LOCATING REAL EIGENVALUES OF A SPECTRAL
PROBLEM IN FLUID-SOLID TYPE STRUCTURES

HEINRICH VOSS

Exploiting minmax characterizations for nonoverdamped nonlinear eigenvalue problems
we prove inclusion theorems for a rational spectral problem governing mechanical vibra-
tions of a tube bundle immersed in a fluid. The fluid is assumed to be viscous and
incompressible, and its velocity field and pressure satisfy the steady Stokes equations.
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1 Introduction

In this paper we consider the problem to determine the vibratory eigenfrequencies and
eigenmotions of a tube bundle immersed in an incompressible viscous fluid. The fluid
is assumed to be contained in a three-dimensional cylindrical cavity with rigid walls. It
is assumed that the tubes are parallel to each other and to the longitudinal axis of the
cavity, that they are perfectly rigid (i.e. that they do not allow deformations), and that
they are elastically mounted such that they can only vibrate transversally, but they can
not move in the direction perpendicular to their sections. The cave is assumed to be very
long. Due to these assumptions three-dimensional effects can be neglected, and so the
problem can be studied in any transversal section of the cavity.

Small vibrations of the fluid and the tubes around the state of rest were modelled by
Conca, Duran and Planchard [3], and it was shown that the vibrations are governed by a
non-classical eigenvalue problem involving the Stokes system of equations with non-local
and nonlinear boundary conditions which model the fluid-solid interaction. Its variational
formulation is a rational eigenvalue problem whose coefficients are selfadjoint linear op-
erators acting on a Hilbert space. Reducing this problem to one of determining the
characteristic values of a compact (non-selfadjoint) operator it was proved in [3] that
there exists a countable set of eigenvalues which converge to infinity. Moreover, it was
shown that the number of eigenvalues with nonvanishing imaginary part is finite, that



they are all lying in semicircle about the origin in the left half plane. In [2] an upper
bound of the number of non-real eigenvalues was provided and upper and lower bounds
of the real eigenvalues were stated.

In this paper we take advantage of the selfadjointness of the operators in the ratio-
nal formulation of the eigenvalue problem, and characterize the eigenvalues outside the
semicircle mentioned in the last paragraph as minmax values of a Rayleigh functional p.
Comparing p to the Rayleigh quotients of suitable linear eigenvalue problems we derive
upper and lower bounds.

A cruical point when applying minmax or maxmin characterizations of eigenvalues for
nonoverdamped problems is to enumerate the eigenvalues correctly. The natural ordering
to denote the smallest eigenvalue the first one, the second smallest the second one, etc.
is inappropriate, but each eigenvalue inherits its number from the location of the singular
value 0 in the spectrum of a corresponding linear eigenproblem. Hence, our bounds do
not immediately compare to the inclusions of the real eigenvalues stated in [2].

Our paper is organized as follows. Section 2 summarizes the minmax characterization
of eigenvalues of nonoverdamped eigenproblems where the eigenparameter appears non-
linearly. Section 3 contains the rational eigenvalue problem governing small vibrations of
a tube bundle immersed in an incompressible viscous fluid and collects the results in [3]
and [2] on the number and location of the eigenvalues. In Section 4 we derive lower and
upper bounds of real eigenvalues. The paper closes with a numerical example demon-
strating the sharpness of our bounds. Moreover, it shows that the bounds derived in [2]
are false.

2 Characterization of eigenvalues of nonlinear eigen-
problems

We consider the nonlinear eigenvalue problem
T(A\)z =0 (1)

where T'(\) for every A in an open real interval J is a selfadjoint and bounded operator
on a Hilbert space H. As in the linear case A € J is called an eigenvalue of problem (1)
if equation (1) has a nontrivial solution x # 0. Such an z is called an eigenelement or
eigenvector corresponding to .

We assume that

JxH — R
P o 2
is continuously differentiable, and that for every fixed z € H°, H® := H \ {0}, the real
equation
fA ) =0 (3)
has at most one solution in .J. Then equation (3) implicitly defines a functional p on some

subset D of H° which we call the Rayleigh functional.
We assume that

af()\,x)h:p(l,) >0 forevery x € D. (4)
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Then it follows from the implicit function theorem that D is an open set and that p is
continuously differentiable on D.

For the linear eigenvalue value problem T'(\) := A — A where A : H — H is
selfadjoint and continuous the assumptions above are fulfilled, p is the Rayleigh quotient
and D = H°. If A additionally is completely continuous then A has a countable set of
eigenvalues which can be characterized as minmax and maxmin values of the Rayleigh
quotient by the principles of Poincaré and of Courant, Fischer and Weyl (cf. [13]).

For the nonlinear case variational properties using the Rayleigh functional were proved
for overdamped systems (i.e. if the Rayleigh functional is defined on H°) by Duffin [5]
and Rogers [8] for the finite dimensional case and by Hadeler [6], [7], Rogers [9], and
Werner [14] for the infinite dimensional case. For nonoverdamped systems Werner and the
author [12] proved a minmax characterization of Poincaré type, a maxmin characterization
generalizing the principle of Courant, Fischer and Weyl is contained in [10]

In this section we assemble the results in [12] and [10] for the nonlinear nonoverdamped
eigenvalue problem (1).

We denote by H; the set of all j-dimensional subspaces of H and by V; :={v e V :
|v|l = 1} the unit sphere of the subspace V' of H.

We already stressed the fact that the eigenvalues of problem (1) have to be enumerated
appropriately to derive variational characterizations for nonoverdamped problems. To this
end we assume that for every fixed A € J there exists (A) > 0 such that the linear operator
T(N)+v(N)I is completely continuous. Then the essential spectrum of 7'(\) contains only
the point —v(A), and every eigenvalue > —v(\) of T'(\) can be characterized as maxmin
value of the Rayleigh quotient of T'(A\). In particular, if X is an eigenvalue of the nonlinear
problem (1), then p = 0 is an eigenvalue of the linear problem T'(\)y = uy, and therefore
there exists n € N such that

#n(A) 1= max min (T'(A)v,v) =0. (5)
In this case we call A an n-th eigenvalue of the nonlinear eigenvalue problem (1).
With this enumeration the following minmax characterization of the eigenvalues of
problem (1) holds which was proved in [12].
THEOREM 2.1. Under the conditions given above the following assertions hold:

(i) For every n € N there is at most one n-th eigenvalue of problem (1) which can be
characterized by

Ap = min sup p(v). (6)
Vby vEVAD

The minimum is attained by the invariant subspace W of T()\,) corresponding to
the n largest eigenvalues of T'(\,), and sup,cynp p(v) is attained by all eigenvectors
of (1) corresponding to X\,. The set of eigenvalues of (1) is at most countable.

(ii) 1f

Ap, = Inf su v) e J 7
vaeg;@ vEVrE)D p(v) 0

for some n € N then A, is the n-th eigenvalue of (1) and (6) holds.



Fig. 1: Domain 2

The characterization of the eigenvalues in Theorem 2 is a generalization of the minmax
principle of Poincaré for linear eigenvalue problems. In a similar way as in [12] the maxmin
characterization of Courant, Fischer and Weyl can be generalized to the nonlinear case
(cf. [10]).

THEOREM 2.2. If problem (1) has an n-th eigenvalue \,, € J then

Ap = inf 8
»= e ) ®
vlnpD#0

3 A rational eigenvalue problem in fluid structure
interaction

This section is devoted to the presentation of the mathematical model which describes the
problem governing free vibrations of a tube bundle immersed in an incompressible viscous
fluid whose velocity field and pressure satisfy the steady Stokes equations. The tubes are
assumed to be rigid, assembled in parallel inside the fluid, and elastically mounted in
such a way that they can vibrate transversally, but they can not move in the direction
perpendicular to their sections. The fluid is assumed to be contained in a cavity which
is infinitely long, and each tube is supported by an independent system of springs (which
simulates the specific elasticity of each tube). Due to these assumptions, three-dimensional
effects are neglected, and so the problem can be studied in any transversal section of the
cavity.

Considering small vibrations of the fluid (and the tubes) around the state of rest, and
assuming that the fluid is viscous and incompressible, this is a non-classical eigenvalue
problem involving the Stokes system of equations with nonlinear conditions on the bound-
aries of the tubes, which model the fluid-solid interaction. On the boundary of the cavity
we assume the standard non-slip conditions.

Mathematically, the problem can be described in the following way (cf. [3]): Let Q¢ C
R? (the section of the cavity) be an open bounded set with locally Lipschitz continuous
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boundary I'g. We assume that there exists a family Q; # 0, j = 1,..., K, (the sections
of the tubes) of simply connected open sets such that ; C Qg for every j, ;N Q; =0
for j # ¢, and each (2; has a locally Lipschitz continuous boundary I';. With these
notations we set €2 := '\ U]K:1 Q;. Then the boundary T of 2 consists of K +1 connected
components which are I'y and I';, j = 1,..., K.

If u(x)e " is the velocity field of the fluid, p(z)e™" denotes its pressure, and v its
kinematic viscosity then the eigenvalue problem governing the free vibrations of the fluid—
solid structure which was derived by Conca, Duran and Planchard [3] obtains the following
form

—2vdive(u)+Vp—wu = 0 in{ (9)
divu = 0 inQ (10)
u = 0 only (11)
w
u = m /U(U,p)n ds on Fz (12)
r;

Here m; is the mass per unit length of the i-th tube, and k; represents the stiffness constant
of the spring system supporting the i-th tube. e(w) is the linear strain tensor of the fluid
defined by

2¢(u) = Vu + (Vu)’,

and o(u,p) denotes its stress tensor satisfying the Stokes law
o(u,p) = —pl + 2ve(u). (13)
To rewrite problem (9) — (12) in variational form let
HY(Q)? :={v € L*(Q)* : Vv € L*()*"}
be the standard Sobolev space equipped with the usual scalar product. Then clearly
H:={ve H'(Q)?:divv=0, v=0o0nTy, vconstant on each ', j =1,...,K}

is a closed subspace of H'(2)2.
It is well known from Korn’s inequality that the scalar product

(w.0) = [ e(w) :ef) do = / 3" e lwes(w) do

(9] l7j:1

defines a norm on H which is equivalent to the standard Sobolev norm. Hence, H equipped
with this scalar product is a Hilbert space.

Multiplying equation (9) by © € H and integrating by parts one gets (cf. [3])

Find w € C and uw € H, u # 0 such that for everyv € H

2 [ efw): e(@)ds = [ u-@dﬁé (wmj ; ’g) G -®), (1)
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where 7;(u) denotes the trace of w on I'; which by the definition of H is a constant

vector. By standard arguments it can be shown that the eigenproblems (9) — (12) and
(14) are equivalent in the following sense: If (u,p,w) solves the eigenproblem (9) — (12)
then (u,w) is a solution of (14), and conversely, if (u,w) is a solution of (14) then there
exists p € L*(Q) such that (u,p,w) solves (9) — (12).

Conca, Duran and Planchard [3] multiplied the rational eigenproblem (14) by w ob-
taining a quadratic problem. They proved that the eigenvalues of this problem are the
characteristic values of a compact operator acting on a Hilbert space. Hence, they ob-
tained that the set of eigenvalues of problem (14) is countable, and its only cluster point
is 0o. Moreover, they proved the following location result.

THEOREM 3.1. Let (w,u) be a solution of the rational eigenvalue problem (14). Then
the following assertions hold:

(i) Re(w) >0
(i) If Im(w) # 0 then

and
L
Re(w) 2 5p, > kily(w)® >0,
j=1

where 1 denotes the smallest eigenvalue of the linear eigenproblem:
Find p € C andv € H, v # 0 such that for every w € H

21//6(’0) ce(w)dr = p /v-@daz+2mj7j(v) () |- (15)

Q Q J=1

From (i) it follows at once that problem (14) has only a finite number of non-real
eigenvalues. In [2] Conca, Duran and Planchard proved that the maximum number of
non-real eigenvalues is 4K, and [1] contains a numerical example that demonstrates that
this bound is sharp, which is approved by our numerical example in Section 5 as well.

4 Comparison Results

In this section we prove inclusion results for the real eigenvalues w; > \/g taking advan-

tage of the minmax characterization for these eigenvalues and comparing the Rayleigh
functional with Rayleigh quotients R; of the linear eigenvalue problem (15) and Ry of the
linear problem:

Find w € C and v € H such that for every w € H

2V/e('v) ce(w)dr = p /'v -wdr + i(: <mj + %/@) v;(v) -y (w) | . (16)

Q Q
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Problem (14) fulfills the conditions of the minmax theory for the interval J := (\/% ,00)

since for

Flw,u) := —2V/e('u,) ce(w)dr + w/ lu|? dz + Z(ij + %)|7j(u)|2 (17)

Q Q
we have
F(w,u) /]u|2da:+z ——32 v (w)]* > 0, (18)
if
k; j k
mj——>0f0reveryj,1ew> max —— = —.
w? J=1... K M, m

Hence, all eigenvalues w; € J of problem (14) can be characterized by

w; = Hg}l sup p(v). (19)
v D;&V) veVND

where the Rayleigh functional p is defined by F'(w,u) = 0, and F is given in (17). By D
we denote the domain of definition of p.
LEMMA 4.1. Let Ry be the Rayleigh quotient of the linear eigenproblem (15). Then it
holds

p(u) < Ry(u) for every u € D. (20)

Proof. For every u € H, u # 0 it holds
F(Ry(u), u)

= o [ew: e(@)do + R / |u|2czx+zpq wm, + sy

K
1
= —— N k(w2 > 0.
Pty 2 (P 20

Hence, if u € D, i.e. F(w,u) = 0 has a solution p(u) € J, then it follows from (4) that
p(u) < Ri(u). O
LEMMA 4.2. Let Ry denote the Rayleigh quotient of the linear eigenproblem (16). If
Ry(u) € J for some uw € H, then w € D, and p(u) > Ry(u).

Proof. For u € H° such that Ry(u) > \/z

F(Ry(w), )
= o [ efw) s e@ o+ Fafw) [ JuP do+ 3 (Rafwm; + sy ()
Q Q j=1




and
lim F(w,u) = oc.

w—00

Thus, w € D, and p(u) > Rs(u). O
We are now in the position to proof the inclusion theorem for problem (14).
THEOREM 4.3.

(i) Assume that the j-th eigenvalue

. k

of problem (16) is contained in J. Then the nonlinear eigenproblem (14) has a j-th
etgenvalue w; € J, and p; s a lower bound of w;

pj < w; (22)
(i1) If (14) has a j-th eigenvalue w; € J, then

;< m: = mi .
wj < = i max Ry (w) (23)

Proof. (i): For V € H; let uy € V such that Ry(uy) = max,cyo Ry(v). Then

k
> 1 = U, —
Ry(uy) > Mr/rlell{llj max Ry(w) = p; > —
and Lemma 4 yields
uy €D and p(uy) = Ra(uy).
In particular V'-N D # () for every V € H;.
Moreover,
p; = min max Ry(v) = min Ry(uy)

VeH; veV?0 VeH;
< 1 < 1 .
< ) < iy e oo
By Theorem 2, (ii), the nonlinear eigenvalue problem (14) has a j-th eigenvalue w;, and
i < wj.
(ii): Since VN D # () for every V € H; we obtain from Lemma 4

w; = 521}}“ sup p(fv) < ‘I/rél}p sup Rl(v)
J_ veVNnD J_veVNnD
VND#D VND#Q
<  min max R;(v) = min max R;(v) = 7;. O
VEH; 4cy0 VeH; veV?o
VND#D

REMARK. Multiplying the nonlinear eigenproblem (14) by w and considering the
resulting quadratic eigenproblem:



Find p := % € C and v € H such that for every w € H

(/'v ~wdr + imjvj('v) -Mﬁ;)) — p(ZV/e('v) :e(w) d:L‘)
Q =1

Q

+p’ Z kjvi(v) - (@) = 0. (24)

as positive perturbation of finite range of the linear eigenproblem (15) Conca, Duran and
Planchard claimed the following bounds.

Let 0 < &1 < @y < ... be the real eigenvalues of the monlinear eigenproblem (14)
ordered by magnitude and regarding their multiplicity, and let 0 < ny < mo < ... be the
eigenvalues of the linear problem (15). Then it holds that

(I)j < Uip fOT j = 1,. . ,QK (25)
Nji—2k < w; <10y, for j>2K+1 (26)

where K denotes the number of tubes.

We already pointed out in [11] that the natural enumeration to call the smallest
eigenvalue the first one, the second smallest the second on, etc. is not appropriate for the
quadratic eigenvalue problem (24), and therefore the proof of these bounds is not correct.
The numerical example in the next section demonstrates that the bounds (25) and (26)
actually do not hold.

For those eigenvalues w; contained in J, the bounds (25) and (26) can be adjusted if
we replace the natural ordering of the eigenvalues @; by the enumeration introduced in
Section 2. The upper bound w; < 7, is already contained in Theorem 4, (ii).

The lower bound is obtained from the maxmin characterization in Theorem 2. Let
W = span{uy,...,u, 251} denote the subspace of H spanned by the eigenelements of
problem (15) corresponding to the n — 2K — 1 smallest eigenvalues, and let

K
Z={ueH: Zkﬂj(u)%(f)) = 0 for every v € H}™*.

J=1

Then obviously p(u) = R;i(u) for every w € D N Z, and we obtain from Rayleigh’s
principle and the maxmin characterization in Theorem 2

NMn—orx = min Rij(u) < min  Ry(u)

ueWwL ue(W+2)+

< inf uw) < max inf U) = w,.
B ue(W—s—Z)lmDp( )_dimVSHflueVlmDp< ) "

5 Numerical Experiments

While the variational form (14) was convenient for the theoretical study of problem (9) —
(12) its numerical treatment requires to deal with the incompressibility condition div u =



0 implicitly, and to use a mixed variational formulation, which reads (cf. [1], [4])
Find (u,p,w) € H x L*(Q) x C, (u,p) # (0,0) such that for every (v,q) € H x L*(2)

2 / e(u) : e(®)dz + / pdiv dz (27)

Sy +21<wmj+%) 3w 2,(0)

Q

/qdivudx =0. (28)
Q

Here H denotes the space
H:={ve H'(Q)?:v=0o0nTy vconstant on each T';, j=1,...,K}

which again is a closed subspace of H'()?2.

We discretized this problem by finite elements using piecewise quadratic ansatz func-
tions on a regular triangulation of €2 for the velocity field, and piecewise linear functions
on the same triangulation for the pressure yielding a rational matrix eigenvalue problem
which can be reduced to a general matrix eigenvalue problem and solved using standard
numerical software. The convergence properties of this approach are studied in [4].

We consider problem (27), (28) where €y = (0,3) x (0,3) is the section of the cave,
and four structures are contained in it with sections €; = (0.8,1.0) x (0.8,1.0) Qs =
(2.0,2.2) x (0.8,1.0), Q3 = (0.8,1.0) x (2.0,2.2) and Q4 = (2.0,2.2) x (2.0,2.2). In all
experiments we chose v = 1 and m := m; = 1, j = 1,2,3,4, and we assumed that all
k; =: k are identical.

For k > 30.82 the discrete version of (27), (28) has non-real eigenvalues, and for
k > 106.03 there exist 16 non-real eigenvalues demonstrating that the bound 4K on the
number of non-real eigenvalues is exact.

For k = 400 the smallest real eigenvalue is w; = 13.478, whereas the smallest eigenvalue
of (15) is m; = 9.671 demonstrating that (25) does not hold. Finally, k = 1 contradicts
the lower bound in (26), since Wy = 9.605, whereas n; = 9.672.

The following table contains the smallest eigenvalues of the linear problems (16) and
(15) which for m = 1 and identical k; are bounds for eigenvalues greater than VE. In
columns 4 and 5 we added the smallest real eigenvalues of the rational eigenproblem for
k =1 and k = 400 satisfying w; > V'k where these eigenvalues are enumerated in the way
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introduced in Section 2.

J 1 1 wj(k =1) wj (k = 400)

1] 5.5273441e + 00 | 9.6715372¢ + 00 | 9.6051792¢ + 00

2| 6.3743399¢ + 00 | 1.1103915¢ + 01 | 1.1055398¢ -+ 01

3 | 6.4656339¢ + 00 | 1.2237010¢ + 01 | 1.2164933¢ + 01

4| 7.1377728¢ + 00 | 1.2907175¢ + 01 | 1.2899003¢ + 01

5]8.6717113¢ + 00 | 1.3728925¢ + 01 | 1.3663594¢ + 01

6 | 9.5210984¢ + 00 | 1.4538864¢ + 01 | 1.4516629¢ + 01

7 [ 1.0069363¢ + 01 | 1.5059600¢ + 01 | 1.5026228¢ + 01

8 | 1.0290363¢ + 01 | 1.5874023¢ + 01 | 1.5872178e + 01

9 | 1.3605487¢ + 01 | 1.7630409¢ + 01 | 1.7588566¢ -+ 01
10 | 1.3716557¢ + 01 | 1.9280833¢ + 01 | 1.9246874e + 01
11 | 1.5190485¢ + 01 | 1.9647977¢ + 01 | 1.9604771e + 01
12 | 1.5870909¢ + 01 | 1.9893125¢ + 01 | 1.9848079¢ + 01
13 | 2.2807653¢ + 01 | 2.3661814e + 01 | 2.3655921¢ + 01 | 2.2948292¢ + 01
14 | 3.2789694¢ + 01 | 3.3880279¢ + 01 | 3.3877702¢ + 01 | 3.3216627¢ + 01
15 | 3.5497102¢ + 01 | 3.6107300¢ + 01 | 3.6106314e + 01 | 3.5808040¢ + 01
16 | 3.5548471e + 01 | 3.6185088¢ + 01 | 3.6183766¢ + 01 | 3.5828882¢ + 01
17 | 3.7479680e + 01 | 3.7852470¢ + 01 | 3.7851786¢ + 01 | 3.7663430¢ + 01
18 | 3.7929796¢ + 01 | 3.8388335¢ + 01 | 3.8387384¢ + 01 | 3.8142407¢ + 01
19 | 3.8082108¢ + 01 | 3.8535861¢ + 01 | 3.8535044¢ + 01 | 3.8307897¢ + 01
20 | 4.3651778¢ + 01 | 4.3695701e + 01 | 4.3695639%¢ + 01 | 4.3677373¢ + 01
21 | 4.9197938¢ + 01 | 4.9379084¢ + 01 | 4.9378915¢ + 01 | 4.9323111e + 01
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