 -0.9 -0.1 0.0 —

5.1.2. RANSE Grid. With the above-selected BEM-grid a
grid study for the RANS mesh in a coupled simulation is
conducted. The box-shaped grid used for the open-water
coupling process does not inherit any geometry. Different
refinement areas are generated inside the domain, and the
grid consists of unstructured hexahedral volume cells. One
refinement box encloses the propeller area and two others
the propeller wake area. The plane, where the velocity field is
passed to the BEM, is also within the refinement boxes. Due
to the discretisation, the propeller forces are distributed on a
different number of grid cells resulting in dissimilar propeller
force distribution and thus also dissimilar propeller inflow.
Therefor, the calculated thrust and torque values differ
between the grids. The grids generated and the predicted kt
values for the advance ratio /] = 0.5 are given in Table 2.

The value range for the computed thrust is only about
1% between the coarsest and the finest grid. This result is
encouraging because a coarse grid is sufficient to capture the
relevant effects related to transferring the velocities to the
BEM and distributing the forces in the RANS grid. Of course,
when the focus lies on determining the transient forces on
any kind of structure (e.g., a ship or a thruster) the grid
density will have to be investigated further.

For the following calculations, the 300k cells grid is
chosen because the computed thrust values match perfectly
with the finest grid, and the calculation time is still short.

5.2. Investigation of Induced Velocities. The subsequent anal-
ysis is based on the induced velocities at a fixed evaluation
radius r = 0.7R. The propeller mostly operates at an
advance ratio of ] = 0.5. When the blade is at the topmost
position, the values of the induced velocities are depicted
for all angular positions 6 between 0° and 360°. At the
evaluation radius, the leading edge of the blade is located at
approximately 340° and the trailing edge at approximately
20° as indicated by vertical lines in Figure 5. The induced
velocities are evaluated in a plane at a distance dx = 0.5R
in front of the propeller. The employed time-step refers to
an angular rotation of 3.78°. Results are displayed by means
of axial, radial, and tangential velocity components. The
values of the induced velocities are nondimensionalised by
the inflow velocity.

According to the coordinate system, negative axial-
induced velocities denote for an acceleration of the flow.
In Figure 5, the axial velocity values computed by the BEM
show a steep increase until they reach a maximum in
the region directly affected by the blade’s trailing edge at
approximately 30°. After this position, the induced axial
velocity decreases gradually until reaching a minimum near
the position of the leading edge. The induced radial velocity
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Figure 5: Normalised induced velocities in cylindrical coordinates
for a single-blade propeller (explicit coupling: #/R = 0.7, ] = 0.5,
dt - n = 3.78°,and dx = 0.5R).

is directed inwards and shows a small variation over the
circumferential direction. The pronounced maximum of the
tangentially induced velocities is directed in the direction
of rotation and is found at approximately one-third of
the chord length. For the following analysis, only the axial
component of the induced velocity vector is used.

When comparing the different coupling algorithms in
Figures 6 and 7, only the results for the upper half of
the angular positions are displayed for the sake of more
clearance. It is obvious that the results of the different cou-
pling modes are quite similar. Dissimilarities can be found
with respect to the steep increase of induced axial velocities
between the leading and the trailing edge. The implicit
algorithm shows a slightly earlier and more accentuated
increase of the velocities. This can also be found for the semi-
implicit algorithm but less distinctly visible. The finding
is in line with the small inherent time lag of nonimplicit
couplings. Both baseline methods display a good agreement
of the predicted maxima, while more pronounced minima
are predicted by the inviscid BEM. Apart from this, the values
do not differ significantly between the coupling approaches.
For this quite simple case, the explicit approach seems to
be sufficient to capture the relevant effects. Henceforth, this
variant of the coupling algorithm is used for the following
analysis and the simulations in Section 6, where due to the
pulling pod arrangement no significant ship wakefield can
be observed.

In Figure8, a comparison between the normalised
induced velocities in the axial direction for three different
time-step sizes is given. The medium time-step was also
applied in the previous investigations. Again attention is
restricted to the upper half of the angular positions. It can
be observed that the steepness of the increase in front of the
maximum value is enhanced with decreasing time-step size.
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FiGure 6: Comparison of the normalised induced axial velocities
obtained from the explicit and the implicit coupling approach
(r/R=0.7,] =0.5,dt - n = 3.78°, and dx = 0.5R).
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Figure 7: Comparison of the normalised induced axial velocities
obtained from the explicit and the semi-implicit coupling approach
(r/R=0.7,] =0.5,dt - n =3.78°, and dx = 0.5R).

Because the overall agreement is fair, the medium time-step
is chosen for further investigations.

When analysing the induced velocities for different
upstream distances between the blade and the transfer plane
of the velocity field, a clear dependency becomes obvious.
The upstream influence of the propeller is locally limited
and the transfer plane should be as close to the propeller as
possible (Figure 9). For the larger distances the correlation
between the solvers is still sufficient, but the total value of
induced axial velocity decreases significantly and reduces
to about one-third when evaluating at a distance of dx =
IR. This implies that the induced velocities should be
determined as close to the propeller position as possible.
However, when the distance is reduced to dx < 0.5R,
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Ficure 8: Comparison of the normalised induced axial velocities
for different time-step sizes (explicit coupling: r/R = 0.7, ] = 0.5,
and dx = 0.5R).
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F1GURE 9: Comparison of the normalised induced axial velocities for
different axial distances between the velocity transfer plane and the
propeller (explicit coupling: /R = 0.7,] = 0.5, and dt - n = 3.78°).

the plane collides with the leading edge of the blade inside
the BEM. The smallest distance shown in Figure 9 is thus
employed for the other investigations presented here. The
induced velocities computed by the BEM are slightly smaller
than the ones computed by RANS, which results in an
overpredicted inflow velocity to the propeller. This also
accounts for the induced velocities at radii other than r/R =
0.7 and depends on the local distance to the blade and the
hydrodynamic angle of attack of the profile section (see
Figures 9 and 10).
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Ficure 10: Comparison of the normalised induced axial velocities
for different propeller advance ratios explicit coupling: (r/R = 0.7,
dt - n = 3.78°,and dx = 0.5R).

An investigation of the induced velocities for different
propeller loadings can be found in Figure 10. The charac-
teristics of the curves are similar, but the absolute difference
between the viscous and inviscid computed induced veloc-
ities is larger for lower advance ratios. Under consideration
of the difficulties in simulating highly loaded propellers with
inviscid methods, this result still seems to be sufficient for the
purpose of the coupling algorithm.

Figure 11 shows the three components of the induced
velocities for a four-blade propeller at J = 0.5. Also the
correlation between the solvers for the radial and tangential
components is very good and illustrates that the propeller
faces equivalent working conditions in the involved baseline
methods. Finally, the induced velocities computed during
a coupled simulation and a RANS simulation with geo-
metrically modelled propeller are compared for ] = 0.5
in Figure 12. Therein, the values predicted by the coupling
approach are derived from the viscous computed velocity
field. Although the grid size differs significantly between the
simulations, the characteristics of the curves are quite similar,
but the peak values of the RANS simulation cannot be fully
captured by the coupled simulation.

6. Validation and Application

6.1. Propeller in Open-Water Condition. The first application
example refers to open-water calculations of a propeller,
where model-scale experiments are performed by MARIN-
TEK under the aegis of PROPSEAS (Kozlowska et al. [18]).
The investigated propeller has a diameter of D = 0.2 m and
operates with n = 18 rps. Different advance coefficients are
achieved by a variation of the inflow velocity. The numerical
grid of the propeller used in the BEM consists of 576
panels per blade (cf. Figure 13(a)). Figure 13(b) displays the
propeller regime of the viscous grid. About 2.500 of 15.000
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Figure 11: Comparison of normalised induced velocities for a four-
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F1Gure 12: Comparison between the normalised induced velocities
obtained from a coupled (explicit mode) and a RANS simulation
with a geometrically modeled propeller (r/R = 0.7,] = 0.5,dt - n =
3.78°,and dx = 0.5R).

control volumes in the propeller disc are subjected to body
forces. The Reynolds number based on the chord length at
r/R = 0.7, and the resulting velocity at the propeller blade
reads Re = 0.5 - 10°. The flow is considered fully turbulent,
and the standard k-w turbulence model is applied.

The resulting open-water diagram of the test case can
be found in Figure 14. Results of the coupling procedure
are shown with dashed lines, while the results obtained
from the BEM-solver panMARE are shown with dotted lines.
Comparison is made to the measurements of MARINTEK
indicated by the solid curves and to RANS simulations
with a geometrically modelled propeller (marked with
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closed circles). A fair agreement is seen for the predicted
thrust values, while larger deviations occur for the torque
values. A possible reason for this deterioration can be the
empirical determination of the surface-friction losses inside
panMARE, which have a larger influence on the torque than
on the thrust. Furthermore, small deviations between the
coupled results and panMARE can be obtained. This might
be influenced by different resolutions of the pressure peak at
the leading edge between the involved methods.

6.2. Investigation of a Self-Propelled Ship in Regular Waves.
As a second application of the coupling procedure a ship-
propeller configuration in model scale is investigated. The
ship is self-propelled and operates in calm water and in
regular head waves with a wave length of A = L, and a wave

amplitude of (C = 0.0124 - L,,. When maneuvering in regular
waves, the vessel is free to move in the vertical plane (surge,
pitch, and heave). Aim of this test case is to investigate the
ships behavior in head waves with special attention to the
added resistance. The geometry of the vessel is depicted in
Figure 15. The picture illustrates the hull shape of the vessel
as well as the geometry of the pod housing and outlines the
main dimensions of the vessel.

The employed computational grid consists of 1.6 million
control volumes and is depicted in Figure 16.

About 80% of the cells are located around the ship and in
the free-surface region. The vessel refers to an offshore supply
vessel equipped with two pods in pulling configuration. A
symmetry condition is applied at the center plane and the
propeller is not geometrically resolved in the viscous domain.
This simplifies the grid generation inside the RANS method
significantly because a relatively coarse and cartesian grid can
be used in the propeller plane as displayed in Figure 17. The
panel grid employed in the inviscid method to model the
propeller, which is the same as in Section 6.1, has 576 panels
per blade.

The propeller operates at a constant number of revo-
lutions of n = 9rps. In order to be able to simulate many
wave periods, a relatively large timestep corresponding to
an angular rotation of 22.5° of the propeller is chosen. The
speed of the vessel is initialized with an estimated forward
speed of F, = 0.22 in both cases. The evolution in time of
the ship speed is depicted in Figure 18. Therein, the solid
line displays the results of the calm water case, while the
dashed line illustrates the time series of the forward velocity
in waves. In calm water, a steady velocity corresponding to
F, = 0.214 is reached at the end of the simulation. The
predicted target speed of the vessel in waves is considerably
smaller. In this case, the added resistance leads to a velocity
reduction of almost 12.5% compared to the calm water case.
Furthermore, larger fluctuations in the target velocity are
observed. Thus, this result illustrates how even moderate
wave heights can lead to a significant reduction of forward
speed.

The corresponding resistance values for both cases are
plotted in Figure 19 for a time interval of 10 wave periods.

Again, the calm water results are illustrated with the solid
line, while the dashed line displays the ship resistance in
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FiGurg 16: Computational grid of the investigated vessel.
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FIGURE 13: Numerical grid and resulting pressure distribution for the BEM simulation (a). FV grid in the propeller disc (b). Only cells at the

FIGURE 14: Comparison of predicted and measured open-water

actual blade positions contain body forces
results for the investigated propeller.

This additional resistance in head waves is mainly

FIGURE 17: Details of the computational grid in the aft ship region
influenced by the pitch motion of the vessel. The time history

with the local refinements in the propeller plane.
of the pitch angle for a corresponding time frame of the

simulation is depicted in Figure 20. Mind that the vessel

FIGURE 15: Geometry of the investigated vessel and the aft body of

the ship including the pod housing.
waves. Large fluctuations are observed during the simulation
in head waves. In total, the increase in the time averaged

resistance value can be estimated to 23% compared to the

calm water resistance.
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FIGURE 19: Time history of the computed resistance coefficient
(Rr/(pn*D*)).

trims down by the stern in calm water, which results in a
negative averaged pitch angle in head waves.

In addition to the previous results, Figure 21 displays
the time history of the computed thrust values. Due to the
smaller forward velocity in waves, the propeller operates at a
decreased advance coefficient, which leads to larger values of
the thrust coefficient.

In Figure 22, the computed free surface elevation is
shown for the time instant, when the wave crest is at the
midship section. At that time the propulsor is effected by
a trough and orbital velocities in the axial direction are
pointing forward. The mean value of the axial velocities in
the RANS solver for a slice of the wakefield between /R = 0.5
and /R = 0.7 is 8.5% smaller than for the calm water case.
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FrGure 20: Pitch angle (61/ f ) of the vessel during the last 10 wave
periods. The solid line displays the dynamic trim of the vessel in
calm water, while the dashed line depicts the pitch motions due to
head waves.
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Ficure 21: Comparison of the computed thrust coefficient
(T/(pn*D*)) during the last part of the simulation.

When the ships midsection lies in the area of a trough and
the propeller therefor beneath a crest, the axial velocities are
doubled. These large values are induced by the actual pitch
motion of the ship. When looking at inner or outer radii,
the differences are smaller as they are superposed either by
the ships boundary layer or by the stagnation pressure of the
hub.

In the Figures 23 and 24, a longitudinal and a transverse
slice of the velocity field in the propeller region for the
same time instant of the simulation is given. Also the grid
with its refinement regions can be seen. The imprints of
the four single blades are visible and also the imprints from
the last timestep which are less accentuated. Due to the
above-mentioned time-step size of 22.5°, they are in between
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FIGURE 22: Isolines for free surface elevation of the ship in head
waves.

FiGure 23: Normalised velocities in a transverse cut aft of the
propeller region.

the actual imprints. Although the grid is coarse a distinct
representation of the single blades is feasible. In Figure 24 the
position of the propeller in front of the pod housing and the
slip stream of the propeller is clearly visible.

The simulation included the ship model encountering 80
wave periods accounting for a real time of approximately 70
seconds. The simulation time was about two weeks on two
eight-core computers.

Although no validation data exists for this case, the
presented results demonstrate the capabilities of the coupling
procedure for the investigation of ship-propeller interaction.

7. Conclusions

The paper reports the development of a close-coupling
algorithm between an inviscid boundary element method
dedicated to propeller flows and a RANS method. The
procedure uses the propeller forces computed by the inviscid
method to mimic the propeller inside the viscous-flow solver,
while the inflow condition for the propeller code is provided
by the RANS method.

A critical aspect in terms of the accuracy of the pro-
cedure is the determination of the induced velocity field.
Here, the presented verification study reveals a sufficient
accuracy, which assures equivalent working conditions for
the propeller in both solvers. Encouraging results are
obtained for the two application examples. Furthermore,
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FiGUre 24: Normalised velocities in a longitudinal cut through the
pod housing.

the computational effort is reduced significantly compared
to simulations with a geometrically resolved propeller. The
grid generation for the RANS solver is simplified as coarse
and simple hexahedral grids can be used in the propeller
plane. Moreover, the coupling algorithm is robust and shows
a favorable convergence behavior.
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