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ABSTRACT

This paper reports the assessment of a modified cumulant lattice Boltzmann method in turbulent channel flows. The suggested approach is
of interest for its resolution-spanning capabilities, which are scrutinized for grid resolutions between 4 and 430 wall units. With the emphasis
on a recently published parameterized cumulant collision operator, we suggest a resolution-sensitive regularization supplemented by a
dynamic subgrid-scale model based upon third-order cumulant expressions, which seamlessly vanishes for direct numerical simulations. The
strategy is optionally supplemented by a wall function approach to adjust the wall treatment. The analysis involves the mean flow field,
resolved and modeled second moments, two-point correlations, and spectral data and correlation lengths obtained for four friction Reynolds
numbers (180, 550, 2000, and 5200). Results display a resolution-independent capability to simulate the attached turbulent shear flow.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0098032

I. INTRODUCTION

The lattice Boltzmann method (LBM) is gaining increased
attention for the efficient simulation of industrial flows.1–5 Since engi-
neering flows are mostly turbulent, the predictive success of LBM
in turbulent flows has recently been addressed in several studies.6–13

As indicated in the literature, the accuracy in turbulent flow predic-
tions strongly depends on the employed collision operator,14–16 and
modifications to the collision operator are, therefore, a central area
of LBM research. Various suggestions to increase the stability and
accuracy of LBM in turbulent flows were published. Related
research is often devoted to the relaxation of distribution functions,
where either the relaxation rates17,18 or the relaxation space6,19–22

is the subject of the investigations. A comprehensive review of
the many collision operator models and their rationale is beyond
the scope of this paper, and we refer to a recent review of Coreixas
et al.23

This paper is devoted to a modified cumulant collision operator22

for turbulent flow simulations. The cumulant collision model suggests
relaxing the distribution functions in cumulant space. Scale-resolving
simulations of turbulent shear flows using the cumulant model were
previously studied by, e.g., Geier et al.,12,22 Pasquali et al.,24 or Gehrke

et al.14,25,26 While indicating a promising predictive performance, vir-
tually, all these studies were restricted to reasonably generic flows and
a narrow range of resolutions in the regime of direct numerical simula-
tions (DNS) and wall-resolved large eddy simulations (LES). An
exception refers to a recent study of the present authors on the predic-
tive performance of the well-conditioned parameterized (WP) cumu-
lant model27 in separated flows over periodic hills,26 which involved a
comprehensive range of (bulk) Reynolds numbers and resolutions
ranging from 700 � Re � 37:000 and 1 � Dxþ � 60. Results reveal
that a stability preserving regularization inherent to the WP cumulant
model acts as a subgrid-scale (SGS) model confined to the upper dissi-
pative frequencies by addressing higher, i.e., third-order, relaxation
rates. Moreover, the variation of a single regularization parameter,
which is usually assigned to a constant value, was identified as a poten-
tial starting point for resolution-dependent modifications that could
improve the predictive accuracy. At the same time, the stability of the
simulation suffered for coarser resolutions at higher Reynolds num-
bers disregarding the changes in the regularization parameter. This
suggests the additional use of a subgrid-scale (SGS) model for such
configurations. Both aspects, a resolution-sensitive regularization and
a cumulant-based SGS model, are the focus of the present paper.

Phys. Fluids 34, 075129 (2022); doi: 10.1063/5.0098032 34, 075129-1

VC Author(s) 2022

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0098032
https://doi.org/10.1063/5.0098032
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0098032
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0098032&domain=pdf&date_stamp=2022-07-22
https://orcid.org/0000-0002-5073-397X
https://orcid.org/0000-0002-3454-1804
mailto:martin.gehrke@tuhh.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0098032
https://scitation.org/journal/phf


The remainder of this paper is structured as follows. Section II
provides details of the numerical method, describes the employed
cumulant LBM, and outlines the suggested modifications. Section III
presents test case specific computational aspects. Attention is confined
to a turbulent shear flow in unidirectional channels for the range of
Reynolds numbers Res ¼ us H=� based on the half channel height H
and the friction velocity us. Calculations employ isotropic, homoge-
neous grids with a lattice spacing Dx featuring a range of resolutions
including 4 � Dxþð¼ Dx us=�Þ � 430. Details of the employed data
recording and data processing are summarized in Sec. IV. Section V is
devoted to the comprehensive presentation of results. Final conclu-
sions are drawn in Sec. VI. Supplementary information on the
employed wall function and the implementation of the cumulant colli-
sion operator is given in the Appendixes.

II. NUMERICAL METHOD

Section II briefly outlines the key aspects of the employed LBM,
in particular the relaxation part. Moreover, details of the SGS model
and the applied wall function are given.

A. Lattice Boltzmann procedure

The current study is based on a GPU-based (graphics processing
unit) lattice Boltzmann28–32 implementation33 for the simulation of
incompressible fluid flow.34,35 The discretized approximation is parti-
tioned into two steps and reads

f �ijkðx; tÞ ¼ fijkðx; tÞ þ Xijk ðcollision stepÞ; (1)

fijkðx þ eijkDt; t þ DtÞ ¼ f �ijkðx; tÞ ðpropagation stepÞ: (2)

Herein, fijk represents particle distribution functions (PDFs), which
describe the probability of a particle to be located at x in the three-
dimensional space at time t moving in the direction of eijk. The latter
matches a directional speed matrix eijk ¼ c� ði; j; kÞ restricting the
particle advection (2) to their immediate next neighbor nodes.
Macroscopic flow properties are recovered by q ¼

P
ijk fijk and

u ¼ ðu; v;wÞ> ¼ ð
P

ijk eijk fijkÞ=q:
All simulations rest upon a regular D3Q27 lattice, as outlined by

Fig. 1, and assume a unit spatial (Dx) and temporal (Dt) spacing
together with a lattice speed c ¼ Dx=Dt ¼ 1. The directions i; j; k
2 ð�1; 0; 1Þ follow from the Miller notation (�1 � �1; 0 � 0; 1 � 1).

The first step (1) depicts the collision step, where the incoming
particle distribution function fijkðx; tÞ deviates from equilibrium state,
and the asterisk represents the post-collisional PDF state. The symbol
Xijk denotes the collision operator, which models the interaction of the
particles. In the present study, the collision proceeds in cumulant
space,22,27 whereby Xijk ¼ XijkðCabcÞ applies, viz.,

C�abc ¼ Ceq
abc þ ð1� xabcÞCabc (3)

with the cumulant expressions Cabc. The Greek indices correlate with
the cumulants’ order and reach from zero (C000) to six (C222), i.e.,
a; b; c 2 ð0; 1; 2Þ. The transformation relations between the PDF and
the cumulant space involve central moments through PDF space (fijk)
 ! central moments  ! cumulants (Cabc) and are omitted to safe
space. Related details and an outline of the cumulant theory can be
found in the seminal work of Geier et al.27 Expression (3) comprises
the relaxation toward specifically defined equilibria, indicated by the

superscript eq, using order-dependent relaxation rates xabc of the pre-
collisional cumulant states. The choice of the relaxation rates and their
regularization in high Reynolds number flows are important aspects of
the present paper and are outlined below.

B. Relaxation rates

Generally, the rates xabc can be chosen within the interval ½0; 2�,
where unit values of xabc indicate a relaxation to the equilibrium state,
cf. (3). Confining our interest to the ten linear independent cumulant
expressions Cabc and the related ten out of 27 xabc, the triple index is
conveniently replaced by a single index xabc ¼ xv, viz.,
v 2 f1;…; 10g. Only two out of ten rates, i.e., x1 and x2, are linked
to physical fluid properties. The relaxation rate x1 is determined by
the (shear) viscosity �,

x1;SI ¼
1

�=c2s þ Dt=2

� �
SI

; (4)

with cs ¼ c=
ffiffiffi
3
p

as the speed of sound in the lattice and the subscript
SI to denote the dimensional form in physical quantities. The relaxa-
tion rates are only employed in non-dimensional LB units during the
simulation. LB units ground on the aforementioned unit spacing
Dx ¼ 1;Dt ¼ 1 (! c ¼ 1), and a non-dimensional viscosity �, which
returns

x1 ¼
2

6� þ 1
: (5)

The rate x2 is theoretically related to the bulk viscosity. However, the
influence of a parameterized x2-value is beyond the scope of the pre-
sent study, and we assign x2 to a stability promoting unit value, in line
with the vast majority of previous studies. Likewise, we follow the sug-
gestion of Geier et al.27 and assign x6 ¼ x7 ¼ x8 ¼ x9 ¼ x10 ¼ 1,

FIG. 1. D3Q27 lattice model of the present LBM. Arrows indicate the 27 discrete
velocity vectors eijk. Collocation points of the stencil are marked in gray.
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since they address the higher (fourth- to sixth)-order cumulants’ colli-
sion, and unit values yield beneficial stability properties. The three
remaining rates x3;x4, and x5 govern third-order collision. Based on
the work of Geier et al.,27 these three rates can be parameterized as
functions of x1 and x2. In conjunction with x2 ¼ 1, the parameteri-
zation reads

x3 ¼
8 2x2

1 � 3x1 � 2
� �
7x2

1 � 14x1 � 8
; (6)

x4 ¼
8 4x2

1 � 15x1 þ 14
� �
9x2

1 � 50x1 þ 56
; (7)

x5 ¼
24 3x3

1 � 13x2
1 þ 12x1 þ 4

� �
29x3

1 � 130x2
1 þ 152x1 þ 48

: (8)

Vanishing x1 yields xf3;4;5g ¼ 2; likewise, all xf3;4;5g vanish at
x1 ¼ 2. Mind that so far, the collision modeling fully agrees with the
work of Geier et al.27

1. Regularization of relaxation rates

As indicated by (5), the x1-value approaches two in the low-
viscosity or high-Reynolds number limit and, thereby, yields vanishing
third-order rates xf3;4;5g ! 0. Negligibly small relaxation rate values
virtually imply retaining the pre-collision cumulant states during the
collision. This is equivalent to preserving the nonequilibrium parts,
which, in turn, hampers the numerical stability. To regularize the
third-order relaxation rates in the limit xf3;4;5g ! 0, Geier et al.27 sug-
gested a regularization of the parameterization via (6)–(8), which is
frequently labeled the well-conditioned parameterized (WP) cumulant
model, viz.,

xR
f3;4;5ge ¼ xf3;4;5g þ

Ceð1� xf3;4;5gÞ
Ce þ ðqkÞ ¼

Ce þ ðqkÞxf3;4;5g
Ce þ ðqkÞ : (9)

Here, Ce refers to a positive third-order cumulant related expression,
e.g., jC120 � C102j, and q is a normalized density close to unity. The
suffix e points toward different transformation parts that employ the
regularized rates using different cumulant expressions Ce, cf. below.
The regularization (9) is controlled by a positive parameter k.
The respective limit states yield limk!1 xR

f3;4;5ge
¼ xf3;4;5g and

limk!0 xR
f3;4;5ge

¼ 1. The regularization parameter is usually assigned

to an empirically identified constant value (k ¼ 10�2), which follows
from typical values of Ce and xf3;4;5g. The regularization (9) greatly
supports the robustness of the WP model. For example, Geier et al.12

computed a sphere at a very high Reynolds number without a turbu-
lence model, and the present authors reported periodic hill flow (PHF)
simulations without a turbulence model26 for coarse discretizations up
to Dxþ � 100. However, the latter study also revealed that the predic-
tive accuracy could significantly improve from an increase in k when
the resolution is in a typical LES-regime within 10 � Dxþ � 50.

Analyzing the regularization (9) for attached and separated engi-
neering shear flows at different resolutions reveals generally small val-
ues of Ce � 10�3 	 qk and motivates to estimate xR

f3;4;5ge
� xf3;4;5g

þCe=ðqkÞ. Moreover, typical relaxation rate values read
xf3;4;5g � Oð10�3Þ � Oð10�2Þ. This indicates that subtle additions of
xf3;4;5g on the order of Ce=ðqkÞ � 0:1 can have a distinct influence
and motivates suggesting an increase26 of k to reduce Ce=ðqkÞ and

attenuate the shift of xR
f3;4;5ge

toward equilibrium restoring unit values.
A more rigorous analysis starts by recalling that the viscosity-related
relaxation rate approaches a value of x1 ¼ 2 in the high-Reynolds
number limit of (5). With a focus on turbulent flows, we, therefore,
assume x1 � 2� e, where e is a small positive number and introduce
this approximation into the parameterization (6)–(8). Linearizing the
resulting expressions for small values of e, one obtains

lim
e!0

x3 ¼
40e

14eþ 8
� 5ð2� x1Þ; (10)

lim
e!0

x4 ¼
�8e

14e� 8
� ð2� x1Þ; (11)

lim
e!0

x5 ¼
96e

20eþ 64
� 1:5 ð2� x1Þ: (12)

A resolution-aware description of the high-Reynolds number limit of
x1 could employ the approximations (10)–(12) to derive a resolution-
sensitive regularization of xf3;4;5g. The latter is obtained from a simple
analysis of the dimensional expression (4), which introduces the cell
Reynolds number ReDx ¼ ðuDx=�ÞSI as a measure for the resolution.
Here, uSI is a problem characterizing velocity, for example, the center-
line velocity of a channel, or the bulk velocity of the problem, viz.,

x1;SI ¼
1

3�
c2
þ Dt

2

0
@

1
A

SI

¼ 2
6uDx
c2 ReDx

þ Dt

0
@

1
A

SI

: (13)

The LBM is a weakly compressible approach associated with a user-
defined Mach number. The Mach number Ma ¼ ðu=csÞSI essentially
defines the time step size DtSI ¼ DxSI Ma=

ffiffiffi
3
p

uSI
� �

of the method in
dimensional units and is used to replace the velocity in (13), viz.,
uSI ¼ Ma cSI=

ffiffiffi
3
p

. Owing to the unit spacing concept with Dx ¼ 1
and Dt ¼ 1 and the definition of the lattice speed c ¼ Dx=Dt, we
obtain an equivalent non-dimensional expression of (13) via

x1;SI ¼
2

2
ffiffiffi
3
p

MaDx
cReDx

þ Dt

0
B@

1
CA

SI

;

! x1 ¼
2ReDx

2
ffiffiffi
3
p

Maþ ReDx

¼ 2� 4
ffiffiffi
3
p

Ma

2
ffiffiffi
3
p

Maþ ReDx
� 2� b

Ma
ReDx

: (14)

Mind that b is of the orderOð100Þ but can vary slightly, depending on
the velocities that are employed to define the Mach and the Reynolds
numbers, as the Mach number is usually compiled from an augmented
velocity value. Combining (10)–(12) with (14), we conclude

2� x1 
 lim
e!0

xf3;4;5g 

Ma
ReDx

: (15)

This motivates to formulate a regularization xR
f3;4;5g 
 xf3;4;5g½1

þ � � � ðReDx=MaÞ� of the parameterized rates (6)–(8), which does not
vanish in the high-Reynolds number limit. The suggested regulariza-
tion employs the same cumulant expressions Ce as Geier et al.27 to
address the individual characteristics of the regularized expression,
e.g., C3;1 ¼ jC120 þ C102j, etc., yielding

xC
3;1 ¼ x3 1þ CxjC120 þ C102jð Þ; (16)
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xC
4;1 ¼ x4 1þ CxjC120 � C102jð Þ; (17)

xC
3;2 ¼ x3 1þ CxjC210 þ C012jð Þ; (18)

xC
4;2 ¼ x4 1þ CxjC210 � C012jð Þ; (19)

xC
3;3 ¼ x3 1þ CxjC201 þ C021jð Þ; (20)

xC
4;3 ¼ x4 1þ CxjC201 � C021jð Þ; (21)

xC
5 ¼ x5 1þ CxjC111jð Þ: (22)

Mind that the cumulant expressions Ce vanish in the low-Reynolds
number fully resolved limit. The resolution-sensitive regularization
parameter is assigned to

Cx ¼ ReDx=ð10MaÞ; (23)

which is close to ReDx= 4
ffiffiffi
3
p

Ma
� �

obtained from (14). To further
judge the regularization, a few aspects of the cumulant expressions Ce

are essential: (1) The different expressions are of similar characteristics
and order of magnitude, (2) they are sensitive to the strain rate and
increase with the strain rate value, and (3) they scale approximately
linearly with the Mach number and vanish when the grid is refined.
Figure 2 outlines the Mach number dependency for an exemplary
cumulant expression Ce ¼ jC210 þ C012j. The figure refers to turbulent
channel flow simulations at Res ¼ 180 and reveals a virtually linear
increase in jC210 þ C012j with the employed Mach number, which
secures Cx Ce 
 ReDx . Mind that displayed results refer to a fairly
well-resolved case with Dxþ ¼ 7:5, where no additional eddy viscosity
is required.

C. SGS model

When attention is directed to coarse grid simulations, e.g., resolu-
tions beyond Dxþ � 50, the predictive capabilities of the regularized

WP cumulant collision model in engineering shear flows reach their
limits. The regularization acts upon higher-order, i.e., third-order,
cumulant expressions. As demonstrated by Gehrke and Rung,26 it
addresses a fairly confined frequency range in the dissipation regime
and does not affect the energy-containing and lower inertial subranges.
Hence, an additional model is required to mimic the unresolved turbu-
lent scales not addressed by the regularization. This present study
utilizes a simple, heuristic eddy viscosity concept to model the subgrid-
scale stresses by a dynamic Smagorinsky model.36,37 Though eddy
viscosity models of turbulence are somewhat debatable in the context
of LBM,38,39 they are often employed in practical simulations with
cumulant3,40,41 and other42–48 collision operators. The approach alters
the shear viscosity related relaxation rate49 by a modification of the
considered viscosity in (5), viz. x1;e ¼ 2=ð6�e þ 1Þ. Here, �e ¼ � þ �t
is an effective viscosity that inheres an eddy viscosity contribution �t to
mimic the influence of SGS stresses. The corresponding definition in
SI units follows a classical approach, i.e., �t;SI ¼ ðCSDxÞ2SI SSI, where
SSI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SabSab

p
is a strain-rate measure and CS denotes to the scalar

dynamic Smagorinsky parameter. The computation42,43 of the scalar
strain-rate measure S in non-dimensional LB units (cs ¼ 1=

ffiffiffi
3
p

;
q0 ¼ 1 incorporated) employs

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 18 CSDxð Þ2

ffiffiffiffiffiffi
Q?
pq

� �
6 CSDxð Þ2

(24)

and involves the second invariant of the local nonequilibrium stress
tensorQ

Q? ¼ Q � �Q with Q ¼
X
ijk

eijka eijkb f
neq
ijk : (25)

Here, a and b 2 f1; 2; 3g denote to the components of the three-
dimensional discrete velocity vector eijk.

The key issue of this section is the definition of a Smagorinsky
parameter CS using cumulant expressions. Typical values approxi-
mately fall within the range CS 2 ½0:05; 0:2�, where constant values
are frequently assigned to CS ¼ 0:1 or slightly higher when using
LBM.47,50–52 Employing an analogue ansatz as in Sec. II B 1, we
assume

CS ¼ CLESjC210 þ C012j: (26)

Mind that the characteristics of the various cumulant expressions Ce

employed in Sec. II B 1 are fairly similar. Therefore, the selection of
jC210 þ C012j is deemed uncritical, and other choices would only
require re-adjusting CLES along the route outlined in the remainder of
this subsection. The task is to model CLES, where a resolution-
dependent formulation is sought, i.e., CLES ¼ f ðMa;ReDxÞ. To this
end, we first assess the interplay between CLES; jC210 þ C012j and Ma.
Motivated by results of the regularization study displayed in Fig. 2, we
again impose CLES 
 1=Ma to avoid undesired temporal resolution
influences on CS. A first heuristic closure that does not consider the
spatial resolution reads CLES ¼ 20=Ma. The latter was obtained from
a large amount of channel and periodic hill flow26,53 (PHF) studies to
provide an orientation for an upper value ofCLES and yields parameter
values in the desired range CS 2 ½0:05; 0:2� as exemplified in Fig. 3
(right), which shows time-averaged contour plots for the flow over a
periodic hill for two different (bulk) Reynolds numbers. Instantaneous

FIG. 2. Mach number dependency of the exemplary cumulant expression jC210
þC012j assessed by the simulation of a turbulent channel flow at Res ¼ 180.
Displayed abscissa values range from the wall (y=H ¼ 0) to the centerline
(y=H ¼ 1). All simulations were performed without explicit turbulence modeling
and refer to a fixed spatial resolution (Dxþ ¼ 7:5; ReDx ¼ 116) in combination
with three different Mach numbers Ma ¼ f1=5 ½red�; 1=20 ½blue�; 1=80 ½green�g.
Dashed lines represent expressions for Ma ¼ f1=5; 1=80g scaled with
a ¼ 1=ð20MaÞ.
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data for CS are supplemented on the left side of this figure to demon-
strate the dynamic structure depicting capabilities of the ansatz (26).
Computations reveal resolution-dependent time-averaged maximal
values in the range of 0:09 ðDxþ � 3;ReDx ¼ 50Þ � CS � 0:2
ðDxþ � 30;ReDx ¼ 750Þ. It is interesting to note that, unlike many
dynamic SGS approaches for Navier–Stokes simulations,37,54 no spa-
tial or temporal averaging of computedCS value is required to stabilize
the simulations for the present cumulant based SGS approach, which
is deemed beneficial for practical applications.

Figure 4 displays results obtained for a channel flow at
Res ¼ 550, which serves as a reference case for the resolution-
dependent formulation of CLES explained below. Displayed results
refer to H=Dx ¼ 24 grid points across the channel height H, which
yields Dxþ ¼ 23 and ReDx ¼ 415. The depicted comparison involves
three different Mach numbers Ma ¼ f1=5; 1=20; 1=80g and employs
the regularization (23). Figure 4(left) focuses upon the variation of
jC210 þ C012j with Ma for a fixed CLES ¼ 400. The figure reveals
jC210 þ C012j 
 Ma. Figure 4(right) employed CLES ¼ 20=Ma
¼ f100; 400; 1600g to assess the variation of the eddy viscosity with
Ma and jC210 þ C012j. Mind that the eddy viscosity only reaches a peak
value of �t=� � 1 at the wall nearest location of yþ � 12 on the dis-
played high-Re number grid but vanishes on low-Re grids for yþ ! 0

due to the vanishing cumulant expression jC210 þ C012j, see also
Fig. 18. Figure 4(right) indicates jC210 þ C012j 
 Ma due to �t=�

 CLES jC210 þ C012j � constant for CLES 
 1=Ma, and, thus, that the
time-averaged cumulant expression jC210 þ C012j approximately scales
with C�1LES. Moreover, the influence of the regularization parameter Cx

on the cumulant expression diminishes when the eddy viscosity is
active, even for the low-eddy viscosity levels experienced in this case.
This observation is confirmed by supplementary data using a fixed
regularization value of Cx ¼ 830 added to the right graph of Fig. 4
and might support the scale-separation arguments between regulariz-
ing the high-frequency dissipation regime and turbulence modeling in
the inertial regime.

Similar to the formulation of the regularization parameter Cx

(23), an influence of ReDx is also sought for the Smagorinsky param-
eter CS, which should ideally vanish for ReDx ! 0. To this end, we
analyze the spatial resolution dependent behavior of jC210 þ C012j,
bearing in mind that CLES reciprocally scales with jC210 þ C012j.
Figure 5 displays time-averaged results obtained for the turbulent
channel flow at Res ¼ 550 and Ma ¼ 1=10. Displayed data were com-
piled for a wide range of resolutions, which reach from H=Dx ¼ 8
lattice nodes (ReDx � 2500; Dxþ � 140) to H=Dx ¼ 96 nodes (ReDx
� 200; Dxþ � 11).

FIG. 3. Instantaneous (left) and time-averaged (right) contours of the dynamic Smagorinksy parameter CS ¼ 20jC210 þ C012j=Ma obtained for a periodic hill flow at ReDx
¼ 50 (ReB ¼ 2800, top) and ReDx ¼ 200 (ReB ¼ 10 600, bottom) using Ma ¼ 1=10 with Cx ¼ f50; 200g from (23).

FIG. 4. Turbulent channel flow simulations at Res ¼ 550 resolved with Dxþ ¼ 23 (ReDx ¼ 415): Mach number influence on the cumulant expression jC210 þ C012j using
CLES ¼ 400 (left; dashed lines scaled by Ma) and computed eddy viscosities (right) obtained with a CLES ¼ 20=Ma.
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A total of 18 resolutions were investigated including nine coarse
grids with 8–24 nodes, three medium grids with 32–48 nodes, and six
finer grids with 56–96 nodes along with the channel height. Coarse grids
are incremented by two nodes, whereas medium and fine grids are incre-
mented by eight nodes. Results were obtained from the regularization
(23) and the heuristic initial guess CLES ¼ 20=Ma ¼ 200. As depicted
by the right graph of Fig. 5, the cumulant expression substantially
decreases when the resolution improves, in particular in the low-shear
regime near the centerline, which serves as a reference location.
Furthermore, a saturation of the jC210 þ C012j increase is depicted for
gradually coarsened grids, and the difference between near-wall and cen-
terline values of jC210 þ C012j decreases. The normalized eddy viscosity
behaves similarly. However, the value range between the wall and the
centerline locations spans several orders of magnitude for the fine grids.

Aiming to estimate of the scaling of jC210 þ C012j with ReDx , we
analyze the results of these 18 resolutions for Res ¼ 550. Figure 6
(right) depicts the result of the regression analysis, which reveals
jC210 þ C012j 
 Re�0:65Dx .

The respective left graph shows scaled data already displayed in
Fig. 5(right) and demonstrates a fairly reasonable agreement of the
scaled (near) centerline values. Due to the reciprocal behavior of CLES

and jC210 þ C012j, we assume CLES 

ffiffiffiffiffiffiffiffiffiffi
ReDx
p

=Ma, which employs a
slightly reduced exponent of 0.5 instead of 0.65 to counteract unfavor-
able lower deviations from the underlying value of 20=Ma on the finer
grids. The final model reads

CLES ¼ 0:35

ffiffiffiffiffiffiffiffiffiffi
ReDx
p

Ma
; (27)

where the empirical parameter 0.35 follows from matching the initial
guess for very coarse resolutions, i.e., 0:35

ffiffiffiffiffiffiffiffiffiffi
ReDx
p

=Ma � 20=Ma at
ReDx � 3500 and was verified with studies for Res ¼ 550 for a moder-
ate (NH ¼ 22, ReDx ¼ 500) and a very coarse (NH ¼ 8, ReDx ¼ 2500)
resolution. Investigations of the present study are limited to
ReDx � 10800, which yields CLES ¼ 36:4=Ma. One might, thus, also
limit the numerator of (27), e.g., in line with the first approach CLES

¼ 20=Ma employing

CLES ¼ min 20; 0:35
ffiffiffiffiffiffiffiffiffiffi
ReDx
p� �

=Ma: (28)

D. Wall function

The use of a wall function, which is frequently employed in con-
junction with complex flows and LBM,55–59 is the third ingredient of

FIG. 5. Turbulent channel flow simulations at Res ¼ 550 and Ma ¼ 1=10: Grid resolution sensitivity of the time-averaged eddy viscosity (left) and the cumulant expression
jC210 þ C012j (right) using a range of resolutions from H=Dx ¼ 8 to H=Dx ¼ 96. Computations refer to CS ¼ 20 jC210 þ C012j=Ma and Cx ¼ ReDx=ð10 MaÞ.

FIG. 6. Turbulent channel flow simulations at Res ¼ 550, Ma¼ 1/10 with CLES ¼ 20=Ma, and Cx ¼ ReDx=ð10MaÞ: Resolution dependent scaling of the time averaged
cumulant expression ajC210 þ C012j (left) using a range of resolutions from H=Dx ¼ 8 to H=Dx ¼ 96. The right graph depicts the evolution of the scaling factor a with the
cell Reynolds number ReDx (a1;2;3 ¼ f0:61; 0:28; 0:12g; b1;2;3 ¼ �f50; 40; 30g; c1;2;3 ¼ �f10; 8; 6g).
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the present approach. The presently employed wall function refers to a
recent publication of Asmuth et al.41 and computes a wall velocity vec-
tor uW that induces the desired wall shear stress sW obtained from a
classical wall function. The merits of the method refer to its robustness
and the compatibility with universal all-resolution wall function strate-
gies that bridge the viscous sublayer with the buffer layer and the loga-
rithmic region. Hence, it is readily employed to investigate a range of
resolutions.

The present study utilizes a piecewise reconstruction of three
non-dimensional uþðyþÞ velocity profiles communicated by Moser
et al.60 for a lower Reynolds number of Res ¼ 180 and Bernardini
et al.61 for Res ¼ 550 and Res ¼ 2000. The distinctive friction
Reynolds number follows from Res ¼ us H=�SI, whereH denotes half
the channel height, cf. Fig. 9, and us ¼ jsW j=q refers to the friction
velocity, which is computed from the magnitude of the wall-shear
stress and the density. To this end, we use five consecutive segments of
third-order polynomials, cf. Appendix A and Fig. 7, which support
continuous functions and gradients. The employed reconstruction of
uþðyþÞ extracted from DNS data can be readily replaced by any simi-
lar and more general method, such as wall function approaches by

Spalding,62,63 Musker,64 Werner and Wengle.,65 or Shih et al.,66,67

which all reconstruct the shear stress from a modeled uþðyþÞ relation
using the wall distance and tangential velocity at a wall-adjacent node,
and usually agree with the present data, cf. Fig. 7.

Though the wall function approach originates from an averaged
framework, the solid boundary treatment is performed for the local
instantaneous velocities, which is an alternative to spatial68 or temporal69

averaging of entry values and is often used in more complex flows.70–72

Mind that temporal exponential filtering69 did not indicate substantial
result changes and is, thus, discarded for the sake of brevity. Figure 8
summarizes the behavior of the instantaneous wall function method for
a fine and a coarse grid channel flow example addressed in the results
Sec. V and, indeed, indicates negligible to minor temporal fluctuations of
the non-dimensional streamwise wall velocity component.

The method involves the following algorithmic sequence:

(i) Apply the boundary condition of Yu et al.73 to receive the
unknown PDFs reflected from the wall to the first fluid layer.

(ii) Compute the momentum exchange force FMEMk between the
solid and first fluid node in the wall-tangential (k) direction
from the method of Bouzidi et al.74

FIG. 9. Illustration of the employed chan-
nel flow domain, where the wall normal
direction agrees with the y-coordinate.
The outline is supplemented by Q-criterion
isosurfaces colored by the streamwise
velocity (u) obtained from a fine grid (NH
¼ 48) simulation for Res ¼ 2000.

FIG. 7. Illustration of the employed wall functions obtained from piecewise polyno-
mial reconstructions of data reported by Moser et al.60 (Res ¼ 180) and Bernardini
et al.61 for Res ¼ f550; 2000g, supplemented by a second- and fourth-order
Spalding law using j ¼ 0:39 and B¼ 4.7.

FIG. 8. Illustration of the spatially averaged instantaneous wall function behavior
for a fine grid with yþ1 ¼ Dxþ=2 � 2 (green) and a coarse grid featuring yþ1
¼ Dxþ=2 � 85 (red) simulation of a turbulent channel flow.
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(iii) Extract the wall-tangential magnitude of the (instantaneous)
velocity vector uk2 ¼ ju2k j at the second fluid layer, i.e., the wall
function reference location.

(iv) Initialize the friction velocity us, e.g., based on the explicit
power law of Wilhelm et al.75 and iterate us based on the
uþ2 ðyþ2 ; u

k
2Þ wall function (Fig. 7):

• Compute yþ2 ¼ ðus y2Þ=� at the reference location with
y2 ¼ 3=2Dx due to the underlying grid layout.

• Update friction velocity via us ¼ uk2=u
þ
2 ðyþ2 Þ.

• Proceed until convergence criterion jyþ2;nþ1 � yþ2;nj < 1=200
is fulfilled.

(v) Assign the wall shear stress to sW ¼ u2s q and compute related

shear force Fk ¼ sW Dx2ðuk1=u
k
1Þ considering the sign of the

tangential velocity uk1 at the first node.
(vi) Assign the difference Fk � FMEMk to the force FuW contribution

to be applied via a wall velocity uW . For a y-aligned plane wall

normal, this reads41 uW ¼ � 9c2s
q

Dt2
Dx4 FuW ð1; 1=3; 1Þ>.

(vii) Introduce wall velocity uW into the first fluid layer PDFs (i),
e.g., via PDF(u) relation given in Chen et al.76

E. Suggested model

The suggested cumulant collision operator employs the parame-
terization of the third-order relaxation rates (6)–(8), which follows
from Geier et al.27 together with x2 ¼ 1. The parameterization is reg-
ularized using (16)–(22) together with the resolution-sensitive regular-
ization parameter Cx ¼ ReDx=ð10MaÞ from (23).

The model is augmented by a dynamic SGS replacing x1 by an
effective relaxation ratex1;e. Using LB units, this reads

x1  x1;e ¼
2

6 � þ C2
S S

� �
þ 1

� � (29)

due to �t¼C2
SS, and the non-dimensional strain-rate measure S fol-

lows from (24). The Smagorinsky parameter CS is computed from the
cumulant expression CS¼CLESjC210þC012j and a resolution-sensitive
coefficient, which readsCLES¼0:35

ffiffiffiffiffiffiffiffiffiffi
ReDx
p

=Ma in line with (27).
A note of caution is necessary as regards the influence of the SGS

on the parameterized cumulant model. According to the parameteri-
zation (6)–(8), the relaxation rates xf3;4;5g depend on x1. Hence, two
options exist to compute xf3;4;5g in combination with the dynamic
eddy viscosity: one using the SGS-modified x1;e and one using the
unmodified x1. We employed the unmodified x1 in conjunction with
the parameterization during the present study. Related differences
were examined and deemed negligible for the finer grids. For the
coarser grids (Dxþ � 30), minor deviations, which are more pro-
nounced for the Reynolds-stresses than for the mean velocity, are
observed for the two to three wall-nearest grid points.

The computational model employs the wall function outlined in
Sec. IID, which supports all (near-wall) resolutions.

III. TEST CASE AND SCALING

Section III describes the considered plane turbulent channel flow
case and introduces the underlying grid layout and domain size.
Moreover, we outline the corresponding correlation between physical
(subscript SI) and non-dimensional LB units (no subscript).

A. Test case

Turbulent channel flow studies of the present paper are per-
formed for four Reynolds numbers Res ¼ f180; 550; 2000; 5200g.
The flow is computationally driven by a steady, homogeneous axial
pressure gradient @p=@x, which is imposed as a body force acting on
every fluid node via Fx;SI ¼ ½ð@p=@xÞDx3�SI. The pressure gradient is
supposed to balance the mean shear load, which, in turn, is assumed
to display a linear variation along the vertical coordinate, viz.,

@p
@x

� �
SI
¼ @s

@y

� �
SI

¼ jsW j
H

� �
SI
¼ Re2s

�2q
H3

� �
SI
; (30)

where H refers to the channel half height. Hence, the employed body
force is rigidly linked to the prescribed friction Reynolds number.

B. Spatial domain

Figure 9 illustrates the spatial domain, supplemented by isosur-
face plots of the Q-criterion77 compiled for Res ¼ 2000. Results
included in this paper address three resolutions for each considered
Res featuring NH ¼ f12; 24; 48g lattice nodes along the channel half
height H. Table I summarizes the details of the employed grids. The
domain size reads 6pH in streamwise (x), 2pH in spanwise (z), and
2H in wall-normal directions (y). It aims to accommodate the largest
expected turbulent structures combined with periodic continuations in
both streamwise and spanwise directions. All nine computations
employ an isotropic, homogeneous spatial resolution. In the wall-
normal direction, Ny ¼ 2NH þ 2 applies, attributed to two solid
boundary nodes, which yield y1 ¼ Dx=2.

C. Scaling

The present grid layout reads DxSI ¼ H=NH (m), which directly
results in a length-scale ratio Kx ¼ DxSI=Dx ¼ H=NH . Since the
investigated flow is characterized by an inner Reynolds number (Res),
the related outer bulk Reynolds number (ReB) is compiled from
Dean’s correlation,78

ReB ¼
H uB
�

� �
SI
¼ 8

0:073

� �4=7 Re8=7s

2
; uB;SI ¼

1
H

ðH

0

u dy: (31)

Using (31), the four investigated friction Reynolds numbers yield
ReB � f2750; 9900; 43 900; 129200g. For a given geometry and known
fluid properties, e.g., H¼0:05m and �SI¼1:5�10�5m2=s, one obtains
the bulk velocity uSI compatible to the Reynolds number ReBðResÞ.

The time step of the explicit time integration scheme refers to
DtSI ¼ DxSI=Ku (s), where Ku (m/s) is the velocity scaling ratio
uB;SI=uB. The non-dimensional bulk velocity uB approximately scales
with the mean centerline velocity via uB � uC=1:16 (-). The latter is

TABLE I. Investigated grids and related discrete time steps per flow-through time
(FT) at Ma ¼ 1=20.

NH Nx � Ny � Nz Total grid size FT (rounded)

12 227� 26� 76 448 552 9120
24 453� 50� 152 3 442 800 18 240
48 906� 98� 303 26 902 764 36 480
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an approximation of the mean maximum velocity and, therefore,
relates to the user-defined Mach number, viz. uC ¼ Ma=

ffiffiffi
3
p

(-). The
system is closed by the non-dimensional kinematic viscosity in LB
units to ensure Reynolds similarity, viz.,

� ¼ MaNH

1:16
ffiffiffi
3
p

ReB
�½ �: (32)

Using q ¼ q0 ¼ 1 and Dx3 ¼ 1, the non-dimensional viscosity is also
used to compute a non-dimensional body force Fx ¼ �2 Re2s=N3

H that
drives the flow, cf. (30). Mind that all simulations depicted in the
results Sec. V were performed with a Mach number of Ma ¼ 1=20.

To judge the resolution characteristics, the dimensionless wall
distance Dxþ and the local cell Reynolds number are utilized. Using
LB units, these inner and outer measures read

Dxþ ¼ us Dx
�

� �
¼ us=� � Res=NH �½ �; (33)

ReDx ¼
uB Dx
�

� �
¼ uB=� � ReB=NH �½ �: (34)

Moreover, we also use the conventional flow descriptors for the inner
boundary layer, i.e., uþ ¼ u=us and yþ ¼ y us=�. It is again noted
that the non-dimensional wall distance of the first wall-adjacent node
yields yþ1 ¼ Dxþ=2 due to the underlying Cartesian grid alignment.

D. Time domain

The non-dimensional flow-through time, based on the longitudi-
nal extension of the domain Nx, the bulk velocity uB (31), and the dis-
crete unit time step Dt ¼ 1 read

FT ¼ Nx

uB Dt
ð31Þ;ð32Þ
¼ 6:96

ffiffiffi
3
p

p
NH

Ma
� 38

NH

Ma
�½ �: (35)

The flow-through time quantifies the average number of time steps a par-
ticle needs to pass the domain once and serves as a reference time scale.

The statistical convergence of the evaluated flow quantities, i.e.,
the mean velocity, the Reynolds stresses, and the two-point correla-
tions is ensured by comprehensive prior verification studies on a reli-
able data processing strategy, see also Sec. IV. The data processing
sequence commences with an initial transient phase of 50 FT. This is
followed by 50 FT to compute time-averaged velocity values �u. The
Reynolds stress tensor �Rð�u; uÞ and the two-point correlations
Rfx;zg# ð�u; uÞ are obtained during the subsequent 100 FT. Thus, the
duration of each simulation refers to 200 FT. Further details of the
data processing method are outlined in Sec. IV.

Table II provides an overview of the computed test matrix. The
LB viscosity � spans two orders of magnitude, while the grid resolution
is bounded by 4 � Dxþ � 430 and 60 � ReDx � 10800. The last col-
umn of Table II verifies the validity of Dean’s correlation (31), and the
observed deviation of approximately 64% is deemed sufficiently
small. To this end, the simulation input comprises (a) a target Res, (b)
an assumed correlation between Res and ReB obtained from Dean
(31), and (c) its hypothesized relation to a prescribed Mach number
given by ReB �=NH ¼ Ma= 1:16

ffiffiffi
3
p� �

. The latter relation is used to
compute the viscosity �, which, in turn, is used to obtain a reference
friction velocity us ¼ Res �=NH . Minor deviations of the displayed
normalized properties in Sec. V, e.g., uþ ¼ �u=us or Rþ ¼ �R=u2s , are

attributed to small inaccuracies of the assumed correlations and might
be reduced by alternative assessments of us.

IV. DATA RECORDING AND DATA PROCESSING

This section includes a synopsis of data processing aspects.
Statistical averages of �u and �R are extracted from time averaged data
in the centered y-z plane located at x=H ¼ 3p. A major share of the
data displayed in Sec. V refers to profiles along the vertical direction
(y). To this end, the time-averaged data at x=H ¼ 3p is spatially aver-
aged in the spanwise direction (z), though the mean’s ergodic nature
virtually reveals any differences between the different time-averaged
profiles and the space–time-averaged profile.

Temporal-averaged two-point correlations rest upon entire, wall-
parallel (x-z) data planes located at fixed wall distances (y ¼ const.).
The data planes are subsequently condensed to the displayed one-
dimensional data in the streamwise (x) or spanwise (z) directions as
outlined in Sec. IVC.

A. Shear stress computation

According to Pasquali et al.,24 a second-order representation of
the shear stress in a laminar plane channel flow reads

sxy ¼ �3C101x1 �; (36)

where the cumulant subscripts refer to i½x� ¼ 1; j½z� ¼ 0 and k½y� ¼ 1,
owing to the orientation of the wall normal and the primal flow in the
present case, cf. Figs. 1 and 9. To enable an in-depth analysis of distinct
contributions, the total shear stress (subscript tot) along the x-y-plane
is separated by

stot ¼ sres þ svis þ smod

¼ � q u0v0 þ 3C101 x1;e � þ �tð Þ
� �

; (37)

where the subscript xy to mark the in-plane orientation is omitted in
the remainder for the sake of brevity. The contributions correspond to
the resolved (res) stresses and a combination of viscous (vis) and

TABLE II. Considered twelve test cases, including their respective spatial resolution
parameters NH, Dxþ; ReDx , and kinematic viscosity in LB units (Ma ¼ 1=20). The
deviation of the current (c) to the targeted (t) bulk Reynolds number
{½ReB;c=ReB;t � 1� � 100 (%)} is tabulated to verify Dean’s78 correlation.

Res NH �LB

Dxþ

(Res=NH)
ReDx

(ReB=NH)
ReB dev.
(%)

180 48 4:32� 10�04 3.8 58 þ2.6
24 2:16� 10�04 7.5 115 �0.5
12 1:08� 10�04 15.0 230 þ3.2

550 48 1:20� 10�04 11.5 208 þ3.7
24 6:02� 10�05 22.9 415 þ2.1
12 3:01� 10�05 45.8 830 þ0.8

2000 48 2:72� 10�05 42.1 915 �2.6
24 1:36� 10�05 84.3 1830 þ0.1
12 6:80� 10�06 168.5 3660 �3.3

5200 48 9:25� 10�06 108.3 2690 � 2.4
24 4:62� 10�06 216.7 5380 �2.6
12 2:31� 10�06 433.3 10760 �2.3
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modeled (mod) stresses. The latter two involve an effective relaxation
rate x1;e due to the employed Boussinesq viscosity concept, cf. Sec.
II C and (29).

B. Turbulence anisotropy

The structure of the turbulence field is analyzed using the nor-
malized (resolved) Reynolds-stress �R tensor involving the traceless
(non-dimensional) Reynolds stress anisotropy A tensor defined as

A ¼
�R
2k
� I
3
: (38)

Herein, k denotes the turbulent kinetic energy (TKE) defined by half
the trace of the Reynolds stress tensor and I is the identity tensor. For
an improved presentation, the evaluation refers to barycentric (B)
coordinates introduced by Banerjee et al.79 To this end, invariants of
(38) are observed in two dimensions ðx; yÞB defined by

xB ¼ K1 � K2 þ
3
2
K3 þ

1
2
; yB ¼

ffiffiffiffiffi
27
p

2
K3 þ

ffiffiffi
3
p

2
; (39)

whereKi denotes the eigenvalues of �R sorted in descending order.

C. Two-point correlations and energy spectra

To analyze the results in greater detail and verify the adequacy of
the considered domain size, one-dimensional two-point correlations
Rx½z�
# (m2/s2) were compiled in streamwise (superscript x) and spanwise

(superscript z) directions for selected wall-distances (labeled H) employ-
ing space-time averaged line probes. Attention is confined to normal
stress components, hence # ¼ fu0u0 ; v0v0 ;w0w0 g. Four wall distances
are investigated featuring H ¼ ySI=H ¼ ð0:1; 0:25; 0:5; 1Þ. The latter
refer to the following set of discrete lattice nodes Ny for the three grids,

NyðH;NHÞ ¼
f1; 3; 6; 12g; NH ¼ 12;

f2; 6; 12; 24g; NH ¼ 24;

f4; 12; 24; 48g; NH ¼ 48;

8><
>: (40)

where the index starts from 0, i.e., the solid boundary node. Note that
no interpolation is applied for the near-wall location ySI=H ¼ 0:1,
which strictly speaking points to f1:2; 2:4; 4:8gDx on the three grids,
and the assignment refers to the lower neighbor. This impairs an
inter-grid comparison at the near-wall location H ¼ 0:1, as indicated
by the different buffer-layer locations outlined in Table III, which
states the yþH values as a function of NH and Res. Since the H ¼ 0:1
plane is extracted at the first (second) fluid node of the coarse
(medium) grid, one expects the location to be affected by wall function
influences. Wall function concepts usually refer to averaged flow prop-
erties, and a wall function generally suppresses turbulent dynamics.
Therefore, results of the H ¼ 0:1 plane are assumed to show more
substantial deviations from DNS data for all simulations that do not
resolve the viscous sublayer at Res ¼ 550 and Res ¼ 2000.

The two-point correlations are computed in the entire x-z planes.
However, evaluations rest upon axially parallel lines in stream- and
spanwise directions controlled by a running index e ¼ f0;Nx½z� � 1g,

Rx
u0u0
ðx; ze;HÞ ¼ u0ðx ¼ 0; ze;HÞ u0ðx; ze;HÞ; (41)

Rz
u0u0
ðxe; z;HÞ ¼ u0ðxe; z ¼ 0;HÞ u0ðxe; z;HÞ (42)

exemplary depicted for the u0u0 component. The displayed one-
dimensional two-point correlation follows from in-plane spatial aver-
ages, viz.,

Rx z½ �
# ðx z½ �;HÞ ¼ 1=Nz x½ �

XNz x½ ��1

e¼0
Rx z½ �
# ðx xe½ �; ze z½ �;HÞ: (43)

Related one-dimensional energy spectra Ex½z�
# ðkx½z�Þ (m

3/s2) com-
puted from averaged two-point correlations are used to assess the
energy distribution along the resolved scales. Here, kx½z� (1/m) denotes
the wave number, whereby low values correspond to large scales. The
energy spectra are obtained from discrete Fourier transformation80

(DFT) and require an adequate processing of the averaged two-point
correlation (43), particularly a symmetric input. Figure 10 illustrates
the adopted four-step symmetrization approach for an example with
five (left) and four (right) input points.

First, the global maximum (zeroth) element (x¼ 0) is assigned to
the mid value (0), which remains unchanged. Subsequently, an
unweighted mean is computed for x½z� > 0 via

Rðx z½ �Þ ¼
Rðx z½ � þ RðNx z½ � � x z½ �Þ

2
x z½ � ¼ 1;…; 1f g (44)

with 1 ¼ ðNx½z� � 1Þ=2 (odd) and 1 ¼ Nx½z�=2� 1 (even) as indicated
by (2) in Fig. 10 (sub and superscript omitted for clarity). Averaging
eliminates (numerical) deviations of the actually symmetrical R shape,
which should not occur due to the assumed stream- and spanwise
periodicity. Subsequently, the values are shifted (3) to the right-hand
side of the center. Intended symmetric correlations follow from data
mirroring (4). Thus, the length (Nx½z�) of R

x½z�
# is incremented by one

for even input elements. The orange dashed line in Fig. 10, covering

TABLE III. Resulting yþH ¼ yþðNH ;ResÞ values at the considered wall distances
H ¼ ySI=H for computing two-point correlations and energy spectra.

H NH Res yþH H NH Res yþH

0.1 12 180 7 0.5 12 180 82
550 23 550 252
2000 84 2000 927

24 180 11 24 180 86
550 34 550 264
2000 126 2000 969

48 180 13 48 180 88
550 40 550 269
2000 147 2000 990

0.25 12 180 37 1 12 180 172
550 115 550 527
2000 421 2000 1938

24 180 41 24 180 176
550 126 550 539
2000 463 2000 1980

48 180 43 48 180 178
550 132 550 544
2000 484 2000 2001
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the half pathway starting from the global maximum, exemplary repre-
sents the two-point correlation data shown in the results section,
where the trajectories are additionally normalized using their maxima.

The discrete energy contributions Ex½z�
# ðkx½z�Þ per wave number

kx½z� ¼ 2p x½z�=Nx½z� correspond to the magnitude of the computed
Fourier coefficients. In order to reduce oscillations, the symmetric
DFT input (R) is filtered81 using a von Hann window
(1=2� cosð2p x½z�=Nx½z�Þ=2). Due to the odd number of real input
elements in the present study, we obtain NB ¼ ðNx½z� þ 1Þ=2 [bin
indexing: ½0 : ðNx½z� � 1Þ=2]] DFT bins attributed to conjugate
(Hermitia) symmetry.

The representation is non-dimensionalized by means of Eþ

¼ E=ðu2s NHÞ plotted over kþ ¼ kNH . The first bin with the zero
wave number contribution is not displayed, and a cutoff kc ¼ 0:9NB

is applied to all spectra. To suppress strong oscillations in the high
wave number regime, the streamwise spectra are additionally trun-
cated as follows. The conditions are (i) kc > 0:4NB, (ii) positive E gra-
dient, and (iii) EðkÞ=Eðk� 1Þ > 3=2 to avoid excessive sharp cutting
for minor gradients.

Moreover, integral lengths scales are computed from the two-
point correlations via

kþx z½ �ðyHÞ ¼
1

us �

ðr

0

Rx z½ �
# dx dz½ � yH¼yþ

¼

ðr

0

Rx z½ �;þ
# dxþ dzþ½ � (45)

to assess the computed structures and the sensitivity to resolution
aspects. To avoid cancelation of positive and negative values, the inte-
gral lengths are evaluated from their (positive) origin to the first root
(r) of their argument.

V. RESULTS

Results obtained on the different grids are assigned to a particular
color. Green indicates fine grid results (NH ¼ 48), blue denotes to
medium grid results (NH ¼ 24), and red refers to coarse grid solutions
(NH ¼ 12). Black lines refer to the respective reference data reported
by Kim et al.82 and Moser et al.60 for Res ¼ 180 as well as Bernardini
et al.61 and Lee and Moser.83 for the higher Reynolds numbers. Note

that the simulations of Lee and Moser.83 and Bernardini et al.61 to
some extent cover virtually the same Reynolds numbers, and the
respective data for these Reynolds number basically agree. Hence, the
remainder of the section simply distinguishes between Res ¼
f180; 550; 2000g and Res ¼ 5200 is only referred to in Sec. VG. Two-
point correlations and spectra computed for Res ¼ 550 are compared
to DNS reference data60 for Res ¼ 590.

A. Domain size and periodicity conditions

The employed box domain depicted in Fig. 9 agrees with previ-
ous studies of Bernardini et al.61 Assuming periodic boundary condi-
tions, an insufficiently small domain size might affect the credibility of
turbulence statistics due to the large correlation lengths, as, for exam-
ple, demonstrated in Moser et al.60 The suitability of the present
domain/periodicity condition combination is demonstrated in Figs. 11
and 12 by exemplary two-point correlations and energy spectra of the
normal stresses in streamwise and spanwise directions for the most
challenging large Reynolds number Res ¼ 2000. Displayed correla-
tions refer to fine grid results (NH ¼ 48) for the mid height position
(y=H ¼ 0:5) and descent all to sufficiently small values. Furthermore,
the minimum spanwise correlation for the streamwise component dis-
plays the frequently observed half-streak spacing at this wall distance.

The corresponding energy densities shown in Fig. 12 drop with
an increasing slope by approximately five3 orders of magnitude
between the low and the high wave numbers in the streamwise (span-
wise) direction.

B. Mean velocity

Figure 13 depicts profiles of the non-dimensional mean primal
velocity uþðyþÞ obtained for the three considered Reynolds numbers
on the three grids. Overall, results are deemed to be quite accurate and
display a surprisingly small sensitivity to the grid resolution.

In conjunction with the smallest Reynolds number Res ¼ 180
illustrated in the left graph of Fig. 13, the wall adjacent fluid node is
still inside the viscous sublayer (fine, medium grid) or the buffer layer
(coarse grid). Hence, only a weak deviation from the no slip velocity is

FIG. 10. Employed Rx½z�
# symmetrization

algorithm for an even (odd) number of
input data. Points along dotted lines in the
bottom figures represent 1D two-point cor-
relations defined by (43). The resulting
DFT input is illustrated by the closed black
circles in the top figure.
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observed in Table IV, which outlines the x-component uW of the wall
velocity vector as described in Sec. IID (vii) and Fig. 8. The table also
indicates that the respective variance increases when the resolution
deteriorates but always remains small.

With attention directed to the two larger Reynolds numbers, wall
function influences increase in line with an increase in wall velocity

uW. In such situations, deficiencies are observed in the vicinity of the
first and second interior grid nodes in Fig. 13 (center, right). They are
attributed to an overshoot phenomenon41,84 induced by small eddy vis-
cosity levels predicted at the very near-wall fluid node(s). This is due
to the wall function being afflicted with reduced turbulent dynamics.
The missing dynamics have an adverse effect on the present SGS

FIG. 11. Stream- (left) and spanwise (right) normalized two-point correlations obtained from the fine grid (NH ¼ 48) for Res ¼ 2000 at H ¼ 0:5.

FIG. 12. Stream- (left) and spanwise (right) normalized turbulent energy spectra obtained from the fine grid (NH ¼ 48) for Res ¼ 2000 at H ¼ 0:5. The u0u0 -component in
the spanwise direction (dashed, right) is smoothed by a centered, unweighted three-point moving average filter applied for kþz > 0:7. Additionally, the Eþ 
 ðkþÞ�5=3 propor-
tionality of the inertial range is displayed.

FIG. 13. Non-dimensional mean velocity profiles for the three considered Res in comparison with the polynomial reconstruction (Ref. PR) of reference data.
60,61
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model that operates with third-order cumulant expressions, which are
dampened by wall function influences.

However, except for the over-predicted velocity gradients at the
wall-nearest nodes, the mean velocity profiles display remarkable
agreement with the logarithmic layer, even for the large Reynolds
number, where the resolution is decreased to Dxþ ¼ 170. The biggest
discrepancy of the computed wall shear stress is observed for Res
¼ 2000 on the fine grid, where the prescribed wall shear is under-
predicted by approximately 3%. Mind that normalizations employ a
prescribed reference us in line with Sec. IIID. Moreover, minor devia-
tions occur in the wake regime. Here, the bulk velocity deviation (ReB
dev.) might explained by a small mismatch of the employed correla-
tions, cf. Table II.

C. Total shear, resolved, and modeled Reynolds
shear stress

The overshoot phenomenon mentioned above is better under-
stood when looking at the Reynolds-shear stresses and the total shear.
Figure 14 indicates reasonable agreement of the normalized total shear
stress stot ¼ sSI; tot=jsW j with a non-dimensional linear distribution
slin ¼ 1� ySI=H, disregarding the Reynolds number or the employed
resolution. Deviations increase with the Reynolds number but remain
approximately constant along the abscissa, indicating a mismatch of
the slope by mostly 5%. Mind that the linear distribution vanishes at

y=H ¼ 1, which impairs the evaluation of relative differences close to
the centerline.

Profiles of the individual normalized shear stress components,
comprising the modeled SGS, viscous, and resolved parts, are dis-
played in Fig. 15. It is observed that the viscous contributions obtained
with different grids for specific Reynolds numbers (solid lines) agree
apparently well with each other for Res ¼ 180, i.e., they all snap on
the green fine grid curve. This is not necessarily the case for the other
Reynolds numbers. Moreover, Fig. 15 reveals the dominance of the
resolved stresses sres denoted by the dotted lines from the third lattice
node and beyond toward the interior of the domain.

This is also the case when increasing the Reynolds number or the
lattice spacing and thereby amplifying the wall function influences.
The respective (large) predicted resolved shear stresses suddenly drop
when entering the buffer layer in the direction of the wall. For the
coarse grids, this decrease occurs almost abruptly. In conjunction with
Res ¼ 180, the near-wall results of the coarse grid remain close to the
finer grids because the mean velocity gradient is well captured.
However, increasing the Reynolds numbers reveals larger disparities
between resolved shear stress levels predicted by the coarse, medium,
and fine grids near the wall. The latter is accompanied by a mismatch
of the mean velocity gradient, which also induces an over-prediction
of the turbulence energy production, cf. Fig. 16.

The SGS-contribution should balance the reduction of
resolved turbulent shear when approaching the wall. However, if
the wall-adjacent eddy viscosity and, thereby, the modeled shear
stress are under-predicted, this is compensated by an over-
predicted (mean) velocity gradient. In this regard, a poor resolution
of the turbulence generating buffer layer poses a challenge to the
present cumulant SGS/wall function combination, cf. the medium
(yþ2 � 25) and the coarse (yþ2 � 70) grid results for Res ¼ 550, and
all results for Res ¼ 2000 (yþ2 � f60;…; 250g). Since the wall func-
tion substantially attenuates the turbulent dynamics and does not
recover abruptly on coarser meshes, this impedes the cumulant-
based SGS model in a few wall-adjacent coarse grid nodes. Figure
17 displays the over-estimation of the mean velocity gradient
near the wall in conjunction with the coarse grid simulations at
Res ¼ 550 (red) and all simulations at Res ¼ 2000.

Likewise, Fig. 18 depicts the averaged normalized eddy viscosity
�� t=� (left) and an estimate of the discrepancy between the predicted
and the required eddy viscosity (right), which again outlines the near-
wall defect for the higher Reynolds numbers.

TABLE IV. Temporal mean value (�uþW ) and variance (r2
�uþW
) of the non-dimensional

streamwise wall velocity component.

Res NH �uþW r2
�uþW

(10�3)

180 48 0.108 0.034
24 0.056 0.785
12 0.665 1.365

550 48 0.246 0.205
24 0.707 0.497
12 2.076 2.386

2000 48 1.279 0.526
24 3.362 0.913
12 5.151 2.457

FIG. 14. Relative deviation of the non-dimensional total shear stress from a linear relation L1ðstotÞ ¼ ðstot � slinÞ=slin, with slin ¼ ð1� y=HÞ.
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FIG. 15. Comparison of non-dimensional resolved (dotted), viscous (solid), and modeled (dashed) shear stress profiles with linear total stress relation si=sW ¼ 1� y=H (solid
black line).

FIG. 16. Comparison of non-dimensional turbulence energy production rate Pþk ¼ �u0v0 d�u
d y ½� �u4s� with DNS reference data.83

FIG. 17. Ratio of the predicted to the reconstructed velocity gradient / ¼ ðd�u=dyÞLBM=ðd�u=dyÞrec using second-order finite differences.

FIG. 18. Averaged non-dimensional eddy viscosity �� t=� (left), estimated discrepancy between the predicted and the required non-dimensional eddy viscosity (right)
C ¼ ½ð� þ �� tÞ ðd�u=dyÞrec þ ju0v0 j�=u2s þ ySI=H � 1, and comparison of mean velocities in the buffer layer predicted with the present approach (�t � 1:0) and a 50%
augmentation of the near-wall eddy-viscosity (�t � 1:5) against a second-order Spalding law62 (gray line) (right).
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FIG. 19. Barycentric representation of the (resolved) Reynolds stress anisotropies. The abscissa (yB ¼ 0) refers to wall location.

FIG. 20. Non-dimensional (resolved) Reynolds normal stresses supplemented by reference data.60,61

FIG. 21. Spanwise maxima-normalized two-point correlations obtained from the fine grid (NH ¼ 48) for Res ¼ 180 at H ¼ 0:1 (top) and H ¼ 0:25 (bottom) for
# ¼ fu0u0 ; v0v0 ;w 0w 0 g (left, mid, and right). The pathlines are plotted in outer (z/H) scaling and compared to DNS reference data from Moser et al.60 (solid black lines).
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FIG. 22. Streamwise maxima-normalized two-point correlations obtained from the fine grid (NH ¼ 48) for Res ¼ 180 at H ¼ 0:1 (top) and H ¼ 0:25 (bottom) for
# ¼ fu0u0 ; v0v0 ;w 0w 0 g (left, mid, and right). The pathlines are plotted in outer (x/H) scaling and compared to DNS reference data from Moser et al.60 (solid black lines).

FIG. 23. Non-dimensional streamwise correlation lengths for u0u0 (top), v0v0 (mid), and w 0w 0 (bottom) column-wise displayed for all three Res ¼ f180; 550; 2000g (left, mid,
and right) for each grid NH ¼ f12; 24; 48g (red, blue, and green) plotted vs non-dimensional outer wall-normal coordinate. The abscissa range is scaled individually in each
plot and row-wise constantly scaled by decimal power, i.e., 103 [u0u0 ], respectively, 102 [v0v0 ; w0w 0 ]. Reference data refer to Res ¼ 180 and Res ¼ 590, cf. Moser et al.60
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While the eddy viscosity is generally negligible for Res ¼ 180
(dotted) and remains minor for Res ¼ 550 (solid), significant eddy
viscosity levels are observed at Res ¼ 2000 (dashed), particularly for
the coarse grid, where �t=� 2 ½1; 10� over large portions of the
domain. From Fig. 18(right), it is noted that the overshooting charac-
teristics follow the soft transition displayed by empirical universal wall
functions (e.g., according to Spalding62) and reduce when augmenting
the eddy viscosity at the wall adjacent interior fluid nodes.

D. Resolved turbulence field

Figures 19 and 20 show the predicted resolved Reynolds stress
anisotropies and profiles of the resolved normal stress components.
Results of the present LBM are compared to DNS data (black lines)
obtained fromMoser et al.60 and Bernardini et al.61

For the low Reynolds number Res ¼ 180, the SGS-contributions
are negligible, cf. Fig. 18, and the resolved Reynolds stresses reveal a
fair coincidence with the reference data. The anisotropy prediction
deteriorates as the resolution coarsens, and the modeling influences
increase. The respective left graphs of Figs. 19 and 20 clearly reveal an
erroneous shift toward an isotropic distribution of the wall-parallel
normal stresses u0u0 and w0w0 near the wall when the grid is
coarsened.

Mind that the barycentric coordinate yB vanishes at the wall, and
the wall-normal velocity fluctuation v0 is attenuated due to wall

damping and wall function influences. As the Reynolds number
increases, the resolution of the employed grids deteriorates, and the
attenuation of the wall-normal fluctuation extends further toward the
centerline. Simultaneously, the shift from 1c toward 2c-turbulence in
the near-wall region proceeds.

Increasing the wall function influence by increasing the Reynolds
number or reducing the resolution induces a strong reduction of the
streamwise correlation length kþðRx;þ

u0u0Þ, as outlined below. Moreover,
the two-point correlations indicate that the under-resolved near-wall
flow shares some features with the core flow.

E. Two-point correlations and correlations lengths

The occurrence and location of minima displayed by the span-
wise (z) two-point correlations Rz

# allow to identify structures and esti-
mates their size. Figure 21 depicts these correlations obtained for
Res ¼ 180 in the H ¼ 0:1 andH ¼ 0:25 planes.

Predictive agreement between the fine grid LBM results and the
reference DNS data of Moser et al.60 is generally fair. Streamwise vorti-
ces are indicated by the minima of Rz

v0v0
located between z=H � 0:17

(zþ � 30) at H ¼ 0:1 and z=H � 0:28 (zþ � 50) at H ¼ 0:25 and
provide an impression about their diameter. Consistent with formerly
reported results, the Rz

v0v0
minimum is located closer to the wall than the

minimum of Rz
u0u0

. The latter separates the high-speed fluid from the

FIG. 24. Streamwise Rx
# maxima-normalized # ¼ u0u0 (top) and # ¼ v0v0 (bottom) two-point correlations obtained from the fine (NH ¼ 48) and coarse (NH ¼ 12) for

Res ¼ 550 at a near-wall [H ¼ 0:1, (left)] and the centerline position [H ¼ 1, (right)] supplemented by the reference data from Moser et al.60 at Res ¼ 590.
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low-speed fluid at approximately half the mean streak spacing. The evo-
lution of the companion streamwise correlations is simpler and shows a
fair predictive agreement, as indicated by the results in Fig. 22.

Identifying predictive differences from the various two-point cor-
relations is sometimes intricate. Hence, integral values are frequently
used to support an assessment. Former analysis, e.g., by Tritton,85

reveals that the normalized streamwise correlation length of the
streamwise velocity maximizes at the end of the buffer layer, e.g.,
around yþ ¼ 20–30, where the respective peak values significantly
exceed the yþ-value and subsequently drop in the log-layer. Figure 23
describes the evolution of the predicted streamwise correlation lengths
for all three normal stress components as a function of the Reynolds
number and the grid resolution.

The LBM data are compared with reference data extracted from
DNS simulations of Moser et al.60 for Res ¼ f180; 590g since no other
data are available for the large Reynolds number. As mentioned above,
the figures prove a significant length-scale reduction in the streamwise
direction for the coarse grids. The latter yields similarities between the
near-wall and the centerline regions of the respective two-point corre-
lations, as displayed in Fig. 24.

On the contrary, the spanwise length scales depicted by Fig. 25
are generally much smaller and also reflect smaller gradients in the
vertical direction. Hence, grid resolution influences are far less pro-
nounced than in the streamwise direction.

F. Energy spectra

Figures 26 and 27 compare the computed streamwise and span-
wise energy spectra for all Reynolds numbers with reference data
obtained from DNS simulations of Moser et al.60 for Res ¼ f180; 590g
and Lee andMoser.83 for Res ¼ 2000.

Displayed results refer to four different wall distances, i.e.,
y=H ¼ H ¼ f0:1; 0:25; 0:5; 1g, and are restricted to fine grid LBM
computations with NH ¼ 48 points across the half-height H, since the
present resolution automatically deteriorates when the Reynolds num-
ber is increased.

With regard to Res ¼ 180, the LBM results show convincing
agreement with the reference DNS data, with minor reservations
for the wall nearest location where the yþ-values differ. This case
is certainly less challenging, as the resolution is close to DNS.

FIG. 25. Non-dimensional spanwise correlation lengths for u0u0 (top), v0v0 (mid), and w 0w 0 (bottom) column-wise displayed for all three Res ¼ f180; 550; 2000g (left, mid,
and right) and each grid NH ¼ f12; 24; 48g (red, blue, and green). Reference data refer to Res ¼ 180 and Res ¼ 590 extracted from Moser et al.60
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With attention directed to Res ¼ 550, the resolution refers to
Dxþ ¼ 11:5, and the influence of the resolution-triggered regulariza-
tion is clearly observed in the evolution of the streamwise spectra. As
already discussed for more complex periodic hill flows in Gehrke and
Rung.,26 the steep decline of the higher wave number parts of the spec-
tra (kþx > 60) is induced by the regularization and helps to suppress
potential instabilities. Except for the dissipative high wave number
regime and a slight tendency to pull some of the unresolved high-wave
number content into the upper-wave numbers of the inertial subrange
for H ¼ 0:1 (red) and H ¼ 0:25 (orange), predictive agreement with
the reference DNS data is deemed fair. Results displayed for Res
¼ 2000 were compiled for Dxþ ¼ 42 and reveal both regularization
and SGS influences. Results for the dominating Ex;þ

u0u0
spectra are in fair

agreement with the references data in the energy-containing range.
The width of the inertial subrange is substantially reduced, and the
LBM spectra start declining with an increasing slope at kþx > 40½60�
for the lower (upper) locations. The increase in the inertial subrange
content is more pronounced for the lower locations (red and orange)
and affects the spectra at H ¼ 0:5 (light green). Mind that the result

obtained for the spanwise spectra depicted in Fig. 27 generally agrees
better with the reference data for the higher Reynolds numbers, as
could be expected from the two-point correlations and the correlation
lengths discussed above.

Figure 28 compares the stream- and spanwise energy spectra for
Res ¼ 2000 obtained on the coarse and the fine grid for the u0u0 and
w0w0 components, respectively. The figure confirms the previous
discussion.

Grid coarsening reduces the resolved part of the inertial subrange
to kþx �20 and introduces an earlier onset of dissipation. Nonetheless,
the low frequency dynamics is still captured as also outlined by Fig. 29.

G. Application to higher Reynolds number
and comparison to conventional SGS

To convey the capabilities of the present suggestion, we supple-
ment results for a Reynolds number of Res ¼ 5200 against DNS data
published by Lee and Moser.83 Figure 30 displays the predictions of
the mean flow, shear stress contributions, and Reynolds normal

FIG. 26. Streamwise turbulent energy spectra for # ¼ fu0u0 ; v0v0 ;w 0w 0 g (top, mid, and bottom) obtained from fine grid (NH ¼ 48) simulations for all three
Res ¼ f180; 550; 2000g (left, mid, and right) at varying wall-normal positions H ¼ f0:1; 0:25; 0:5; 1g (dark red, orange, light green, and dark green). Solid lines display refer-
ence data of Moser et al.60 for Res ¼ f180; 590g and Lee and Moser.83 for Res ¼ 2000. Data are labeled by the yþ ¼ yþðH;NH ¼ 48;ResÞ values, cf. Table III, and com-
plemented by the closest values of the reference dataset as indicated in square brackets. Constant y-intercepts apply row-wise (#), and x-ranges coincide column-wise (Res).
Additionally, the Eþ 
 ðkþÞ�5=3 proportionality of the inertial range is displayed.
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stresses. The employed wall function refers to uþðyþÞ ¼ logðyþÞ=
0:39þ 4:7 which is in line with the Lee and Moser.83

Due to the enhanced distance of the first fluid node, buffer zone
and transition influences diminish, and predictive agreement with
DNS data slightly improves in comparison with Res ¼ 2000.

Appendix C outlines a comparison of mean velocities and
resolved Reynolds stresses against conventional LES approaches using
CS ¼ 0:15 in line with Pope,86 which is often used in industrial appli-
cations. The comparison refers to Res ¼ f180; 550; 2000g and reveals
the benefits of the present approach, in particular an improved level of
resolved stresses. The overshoot phenomenon is also observed for
Res ¼ 2000 with the conventional approach, but related near wall pre-
dictions clearly deteriorate for lower Reynolds numbers and improved
resolutions.

VI. CONCLUSION

This paper addresses the predictive performance of the LB
method based upon a modified cumulant collision operator. Attention
is restricted to turbulent channel flows, regarded as building blocks for

modeling engineering shear flows. Investigations originate from low
Reynolds numbers (Res ¼ 180) and DNS-type resolutions with
Dxþ < 4 and extent to computationally more demanding Reynolds
numbers (Res ¼ 5200) and coarse grid resolutions featuring
Dxþ > 400, using isotropic homogeneous Cartesian grids.

Previous investigations demonstrated the remarkable turbulence
prediction capabilities of the cumulant LBM. Except for the general
regularization, no dedicated turbulence model is needed in well-
resolved flows featuring Dxþ�10. However, literature reported results
also reveal the limitations of the regularized cumulant LBM for coarse
resolutions, which quickly occur at higher Reynolds numbers. The
present work aims to advance these limits using two simple modifica-
tions of the baseline model. First, an alternative regularization is sug-
gested, which is deemed sufficient to dissipate the kinetic energy of the
large wave numbers and accurately compute flows with fine to moder-
ate resolutions characterized by Dxþ�20. Second, a third-order
cumulant expression is employed to formulate a dynamic
Smagorinsky-type SGS model that acts on smaller wave numbers.
Both modifications employ the resolution through the cell Reynolds

FIG. 27. Spanwise turbulent energy spectra for # ¼ fu0u0 ; v0v0 ;w 0w 0 g (top, mid, and bottom) obtained from the fine grid (NH ¼ 48) simulations for all three
Res ¼ f180; 550; 2000g (left, mid, and right) at varying wall-normal positions H ¼ f0:1; 0:25; 0:5; 1g (dark red, orange, light green, and dark green). Solid lines display refer-
ence data of Moser et al.60 for Res ¼ f180; 590g and Lee and Moser.83 for Res ¼ 2000. Data are labeled by the yþ ¼ yþðH;NH ¼ 48;ResÞ values, cf. Table III, and com-
plemented by the closest values of the reference dataset as indicated in square brackets. Constant y-intercepts apply row-wise (#), and x-ranges coincide column-wise (Res).
Additionally, the Eþ 
 ðkþÞ�5=3 proportionality of the inertial range is displayed.
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FIG. 28. Stream- (left) and spanwise (right) turbulent energy spectra for # ¼ fu0u0 ;w0w 0 g (top and bottom) obtained from fine (green) and coarse (red) grid simulations for
Res ¼ 2000 at H ¼ 0:5. Solid lines display reference data of Lee and Moser.83 The correlating NH-dependent y

þ-values of H ¼ 0:5 are given in the upper left key.

FIG. 29. Illustration of turbulent structures based on the non-dimensional streamwise vorticity component xþx ¼ ðdv=dz � dw=dyÞNH=us for Res ¼ 2000 obtained from the
coarse (top) and fine (bottom) grids. Displayed isosurfaces refer to 0:2xþx;max and are colored by the velocity magnitude.
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number (spatial) and the Mach number (temporal). They seamlessly
vanish in the fine-grid limit and interact favorably with the investi-
gated cases. Furthermore, coupling to a wall function involves minimal
additional efforts and supports the transition to the fine-grid limit.

Results indicate a remarkable robustness and predictive perfor-
mance of the modified cumulant model. A remaining deficit refers to
the interaction between the SGS model and the wall function, e.g.,
Dxþ� 35, where the dynamic character of the SGS suffers from the
missing dynamics of the wall function in coarse resolutions. In conclu-
sion, the very near-wall eddy viscosity is predicted to be too small,
which induces an overshoot of the predicted velocity gradient between
the two wall-nearest lattices to balance the resolved shear in the inte-
rior. However, this does not significantly harm the remainder of the
flow, and the prediction of the turbulent dynamics rapidly recovers
toward the interior flow, which is also supported by very large
Reynolds number studies.

The deficit could be addressed by augmenting the wall function
and adding a related eddy viscosity contribution in the transition, i.e.,
the buffer-layer regime. More severe open issues refer to the geometric
generalization of the wall function and an assessment or rather adapta-
tion of the suggested modifications for anisotropic grids, which will be
the subject of future studies.
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APPENDIX A: WALL FUNCTION POLYNOMIALS

The C1-polynomials uþResðy
þÞ, cf. Fig. 31, deposited in the wall

function approach, cf. Sec. IID, are given by (rounded to two decimal
places)

FIG. 30. Non-dimensional mean velocity profiles (left), shear stress contributions (center), and normalized (resolved) Reynolds normal stresses (right) for Res ¼ 5200.
Displayed reference data for uþ and u0i u

0
i
þ
refer to DNS data published by Lee and Moser.83

FIG. 31. Polynomial uþðyþÞ reconstruction of the reference data61,82 for the three underlying Reynolds numbers Res ¼ f180; 550; 2000g.
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uþ180ðyþÞ ¼

�1:69� 10�03ðyþÞ3 þ 1:95� 10�03ðyþÞ2 þ 9:96� 10�01yþ þ 7:68� 10�04; yþ< 7;

þ5:57� 10�04ðyþÞ3 � 4:38� 10�02ðyþÞ2 þ 1:30� 100 yþ � 6:58� 10�01; 7 � yþ< 20;

þ1:47� 10�04ðyþÞ3 � 1:72� 10�02ðyþÞ2 þ 7:40� 10�01yþ þ 3:17� 100; 20 � yþ< 40;

þ5:95� 10�06ðyþÞ3 � 1:51� 10�03ðyþÞ2 þ 1:60� 10�01yþ þ 1:03� 10þ01; 40 � yþ< 80;

�4:89� 10�08ðyþÞ3 � 1:43� 10�04ðyþÞ2 þ 5:75� 10�02yþ þ 1:29� 10þ01; 80 � yþ< 180;

8>>>>>>><
>>>>>>>:

(A1)

uþ550ðyþÞ ¼

�7:03� 10�04ðyþÞ3 � 1:40� 10�02ðyþÞ2 þ 1:07� 100 yþ � 1:77� 10�02; yþ< 12;

þ2:93� 10�04ðyþÞ3 � 2:73� 10�02ðyþÞ2 þ 9:54� 10�01yþ þ 1:53� 100; 12 � yþ< 28;

þ2:52� 10�05ðyþÞ3 � 4:60� 10�03ðyþÞ2 þ 3:14� 10�01yþ þ 7:52� 100; 28 � yþ< 53;

þ5:75� 10�07ðyþÞ3 � 2:94� 10�04ðyþÞ2 þ 6:64� 10�02yþ þ 1:22� 10þ01; 53 � yþ< 143;

�3:15� 10�09ðyþÞ3 � 1:81� 10�05ðyþÞ2 þ 2:25� 10�02yþ þ 1:46� 10þ01; 143 � yþ< 550;

8>>>>>>><
>>>>>>>:

(A2)

uþ2000ðyþÞ ¼

þ5:12� 10�04 ðyþÞ3 � 4:06� 10�02ðyþÞ2 þ 1:21� 100 yþ � 2:15� 10�01; yþ< 24;

þ2:63� 10�05 ðyþÞ3 � 4:73� 10�03ðyþÞ2 þ 3:20� 10�01yþ þ 7:17� 100; 24 � yþ< 60;

þ5:10� 10�07 ðyþÞ3 � 2:91� 10�04ðyþÞ2 þ 6:73� 10�02yþ þ 1:19� 10þ01; 60 � yþ< 182;

þ1:03� 10�08 ðyþÞ3 � 2:25� 10�05ðyþÞ2 þ 2:02� 10�02yþ þ 1:46� 10þ01; 182 � yþ< 623;

�8:79� 10�11ðyþÞ3 � 1:10� 10�06ðyþÞ2 þ 5:66� 10�03yþ þ 1:79� 10þ01; 623 � yþ< 2000;

8>>>>>>><
>>>>>>>:

(A3)

APPENDIX B: EXPLICIT IMPLEMENTATION OF THE
APPLIED CUMULANT COLLISION OPERATOR

The present explicit depiction of the collision operator in
cumulant space is valid for specific choice of relaxation rates as par-
ticularly outlined in Sec. II B. Subsequently, q ¼ 1þ dq is the den-
sity and u ¼ ðu; v;wÞ> denotes the velocity vector. The underlying
implementation rests on the well-conditioned computation of dq
and u. Their explicit listing is left out here, and the reader is referred
to either Geier et al.,22 Appendix J, or Gehrke and Rung,26

Appendix B for a thorough review.
Initially, the zeroth and first-order cumulants are related to

macroscopic flow quantities and are, thus, conserved properties
during collision. This implies omitting their relaxation, whereby

C�000 ¼ C000; (B1)

C�100 ¼ C100; C
�
010 ¼ C010; C

�
001 ¼ C001 (B2)

holds. The second-order cumulants’ collision reads

C�110 ¼ ð1� x1ÞC110; (B3)

C�101 ¼ ð1� x1ÞC101; (B4)

C�011 ¼ ð1� x1ÞC011; (B5)

and

C�200 ¼ ð1� x1Þ 2C200 � C020 � C002ð Þ � a1 � a2 þ a3
� �

=3; (B6)

C�020 ¼ ð1� x1Þ 2C020 � C200 � C002ð Þ þ 2a1 � a2 þ a3
� �

=3; (B7)

C�002 ¼ ð1� x1Þ 2C002 � C200 � C020ð Þ � a1 þ 2a2 þ a3
� �

=3 (B8)

featuring the following variables:

a1 ¼ 3 q ð1� x1=2Þ ðu2 Dx u� v2 Dy vÞ; (B9)

a2 ¼ 3 q ð1� x1=2Þ ðu2 Dx u� w2 Dz wÞ; (B10)

a3 ¼ dq� 3q ð1� 1=2Þ ðu2 Dx uþ v2 Dy v þ w2 Dz wÞ: (B11)

These contain first-order derivatives of the macroscopic velocity
vector

Dx u ¼x1=ð2 qÞ ð�2C200 þ C020 þ C002Þ
�1=ð2 qÞ ðC200 þ C020 þ C002 � dqÞ; (B12)

Dy v ¼x1=ð2qÞ ðC200 þ 2C020 þ C002Þ
�1=ð2qÞ ðC200 þ C020 þ C002 � dqÞ; (B13)

Dz w ¼x1=ð2qÞ ðC200 þ C020 þ 2C002Þ
�1=ð2qÞ ðC200 þ C020 þ C002 � dqÞ: (B14)

The third-order collision step reads

C�102¼ ð1�xC
3;1ÞðC120þC102Þ�ð1�xC

4;2ÞðC120�C102Þ
h i

=2; (B15)

C�120¼ ð1�xC
3;1ÞðC120þC102Þþð1�xC

4;1ÞðC120�C102Þ
h i

=2; (B16)

C�012¼ ð1�xC
3;2ÞðC210þC012Þ�ð1�xC

4;2ÞðC210�C012Þ
h i

=2; (B17)

C�210¼ ð1�xC
3;2ÞðC210þC012Þþð1�xC

4;2ÞðC210�C012Þ
h i

=2; (B18)

C�021¼ ð1�xC
3;3ÞðC201þC021Þ�ð1�xC

4;3ÞðC201�C021Þ
h i

=2; (B19)

C�201¼ ð1�xC
3;3ÞðC201þC021Þþð1�xC

4;3ÞðC201�C021Þ
h i

=2; (B20)

and

C�111 ¼ ð1� xC
5 ÞC111; (B21)
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where the regularized relaxation rates, cf. Sec. II B 1 [Eqs.
(16)–(22)hx2013;(22)], occur. Fourth-order relaxation includes

C�220 ¼ 2 a4 ðDx u� 2Dy v þ Dz wÞþ2 a4 ðDx uþ Dy v � 2Dz wÞ
�
�4 a4 ðDx uþ Dy v þ Dz wÞ �=9; (B22)

C�022 ¼ �2a4 ðDx uþDy v� 2Dz wÞ�4a4 ðDx uþDy vþDz wÞ
� �

=9;

(B23)
C�202 ¼ �2a4 ðDx u� 2Dy vþDz wÞ�4a4 ðDx uþDy vþDz wÞ

� �
=9

(B24)

with

FIG. 33. Comparison of non-dimensional resolved (dotted), viscous (solid), and modeled (dashed) shear stress profiles with a linear total stress relation si=sW ¼ 1� y=H
(solid black line) for the present (top) SGS and a fixed Smagorinsky constant (bottom, CS ¼ 0:15) approach.

FIG. 32. Predicted mean velocity profiles for Res ¼ f180; 550; 2000g in comparison with reference data60,61 (Ref. PR) for the present (top) SGS and a fixed Smagorinsky
constant (bottom, CS ¼ 0:15) approach.
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a4 ¼ ð1=x1 � 1=2ÞA q: (B25)

Likewise, fourth-order related relaxations are defined via

C�211 ¼ ð1� x1=2ÞBC011; (B26)

C�121 ¼ ð1� x1=2ÞBC101; (B27)

C�112 ¼ ð1� x1=2ÞBC110: (B28)

The capitalized parameters are as follows:

A ¼ �3x
2
1 þ 2x1 þ 4

5x2
1 � 7x1 þ 2

and B ¼ �14x
2
1 þ 28x1 þ 4

15x2
1 � 21x1 þ 6

: (B29)

It is noted that these two expressions (B29) are simplified and only valid
on the condition of x2 ¼ 1 since the primal equations hold for A½B�
¼ A½B�ðx1;x2Þ. The fifth- and sixth-order cumulants are set to zero,
implying their nonequilibria are completely erased during collision,

C�221 ¼ 0; C�212 ¼ 0; C�122 ¼ 0; C�222 ¼ 0: (B30)

Optional body forces F are incorporated by shifting the frame of
reference in terms of u ¼ uþ Dt F=ð2qÞ.

APPENDIX C: COMPARISON OF PRESENT DYNAMIC
AND A CONVENTIONAL SMAGORINSKY APPROACH

Figures 32–34 compare the results obtained from the present
cumulant based (top) and a conventional (bottom, using CS ¼ 0:15
following Pope86) Smagorinsky approach for Res ¼ f180; 550; 2000g
and Ma ¼ 0:1.
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