
Neural Networks 144 (2021) 384–393

i
a
s
r
w
l
c
o
a
k
r
r
p
s
t

r

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Neural network surgery: Combining trainingwith topology
optimization
Elisabeth J. Schiessler a,∗, Roland C. Aydin a,∗, Kevin Linka b, Christian J. Cyron a

a Helmholtz-Zentrum Hereon, Institute of Material Systems Modeling, Dept. of Machine Learning and Data,
Max–Planck–Straße 1, 21502 Geesthacht, Germany
b Hamburg University of Technology, Institute of Continuum and Materials Mechanics, Eißendorfer Straße 42, 21073 Hamburg, Germany

a r t i c l e i n f o

Article history:
Received 31 March 2021
Received in revised form 27 August 2021
Accepted 30 August 2021
Available online 7 September 2021

Keywords:
Neural architecture search
Topology optimization
Singular value decomposition
Genetic algorithm

a b s t r a c t

With ever increasing computational capacities, neural networks become more and more proficient
at solving complex tasks. However, picking a sufficiently good network topology usually relies on
expert human knowledge. Neural architecture search aims to reduce the extent of expertise that is
needed. Modern architecture search techniques often rely on immense computational power, or apply
trained meta-controllers for decision making. We develop a framework for a genetic algorithm that is
both computationally cheap and makes decisions based on mathematical criteria rather than trained
parameters. It is a hybrid approach that fuses training and topology optimization together into one
process. Structural modifications that are performed include adding or removing layers of neurons,
with some re-training applied to make up for any incurred change in input–output behaviour. Our
ansatz is tested on several benchmark datasets with limited computational overhead compared to
training only the baseline. This algorithm can achieve a significant increase in accuracy (as compared
to a fully trained baseline), rescue insufficient topologies that in their current state are only able to
learn to a limited extent, and dynamically reduce network size without loss in achieved accuracy. On
standard ML datasets, accuracy improvements compared to baseline performance can range from 20%
for well performing starting topologies to more than 40% in case of insufficient baselines, or reduce
network size by almost 15%.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A common problem for any given machine learning task mak-
ng use of artificial neural networks (ANNs) is how to choose
sufficiently good network topology. Picking one that is too

mall may not yield acceptable prediction accuracy. To improve
esults, one can keep adding structural elements to the net-
ork until the desired accuracy value has been reached. Too

arge networks on the other hand may cause an explosion in
omputational cost for both training and evaluation. Finding the
ptimal balance is heavily dependent on the given task, dataset
nd further hyperparameters, and often requires expert domain
nowledge. A priori optimization is not easily possible, since
eliable estimates on network behaviour already require training
esults, and no generalization exists which topology will fit which
roblem. Researchers have applied a number of search strategies
uch as random search (Li & Talwalkar, 2019), Bayesian optimiza-
ion (Kandasamy, Neiswanger, Schneider, Poczos, & Xing, 2018),

∗ Equal contribution.
E-mail addresses: elisabeth.schiessler@hereon.de (E.J. Schiessler),

oland.aydin@hereon.de (R.C. Aydin).
ttps://doi.org/10.1016/j.neunet.2021.08.034
893-6080/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
reinforcement learning (Zoph & Le, 2017), and gradient-based
methods (Dong & Yang, 2019; Li, Khodak, Balcan, & Talwalkar,
2021; Liu, Simonyan, & Yang, 2019; Wang, Cheng, Chen, Tang, &
Hsieh, 2021; Xu et al., 2020). Another technique applied since
at least (Miller, Todd, & Hegde, 1989) are so called (neuro-)
evolutionary algorithms. These algorithms serve to evolve the
network architecture, often also training network weights at the
same time (Elsken, Metzen, & Hutter, 2019).

In this paper we propose a novel training regime incorporating
a genetic algorithm that reduces computational cost compared to
state of the art approaches of this kind (Dong & Yang, 2019; Li &
Talwalkar, 2019). We achieve this by re-using network weights
for competing modification candidates instead of retraining each
net from scratch, branching off modification candidates during
training, and letting them compete against each other until a new
main branch is selected. This fuses the evolutionary optimization
paradigm with the ANN training into an integrated framework
that folds both processes into a single training/topology opti-
mization hybrid. As such, evolutionary steps are not carried out
by a meta-controller or other black-box-like implementations,
but instead make use of mathematical tools such as singular
value decomposition (SVD) and the Bayesian information crite-

rion (BIC) (Schwarz, 1978) for network weight analysis, decision

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2021.08.034
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.08.034&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:elisabeth.schiessler@hereon.de
mailto:roland.aydin@hereon.de
https://doi.org/10.1016/j.neunet.2021.08.034
http://creativecommons.org/licenses/by/4.0/

E.J. Schiessler, R.C. Aydin, K. Linka et al. Neural Networks 144 (2021) 384–393

m
p
c

c
t
e
a
l
s
f
W
f
W
w
o
t
c

E

g
t

2

p
i
e
w
a
p
t
w
w

p
i
d
t
S
w
&
r
p
t

c
l
n
m
f
p
i
A
i
P
w
G

g
e
t
a
n

aking, and structural modifications. Network modifications are
erformed by adapting existing weights such as to incur minimal
hanges to input–output behaviour.
Our framework for a combined ANN training and neural ar-

hitecture search consists of three main components: a module
hat can perform a number of minimally invasive network op-
rations (‘‘surgeries’’), a module that analyses network weights
nd can give recommendations which modifications are most
ikely to increase (validation) accuracy, and finally a module that
erves as a genetic algorithm (the ‘‘Surgeon’’), containing the
ormer two while gradually evolving any given starting network.
ith the Surgeon, we are able to evolve and improve models

or several benchmark datasets and varying starting topologies.
e achieve particularly good results on starting topologies that
ould a posteriori have proven to be suboptimal. A great benefit
f our approach is that it adds topology optimization to ML
raining while incurring very limited additional computational
osts. Convergence is reached for all test cases within a few hours.
The supporting code can be accessed via https://github.com/

lisabethJS/neural-network-surgery.
This paper contributes a computationally cheap ansatz for a

enetic neural architecture search algorithm that makes evolu-
ionary decisions based on mathematical analysis.

. Related work

Neural architecture search (NAS) has been an increasingly
opular research topic for many years (Elsken et al., 2019), start-
ng as early as Miller et al. (1989), who presented one of the
arliest neuro-evolutionary algorithms to search for suitable net-
ork topologies. Recent approaches by Dong and Yang (2019), Li
nd Talwalkar (2019), and Zoph and Le (2017) reach competitive
erformance on benchmark datasets such as CIFAR-10. However,
his often comes at the cost of vast computational resources,
ith Zoph and Le (2017) making use of up to 800 GPUs for several
eeks.
Cai, Chen, Zhang, Yu, and Wang (2018) attempt to reduce com-

utational costs by re-using network weights, as well as train-
ng and applying a reinforcement meta-controller for structural
ecisions. They make use of a number of function-preserving
ransformations (net2net) introduced by Chen, Goodfellow, and
hlens (2016), and extend them to allow also non-sequential net-
ork structures, such as DenseNet (Huang, Liu, van der Maaten,
Weinberger, 2017). DiMattina and Zhang (2010) introduce and

igorously prove conditions, under which gradual changes of the
arametrization of a neural network are possible, while keeping
he input–output behaviour constant.

İrsoy and Alpaydın (2020) learn the network structure via so-
alled ‘‘budding perceptrons’’, in which an extra parameter is
earned for each layer, that indicates whether or not any given
ode needs to branch out again or be removed altogether. Their
ethod focuses on growing the network to the required size

rom a minimal starting topology. Frankle and Carbin (2019)
resent a method to identify particularly good network initial-
zations that can train sparse networks to competitive accuracy.
nother approach in NAS is to prune down from a larger start-
ng topology (Blalock, Gonzalez Ortiz, Frankle, & Guttag, 2020).
opular pruning techniques include applying SVD to existing net-
ork weights (Denton, Zaremba, Bruna, LeCun, & Fergus, 2014;
irshick, 2015; Xue, Li, & Gong, 2013).
There are also a number of neural architecture search strate-

ies that do not depend on manual network modifications. Liu
t al. (2019) introduced DARTS, a method for differential architec-
ure search that re-formulates the task of searching for network
rchitectures as a graph optimization problem, where all possible
etwork configurations are represented as nodes on a directed
385
acyclic graph. This technique has rapidly become very popular
and has seen a great number of extensions in various directions,
such as Dong and Yang (2019), Li et al. (2021), Wang et al. (2021)
and Xu et al. (2020). The downside of the DARTS based algorithms
is that all possible network variations are predefined in advance
and cannot be adapted during training based on the network
state. Additionally, since all nodes of a certain hierarchy level
need to be interchangeable or even skippable, the connections
between network blocks are highly restricted with regard to
network structure.

The novelty of our research lies in combining existing tools
such as net2net (Chen et al., 2016) and SVD with a genetic algo-
rithm that modifies the given network in a decision based process
instead of utilizing a black-box like decision module, while re-
taining a very high level of structural freedom. We repeatedly
generate functionally equivalent but structurally different net-
works that are then trained for a short number of epochs, after
which their performance is compared and the best candidates
are retained. Ultimately this yields a fully trained neural network
with an optimized topology. To our best knowledge no such
method has yet been proposed.

3. Methods

This work introduces and utilizes three main modules:

• modification module: performs network modifications
(‘‘surgeries’’) so as to incur minimal changes to input–output
behaviour.
• recommendation module: analyses network weights and

gives recommendations on which operations are most likely
to improve network accuracy.
• ‘‘the Surgeon’’: a genetic algorithm that links the above two

modules, and gradually evolves a given starting network.

3.1. The modification module

We want to be able to carry out a number of different modifi-
cations that can restructure network architecture while keeping
the input–output behaviour intact, and in particular avoid loss of
prediction quality. In cases where this is not possible we aim for
minimal impact changes instead. This yields network variations
that are structurally different but functionally equivalent.

In mathematical terms, let the output of a dense layer be given
by

f (x) = Φ(A · x+ b), (1)

with activation function Φ , weight matrix A and bias vector
b, as well as an arbitrary input x to that layer. We perform
four different types of modifications, namely adding or removing
neurons or whole layers. In particular, we are looking for f̃ (x) such
that

f̃ (x) ≡ f (x) ∀x, but f̃ ̸= f . (2)

Activation functions used in neural networks are usually non-
linear, or piecewise linear at best. Thus changing the activation
function will in general not produce equal results for arbitrary in-
put values. Finding modifications that still suffice Eq. (2) is there-
fore synonymous to adequately adapting the affected network
weight matrices and bias vectors.

Adding layers. Under (at least) piecewise linear activation
functions such as ReLu, one can always add neurons to a hidden
layer, or even add whole layers, without any change to the overall
network behaviour (Chen et al., 2016). Adding a whole layer is
done by using an identity matrix as a new weight matrix for this
inserted layer. In particular, the added layer will have the same

https://github.com/ElisabethJS/neural-network-surgery
https://github.com/ElisabethJS/neural-network-surgery
https://github.com/ElisabethJS/neural-network-surgery

E.J. Schiessler, R.C. Aydin, K. Linka et al. Neural Networks 144 (2021) 384–393

n
w

n
l
f

umber n of neurons as the following layer. We initialize the
eights as an identity matrix I ∈ Rn. Let Φ denote the activation

function of a dense layer and x an arbitrary input, then

Φ(x) = Φ(IΦ(x)) (3)

if and only if Φ is at least piecewise linear. In particular, for
ReLu activation, adding layers without changing the input–output
behaviour is possible.

Adding neurons. For adding neurons to an existing layer,
consider the following example. Let x ∈ Rn be the input to a
layer with weights A ∈ Rm×n, and B ∈ Rk×m the next layer’s
weights, and let the layer’s bias vector be zero w.l.o.g. Assume
the activation function Φ acting between the two layers to be an
identity mapping. Then the output y ∈ Rk is given by

y = B ·Φ(Ax) = B · (Ax). (4)

In particular, the jth entry of y is

yj = (bj1, bj2, . . . , bjm) ·

⎡⎢⎢⎣
∑n

i=1 xia1i∑n
i=1 xia2i

...∑n
i=1 xiami

⎤⎥⎥⎦ (5)

= bj1
n∑

i=1

xia1i + · · · + bjm
n∑

i=1

xia1m, (6)

where aij is the ij element ofA, and bij the ij element of B. We now
arbitrarily pick unit m and duplicate its incoming and outgoing
weights. Note that we also have to divide by 2 in order to keep
the total sum constant.

yj = bj1
n∑

i=1

xia1i + · · · +
bjm
2

n∑
i=1

xia1m +
bjm
2

n∑
i=1

xia1m (7)

= (bj1, bj2, . . . ,
bjm
2

,
bjm
2

) ·

⎡⎢⎢⎢⎢⎣
∑n

i=1 xia1i∑n
i=1 xia2i

...∑n
i=1 xiami∑n
i=1 xiami

⎤⎥⎥⎥⎥⎦ (8)

This methods yields the exact same output y ∈ Rk given input
x ∈ Rn, but the weight matrices A and B are now of dimension
(m + 1, n) and (k,m + 1) respectively, and can be extended to
include a non-zero bias term in a similar fashion.

Recall now that we chose the activation Φ to be the identity
mapping. For any other activation function, the equation in line
(7) holds true, if and only if this activation is at least piecewise
linear.

Chen et al. (2016) base their Net2WiderNet and Net2Deeper-
Net transformation on these steps.

Removing neurons. Removing neurons from a layer is rarely
possible without changing the input–output behaviour unless
some of the units are degenerate to begin with, i.e. the weight
matrix is of reduced rank. For a modification with minimal impact
on input–output behaviour we need the closest possible projec-
tion onto a lower rank subspace. As a measure for closeness we
employ the Frobenius norm, defined as follows.

Let ∥ · ∥F denote the Frobenius norm, with

∥A∥2F =
m∑
i=1

n∑
j=1

|aij|2 = trace(ATA), (9)

where A ∈ Rm×n is an arbitrary, real-valued matrix of rank
k ≤ min(m, n).

The Eckart–Young(–Mirsky) theorem states that the closest
projection onto a lower rank subspace can be found by applying
Singular Value Decomposition (SVD) to the weight matrix:
386
Let A ∈ Rm×n be the (weight) matrix of some layer Lj of
interest in a neural network, then there exists a representation

A = UΣVT (10)

with orthogonal U ∈ Rm×m,V ∈ Rn×n and rectangular diagonal
Σ ∈ Rm×n with k ≤ min(m, n) non-negative real entries σi
along its diagonal. This representation is called the Singular Value
Decomposition of A. The σi are called singular values of A, and are
usually given in descending order, i.e. σ1 ≥ σ2 ≥ · · · ≥ σk > 0. It
can be shown that ∥A∥2F =

∑
σ 2
i (A), since σi(A) corresponds to

the square root of the ith non-zero eigenvalue of ATA. Note that
U and V are projections from the (m × n) vector space spanned
by A to the (k× k) vector space spanned by Σ and back.

In order to reduce the rank of A to r < k, we set σi = 0 ∀i > r ,
and drop associated columns/rows of U and V , which is feasible
since by definition σi ≥ σi+1. We then project to a smaller matrix
Ã ∈ Rm×r by computing UΣ . In order to properly re-connect the
reduced layer Lj to the following layer Lj+1, we have to modify
Lj+1’s weight matrix to accept input of length r . In particular, we
eed to project back to the original layer size, to ensure that the
ayer weight shapes match again. We achieve this by multiplying
rom the left the weight matrix of Lj+1 with VT .

Projecting onto a lower rank subspace by setting singular
values to zero is sometimes called truncated SVD, and is used in
network pruning (Denton et al., 2014; Girshick, 2015; Xue et al.,
2013). This technique adds an intermediate layer of (potentially
much fewer) neurons, which in case of very large weight matrices
can drastically reduce the overall connection count.

Note that this projection method is not concerned at all with
a potential activation function after the network’s modified layer.
As mentioned previously, changing a layer’s activation function
is in general not possible without changes to input/output be-
haviour, since activation functions are usually non-linear. We
therefore do not perform any additional modifications to coun-
terbalance a change of activation.

Removing layers. We remove whole layers in a similar fash-
ion. Let Aj, bj be the weight matrix and bias vector of some dense
Layer Lj, and Aj+1, bj+1 those of the subsequent Layer Lj+1. We
remove the Layer Lj by simply dropping it, and modify Lj+1’s
weights by matrix multiplication, yielding L̃j+1

Ãj+1 = Aj · Aj+1, (11)

b̃j+1 = bj · Aj+1 + bj+1. (12)

This again ignores any activation function between the two layers,
and will thus cause a change in input–output behaviour.

Recuperation from surgery. As we have seen, network mod-
ifications will in general cause a small change in input–output
behaviour, typically leading to a loss in prediction accuracy. In
order to make up for this, all network modifications are given
a small amount of recuperative training (several batches) before
any comparison is made. The retraining amount was determined
by trials and statistical analysis based on a dataset1 which we do
not otherwise use in our results, to avoid overfitting the search
algorithm to a specific dataset.

3.2. The recommendation module

For the decision when to execute which network modification,
we perform a two-step analysis.

Analytical criterion for model selection. As a first order
criterion, we compute the amount of information carried by each
neuron by looking at the layer’s singular values. The number of

1 MNIST, LeCun, Bottou, Bengio, and Haffner (1998).

E.J. Schiessler, R.C. Aydin, K. Linka et al. Neural Networks 144 (2021) 384–393

n
o
m

n

i
e
c

I
i
a
f
t

d
(
b
(
t
t
f
i
i
i

B

w
a

w
a
a
i
t

B

w

d
a
w

p
t
h
t

3
s

s
n
r
p
p

t
(
c
n
a

a
c
t
s
a
o

eurons that may be removed from a layer depends on the count
f singular values that are (close to) zero, or are several orders of
agnitude smaller than the layer’s largest singular value:

r = {σi, i = 1 . . . k | σi < ϵ1σ1 ∨ σi < ϵ2, ϵ1, ϵ2 ∈ R+} (13)

This number is compared to the layer’s total neuron count nl. Let
h be the number of hidden layers in the network, and i be the
ndex of the layer in which the modification was performed. Then
ach modification candidate is given a score between 0 and 1,
alculated as follows:

• add neurons: 1− nr/nl
• add layer: (1− nr/nt) · i/h
• remove neurons: nr/nl
• remove layer: 1, if nr = nl, otherwise (nr/nl) · i/h

n particular, the higher the layer number, the more likely a layer
s added or removed. For further refinement in the future, we
im to replace this selection criterion with a more sophisticated
ormula, which would improve the optimization process beyond
he results presented herein.

Statistical criterion for model selection. The second order
ecision basis is derived from the Bayesian information criterion
BIC), also known as Schwarz information criterion. It was derived
y Schwarz (1978) to address the problem of selecting between
statistical) models of different dimension. It takes into account
he number of parameters of the given model, the sample size of
he input data, as well as the a-posteriori model error computed
rom a likelihood function of the model given its parameters and
nput data. Since methods from Bayesian statistics are applied,
t is assumed that the underlying data are independent and
dentically distributed from a family of allowed distributions.

The BIC is given by

IC = ln n · k− 2 · ln L, (14)

here k is the number of model parameters, n the sample size,
nd L the likelihood function.
In our application, sample size is constant throughout the

hole process. L needs to be estimated or calculated a-posteriori
fter a network operation has been performed. Our modifications
re intended to keep the change in input–output behaviour min-
mal, therefore the difference in L will be very small between any
wo modifications. Eq. (14) thus becomes

IC ≈ c1 · k+ c2 +∆L, (15)

here c1 and c2 are constant and ∆L is the (small) change in
error depending on the performed operation. Since the number
of parameters k may be well above 106 and c1 = ln n ≫ 1 is
ependent on the sample size, we neglect ∆L and the constants,
nd directly use k as a second order constraint when deciding
hich modifications to apply.
Thus, all potential network modifications are ranked by two

arameters. The Surgeon has two modes: it can either pick the
op n ranking operations per decision step (with n being a tunable
yperparameter), or select the highest ranking operation of each
ype. Our experiments are performed with the latter option.

.3. ‘‘The Surgeon’’: A genetic algorithm for neural architecture
earch

The final module is the Surgeon, the genetic algorithm that
earches for an optimized network architecture while training
etwork weights at the same time. We use the term genetic algo-
ithm to describe a searching meta heuristic inspired by biological
rocesses such as evolution, mutation, and selection. In this first
aper about our new ansatz, we limit our focus on perhaps
387
he most ubiquitous type of architecture: sequential networks
i.e. without recurrent or skip connections) consisting only of fully
onnected layers. As Cai et al. (2018) have shown, however, a
umber of the above described tools can be generalized easily
lso to non-sequential networks, as well as convolutional layers.
The rough idea behind the Surgeon is to alternate training

nd network optimization phases. Several competing topologies,
alled branches, may be retained concurrently. During the op-
imization phase, modification candidates are created for each
uch branch. From these, the n best performing ones are kept
nd put through another training step. One such training and
ptimization cycle is depicted in Fig. 1.

Algorithm 1 The Surgeon

function PerformSurgery(m)
input: model m
output: optimized network mopt

initial modification m0 ← initialized from model m
train m0 for initial number of epochs
list of current branches B← initialized with modif. m0
while termination criteria not met do ▷ e.g. max. epochs

list of potential modification candidates Mcand ← ∅
list of chosen modification candidates Msel ← ∅
for each branch in current branches B do

determine possible modification candidates
add candidates to Mcand

repeat
Msel ← chosen from Mcand ▷ e.g. 7 competitors
re-train Msel for small no. of batches ▷ e.g. 15 batches
compare Msel
keep n top scoring as new current branches
update current branches B ▷ e.g. best 2 branches
train B to full epoch step ▷ e.g. 10 epochs

until improvement achieved or max re-tries reached
select final best scoring branch mopt from B
return fully trained optimized network mopt

The overall structure of the Surgeon can be seen in algo-
rithm 1. First, the provided model is pre-trained for an initial
number of epochs, then the list of current branches is initialized
with it. The choice of how many branches at most are being
kept concurrently is a hyperparameter setting, and has a great
influence on the total computational cost of the Surgeon.

We then evolve and continuously update the list of concurrent
branches until termination criteria, such as the maximal number
of epochs (if limited by computational resources) or a minimum
accuracy threshold (if the topology optimization is used without
a computational resource bottleneck), are met. At each decision
point, the recommendation module analyses all networks in the
list of current branches, and ranks all potential modifications.
From these, in line 15 of algorithm 1, we select the most promis-
ing candidates, and perform the selected operations using the
modification module.

The generated candidates are re-trained for several batches,
to make up for lost performance. Our main objective function is
to maximize the accuracy achieved by any given neural network
through continuous network surgery. It is therefore sensible to
retain those network candidates in algorithm 1, line 19 that reach
the highest validation accuracy score. Note that we are scoring on
validation accuracy instead of accuracy to avoid overfitting.

Focusing on accuracy alone is a greedy approach and carries
the risk of getting stuck in local optima. We overcome this by ad-

ditionally rewarding modification candidates that show a greater

E.J. Schiessler, R.C. Aydin, K. Linka et al. Neural Networks 144 (2021) 384–393

b
o
2

(
p
b
n
t
a
m
f
c
g
c
o

t
w
c

Fig. 1. Graphical representation of the Surgeon. Each cycle starts with a training phase, where all current branches are trained for a fixed number of epochs. Then
the modification module generates new candidates for each branch based on the results provided by the analysis module. These candidates receive an appropriate
amount of recuperative training, after which the winners are selected out of the set of all candidates, thus forming the new current branches. Network graphs created
using LeNail (2019).
h
a

accuracy gain. However we need to make a distinction when
rewarding this gain. We share Cai et al. (2018)’s rationale that
an increase of 1% needs to be weighed higher in case it happens
from 90 to 91% accuracy rather than 70 to 71%. At the same time,
if an operation keeps the accuracy constant at e.g. 95% we can
assume that a local optimum may have been reached. Therefore
an operation that leads to an accuracy increase from 90% to 94%,
showing potential for further improvement, should be regarded
higher even though the reached accuracy is lower. Lastly we do
not wish to neglect network size. A 1% accuracy increase might
never be favourable at all, if the required increase in network size
is ‘‘too big’’.

Note that it is hard to define when a network has indeed
ecome ‘‘too big’’, a fact that is emphasized by the large number
f publications dealing with pruning techniques (Blalock et al.,
020).
We need to find a way to balance these three components

accuracy, accuracy gain, network size), and to create a com-
osite score by which we can rank the performance of current
ranches. As an additional restriction, the composite score should
ot depend on any global candidate statistics, nor do we want
o set a global limit for network size. Therefore we cannot in
ny meaningful way regard the total number of parameters of a
odification candidate, since we lack overall comparison. Instead,

or each candidate, we store the network size as a fraction of the
andidate’s parent’s network size. Thus, a network size fraction
reater than 1 indicates growth, a fraction smaller than 1 indi-
ates shrinking, and the identity operation yields a size fraction
f exactly 1.
We want the scoring function as well as its first order deriva-

ive to be strictly increasing with accuracy gain, but decreasing
ith size fraction. This behaviour needs to hold even when ac-
uracy gain becomes 0 or network size fraction becomes 1. The
388
Table 1
Scoring example. A denotes accuracy, AG accuracy gain, PF parameter fraction
and S the calculated score. The layer number is given in reference to the
idden layers. Winning operations, that are kept as new concurrent branches,
re indicated with an asterisk.
Operation Position A AG PF S

Remove layer* Layer 5 0.6023 0.0274 0.9977 0.9812
Identity* – 0.6016 0.0268 1.0000 0.9795
Remove 1 Neuron Layer 5 0.5829 0.0081 0.9997 0.9539
Add layer Before layer 4 0.5773 0.0025 1.0030 0.9450
Add 20 Neurons Layer 2 0.5678 −0.0070 2.6544 0.6377

following scoring function fulfils all specified requirements:

s = a+
exp (∆a)
exp (∆f)

(16)

where a is the current accuracy, ∆a the current accuracy gain,
and ∆f the current network size fraction, and is adapted from Cai
et al. (2018). A scoring example can be seen in Table 1.

As an option to alleviate greediness, the Surgeon can keep a
one cycle memory. In this case, the newly selected concurrent
branches are compared to previously best scoring ones, and re-
tained only if their achieved accuracy is at least as good as the
previous value. Should this not be the case, they are discarded and
we backtrack one step. New potential candidates are provided by
the recommendation module, and we train and compare these.
Finally the best scoring branch is returned as the optimized
network.

E.J. Schiessler, R.C. Aydin, K. Linka et al. Neural Networks 144 (2021) 384–393

T
S
l
i
o

d
E
d
h
k
t
a
t

t
n
a

able 2
tarting topologies for the Surgeon. Each topology additionally has a reshape
ayer as its input layer, as well as a dense layer without activation function as
ts output layer. The neuron count in the input and output layers is dependent
n the dataset.
Name Hidden layer count Hidden layer sizes Activation

Small 1 10 ReLu
Medium 3 10 - 10 - 10 ReLu
Large 3 300 - 100 - 100 ReLu

4. Experiments

4.1. Data

We evaluate the performance of the Surgeon on several stan-
ard benchmark datasets (SVHN, CIFAR-10, CIFAR-100, EuroSAT,
MNIST, Fashion-MNIST), which are described below. The SVHN
ataset was downloaded manually from http://ufldl.stanford.edu/
ousenumbers/. The CIFAR-10 dataset was fetched from the
eras.datasets catalogue. All others are fetched from the
ensorflow-datasets catalogue, batched, and shuffled. As an
dditional preprocessing step, we normalize the data to be within
he range [0, 1].

We pick three starting topologies that are described in Table 2,
and perform several runs of the Surgeon on each one. Note that
Table 2 omits the input layer, which is always a reshape layer
that ensures the input data is formatted as a 1-dimensional vector
instead of a multi-dimensional array, as well as the final dense
layer. The Surgeon never adapts these two layers, as they are
inherently determined by the dataset through the shape of the
training data and number of output classes.

The small starting topology is consciously chosen to be insuf-
ficient for most of the regarded datasets, to mimic a case where
a model is unknowingly trained with an inadequate network
architecture. We average our results over several runs and several
random seeds, and compare to results achieved by simply training
the starting topology for the same number of epochs. Detailed
machine properties and hyperparameter settings are listed in
Appendix.

The SVHN dataset. The (Google) Street View House Number
(SVHN) dataset was published by Netzer et al. (2011). It contains
73,257 training, as well as 26,032 validation colour images. We
use the cropped version, where images are of size 32 × 32 pixels,
and fall into 10 classes according to the numbers 0–9. Addition-
ally, 531,131 extra images of lower difficulty are available but not
currently used.

The CIFAR-10 dataset. The Canadian Institute For Advanced
Research (CIFAR)-10 dataset was published by Krizhevsky (2009).
It contains 60,000 32 × 32 pixel colour images that are evenly
divided into 10 classes. 10,000 of the images are set aside for
validation purposes.

The CIFAR-100 dataset. The CIFAR-100 dataset is equivalent
to the CIFAR-10 dataset, except that samples are evenly divided
into 100 classes.

The EuroSAT dataset. The EuroSAT dataset was published
by Helber, Bischke, Dengel, and Borth (2018, 2019). It is based
on Sentinel-2 satellite images consisting of 27000 labelled and
geo-referenced colour images of size 64 × 64 pixels, that belong
to 10 classes. We make use of the RGB version that contains only
the optical red, green and blue frequency bands.

The EMNIST dataset. The EMNIST dataset was published by
Cohen, Afshar, Tapson, and van Schaik (2017). It contains
greyscale handwritten character digits of size 28 × 28 pixels
hat are derived from the NIST special database. They depict the
umbers from 0–9 and thus fall into 10 classes. 697,932 training

s well as 116,323 validation samples are provided.

389
Table 3
Statistics over all baseline and Surgeon runs. We report means and standard
deviations.
Topology Small Medium Large

SVHN
Baseline accuracy 0.20 ± 0.00 0.34 ± 0.12 0.78 ± 0.01
Surgeon accuracy 0.29 ± 0.16 0.58 ± 0.04 0.79 ± 0.01
Rel. accuracy incr. [%] 45.00 70.59 1.28
Param. fraction incr. [%] 16.48 ± 52.0 1.97 ± 7.13 −7.23 ± 32.48

CIFAR-10
Baseline accuracy 0.28 ± 0.01 0.32 ± 0.01 0.49 ± 0.00
Surgeon accuracy 0.34 ± 0.01 0.38 ± 0.06 0.51 ± 0.00
Rel. accuracy incr. [%] 21.43 18.75 4.08
Param. fraction incr. [%] 1.12 ± 2.85 203.87 ± 417.45 2.12 ± 3.13

CIFAR-100
Baseline accuracy 0.12 ± 0.01 0.12 ± 0.01 0.20 ± 0.00
Surgeon accuracy 0.19 ± 0.00 0.14 ± 0.01 0.20 ± 0.00
Rel. accuracy incr. [%] 58.29 17.74 2.89
Param. fraction incr. [%] 865.44 ± 0.00 −0.18 ± 11.94 7.40 ± 27.69

EuroSAT
Baseline accuracy 0.11 ± 0.00 0.24 ± 0.10 0.60 ± 0.02
Surgeon accuracy 0.54 ± 0.05 0.57 ± 0.03 0.66 ± 0.01
Rel. accuracy incr. [%] 383.09 215.00 10.37
Param. fraction incr. [%] −14.31 ± 10.68 −12.87 ± 13.83 3.24 ± 4.15

EMNIST
Baseline accuracy 0.67 ± 0.00 0.63 ± 0.01 0.83 ± 0.00
Surgeon accuracy 0.73 ± 0.00 0.71 ± 0.01 0.85 ± 0.00
Rel. accuracy incr. [%] 8.13 12.10 1.54
Param. fraction incr. [%] 470.44 ± 0.00 16.98 ± 47.30 13.02 ± 9.78

Fashion-MNIST
Baseline accuracy 0.85 ± 0.01 0.85 ± 0.01 0.89 ± 0.00
Surgeon accuracy 0.85 ± 0.00 0.85 ± 0.00 0.89 ± 0.00
Rel. accuracy incr. [%] 0.47 0.65 0.06
Param. fraction incr. [%] −0.36 ± 10.44 −3.83 ± 11.64 24.94 ± 86.73

The Fashion-MNIST dataset. The Fashion-MNIST dataset was
published by Xiao, Rasul, and Vollgraf (2017). It contains greyscale
fashion image data taken from Zalando’s2 article catalogue that
fall into 10 categories. The dataset consists of 60,000 training as
well as 10,000 validation samples of size 28 × 28 pixels.

4.2. Results

We apply the Surgeon to each combination of the above
datasets and starting topologies (cf. Table 2). We do so a total
of 15 times, re-initializing the numpy and tensorflow modules
with a new random seed after every 3 runs, and report average
statistics (cf. Table 3). As a baseline, we train the starting topology
for the same number of epochs with each random seed. Note that
throughout the entire section, unless otherwise stated, we report
achieved validation accuracies rather than training accuracies.

To avoid overfitting on any specific dataset, we fix some hy-
perparameters for training (such as batch size, optimizer, and
learning rate) before starting any runs with the Surgeon (cf.
Appendix). No additional fine tuning is performed on any model.

Overall Surgeon performance. Table 3 and Fig. 2 both show
an overview of average Surgeon performance for all starting
topologies and datasets. We can see that in all cases, the Surgeon
reaches or outperforms the result of the baseline with regard
to validation accuracy. We are able to observe two types of
behaviour. In cases where the baseline accuracy is already high
to begin with, the relative accuracy increase achieved by the
Surgeon is comparatively low. However the Surgeon is often able

2 A fashion company specialized in online commerce.

http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/

E.J. Schiessler, R.C. Aydin, K. Linka et al. Neural Networks 144 (2021) 384–393
Fig. 2. Average performances of the Surgeon (S) compared to the baseline (B) for all three starting topologies (L — large, M — medium, S — small), depicted per
dataset.
Fig. 3. Left: Single run of the Surgeon on the EuroSAT dataset and small starting topology. Right: Evolution of the applied topology during the run. Boxes with
marked the letters I and O designate the input and output layers, the numbers in the remaining boxes indicate the number of neurons in the respective hidden
layers.
to decrease the required amount of network parameters without
loss in accuracy. On the other hand we are able to observe quite
significant improvements in accuracy in cases where the starting
topology is sub optimal. In fact, as can be seen in Fig. 2, there
are cases where the baseline is not learning at all whereas the
Surgeon is able to overcome the initial local minimum.

We will subsequently highlight a few interesting cases.
Topology rescue. We recall that the small starting topology,

consisting of only one hidden layer with 10 neurons, was pur-
posefully chosen to be insufficient for convergence. In fact, as we
can see in Fig. 2, the small topology baseline learns for neither
SVHN, CIFAR-10, nor EuroSAT. The Surgeon on average manages
to improve the topology and learn at least a little, even reaching
a validation accuracy above 50% in case of the EuroSAT dataset. In
case of the SVHN dataset, the global average over all runs contains
390
several instances where even with the aid of the Surgeon, the
model is not able to learn at all and stays stuck in the initial state,
as well as a number of runs where the Surgeon is able to very
quickly leave this local sink and then in fact provides a model
that learns very well.

In Fig. 3 (left), we can see a single run of the Surgeon using
the EuroSAT dataset and small starting topology, where an early
Add Layer operation allows the network to train properly. The
total parameter increase in this case is less than 1%, with the Sur-
geon preferring to add several small layers rather than widening
existing layers. Note that due to the shape of our training data
and choice of starting topology, a large portion of the network’s
parameters is required to connect the input layer to the first
hidden layer. Adding a whole layer after the first 10-unit layer
causes only a small overall increase, whereas widening the first

E.J. Schiessler, R.C. Aydin, K. Linka et al. Neural Networks 144 (2021) 384–393

s
s
t
b
s
t
a
t
t
r

l
p
(
M
i
r
o
o

t
t
l
p
c

t
1
a
f
a
a
S
m
m
m
c
i
v
c
w
c

t
v
m
S
(
t

Fig. 4. Left: Single run of the CIFAR-10 dataset and large starting topology. The Surgeon manages to overcome the local optimum at around epoch 30. Right: Single
run of the Surgeon on the Fashion-MNIST dataset and large starting topology. The Surgeon is able to reduce the total parameter count by around 14% while still
reaching the same overall validation accuracy.
hidden layer might cause a greater increment in parameter count.
Fig. 3 (right) shows the evolution of the topology over the course
of the run.

Accuracy increase. The Surgeon is able to detect and improve
ub-optimally sized network architectures. This works in cases
uch as above (cf. Fig. 3 left), where it is very obvious that little
o no learning happens, but also in less apparent ones, where the
ase topology does learn to a certain extent. In Fig. 4 (left) we can
ee a single run of the Surgeon trained on CIFAR-10 where both
he large starting topology as well as the Surgeon start learning in
similar fashion and soon reach a plateau. After a while however,
he Surgeon is able to perform an Add Layer operation that allows
he topology to overcome the local optimum which had been
eached.

Parameter reduction. As mentioned previously, using the
arge topology as a starting point for the Surgeon does not im-
rove achieved accuracy by any large margin (cf. Table 3). In Fig. 4
right) we can see a single run of the Surgeon on the Fashion-
NIST dataset using the large starting topology. The baseline

n this case is already performing quite well given that we are
egarding a very basic network architecture. In this case we can
bserve pruning by the Surgeon, such that an early Remove Layer
peration allows parameter reduction of almost 15%.
For the large starting topology, the composite scoring func-

ion given in Eq. (16) prevents any big jumps in accuracy since
hey would most likely come at the cost of a (potentially rather
arge) increase in network size. The scoring function much rather
refers network operations that keep the accuracy more or less
onstant while reducing network size.
Computational costs. In our trials the Surgeon is configured

o produce a resulting topology that has been trained for exactly
00 epochs, with decision points every 10 epochs. We allow for
maximum of two concurrent branches, as well as re-drawing

rom potential branches up to two times, cf. Appendix. On aver-
ge, 0.56 re-draws are necessary per decision step, resulting in an
verage total training amount of around 290 epochs per run of the
urgeon. The additional overhead produced by the analysis and
odification modules mostly relies on matrix calculations and
anipulations, which are highly optimized by standard python
odules such as numpy, and thus cause only negligible additional
omputation time. In particular, making use of large GPU clusters
s not a necessary requirement for running the Surgeon. For
erification purposes and in order to ensure scalability of our
ode we ran our experiments both on a standard office computer
ithout making use of any GPU acceleration, as well as a GPU
luster (cf. Appendix for detailed hardware specifications).
We can see from Fig. 2 that 100 epochs in most cases seem

o be longer than is necessary for the Surgeon to reach con-
ergence. With appropriate early stopping techniques, and/or a
ore dynamic training schedule, the total training amount for the
urgeon could be considerably reduced, and the resulting model
including its trained weights) used either as is, or further fine
uned (cf. Fig. 5).
391
Fig. 5. Example of a topology evolution performed by the Surgeon on the SVHN
dataset and medium starting topology. Early on, reducing the network size helps
to increase the accuracy level (at epochs 10 and 30). Adding a whole layer in
epoch 50 is still able to achieve some increase in accuracy. From epoch 60 on
the network oscillates between very similar states. Ideally this behaviour can be
used as an indicator for early stopping in future versions of the Surgeon.

5. Discussion and outlook

In this paper, we presented the Surgeon, a ANN/evolutionary
algorithm hybrid optimization designed for neural architecture
search. The algorithm utilizes a modification module, that is
able to perform minimally invasive network surgeries, where
the topology of the network is modified with as little change to
overall input–output-behaviour as possible. Additionally, it uses
a recommendation module, that analyses a given neural network
and indicates which structural changes may be most beneficial.
Those changes can be either increases of network width or depth
in case of high information density, or respective decreases, in
case network size can be reduced without fear of too high an
accuracy loss. Both modules do not utilize any black box be-
haviour but are based on mathematical tools, which we presented
in Section 3.

We put the Surgeon to the test on several combinations of
starting topologies and datasets. We saw that the network gen-
erated by the Surgeon is able to outperform the baseline in
case of suboptimal topologies, or reach comparable accuracies
while pruning the underlying network structure to less resource-
intensive topologies.

A very important feature of the Surgeon is that it itself is
computationally cheap, with little overhead compared to simple
baseline training. Via hyperparametre settings, it is possible to
make use of larger computational power if required/available.

E.J. Schiessler, R.C. Aydin, K. Linka et al. Neural Networks 144 (2021) 384–393

5

m
l
s
e

t
t
t
v
g
w
b
c
t
s
(
s
d

g
f
s
b
c
i
m
n
i
b
t
c
c
e

m
a
t
a

D

c
t

F

a

A
t

f
i
i

M
a
w
m
u

R

B

C

C

C

D

D

D

E

F

G

H

H

.1. Limitations of this work and future goals

For this proof of concept work, we limited ourselves to the
ost basic and ubiquitous network structures — dense layers

inked strictly in sequence. While such neural networks are best
tudied and easiest to understand and manipulate from a math-
matical perspective, there are some draw backs.
Fully connected neural networks require a fixed input shape,

hus they are not suited for a variety of classical deep learning
asks such as natural language processing (NLP) or image detec-
ion. Large tabular datasets often contain ordinal or categorical
ariables which are not well suited for deep learning tasks as
radient calculation becomes somewhat ill-defined. In particular,
e are mostly limited to making use of image classification
enchmark sets. For these, state of the art is driven by large,
omputationally expensive algorithms that allow more complex
opological elements such as convolutional or recurrent layers,
kip connections, etc., see for example Liu et al. (2019), Xu et al.
2020) and Zoph and Le (2017). In general, few benchmark re-
ults exist for fully connected neural networks trained on these
atasets.
For future work we wish to extend and improve both the Sur-

eon as well as the underlying modules. Currently, the Surgeon
ollows a static routine, with hyperparameters such as epochs
teps, number of selected candidates, or number of concurrent
ranches staying constant throughout the whole process. This
ould be changed to a more dynamic approach, and could maybe
ntegrate further features such as adaptive learning rates, or a
ore sophisticated memory, as well as early stopping mecha-
isms to improve performance gains compared to baseline train-
ng even further. The recommendation module can be improved
y finding a closer approximation for the BIC. For larger starting
opologies, the scoring function given in Eq. (16) seems to be
hosen too restrictively. The balancing between the different
omponents can be adapted to allow for more drastic additions
ven when the network is already quite large to begin with.
Lastly we want to expand the modification module to allow

ore complex topologies as well, and include an option to cross
rchitecture types. This would allow us to include e.g. convolu-
ional or recurrent elements, change a network from one type to
nother, or even freely mix and match as required.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

unding

This research did not receive any specific grant from funding
gencies in the public, commercial, or not-for-profit sectors.

ppendix. Hyperparameter settings and machine specifica-
ions

Simulations for the SVHN and CIFAR-10 datasets were per-
ormed on a Windows 10 machine with an Intel(R) Core(TM)
7-9700K CPU 3.6 GHz processor and 64,0 GB RAM. The code was
mplemented in python 3.7.7 using tensorflow 2.1.0.

Simulations for the CIFAR-100, EuroSAT, EMNIST, and Fashion-
NIST datasets were performed on a virtual machine running on
24-core 2.1 GHz Intel Xeon Scalable Platinum 8160 processor,
hich is equipped with a Tesla V100 GPU card with 16 GB
emory. The code for these datasets was ported to python 3.8.2
sing tensorflow 2.3.0 and tensorflow-datasets 4.1.0.
We chose the following hyperparameters:

The modification module.

392
• Amount of re-training per modification type:

– Identity: 1 · re-training batches
– Add Neuron: 1 · re-training batches
– Add Layer: 10 · re-training batches
– Remove Neuron: 10 · re-training batches
– Remove Layer: 10 · re-training batches
– Truncated SVD: 1 · re-training batches

The recommendation module.

• Absolute singular value threshold: ϵ2 = 0.3
• Relative singular value threshold: ϵ1 = 0.005
• Recommendation style: best scoring per modification type
• Include additional random draw: True

The Surgeon.

• Training time for winning branch: 100 Epochs
• Initial pre-training: 10 Epochs
• Interval between decision points: 10 Epochs
• Concurrent branches: 2
• Maximum re-draws per decision step: 2
• Number of batches for re-training: 25 batches

The testing setup.

• Random seeds: 6, 63, 72, 77, 97
• Loss function: Sparse categorical crossentropy
• Optimizer: SGD

– learning rate: 0.005

• Metrics: accuracy
• Batch size: 16

eferences

lalock, D., Gonzalez Ortiz, J. J., Frankle, J., & Guttag, J. (2020). What is the state
of neural network pruning? In I. Dhillon and D. Papailiopoulos and V. Sze
(Eds.), Proceedings of machine learning and systems, Vol. 2 (pp. 129–146).

ai, H., Chen, T., Zhang, W., Yu, Y., & Wang, J. (2018). Efficient architecture search
by network transformation. In 32nd AAAI conference on artificial intelligence,
AAAI 2018 (pp. 2787–2794). AAAI Press, arXiv:1707.04873.

hen, T., Goodfellow, I. J., & Shlens, J. (2016). Net2Net: Accelerating learning
via knowledge transfer. In Y. Bengio, & Y. LeCun (Eds.), 4th international
conference on learning representations, (ICLR).

ohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017). EMNIST: an extension
of MNIST to handwritten letters. arXiv:1702.05373.

enton, E. L., Zaremba, W., Bruna, J., LeCun, Y., & Fergus, R. (2014). Exploiting
linear structure within convolutional networks for efficient evaluation. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger
(Eds.), Advances in neural information processing systems 27 (pp. 1269–1277).
Curran Associates, Inc..

iMattina, C., & Zhang, K. (2010). How to modify a neural network gradually
without changing its input-output functionality. Neural Computation, 22(1),
1–47. http://dx.doi.org/10.1162/neco.2009.05-08-781.

ong, X., & Yang, Y. (2019). Searching for a robust neural architecture in four
GPU hours. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition (CVPR).

lsken, T., Metzen, J. H., & Hutter, F. (2019). Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55), 1–21.

rankle, J., & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In 7th international conference on learning
representations, (ICLR).

irshick, R. (2015). Fast r-CNN. In 2015 IEEE international conference on computer
vision (ICCV) (pp. 1440–1448). IEEE Computer Society, http://dx.doi.org/10.
1109/ICCV.2015.169.

elber, P., Bischke, B., Dengel, A., & Borth, D. (2018). Introducing eurosat: A
novel dataset and deep learning benchmark for land use and land cover
classification. In IGARSS 2018-2018 IEEE international geoscience and remote
sensing symposium (pp. 204–207). IEEE.

elber, P., Bischke, B., Dengel, A., & Borth, D. (2019). Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

http://arxiv.org/abs/1707.04873
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb3
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb3
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb3
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb3
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb3
http://arxiv.org/abs/1702.05373
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb5
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb5
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb5
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb5
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb5
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb5
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb5
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb5
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb5
http://dx.doi.org/10.1162/neco.2009.05-08-781
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb8
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb8
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb8
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb9
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb9
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb9
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb9
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb9
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb11
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb11
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb11
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb11
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb11
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb11
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb11
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb12
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb12
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb12
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb12
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb12

E.J. Schiessler, R.C. Aydin, K. Linka et al. Neural Networks 144 (2021) 384–393

H

İ

K

K

L

L

L

M

N

S

W

X

X

X

Z

uang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR). http://dx.doi.org/10.1109/
CVPR.2017.243.

rsoy, O., & Alpaydın, E. (2020). Continuously constructive deep neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 31(4), 1124–1133.
http://dx.doi.org/10.1109/TNNLS.2019.2918225.

andasamy, K., Neiswanger, W., Schneider, J., Poczos, B., & Xing, E. P. (2018).
Neural architecture search with Bayesian optimisation and optimal transport.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, &
R. Garnett (Eds.), Advances in neural information processing systems 31 (pp.
2016–2025). Curran Associates, Inc..

rizhevsky, A. (2009). Learning multiple layers of features from tiny images: Tech.
rep., University of Toronto.

eCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

eNail, A. (2019). NN-SVG: Publication-ready neural network architecture
schematics. Journal of Open Source Software, 4(33), 747. http://dx.doi.org/10.
21105/joss.00747.

i, L., Khodak, M., Balcan, N., & Talwalkar, A. (2021). Geometry-aware gradient
algorithms for neural architecture search. In 9th international conference on
learning representations (ICLR).

Li, L., & Talwalkar, A. (2019). Random search and reproducibility for neural
architecture search. In Conference on uncertainty in artificial intelligence (UAI).
393
Liu, H., Simonyan, K., & Yang, Y. (2019). DARTS: Differentiable architecture
search. In 7th international conference on learning representations (ICLR).

iller, G. F., Todd, P. M., & Hegde, S. U. (1989). Designing neural networks
using genetic algorithms. In Proceedings of the third international conference
on genetic algorithms (pp. 379–384). Morgan Kaufmann Publishers Inc..

etzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. (2011). Reading
digits in natural images with unsupervised feature learning. In NIPS workshop
on deep learning and unsupervised feature learning.

chwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,
6(2), 461–464. http://dx.doi.org/10.1214/aos/1176344136.

ang, R., Cheng, M., Chen, X., Tang, X., & Hsieh, C.-J. (2021). Rethinking
architecture selection in differentiable NAS. In 9th international conference
on learning representations (ICLR).

iao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms. arXiv:cs.LG/1708.07747.

u, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q., et al. (2020). PC-DARTS:
Partial channel connections for memory-efficient architecture search. In 8th
international conference on learning representations (ICLR).

ue, J., Li, J., & Gong, Y. (2013). Restructuring of deep neural network acoustic
models with singular value decomposition. In Proceedings of the annual con-
ference of the international speech communication association (INTERSPEECH)
(pp. 2365–2369).

oph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement
learning. In 5th international conference on learning representations (ICLR).

http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/TNNLS.2019.2918225
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb15
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb15
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb15
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb15
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb15
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb15
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb15
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb15
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb15
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb16
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb16
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb16
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb17
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb17
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb17
http://dx.doi.org/10.21105/joss.00747
http://dx.doi.org/10.21105/joss.00747
http://dx.doi.org/10.21105/joss.00747
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb19
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb19
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb19
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb19
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb19
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb20
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb20
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb20
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb21
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb21
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb21
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb22
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb22
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb22
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb22
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb22
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb23
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb23
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb23
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb23
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb23
http://dx.doi.org/10.1214/aos/1176344136
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb25
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb25
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb25
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb25
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb25
http://arxiv.org/abs/cs.LG/1708.07747
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb27
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb27
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb27
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb27
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb27
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb29
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb29
http://refhub.elsevier.com/S0893-6080(21)00347-6/sb29

	Neural network surgery: Combining training with topology optimization
	Introduction
	Related work
	Methods
	The modification module
	The recommendation module
	``The Surgeon'': A genetic algorithm for neural architecture search

	Experiments
	Data
	Results

	Discussion and outlook
	Limitations of this work and future goals

	Declaration of competing interest
	
	Appendix. Hyperparameter Settings and Machine Specifications
	References

