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Abstract. The maximal clique problem is one of the famous hard combinatorial problems. We provide the first

molecular-scale autonomous solution of the decision maximal clique problem. It is based on the formation of

secondary structures of DNA molecules. Finally, we conject that every decision NP complete problem can be

solved by DNA computing in linear time.

1 Introduction

Feynman [1] was the first giving a visionary talk about the prospect of performing massively parallel compu-

tations in nanotechnology. His idea was first brought to laboratory by Adleman [2] solving a small instance

of the Hamiltonian path problem by a laboratory-scale, human-operated DNA computation. The idea of

computing at the molecular scale encouraged researchers to work on other biomolecular computing mod-

els. Most of them aimed to tackle complex computational problems [3] such as the satisfiability (SAT)

problem [4] and graph problems [5], [6], [7], [8], and [9]. Moreover, DNA computing was shown to be

computationally complete and universal [10], [11]. Algorithms at molecular scale exploit the high degree of

parallelization and storage capacity inherent to DNA molecules. The objective was to outperform electronic

computers when it comes to the computation of large instances of NP hard computational problems. But this

vision was rapidly discarded when researchers realized some of the drawbacks of this incipient technology:

growing number of error-prone laboratory operations and exponential growth of DNA volume according to

problem size [12]. The ongoing research focussed to solve problems at molecular level which can hardly be

tackled by electronic machines. Here, autonomous computations play a critical role.

Recently, biomolecular computer research focused on molecular-scale autonomous programmable models

of computation. These models are based on the self-assembly of smaller DNA molecules modulated by

DNA-manipulating enzymes, minimizing the external control or inteference. Nano-structures in the form

of large-scale periodic two-dimensional lattices were self-assembled from a diverse set of small branched

DNA molecules [13]. Such a self-assembled lattice was used to design an autonomous universal Turing

machine [14]. Several autonomous DNA devices were constructed that are able to move or walk [15], [16].

Moreover, autonomous two-input two-state finite automata were constructed [17], and later, applied to solve

in vitro the logical control of gene expression [18]. Autonomous DNA devices are able also to tackle complex

combinatorial problems as demostrated by Sakamoto et al [19] proposing a solution of the SAT problem

using hairpin formation of DNA molecules. A variant of this model was used by Martı́nez-Pérez et al [20] to

solve the Hamiltonian path problem by using the hairpin formation of palindromic sequences - an unwanted

sequence in most DNA computing models.

In this paper, we present a solution of the maximal clique problem by an autonomous DNA computation

based on the principle of hairpin formation. The laboratory steps partly resemble the solution of the Hamil-

tonian path problem. However, the encoding of the information (graph) is much different. Before this, we

provide the necessary background on DNA and DNA operations and review existing DNA algorithms for

the maximal clique problem. Finally, we conject that every decision NP complete problem can be solved in

linear time by DNA computing.



2 Background

The four bases are adenine (A), guanine (G), cytosine (C), and thymine (T) are covalently bonded end-to-end

in 5’ to 3’ direction to form single stranded (ss) DNA molecules [21]. A ssDNA molecule has a polarity

distinguishing it from its reverse strand. The unique complementation based on hydrogen bonds between

(A) and (T), and (G) and (C) determine the rigid structure of double stranded DNA. At high temperatures

both strands can be separated (denaturation) and re-anneal by cooling down (Fig. 1).
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Fig. 1. Annealing and denaturation. At high temperature, the hydrogen bonds between complementary nucleotides break without

changing the covalent bonds linking adjacent nucleotides.

In DNA computing, DNA is utilized as a substrate for storing information. Depending on the model of DNA

computation, information is stored in the form of ssDNA and/or dsDNA molecules. This stored information

could be manipulated by enzymes. One class of enzymes, restriction endonucleases, recognize a specific

short sequence of DNA, called restriction site, and cut the covalent bonds between the adjacent nucleotides

(Fig. 8). DNA ligase, links the ends of ssDNA strands repairing backbone breaks (Fig. 2). The exonucleases

are enzymes that hydrolyze phosphodiester bonds from either the 3’ or 5’ terminus of ssDNA or dsDNA

molecules.
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Fig. 2. Ligation. Ligase connects blunt or sticky ends of ssDNA either in a single strand (A) or within a double (B).

DNA polymerase performs several functions including replication of DNA. The replication reaction requires

an annealing of ssDNA molecule, called template, with a short ssDNA molecule, called primer. DNA poly-

merase catalyzes DNA synthesis by successively adding nucleotides to one end of the primer. In this way,



the primer is extended in one direction until the desired strand that starts with the primer and is complemen-

tary to the template is provided. The template DNA can be amplified in a polymerase chain reaction (PCR)

(Fig. 3). PCR is an iterative process, with each iteration consisting of the following steps: Annealing of the

primers to the templates, extending of the primers by DNA polymerase, denaturating of the newly elon-

gated dsDNA molecules to separate its strands, and cooling to allow re-annealing. Each iteration doubles

the number of target DNA molecules.
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Fig. 3. One cycle of PCR.

Parallel overlap assembly (POA) is a method to generate a pool of DNA molecules (combinatorial li-

brary) [22]. Short ssDNA molecules overlap after annealing and their sticky ends are extended by DNA

polymerase. Repeatedly denaturation, annealing, and extension increase the lenght of the strands. Unlike

the PCR, where the target DNA strands doubles in every cycle, in POA, the number of DNA strands does

not change, only the length increases with cycle progression (Fig. 4).

Short ssDNA molecules (oligomers) can be designed by using available software, e.g., DNASequenceGen-

erator [23]. The CG contents can be specified as input affecting the melting temperature of the sequences.

Oligomers can be synthesized in vitro using PCR. Each DNA algorithm requires to encode the basic data,

e.g., vertices and edges of a graph, by oligomers. We assume that this preparation step requires linear time.

3 DNA Solutions of Maximal Clique Problem

A complete graph is a graph in which each pair of vertices is connected by an edge. A clique of a graph G is

a complete subgraph of G. A maximal clique of G is a clique with maximal number of vertices. For instance,

the graph in Fig. 5.A has the maximal clique given by the vertex set {v2, v3, v4, v5}. The problem of finding
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Fig. 4. Synthesis methods for combinatorial libraries: A) Annealing/ligation: The arrow heads indicate the 3’ end. B) POA: The

thick arrow represents the synthesized oligmers which are the input of the computation. The thin arrows represent the elongated

part by the polymerase. The arrow head indicates the 3’ end.

a maximal clique of a graph is NP hard. The complement of a graph G is a graph Gc with the same vertex

set but whose edge set consists of the edges not present in G. An independent vertex set of G is a subset of

the vertices such that no two vertices in the subset represent an edge of G. A maximal independent vertex

set of G is an independent vertex set of G with maximal cardinality. Notice that the cliques of G correspond

one-to-one with the independent vertex sets of Gc. In particular, the maximal cliques of G correspond to

maximal independent vertex sets of Gc.
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Fig. 5. A) Graph G with five vertices. B) Complementary graph Gc.



Ouyang et al [24] proposed a quadratic time DNA algorithm to solve the maximal clique problem. To specify

the algorithm, let G be a graph with vertex set V = {v1, . . . , vn}. Each subset of V is represented by a binary

number of length n, i.e., a subset contains vi iff the ith bit is set. These binary numbers are represented by

ssDNA molecules of the form P1V1P2V2P3 . . . PnVnPn+1, where Pi has length 20 bp and Vi has length 0 bp

(bit 1) or 10 bp (bit 0). These molecules are synthesized via POA from short ssDNA molecules: PiViPi+1

for i odd and the complement of PiViPi+1 for i even. Moreover, each ssDNA molecule with Vi of length

0 bp contains a restriction site between Pi and Pi+1. These sites are different for different i and require a

distinguished restriction enzyme. The algorithm works as follows:

1. Generate random subsets of V (combinatorial library).

2. Identify cliques in the combinatorial library.

3. Find the maximal cliques.

4. Read out maximal cliques.

The second step is implemented by the restriction enzymes. If the vertices vi and vj are adjacent in Gc, the

combinatorial library is divided into two test tubes T1 and T2. The tube T1 and T2 are digested by the enzyme

corresponding to vi and vj , respectively. The resulting solutions are mixed into a new tube T . This operation

is sequentially repeated for each edge of Gc. The nondigested dsDNA molecules correspond to cliques of

G. These molecules are amplified by PCR (with primers P1 and the complement of Pn+1), while the broken

molecules are not amplified. In the third step, the dsDNA molecules with shortest length are detected by

gel electrophoresis, as these molecules correspond to maximal cliques of G thanks to the encoding of the

subsets of V . Notice that the DNA algorithm solves the decision maximal clique problem. i.e., preparation

step and algorithm steps 1-3, in quadratic time O(n2), as the preparation step is assumed to be linear and

the steps 1-3 are linear in the number of edges of Gc.

4 DNA Hairpin Model

Originally proposed by Sakamoto et al [19], the DNA Hairpin model was used to solve a particular case of

the SAT problem. The goal of the SAT problem is to decide whether a given Boolean formula in conjunctive

normal form (CNF) has an assignment that makes the formula ”true”. A CNF consists of a conjunction (and)

of one or more conjuncts, each of which is a disjunction (or) of one or more literals (variables or comple-

ments of variables). A literal string is defined as a conjunction of literals such that one literal per conjunct

is selected. A Boolean formula is satisfiable if there is a literal string that does not involve a variable and its

complement. In Sakamoto’s work, each literal encodes a DNA strand, whereas the negation complements in

Watson-Crick mode. As a consequence, literal strings with at least one pair of complementary literals may

form a hairpin structure. Hairpin structures can be distinguished from non-hairpin structures by biochemical

means. Sakamoto et al. suggested an alternative in which each literal contains the Bst NI recognition site so

that the joint region of the hairpin structure is susceptible by digestion. Consequently, those literals strings

that remain complete after enzyme digestion satisfy the Boolean formula.

Recently, the DNA hairpin model was used to solve the Hamiltonian path problem [20]. For this, the graph

G in question is encoded as in Adleman’s first experiment [2], i.e., each vertex v is encoded by a ssDNA



molecule and each edge connecting vertex vi to vertex vj is encoded by a ssDNA molecule that consists

of the complement of the second 3’ half-mer of vi and the complement of the first 3’ half-mer of vj . A

starting vertex in the graph is distinguished and the ssDNA molecules encoding the starting vertex are

dephosphorylated. Firstly, random paths in the graph are generated (combinatorial library) by annealing

and ligation. Secondly, those paths are kept that begin with the starting vertex. This is achieved by lambda

exonuclease which selectively digests all strands with 5’ phosphate group, i.e., strands of edges and strands

of vertices with invalid starting vertex. Thirdly, those paths are kept that contain each vertex at most once. To

this end, paths with at least one repeated vertex form a hairpin structure thanks to the palindromic encoding

of the vertices. Those ssDNA molecules contain the Hae III recognition site and are digested by Hae III

(Fig. 8). Fourthly, those paths are kept that have n vertices, where n is the number of vertices of G. This is

achieved by gel electrophoresis. The corresponding fragment provides Hamiltonian paths (if any).

Both DNA algorithms work in an autonomous manner, i.e., constant time. If we assume that the preparation

step requires linear time, these algorithms solve decision SAT problem and the decision Hamiltonian path

problem in linear time. A linear time DNA algorithm for the maximal clique problem is provided next.

5 DNA Hairpin Model for Maximum Clique Problem

The maximal clique problem will be solved by using the DNA hairpin model. Let G be a graph. A data

structure called vertex template is used which basically contains information about the edges incident with

vertices in Gc. The template for the vertex vj is encoded by a ssDNA molecule consisting of initial linker li,

encoding of vj , encodings of all edges of Gc, and final linker lf (Fig. 6). The linkers are used to construct a

combinatorial library. For this, there is a ssDNA molecule called bridge that consists of the complement of

the second 3’ half-mer of li and the complement of the first 5’ half-mer of lf (Fig. 7.a). Moreover, all vertices

and edges of Gc are encoded in palindromic form containing in the centre the Hae III recognition site GGCC

(Table 1). Furthermore, all vertex templates have the same length although the vertices of Gc may have

varying degrees, i.e., number of incident edges. For this, there is a constant non-palindromic encoding se-

quence called spacer (sp). Finally, for each vertex template, part (say half) of its concentration is treated with

calf intestinal alkaline phosphatase (CIAP) which dephosphorylates these strands (i.e., removes phosphate

group at 5’ terminus). A dephosphorylated vertex template cannot be a substrate of lambda exonuclease,

which only recognizes phosphorylated 5’ termini.

The maximal clique problem for a graph G with vertex set V can be solved by the following DNA hairpin

algorithm:

1. Generate random multi-subsets of V (combinatorial library).

2. Find cliques of G.

3. Detect maximal cliques.

4. Readout maximal cliques.

A combinatorial path library is created by annealing and linking vertex templates and bridges (Fig. 7.B).

These partially dsDNA molecules correspond to multi-subsets of V , i.e., subsets with repeated vertices.

Notice that a dephosphorylated vertex template can only occur at the beginning of such a partially dsDNA
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Fig. 6. Templates for the vertices of the graph G: A) v0 template, B) v1 template, C) v2 template, D) v3 template, and E) v4 template.
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Fig. 7. Generation of combinatorial library: A) Annealing of two vertex templates and a bridge by the linkers. The 5’-phosphate

group of the first vertex template was removed. B) Ligation bonds together vertex templates. C) Lambda exonuclease selectively

digests all phosphorylated DNA strands leaving only those ssDNA molecules which have no 5’-phosphate group.

molecule. Thereafter, lambda exonuclease is used to selectively digest the phosphorylated strand of dsDNA

molecules (Fig. 7.C). In this stage of the experiment, the remaining non-digested molecules are ssDNA

which correspond to multi-subsets of V beginning with a non-phosphorylated vertex template. Due to the

palindromic nature of the encoding vertices and edges, after lambda exonuclease treatment, those ssDNA

corresponding to multi-subsets of V with two or more repeated vertices or edges form a hairpin structure.

The partially double stranded region of such a hairpin structure contains the Hae III recognition site. All

ssDNA with a hairpin structure will be digested by Hae III (Fig. 8). Therefore, the non-digested ssDNA

will correspond to subsets of V which contain each vertex or each edge of Gc only once. These subsets

correspond to cliques of G. Finally, the non-digested ssDNA of longest length correspond to maximal cliques

of G and are detected by gel electrophoresis.

This procedure was successfully implemented in the laboratory for the graph shown in Fig. 5 [25]. The

sequence of the vertex templates is given in Table 1. For instance, for dephosphorylated vertex template

v0, the largest visible band is about 160 bp corresponding to the clique {v0, v1} (Fig. 9,lane 3). For de-
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Fig. 8. DNA hairpin formation cleavage: The DNA strand contains the vertex templates for v0 and v2. Both vertices are incident

with edge e1 and the strand forms a hairpin structure by intramolecular annealing to the palindrom e1 sequence. The hairpin is

cleaved by the Hae III restriction enzyme.

phosphorylated vertex template v2, the largest visible band is 320 bp corresponding to the maximal clique

{v1, v2, v3, v4} (Fig. 9, lane 5).

Table 1. Sequence of vertex templates.

Region ssDNA molecule

v0 5’-ACTGACGGCCGTCAGT-3’

v1 5’-TACGATGGCCATCGTA-3’

v2 5’-GTGAGAGGCCTCTCAC-3’

v3 5’-CGTTCAGGCCTGAACG-3’

v4 5’-AGCTTCGGCCGAAGCT-3’

e1 5’-TCACCTGGCCAGGTGA-3’

e2 5’-GATCTGGGCCCAGATC-3’

e3 5’-CTGTAAGGCCTTACAG-3’

li 5’-CGCAATTC-3’

lf 5’-TCTACGCT-3’

br 5’-GAATTGCGAGCGTAGA-3’

sp 5’-TAAATAAATAAATAAA-3’

6 Discussion

The above DNA hairpin algorithm solves the decision maximal clique problem of a graph G with n vertices

in linear time O(n). To prove this, the vertex templates can be treated with CIAP in linear time and we

assume that the remaining preparation step requires linear time. Moreover, the algorithm steps 1-3 work in

an autonomous manner in constant time. This method could be scaled up and automated to efficiently solve

a case of the maximal clique problem for graphs with up to 20 vertices. This estimate is in accordance with

the largest instance (20 variables) of the SAT problem solved by DNA computing [4].

Our approach increases the spectrum of application of the DNA hairpin model, not only to solve the decision

version of the SAT problem, but also the Hamiltonian path problem, and the maximal clique problem in

linear time. Therefore, we postulate the following hypothesis:



Fig. 9. Experimental solution of maximal clique problem for the graph in Fig. 5. The lanes are marked as follows in the DNA-

agarose gel: Lane M: DNA ladder. Lane 1: vertex template v3 as reference (80 bp) marked with green arrow. Lane 2: partially ds

DNA molecules after annealing and linking, starting with dephosporylated vertex template v0. Lane 3: ssDNA molecules starting

with vertex template v0, after Hae III digestion. Lane 4: partially ds DNA molecules after annealing and linking, starting with

dephosporylated vertex template v2. Lane 5: ssDNA molecules starting with vertex template v2, after Hae III digestion. The size of

the bands is highlighted by an arrow.

Given a decision NP complete problem P . There is an encoding of the basic data of P (preparation step) so

that each instance of P can be solved by an autonomous DNA computation in constant time. The preparation

step takes linear time and so the overall computation time is linear, too.

The polynomial time reduction of a decision NP complete problem into another is not useful. So in order

to validate the conjecture, the basic data of each decision NP complete problem need to be individually

encoded as is the case for the three prototype problems.

The palindromic sequences encoding the vertices and edges trigger two additional reactions on ssDNA

molecules: inter- and intrastrand annealing. Clearly, the goal is to maximize intrastrand annealing (hairpin

formation) and minimize interstrand annealing. As a biomolecular reaction, the intramolecular annealing

can be reduced by decreasing the concentration of ssDNA molecules [25].

Finally, the techniques applied in this work to tackle the maximal clique problem (i.e., destroying molecules

with repeated information by using intramolecular hybridization followed by digestion, and making use of

palindromic sequences and hairpin formation) may open new avenues in other promising fields of DNA

computing such as controlling living cells, building patterns, and controlling nano-machines.
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