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8. Juni 2020



Acknowledgements

Foremost, I would like to express my gratitude towards my advisor Prof. Sabine
Le Borne for her continuous support over the course of my studies and research.
Her keen eye for possible extensions of existing methodology led my path over
the last years and I want to thank her for several fruitful discussions. Her
patience in correcting flaws and uncovered edge cases in my definitions and
proofs has shown to be a skill of immeasurable value to me and hopefully will
be to others as well.

Furthermore I want to thank the remainder of my thesis committee Prof.
Peter Benner and Prof. Daniel Ruprecht for their invested time and for in-
sightful discussions and questions during my defense.

This thesis would not be possible without the financial support of the
DFG under SPP 1679 (Dynamische Simulation vernetzter Feststoffprozesse).
I would like to thank them as well as my colleagues and collaborators in this
project for providing me with a physical and worldly application of the abstract
mathematics I encoutered. I especially have to thank Prof. Stefan Heinrich,
Prof. Volker John and Prof. Kai Sundmacher and their respective graduate
students.

Additionally I want to extend my gratitude towards every person in the
institute of mathematics at TUHH, regardless of whether their field as adja-
cent to mine or not. Several important discussions were held in seminars, in
offices or during lunchtime, of which only some pertained mathematics. I will
remember these as fondly as I will my colleagues.

My personal acknowledgement goes in the largest part to my girlfriend who
spend her christmas break to comfort me finishing this thesis. I could imagine
a lot of things more exciting to spend these free days on then helping me to
sit in front of my keyboard and staring at letters on paper. I am eternally
grateful to her for everything she has done and will do in the years to come.

Secondary acknowledgement goes to SingING and the Theater AG. These
supplied the necessary amounts of distractions and other things to focus on
before starting the problem anew at the next day. Humming a melody or
reciting a dialogue on your way home are healthier alternatives to trying to
solve equations or making sense of barely visualised data in your head while
trying to cross a street in the dark.

Finally I want to thank the reader for your interest in my research. I hope
it helps you on your quest for knowledge or at least tells you what not to try.





Contents

Page

1 Introduction 1
1.1 Population balance equations . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline of contents . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Established numerical methods 7
2.1 Summary of established methods . . . . . . . . . . . . . . . . . 7
2.2 Fixed Pivot method . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Cell Average Technique . . . . . . . . . . . . . . . . . . . . . . . 10

3 Discretization and full tensor storage 13
3.1 Discretization of the property space . . . . . . . . . . . . . . . . 13
3.2 Kernel separability . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Evaluation of a piecewise constant source and sink term . . . . . 16
3.4 Convolution via fast Fourier transformation . . . . . . . . . . . 22
3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Efficient storage and arithmetic in tensor-train format 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Arithmetic operations . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Truncation of ranks . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Application to population balance equations . . . . . . . . . . . 58
4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Estimation of aggregation kernels in univariate population bal-
ance equations 79
5.1 Problem definition and existing methodology . . . . . . . . . . . 79
5.2 Discretization of the property space . . . . . . . . . . . . . . . . 81
5.3 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Conclusions and outlook 95

I



List of Figures

1.1 The processes in PBE: Growth, breakage, nucleation and aggre-
gation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Example for a grid used in the FP-method for d = 2. . . . . . . 9

3.1 A uniform tensor grid G with d = 2, n = (8, 4) and h1 = h2. . . 14

3.2 A univariate piecewise linear basis function. . . . . . . . . . . . 19

3.3 A multivariate piecewise linear function. . . . . . . . . . . . . . 19

3.4 A multivariate piecewise constant function. . . . . . . . . . . . . 21

3.5 Non-zero pattern of zero-padded Fourier transform. . . . . . . . 26

3.6 L2 error for a short simulation with T = 1. . . . . . . . . . . . . 29

3.7 L2 error for a long simulation with T = 5. . . . . . . . . . . . . 30

3.8 Relative error in a selection of moments for d = 2. . . . . . . . . 34

3.9 Computational time w.r.t n for d = 2. . . . . . . . . . . . . . . . 35

3.10 Computational time w.r.t n for d = 3. . . . . . . . . . . . . . . . 36

4.1 TT-representation of a three-dimensional tensor. . . . . . . . . . 39

4.2 Histograms of the computational time for truncation of additions. 67

4.3 Histograms of the computational time for truncation of Hadamard
products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Histograms of the computational time for truncation of Convo-
lutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Computational time for a convolution. . . . . . . . . . . . . . . 71

4.6 L2-error with varying internal accuracy for d = 2. . . . . . . . . 73

4.7 L2-error with varying internal accuracy for d = 3. . . . . . . . . 74

4.8 L2-error with varying internal accuracy for d = 4. . . . . . . . . 75

4.9 Relative error in a selection of moments for d = 3. . . . . . . . . 76

4.10 Relative error in a selevtion of moments for d = 3. . . . . . . . . 77

5.1 Four different aggregation kernels κ(u, v). . . . . . . . . . . . . . 85

5.2 Evolution of a particle distributions for two different kernels. . . 86

5.3 Comparison of true and estimated kernel for κB and κS, U vari-
able. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Comparison of true and estimated kernel for κΣ and κP , U vari-
able. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

II



5.5 Reference distributions for true and estimated kernel, U variable. 90
5.6 Comparison of true and estimated kernel for κB and κS, U fixed. 91
5.7 Comparison of true and estimated kernel for κΣ and κP , U fixed. 92
5.8 Reference distributions for true and estimated kernel, U fixed. . 93

List of Tables

3.1 Specific hardware of the used computer. . . . . . . . . . . . . . 27

5.1 Relative L2 error in the reference distribution, U variable. . . . 90
5.2 Relative L2 error in the reference distribution, U fixed. . . . . . 94

III



Acronyms

CAT Cell average technique

FFT Fast Fourier transformation

FP Fixed pivot

IVP Initial value problem

MOM Method of moments

ODE Ordinary differential equation

QMOM Quadrature method of moments

PC Piecewise constant

PL Piecewise linear

PBE Population balance equation

SVD Singular value decomposition

TT Tensor-train

TT-RC Tensor-train renormalization-cross

IV



Chapter 1

Introduction

In this chapter, a general overview of population balance equations (PBEs) is
given. In section 1.1 we introduce the processes considered in the modeling
of population balance equations and formulate the equations used to generate
a mathematical model of the physical process. In section 1.2 we outline the
novel contributions of this thesis and section 1.3 will summarize the structure
of this thesis.

1.1 Population balance equations

Applications of population balance equations can be found in a wide variety
of processes, where particles are dispersed and dissolved in an environmental
phase. These include fields like astrophysics, meteorology, geology, biophysics,
aeronautics, civil engineering and (most notably) chemistry and biochemistry.
Population balance equations are used in these fields to study crystallization
in disperse phases (such as heterogeneous solid-liquid or solid-gas phases), the
separation of mixtures of two liquids or reactor equipment such as fluidized
bed reactors, microbiological reactors and other processes.
In all of these processes the dispersed phase consists of a population of parti-
cles, where each particle can be characterized by internal properties like mass,
surface area, chemical composition or electric charge. These properties asso-
ciate every particle with a coordinate vector v = (v1, v2, . . . , vd) ∈ Rd, where
d is the number of observed properties. This thesis will only cover additive
properties that are well suited in the setting of aggregation.
The properties of particles change over time due to physical processes, like
growth (see [51] and [24]), breakage (see [33] and [6]), nucleation (see [30])
and aggregation (see [30], [37] and [47]). Schematic illustrations of these four
processes are shown in Figure 1.1.

Growth: Growth of particles happens when dissolved mass spreads over
the surface of a particle that becomes larger in the process. This does not af-
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Growth

v −→ v + ε

Breakage

u + v −→ u + v

Nucleation

−→ v

Aggregation

u + v −→ u + v

Figure 1.1: The four main processes in PBE: Growth, breakage, nucleation
and aggregation.

fect the number of particles but increases the internal properties of the particle.

Breakage: In the breakage process large particles break into two or more
fragments of smaller size. This increases the number of particles, while the
sum of internal properties remains constant.

Nucleation: Nucleation is a process in which minuscule particles (most
often dissolved in the environmental phase) precipitate and form new particles.
This does increase the number of particles and gives an increase in the total
sum of internal properties.

Aggregation: When two particles collide, they have a chance of sticking
together and form stable bounds at the point of contact. This process is called
aggregation (or coagulation) and is the opposite process of breakage. It will
preserve the sum of internal properties but decreases the number of particles.

Due to these processes, the internal properties of involved particles change
over time as does the overall number of particles, which complicates the naive
approach of tracking all particles individually. The key idea of population bal-
ance equation is to consider a number density function f(v, t), which describes
the amount of particles with internal properties v at a time t. A thorough in-
troduction to population balance equations can be found in [62].
We assume that all particles are distributed homogeneously in space so we
can neglect the location of a particle (usually referred to as external or spatial
coordinate) and do not need to model the transport through the reactor. With
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this assumption, the number density function is governed by the population
balance equation, a partial integro-differential equation, given by

∂f(v, t)

∂t
+∇v · (G(v)f(v, t)) = Q(f)

= Qbreak(f) +Qnuc(f) +Qagg(f).
(1.1)

The second term on the left hand side of (1.1) represents the growth of particles
at the rate G(v), while Q(f) on the right hand size summarizes the appearing
and vanishing particles due to breakage (Qbreak(f)), nucleation (Qnuc(f)) and
aggregation (Qagg(f)). This thesis focuses solely on the numerical treatment
of the aggregation process, neglecting the influence of growth, breakage and
nucleation completely. The dynamic evolution of f(v, t) is then governed by
an ordinary differential equation (ODE) of the form

∂f(v, t)

∂t
= Qagg(f)(v, t)

= Qsource(f)(v, t)−Qsink(f)(v, t),
(1.2)

where

Qsource(f)(v, t) =
1

2

v1∫

0

· · ·
vd∫

0

κ(u,v − u)f(u, t)f(v − u, t) du (1.3)

and

Qsink(f)(v, t) = f(v, t)

∞∫

0

· · ·
∞∫

0

κ(u,v)f(u, t) du (1.4)

denote the number density of particles with internal properties v appearing
(source) and vanishing (sink) in the aggregation process. These two terms
(1.3) and (1.4) will be referred to as source term and sink term throughout
this thesis. Here, κ(v,u) stands for the aggregation kernel function, describing
the frequency at which particles with internal properties v and u are aggre-
gating. We note that (1.2) is also referred to as the Smoluchowski coagulation
equation [67]. With a given initial distribution f(v, 0) = f0(v), (1.2) yields an
initial value problem (IVP) that is to be solved.

In addition to the number density function f(v, t) one is also interested in
the so-called moments µe(f)(t), that are defined by

µe(f)(t) :=

∞∫

0

· · ·
∞∫

0

d∏

m=1

vemm f(v, t) dvm · · · dv1

=:

∞∫

0

vef(v, t) dv (1.5)
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for a vector of exponents e := (e1, . . . , ed) ∈ Nd. Most notable are the zero-th
moment with e = (0, . . . , 0) that denotes the total number of particles and
the first m-th moments with e = (0, . . . , 0, 1, 0, . . . , 0) that denote the total
amount of the m-th property that is present in all particles. If the m-th in-
ternal property is denoting the mass of a single particle, this moment denotes
the total mass of all particles. These first moments will be constant over time
during the process of aggregation because we are focusing on additive proper-
ties.
Definition (1.5) also shows the short-hand notation we will apply for multi-
variate integrals over the remainder of this thesis.

1.2 Contributions of this thesis

This thesis focuses on the efficient and accurate evaluation of the aggregation
terms in population balance equations (1.3) and (1.4), the right-hand side of
(1.2) in the multivariate setting. The source integral of newly formed parti-
cles (see (1.3)) is quadratic with respect to the number density f(v, t) and of
convolution type, usually being the bottleneck in numerical approaches of this
equation, as it has a complexity of O(N2) (N denotes the degrees of freedom in
a discretization, often exponential in the number of dimensions d) in a straight
forward implementation (see [5]). This makes a high number of degrees of free-
dom infeasible, even in the univariate setting.

Efficient algorithms for the univariate case were developed in [45], [43]
and [44] (based on earlier theoretical foundations from [27] and [26]) and we
investigated their application to dynamic flowsheet simulation in [66]. Our
main contribution lies in the adaptation of these algorithms to the multivari-
ate setting and investigation of their potential. These algorithms reduce the
complexity from O(N2) to O(N log(N)) for univariate problems where every
particle is defined by one single property.
We furthermore investigate the influence of our chosen discretization on the
conservation of moments. The source term (1.3) will require additional atten-
tion in the form of a projection. We present a framework that allows for the
conservation of all moments µe(f)(t) with ‖e‖∞ < 2.

We also overcome the so-called curse of dimensionality that makes high di-
mensional problems infeasible to process on non-supercomputers, due to lim-
itations in available storage space. The required space is exponential in d,
making a traditional approach infeasible for high dimensional problems. We
adapt an efficient storage technique, namely the tensor-train (TT) format, to
make it applicable in the setting of PBEs and give new results to increase the
efficiency of algorithms to make better use of this format in our setting.This
reduces the storage complexity to be linear in d, which makes high-dimensional
problems tractable.
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All presented algorithms were implemented using the C++ programming lan-
guage and we show extensive numerical tests to show the accuracy, efficiency
and advantages of the presented methods.

The efficient algorithms for the univariate case of one particle property
allow us to tackle the closely related problem of kernel-estimation. It is an
inverse problem that aims to find a kernel function κ(u, v) for a given number
density function F (v, t) (denoted by a capital letter as it is given). We here
show two new approaches to solve this ill-conditioned problem in the univari-
ate setting for discrete-in-time measurements and show the promising results
with numerical simulations. The programming language Matlab is used to
obtain these results.

This thesis is based upon and extends our previously published and sub-
mitted works [2], [1], [3], [4] and [66]. The aim of the papers and this thesis
is to explore the applicability of the theoretical foundations of the univariate
aggregation-problem to the multivariate setting and to solve the closely related
problem of kernel-approximation.

1.3 Outline of contents

In chapter 2 we review existing methods to solve the aggregation problem in
PBEs including Monte Carlo methods, finite volume and finite element meth-
ods. We go further in-depth for two popular algorithms, namely the Fixed
pivot (FP) method and the Cell average technique (CAT) in the multivariate
setting.

In chapter 3 we discuss the discretization of the property space and the
pre-requisite for the application of our algorithms in the case of full tensor
storage. We show the necessary steps towards efficient evaluation of source
and sink terms and introduce the projection to accurately predict all moments
µe(f)(t) with ‖e‖∞ < 2 during the simulation. We compare the resulting al-
gorithm with the existing methods introduced earlier via different numerical
experiments.

In chapter 4 we give a thorough introduction to the tensor-train (TT)
format that we use to overcome the storage complexity of full tensor repre-
sentation. We introduce the basic concept of efficient tensor storage and the
representation used in the TT-format. We present the necessary arithmetic
operations in the context of aggregation and develop an improvement of the
truncation algorithm. We will again show numerical results of the resulting
algorithms to show their effectiveness.
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In chapter 5 we return to the univariate setting and present two approaches
to solve the inverse problem of kernel estimation. This problem is concerned
with finding an approximation of the aggregation kernel κ(u, v) from a given
number density function F (v, t) at multiple discrete time points t0 to tm.

In chapter 6 we provide a summary of the algorithms we developed and nu-
merical results we have shown in the preceding chapters. We give conclusions
about their quality and use-cases. We finally give an outlook and mention fur-
ther adaptations of the presented algorithms and data structures towards faster
and more accurate calculations and towards a wider range of applications.
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Chapter 2

Established numerical methods

In this chapter, we provide a short introduction to several already established
numerical methods used to tackle the problem of aggregation and population
balance equations in general. In section 2.1 we shortly summarize existing
numerical methods. Section 2.2 and 2.3 give more detail about the fixed pivot
method and the Cell average technique, two very popular methods, that are
in essence very similar to our approach. We will later use these methods to
compare our new approach with these methods.

2.1 Summary of established methods

Analytic solutions to population balance equations are only given in a few
cases of aggregation kernel κ(u,v) and initial distribution f0(v). Some of these
results can be found in [23] and [20] for the constant kernel (κC(u,v) = λ)

and the sum-kernel (κΣ(u,v) =
d∑

m=0

(um+vm)) respectively. They are obtained

by means of Laplace transformation. We will use these as reference solutions
and compare the results obtained by other numerical methods with them in
sections 3.5 and 4.5.
Another approach (currently restricted to univariate distributions) based on
homotopy perturbation and power-series was presented in [34] and is able to
confirm the previously obtained results and give new results [63].

A popular method to solve univariate PBEs is the Method of moments
(MOM) or Quadrature method of moments (QMOM) from [19] and [49]. These
methods are able to track the moments µe(f)(t) very accurately with small
computational complexity. The resulting particle distribution however is not
directly accessible. Further development towards reconstruction was made in
[6]. An extension to bi- and multivariate distributions was mentioned in [71]
but does not overcome this drawback.

Finite volume methods are most suitable for equations that experience both
aggregation and breakage because the first moment is automatically preserved
(see [21], [22]). These methods are not concerned with the number of particles
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of a given size (i.e, the particle distribution f(v, t)) but the total mass of
particles of any size (i.e., one first moment). Finite Element methods are
somewhat similar as they approximate the particle distribution f(v, t) in a
linear space spanned by basis functions, whose weights are determined by
forcing an integral residual to zero (more details in [48] and [52]). They are of
particular interest when trying to find a steady state of a given system that
includes breakage.

A probalistic approach to solve the PBE is given by Monte Carlo methods
([36], [46]). Instead of tracking the particle distribution f(v, t), we keep track
of a random sampling of particles from this distribution. We simulate their
aggregation via randomizing which particles may aggregate in events, while
progressing in time. These results must be taken with some caution, as they
are the result of randomness and always show different outcomes if repeated.
One can reduce this influence by including more sampled particles which in
turn increases the computational time, see [32].

2.2 Fixed Pivot method

This section is devoted to the fixed pivot method, which is often considered
to be the easiest approach to discretize a PBE. It was introduced in [41] and
generalized to multiple inner coordinates in [69]. We here present a version
that uses tensor product discretization. The generalization for different dis-
cretizations is beyond the scope of this short introduction. The method is
based on the choice of so-called pivot points vi = (vi1 , . . . , vid), where particles
are assumed to be concentrated. We define grid points gi = (gi1 , . . . , gid) with
gi ≤ vi ≤ gi+1 and finally cells

Ci = [gi1 , gi1+1]× · · · × [gid , gid+1].

An example grid for d = 2 is given in Figure 2.1.
Each pivot is associated with a macroscopic variable

Ni(t) =

∫

Ci

f(v, t)dv, (2.1)

resulting in a particle distribution

N(v, t) =

n1−1∑

i1=0

. . .

nd−1∑

id=0

Ni · δ(v − vi)

=:
n−1∑

i=0

Ni · δ(v − vi) (2.2)

with the Kronecker-delta δ(v). We will use this notation of a multivariate sum
over the remainder of this thesis to reduce notational overhead.
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Figure 2.1: Example for a grid used in the fixed-pivot method for d = 2. This
geometric grid is more accurate for smaller particles. Pivots vi are shown with
dots.

With this discretization in mind, the source term (1.3) can be expressed in
terms of Kronecker-deltas as well and becomes

Qsource(v, t) =
1

2

n−1∑

i=0

n−1∑

j=0

Ni(t)Nj(t)κ(vi,vj) · δ(v − (vi + vj)), (2.3)

which is not always representable in the pivot expression (2.2) because the
resulting aggregates vi + vj are not positioned at any of the pivot points vk.
The sink term (1.4) is described by

Qsink(v, t) =
n−1∑

i=0

Ni(t)δ(v − vi)
n−1∑

j=0

κ(vi,vj)Nj(t) (2.4)

and is already in the pivot expression (2.2).
To approximate (2.3) in terms of (2.2), a moment preserving projection is
chosen to redistribute aggregates to nearby pivots. The aggregate of particles
of sizes vi and vj has properties given by v̂i,j := vi + vj, which is not a pivot
point for all combinations of i and j. We find the multi index k that satisfies
vk ≤ v̂i,j < vk+1 in an elementwise sense, i.e., the 2d pivots surrounding
the aggregate in the state space. The aggregate is then divided among these
pivots to preserve any 2d moments. The usual choice of the first 2d moments
µ(0,...,0)(f)(t) to µ(1,...,1)(f)(t) are conserved by assigning

eq(i, j) =
d∏

m=1

∣∣∣∣
(vim + vjm)− vkm+1−qm

vk+1 − vk

∣∣∣∣
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to the nearby pivot vk+q for each given q ∈ {0, 1}d, i.e., the factor is propor-
tional to the distance to the pivot on the other side.
With these projections, (2.3) becomes

Qsource(v, t) =
1

2

n−1∑

i=0

n−1∑

j=0

Ni(t)Nj(t)κ(vi,vj) ·
1∑

q=0

eq(i, j)δ(v − vk+q). (2.5)

We can see one disadvantage of the fixed pivot method in (2.5) and (2.4) as
there is a triple summation in the source term and a double summation in the
sink term. This implies a computational complexity of O((nd)2 · 2d) for the
source term and O((nd)2) for the sink term. This is quadratic in the number
of pivot points that are itself exponential in the number of dimensions. This
immediately shows a computational bottleneck in the calculations.
Many variations of this procedure have been proposed (for example [12], [42])
that use different meshes or moving pivots vi. They still share the downside of
the high computational complexity but reduce the number of required pivots
to reach a certain accuracy.

2.3 Cell Average Technique

This section is devoted to the cell average technique (CAT), which is closely
related to the fixed pivot method, as it also works with a macroscopic represen-
tation (2.2). It was presented in [35], [39] and generalized to the multivariate
case in [15], [38] and [65]. It differs from the FP method by making greater
use of the introduced cells Ci. We similarly to the FP method find

Bk(t) =
1

2

∑

vi+vj∈Ck

Ni(t)Nj(t)κ(vi,vj) (2.6)

as the total amount of particles appearing in a cell Ck and define

Gk,m(t) =
1

2

∑

vi+vj∈Ck

Ni(t)Nj(t)κ(vi,vj) · (vim + vjm) (2.7)

as the total inflow of the m-th property into that cell. We then find the average

vk,m :=
Gk,m(t)

Bk(t)
(2.8)

of the m-th property of the newly formed particles in Ck.
Instead of projecting each newly formed particle individually (as it is done
in the FP scheme) we assume all particles in Ck have properties denoted by
vk ∈ Rd and do the projection from there.
This procedure is considered more accurate than the fixed pivot technique (see
again [35], [39]) in tracking the population density and higher order moments,
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even though we loose consistency with some cross-moments, where
d∑

m=1

ed ≥ 2.

This method shows a lower computational complexity of O(n2d + (2n)d) for
the source term as the projection is not inside the inner loop anymore and this
leads to overall shorter computational times. Several extensions have been
proposed (e.g. [40]) but are again beyond the scope of this introduction.
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Chapter 3

Discretization and full tensor
storage

This chapter is devoted to introducing the discretization of the particle state
space and discretizing the number density function f(v, t) and the kernel func-
tion κ(v,u) that we will use in this thesis. This will be done in section 3.1
where we also clarify our notation of tensors and tensor elements. In section
3.2 we present the core assumption of this work and show the possible simpli-
fications of the equations from thereon. Section 3.3 combines the two previous
sections towards an algorithm for efficient numerical evaluation source and sink
terms. Section 3.4 introduces the reader to the Fourier transform, its proper-
ties and the efficient evaluation via fast Fourier transformation (FFT).
To focus on the mathematical evaluation we use dimensionless particle prop-
erties and a dimensionless time.

3.1 Discretization of the property space

To evaluate the right hand side of the population balance equation (1.2) nu-
merically we discretize the state space. For a state space of dimension d ∈ N,
define the index set M := {1, . . . , d}. For every index m ∈ M, we choose a
cutoff value vmax

m ∈ R+ and assume

f(v, t) = 0 if ∃m : vm > vmax
m . (3.1)

In addition we choose nM =
(
n1, . . . , nd

)
∈ Nd and define index and multi-

index sets

Im := {0, . . . , nm − 1}, I ′m := {0, . . . , nm},
InM := I1 × . . .× Id, I ′nM := I ′1 × . . .× I ′d.

We divide each interval [0, vmax
m ] into nm uniform subintervals of length

hm :=
vmax
m

nm
, m ∈M,
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and define sets of uniform gridpoints Gm := {im ·hm | im ∈ I ′m} and the tensor

grid GM :=
d
×
m=1
Gm = {gi | i = (i1, . . . , id) ∈ I ′nM} with gridpoints

gi := (i1h1, . . . , idhd)

in the multi-dimensional hyper-rectangle [0,vmax] := [0, vmax
1 ]× · · · × [0, vmax

d ],
leading to

NM :=
d∏

m=1

nm (3.2)

cells CMi := (i1h1, (i1 + 1)h1) × · · · × (idhd, (id + 1)hd) for multi-indices i =
(i1, . . . , id) ∈ InM , each one of volume

VM :=
d∏

m=1

hm. (3.3)

One example of this grid with d = 2 and n = (8, 4) can be seen in Figure 3.1.
We will call a grid G symmetric, if n1 = · · · = nd and vmax

1 = · · · = vmax
d as all

Gm are equal.
We discretize f(v, t) to be constant in every cell of GM, and from now on as-
sume that f(v, t) is already of this form and identify it with the corresponding
tensor f ∈ Rn1×...×nd

≥0 , i. e.,

f(v, t) = f(ṽ, t) =: fi if v, ṽ ∈ CMi .

We will use RNM to refer to Rn1×···×nd for brevity and drop the index M
everywhere if M = {1, . . . , d}.

C(0,0)

C(5,1)

g(1,3)

g(3,2)

g(8,3)

Figure 3.1: A uniform tensor grid G with d = 2, n = (8, 4) and h1 = h2.

3.2 Kernel separability

Throughout this thesis, we will heavily rely on the separability of the kernel
function. A kernel function κ(u,v) will be called separable with rank k, if it
can be written in the form

κ(u,v) =
k∑

ν=1

αν(u) · βν(v) (3.4)
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with a set of k functions αν , βν : RN 7→ R. This allows for a rewrite of (1.3)
and (1.4) as follows. Using the definitions

φν(v, t) := f(v, t) · αν(v) (3.5)

and

ψν(v, t) := f(v, t) · βν(v), (3.6)

we have

Qsource(f)(v, t) =
1

2

k∑

ν=1

v∫

0

φν(u, t)ψν(v − u, t) du (3.7)

for the source term and

Qsink(f)(v, t) =
k∑

ν=1

ψν(v, t) ·
∫

[0,∞]d

φν(u, t) du (3.8)

for the sink term, respectivly, and have both as the sum of k simpler integrals.
We then define

Qsource
ν (v, t) :=

1

2

v∫

0

φν(u, t)ψν(v − u, t) du (3.9)

as a single term in (3.7). This integral is a pure convolution integral as opposed
to being of convolution type, where the kernel function depends on both u and
v − u. We similarly define

Qsink
ν (v) := ψν(v, t) ·

∫

[0,∞)d

φν(u, t) du (3.10)

for the sink term (3.8). Here, the multivariate integral is independent of v.
This assumption of separability is not always fulfilled by all kernels used in
practical applications. But we can always find an approximate kernel κ̃(u,v)
that fulfills (3.4) by various means. These include (Chebyshev) interpolation,
cross approximation, exponential sums or Taylor sums (see [7], [8]). Many
kernels used in practice (and all used in this thesis) allow for a separable
approximation with exponentially decaying error, i.e., the error reduces sig-
nificantly with an increase in the rank k. This allows us to replace the exact
kernel with a separable approximation without this dominating the resulting
error.
A separable approximation can be computed from a discretized kernel as well.
This is achieved by finding a low-rank approximation of a discrete matrix
K ∈ RN×N , most often done by computing the (truncated) singular value de-
composition. This gives kernel factors in matrix form with α, β ∈ RN×k to
satisfy

K ≈ α · βT . (3.11)
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3.3 Evaluation of a piecewise constant source

and sink term

We assume f(v, t) to be piecewise constant at all times and require the right-
hand side of (1.2) to comply with this discretization. This section is devoted
to the efficient evaluation of (3.9) and (3.10) and the necessary steps to uphold
the piecewise constant structure by suitable projections if necessary.
We drop the time-variable t in the following sections to reduce notation. The
differential equation (1.2) is autonomous i.e., does not explicitly depend on the
current time.

3.3.1 Source term

The source term is given by

Qsource(v) =

v1∫

0

. . .

vd∫

0

κ(u,v − u)f(u)f(v − u) du

as we recall (1.3). With the assumption of a separable kernel (see section 3.2)
we defined in (3.9)

Qsource
ν (v) =

v∫

0

φν(u)ψν(v − u) du

which is a multivariate convolution integral.
The piecewise constant discretization of f(v) and κ(u,v) directly carries over
to φν(u) and ψν(v − u). With this, we evaluate Qsource

ν,pl at grid point

Qsource
ν,pl (gi+1) = V ·

i∑

k=0

φνk · ψνi−k (3.12)

by substituting the integrals over a piecewise constant function by a summa-
tion over the cell values scaled by the volume V from (3.3) . The additional
subscript pl stands for piecewise linear as the integral over a piecewise con-
stant function is piecewise linear and continuous. The discrete values obtained
in this convolution-sum denote the function values at gridpoints gi+1 with a
shift 1 =

(
1, . . . , 1

)
. This shift is necessary because Qsource

ν,pl (gi) = 0 if any
im = 0 since every particle has non-zero properties and no particles with a
zero-property can be formed by aggregation.
The unshifted and unscaled variant of this convolution sum can be efficiently
evaluated by the methods we will present in section 3.4, scaling and shifting
is trivial afterwards.

16



Remark 1. The convolution of two functions each with support in [0,vmax]
lies in [0, 2 · vmax] as the maximal properties add up. We have chosen values
vmax
m for the underlying grid G and discard any larger particles. Since we neglect

breakage, all particles will hence eventually leave our computational domain,
i.e. we lose mass over time.
The choice of vmax

m should reflect this growth of particles in the considered time
frame and be adapted if necessary.
One could enlarge the property space either during a simulation or restart the
numerical experiments with a different grid. This enlargement can either be
done by coarsening the grid (and keeping N constant) or appending additional
cells (increasing N in the process).
A resulting particle can only leave the considered domain if one of the two
aggregating particles has a property above vmax

m

2
. If this amount is negligible the

resulting error is also small.

We then compute

Qsource
pl (gi+1) =

k∑

ν=1

Qsource
ν,pl (gi+1) (3.13)

to obtain the complete (piecewise linear) source term at gridpoints gi+1. This
result is not compatible with the piecewise constant approach that is used for
f and a suitable conversion (or projection) is necessary. One desired property
of this projection P is the conservation of some moments µe of the piecewise
linear source term, i.e. we require

Qsource
pc := P(Qsource

pl ) with

µe(Qsource
pl ) = µe(Qsource

pc )

for some e ∈ Nd, where the subsprict pc stands for piecewise constant.
We will present a general framework for this projection in subsection 3.3.3. A
piecewise constant source term, projected in this way, is the final result of this
procedure.

3.3.2 Sink term

The sink term is given by

Qsink(v) = f(v) ·
∞∫

0

· · ·
∞∫

0

κ(u,v)f(u) du

as we recall (1.4). With the assumption of a seperable kernel (see section 3.2),
we defined (3.10) as

Qsink
ν (v) = ψν(v) ·

∫

[0,∞]d

φν(u) du
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which is a simple integration and a scalar multiple since ψν is piecewise con-
stant.
The piecewise constant discretization of f(v) and κ(u,v) allows for a rewrite
of this integral into sums. For v ∈ Ci we then write

Qsink
ν (v) = V · ψνi

n−1∑

j=0

φνj

︸ ︷︷ ︸
:=Sν

= V · ψνi · Sν
with Sν ∈ R for one summand of the sink term. This function is already
piecewise constant and does not require an additional projection. We then
find the total sink term as

Qsink(v) =
k∑

ν=1

Qsink
ν (v) (3.14)

which finishes this part.

3.3.3 Moments of a piecewise linear discretization

The piecewise linear convolution result

Qsource
pl (v) :=

k∑

ν=1

Qsource
ν,pl (v) (3.15)

is not compatible with the piecewise constant discretization for f(v) and a pro-
jection is necessary. Similar to the idea presented in the FP or CAT methods
from chapter 2 we are interested in a projection P that preserves some moments
µe(Qsource

pl ) of the source term. We will introduce a framework that allows for
a preservation of moments based on an expression with basis functions. The
following theorem shows the simple projection to preserve all moments µe with
e ∈ {0, 1}d.
Theorem 1. Let Qpl(v) be a continuous and piecewise linear function with
respect to a uniform grid G and let qi := Qpl(gi) denote the function values at
the gridpoints with qi = 0 at the boundary points, i.e. if ∃m ∈ {1, . . . , d} with
im = 0 or im = nm. Then Wpc(v) (piecewise constant with respect to G) with
cell values

wi =
1

2d
·

1∑

k=0

qi+k

conserves all moments
µe(Wpc) = µe(Qpl)

for e ∈ {0, 1}d.
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Proof. The idea of the proof is as follows: We represent Qpl(v) with respect to
the standard basis of the space of continuous, piecewise linear functions and
then consider the projection of a single basis function to the space of piecewise
constant functions. Since its support consists of 2d cells, we will be able to
preserve 2d moments.
With the notation for the evaluation at grid points gi we write

Qpl(v) =
n∑

i=1

qi ·
d∏

m=1

Λim(vm) (3.16)

with one dimensional basis functions

Λim(vm) :=





vm/hm − im + 1 , if (im − 1) · hm ≤ vm ≤ im · hm,
−vm/hm + im + 1 , if im · hm ≤ vm ≤ (im + 1) · hm,
0 , else

(3.17)

with support [(im−1)hm, (im+1)hm] to be seen in Figure 3.2. These continuous

(im − 1)hm imhm (im + 1)hm

0

1

Figure 3.2: A piecewise linear basis function Λim(·) (3.17)

basis functions satisfy Λim(imhm) = 1 and Λim(imhm ± hm) = 0. As the

gi

Ci

qi

Figure 3.3: A multivariate piecewise linear function T pl
i (·).
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moments are linear in the argument, we concentrate on one summand T pl
i (v) :=

qi
d∏

m=1

Λim(vm) of (3.16) and distribute its contribution to the overall moments

to the cells of its support. One function T pl
i (v) can be seen in Figure 3.3.

We calculate

µe(T pl
i ) =

∞∫

0

ve · T pl
i (v) dv

= qi

d∏

m=1

(im+1)hm∫

(im−1)hm

vemm Λim(vm) dvm = qi

d∏

m=1

Ipl,im
m,em

where we define

Ipl,im
m,em :=

(im+1)hm∫

(im−1)hm

vemm Λim(vm) dvm =

{
hm , if em = 0

h2
mim , if em = 1

(3.18)

to simplify the notation of the integral.
The vector of all moments µe(T pl

i ) with e ∈ {0, 1}d in lexicographical order
can be obtained by the means of Kronecker products (here denoted by ⊗) via

[
Ipl,i1

1,0

Ipl,i1
1,1

]
⊗ · · · ⊗

[
Ipl,id
d,0

Ipl,id
d,1

]
· qi. (3.19)

We will define

bm :=

[
Ipl,im
m,0

Ipl,im
m,1

]
=

[
hm
h2
mim

]

to refer a one of these Kronecker factors.
The support of T pl

i (v) is given by the 2d cells Ci+k with k ∈ {−1, 0}d and we
define a piecewise constant function T pc

i (v) with values ti+k at the cell Ci+k.
A possible function for d = 2 (with arbitrary values ti+k) is shown in Figure
3.4.
The contribution of a value ti+k to the total moment is given by

µe
Ci+k

(ti+k) =

∫

Ci+k

veti+k dv

= ti+k

d∏

m=1

(im+km+1)hm∫

(im+km)hm

vemm dvm = ti+k

d∏

m=1

Ipc,im+km
m,em ,
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gi

ti−(0,0)

ti−(1,0)

ti−(1,1)

ti−(0,1)

Figure 3.4: A multivariate piecewise constant function T pc
i (·) with values ti−k.

where we computed

Ipc,im
m,em :=

(im+1)hm∫

(im)hm

vemm dvm =

{
hm , if em = 0

h2
m · (im + 0.5) , if em = 1

(3.20)

to again simplify the notation of the integrals. We collect the assigned cell
values ti+k in a vector

t :=




ti−[1,...,1]

ti−[1,...,0]
...

ti−[0,...,1]

ti−[0,...,0]



∈ R2d .

The moments of interest (in lexicographical order) of a function T pc
i in all 2d

cells surrounding gi can be expressed by a matrix-vector multiplication

G1 ⊗ . . .⊗Gd · t (3.21)

with simple matrices

Gm :=

[
Ipc,im−1
m,0 Ipc,im

m,0

Ipc,im−1
m,1 Ipc,im

m,1

]

=

[
hm hm

h2
m(im − 0.5) h2

m(im + 0.5)

]
.

This gives a linear system defined by (3.21) and (3.19) as

G1 ⊗ . . .⊗Gd · t = b1 ⊗ . . .⊗ bm · qi (3.22)

implying a solution

t = v1 ⊗ . . .⊗ vd · qi

=

[
ti1−1

ti1

]
⊗ . . .⊗

[
tid−1

tid

]
qi
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with vectors

vm :=

[
tim−1

tim

]
= G−1

m · bm =
1

2

[
1
1

]
. (3.23)

This gives

ti+k = qi ·
d∏

m=1

tim+km =
qi
2d

as value in every cell of the support of T pl
i , i.e. the value at the grid point is

equally distributed to the surrounding cells. This result is independent of the
chosen grid point gi and properties of the grid (hm or V ).
To know the value wi of a piecewise constant function Wpc(v) in a cell Ci
we have to add up the contributions of the 2d cornering grid-points gi+k for
k ∈ {0, 1}d around the cell which gives the final result of

wi =
1∑

k=0

1

2d
qi+k.

Remark 2. This theorem is based on the projection of a single piecewise linear
basis function onto its support of 2d cells and offers 2d degrees of freedom, al-
lowing to preserve the same amount of moments here chosen to be all moments
µe with e ∈ {0, 1}d. Other combinations of moments are possible and require
the calculation of Ipc,imm,em and Ipl,imm,em for other values of em.

Due to the restriction of the property space outlined in section 3.1 and the
restriction of the convolution results pointed out in Remark 1 we generally do
not fulfill the assumption of Qpl(gi) = 0 for gridpoints on the upper boundary,
i.e., a point gi with any im = nm. A function T pl

i (v) on this boundary has
support outside of the computational domain and so will the projected function
T pc
i (v). We chose to include these gridpoints in the projection step and dis-

card any particles assigned beyond the boundary as neglecting their influence
altogether will give a larger error in the conservation of moments.

3.4 Convolution via fast Fourier transforma-

tion

This section is devoted to the technique of (multivariate) fast Fourier trans-
formation, its properties and application in this context.
Let φ̃ and ψ̃ be tensors of size R2n1×···×2nd (we drop the superscript ν here)
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where we used a process called zero padding to enlarge the tensors φ and ψ.
Their full convolution result ω = φ̃ ∗ ψ̃ is given by entries

ωj =

j1∑

k1=0

· · ·
jd∑

kd=0

φ̃kψ̃j−k =:

j∑

k=0

φ̃kψ̃j−k (3.24)

and is in R2n1×···×2nd . We focus here on the unshifted and unscaled version of
(3.12). This convolution can be calculated via Fourier transforms by using a
multivariate formulation of the convolution theorem [53].

Remark 3. By using a sequence of Fourier transforms we obtain a circular
convolution, since the Fourier transform implicity performs a periodic continu-
ation of the inputs with respect to all dimensions. The expansion of the inputs
to φ̃, ψ̃ ∈ R2n1×···×2nd by adding zeros will lengthen the cycles of the periodic
convolution to 2n, resulting in a linear convolution.

This section will use i :=
√
−1 as the complex unit and not as an index for

tensor entries. The symbols j and k will be used as indices.
The multivariate convolution theorem states that we can obtain ω̃ ∈ R2n1×···×2nd

by calculating

ω̃ = F−1(F(φ̃)�F(ψ̃)). (3.25)

In (3.25) we make use of the functions

F : R2n1×···×2nd → C2n1×···×2nd , φ̃ 7→ F(φ̃) with (3.26)

(F(φ̃))j :=
2n−1∑

s=0

φ̃s ·
d∏

m=1

eiπsmjm/nm

to denote the discrete Fourier transform, while

F−1 : C2n1×···×2nd → C2n1×···×2nd , Ω 7→ F−1(Ω) with (3.27)

(F−1(Ω))j :=
1

2N

2n−1∑

s=0

Ωs ·
d∏

m=1

e−iπsmjm/nm

denotes the inverse discrete Fourier transform. Finally, we use � to denote the
elementwise product of two tensors also known as Hadamard product.
We now focus on the efficient evaluation of (3.26) and derive the evaluation
via a series of univariate discrete Fourier transforms. The evaluation of (3.27)
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only differs in the signs in the exponent and the scaling by a constant factor.
By taking a look at the definition of F , we can rewrite it in the form of

F(φ̃)j =
2n−1∑

s=0

φ̃s ·
d∏

m=1

eiπsmjm/nm

=

2nd−1∑

sd=0

· · ·
(

2n1−1∑

s1=0

φ̃s · eiπs1j1/n1

)
· · · eiπsdjd/nd

=
(
Fd ◦ Fd−1 ◦ · · · ◦ F1(φ̃)

)
j
, (3.28)

where we use

Fm : C2n1×···×2nd → C2n1×···×2nd , φ̃ 7→ Fm(φ̃) with (3.29)

(Fm(φ̃))j :=
2nm−1∑

s=0

φ̃j1,...,jm−1,s,jm+1,...,jd · eiπsjm/nm

to denote the univariate discrete Fourier transformation of a d-dimensional
tensor with respect to the m-th dimension. The compositon Fd ◦ · · · ◦F1(φ̃) of
these transformations with m from 1 to d will yield a complete discrete Fourier
transformation.
Three properties of the discrete Fourier transform and complex arithmetic
guarantee ω̃ to only have real entries. These are stated in the following lemma

Lemma 1. a) The discrete Fourier transform Φ := F(φ̃) ∈ C2n1×...×2nd of

φ̃ ∈ R2n1×...×2nd shows complex-conjugate symmetry, i.e., Φj = Φ2n−j.
b) The elementwise product of two tensors Ω = Φ � Ψ ∈ C2n1×...×2nd with
complex-conjugate-symmetry again holds complex conjugate symmetry.
c) The inverse Fourier transform ω̃ = F−1(Ω) of a complex-conjugate-symmetric
tensor Ω ∈ C2n1×...×2nd is real, i.e. ω̃ ∈ R2n1×...×2nd.

Proof. The propositions a) and c) are essentially equivalent. We only show a)
as c) can be proven in the same manner. We observe the exponents in the
evaluation of

Φ2n−j =
2n−1∑

s=0

φ̃s

d∏

m=1

eiπsm(2nm−jm)/nm

and find

Φ2n−j =
2n−1∑

s=0

φ̃s

d∏

m=1

eiπsm(2nm−jm)/nm

=
2n−1∑

s=0

φ̃s

d∏

m=1

e−iπsmjm/nme2πism = Φj
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by using the identity of e2πism = 1.
To prove the proposition b), we simply show

Ω2n−j = Φ2n−j ·Ψ2n−j

= Φj ·Ψj = Ωj

A one-dimensional discrete Fourier transform Fm can be calculated via the
FFT algorithm (first introduced in [16]) in O(nm log(nm)) complexity, instead
of the naive approach of O(n2

m). This brings down the total complexity of the
convolution from O(N2) to O(N log(N)). The complex-conjugate symmetry
allows us to reduce in the constant in the complexity without affecting the
order of complexity.
After computing the full convolution result ω̃ ∈ R2n1×···×2nd we restrict the re-
sult back to RN to obtain the result ω of the convolution within the considered
domain of G.

3.4.1 Multi-dimensional Fourier transform of a tensor
with zero-padding

We describe in this subsection how the special structure of the zero-padded
input tensors φ̃ and ψ̃ can be exploited to further decrease the complexity of
the multivariate Fourier transform. It is based on the zero-padding that is
necessary for a linear convolution result.
The d-dimensional discrete Fourier transform requires one-dimensional Fourier
transforms along every dimension of the tensor (see (3.28)). We define inter-
mediate results

F1,m(φ̃) := Fm ◦ Fm−1 ◦ . . . ◦ F1(φ̃), m ∈ {1, · · · , d}

with F1,d(φ̃) = F(φ̃) = Φ being a complete Fourier transform of φ̃.

The input tensor φ̃ consists mostly of zeros due to the padding in every inter-
nal coordinate, as at most nd of the (2n)d entries holds a non-zero entry and
their pattern can be exploited.
We recall the first one-dimensional Fourier transform F1 from (3.29) as a
weighted summation with all indices fixed but the first. By the definition of
φ̃, all of these summands are zero if im > nm holds for any m, rendering the
calculation superfluous by the linearity of the Fourier transform because the
result is the vector of only zeroes. By only calculating a Fourier transform for
multi-indices j with j2 < n2, . . . , jd < nd we reduce the number of necessary
calculations by a factor of (1/2)d−1.
This idea can similary be adapted by observing the resulting zero-pattern in
F1,m(φ̃). We have F1,m(φ̃)j = 0, if ∃k > m : jk > nk. This directly implies a

reduction of the required Fourier transforms by (1/2)d−m. Only the last stage
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of the transformation requires a consideration of the complete tensor. An il-
lustration of the non-zero pattern of φ̃ and F1,m(φ̃) for d = 3 can be seen in
Figure 3.5.

n1 2n1

n2

2n2

n3

2n3

φ̃ F1(φ̃) F1,2(φ̃)

Figure 3.5: Illustration of the non-zero-pattern of φ̃ and the intermediate re-
sults of its Fourier transformation F(φ̃).

The exploitation of the zero-pattern in this fashion reduces the complexity
considerably. If we assume a symmetric grid as defined in section 3.1, i.e., all
nm to be equal (n1 = · · · = nd = n), the total number of one-dimensional
Fourier transformations amounts to

nd−1 + . . .+ 2m−1nd−1 + . . .+ 2d−1nd−1 = (2d − 1)nd−1

instead of 2d−1nd−1d without exploiting the zeros.
A similar idea can be followed in the calculation of the inverse Fourier

transformation F−1(Ω). In this we have a tensor Ω ∈ C2n1×...×2nd that is com-
pletely filled with non-zero entries as input and let F−1(Ω) =: ω̃ ∈ R2n1×...×2nd

be the result of the inverse Fourier transform. We restricted the computational
domain and so are only interested in ω ∈ Rn1×...×nd , a small part of ω̃ effec-
tively assuming all other entries to be zero.
This assumption then gives the zero-pattern illustrated in Figure 3.5 for inter-
mediates of the inverse Fourier transform. The non-shaded entries (we assume
to be close to zero in abolute value) can be set to zero ealier as all influenced
entries of ω̃ are non-shaded and will be set to zero as well. This allows us
to skip the inverse FFT-calculations. This (similarly to the exploitation of
non-zero entries in the forward transformation) reduces to the number of one-
dimensional inverse Fourier transforms necessary to (2d− 1)nd−1 if we assume
all nm to be equal.

3.5 Numerical results

In this section, we will present numerical results of the methodology presented
in this chapter and compare them with results obtained by the FP and CAT
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Processor Intel Xeon E5-2690 @ 2.60 GHz
RAM 16 GB
OS Windows 10 Pro, 64 bit

Table 3.1: Specific hardware of the used computer.

methods (see sections 2.2 and 2.3). This section is divided into three separate
numerical experiments, each highlighting an important property of the ansatz.
These properties are the accuracy of a numerical density distribution f(v, t),
the tracking of the moments µe(f)(t) and the computational complexity.
The uniform grid G for a piecewise constant approximation (referred to as
PC) will always be defined by vmax and nuniform. Any simulation with the FP-
scheme or the CAT will be done with respect to a geometric tensor grid. This
will be given by the number of pivots ngeometric and a minimal and maximal
grid line (g0 and gn = vmax respectively). The grid lines will be given by

gi = τ ·gi−1 with τ =
(
gn
g0

)1/n

giving us n pivots with pivots vi = 1
2
· (gi−gi+1).

All simulations use the explicit Euler scheme to discretize the time derivative
of the PBE with a constant time step denoted by ∆t.
All simulations in this section are calculated on an office desktop computer
with specifics given in Table 3.1.

3.5.1 Accuracy of a population density approximation

To assess the accuracy of our proposed discretization scheme we are going
to compare a numerical result of an aggregation process with an analytical
solution to (1.2). As we mentioned in section 2.1 a closed form solution can only
be given for certain choices of initial distribution f(v, 0) and kernel κ(u,v).
We here use the initial distribution

f(v, 0) = N0 ·
d∏

m=1

4vm
ξ2
m

· e−2vm
ξm (3.30)

(with constants N0 and ξm) and the multi-dimensional sum-kernel

κΣ(u,v) =
d∑

m=1

um + vm. (3.31)

The analytical solution was given in [20] as

f(v, t) = N0(1− τ)e
−vΣτ
N0ξΣ ·

(
d∏

m=1

2

ξm
e−

2vm
ξm

)

∞∑

k=0

1

(k + 1)!

(
τvΣ

ξΣ

)k
·

d∏

m=1

1

(2k + 1)!
·
(

2vm
ξm

)2k+1
(3.32)
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where we make use of the definitions

ξΣ :=
d∑

m=1

ξm, vΣ :=
d∑

m=1

vm, τ := 1− e−N0ξΣt.

We here simulate an asymmetric two dimensional problem with

N0 = 1, ξ1 = 0.1 and ξ2 = 0.15

and choose vmax equal for a uniform and a geometrical grid while varying the
degrees of freedom N .
To assess the error of a given discrete approximation f̃(v, t) to f(v, t) we
calculate the L2 error

E(t) =




vmax
1∫

0

vmax
2∫

0

(
f̃(v, t)− f(v, t)

)2


 dv2dv1)1/2. (3.33)

A macroscopic representation

N(v, t) =
n−1∑

i=0

Ni · δ(v − vi)

used on a geometric grid (recall (2.2)) will be projected to a piecewise constant
function by equally distributing Ni uniformly onto the associated gridcell. This
is the simplest method to project the macroscopic representation Ni (formed
by of (2.1)) to a piecewise constant representation both in terms of implemen-
tation and the conservation of the total number of particles.
We note that (3.33) differs from measures used in many other works (e.g.
[12] compares macroscopic variables on the diagonal, [22] computes discrete
L1-errors, [40] sorts indices by macroscopic representations of the analytical
solution) as we compare against the smooth analytical solution instead of dis-
cretizing it. This yields a possibly larger error. We approximate (3.33) by using
11×11 uniformly distributed points in every cell and the bivariate trapezoidal
rule. We use 121 points regardless of the size of the cell to evaluate errors we
assume to be smaller (due to a smaller cell) with increased accuracy.

We are going to solve two problems over a different timespan T and choose
a domain accordingly. The first problem will feature a short simulation with
T = 1 and a small computational domain with vmax

1 = vmax
2 = 1 for both

uniform and geometric grid. For a uniform grid we will vary a symmetric grid
with

nuniform ∈ {128, 256, 512, 1024, 2048},
the geometric grid will feature

ngeometric ∈ {32, 48, 72, 108, 162, 243}
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with g0 = 0.1·vmax

ngeometric
and gn = vmax. Both discretizations will feature ∆t = 0.1.

In Figure 3.6a we show the error E(1) (3.33) with respect to the degrees of
freedom N . The geometric grid allows for a smaller error with a given N ,
as the important part of the domain (i.e. smaller particles) are represented
with smaller cells to better capture the distribution. We see a near perfect
overlap of the plots for the CAT and FP-approach. We furthermore see the
error not decreasing beyond approximately E ≈ 3 · 10−2 which we are able to
attribute to the limited computational domain as particles grow outside our
set boundaries.
Figure 3.6b shows the necessary computational time to calculate f̃(v, 1) with
the resulting error E when varying the degrees of freedom. Here we see a clear
advantage of our proposed method, allowing a simulation to the best possible
accuracy in about 4.5 minutes while the longest simulation using CAT took
over 2.6 hours without reaching this accuracy.
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Figure 3.6: L2-error E(1) (3.33) with respect to degrees of freedom N (left)
and computational time (right) for a short simulation. The plots for CAT and
FP-approach overlap on the left hand side.

The second problem will feature a longer time span of T = 5 and a
larger computational domain with vmax

1 = vmax
2 = 5. We again choose a

symmetric grid with nuniform ∈ {128, 256, 512, 1024, 2048} and ngeometric ∈
{32, 48, 72, 108, 162, 243}. We again use g0 = 0.1·vmax

ngeometric
and time steps of ∆t =

0.1.
We show the L2 error E(5) (3.33) with respect to the degrees of freedom N in
Figure 3.7a and see the advantage of the geometric grid even more pronounced
for a larger computational domain. The decrease in error when adding addi-
tional cells to a geometric grid is greater compared to the addition of more
cells in a uniform grid.
Figure 3.7b compares the error with the computational time necessary to cal-
culate f̃(v, 5). We again see a benefit of using the uniform grid as the necessary

29



computational time for a given accuracy is lower compared to both techniques
relying on a geometric grid (18 seconds compared to 80 and 240 seconds to
reach E ≈ 10−1). This benefit is not as clear as for the short simulation as the
plots are closer together.
We assume the benefit of the uniform grid to decrease as the computational
domain grows larger (i.e. further increasing vmax) as the geometric grid is
better suited to discretize wide spread distributions of very small and very
large particles naturally occurring in longer simulations due to the absence of
breakage or depletion. If the computational domain spans several orders of
magnitude we expect an advantage of a geometric grid because the domain
can be chosen very large while still using small cells for smaller particles.
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Figure 3.7: L2-error E (3.33) with respect to degrees of freedom N (left) and
computational time (right) for a long simulation T = 5. The plots for CAT
and FP-approach overlap on the left hand side.

3.5.2 Tracking moments of a population balance equa-
tion

In section 1.1 we introduced the moments µe(f)(t) of a distribution f(v, t)
that are of interest in the numerical handling of PBEs. We recall them to be
given by

µe(f)(t) :=

∞∫

0

vef(v, t) dv.
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We can determine the temporal change in a moment by

dµe(f)(t)

dt
=

∞∫

0

ve · df(v, t)

dt
dv

=

∞∫

0

ve ·
(
Qsource(f)−Qsink(f)

)
dv.

An expansion of the shorthand notation gives

dµe(f)(t)

dt
=

1

2

∞∫

0

ve ·
v∫

0

κ(u,v − u)f(v − u)f(u) du dv

−
∞∫

0

ve · f(v)

∞∫

0

κ(u,v)f(u) du dv

and in this subsection we will use a constant kernel

κC(u,v) = 1

to eliminate it from the equation. We have f(v − u) = 0 if any vm < um
as there are no particles with a negative property. That allows us to extend
the upper limit in the inner integral (with respect to u) of the source term to
infinity. The equation then reads

dµe(f)(t)

dt
=

1

2

∞∫

0

ve ·
∞∫

0

f(v − u)f(u) du dv

−
∞∫

0

ve · f(v)

∞∫

0

f(u) du dv

which we further simplify by a substitution of w = v − u in the first line and
a separation of integrals in the second. This gives

dµe(f)(t)

dt
=

1

2

∞∫

0

∞∫

0

(u + w)ef(u)f(w) du dw

−
∞∫

0

vef(v) dv ·
∞∫

0

f(u) du
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where we expand the multivariate binomial. This gives

dµe(f)(t)

dt
=

1

2

∞∫

0

∞∫

0

e∑

k=0

uk · f(u) ·we−kf(w) ·
d∏

m=1

(
em
km

)
du dw

−
∞∫

0

vef(v) dv ·
∞∫

0

f(u) du.

We change the order of the summations and integrations in the first part and
separate integrals with respect to u and w. This reads

dµe(f)(t)

dt
=

1

2

e∑

k=0

d∏

m=1

(
em
km

) ∞∫

0

uk · f(u) du ·
∞∫

0

we−kf(w) · dw

−
∞∫

0

vef(v) dv ·
∞∫

0

f(u) du.

We then find every integral to be of the form (1.5). We use this definition and
find

dµe(f)(t)

dt
=

1

2

e∑

k=0

µk(f)(t) · µe−k(f)(t) ·
d∏

m=1

(
em
km

)

− µe(f)(t) · µ0(f)(t).

(3.34)

This is an ODE for any moment based on moments of lower order. Most im-
portantly, the change in any moment is independent of the particle distribution
f(v, t), whether it is discrete or continuous.
A comparison with the moments of an analytical solution (like (3.32)) will
always contain (and most likely be dominated by) the discretization error. We
here want to focus on the error made during the projection step presented in
subsection 3.3.3 and observe the evolution of the moments of a discrete popu-
lation density f(v, t).

For this experiment, we use a discretized initial distribution of

f(v, 0) = N0 · exp

(
d∑

m=1

cm · (vm − sm)2

)
(3.35)

which is a multivariate Gaussian bell curve. We have chosen two dimensions
(d = 2) and use constants c1 = c2 = −200 and s1 = s2 = 0.1. The scalar
constant N0 will be chosen to set µ0(f)(0) = 0.1 for each of the three dis-
cretization schemes individually.
We define the degree of aggregation

Iagg(t) = 1− µ0(f)(t)

µ0(f)(0)
(3.36)
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as the fraction of particles that has already disappeared over time. We will
run a simulation of the particle distribution for T = 50 seconds which results
in Iagg(50) ≈ 0.7143. A property space of vmax

1 = vmax
2 = 10 is sufficiently large

for the resulting distribution to not have be significantly influencend by the
bounded computational domain.
We choose nuniform = (512, 512) and ngeometric = (51, 51) and time steps of
∆t = 0.1 resulting in 500 time steps for these simulations. We chose a coarser
geometric grid to make up for the longer computational time. The simulation
with a uniform grid took around 18 minutes approximately the same time used
by the CAT. The FP simulation took about 55 minutes.
We calculate all moments of the numerical solution over the course of the
simulation for

e ∈ {0, . . . , 3} × {0, . . . , 3}
with a precision of 10−10 (to not let rounding error in the simulation dominate
here) and denote them by µ̃e

PC(f)(t), µ̃e
CAT(f)(t) and µ̃e

FP(f)(t) for piecewise
constant, Cell Average and Fixed Pivot respectively. We define the relative
error at each point in time

Ae
X(t) :=

µ̃e
X(f)(t)

µe(f)(t)
− 1 (3.37)

for all three schemes, where we calculate µe(f)(t) by solving the IVP given
by (3.34) and µe(f)(0) = µ̃e(f)(0) with the same constant time steps. This
eliminates the influence of time-discretization from the consideration.
We show a selection of 4 of these 16 errors in Figure 3.8.

We see an interesting pattern in the plots in the top row. All three schemes
mathematically guarantee conservation of the total numbers of particles and
we see A(0,0) of less than 10−10, the accuracy of our computations of µ̃e(t). The
accuracy of the PC-approach is even greater and we see the same for the FP
and our PC approach for the first cross moment µ(1,1)(t) in the top right. The
CAT loses accuracy with this moment which can be seen here.
The plots in the bottom row (A(2,2)(t) on the left and A(3,3)(t) on the right)
look similar in that the FP scheme shows the largest discrepancy from the
beginning of the simulation. The CAT shows its superior accuracy for high
order moments but throughout the simulation, the PC approach gets better
and we observe an interesting self-correcting behavior not present in the other
two schemes. We attribute the later superiority of our approach to the higher
number of degrees of freedom and smaller cells used to discretize larger parti-
cles.
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Figure 3.8: Relative error in the moments of a numerical simulation for a
selection of moments, namely A(0,0) (top left), A(1,1) (top right), A(2,2) (bottom
left), A(3,3) (bottom right).
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3.5.3 Estimating the computational complexity

The third numerical test pertains to the complexity of the proposed algorithm
and compares it with the complexity of the FP method and the CAT. We do
this by simulating an aggregation process with d = 2 and d = 3 dimensions
for varying degrees of freedom nuniform and ngeometric. For this, we use the
exponentially decreasing initial distribution

f(v, 0) =
d∏

m=1

e−0.05vm

and use the multivariate Brownian kernel

κB(u,v) =
d∑

m=1

(
u1/3
m + v1/3

m

)
·
(
u−1/3
m + v−1/3

m

)

with a rank of k = 2d+ 1.
We use a time step ∆t = 0.2 and a final time of T = 5. This results in 25 time
steps. For the simulation with d = 2, we use

nuniform ∈ {32, 64, 128, 256, 512, 1024, 2048}
and

ngeometric ∈ {32, 39, 48, 59, 73, 90, 111, 137, 168, 207}.

We are not interested in the final density distribution f(v, 5) and only record
the computational times for these simulations. We show these times for d = 2
in Figure 3.9.
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Figure 3.9: Computational time for different numerical schemes with respect
to n for d = 2.

We see a clear advantage of our proposed method as it only takes approxi-
mately 15 minutes for a grid with N = 222 ≈ 4.2 · 106 degrees of freedom. The
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simulation with CAT takes just shy of 4 hours and 45 minutes for a grid with
N = 2072 ≈ 42 · 103 degrees of freedom. We also can confirm the theoretical
estimates of complexity by including reference lines with the expected orders
of complexity.
We run a similar simulation with three properties (d = 3) for

nuniform ∈ {32, 64, 128, 256}
and

ngeometric ∈ {32, 39}

and show the computational time in Figure 3.10 and include reference lines for
the expected orders of complexity.
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Figure 3.10: Computational time for different numerical schemes with respect
to n for d = 3.

A simulation with only ngeometric = 39 took over 44 hours for these 25
time steps when using the FP-scheme and close to 12 hours with the CAT-
scheme. Our proposed method took approximately 2 hours for a simulation
with nuniform = 256 confirming the superior complexity. We include reference
lines with the expected complexity and see them match for the few presented
points.
Further increasing the number of particle properties is not practically feasible
on an office desktop computer as N grows exponentially. Storing these large
high-dimensional tensors on a non-supercomputer is infeasible and a computa-
tion impossible even if more computational power is available by, for example,
using parallel computing.
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Chapter 4

Efficient storage and arithmetic
in tensor-train format

In this chapter, we give a thorough introduction to efficient tensor storage. We
present one particular format, namely the tensor-train (TT)-format (and the
idea of its representation of tensors) in section 4.1. In section 4.2 we present
arithmetic operations, that are used in this thesis.
Section 4.3 presents the truncation algorithm that allows to reduce the storage
requirement of a tensor A and proposes an improvement over the literature.
Section 4.4 explains the application of the format to the setting of PBEs and
section 4.5 closes out with numerical results using a C++- implementation of
this format. We here use the Eigen library ([25]) for underlying linear algebra
routines.

4.1 Introduction

This section is dedicated to the introduction of the TT-format. This stor-
age format for high-dimensional tensors was first introduced in [70] and re-
introduced with mathematical rigor in [54]. The format was later found to be
a special case of the Hierarchichal tensor format, which was first introduced in
[29]. The TT-format does not rely on recursive definitions and tree structures
and allows for a representation with less overhead and an easier understand-
ing.

Given a tensor A ∈ Rn1×...×nd , its direct storage requires N =
d∏

m=1

nm real

numbers. This is infeasible for a high number of dimensions (and d = 3 is
sufficiently high in most cases) and a more efficient approach is needed to rep-
resent A.
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Definition 4.1.1. Unfolding matrix
Given a tensor A ∈ RN with entries Ai, the m-th unfolding matrix

Â(1,m),(m+1,d) ∈ R(n1···nm)×(nm+1···nd)

is given by

Â(1,m),(m+1,d)(i1, . . . , im; im+1, . . . , id) = Ai (4.1)

with so-called long indices (i1, . . . , im) and (im+1, . . . , id).

An unfolding matrix allows us to represent a tensor as a matrix containing
all data.

Example 4.1.1. Given a tensor A ∈ R2×3×4×5 with entries Ai, the second
unfolding matrix Â(1,2),(3,4) ∈ R6×20 is given by

Â(1,2),(3,4) =




A0,0,0,0 A0,0,0,1 · · · A0,0,0,4 A0,0,1,0 · · · A0,0,3,4

A0,1,0,0 A0,1,3,4

A0,2,0,0

A1,0,0,0
. . .

...
A1,1,0,0

A1,2,0,0 A1,2,0,1 · · · A1,2,3,4



.

The key to efficient tensor storage lies in a low-rank representation of these
unfolding matrices, as it allows to reduce the required storage for a large matrix
(or tensor).
Let Â(1,m),(m+1,d) ∈ Rn1···nm×nm+1···nd be the m-th unfolding matrix of A ∈ RN .
We denote its rank by rAm and find a representation as a product of two matrices
with rank rAm. We obtain

Â(1,m),(m+1,d) =: A
(1,m)
col · A(m+1,d)

row , m = 1, . . . , d− 1 (4.2)

with Â
(1,m)
col ∈ Rn1···nm×rAm and Â

(m+1,d)
row ∈ RrAm×nm+1···nd . The indices row and

col signal the orientation of the long indices. We define rA0 = rAd = 1 for com-
pleteness.

We use these low-rank matrices to find the representation of a tensor as a
tensor-train. This is given by d three-dimensional tensors Am ∈ RrAm−1×nm×rAm ,
the so-called cores. Each coreAm consists of nm so-called slices Amim ∈ RrAm−1×rAm .
These cores define the entries Ai by calculating

Ai =
d∏

m=1

Amim , (4.3)

the matrix-matrix product of the im-th slices of Am. The definitions of rA0 =
rAd = 1 guarantee this to be a scalar. An example of a tensor in TT-representation
for d = 3 can be found in Figure 4.1. Next, we prove that a tensor with un-
foldings Â(1,m),(m+1,d) of ranks rAm can be represented in the TT-format, using
the following two definitions.
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Figure 4.1: TT-representation for a three-dimensional tensor with n = (9, 7, 5)
and ranks rA1 = 2, rA2 = 3. Marked entries are relevant to evaluate i = (4, 0, 2).

Definition 4.1.2. Oriented unfolding matrix of a core
Let Am ∈ RrAm−1×nm×rAm be a core. Then

Amcol :=




Am0
...

Amnm−1


 ∈ RrAm−1nm×rAm (4.4)

and

Amrow :=
[
Am0 . . . Amnm−1

]
∈ RrAm−1×nmrAm (4.5)

are called the column- and row-wise unfoldings of the core Am. They are two
special unfolding matrices of the three-dimensional core Am.

Definition 4.1.3. Concatenation of cores
Let Am ∈ Rrm−1×nm×rm and Am+1 ∈ Rrm×nm+1×rm+1 be adjacent cores of a TT-
representation of A. The binary operation ⊕ (referred to as concatenation) is
defined by a blockwise Kronecker product given by

Amcol ⊕ Am+1
col :=




Am0 · Am+1
0

Am0 · Am+1
1

...
Amnm−1 · Am+1

nm+1−2

Amnm−1 · Am+1
nm+1−1



∈ RrAm−1nmnm+1×rAm+1 (4.6)

Amrow ⊕ Am+1
row :=

[
Am0 · Am+1

0 Am0 · Am+1
1 . . . Amnm−1 · Am+1

nm+1−1

]
(4.7)

∈ RrAm−1×nmnm+1rAm+1
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With these defined one can extend the definition to redefine the usual matrix
product via

Amcol ⊕ Am+1
row := Amcol · Am+1

row =




Am0 · Am+1
0 . . . Am0 · Am+1

nm+1−1
...

...
Amnm−1 · Am+1

0 . . . Amnm−1 · Am+1
nm+1−1


 (4.8)

∈ RrAm−1nm×nm+1rAm+1 .

We note that all three concatenations contain the same block-matrices that are
arranged differently. They can easily be derived from one another by reshaping
the result.
This definition can also be extended to sequences of concatenations of cores
where longer products make up the resulting block matrix. The long indices
are arranged in a lexicographically ascending order, column-wise and row-wise,
respectively. The concatenation is associative as the underlying matrix products
are associative and the arrangement of blocks is independent of the order of
operation.

We now define a matrix Mm by repeated concatenation as

Mm := A1
col ⊕ · · · ⊕ Amcol ⊕ Am+1

row ⊕ · · · ⊕ Adrow ∈ Rn1···nm×nm+1···nd .

We find every entry Mm(i1, . . . , im; im+1, . . . , id) to be of the form

Mm(i1, . . . , im; im+1, . . . , id) =
d∏

`=1

A`i` = Ai

and conclude that Mm equals Â(1,m),(m+1,d), the m-th unfolding matrix of A.
Using the associative property of the concatenation we write

Mm = (A1
col ⊕ · · · ⊕ Amcol)⊕(Am+1

row ⊕ · · · ⊕ Adrow)

= M
(1,m)
col ·M (m+1,d)

row ,

where we find the low-rank factors M
(1,m)
col and M

(m+1,d)
row (with rank rAm) as

candidates for A
(1,m)
col and A

(m+1,d)
row in (4.2).We remind the reader here of the

use of the concatenation operator ⊕ as usual matrix multiplication in case of
a column- and a row-unfolding. The index m can be chosen arbitrarily and
shows the potential of the TT-format to represent the low-rank representations
of all Â(1,m),(m+1,d) simultaneously.
We now assume a tensor A ∈ RN that allows for low-rank representations as
in (4.2) with known ranks rAm. We know cores Am ∈ RrAm−1×nm×rAm to exist and
show how to obtain these from the unfolding matrices Â(1,m),(m+1,d).

We know the first unfolding matrix Â(1,1),(2,d) can be written via core-concatenation
as

Â(1,1),(2,d) = (A1
col)⊕ (A2

row ⊕ . . .⊕ Adrow). (4.9)
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We know by (4.2) that Â(1,1),(2,d) has the low rank factors A
(1,1)
col and A

(2,d)
row and

obtain the first core A1
col as A

(1,1)
col . The right factor A

(2,d)
row will be used next.

We turn our attention to the second unfolding matrix Â(1,2),(3,d) and write it
as

Â(1,2),(3,d) = A
(1,2)
col · A(3,d)

row

which we know can be written as a concatenation of cores in the form

Â(1,2),(3,d) =
(
A1

col ⊕ A2
col

)
⊕
(
A3

row ⊕ · · · ⊕ Adrow

)

= A1
col ⊕

(
A2

col ⊕ A3
row ⊕ · · · ⊕ Adrow

)
. (4.10)

The bracketed term in (4.10) is a concatenation of the cores A2 to Ad as was

A
(2,d)
row . We established all concatenation to have the same matrix-blocks, the

difference in orientation of A2 can be compensated by rearranging the entries of
A

(2,d)
row . We denote this rearrangement as Â(2,2),(3,d) ∈ RrA1 n2×n3···nd . We replace
⊕ by a usual matrix product and see that A2

col can be obtained as a low-rank
factor of Â(2,2),(3,d). The existence of a low-rank decomposition of this matrix

is guaranteed by the existence of the representation (4.2) of Â(1,2),(3,d). The
right low-rank factor A3,d

row will be used in the next computation.
This process can be iterated to obtain an column-wise representation Amcol of

any core as left low-rank factor of Â(m,m),(m+1,d), a rearrangement of A
(m,d)
row , the

right low-rank factor of the previous computation. The existence of these low-
rank-factors with ranks rAm is guaranteed by the existence of low-rank factors

A
(1,m)
col and A

(m+1,d)
row of the unfolding matrices Â(1,m),(m+1,d) assumned in (4.2).

A row-wise expression of the last core Adrow can be found as the right low-

rank factor of Â(d−1,d−1),(d,d) ∈ RrAd−2nd−1×nd a rearragenment of A
(d−1,d)
row . We

summarize this process in Algorithm 1.
The terms left and right are commonly used to refer to a direction, where
left denotes cores with a lower dimensional index m and right to cores with a
higher dimensional index.
For easier estimates of complexity we use RA ≥ rAj ∀j ∈ 1, . . . , d and define

Algorithm 1 Exact TT-representation

Input: Full tensor A ∈ RN

Output: Cores A1 to Ad and ranks rA1 to rAd−1

for m = 1 to d− 1 do
Find unfolding matrix Â(m,m),(m+1,d) of A

(m,d)
row

Obtain low-rank-representation of Â(m,m),(m+1,d) = Amcol · A(m+1,d)
row

Set rAm as number of columns of Amcol

Save blocks of Amcol as slices of Am

end for
Save columns of Adrow as slices of Ad
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nΣ :=
d∑

j=1

nj (4.11)

as the total number of slices. With these, we can estimate storage requirements
for the representation in the TT-format by O(R2

AnΣ), which is significantly

smaller than N =
d∏

m=1

nm, as long as the ranks rAm are moderate. We drop the

tensor-superscript for ranks rAm if there is only one tensor present.

4.2 Arithmetic operations

This section is devoted to presenting arithmetic operations, that are used in
this thesis. Most of these algorithms were introduced in [54] or subsequent
work and are repeated here for completeness. We will also derive estimates
for the norm of the resulting cores. This will help us with the truncation
procedure presented in section 4.3.

Definition 4.2.1. Orthogonal cores
Let Am ∈ Rrm−1×nm×rm be a core of a tensor train with slices Ami ∈ Rrm−1×rm.
The core Am is called column-orthogonal if Amcol ∈ Rrm−1nm×rm satisfies

(Amcol)
T Amcol =

nm−1∑

i=0

(Ami )T Ami = I ∈ Rrm×rm .

We similarly call a core Am row-orthogonal, if Amrow ∈ Rrm−1×nmrm satisfies

Amrow (Amrow)T = I ∈ Rrm−1×rm−1 .

We will show in section 4.2.2 that any tensor A ∈ RN in the TT-format can
be expressed using d − 1 orthogonal cores and one non-orthogonal core that
separates the row-orthogonal and column-orthogonal cores in a constructive

manner. We will call a representation Ai =
d∏
i=1

Aiim column-orthogonal or

row-orthogonal, if A1 through Ad−1 are column-orthogonal or A2 through Ad

are row-orthogonal, respectively. Throughout this work, we will make use of
this definition and keep track of how orthogonality is preserved in arithmetic
operations.
The following lemma will be helpful to estimate the norm of the result of an
arithmetic operation of two orthogonal cores.

Lemma 2. Let Am ∈ Rrm−1×nm×rm be a core of A. Then there holds

‖Amcol‖2
2 ≤

nm−1∑

i=0

‖Ami ‖2
2 and ‖Amrow‖2

2 ≤
nm−1∑

i=0

‖Ami ‖2
2. (4.12)
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If Am is column-orthogonal, then there holds

nm−1∑

i=0

‖Ami ‖2
2 ≤ rm. (4.13)

If Am is row-orthogonal we have
nm−1∑
i=0

‖Ami ‖2
2 ≤ rm−1.

Proof. We prove (4.12) by using the triangle inequality and write

‖Amcol‖2
2 = ‖ (Amcol)

T Amcol‖2 =

∥∥∥∥∥
nm−1∑

i=0

(Amcol)
T Ami

∥∥∥∥∥
2

≤
nm−1∑

i=0

‖ (Amcol)
T Ami ‖2 =

nm−1∑

i=0

‖Ami ‖2
2.

Now let Am be column-orthogonal. By using the Frobenius norm we can prove
second inequality (4.13)

nm−1∑

i=0

‖Ami ‖2
2≤

nm−1∑

i=0

‖Ami ‖2
F =‖Amcol‖2

F =rm

because all rm columns of Amcol have unit length resulting in ‖Amcol‖F =
√
rm

for a column-orthogonal core Am. The same argument can be used to show
the result for a row-orthogonal core.

This lemma allows two things. We can estimate the norm of a core based on
the norm of the slices, which will be useful to analyze the results of arithmetic
operations. And we can estimate the sum of norms of the slices of orthogonal
cores without investigating these individually.
The following lemma allows us to carry this result over into the concatenation
operation and connect multiple cores.

Lemma 3. Let Am ∈ Rrm−1×nm×rm and Am+1 ∈ Rrm×nm+1×rm+1 be adjacent
cores of A. Then

‖Amcol ⊕ Am+1
col ‖2 ≤ ‖Amcol‖2 · ‖Am+1

col ‖2 (4.14)

and
‖Amrow ⊕ Am+1

row ‖2 ≤ ‖Amrow‖2 · ‖Am+1
row ‖2 (4.15)

as well as
‖Amcol ⊕ Am+1

row ‖2 ≤ ‖Amcol‖2 · ‖Am+1
row ‖2 (4.16)

hold.
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Proof. Again we will only show this for (4.14), as (4.15) follows by the same
argument. We note that (4.16) holds by the sub-multiplicativity of the spectral
norm. We have

‖Amcol ⊕ Am+1
col ‖2 =

∥∥∥∥∥

nm+1−1∑

j=0

nm−1∑

i=0

Am+1
j

T
Ami

TAmi A
m+1
j

∥∥∥∥∥

1/2

2

=

∥∥∥∥∥

nm+1−1∑

j=0

Am+1
j

T
(nm−1∑

i=0

Ami
TAmi

)
Am+1
j

∥∥∥∥∥

1/2

2

(4.17)

and use
∥∥∥∥∥
nm−1∑

i=0

Amj
TAmj

∥∥∥∥∥
2

= ‖Amcol‖2
2

to replace this inner sum with ‖Amcol‖2
2 · I which will not decrease the norm in

(4.17) because we replace all singular values with the maximal singular value
of Amcol. From there on, we write

‖Amcol ⊕ Am+1
col ‖2 ≤ ‖Amcol‖2 ·

∥∥∥∥∥

nm+1−1∑

j=0

Am+1
j

T
Am+1
j

∥∥∥∥∥

1/2

2

= ‖Amcol‖2 · ‖Am+1
col ‖2,

which finishes the proof.

We especially note that the concatenation of two orthogonal cores is still
orthogonal.

4.2.1 Approximation of full tensors

The existence of a TT-representation of a tensor A ∈ RN relies on a low-rank
representation of all d− 1 (non-trivial) unfolding matrices with ranks rm � N
to eliminate the exponential complexity.
We are interested in the TT-format as data storage for numerical approxima-
tions with an inherent discretization error that cannot be avoided. Therefore
we accept to replace each unfolding matrix Â(1,m),(m+1,d) by an approximate

matrix B̂(1,m),(m+1,d) with smaller rank to replace the tensor A with an approx-
imation B in a TT-representation with lower ranks. This procedure was first
introduced in [54] and is repeated here for completeness.
We measure the difference by

‖A−B‖F :=

(
n∑

i=0

(Ai −Bi)
2

) 1
2

, (4.18)
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the Frobenius norm of the difference of A and B. This norm is invariant under
the permutation of indices or different unfolding matrices of A. It is also not
an induced matrix norm, which is preferable in this setting of data storage.
In a practical implementation our goal is to find a tensor B with minimal
ranks rBm that fulfills ‖A−B‖F < ε · ‖A‖F (with a prescribed accuracy ε > 0)
by replacing the exact low-rank representation of unfolding matrices with an
approximation. It is well known that dropping the smallest singular values
(and ignoring the associated singular vectors) will give an optimal approxi-
mation with respect to the Frobenius norm. We alter Algorithm 1 by replac-
ing the exact low-rank-representation in every iteration by low-rank-factors
obtained via a truncated singular value decomposition (SVD) with accu-
racy τm to be determined later. We will refer to the matrices obtained in
this step by Â(m,m),(m+1,d) = UmSmV

T
m + Em with ‖Em‖F ≤ τm and will use

A
(m+1,d)
col = SmV

T
m for the next step (after a suitable rearrangement). The

obtained core Bm
col = Um is column-orthogonal by construction. By this we

obtain an approximation B ∈ RN with cores B1 to Bd.
In order to investigate the error ‖A− B‖F made during this process we need
to inspect the obtained cores and error-matrices more closely. We will write
concatenations without any column/row-indicators as we associate the unfold-
ing matrix resulting from the concatenation with the d-dimensional tensors
they represent. We can simply reshape the obtained matrices into tensors in
RN . This allows for the reduction of notation and straight forward arithmetic
of unfolding matrices. We start with the tensor A and the SVD of the first
unfolding with

A = E1 + U1S1V
T

1

= E1 +B1 ⊕ A2,d

We then rearrange A2,d and calculate the truncated SVD of that matrix, re-
sulting in

A = E1 +B1 ⊕ (E2 + U2S2V
T

2 )

. . .

= E1 +B1 ⊕ (E2 +B2 ⊕ (. . .⊕ (Ed−1 +Bd−1 ⊕Bd)) (4.19)

when we iterate the steps. We reorder the expression (4.19) and see one term
to be given by B1⊕· · ·⊕Bd, which is associated with the tensor B. We subtract
this and take the squared Frobenius norm on both sides of the equation. This
gives

‖A−B‖2
F = ‖E1 +B1 ⊕ (E2 +B2 ⊕ (. . .⊕ Ed−1))‖2

F . (4.20)
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We have ET
1 · B1 = 0 because the columns of E1 and B1

col are orthogonal by
construction. This allows a split of the squared Frobenius norm in (4.20) into
two separate norms with equality. We then have

‖A−B‖2
F = ‖E1‖2

F + ‖B1 ⊕ (E2 +B2 ⊕ (. . .⊕ Ed−1)‖2
F

= ‖E1‖2
F + ‖B1 ⊕ E2‖2

F + ‖B1 ⊕B2 ⊕ (. . .⊕ Ed−1)‖2
F

= [|E1‖2
F + ‖E2‖2

F + ‖B2 ⊕ (. . .⊕ Ed−1)‖2
F

as we use the invariance of the Frobenius norm under orthogonal matrices
to elimnate B1. We then repeat the argument of orthogonality to split the
Frobenius norm and eliminate the orthogonal cores Bm, as they are orthogonal
and have no influence on the Frobenius norm. This finally gives

‖A−B‖2
F = ‖E1‖2

F + ‖E2‖2
F + · · ·+ ‖Ed−1‖2

F .

We then use the assumption ‖Em‖F ≤ τm to write

‖A−B‖2
F ≤

d−1∑

m=1

τ 2
m.

If we assume τ := τ1 = · · · = τd−1 we find one limit τ for all SVDs with

‖A−B‖F ≤ ε‖A‖F ≤
√
d− 1 · τ

and the later implies

τ ≤ ε‖A‖F√
d− 1

(4.21)

as upper limit ‖Em‖F ≤ τ for all m ∈ {1, . . . , d− 1}. We modify Algorithm 1
to reflect this change in obtaining the low-rank representations and summarize
this in Algorithm 2.

This algorithm was first introduced in [55] and still requires the assembly
and handling of the complete tensor, which is infeasible in many applications.
An improvement, namely the Tensor-train renormalization-cross (TT-RC) al-
gorithm, was devised in [64] where an initial TT-tensor (often chosen as trivial)
is iteratively improved by replacing two adjacent cores in every iteration until
convergence is reached. We use this algorithm in all numerical simulations to
be shown in section 4.5.

4.2.2 Orthogonalization of cores

To obtain orthogonal representations of a tensor we need to iteratively orthog-
onalize core after core. This can be done by replacing a pair of adjacent cores
(Am and Am+1) by two new cores (Bm and Bm+1) with one being orthogonal.
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Algorithm 2 Approximate TT-representation B of a full tensor A with error
prescription

Input: Full tensor A ∈ RN accuracy ε ∈ R≥0

Output: Cores B1 to Bd and ranks rB1 to rBd−1

Define temporary tensor B = A ∈ RN

Compute τ = ε‖A‖F√
d−1

for m = 1 to d− 1 do

Define size of multi-index NR =
d∏

k=m+1

nk

Find unfolding matrix B̂ ∈ RrBm−1·nm×NR of B
Compute SVD of B̂ = USV T + E with ‖E‖F ≤ τ and obtain rank rBm
Save blocks of U as slices of Bm

col

Define temporary tensor B = SV T ∈ RrBm×nm+1×...×nd

end for
Save columns of B as Bd

row

This can be done by a QR-decomposition for example. Given two adjacent
cores Am ∈ Rrm−1×nm×rm and Am+1 ∈ Rrm×nm+1×rm+1 , we can express all con-
tained information by Amcol ⊕ Am+1

row ∈ Rrm−1nm×nm+1rm+1 .
Given a QR-decomposition Amcol = QR, we can write

Amcol ⊕ Am+1
row = Q⊕RAm+1

row (4.22)

to express the same information. This results in

Bm
i := Ami ·R−1 and Bm+1

i := R · Am+1
i (4.23)

with a column-orthogonal core Bm. Doing this with every pair of cores of a
tensor from left to right gives a column-orthogonal representation.
If we calculate Am+1

row = L ·Q with QQT = I, we can similarly replace Am and
Am+1 with

Bm
i = Ami · L and Bm+1

i = L−1 · Am+1
i (4.24)

to obtain a row-orthogonal representation if iterated from right to left. The
complexity of a complete orthogonalization is given by O(R3

AnΣ).
An orthogonal representation can also be achieved via other decompositions
that use orthogonal factors like the SVD as mentioned in section 4.2.1. We
again mention that every tensor in the TT-format can be represented by using
d − 1 orthogonal cores and one non-orthogonal core seperating the column-
orthogonal cores from the row-orthogonal cores. The presented procedure is a
constructive way to obtain the desired orthogonality.
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4.2.3 Addition of tensors

The addition of two tensors A,B ∈ RN in TT-format yields a tensor C ∈ RN

with elements

Ci = Ai +Bi =
d∏

m=1

Amim +
d∏

m=1

Bm
im .

The tensor C allows a TT-format with block-diagonal slices

Cm
im =

[
Amim 0

0 Bm
im

]
, m ∈ {2, . . . , d− 1},

and

C1
i1

=
[
A1
i1

B1
i1

]
, Cd

id
=

[
Adid
Bd
id

]
.

The ranks of C are rCm = rAm + rBm for all m ∈ {1, · · · , d − 1}. This addition
requires no arithmetic operations but O (R2

CnΣ) assignments in a direct im-
plementation. We use RC ≥ rCm as upper bound for all ranks rCm of C and nΣ

as defined in (4.11).
If A and B are represented in a column-orthogonal TT-format, we can estimate
the norm of the column representation of the cores of C by

‖C1
col‖2

2 ≤
n1−1∑

i=0

‖
[
A1
i B1

i

]
‖2

2

=

n1−1∑

i=0

‖(A1
i )
TA1

i + (B1
i )
TB1

i ‖2

≤
n1−1∑

i=0

‖A1
i
T
A1
i ‖2 +

n1−1∑

i=0

‖B1
i
T
B1
i ‖2 ≤ rA1 + rB1 (4.25)

for C1 (we used (4.12), the triangle inequality and (4.13) respectively) and

‖Cm
col‖2

2 =

∥∥∥∥∥∥∥∥




nm−1∑
i=0

Ami
TAmi 0

0
n−1∑
j=0

Bm
i
TBm

i




∥∥∥∥∥∥∥∥
2

=

∥∥∥∥
[
I 0
0 I

]∥∥∥∥
2

= 1

for every other column-orthogonal core (m ∈ {2, . . . , d− 1}).
The cores Ad and Bd are not orthogonal and we cannot say anything about Cd.
We will see in section 4.3.1 that an estimate is not required for the rightmost
core.
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4.2.4 Hadamard product of tensors

The elementwise (or Hadamard) product of two tensors A,B ∈ RN in TT-
format, denoted by C = A � B ∈ RN , exploits properties of the matrix Kro-
necker product, denoted by ⊗. For scalars, there holds

Ci = Ai ·Bi = Ai ⊗Bi.

The mixed-product property of the Kronecker product states that

(
d∏

m=1

Amim

)
⊗
(

d∏

m=1

Bm
im

)
=

d∏

m=1

(
Amim ⊗Bm

im

)

which allows us to reorder matrix products and Kronecker products. We use
this and the TT-format (4.3) for A and B and obtain

Ci =

Ai︷ ︸︸ ︷
(A1

i1
· · ·Adid)⊗

Bi︷ ︸︸ ︷
(B1

i1
· · ·Bd

id
)

= (A1
i1
⊗B1

i1
) · · · (Adid ⊗B

d
id

)

=
d∏

m=1

(Amim ⊗Bm
im)︸ ︷︷ ︸

=:Cmim

=
d∏

m=1

Cm
im ,

i. e., we have C in TT-format with ranks rCm = rAm·rBm and slices Cm
i = Ami ⊗Bm

i .
This procedure requires nΣ (4.11) of these Kronecker products, each requiring
at most R2

A ·R2
B multiplications and assignments, leading to a total complexity

of O(R2
CnΣ).

If A and B are given in a column-orthogonal representation, we estimate

‖Cm
col‖2

2 ≤
nm−1∑

i=0

‖Ami ⊗Bm
i ‖2

2

=
nm−1∑

i=0

‖Ami ‖2
2 · ‖Bm

i ‖2
2 ≤ min(rAm, r

B
m) (4.26)

for every core Cm but m = d. The last estimation follows from using either
‖Ami ‖2

2 ≤ 1 or ‖Bm
i ‖2

2 ≤ 1 in each summand.
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4.2.5 Convolution of tensors

The convolution of two tensors φ, ψ ∈ RN in TT-Format with cores φm and
ψm is denoted by ω = φ ∗ ψ ∈ R2n1×...×2nd . With zero-padded tensors φ̃, ψ̃ ∈
R2n1×...×2nd in TT-format, ω is given as

ωi =
i∑

j=0

φ̃jψ̃i−j

=
i∑

j=0

d∏

m=1

φ̃mjm ⊗ ψ̃mim−jm

=
d∏

m=1

im∑

jm=0

φ̃mjm ⊗ ψ̃mim−jm .

This shows ω allows for a representation in the TT-format with the im-th slice
of ωm given by

ωmim :=
im∑

jm=0

φ̃mjm ⊗ ψ̃mim−jm =:
(
φ̃m ∗ ψ̃m

)
im
. (4.27)

The last definition in (4.27) denotes the convolution of two cores φ̃ and ψ̃.
The zero-padding can easily be achieved by appending nm zero-matrices of
appropriate sizes to the m-th core. This will guarantee a linear convolution
result (see Remark 3).

The ranks of ω are given by rωm = rφm · rψm. We can estimate ‖ωmcol‖2
2, if φ̃ and

ψ̃ are given in a column-orthogonal representation by finding

‖ωmcol‖2
2 ≤

2nm−1∑

i=0

‖
i∑

j=0

φ̃mj ⊗ ψ̃mi−j‖2
2

≤
2nm−1∑

i=0

i∑

j=0

‖φ̃mj ‖2
2 · ‖ψ̃mi−j‖2

2

≤
nm−1∑

i=0

‖ψmi ‖2
2 ·

nm−1∑

j=0

‖φmj ‖2
2

≤ rψm · rφm. (4.28)

The computation of the convolution is of complexity O(R2
Cn

2
m) for the m-th

core and is quadratic in the number of cells. We can decrease this complexity
by using the technique of fast Fourier transform described in section 3.4.

Fourier transform in TT-format

We recall via (3.25) the necessary steps for a multivariate convolution via
Fourier transform. The Hadamard product in TT-format is already defined in
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section 4.2.4 so we turn our attention to the Fourier transform Φ = F(φ̃) of φ̃
given in the TT-format.
Writing (3.26) with φ̃ in TT-format, we get

Φj =
2n−1∑

s=0

φ̃1
s1
· · · φ̃dsd · e

iπs1j1/n1 · · · eiπsdjd/nd

=
2n−1∑

s=0

(φ̃1
s1
eiπs1j1/n1) · · · (φ̃dsde

iπsdjd/nd)

=
d∏

m=1

2nm−1∑

s=0

φ̃ms e
iπsmjm/nm

︸ ︷︷ ︸
:=Φmjm

which is an expression for Φ in the TT-format.
We can interpret this expression as a Fourier transform along every dimension
and define the core-wise Fourier transform by

Fm : Rrm×2nm×rm+1 → Crm×2nm×rm+1 , φ̃m 7→ Fm(φ̃m) with (4.29)

(Fm(φ̃m))j :=
2nm−1∑

s=0

φ̃ms · eiπsjm/nm .

We note, that Fm consists of a Fourier transformation along the second (rank
independent) dimension of the core, which can easily be implemented by a
series of rm−1 · rm one-dimensional fast Fourier transformations of length 2nm,
resulting in a complexity of O(R2

φnm log(nm)) for the m-th core. We also want
to point out the similarity to Fm from (3.29).

From there, we can easily define a core ωm ∈ Rrm×2nm×rm+1 of ω = φ̃ ∗ ψ̃ by

ω̃m = (Fm)−1 (Fm(φ̃m)�Fm(ψ̃m)) (4.30)

implying every core of ω can be computed independently of any other.
It also implies that a convolution with respect to only a subset of dimensions
can be done by evaluating (4.30) with respect to that subset of cores, while
calculating the Hadamard-product of the remaining cores.

4.2.6 Add a dimension to a tensor

It regularly happens in population balance equations that a kernel function
κ(u,v) is independent of some internal variable vm that cannot be omitted
from the consideration of the population of particles. The approximation of
this function in TT-format via the TT-RC exploits a temporary omission.
Given an index set I :=M\{m} = {1, . . . ,m− 1,m+ 1, . . . , d} and a tensor
A ∈ RNI in TT-format with d − 1 cores, we now identify an entry by the
multi-index

iI :=
(
i1, . . . , im−1, im+1, . . . , id

)
.
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Given the augmented index set M = I ∪ {m} = {1, . . . , d}, our goal is to
obtain a tensor C ∈ RNM in TT-format that satisfies

Ci1,...,im−1,s,im+1,...,id = Ai1,...,im−1,im+1,...,id ∀s ∈ {1, . . . , nm}. (4.31)

The following lemma gives an easy representation for a possible TT-structure
of C that does not require any arithmetic operations.

Lemma 4. Given the index set I = {1, . . . ,m− 1,m+ 1, . . . , d} and a tensor
A ∈ RNI in TT-format with ranks rA0 , . . . , r

A
m−1, r

A
m+1, . . . , r

A
d , the tensor C ∈

RNM with M = {1, . . . , d} and slices

Ck
i =

{
Aki , if k 6= m,

IrAm,rAm , if k = m

with rAm := rAm−1 and identity matrix IrAm,rAm ∈ RrAm×rAm satisfies (4.31).

Proof. The proposition follows from

CiM =
m−1∏

k=1

Akik · IrAm,rAm ·
d∏

k=m+1

Akik = AiI .

We note that the inserted core is not column-orthogonal because the columns
of Cm

col do not have unit-length. Orthogonality can be re-established by scaling
the core with a factor of 1√

nm
. We balance this by multiplying the last, not

orthogonal core, Cd with
√
nm.

If m = d (i.e. the core is appended at the rightmost position), a single or-
thogonalization is necessary. We note that this step is very cheap, as Ad−1

col ∈
Rrd−1nd−1×1 has only a single column.

4.2.7 Summation of tensor elements

The summation of tensor elements will be used for a contraction with respect
to certain dimensions. Here we focus on the contraction with respect to a
single dimension m. Given a tensor A ∈ RN in TT-format, we again define the
index set I := {1, . . . ,m−1,m+1, . . . , d} and a tensor S ∈ RNI by summation
along the dimension specified by m,

SiI :=
nm−1∑

j=0

Ai1...,im−1,j,im+1,...,id .

We get a tensor with one dimension less in a process similar to a row/column
summation of a matrix. In TT-format we can write

SiI =
nm−1∑

j=0

A1
i1
· · ·Amj · · ·Adid =

(m−1∏

q=1

Aqiq
)
·
(nm−1∑

j=0

Amj

)
·
( d∏

q=m+1

Aqiq

)
.
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The middle summation extends over all slices of the m-th core and yields a sin-
gle matrix which can be multiplied with each slice of the preceding (or succeed-
ing) core to produce S in TT-format. This procedure is of complexityO(nmR

2
S)

for the inner summation of the slices of the m-th core and O(nm−1R
3
S) or

O(nm+1R
3
S) for the matrix multiplication with the preceding or succeeding

core. We note that the orthogonality of the neighboring core is generally not
upheld but can be re-established by the procedure from subsection 4.2.2. This
is cheap because RA does not increase in this summation and might even de-
crease.
This procedure can be extended to multiple dimensions by summation of all
slices of every core individually before multiplying the resulting matrices to a
neighboring core. An application of this procedure to all dimensions yields a
sequence of matrix-matrix multiplications.
The complete summation of all tensor entries can be achieved with an arith-
metic complexity of O(R2

SnΣ) for the inner summations of slices and O(R2
Sd)

for the final matrix-vector multiplications.

Frobenius norm of a tensor

The calculation of the Frobenius norm ‖A‖2
F =

n−1∑
i=0

A2
i of a tensor A ∈ RN is

closely related to the summation of elements and can naively be computed by a
complete summation of a Hadamard product of A with itself. But this requires
the storage of a large intermediate result and an increase of the complexity of
the summation due to high ranks.
A more efficient approach relies on Ai

2 = ATi ·Ai via the transpose of a scalar
as

‖A‖2
F =

n−1∑

i=0

ATi · Ai

=
n−1∑

i=0

Adid
T · · ·A1

i1
T · F0 · A1

i1 · · ·Adid , (4.32)

where we set F0 := 1. We sort the N summands of (4.32) and group them by

(i2, . . . , id) and factor
2∏

m=d

Amim
T to the left and

d∏
m=2

Amim to the right. This leaves

F1 :=
n1−1∑
i1=0

A1
i1

T
F0A

1
i1
∈ Rr1×r1 , that all N/n1 summands have in common. We

iterate this process of grouping the latter indices and define

Fm =
nm−1∑

im=1

Amim
TFm−1A

m
im ∈ Rrm×rm

recursively. We then have ‖A‖F =
√
Fd ∈ R1×1 to compute the Frobenius

norm with a complexity of O(nΣR
3
A).
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If A is given in a row-orthogonal representation we can skip the calculations
of F0 to Fd−1 because they are identities by design. Only the calculation of
Fd is necessary which is of complexity O(ndr

A
d−1). The same argument can be

applied to a column-orthogonal tensor to only calculate F1.

4.2.8 Splitting of a tensor

It will be beneficial to define a split of a tensor train A into two separate TT-
structures G and K of lower dimensions.
We choose a split index d̃ < d and define index sets I := {1, . . . , d̃} and

H := {d̃+1, · · · , d} of dimensions associated with the first and the second set,
respectively.
We use r̂ := rd̃ to refer to the rank of A where the split takes place. We define

tensors G ∈ RNI×r̂ and K ∈ Rr̂×NH in TT-format using cores

Gm := Am, m ∈ I, and Glast ∈ Rr̂×r̂×1, (4.33)

Kfirst ∈ R1×r̂×r̂, and Km := Am, m ∈ H, (4.34)

respectively, where Kfirst and Glast are essentially identity matrices, i.e. defined
by Kfirst

1,i,j = Glast
i,j,1 = δij.

Lemma 5. Let A ∈ Rn1×···×nd be a tensor in TT-format, and let tensors G,K
in TT-format be defined as in (4.33), (4.34) for a split index d̃. Then there
holds

Ai =
r̂∑

γ=1

GiI ,γ ·Kγ,iH . (4.35)

Proof. Let eγ ∈ Rr̂ denote the γ-th unit vector. Starting from the right hand
side of (4.35), there holds

r̂∑

γ=1

GiI ,γ ·Kγ,iH =
r̂∑

γ=1

(( d̃∏

m=1

Amim

)
· eγ
)(
eTγ ·

( d∏

m=d̃+1

Amim

))
.

This summation can be seen as a scalar product of two vectors

GiI :=
d̃∏

m=1

Amim ∈ R1×r̂, KiH :=
d∏

m=d̃+1

Amim ∈ Rr̂×1,

leading to

r̂∑

γ=1

GiI ,γ ·Kγ,iH = GiIKiH =
d̃∏

m=1

Amim

d∏

m=d̃+1

Amim =
d∏

m=1

Amim = Ai

which finishes the proof.
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This allows the split of a tensor A in TT-format into two separate TT-
tensors of smaller dimensions with no arithmetic operations.
If A is given in a column-orthogonal representation, then G and K directly
inherit the orthogonality. The added core Glast is not relevant for the column-
orthogonality of G and Kfirst is column-orthogonal by definition.

4.2.9 Permutation of dimensions

The permutation of dimensions of a tensor A ∈ RN , comparable to the trans-
position of a matrix, is easily done in a full tensor format but more complicated
in TT-format and will be discussed next.
The permutation of dimensions in TT-format can be done by iteratively inter-
changing two adjacent indices (similar to bubblesort) using a modification of
Algorithm 2 to compute a TT-approximation of a full tensor.
Here we consider the exchange of a single index pair (im, im+1) of the tensor
A with cores Am to find cores Bm of B such that B...im+1,im,... = A...im,im+1,....
It turns out that we can set Bk = Ak for all k /∈ {m,m+ 1} and only need to
“work” to find Bm and Bm+1 which is described next.
All information from Am and Am+1 is contained in C := Amcol⊕Am+1

row . The com-
putation of the tensor element A...im,im+1,... requires the matrix-matrix product
AmimA

m+1
im+1

which is found in the im’th block row and im+1’st block column of the
matrix C. A tensor B with B...im+1,im,... = A...im,im+1,... should therefore have
cores Bm, Bm+1 such that its slices satisfy Bm

im+1
Bm+1
im

= AmimA
m+1
im+1

, which leads

to the problem of finding slices Bm
j , B

m+1
j such that

Bm
col ⊕Bm+1

row
!

=



Am1 A

m+1
1 · · · AmnmA

m+1
1

...
. . .

...
Am1 A

m+1
nm+1

. . . AmnmA
m+1
nm+1

.




︸ ︷︷ ︸
=:D

The slices of Bm and Bm+1 result from a low-rank representation of the matrix
D which can be computed (in an expensive way) via a singular value decom-
position. More efficient ways could be pursued based upon adaptive cross
approximation or random sampling approaches.
We note that the rank rBm of B can change in this process and an error is made
during this permutation. The same error bound τm from (4.21) can be used
here as the argument is identical.

4.3 Truncation of ranks

We have seen in section 4.2 that the low computational complexity and stor-
age requirements of a tensor A ∈ RN in the TT-format rely on the inner ranks
RA ≥ rAm to be small. Similar to the initial projection from subsection 4.2.1 we
can reduce the ranks by replacing cores by approximate factors with a lower
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rank. The basic algorithm follows from an argument similar to the one used
in subsection 4.2.2 and was first introduced in [54]. We replace neighboring
cores Am and Am+1 by new cores Bm and Bm+1 with a possibly lower rank
rBm ≤ rAm.
Let A have cores A1 to Ad. We compute the truncated singular value decom-
position of A1

col = USV T + E1 and set the new core B1
col = U and multiply

SV T ∈ RrB1 ×rA1 to each slice of A2 to eliminate rA1 and replace it by a (possibly)
smaller rB1 . Doing this for m = 1, . . . , d − 1 gives B in a column-orthogonal
representation (as the new cores Bm are column-orthogonal by construction)
with lower ranks rBm and reduced storage complexity. We can similarly iterate
this process from right to left by finding the row-wise expression for the core
in V T and multiplying US to the preceding core.
This rank-reduction comes with a loss of accuracy as the errors (represented
by Em for each core) accumulate in a passage from left to right. Doing this,
we obtain m− 1 error-tensors Tm of the form

Tm = B1
col ⊕ . . .⊕Bm−1

col ⊕ Em ⊕ Am+1
row ⊕ . . . Adrow for m ∈ {1, . . . d− 1}.

(4.36)

If we assume A to be row-orthogonal (i.e., A2 to Ad are row-orthogonal) we
can compute

‖A−B‖2
F = ‖

d−1∑

m=1

Tm‖2
F =

d−1∑

m=1

‖Tm‖2
F (4.37)

=
d−1∑

m=1

‖Em‖2
F =

d−1∑

m=1

τ 2
m (4.38)

for the total error with the same argument based on orthogonality (splitting
the summation in (4.37)) and unitary invariance already used in section 4.2.1.
The equality between (4.37) and (4.38) requires the cores A2 to Ad to be row-
orthogonal. With this we can prescribe the same accuracy τ ≤ ε√

d−1
‖A‖F as

in (4.21) for the iterated decompositions. We summarize this in Algorithm
3. This procedure is based on the assumption, that A is represented row-
orthogonal. The orthogonalization via the procedure presented in subsection
4.2.2 of d − 1 cores is of complexity O(R3

AnΣ) which can be very high if A is
the result of an elementwise multiplication or convolution and RA is large.
A different approach to compute a truncation was presented in [60], where
completely new cores are formed by using the TT-RC algorithm together with
random sampling or cross-approximation. We, however, propose a different
truncation-strategy based on singular value decompositions.

4.3.1 Improved truncation by estimation of core norms

We improve the above mentioned algorithm in order to eliminate the neces-
sity of a row-orthogonal representation of A. The algorithm is based on the

56



Algorithm 3 Truncation of TT-ranks with errorbound ε from left to right

Input: TT-representation of A ∈ RN with row-orthogonal cores A2 to Ad and
error bound ε > 0

Output: Cores B1 to Bd with ranks rBm ≤ rAm with ‖A−B‖F ≤ ε‖A‖F
Calculate τ = ε√

d−1
· ‖A‖F

for m = 1 to d− 1 do
Calculate truncated SVD of Amcol = USV T + Em with ‖Em‖F < τ
Set Bm

col = U
Set Am+1

row = SV T · Am+1
row

end for
Set B1 = A1

following theorem.

Theorem 2. Let A ∈ RN be a tensor with a TT-representation with cores Am

with ‖Amcol‖2 < ξm known for m ∈ {1, . . . , d−1}. Then a sequence of truncated
singular value decompositions from right to left with upper limits on the errors

‖Em‖F ≤
ε

√
d− 1 ·

m∏
k=1

ξm

· ‖A‖F

gives a tensor B with ‖A−B‖F ≤ ε‖A‖F
Proof. The proof is very much based on the reasoning behind Algorithm 3.
We again look at the overall error and find

‖A−B‖2
F = ‖

d∑

m=2

Tm‖2
F (4.39)

with error-tensors

Tm = A1
col ⊕ . . .⊕ Am−1

col ⊕ Em ⊕Bm+1
row ⊕ . . .⊕Bd

row,

where Em is the truncation error made in the m-th singular value decomposi-
tion for m ∈ {2, . . . , d}.
The errors are orthogonal by construction (all Em are orthogonal to Bm

row) and
allow for a separation of the summation in (4.39) into

‖A−B‖2
F =

d∑

m=2

‖Tm‖2
F .

We then use the unitary invariance of the Frobenius norm and write

‖Tm‖F = ‖A1
col ⊕ . . .⊕ Am−1

col ⊕ Em ⊕Bm+1
row ⊕ . . . Bd

row‖F
≤ ‖A1

col ⊕ . . .⊕ Am−1
col ‖2 · ‖Em‖F · ‖Bm+1

row ⊕ . . .⊕Bd
row‖2
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and see the error being scaled by two large matrices. The second line is an
upper limit, as A1

col ⊕ . . .⊕ Am−1
col is generally not orthogonal.

We use Lemma 3 to further separate the matrices on the left and right hand
side of ‖Em‖F . We then obtain

‖Tm‖F ≤
(

m∏

k=1

ξk

)
· ‖Em‖F · 1.

Using this estimation of ‖Tm‖F in (4.21) gives the desired upper bound for
‖Em‖F .

This theorem allows us to skip the costly computation of large orthogonal
cores in exchange for tighter bounds and an earlier and more expensive cal-
culation of ‖A‖F . We will use the estimates derived for addition, Hadamard-
product and convolution for this procedure. These are based on extremal cases
to attain the maximum norm of a core and will usually maximize only one sin-
gular value (instead of all being maximized as needed for equality in Lemma
3).
To attain (nearly) optimal ranks we will follow up with an additional trun-
cation from left to right that uses the orthogonality of all cores to obtain a
tensor C. To still guarantee ‖A− C‖F ≤ ε‖A‖F we allow a half step for each
of the two truncation-sweeps, allowing only half the maximal error in each
truncation. This gives the total error bound for the first truncation with

τm ≤ ε · ‖A‖F
2 ·
√
d− 1 ·

m∏
k=1

ξk

.

4.4 Application to population balance equa-

tions

This section is devoted to the application of the storage technique presented
in this chapter to the problem setting of PBEs and aggregation in particular.
The TT-storage was already applied to PBEs in [14] where it was used in a
black-box approach. To go into more detail here we use the discretization
introduced in section 3.1 with a uniform tensor grid and piecewise constant
functions. The simplifications of the integrals introduced in 3.3 are expanded
upon as the efficient storage format allows for further improvements.

4.4.1 Kernel separability

In section 3.2 we introduced the requirement of kernel separability by assuming

κ(u,v) =
k∑

ν=1

αν(u) · βν(v)
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which allowed for the subsequent split of the source and sink terms into (3.9)
and (3.10).
We focus here on the discrete case

κi,j =
k∑

ν=1

αi,ν · βj,ν

with kernel-factors α and β. A TT-representation of κ ∈ RN×N already fulfills
the assumption of separability. The kernel factors α, β can be obtained by the
procedure introduced in subsection 4.2.8 by splitting after the d-th core. As
these are not k independent tensors in RN we use ν as sub-index (in opposition
to the super-index used in (3.4) to denote k different functions).
The resulting tensors α ∈ RN×k and β ∈ Rk×N differ in their ordering of cores.
The artificial core (associated with the variable ν) is the last core of α while
it is the first core of β. We permute the dimension of β to also have ν as the
last index and the associated core on the right. This permutation allows us
to use arithmetic operations like addition and elementwise multiplication in a
straight forward way.
We again note that this permutation is relatively expensive as it involves low-

rank factorizations of multiple (large) matrices D ∈ Rrβm−1nm+1×rβm+1nm , but
we only need to do this permutation once because we assume the kernel to
be time-independent and allow a one-time high complexity for optimal ranks.
The assumption of a good TT-approximation is stronger than just separability
as we assume separability at every dimension of the tensor with 2d dimensions.

4.4.2 Evaluation of the source term

We begin this subsection by recalling the discrete source term given by

Qsource
pl (gi+1) =

V

2

k∑

ν=1

i∑

j=0

αk,νfk · βi−k,νfi−k.

We define tensors φ, ψ ∈ RN×k with entries

φi,ν = αi,ν · fi and ψi,ν = βi,ν · fi

and (in order to calculate them via the procedure from section 4.2.4) we have
to add a trivial core to f (see subsection 4.2.6) in order to have the same
number of cores with the same number of slices in f , α and β.
We then write

Qsource
pl (gi+1) =

V

2

k∑

ν=1

i∑

j=0

φk,ν · ψi−k,ν
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and calculate the convolution of all summands at the same time. This is
possible by the addition of the artificial core instead of copying the cores to
separate tensors. We only calculate the convolution of these cores once in every
time step.
We denote the resulting tensor by Q ∈ RN with Qi = Qsource

pl (gi).

Truncation of convolution results

The tensor Q ∈ RN typically has the largest internal rank RQ of every interme-
diate result as the necessary calculations (Hadamard product and convolution)
in TT-format will multiply the ranks every time and we obtain an upper bound
RQ ≤ RαRβR

2
f . This makes the truncation of a convolution result an impor-

tant and costly procedure. The improvement introduced in section 4.3.1 allows
to skip the orthogonalization of high-rank cores.
The calculation of ‖Q‖F is still of high complexity and will often dominate
the computational time. If we have a lower bound M ≤ ‖Q‖F we are able to
truncate some ranks in a first pass before calculating the Frobenius norm.
A possible estimation for ‖Q‖F in the univariate case of d = 1 is given in the
following Lemma.

Lemma 6. Let φ̃, ψ̃ ∈ R2n×k be zero-padded extensions of φ, ψ ∈ Rn×k, the
low-rank factors of a symmetric matrix based on the eigenvalue decomposition,
made from column vectors φν , ψν ∈ R2n for ν = 1, . . . , k. We define the

(unshifted) convolution result ω ∈ R2n as ωi =
k∑
ν=1

ωνi with vector convolutions

ωνi :=
i∑

j=0

φ̃νj · ψ̃νi−j ∈ R with i ∈ {0, . . . , 2n− 1} and ν ∈ {1, . . . , k}. Then

‖ω‖2
F ≥

k∑

ν=1

‖φν‖2
2 · ‖ψν‖2

2 (4.40)

holds.

Proof. We begin this proof by separating the summations into individual kernel
factors ν. If ‖ων‖2

F ≥ ‖φν‖2
2 · ‖ψν‖2

2 holds then (4.40) holds as well by the
triangle inequality. As ν can be treated as a constant, we drop it to reduce
notation.
We have the convolution result

ω =




φ0ψ0

φ0ψ1 + φ1ψ0

φ0ψ2 + φ1ψ1 + φ0ψ2

. . .
φn−1ψn−1



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and express its squared norm by

‖ω‖2
F = φ2

0ψ
2
0

+ φ2
0ψ

2
1 + 2φ0φ1ψ0ψ1 + φ2

1ψ
2
0

+ φ2
0ψ

2
2 + 2φ0φ2ψ0ψ2 + 2φ0φ1ψ1ψ2 + 2φ0φ2ψ0ψ2 + φ2

1ψ
2
1 + φ2

2ψ
2
0

+ · · ·
+ φ2

n−1ψ
2
n−1

as we expand the squared summations.
Observing the right hand side of the inequality we similarly expand the product
of (squared) norms into

‖φ‖2
2‖ψ‖2

2 = φ2
0ψ

2
0

+ φ2
0ψ

2
1 + φ2

1ψ
2
0

+ · · ·
+ φ2

n−1ψ
2
n−1.

Subtracting these expressions and dividing by 2 leaves only the mixed terms
of the expansion and yields

φ0φ1ψ0ψ1 + φ0φ2ψ0ψ2 + φ0φ1ψ1ψ2 + · · · ≥ 0 (4.41)

to be shown. We will prove this by rewriting the left hand side of (4.41) as
bilinear form with a positive semi-definite matrix.
All terms φiφkψjψl in (4.41) obey i+ l = k+j ⇔ k− i = l−j by the definition
of ω as a convolution. We then can group them by gathering all terms with a
constant k − i together, this gives (4.41) as

φ0φ1ψ0ψ1+φ0φ1ψ1ψ2 + . . .

φ1φ2ψ0ψ1+φ1φ2ψ1ψ2 + . . .
︸ ︷︷ ︸

k−i=1

+
φ0φ2ψ0ψ1+φ0φ2ψ1ψ2 + . . .

φ1φ3ψ0ψ1+φ1φ3ψ1ψ2 + . . .
︸ ︷︷ ︸

k−i=2

+ . . . ≥ 0

The combinations with i = k (and j = l) are not present as they are already
subtracted. With vectors

vφ =




φ0φ1

φ1φ2

. . .
φn−2φn−1

φ0φ2

. . .
φ0φn−1




∈ R
n2+n

2 and vψ =




ψ0ψ1

ψ1ψ2

. . .
ψn−2ψn−1

ψ0ψ2

. . .
ψ0ψn−1




∈ R
n2+n

2
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and a symmetric positive semi-definite block-diagonal matrix

A =



Jn 0

. . .

0 J1


 with Jk =




1 · · · 1
...

. . .
...

1 · · · 1


 ∈ Nk×k.

we now rewrite this as a bilinear form

vTφAvψ ≥ 0 (4.42)

The vectors φ and ψ are given to be scaled eigenvectors which means they are
equal up to a scalar factor λ, i.e. φ = λψ, which in turn gives us vφ = λ2vψ.
We then replace vφ in (4.42) to have

vTψ (λ2A)vψ ≥ 0

with a positive semi-definite matrix λ2A. An expression of this form will always
be non-negative which proves the assumption from (4.41).

We construct α and β as (scaled) singular values of the symmetric kernel
matrix κ. By elementwise multiplication with f , we obtain φ and ψ, the
(scaled) singular vectors of κ � (f · fT ), a symmetric matrix. The singular
vectors and eigenvectors of a symmetric matrix are equal up to a sign, which
can be included in λ and will cancel out in λ2. A simple observation allows us
to carry this result over to the multivariate case.

Corollary 1. Let φ̃, ψ̃ ∈ R2N×k be zero-padded low-rank factors of a symmetric
tensor and define their (unshifted) partial convolution result as

ωνi :=
i∑

j=0

φ̃νj · ψ̃νi−j.

with φ̃ν , ψ̃ν ∈ R2N making up φ̃ and ψ̃. Then

‖ω‖2
F ≥

k∑

ν=1

‖φν‖2
F · ‖ψν‖2

F

holds.

Proof. We note that every multivariate convolution can be expressed as a
univariate convolution with an appropriate zero-padding in the vectorizations
of φ and ψ. This padding has no influence on the Frobenius norm allowing us
to invoke the results of Lemma 6.

Remark 4. This Lemma and corollary allow us to obtain a lower bound of
the Frobenius norm of a full convolution result. The necessary restriction to
the domain of G (see Remark 1) has to follow after a truncation. A restriction
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reduces the Frobenius norm of ω and can invalidate the result for some density
distributions f (e.g. a density distribution dominated by large particles).

A similar result for additions and Hadamard-products can not be obtained.
Two non-zero tensors can result in a zero-tensor in these operations (A and
−A for addition and particular zero-patterns for a Hadamard-product).

With a lower bound M :=

√
k∑
ν=0

‖φν‖2
F‖ψν‖2

F ≤ ‖Q‖F and upper bounds

ξm > ‖Qm
col‖2 we are able to calculate a truncation without orthogonolizing or

calculating a Frobenius norm. This allows us to delay the calculation of the
cores of a convolution right before a truncation to reduce the memory require-
ments of intermediates (which are especially large in case of the convolution).
Similar to the non-optimal truncation in section 4.3.1 we follow this first sweep
with a second one with orthogonal cores (by design) and the correct Frobenius
norm of the tensor, which is cheap to calculate now.
We summarize this in Algorithm 4. We note that we do not use the additional
factor 1

2
introduced in 4.3.1 for two half steps. The error introduced through

the first truncations is guaranteed to be small due to over-estimation and we
allow for the full truncation error for the second sweep of truncations as well.
Algorithm 4 also handles the restriction to cores with nm slices. This is done
by deleting these slices after the first truncation and orthogonalization after-
ward.
This algorithm skips the computation of ‖Q‖F but requires a truncation of
cores with 2nm slices. This trade-off is not always advantageous as the com-
putational time is hard to quantify. Numerical tests and comparisons with the
standard-approach will be shown in subsection 4.5.1.

Moment-preserving projection

We introduced the moment-preserving projection in subsection 3.3.3 and apply
the results of Theorem 1 to the TT-format. The projection W with entries

wi =
d∏

m=1

Wm
im of a tensor Q with entries qi =

d∏
m=1

Qm
im can be written as

wi =
1

2d

1∑

k=0

qi+k

=
1

2d

1∑

k=0

d∏

m=1

Qm
im+km .
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Algorithm 4 Convolution-truncation of tensors φ and ψ

Input: Column-orthogonal TT-representations of φ ∈ RN×k and ψ ∈ RN×k

and truncation accuracy ε > 0
Output: Cores Q1 to Qd of a piecewise linear convolution result

Calculate core norm bounds ξm =
√
rφm · rψm.

Calculate lower bound for Frobenius norm M =

√
k∑
ν=1

‖φν‖F · ‖ψν‖F
// No convolution w.r.t. artificial dimension
Compute ω = φd+1 ⊗ ψd+1

Make ω row-orthogonal by extracting RTrunc

Set LRestr =
k∑
ν=1

ων .

for m = d down to 1 do
Calculate ωm = φm ∗ ψm via FFT with 2nm slices
Weigh result C = ωmrow ·RTrunc

Calculate allowed truncation error τm = εM√
d−1
·
m∏
k=1

ξ−1
k

Determine truncanted SVD with C = USV T + E with ‖E‖F ≤ τm

Set RTrunc = US
Restrict core Qm

col = V T · LRestr to nm slices
Make Qm row-orthogonal by extracting new LRestr

end for
Set Q1 = Q1 ·RTrunc · LRestr

// Q is orthogonal and had a non-optimal truncation
Calculate allowed truncation error τ = ε√

d−1
· ‖Q‖F

Set RTrunc = 1
for m = 1 to d− 1 do

Weigh core C = RTrunc ·Qm
row

Determine truncated SVD with C = USV T + E with ‖E‖F ≤ τ
Set Qm

row = U and RTrunc = SV T

end for
Weigh Qd

row = RTrunc ·Qd
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We use the same reasoning for expansion and factoring from subsection 4.2.7
to write

wi =
1

2d

d∏

m=1

(
1∑

km=0

Qm
im+km

)

Wm
im =

1

2
·
(
Qm
im +Qm

im+1

)

implying an algorithm of averaging two adjacent slices to form the slice of a
projected core. The complexity of this algorithm is O(nΣR

2
Q) and does not

increase the ranks.

4.4.3 Evaluation of the sink term

We begin this section by recalling the discrete sink term given by

Qsink(v)|Ci = V ·
k∑

ν=1

fiβi,ν

n−1∑

j=0

fjαj,ν .

We again use the definitions of φ and ψ to write

Qsink(v)|Ci = V ·
k∑

ν=1

ψi,ν

n−1∑

j=0

φj,ν

= V ·
k∑

ν=1

ψi,ν · Sν .

The inner sum can be calculated by the procedure introduced in subsection
4.2.7 and (formally) gives a tensor S ∈ Rk in the TT-format with a single core
with k slices.
To calculate the multiplication we formally need to re-add d cores to S. Their
slices are given by I1,1 = 1 as RS = 1. We then calculate

Qsink
i,ν = ψi,ν · Si,ν .

by scaling every slice of ψ with the corresponding scalar in S. The first d cores
are scaled by one and need no computation at all. The formal extension of S
is not necessary.
This gives the complete sink term (already piecewise constant) after a sum-
mation over the last core of Qsink.

4.5 Numerical results

We again are going to carry out three numerical simulations to show the merits
of this approach. In subsection 4.5.1 we will examine the proposed improve-
ment of the truncation algorithm from section 4.3. We also test the truncation
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of a convolution result as presented in subsection 4.4.2.
We also replicate the tests from sections 3.5.1 and 3.5.2 with more particle
properties. We do not compare with other discretization schemes but will
alter the internal accuracy ε or the time-discretization respectively.

4.5.1 Computational benefit of the truncation improve-
ment

The first series of numerical tests studies the influence of the proposed improve-
ment of the truncation algorithm. For this we use the high-rank Brownian
kernel

κB(u,v) =
d∑

m=1

(
u1/3
m + v1/3

m

)
·
(
u−1/3
m + v−1/3

m

)

with R = 2d+ 1. We combine this with the exponential initial distribution

f(v, 0) =
d∏

m=1

e−0.05vm

to use the same setup for the tests as we did in subsection 3.5.3.
We simulated several choices for d, n and ε for 200 timesteps with ∆t = 10−2.
We are not interested in the density distribution and only record the com-
putational time spent in the truncations after the calculations of additions,
Hadamard products and convolutions, respectively, each with an accuracy of
10−3 seconds. We also log the computational time spent in the convolution
itself to serve as a benchmark.
We do this once with the standard truncation algorithm and once for the
proposed improvement via core norms from subsection 4.3.1. We also log the
computational time for Algorithm 4 (grouped by time spent in the convolution
and time spent in the truncation) and include them in the comparison for the
truncation of a convolution and the convolution itself.
The reported times always include the calculation (or estimation) of the Frobe-
nius norm and a sweep from right to left (either QR-decompositions for or-
thogonalization or SVDs for truncation, see Algorithm 3 and section 4.3.1)
and left to right (always SVDs) for truncation. We will show histograms of
the recoreded computational times where the two (or three if Algorithm 4 is
included) distributions will be shown in the same axis to allow for an easy
comparison.
We run the simulations with 4 different symmetric grids with vmax = 1. These
are

� a small grid GS with n = 128 and d = 2, we are using ε = 10−7

� a medium grid GM with n = 512 and d = 5, we are using ε = 10−10
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� a high-dimensional grid GD with n = 128 and d = 10, we are using
ε = 10−10

� a fine discretization GF with n = 4096 and d = 2, we are using ε = 10−7.

Truncation of additions

The addition of two tensors in the TT-format was presented in subsection
4.2.3. The internal ranks are added up and most cores of the results are al-
ready orthogonal if the operands were orthogonal themselves. There are two
additions in every time step, one in the addition of Qsource and Qsink and one
to calculate the actual Euler-step. We add the required computational times
together and show the distribution of the recoreded 200 times in Figure 4.2.

We first mention the short times required for this truncation. The longest
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Figure 4.2: Histogram of the computational time for the truncation after addi-
tions on GS (top left), GM(top right), GD (bottom left) and GF (bottom right)
with the standard algorithm and the core norm truncation.

timing is just short of 250 milliseconds on GM . We see a slight improvement
of the proposed approach in the case of GM and GD where the two distribu-
tions are clearly distinct and the proposed approach outperforms the standard
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algorithm by a factor of at least 2. For a simulation with respect to GF (on
the bottom right) we see a slightly longer computational time for the proposed
approach. The difference however is very small (the highest recoreded bins are
2 milliseconds apart with a time of about 15 ms) and seems insignificant. We
were not able to record any compuational times for the small grid GS as the
computations were too fast to log any required time.

Truncation of Hadamard product

The Hadamard product was presented in section 4.2.4 and is used to calculate
φ and ψ from (3.5) and (3.6). The inner ranks multiply and increase greatly
making orthogonalization of large cores in the middle of φ and ψ computation-
ally expensive. We add the required computational time for both Hadamard
products and compute histograms based on these results. The resulting dis-
tributions can be seen in Figure 4.3.

The recoreded timings here suggest that the standard approach is better
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Figure 4.3: Histogram of the computational time for the truncation after
Hadamard products on GS (top left), GM(top right), GD (bottom left) and
GF (bottom right) with the standard algorithm and the core norm truncation.

suited for the truncation of Hadamard products as we record shorter compu-
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tational times in three of the four case studies (computations with respect to
GS are again too short to be recoreded properly). The difference is especially
visible in the bottom right (grid GF ) where the computational times of the
newly proposed approach are very concentrated at below 30 millseconds. The
standard approach shows significantly shorter computational times with the
main cluster having a maximum at that value. The distirbutions for simu-
lations with respect to GD show more overlap as the distributions are wider
spread with peaks between 80 and 120 milliseconds.

Truncation of convolution

The convolution and the estimation of the norms of the cores was presented
in section 4.2.5. We also introduced the truncation of a convolution in section
4.4.2 based on the estimation of the Frobenius norm and include this method
in the comparison. Each time step in an explicit Euler scheme requires a single
convolution (ω̃, the convolution of φ̃ and ψ̃) and this results usually has the
highest rank Rω of all intermediate results in each time step. This implies
that this truncation requires more computational effort than the two previ-
ously shown. The reported computational times can be found in Figure 4.4.
We first notice that our assumption about this being the truncation with the

highest effort is indeed true. A truncation of the convolution result requires
significantly longer then a truncation after Hadamard products or addition.
This is especially true for GM and GD where computational times is displayed
in seconds and the longest computations taking over one minute for a single
step.
We also see a significant improvement of the core-norm approach as the com-
putational times (compared with the standard approach) are lower by a factor
of 2 (seen in the bottom left) to 3 (seen in the top right and bottom right).
The distributions show no overlap which again underlines the improvements
of the new approach.
Algorithm 4 is not superior to the core norm approach as it takes longer than
the core norm approach on three of the four grids (again excluding GS here).
It requires truncations of cores with 2nm slices which is not compensated by
the cheaper estimation of the Frobenius norm. On the high-dimensional grid
GD this approach even takes longer than the standard approach of truncation.

We show the computational times of the convolution itself (i.e., the Fourier
transforms and the complex Hadamard product) in Figure 4.5 to give a bench-
mark to this computational time.

We see the computational times not differ too much between the three al-
gorithms for truncation. This was to be expected as the convolutions are
calculated the same across every approach. Larger differences (as seen in the
bottom left) can be explained by different ranks after the truncation of the
Hadamard product as errors are overestimated there.
When we compare the timings shown in Figure 4.5 to those in Figure 4.4 we
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Figure 4.4: Histogram of the computational time for the truncation after a
convolution on GS (top left), GM(top right), GD (bottom left) and GF (bottom
right) with the standard algorithm and the core norm truncation.

see that the time required for a truncation is of the same magnitude as the con-
volution beforehand. The truncation with the standard approach takes twice
as long on both GD and GM compared to the convolution itself, which makes
the gains due to core norms very significant to the overall computational time.
We conclude that the core norm approach is very promising for the trunca-
tion of a convolution but is not beneficial for Hadamard products in the cases
shown here. Further study into different grids and influence of ε can give
further inside into this procedure.
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Figure 4.5: Computational time in ms/s for the convolutions on GS (top left),
GM(top right), GD (bottom left) and GF (bottom right) with the truncation
donw via the standard algorithm, the truncation based on core norms and the
estimation of the Frobenius norm.

4.5.2 Accuracy of a population density approximation

In this subsection, we will repeat the numerical test from subsection 3.5.1 to
assess the accuracy of a particle density distribution. We will use the same
initial distribution (3.30)

f(v, 0) = N0 ·
d∏

m=1

4vm
ξ2
m

· e−2vm
ξm

and the same sum-kernel (3.31)

κΣ(u,v) =
d∑

m=1

ui + vi
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in order to compare it to the analytic solution (3.32).
We use the same scalar constants but extend them to more dimensions via

N0 = 1 and ξm =

{
0.1 , if m 6= 2

0.15 , if m = 2

to capture a problem not symmetric in all properties.
We will use a symmetric grid with n ∈ {64, 128, 256, 512, 1024, 2048} and
vmax = 3. We will vary the internal accuracy of a TT-tensor using ε ∈
{10−2, 10−5, 10−7} to study its influence on the overall accuracy and the com-
putational time. We use the standard algorithm for truncations of tensors as
we study the influence of truncation on the accuracy and computational time.
We will use a constant time step of ∆t = 0.1 to simulate up to T = 1 in 10
steps to obtain a piecewise constant approximation f̃(v, 1). We again define
the L2-error (3.33) and approximate the integral via quasi-Monte-Carlo inte-
gration (see [50]) as an iteration over all cells becomes infeasible for d < 2.
The points are based on the Halton sequence ([17]) with M = 1000dn points
uj ∈ [0, 3]d and give the approximation

E ≈
(

1

M
·
M∑

j=1

(f̃(uj, 1)− f(u, 1)2

)1/2

(4.43)

to plot against the computational time.
We plot this for the two-dimensional problem in Figure 4.6 where we see an
overall decline in the error with increasing the discretization n. The error is
comparable in magnitude to the one reported in subsection 3.5.1 for a smaller
computational domain. Most notably is the stagnation of improvement for
ε = 10−2 when increasing n beyond 512. We explain this by the error propa-
gation of internal truncations that starts to dominate the overall error as the
plots for ε ∈ {10−5, 10−7} do not show this stagnation. We expect these plots
to experience the same stagnation at some point with a finer discretization.

We also see a clear correlation between the inner accuracy ε and the com-
putational time as a smaller ε leads to a higher rank Rf̃ which in turn makes
all computations more expensive. We still report a very short computational
time with the longest simulation taking about 3.2 seconds. A similar simula-
tion without efficient tensor storage took over 4 minutes (see subsection 3.5.1),
a factor of approximately 82.
We see a similar behavior for d = 3 that we show in Figure 4.7. We overall
report longer computations compared to d = 2 as was expected. We observe
a similar stagnation for ε = 10−2 and see that the computational times for
different values of ε are further apart, making the choice of a sufficient ε very
important.

We show the results for d = 4 in Figure 4.8, where the stagnation for
ε = 10−2 is obvious right from the start. There is no improvement of accuracy
beyond n = 128 (the second point in the plot) here as the propagation of
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Figure 4.6: L2-error E (4.43) with respect to computational time for d = 2 for
ε ∈ {10−2, 10−5, 10−7}.

truncation errors dominates the error.
We note that these are the largest simulations of this thesis with up to N =
20484 ≈ 1.76 · 1013 (over 17 trillion) cells. The straight forward storage of the
arising tensors requires about 140 terabyte of memory but can be computed
on off-the-shelf hardware in a reasonable time by using the TT-format.
We also see an inflection at n = 256 (the third point in the plots) where
the plots deviate from an approximately straight line. A possible cause for
this are hardware limitations as a considerable amount of time is spent on
administrative tasks due to paging and page faults, see [68].
The simulation with n = 2048 and ε = 10−7 has not been possible (and is
absent in Figure 4.8) due to limitations in memory. Smaller simulations for
this accuracy feature Rf̃ = 19 at t = 1. This tensor would require modest

24 megabyte (if all rf̃m = Rf̃ ) but grows to a maximal Rω ≤ 784 leading to a
theoretical maximum of over 40 gigabyte of storage without any truncations.

4.5.3 Tracking moments of a population density distri-
bution

This final numerical test is similar to the test from 3.5.2, where we compared
the moments of a distribution from a numerical simulation to the analytic
expression for those moments.
We again use the constant kernel κ(u,v) = 1 in order to use the ODE defined
by (3.34). We use the multivariate Gaussian bell-curve defined by

f(v, 0) = N0 · exp

(
d∑

m=1

cm(vm − sm)2

)
(4.44)
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Figure 4.7: L2-error E (4.43) with respect to computational time for d = 3 for
ε ∈ {10−2, 10−5, 10−7}.

with d = 3. We again use c1 = c2 = c3 = 200 and s1 = s2 = s3 = 0.1.
The scalar constant N0 is used to set µ0(f)(0) = 0.1. We will run simulations
up to T = 50 which gives a degree of aggregation (3.36) of Iagg(T ) ≈ 0.7143.
We choose vmax =

(
10, 10, 10

)
as it gives a sufficiently large domain. We use

n1 = n2 = n3 = 512 cells in each direction, resulting in N = 5123 ≈ 134 · 106

cells.
We will carry out two numerical simulations, one with ∆t = 0.1 to give µ̃e

C(t)
and one with ∆t = 0.05 to result in µ̃e

F (t). The indices C and F stand for
coarse and fine time steps, respectively. We use a high accuracy solution of
(3.34) with variable stepsize and compare this with our results here. This
shows the influence of ∆t on the moments µ̃e(t). We use the TT-format with
a high accuracy of ε = 10−10 for this simulations.
We again compute the relative error

Ae(t) :=
µ̃e(t)

µe(t)
− 1 (4.45)

for both fine and coarse time steps for all moments

e ∈ {0, . . . , 3}3.

We show a selection of these Ae(t) in Figure 4.9. We can see a clear benefit
of smaller time steps as one expects. The decrease in Ae

F over Ae
C is very

consistent. At the same time one can see the self-correcting behavior for e =
(1, 1, 1), e = (2, 2, 2) and in part in e = (3, 3, 3), where the error decreases first
but seems to rise after t = 15 for ∆t = 0.05.
We observe a periodic behavior (especially prevalent) in A(3,3,3) that can be
caused by the finite accuracy in the initial values. The moment µ(3,3,3)(t) is a
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Figure 4.8: L2-error E (4.43) with respect to computational time for d = 4 for
ε ∈ {10−2, 10−5, 10−7}.

ninth-order moment with a close-to-zero initial value (µ(3,3,3)(0) ≈ 5.8 · 10−10)
and growth over several orders of magnitude to about µ(3,3,3)(50) ≈ 0.29. We
can not reliably study the relative error A(3,3,3)(t) here, as the absolute error
in the initial value is experiencing the same level of growth.
The first moments µe(f) for e ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} see no change in
theory as the total property stays constant. In the left of Figure 4.10 we show
A(1,0,0)(t) for the coarse and fine time-discretizations. We expect A(1,0,0)(t) = 0
in theory as time steps do not have an influence on constant functions and
we have a moment preserving projection. We see a non-zero error here as
A(1,0,0)(t) grows from 10−9 to 10−6 over the time span shown here. We explain
this error by repeated truncation of tensors. This truncation is not moment
conserving and introduces a source of error here. This explains the larger
error in µ

(1,0,0)
F (t) as smaller time steps require more calculations and more

truncations. We again observe the periodic behavior in µ(1,0,0)(t) . We also
show the relative error Ae(t) of another square-free moment µ(1,1,0)(t) in the
right of Figure 4.10, where we do not see a difference introduced by the time
steps.
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Figure 4.9: Relative error in the moments of a numerical simulation for a
selection of moments, namely A(0,0,0) (top left), A(1,1,1) (top right), A(2,2,2)

(bottom left), A(3,3,3) (bottom right).
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Chapter 5

Estimation of aggregation
kernels in univariate population
balance equations

This chapter focusses on the problem of kernel estimation in the univariate
setting. This is an inverse problem to reconstruct an approximate aggregation
kernel κ(u, v) from given particle distribution data F (v, t) (using a capital F
for given distributions). We here tackle the problem of data that is available
at discrete time points t0 to tm.
We first introduce the problem structure and the already existing methods to
tackle this problem in section 5.1. We will make note about their assumptions
about the underlying data and resulting kernels.
We then re-introduce the discretization of the univariate property domain and
make necessary assumptions about the kernel κ(u, v) in Section 5.2 in order to
estimate it. We will also establish the amount of data, that is available to us
and its notation.
Section 5.3 defines the optimization procedure we use to reconstruct a kernel by
establishing the target function and elaborate on the structure of the problem
before showing numerical results in section 5.4.
All algorithms used in this chapter were implemented using Matlab 2016b
and subroutines provided in it.

5.1 Problem definition and existing method-

ology

The problem of kernel estimation that we are going to focus on in this chapter
reads as follows:
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Given a function F (v, t) : R≥0 × R≥0 → R≥0, find a symmetric kernel
function κ(u, v) : R2

≥0 → R≥0 that fulfills

∂F (v, t)

∂t
=

1

2

v∫

0

κ(u, v − u)F (u, t)F (v − u, t) du− F (v, t)

∞∫

0

κ(u, v)F (u, t) du.

(5.1)

This problem cannot be solved for every function F (v, t) as a solution to (5.1)
satisfies some necessary conditions like the monotone behavior of moments
µe(f)(t) (derived straight from (1.5)). Existing methodology can be catego-
rized into (at least) two separate approaches:

� Compute an approximation to the derivative on the left-hand side of
(5.1) and compute the right-hand side of (5.1) using a reconstructed
kernel where the reconstruction should minimize the error between left
and right-hand side of (5.1) in some appropriate norm.

� Simulate the aggregation process with a reconstructed kernel (resulting
in a particle distribution f(v, t)) where we try to minimize the error
between f(v, t) and F (v, t) in an appropriate norm.

The first approach is pursued in [18] where Laurent polynomials are used as
basis functions. The second approach is mentioned there but discarded for its
high computational cost. A similar idea is used in [13]. A set of bilinear basis
functions with compact support was used to set up and solve a system of linear
equations at every time step. Both these approaches use a fixed set of sym-
metric basis functions bi(u, v) = bi(v, u) and find weights αi to approximate a
kernel κ(u, v) =

∑
i

αib(u, v) in order to approximate the time derivative. This

approach is typically computationally less challenging but requires a high tem-
poral resolution of the density distribution F (v, t) to provide useful results.
The second approach is oftentimes used to fit a single parameter (linear fac-
tors in [9] and [61]) or a small number of parameters ([57] finds exponents of
a rational function) when a certain form of the kernel is assumed. The cited
works for this category also estimate constants regarding nucleation, breakage
and growth at the same time, which we will not attempt. They also show
their applicability with measured data from experiments instead of relying
on simulations or analytical solutions. Due to the long time frame typically
encountered in-between experimental measurements the estimation of a deriva-
tive is inaccurate and makes the first approach infeasible in these cases. The
high computational cost associated with the simulation over the complete time
frame is unavoidable and necessary here.
There exist some methods for parameter estimation in differential equations
that are based on discontinuous data in the presence of measurement noise
([10], [58] or [59]) without a connection to population balances. However, the
differential equations considered in these works have only a few degrees of
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freedom and more measurements available making them non-applicable in this
setting.

5.2 Discretization of the property space

This section introduces the suitable discretization of the one-dimensional do-
main of particle properties and further assumptions we are making about the
kernel we want to estimate. We already established a discretization of the
multivariate property space in 3.1 and will use the special case of d = 1. We
will slightly modify the notation as some expression can simplified by choosing
an alternative nomenclature. In order to make this chapter more independent
of chapter 3 we will redefine a uniform grid here with a new modified nomen-
clature.
We choose a maximum particle property vmax ∈ R+ and assume that no larger
particle exists, i.e. f(v, t) = 0, if v ≥ vmax. For some p ∈ N we divide the
interval [0, vmax] into n := 2p subintervals of equal length

h :=
vmax

n
(5.2)

to obtain a grid we denote by Gvmax

p .
We restrict our analysis to functions f(v, t) that are piecewise constant with
respect to Gvmax

p and assume this at every point in time. The mid-point of
every cell Ci is denoted by vi.
This allows us to represent a piecewise function as a nonnegative, time-dependent
vector with entries

f(t) :=
(
f0(t), . . . , fn−1(t)

)
∈ Rn

≥0. (5.3)

We also represent the measured data F (v, t) with respect to the grid Gvmax

p as
a time-dependent vector

F (ti) =
(
F0(ti), . . . , Fn−1(ti)

)
∈ Rn

≥0.

In view of this discretization, the goal is to reconstruct a kernel matrix K ∈
Rn×n
≥0 with values Ki,j = κ(u, v)|Ci×Cj to represent a function κ(·, ·), piecewise

constant with respect to Gvmax

p × Gvmax

p .

Assumption 1. To reduce the number of unknown coefficients in the kernel
matrix K ∈ Rn×n, we assume it is symmetric and of rank k(� n), i.e., it can
be represented (or approximated) in the form

K = U · S · UT (5.4)

with matrices U ∈ Rn×k and S ∈ Rk×k. We require that S = ST to enforce the
symmetry of K.
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This assumption reduces the degrees of freedom in the kernel matrix K
from n(n+1)

2
to nk + k(k+1)

2
. It also allows us to use the algorithms introduced

in section 3.3 to accelerate the calculations. For this we define α := US and
β := U to connect the notations of the kernel here and from section 3.2. We
further define functions Qsource(j, t;U, S) and Qsink(j, t;U, S) that compute the
change of fj(t) with an estimated kernel given by U and S. The function
Qsource(j, t;U, S) includes the projection outlined in subsection 3.3.3. We will
refer to the (thin/rectangular) matrix U as the kernel basis.
Our framework for the kernel estimation is related to [18] and [13] where
coefficients for kernel functions within a linear space spanned by a number
of given basis functions, e.g. Laurent polynomials, are to be found. In our
framework, this corresponds to a given (fixed) matrix U with its entries given
by the basis functions evaluated at the cell, i.e. Ui,j = bj(v)|Ci . Here, we
generalize this framework by including U in the optimization process.

5.3 Optimization problem

With these prerequisites, we define the following minimization problem

minimize
U,S

E2(U, S) :=

(
h

m∑

i=0

n−1∑

j=0

(Fj(ti)− fj(ti))2

)1/2

where U ∈ Rn×k, S = ST ∈ Rk×k.

(5.5)

Here, Fj(ti) is the given (measured) data and fj(ti) are computed by numerical
simulation of

dfj(t)

dt
= Qsource(j, t;U, S)−Qsink(j, t;U, S)

on the grid Gvmax

p . The factor h from (5.2) originates from the derivation of
E2 as integration over the functions represented by f and F to compare for
different n.
A possible disadvantage of the above minimization problem results from the
fact that absolute errors are considered. Cells with a small number of particles
may have only a small influence on the kernel estimation since the error E2 is
dominated by index pairs (i, j) where Fj(ti) is large. To increase the sensitivity
with respect to those cells with a small amount of particles, we define an error
based on the χ2-measure leading to

minimize
U,S

E(U, S) :=

(
h

m∑

i=0

n−1∑

j=0

(Fj(ti)− fj(ti))2

fj(ti) + ε

)1/2

where U ∈ Rn×k, S = ST ∈ Rk×k.

(5.6)

Here, we weigh the difference of simulated and observed particles higher when
the simulation indicates a small number of particles in a cell. Similar measures
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to curve fitting are also used in machine learning [56]. We add ε = 10−7 to
the denominator in (5.6) to ensure it is large enough to avoid numerical insta-
bilities caused by the division. We still keep the constant factor h because it
leads to better numerical results as it offsets the number of summands n.
We set fj(t0) = Fj(t0), j = 0, . . . , n − 1, as the initial distribution which is
always nonnegative. The constraint fj(ti) ≥ 0 will be satisfied throughout the
simulation when step sizes in the time discretization of the differential equa-
tion are chosen sufficiently small. The sink term Qsink(j, t;U, S), responsible
for depletetion, will reduce fj(t) in each time step by a fraction of the current
number of particles in that cell.
Since the objective is to determine a kernel that minimizes the error between
measured and simulated density distribution, every evaluation of E(U, S) re-
quires a complete simulation (this methodology is of the second type) making
it mandatory that efficient computational techniques are available. In fact,
there are kn degrees of freedom in U and k(k+1)

2
degrees of freedom in S, lead-

ing to this number of evaluations of E(U, S) for a single step in the evaluation
process.
Most computational time during this optimization is spent in the evaluation of
Qsource(j, t;U, S) which only becomes feasible with Assumption 1 of a separable
kernel.
We solve the minimization problem (5.6) using Matlab’s optimization rou-
tine lsqnonlin as well as ode45 to solve the underlying differential equation.
The routine lsqnonlin uses the Levenberg-Marquardt algorithm to search for
local optima via finite differences.

If U has full rank k, its columns can be chosen orthonormal which turned
out favorable in our numerical tests. We obtain orthonormal columns in U
by replacing the current estimate U, S by Q,RSRT where Q and R are the
QR-factors of U .

Remark 5. A kernel function κ(u, v) is nonnegative, i.e. κ(u, v) ≥ 0. This
implies that the matrix K is elementwise nonnegative as well, which cannot be
guaranteed without imposing complicated constraints on U and S. It is possible
to restrict U and S to nonnegative matrices as well (which guarantees K to
be non-negative). This, however, significantly reduces the search space for a
fixed rank k and does not allow for orthonormal columns of U . Details about
nonnegative matrix factorization (NNMF) are available in [11] and [31] but
will not be used in this work.

5.4 Numerical results

This section is devoted to numerical results using the proposed method to
reconstruct a kernel from given (measured or simulated) data. In this work, to
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be able to validate our results, we will reconstruct the following four different
kernels from measurements F (ti) obtained through numerical simulation,

Brownian : κB(u, v) =
(
u1/3 + v1/3

)
·
(
u−1/3 + v−1/3

)
(5.7)

Shear : κS(u, v) = 2 ·
(
u1/3 + v1/3

)7/3

(5.8)

Sum : κΣ(u, v) = 5 · (u+ v) (5.9)

Peglow : κP (u, v) = 3 ·
(
u+ v

)0.7105

·
(
uv
)−0.062

(5.10)

which are plotted in Figure 5.1. We note that the kernels κB and κΣ are
separable, i.e., the kernel matrices can be represented in factored form (5.4)
with k = 3 and k = 2, respectively. The discretized Brownian and sum kernel
κB, κΣ can be written in the form

KB : Ui,1 = 3
√
vi, Ui,2 =

√
2, Ui,3 = −3

√
vi, S =




0 0 1
0 1 0
1 0 0


 , (5.11)

KΣ : Ui,1 = vi, Ui,2 = 5, S =

[
0 1
1 0

]
, (5.12)

respectively, giving rise to initialize our optimizations with an antidiagonal
matrix S. The other two kernels are not separable but can be approximated
using a low rank k so that the resulting error in the simulation is dominated
by discretization error, i.e., the number of cells n.

We use a bimodal initial distribution finit(v) = c ·
(
e−20v + e−300·(x−0.2)2

)

where the scaling coefficient c normalizes the function to

µ1(f)(t) = 10−2.

We will use vmax = 1 in all our numerical tests and hence leave out the super-
script in Gp := G1

p .
We obtain reference solutions with respect to a very fine grid G17 and take mea-
surements for m + 1 = 6 equidistant time instances ti = i for i ∈ {0, . . . , 5}.
We obtain F̃ (ti) ∈ R217

and consider it to be a distribution (perfectly) mea-
sured at time ti. We coarsen it to the grid Gp by averaging over 217−p entries to
obtain F (ti) ∈ R2p . This averaging process will preserve the total number of
particles in the simulation. Throughout this section, we will use the following
notation for discrete density distributions:

Grid Reconstructed kernel Exact kernel

Gp f F

G17 f̃ F̃
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Figure 5.1: Four different aggregation kernels κ(u, v).

The distributions F (v, ti) for κS and κP are shown in Figure 5.2. We see that
the distributions have similar shapes and both have hardly any particles of
mass greater than 0.5. The plots of F · F T in the bottom row of Figure 5.2
show the amount of particles associated with an entry Ki,j of the kernel matrix
over all time points. We expect parts of the domain with many particles over
the course of the simulation to have accurately estimated kernel values Ki,j.

We present numerical tests for two variants of the optimization problem,
one with a fixed matrix factor U , i.e. optimization only with respect to S, and
one with both U and S (5.4) included in the optimization.
To assess the quality of a reconstructed kernel for a practical application we
use them for a simulation with a different distribution and compare the ob-
tained results with the simulations with the correct kernel. The approxima-
tions are obtained by fitting data formed from a specific initial distribution
f but should also hold a certain accuracy for other distributions to be of
general use. For this additional step of validation we use the initial distribu-
tion g(v, 0) = c · ve−200(v−0.1)2

(the factor c is again used for normalization of

g(v, 0) to µ1(g)(t) = 10−2) and calculate G̃(v, 10) with the reference kernel and
g̃(v, 10) with kernel factors U and S (approximated with respect to Gp) with
respect to the very fine grid G17. To obtain the estimated kernel on a finer grid
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Figure 5.2: Evolution of the particle distribution F (v, t) for time instances
ti = 0, . . . , 5, with κS (left) and κP (right) for linear (top) and logarithmic
(middle) scaling of the y-axis. The bottom row shows F · F T on logarithmic
scale.

we simply assign the value of a coarse cell to all finer cells. We chose g(v, 0)
in view of its maximum at v = 0.1 which is near the local minimum of f(v, 0).
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5.4.1 Optimization including the kernel basis U

For a variable U we use the rank k = 5 and start the optimization process
with

Uj,i = v
1/j
i , S =




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0



, (5.13)

i = 1, . . . , n and j = 0, . . . , n− 1,

where vi denotes the mid-point of the cell Ci. We use this initial kernel because
it is the pointwise evaluation of a smooth function and gives only moderate
aggregation rates in the considered domain. High rates of aggregation will
results in very small time steps in the solution of the differential equation
to ensure the positivity of f . Our choice of S mimics the matrix present
in the kernels κB (5.11) and κΣ (5.12). We also experience high sensitivity
with respect to the initial conditions, as different initial conditions will lead to
different local minima.
The kernel matrix that solves the optimization problem (5.6) is denoted by

Kest = UestSestU
T
est

for each of the four kernels. We plot the estimated kernels for p = 10 (results
in n = 1024) together with the true kernels in the left of Figures 5.3 and 5.4.
We also compute the pointwise relative errors

Erel(vi, vj) =
|Kest(vi, vj)−Ktrue(vi, vj)|

Ktrue(vi, vj)
, 0 ≤ i, j,≤ n− 1 (5.14)

and plot these on the right hand side of Figures 5.3 and 5.4.

For all those four kernels, we see a minimum of the relative error around
(0.2, 0.2) which we attribute to our choice of initial distribution with a peak
at 0.2. We are not concerned about larger relative errors in the upper right
triangle (vi + vj > 1) since the aggregation of two particles to one with mass
greater than 1 and hence out of our computational domain should not occur,
hence there is no (or hardly any) data to estimate the kernel in this region.
The relative error of the shear kernel κS is small over the entire domain, a
similar result is observed for the Brownian kernel κB. The sum and Peglow
kernel approximation errors are smallest, where most data is available - this
follows from comparison with the plots of F · F T in Figure 5.2 (right).

We calculate G̃(v, 10) and g̃(v, 10) (always with respect to G17) with the refer-
ence and reconstructed kernel respectively and show them for p = 10 in Figure
5.5 on the interval [0, 0.5] (the simulation was computed on [0, 1]). We see here
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Figure 5.3: Left: Comparison between the true kernel (green) and the es-
timated kernel (red) with the kernel basis U included in the optimization.
Right: (Logarithm of the) relative error (5.14) of the kernel. Top: Brownian
kernel. Bottom: Shear kernel.

the larger error in the sum-kernel in the bottom left.

We also calculate the relative L2 error

err :=




217∑
i=1

(
G̃(vi, 10)− g̃(vi, 10)

)2

217∑
i=1

G̃(vi, 10)2




1/2

(5.15)

between G̃(v, 10) and g̃(v, 10) for each kernel based on approximations for dif-
ferent grids G5 and G10 and present the results in Table 5.1. On the positive
side, we have relative approximation accuracies of orderO(10−2) on a relatively
coarse grid with 25 pivots, i.e. a gridwidth of h = 2−5 = 0.03125. However,
we observe hardly any improvement (and possibly even worse results) with
respect to further refinement of the grid even though, as we will see in the
following subsection, the framework would indeed allow for higher accuracies.
These computations have the complexity of O(k2n2 log n) as we calculate
O(kn) finite differences per optimization step, each of complexity O(kn log n).
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Figure 5.4: Left: Comparison between the true kernel (green) and the es-
timated kernel (red) with the kernel basis U included in the optimization.
Right: (Logarithm of the) relative error (5.14) of the kernel. Top: Sum kernel.
Bottom: Peglow kernel.

The number of optimization steps has little to no influence on the overall com-
putational time. The optimization routine took about 90 seconds for n = 128
and about 50 minutes for n = 1024.
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Figure 5.5: Particle distributions g̃(v, 10) (blue) and G̃(v, 10) (red) for kernels
and their approximations with kernel basis U subject to optimization for v ∈
[0, 0.5].

p
kernel

κB κS κΣ κP

5 4.23 · 10−2 3.83 · 10−2 5.65 · 10−2 5.02 · 10−2

6 1.29 · 10−2 2.01 · 10−2 3.14 · 10−2 2.62 · 10−2

7 7.90 · 10−3 9.80 · 10−3 2.72 · 10−2 2.62 · 10−3

8 1.60 · 10−3 4.30 · 10−3 2.45 · 10−2 8.00 · 10−3

9 1.25 · 10−2 2.10 · 10−3 2.34 · 10−2 5.90 · 10−3

10 1.24 · 10−2 1.10 · 10−3 2.31 · 10−2 5.40 · 10−3

Table 5.1: Relative L2 error (5.15) between G̃ and g̃ with the kernel basis U
included in the optimization for kernel approximations based on different grids
Gp.
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5.4.2 Optimization with a fixed kernel basis U

We now fix the kernel basis U by choosing a set of basis functions and opti-
mize only with respect to S ∈ Rk×k. We can allow for a larger rank k in this
setting since the number of degrees of freedom is no longer linear in n but only
quadratic in k, the maximum rank of the kernel matrix.
We choose k = 7 basis functions bj(v) = vj/3 with j ∈ {−3, . . . , 3} and orthog-
onalize the resulting matrix via QR-decomposition. These basis functions are
used because many theoretical kernels are based on length, surface and volume
of interacting particles. The chosen exponents correspond to these properties
and κB and κΣ are exactly representatable with the chosen basis. The initial
kernel is given by the zero-matrix S = 0 as we experience better results with
this configuration, as well in terms of resulting kernel as computational time.

Figure 5.6: Left: Comparison between the true kernel (green) and the esti-
mated kernel (red) for a fixed kernel basis U . Right: (Logarithm of the) rela-
tive error (5.14) of the kernel approximation. Top: Brownian kernel. Bottom:
Shear kernel.

In Figures 5.6 and 5.7 we show the resulting kernel approximations based
on G10 with the exact kernels (left) as well as the relative approximation er-
rors (5.14) (right). We observe a clear improvement compared to the kernels
estimated with variable U (shown in Figures 5.3 and 5.4) and offer two inter-
pretations of this result:
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Figure 5.7: Left: Comparison between the true kernel (green) and the es-
timated kernel (red) for a fixed kernel basis U . Right: (Logarithm of the)
relative error (5.14) of the kernel approximation. Top: Sum kernel. Bottom:
Peglow kernel.

� The fixed basis U has been chosen to span a space that allows for accurate
approximations of the exact kernels, hence the search space has been
reduced significantly, allowing for an easier optimization

� Kernel estimation is an inverse problem that we propose to solve using
a (non-convex) optimization. There could exist several local minima
resulting in similar or identical sitributions f .

In the end, we are estimating a kernel that simulates results close to the mea-
sured results, not a kernel that is close to another kernel (in our experiments
given, but in practice unknown).
Using these kernels together with the initial distribution g(v, 0) = c·ve−200(v−0.1)2

,

the resulting distributions G̃(v, 10) and g̃(v, 10) are shown in Figure 5.8 for
p = 10 in the interval v ∈ [0, 0.5].

The relative L2 errors for approximations based on grids G5 to G10 are
shown in Table 5.2.

Comparing these to the respective results for an included U in Table 5.1,
we see less accurate kernel approximations on the coarser grids (p = 5, 6, 7)
and more accurate results on a fine grid with p = 10. We estimate the order
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Figure 5.8: Particle distributions g̃(v, 10) (blue) and G̃(v, 10) (red) for kernels
and their approximations with a fixed kernel basis U for v ∈ [0, 0.5].

of convergence with O(2−2p), the error decreases very fast with an increase in
the number of cells.
The computational complexity of this approach is estimated at O(k3n log n)
as there are O(k2) computations of complexity O(kn log n). This is supported
by our numerical results as we take about 90 seconds for the most accurate
simulation with n = 1024. Optimizations with a coarser grid (p = 5) takes
only about 10 to 15 seconds. This setting sees a higher influence of the number
of optimizations steps which is hard to estimate beforehand.
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p
kernel

κB κS κΣ κP

5 3.89 · 10−1 4.81 · 10−1 5.72 · 10−1 5.56 · 10−1

6 1.03 · 10−1 4.57 · 10−1 3.62 · 10−1 4.17 · 10−1

7 3.46 · 10−2 3.33 · 10−2 1.92 · 10−2 4.29 · 10−2

8 5.26 · 10−3 6.88 · 10−3 4.33 · 10−3 6.22 · 10−2

9 1.41 · 10−3 2.16 · 10−3 1.81 · 10−3 1.91 · 10−2

10 2.74 · 10−4 1.05 · 10−3 8.70 · 10−4 1.18 · 10−3

Table 5.2: Relative L2 error (5.15) between G̃ and g̃ for a fixed kernel basis U
with approximations based on different grids Gp.
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Chapter 6

Conclusions and outlook

The subject of this work is efficient techniques to compute aggregation inte-
grals that appear in multivariate population balances. The prerequisites for a
fast and accurate evaluation of these aggregation integrals are a uniform tensor
grid, the separation of kernel functions and the multivariate fast Fourier trans-
formation. These are introduced in sections 3.1, 3.2 and 3.4 respectively. These
prerequisites allow for a log-linear computational complexity (as opposed to
quadratic) in the number of unknowns. We presented a simple framework for
the conservation of moments in subsection 3.3.3 necessary to uphold physical
invariants of the aggregation process.
All proposed algorithms and schemes were implemented using C++ and we
compared this implementation against the popular fixed pivot method and
the cell-average technique in the setting of two or three internal properties
with respecto to the accuracy of the particle distribution, the conservation of
high-order moments and the computational complexity of the discretization
schemes.
Our tests showed an advantage of our proposed method with respect to all
tested characteristics as long as the computational domain is not too large
compared to the smallest cell size, at which a geometrically scaled grid becomes
preferable over a uniform grid. We also confirmed the theoretical estimates of
log-linear complexity with numerical tests.

We explored a technique for efficient tensor storage in section 4.1 to lift
the curse of dimensionality, the exponential complexity in both storage and
computations with respect to the dimension of the underlying property space.
This limited our straight forward approach from chapter 3 to a maximum of
three dimensions. This storage format sacrifices the exactness of operations
(lost in truncations) for a complexity that is linear in the number of involved
particle properties which makes the computations feasible.
We examined the necessary arithmetic operations in section 4.2 and introduced
improvements to the truncation operation in section 4.3. The truncation con-
tributed a relevant portion to the overall computational time in our numerical
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tests in subsection 4.5.1 and our proposed method decreased the required time
for this operation. We additionally examined the influence of the inner accu-
racy of a tensor on the accuracy of a density distribution in high dimensions
(up to 4 internal properties) and studied the influence of the moment preserv-
ing projection of high-order moments with three dimensions in subsections
4.5.2 and 4.5.3 respectively.

Our numerical tests show that we have ”broken” the curse of dimensionality
by using the TT-format. Simulations with several billion degrees of freedom
can be run on an office desktop computer in a reasonable time. Simply storing
these density distributions without efficient storage requires several terabyte of
memory. Only with even more inner dimensions or finer discretizations (over
10 trillion cells) we reach the limit of off-the-shelf hardware and suggest using
computational clusters or a supercomputer.

Based on the results of this work we mention some possible extensions and
other problems that might be of interest for further research. Improvements
for multivariate PBEs can be separated into three categories:

� Application of other phenomena to a uniform grid

� Improvements of the discretization

� Extension of the TT-format in a hierarchical fashion

The first point would allow a simulation of a process that includes additional
particle phenomena like growth or nucleation. We are currently restricted to
a process of pure aggregation. A derivation of the numerics of these processes
based on our discretization allows for a simulation of more complex problems.
The second point is based on our observation of the typical behavior of mul-
tivariate PBEs. The distributions have the tendency to concentrate among
certain parts of the domain. A hierarchical grid with local refinements (as pre-
sented in [43] and [44] for the univariate case) can grant additional accuracy
to important parts of the domain without sacrificing the log-linear complexity.
An additional gain may be archived by using higher-order functions on single
cells to better aproximate the smooth distributions in a typical PBE. This
concept was introduced to univariate PBEs in [44] as well. The higher-order
ansatz can reduce the number of cells without reducing the accuracy by intro-
ducing artificial coordinates (to store coefficients of higher-order functions) to
a tensor. This additional dimensionality can make this approach infeasible for
full tensor storage but can be beneficial when combined with the TT-storage.
The third direction focuses on the TT-storage format itself. The global low-
rank format relies on the existence of these low ranks. Due to successive point-
wise multiplications and convolutions, this assumption might not be fulfilled as
these operations increase the internal ranks of a TT-tensor. A hierarchical for-
mat (extending the H-matrix format from [28] and not to be confused with the
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hierarchical tensor format from [29]) based on local low-rank approximations
on some parts of the domain and full tensor storage in other parts can reduce
the maximum rank of a tensor. We expect this to come in exchange for a much
more complicated tree-based structure and recursive algorithms. We assume
this third point to be the most complex and cannot predict a possible outcome.

In chapter 5 we present the related problem of kernel estimation in the case
of a one-dimensional property space. We present a novel framework that does
not rely on a high temporal resolution or interpolation at intermediate time
points. It allows for a highly accurate reconstruction of discrete aggregation
kernels under the assumption that the kernel-matrix allows for a representation
with a low-rank. This approach can either be based on theoretical knowledge
of basis functions or can form these basis functions during the process. We
tested these two approaches in section 5.4 to re-estimate known kernels from
highly accurate measurements and verified the results by a simulation with a
different density distribution.
There are some possible extensions to our process of kernel estimation pre-
sented in chapter 5. These can be separated into three categories:

� Usage of sampled particles

� Estimation of constants for other phenomena

� Application to multivariate problems

For our numerical tests in section 5.4 we used highly accurate distribution
data without any noise. Sampled data (as we expect from an experimental
measurement) will always have some noise present that needs to be addressed
in future work.
Our optimization procedure was able to extract rates from an aggregation-
only process without other phenomena present. Future projects may estimate
breakage-kernels, nucleation-rates or growth-functions simultaneously using
the theory introduced here. The inclusion of further phenomena can also make
an accurate prediction harder as it complicates the structure.
We are currently restricted to the estimation of kernels in the setting of univari-
ate PBEs. Introducing additional particle properties increases the complexity
of the right-hand side of the ODE and the problem itself. This makes the
estimation of aggregation kernels with more particle properties a challenging
question.

97



98



Bibliography

[1] Robin Ahrens and Sabine Le Borne. “Tensor trains and moment conser-
vation for multivariate aggregation in population balance modeling”. In:
Applied Numerical Mathematics 153 (July 2020), pp. 473–491.

[2] Robin Ahrens and Sabine Le Borne. “FFT-based evaluation of multivari-
ate aggregation integrals in population balance equations on uniform
tensor grids”. In: Journal of Computational and Applied Mathematics
338 (Aug. 2018), pp. 280–297.

[3] Robin Ahrens and Sabine Le Borne. “Reconstruction of low rank aggre-
gation kernels in univariate population balance equations”. In: Advances
in Computational Mathematics ( submitted in November 2019).

[4] Robin Ahrens et al. “Numerical Methods for Coupled Population Bal-
ance Systems Applied to the Dynamical Simulation of Crystallization
Processes”. In: Dynamic Flowsheet Simulation of Solids Processes. Springer
International Publishing, 2020, pp. 475–518.

[5] Felix Anker et al. “A comparative study of a direct discretization and an
operator-splitting solver for population balance systems”. In: Computers
& Chemical Engineering 75 (Apr. 2015), pp. 95–104.

[6] Menwer M. Attarakih, Christian Drumm, and Hans-Jörg Bart. “Solu-
tion of the population balance equation using the sectional quadrature
method of moments (SQMOM)”. In: Chemical Engineering Science 64.4
(Feb. 2009), pp. 742–752.

[7] M. Bebendorf and S. Rjasanow. “Adaptive Low-Rank Approximation of
Collocation Matrices”. In: Computing 70.1 (Feb. 2003), pp. 1–24.
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