
ar
X

iv
:2

20
5.

12
82

8v
1

 [
cs

.D
S]

 2
5

M
ay

 2
02

2

An Asymptotic
(

4
3
+ ε
)

-Approximation for the 2-Dimensional Vector

Bin Packing Problem

Ariel Kulik∗ Matthias Mnich† Hadas Shachnai‡

May 26, 2022

Abstract

We study the 2-Dimensional Vector Bin Packing Problem (2VBP), a generalization of classic
Bin Packing that is widely applicable in resource allocation and scheduling. In 2VBP we are given
a set of items, where each item is associated with a two-dimensional volume vector. The objective
is to partition the items into a minimal number of subsets (bins), such that the total volume of
items in each subset is at most 1 in each dimension.

We give an asymptotic
(

4

3
+ ε
)

-approximation for the problem, thus improving upon the best

known asymptotic ratio of
(

1 + ln 3

2
+ ε
)

≈ 1.406 due to Bansal, Eliáš and Khan [2]. Our algorithm
applies a novel Round&Round approach which iteratively solves a configuration LP relaxation for
the residual instance and samples a small number of configurations based on the solution for the
configuration LP. For the analysis we derive an iteration-dependent upper bound on the solution
size for the configuration LP, which holds with high probability. To facilitate the analysis, we
introduce key structural properties of 2VBP instances, leveraging the recent fractional grouping
technique of Fairstein et al. [12].

∗CISPA Helmholtz Center for Information Security, Saarland Informatics Campus, Germany. ariel.kulik@cispa.de
†Hamburg University of Technology, Institute for Algorithms and Complexity, Germany. matthias.mnich@tuhh.de
‡Computer Scnience Department, Technion, Haifa, Israel. hadas@cs.technion.ac.il

http://arxiv.org/abs/2205.12828v1

Contents

1 Introduction 1

1.1 Related Work . 1
1.2 The Algorithm . 2
1.3 Technical Contribution . 5
1.4 Organization . 6

2 Preliminaries 6

3 Analysis 8

3.1 Probability Space and Properties . 8
3.2 Analysis of Round&Round . 9
3.3 Asymptotic Approximation Ratio . 16
3.4 Concentration . 17

4 Proof of the Structural Lemma 25

4.1 Construction of S . 26
4.2 Correctness . 28
4.3 Refinement for Small Items . 34

5 Existence of ψ-Relaxations 36

6 Solving the Matching-LP 38

7 References 45

1 Introduction

Bin Packing (BP) is one of the most fundamental problems in combinatorial optimization. In BP
we are given a set of items of different sizes that need to be packed in a minimum number of bins of
unit capacities. The extensive study of Bin Packing since the early 1970’s has had a great impact on
the design and analysis of approximation algorithms. In this work we study a generalization of BP,
where the items to be packed as well as bin capacities are given as two-dimensional vectors.

The input for the 2-Dimensional Vector Bin Packing Problem (2VBP) is a pair (I, v),
where I is a set of n items and v : I → [0, 1]2 is a two-dimensional volume function. A solution for
the problem is a collection of subsets of items S1, . . . , Sm ⊆ I such that v(Sb) =

∑

i∈Sb
v(i) ≤ (1, 1)

for all 1 ≤ b ≤ m and
⋃m

b=1 Sb = I.1 The size of the solution is m. Our objective is to find a solution
of minimal size.

Apart from its theoretical significance, 2VBP is widely applicable in load balancing, cutting stock
and multidimensional resource allocation in the cloud setting. A simple example is the allocation
of computing services (items) to a minimal number of identical servers (bins), where each service
requires the use of both CPU and memory. A set of services allocated to a single server may not
exceed the available memory and CPU capacity of the server. This yields an instance of 2VBP. For
other applications, see, e.g, [21, 23, 18, 27, 24].

Let OPT(I) be the value of an optimal solution for an instance I of a minimization problem P
(see the standard definition, e.g., in [25]). As in the Bin Packing problem, we distinguish between
absolute and asymptotic approximation. For α ≥ 1, we say that A is an absolute α-approximation
algorithm for P if given an instance I of P A returns a solution of value at most α · OPT(I). A is
an asymptotic α-approximation algorithm for P if, for any instance I, it returns a solution of value
at most αOPT(I) + o(OPT(I)). If, for any fixed ε > 0, there is an asymptotic α-approximation
algorithm where α = 1 + ε, then P admits an asymptotic polynomial-time approximation scheme
(APTAS). We study randomized approximation algorithms for 2VBP. We say that A is a random
asymptotic α-approximation algorithm for a minimization problem P if, for any instance I, A returns
a solution of value at most αOPT(I) + o(OPT(I)) with constant probability.

In [19] Ray showed that there is no APTAS for 2VBP, assuming P 6= NP.2 In the same work
[19], Ray also showed the problem does not admit an asymptotic approximation ratio better than 600

599 ,
assuming P 6= NP. The best known asymptotic ratio for 2VBP prior to this work is 1+ln 3

2+ε ≈ 1.406
for any ε > 0, due to Bansal, Eliáš and Khan [2]. Our main result is an improved asymptotic
approximation ratio for the problem.

Theorem 1.1. For any ε > 0 there is a polynomial-time random asymptotic
(

4
3 + ε

)

-approximation
for 2VBP.

The bound in Theorem 1.1 is achieved by an algorithm that applies our novel Round&Round
approach. The key idea is to iteratively obtain a fractional solution for a configuration LP relaxation
of the (residual) problem, and use it to randomly sample a small part of the (integral) solution for
the given instance. The analysis of the algorithm focuses on deriving an iteration-dependent bound
on the size of an optimal solution for the configuration LP.

1.1 Related Work

The 2-Dimensional Vector Bin Packing Problem is commonly studied through the lens of the d-
Dimensional Vector Bin Packing Problem (d-VBP), in which the volume of each item is a
d-dimensional vector. Formally, for d ∈ N+, the input for d-VBP is a pair (I, v) where I is the set
of items, and v : I → [0, 1]d. As in 2VBP, a solution is a collection of subset S1, . . . , Sm ⊆ I such
that

⋃m
b=1 Sb = I and vt(Sb) =

∑

i∈Sb
vt(i) ≤ 1 for all 1 ≤ b ≤ m and t ∈ {1, . . . , d}. The size of the

solution is m, and the objective is to find a solution of minimal size.
The one dimensional case (1-VBP) is the classic Bin Packing problem. A simple reduction from

Partition shows there is no α-approximation for Bin Packing with α < 3
2 , assuming P 6= NP (see,

e.g., Chapter 9 in [25]). This motivates the study of asymptotic approximations for the problem. The

1We say that (a1, a2) ≤ (b1, b2) if a1 ≤ b1 and a2 ≤ b2.
2Ray’s result addresses an oversight in an earlier proof of Woeginger [26].

1

first APTAS for Bin Packing was proposed by Fernandez de la Vega and Lueker [9], who introduced
the linear grouping technique. The paper [16] gives an approximation algorithm that uses at most
OPT +O(log2(OPT)) bins, where OPT is the size of the optimal solution for the instance. Recently,
Hoberg and Rothvoß [15] obtained a polynomial-time algorithm that returns a solution of size OPT+
O(log(OPT)). For comprehensive surveys of known results for BP see, e.g., [7, 10].

For d ≥ 2, an asymptotic approximation ratio arbitrarily close to d can be easily obtained via
a reduction to Bin Packing. The first non-trivial approximation for d-VBP was an asymptotic (1 +
O(ln d))-ratio due to [3]. This result was later improved in [1] to 1 + ln d+ ε. The paper [2] improves
the bound for d = 2 to 1+ln 3

2 +ε, and for d ≥ 3 to 1.5+ln
(

d+1
2

)

+ε, for any ε > 0. Recently, Sandeep
[20] showed there is no asymptotic o(log d)-approximation for d-VBP (we refer the reader to [20] for
the formal statement of the result). For other results see the excellent survey on multidimensional bin
packing problems of [6].

Bansal, Caprara and Sviridenko introduced in [1] a powerful randomized rounding based framework
called Round&Approx. The framework was used to obtain an asymptotic (1 + ln d+ ε)-approximation
for d-VBP, for any fixed d ≥ 2. The technique uses a configuraiton LP relaxation of the problem along
with a subset oblivious approximation algorithm. An approximate solution for the configuration LP is
interpreted as a distribution over the configurations of the instance (subsets S ⊆ I for which vt(S) ≤ 1
for every t ∈ {1, . . . , d}). This distribution is used to independently sample a subset of configurations;
items which do not belong to any of the sampled configurations are packed using the subset oblivious
algorithm. The properties of the subset oblivious algorithm combined with a concentration bound of
McDiarmid [17] are used to obtain the approximation guarantee. Round&Approx is the key framework
used to obtain the best approximation algorithms for 2-D geometric Bin Packing and for Vector Bin
Packing prior to this work.

The asymptotic (1 + ln 3
2 + ε)-approximation of [2] for 2VBP is derived through an intricate

combination of components in the Round&Approx framework with multibudgeted matching [4], along
with reduction of the number of distinct volume vectors for the items. This reduction is achieved
by applying linear grouping in one dimension and simple rounding of item volumes to multiples of a
constant in the other dimension. Since rounding is preformed over an optimal solution, the algorithm
in practice guesses (enumerates) properties of this rounding. This results in a fairly complex algorithm.
During the work on this paper we encountered a flaw in the analysis given in [2].3 We propose (in
Section 4.3) a more sophisticated rounding technique that enables to resolve the issue for d = 2, albeit
the fix is non-trivial.

Our rounding technique relies on a fractional version of the linear grouping technique applied
in [2]. The fractional grouping technique was introduced in [12] for solving optimization problems
under multiple knapsack constraints. The technique defines a partition of a set of items into groups
based on a solution for a configuration LP relaxation of the problem at hand.

1.2 The Algorithm

Given a 2VBP instance (I, v), a configuration is a subset C ⊆ I of items such that v(C) ≤ (1, 1) = 1.4

Let C(i) ∈ {0, 1} indicate whether item i appears in C. We use C to denote the set of all configurations.
That is, C = {C ⊆ I | v(C) ≤ (1, 1)}. We use a variant of the standard configuration LP, which given
a demand d̄ ∈ [0, 1]I of items is defined as follows:

LP(d̄) : min
∑

C∈C

x̄C

∀i ∈ I :
∑

C∈C

x̄C · C(i) = d̄i

∀C ∈ C : x̄C ≥ 0

(1)

Each of the variables x̄C represents a (fractional) selection of the configuration C, where the first
constraints ensure that each item i ∈ I is covered according to its demand d̄i. We use OPTf (d̄) to
denote the value of an optimal solution for LP(d̄). Our algorithms always use an integral demand

3Specifically, in page 1575 the inequality before the words “Thus by Lemma 6.1,” does not hold.
4We use the notation 1 = (1, . . . , 1) and 0 = (0, . . . , 0).

2

vector d̄ ∈ {0, 1}I , while the analysis considers fractional demand vectors. It is well known that there
is a PTAS for LP(d̄) with integral demand vectors [1].

For any vector x̄ ∈ [0, 1]C we associate a distribution over the configurations C. We say that a
random configuration R ∈ C is distributed by x̄ (and use the notation R ∼ x̄) if for every C ∈ C
Pr(R = C) = x̄C

z , where z = ‖x̄‖ ≡
∑

C∈C x̄C .
We assume our instances adhere to a specific structure. Given δ > 0, we say that an item i ∈ I is

δ-huge if v1(i) ≥ 1− δ and v2(i) ≥ 1− δ. The δ-huge free 2-Dimensional Vector Bin Packing
Problem (δ-2VBP) is the special case of 2VBP in which there are no δ-huge items, and additionally
v(i) ∈ (0, 1]2 for every i ∈ I. Solving our problem on δ-huge free instances incurs only a small increase
in the approximation ratio, as stated in the next lemma.

Lemma 1.2. For any α ≥ 1 and δ ∈ (0, 0.1), if there is a random asymptotic α-approximation for
δ-2VBP then there is a random asymptotic (α+ 4δ)-approximation for 2VBP.

The claim follows by noting that each huge item can be packed in a separate bin. This incurs only
a small overhead to the packing size (we omit the details).

Our algorithm consists of two phases, the second of which is given in Algorithm 1. We note that
Round&Round has a polynomial running time (we assume δ is fixed), and that it returns a solution
for the 2VBP instance (S0, v). The distinction between I and S0 will be used later by our algorithm
for 2VBP (see Algorithms 2). For a set of items S ⊆ I, we denote by 1S ∈ {0, 1}

I an indicator vector
in which entries corresponding to i ∈ S are equal to ‘1’, and all other entries are equal to ‘0’.5

Algorithm 1: Round&Round

Parameters: 0 < δ < 0.1, α = − ln (1− δ) and k = ⌈ln1−δ(δ)⌉, where δ
−1 ∈ N.

Input : A δ-2VBP instance (I, v), S0 ⊆ I
1 for j = 1, . . . , k do

2 Find a (1 + δ2)-approximate solution x̄j for LP(1Sj−1) and let zj = ‖x̄
j‖ be its value.

3 Independently sample ρj = ⌈αzj⌉ configurations C
j
1, . . . , C

j
ρj where Cj

ℓ ∼ x̄
j for all

ℓ ∈ {1, . . . , ρj}.

4 Update Sj ← Sj−1 \
(

⋃ρj
ℓ=1C

j
ℓ

)

.

5 end

6 Pack Sk into configurations C∗
1 , . . . , C

∗
ρ∗ using First-Fit

7 Return
(

⋃k
j=1{C

j
1 , . . . , C

j
ρj}
)

∪ {C∗
1 , . . . , C

∗
ρ∗}.

Step 6 of Algorithm 1 uses classic First-Fit to pack the remaining items (see Section 2 for more
details).

In the analysis we show that ρ∗ is negligible in comparison to OPT(I, v). Thus, the solution
generated by Algorithm 1 is comprised predominately of configurations which are randomly sampled
according to solutions for the configuration LP. Furthermore, the algorithm repeatedly solves the
configuration LP, each time using the set Sj consisting of the items not covered in previous iterations.
This stands in contrast to algorithms associated with the Round&Approx framework (e.g., [1, 2])
which solve the configuration LP once and utilize a subset oblivious algorithm (or a variant of such
algorithm) to generate a significant part of the solution following the random sampling stage.

The analysis of Algorithm 1 relies on an iteration dependent bound on OPTf (1Sj
) which holds

with high probability. We use a classification of items and configurations into categories. We say that
an item i ∈ I is δ-large if v1(i) > δ or v2(i) > δ and use L to denote the set of all δ-large items (δ is
commonly known by context). It can be easily shown that |C ∩ L| ≤ 2 · δ−1 for all C ∈ C. For every
2 ≤ h ≤ 2 · δ−1 we define

Ch = {C ∈ C | v(C ∩ L) > (1− δ, 1 − δ) and |C ∩ L| = h} . (2)

5Similarly, for a set of configurations C′ ∈ C, we use the indicator vector 1C′ ∈ {0, 1}C in which entries corresponding
to C ∈ C′ are equal to ‘1’.

3

Let C0 = C \
(

⋃2·δ−1

h=2 Ch
)

be the set of all remaining configurations. As we assume that (I, v) is an

instance of δ-2VBP (i.e., no δ-huge items), it follows that for every C ∈ C0 either v1(C ∩ L) ≤ 1 − δ
or v2(C ∩ L) ≤ 1− δ.

For vectors x̄, z̄ ∈ [0, 1]C , x̄ · z̄ =
∑

C∈C x̄C · z̄C is the dot product of x̄ and z̄. It can be shown that
if x̄∗ ∈ [0, 1]C is a solution for LP(1S0) then, ignoring negligible factors and with high probability, the
solution returned by Algorithm 1 is of size at most

x̄∗ · 1C0 +
2δ−1
∑

h=2

h+ 1

h
· x̄∗ · 1Ch ≤

3

2
· ‖x̄∗‖. (3)

This implies that, given the input S0 = I and by taking x̄∗ which corresponds to an optimal solution,
Algorithm 1 yields an asymptotic approximation ratio which is arbitrarily close to 3

2 . While we do
not include a proof of (3), the proof can be derived by modifying the proof of Lemma 3.7 and using
Lemma 3.10.

Our analysis relies on structural properties of 2VBP instances (inspired by properties presented
in [2]) by which configurations in C0 are “easy” (when selected by x̄∗) and configuration in C \ C0 are
“difficult”. Intuitively, from the viewpoint of Round&Round, a configuration C ∈ C \ C0 becomes easy
at iteration j if C ∩ L 6⊆ Sj, as in this case C ∩ Sj ∈ C0. Our analysis exploits this intuition via the
notion of touched and untouched configurations (see the formal definition in Section 3.2). In contrast,
the algorithm of [2] converts configurations in C \ C0 to configurations in C0 using a process which
inflates the number of configurations in the solution. This inflation harms the approximation ratio
(we elaborate on that in Section 1.3).

The bound in (3) suggests that the most “difficult” configurations in x̄∗ are those in C2; indeed, if
we have an optimal solution containing no configuration in C2 then we can obtain an approximation
ratio of 4

3 . On the other hand, if an optimal (integral) solution contains only configurations in C2
then a nearly optimal solution can be easily constructed using matching. As a solution may contain
both configurations in C2 and in C \ C0, we use a sophisticated combination of a matching polytope
and a configuration LP, along with the depended sampling technique of [4]. In the execution of our
algorithm Match&Round, the solution for the resulting LP is (conceptually) partitioned into two parts:
one which contains the configurations in C2 and handled using matching techniques, and another which
contains the remaining configurations that is handled by Round&Round.

We define the δ-matching graph G = (L,E) of (I, v) as the graph in which the set of vertices
consists of the δ-large items, and E = {{i1, i2} ⊆ L | {i1, i2} ∈ C2}. We use PM(G) to denote the
matching polytope of G. We refer the reader to [22] for a formal definition of the matching polytope.
Given x̄ ∈ [0, 1]C , we define the projection of x̄ on E as the vector p̄ ∈ R

E
≥0 where p̄e =

∑

C∈C s.t. e⊆C x̄C .
Let E(x̄) = p̄. We note that for any C ∈ C there is at most a single edge e ∈ E such that e ⊆ C.

The Matching Configuration LP of the instance is the following optimization problem.

MLP : min
∑

C∈C

x̄C

∀i ∈ I :
∑

C∈C

x̄C · C(i) = 1

E(x̄) ∈ PM(G)

∀C ∈ C : x̄C ≥ 0

(4)

The Matching Configuration LP is a restriction of LP(1I) in which we also require that E(x̄) is
in the matching polytope PM(G). Observe that if S1, . . . , Sm is a solution for (I, v) in which the
sets S1, . . . , Sm are disjoint then the vector x̄ ∈ {0, 1}C , defined by x̄Sb

= 1 for b ∈ [m] and x̄C = 0
for any other C ∈ C, is a feasible solution for MLP. This holds since {e ∈ E | ∃b ∈ [m] : e ⊆ Sb} is a
matching in the graph G.

Similar to the configuration LP, MLP can be approximated as well. The input for the MLP-
problem is a δ-2VBP instance (I, v). A solution is a vector x̄ ∈ R

C
≥0 which satisfies the constraints

in (4). The objective is to find a solution x̄ such that ‖x̄‖ =
∑

C∈C x̄C is minimized.

4

Lemma 1.3. For any δ ∈ (0, 0.1) there is a PTAS for the MLP-problem.

As PM(G) is defined using a non-polynomial number of constraints, both MLP and its dual have
non-polynomial number of variables and a non-polynomial number of constraints. Thus, the standard
method for solving configuration LPs using an approximate separation oracle for the dual program
fails (the method can be traced back to [16]), and more sophisticated tools are required to obtain a
PTAS. The proof of Lemma 1.3 is given in Section 6.

Given x̄ such that β̄ = E(x̄) ∈ PM(G) and a parameter γ > 0, we use an algorithm of [4] to
generate a random matching M. Let M = SampleMatching(β̄, γ). We note that SampleMatching is
a polynomial-time algorithm. The algorithm guarantees that Pr(e ∈ M) = (1 − γ)β̄e and provides
Chernoff-like concentration bounds forM (see Lemma 3.18 for details).

The pseudocode of Match&Round, our algorithm for 2VBP, is given in Algorithm 2.6 We note that
Match&Round is a polynomial-time algorithm which returns a solution for the instance (I, v).

Algorithm 2: Match&Round

Parameters: 0 < δ < 0.1, where δ−1 ∈ N.
Input : A δ-2VBP instance (I, v)

1 Find a (1 + δ2)-approximate solution x̄0 for MLP.
2 M← SampleMatching

(

E(x̄0), δ4
)

, and set S0 ← I \
(
⋃

e∈M e
)

.
3 Run Algorithm 1 on the instance (I, v) with S0 and the parameter δ. Denote the returned

solution by D1, . . . ,Dm.
4 ReturnM∪{D1, . . . ,Dm}.

Our main result follows from the next lemma.

Lemma 1.4. For any δ ∈ (0, 0.1) Algorithm 2 is a random asymptotic
(

4
3 +O(δ)

)

-approximation for
δ-2VBP.

Using Lemmas 1.4 and 1.2 we have the statement of Theorem 1.1.7 We use the standard notation
of ∧ for the minimum of two vectors element-wise.8 The analysis of Algorithm 2 relies on a partition
of the solution x̄0 obtained in Step 2 into its two “matching” and “fractional” components: x̄0 ∧ 1C2
and x̄0 ∧ 1C\C2 . We show that (w.h.p and ignoring negligible factors) |M| ≤ x̄0 · 1C2 . Furthemore,
we exploit the fact that x̄0 ∧ 1C\C2 does not select configurations from C2 to show that the number
of configurations returned by Round&Round (when invoked in Step 3 of Algorithm 2) is bounded by
4
3 · x̄

0 · 1C\C2 +
1
3 · x̄

0 · 1C2 (with constant probability and ignoring negligible factors).

1.3 Technical Contribution

Our Round&Round approach suggests a novel framework for solving covering problems. While the
elegant Round&Approx framework relies on solving an LP relaxation of a given instance once, and
then sampling configurations until each item is covered with some constant probability, our framework
solves the LP iteratively, using a relatively small number of samples of configurations in each iteration.
The remaining (uncovered) items are then packed using a simple greedy algorithm (i.e., First-Fit).
The crux of the analysis is to show the decrease in the optimal solution size for the remaining instance
along this process. We show the usefulness of this approach for improving the bound of [2] for 2VBP.
To this end, we use in the analysis new ideas and techniques on which we elaborate below.

A main tool in the analysis of [2] is an implicit structural lemma which relies on the notion of
slackness. A configuration C has δ-slack if v1(C) ≤ 1 − δ, or v2(C) ≤ 1 − δ. The authors of [2]
consider a subset S ⊆ I of items and a packing A1, . . . , Am of S in m bins, where Ab has δ-slack for
all 1 ≤ b ≤ m. They show that, with high probability, if a random set Q ⊆ S satisfies Pr(i ∈ Q) = β
for all i ∈ S and Chernoff-like concentration bounds, then Q can be packed in ≈βm bins.

6The idea to use matching algorithms is inspired by [2]. However, matching plays somewhat different roles in the two
algorithms. In particular, the MLP is introduced in this work.

7To simplify the presentation we do not optimize the constants.
8That is, for r̄1 = (r̄11 , . . . , r̄

1
k) and r̄2 = (r̄21, . . . , r̄

2
k), (r̄

1 ∧ r̄2)i = min{r̄1i , r̄
2
i } for every 1 ≤ i ≤ k.

5

The analysis of [2] heavily relies on the property that any optimal solution for 2VBP, given by
A1, . . . , AOPT, can be converted to another solution C1, . . . , Ck, where each configuration either has
δ-slack or contains a tight pair of items.9 Subsequently, the structural property can be used with
the subset of configurations among C1, . . . , Ck which have δ-slack. The authors show how to cleverly
inflate such an optimal solution into one consisting of k = 1.5OPT configurations.

The Round&Round approach allows us to reduce the overhead incurred by the inflation step. We
say that a configuration C ∈ C is touched in iteration j of Round&Round if the total volume of
uncovered10 large items in C in some dimension is at most 1− δ.11 Intuitively, for such configurations
we can skip the inflation step used by [2]. This enables to tighten the bound on the number of
bins used for the solution. This also reflects the core idea behind Round&Round, in which as the
sampling process (Step 1 of Algorithm 1) progresses, the remaining instance “becomes easier”. Due
to dependencies, implementing this approach requires an intricate calculation, in which we lower bound
the probability that a configuration C ∈ C becomes touched by some iteration. As a consequence, the
analysis requires a variant of the structural lemma in which configurations are fractionally selected in
accordance to the lower bound. Furthermore, whereas [2] used an integral solution (A1, . . . , AOPT) as
a reference point for the analysis, our analysis uses the non-matching part of x̄0 (that is, x̄0 ∧ 1C\C2)
as reference. As such, the limitations of the structural lemma of [2], allowing it to tackle integral
solutions, render it too weak for our setting.

To overcome the above-mentioned difficulties we introduce a fractional version of the structural
lemma of [2] (see Definition 2.1 and Lemma 2.2). Denote by C∗ the set of all multi-configurations,
i.e., configurations C which may contain multiple copies, C(i) > 0, of any item i ∈ I (see the precise
definition in Section 2). Let λ̄ ∈ [0, 1]C

∗

be a vector such that any C ∈ supp(λ̄) has δ-slack,12 and
denote by w̄i =

∑

C∈C∗ λ̄C ·C(i) the total (fractional) coverage of item i by λ̄, for any i ∈ I. We show
that if d̄ ∈ [0, 1]I is a random demand vector such that E[d̄i] ≤ βw̄i, and d̄ satisfies some concentration
bounds, then OPTf (d̄) . β‖λ̄‖. To this end, we replace the classical linear grouping used in [2] (in
one dimension of an item) by a fractional grouping technique introduced in [12] (see the details in
Section 4.1).

1.4 Organization

In Section 2 we give some definitions and notation, as well as the key structural properties of 2VBP
instances used in our analysis. Section 3 gives the analysis of Match&Round, along with a proof of its
approximation guarantee, as stated in Lemma 1.4.

In Section 4 we prove Lemma 2.2, our main Structural Lemma. Section 5 gives the proofs of
two structural properties used to obtain configurations with δ-slack (stated as Lemmas 2.4 and 2.5).
Finally, in Section 6 we show that MLP admits a PTAS (stated as Lemma 1.3).

2 Preliminaries

We extend the definition of configuration to allow multiple occurrences of items. Let (I, v) be a 2VBP
instance. A multi-set over I is a function C : I → N. For i ∈ I we say that i ∈ C if C(i) > 0. A
multi-configuration is a multi-set C over I such that v(C) =

∑

i∈I C(i) · v(i) ≤ (1, 1). We use C∗ to
denote the set of all multi-configurations. We identify the set C ⊆ I with the multi-set C ′ in which
C ′(i) = C(i).

Given x̄ ∈ [0, 1]C (x̄ ∈ [0, 1]C
∗
) the coverage of x̄ is the vector ȳ ∈ [0, 1]I define by ȳi =

∑

C∈C x̄C ·C(i)
(ȳi =

∑

C∈C∗ x̄C · C(i)) for every i ∈ I. We say that ȳ ∈ [0, 1]I is small items integral if ȳi ∈ {0, 1} for
any i ∈ I \ L. Similarly, we say that x̄ ∈ [0, 1]C (x̄ ∈ [0, 1]C

∗

) is small items integral if its coverage is
small items integral.

Recall that OPT(I, v) is the minimal solution size for the instance (I, v). Also, given ū ∈ R
I define

the tolerance of ū by tol(ū) = max
{
∑

i∈C ūi
∣

∣ C ∈ C
}

. Intuitively, the vector ū associates with each
item i ∈ I some weight, ū; tol(ū) is the maximal total weight of any configuration C w.r.t. ū. Our
analysis relies on the existence of Linear Structures.

9A pair of items i1, i2 ∈ L is tight if v({i1, i2}) > (1− δ, 1− δ).
10Recall that uncovered items are included in Sj .
11An item i ∈ I is large if v1(i) ≥ δ or v2(i) ≥ δ.
12We define supp(x̄) = {C ∈ C | x̄C > 0}.

6

Definition 2.1 (Linear Structure). Let δ,K > 0, (I, v) be a δ-2VBP instance, λ̄ ∈ [0, 1]C
∗

and
w̄ ∈ [0, 1]I be the coverage of λ̄. A (δ,K)-linear structure of λ̄ is S ⊆ R

I
≥0 where |S| ≤ K, and S

satisfies the following property. For any small items integral vector z̄ ∈ [0, 1]I and β ∈
[

δ5, 1
]

such
that supp(z̄) ⊆ supp(w̄) and

∀ū ∈ S : z̄ · ū ≤ β · w̄ · ū+
1

K10
·OPT(I, v) · tol(ū), (5)

it holds that OPTf (z̄) ≤ β · (1 + 10δ) · ‖λ̄‖+K + δ10 ·OPT(I, v).

Intuitively, a linear structure implies that if a demand vector z̄ satisfies a ‘small’ number of con-
straints w.r.t β (K is a constant, as defined in Lemma 2.2) then we obtain a decrease in OPTf (z̄) by
factor of β. While linear structures do not necessarily exist for arbitrary vectors λ̄, we show that such
structures exist for vectors which only select configurations with slack. We say that C ∈ C∗ has δ-slack
in dimension d ∈ {1, 2} if vd(C) ≤ 1 − δ. We say that C ∈ C∗ has δ-slack if there is d ∈ {1, 2} such
that C has δ-slack in dimension d. Finally, we say λ̄ ∈ [0, 1]C

∗

is with δ-slack if for any C ∈ supp(λ̄)
it holds that C has δ-slack.

Lemma 2.2 (Structural Lemma). Let (I, v) be a δ-2VBP instance, where δ ∈ (0, 0.1), and δ−1 ∈ N.
There is a set S∗ ⊆ R

I
≥0 such that |S∗| ≤ ϕ(δ) · |L|4, where ϕ(δ) = exp

(

δ−20
)

, which satisfies the

following property.13 For any small items integral λ̄ ∈ [0, 1]C
∗
with δ-slack, there is a (δ, ϕ(δ))-linear

structure S of λ̄ where for all ū ∈ S: if supp(ū) ∩ L 6= ∅ then ū ∈ S∗.

The proof of the lemma (given in Section 4) uses some of the structural properties shown in [2],
along with the recent concept of fractional grouping, adopted from [12]. While the set S∗ does not
limit the number of structures which may be generated by the lemma, it limits the set of vectors these
structures may use. This property is crucial for our analysis.

To show the existence of linear structure we often need to convert an arbitrary configuration to a
vector λ̄ with a slack. To this end, we use the following definition and lemmas.

Definition 2.3. Given C ∈ C and ψ ≥ 1, we say that λ̄ ∈ [0, 1]C
∗

is a ψ-relaxation of C if the
following conditions hold:

1. λ̄ is with δ-slack.

2. ‖λ̄‖ ≤ ψ.

3.
∑

C′∈C∗ λ̄C′ · C ′(i) = C(i) for every i ∈ I.

Lemma 2.4. Let δ ∈ (0, 0.1) s.t. δ−1 ∈ N, then for any C ∈ C0 there is a (1 + 4δ)-relaxation of C.

Lemma 2.5. Let δ ∈ (0, 0.1). For any 2 ≤ h ≤ 2δ−1 and C ∈ Ch There is an h
h−1-relaxation of C.

Lemma 2.6. Let δ ∈ (0, 0.1) and C ∈ C such that v(C) ≤ (δ, δ), then there is a 4δ-relaxation of C.

The proofs of Lemmas 2.4, 2.5, and 2.6 are given in Section 5. Some of the statements and
techniques used in the proofs can be viewed as variants of Lemma 5.3 in [2].

We use algorithm First-Fit in several places. The input for the algorithm is a 2VBP instance (I, v)
and a subset of items S ⊆ I. Throughout its execution First-Fit maintains a set A1, . . . , Am ⊆ S
of configurations, and iterates over the items in S. For each item i ∈ S First-Fit examines the
configurations sequentially until it finds a configuration Ai to which i can be added without violating
the volume constraints. If no such configuration exists, First-Fit adds a new configuration Am+1 = {i}.
The next lemma follows from a simple analysis of First-Fit for BP (see, e.g., Chapter 9 of [25]), by
taking for each item i ∈ I in the 2VBP instance v̂1(i) = v̂2(i) = max{v1(i), v2(i)}, and considering the
problem in a single dimension.

Lemma 2.7. Given a 2VBP instance (I, v) and a subset of items S ⊆ I, First-Fit returns a packing
of S in at most 2 · (v1(S) + v2(S)) + 1 bins.

13Throughout the paper, for x ∈ R, exp(x) = ex, where e = 2.718.. is the base of the natural logarithm.

7

3 Analysis

In this section we give the analysis of Algorithm 2. Throughout this section we assume the δ-2VBP
instance (I, v) and δ ∈ (0, 0.1) are fixed. Thus, notations such as ρj, Sj C

j
ℓ , and M refer to the

corresponding variables in the execution of Algorithm 2, with (I, v) as its input and δ as the parameter.
We also use ϕ(δ) = exp(δ−20) as in Lemma 2.2 and OPT = OPT(I, v). We commonly use k =
⌈ln1−δ(δ)⌉ ≤ δ

−2.
In Section 3.1 we define the probabilistic space and prove some basic properties. The core of

the analysis is in Section 3.2 which bounds the number of configuration sampled by Round&Round.
Section 3.3 gives the proof Lemma 1.4. The analysis involves the use of several concentration bounds
whose proofs are simple yet technical. To avoid diversion from the main flow of the analysis, we defer
the proofs of the concentration bounds to Section 3.4.

3.1 Probability Space and Properties

We start with a formal definition of the probability space generated by the algorithm, denoted by
(Ω,F ,Pr). Observe that ρj ≤ ⌈αzj⌉ ≤

⌈

(− ln(1− δ)) (1 + δ2)OPT
⌉

≤ OPT for all j ∈ [k], as δ <

0.1.14 W.l.o.g assume that in each iteration Algorithm 1 samples OPT configurations Cj
1 , . . . , C

j
OPT

independently according to x̄j and ignores configurations Cj
ρj+1, . . . , C

j
OPT. Furthermore, we may

assume that Ω is finite. Define the random variables P0 = S0 and Pj = (Cj
1 , . . . , C

j
OPT) for j ∈ [k].

Let Fj = σ(P0, P1, . . . , Pj) be the σ-algebra of the random variables P0, P1, . . . , Pj . We also define
F−1 = {∅,Ω}. It follows that F−1 ⊆ F0 ⊆ F1 ⊆ . . . ⊆ Fk.

We use conditional expectations and probabilities given the σ-algebra Fj . We refer the reader
to standard textbooks on probability (e.g., [5]) for the formal definitions. Intuitively, E [X|Fj] is the
expectation of X given the sample outcomes upto iteration j, and as such depends on the outcomes
of the first j iterations.

The parameter α is set so the probability of i ∈ Sj decreases exponentially with j, as shown in
the next lemma. Given a boolean expression D, we define 1D ∈ {0, 1}, where 1D = 1 if D is true and
1D = 0 otherwise. If D is random so is 1D.

Lemma 3.1. For any j ∈ [k] and i ∈ I it holds that Pr (i ∈ Sj | Fj−1) ≤ (1− δ) · 1i∈Sj−1 .

Proof. We can write

Pr
(

1i∈Sj

∣

∣Fj−1

)

= 1i∈Sj−1 · Pr
(

∀ℓ ∈ ρj : i /∈ C
j
ℓ

∣

∣

∣
Fj−1

)

= 1i∈Sj−1 ·

ρj
∏

ℓ=1

Pr
(

i /∈ Cj
ℓ

∣

∣

∣
Fj−1

)

= 1i∈Sj−1

(

1−
1i∈Sj−1

zj

)ρj

≤ 1i∈Sj−1 · exp (−α) = 1i∈Sj−1 · (1− δ).

The first equality holds by the definition of Sj, and the second holds since Cj
1 , . . . , C

j
ρj are conditionally

independent given Fj−1 (note that ρj is Fj−1-measurable). The third equality holds since x̄j is a
solution to LP(1Sj−1). The inequality uses ρj ≥ αzj and

(

1− 1
x

)x
≤ exp(−1) for x ≥ 1.

Recall that ρ∗ is the number of configurations used by First-Fit in Step 6 of Algorithm 1. By
Lemma 3.1, it follows that E[v1(Sk)+ v2(Sk)] ≤ (1− δ)k(v1(I)+ v2(I)) ≤ 2 · δOPT, and by Lemma 2.7
we have E[ρ∗] ≤ 4δOPT + 1. The next lemma uses a concentration bound to show that, with high
probability, ρ∗ does not significantly deviate from its expectation.

Lemma 3.2. With probability at least 1− δ−2 · exp
(

−δ7 ·OPT
)

it holds that ρ∗ ≤ 16 · δ ·OPT+ 1.

The proof of Lemma 3.2 is given in Section 3.4.
Observe that E [|M|] = (1 − δ4) · x̄0 · 1C2 . We use the concentration bounds of [4] to show that

w.h.p |M| is close to its expectation.

Lemma 3.3. It holds that |M| ≤ x̄0 · 1C2 + δ2 ·OPT with probability at least 1− exp
(

−δ10 ·OPT
)

.

14For any k ∈ R we define [k] = {j ∈ N | 1 ≤ j ≤ k}.

8

The proof of the lemma is given in Section 3.4.
The size of the solution returned by Algorithm 2 is |M|+

∑k
j=1 ρj + ρ∗. As Lemmas 3.2 and 3.3

give upper bounds for |M| and ρ∗, it remains to derive a bound on
∑k

j=1 ρj, the total number of
configurations sampled by Round&Round.

3.2 Analysis of Round&Round

Our analysis relies on the key notion of untouched configurations. We define the set of untouched
configurations at iteration j ∈ {0, 1, . . . , k} by

Uj = {C ∈ C | C ∩ Sj /∈ C0} = {C ∈ C | v(C ∩ Sj ∩ L) > (1− δ, 1 − δ)} .

Since S0 ⊇ S1 ⊇ . . . ⊇ Sk, it follows that U0 ⊇ U1 ⊇ . . . ⊇ Uk. We denote by T0 = C \U0 the initial set
of touched configurations, and by Tj = Uj−1 \ Uj the configurations that become touched in iteration
j, for j ∈ [k]. Observe that C0 ⊆ T0. We refine the sets Uj and Tj by defining Uj,h = Uj ∩ Ch and
Tj,h = Tj ∩ Ch for any j ∈ {0, 1, . . . , k} and 0 ≤ h ≤ 2 · δ−1.

Intuitively, we view configurations in C0 as “easy” in comparison to configurations in C \ C0 which
are more difficult. This distinction stems from fact that we can only construct linear structure for
configurations with slack (Lemma 2.2), and since we can attain slack for configuration in C0 with
negligible overhead (Lemma 2.4). As such, the configurations in Uj can be viewed as configurations
which “remain difficult” after iteration j, and the configurations in Tj are the configurations which
“become easy” in iteration j.

Observe that

k
∑

j=1

ρj ≤ k + α(1 + δ2)

k−1
∑

j=0

OPTf (1Sj
) ≤ k + (1 + 2δ)δ

k−1
∑

j=0

OPTf (1Sj
), (6)

where the first inequality uses ρj = ⌈αzj⌉ ≤ α(1 + δ2)OPTf (1Sj
) + 1, and the second inequality uses

α(1 + δ2) ≤ (1 + 2δ)δ. In the following we derive an upper bound on δ
∑k−1

j=0 OPTf (1Sj
). By (6) this

would imply a bound on
∑k

j=1 ρj, the number of configurations sampled by Round&Round.

Recall that x̄0 is the solution for MLP found in Step 2 of Algorithm 2. We define x̄∗ ∈ [0, 1]C by

∀C ∈ C : x̄∗C =
∑

C′∈U0\C2 s.t. C′∩L=C

x̄0C′ .

Informally, x̄∗ can be viewed as selecting all the configurations in U0 \C2 as in x̄0, and then discarding
the small items. Since U0 is F0-measurable and x̄0 is F−1-measurable, it follows that x̄∗ is F0-
measurable. It can be easily verified that x̄∗ · 1Ch = x̄0 · 1U0,h

for every 3 ≤ h ≤ 2 · δ−1 and
x̄∗ · 1C0 = x̄∗ · 1C2 = 0. Furthermore, for any C ∈ supp(x̄∗) it holds that C ⊆ S0 ∩ L.

Let ȳ∗ ∈ [0, 1]I be the coverage of x̄∗. It follows that supp(ȳ∗) ⊆ S0∩L. We note that our definition
of x̄∗ does not include the coverage of items by configurations in T0 ∪ C2 in x̄0. The coverage of these
items is given by 1I − ȳ

∗. In the analysis we consider these coverage vectors separately, using the
inequality

δ

k−1
∑

j=0

OPTf (1Sj
) ≤ δ

k−1
∑

j=0

OPTf (1Sj
∧ ȳ∗) + δ

k−1
∑

j=0

OPTf

(

1Sj
∧ (1I − ȳ

∗)
)

. (7)

The configurations in supp(x̄∗) are the configuration which remain “difficult” after the sampling
of M, and thus ȳ∗ represents the coverage of items by these difficult configurations. The remaining
configurations are either in T0 or in C2; as the configuration in T0 are “easy”, we use them to compensate
for items which were not selected by the matchingM. Due to a technical limitation of linear structures
we eliminate the small items from ȳ∗.

Our analysis relies on the following application of linear structures in conjunction with Lemma 3.1
and concentration bound.

9

Lemma 3.4. For j ∈ {0, 1, . . . , k}, let λ̄ ∈ [0, 1]C
∗

be an Fj-measurable random vector, w̄ be the
coverage of λ̄, S be an Fj-measurable random (δ, ϕ(δ))-linear structure of λ̄, and d̄ ∈ [0, 1]I be a small
items integral Fj-measurable random demand vector. Then,

∀j ≤ r ≤ k : OPTf

(

d̄ ∧ 1Sr

)

≤ (1− δ)r−j(1 + 10δ)‖λ̄‖+ ϕ(δ) + δ10OPT,

with probability at least ξ − ϕ(δ)2 · exp
(

− OPT
ϕ25(δ)

)

, where

ξ = Pr

(

∀ū ∈ S : (1Sj
∧ d̄) · ū ≤ w̄ · ū+

1

ϕ11(δ)
·OPT · tol(ū)

)

. (8)

The proof of the lemma is given in Section 3.4. Note that by Lemma 3.1, we have that E[(1Sr ∧
d̄) · ū | Fj] ≤ (1 − δ)r−j · (1Sj

∧ d̄) · ū for any ū ∈ S. The proof of the lemma uses a concentration
bound to show that with high probability (1Sr ∧ d̄) · ū . (1− δ)r−j · (1Sj

∧ d̄) · ū; the linear structure
is used to bound OPTf (1Sj

∧ d̄), assuming the event in (8) occurs. We proceed to bound separately

δ
∑k−1

j=0 OPTf (1Sj
∧ ȳ∗) (see Lemma 3.7) and δ

∑k−1
j=0 OPTf

(

1Sj
∧ (1I − ȳ

∗)
)

(see Lemma 3.10). The

bound on δ
∑k−1

j=0 OPTf (1Sj
∧ ȳ∗) is derived using the next lemmas.

Lemma 3.5. With probability at least 1− δ−10 exp
(

−δ50 ·OPT
)

it holds that

∀2 ≤ h ≤ 2 · δ−1, j ∈ [k] :

∣

∣

∣

∣

E
[

x̄∗ · 1Tj,h

∣

∣ Fj−1

]

− x̄∗ · 1Tj,h

∣

∣

∣

∣

≤ δ20 ·OPT. (9)

The proof, given in Section 3.4, is a simple application of a concentration bound.

Lemma 3.6. There exists µ : (0, 0.1) → R+, independent of the instance (I, v) and δ, such that

∀2 ≤ h ≤ 2 · δ−1, j ∈ [k] : x̄∗ · 1Uj,h
≥ (1− δ)h·j · x̄∗ · 1U0,h

− δ10 ·OPT or OPTf (1Sj
) ≤ µ(δ),

with probability at least 1− δ−10 · exp
(

−δ50 ·OPT
)

.

The lemma follows from the inequality Pr (C ∈ Uj,h | Fj−1) ≥ 1C∈Uj−1,h
·
(

1− h
zj

)α·zj+1
which

follows from Lemma 3.1, the observation that
(

1− h
z

)α·z+1
→ (1 − δ)h as z → ∞, and Lemma 3.5.

The dependence on µ in the lemma arises as the observation holds only if z is sufficiently large. The
proof is given in Section 3.4. Henceforth, we use µ to denote the function in Lemma 3.6.

Lemma 3.7. Assuming OPT > δ−30 · (ϕ(δ) + µ(δ)), with probability at least 1−ϕ4(δ) · exp
(

− OPT
ϕ25(δ)

)

it holds that

δ

k−1
∑

j=0

OPTf (1Sj
∧ ȳ∗) ≤

4

3
· x̄0 · 1U0\C2 + 30 · δ ·OPT.

Proof. For every j ∈ [k] we define d̄j ∈ [0, 1]I , the touched demand of iteration j, as the coverage of
x̄∗ ∧ 1Tj

. This is the coverage of items in configurations that become touched in iteration j, given by

d̄ji =
∑

C∈Tj
x̄∗C · C(i) for all i ∈ I. For every i ∈ I and r ∈ {0, 1, . . . , k − 1} we have

ȳ∗i −
r
∑

j=1

d̄ji =
∑

C∈C

x̄∗C · C(i)−
r
∑

j=1

∑

C∈Tj

x̄∗C · C(i) =
∑

C∈Ur

x̄∗C · C(i),

where the last equality follows from supp(x̄∗) ∩ T0 = ∅ (by the definition of x̄∗). Hence, x̄∗ ∧ 1Ur is a

solution for LP
(

ȳ∗ −
∑r

j=1 d̄
j
)

, and thus OPTf

(

ȳ∗ −
∑r

j=1 d̄
j
)

≤ x̄∗ · 1Ur . It follows that for every

r ∈ {0, 1, . . . , k − 1},

OPTf (ȳ
∗∧1Sr) ≤

r
∑

j=1

OPTf

(

d̄j ∧ 1Sr

)

+OPTf

(

ȳ∗−
r
∑

j=1

d̄j
)

≤
r
∑

j=1

OPTf

(

d̄j ∧ 1Sr

)

+ x̄∗ ·1Ur . (10)

10

We use Lemma 3.4 to bound the term OPTf

(

d̄j ∧ 1Sr

)

. To this end, we construct a vector

λ̄j ∈ [0, 1]C
∗

for every j ∈ [k]. For any 2 ≤ h ≤ 2 · δ−1 and C ∈ Ch, let γ̄
C be a h

h−1 -relaxation of C.

The existence of γ̄C is guaranteed by Lemma 2.5. We define

∀j ∈ [k] : λ̄j =
∑

C∈C\C0

x̄∗C ·
(

Pr (C ∈ Tj | Fj−1)− δ · 1C∈Uj−1

)

· γ̄C , (11)

and let w̄j be the coverage of λ̄j. Since Uj−1 is Fj−1-measurable, it follows that λ̄j is Fj−1-measurable
(and thus also Fj-measurable). Furthermore, since γ̄C is with δ-slack for every C ∈ C \ C0, it follows
that λ̄j is with δ-slack for every j ∈ [k].

Now, for every i ∈ L and j ∈ [k], we have

E

[

d̄ji · 1i∈Sj

∣

∣

∣
Fj−1

]

= E

[

∑

C∈C

1C∈Tj
· 1i∈Sj

· x̄∗C · C(i)

∣

∣

∣

∣

∣

Fj−1

]

= E

∑

C∈C\C0

(

1C∈Tj
− 1C∈Tj

· 1i/∈Sj

)

· x̄∗C · C(i)

∣

∣

∣

∣

∣

∣

Fj−1

=
∑

C∈C\C0

(

Pr (C ∈ Tj | Fj−1)− E

[

1i/∈Sj
1C∈Uj−1 | Fj−1

])

· x̄∗C · C(i).

(12)

The second equality uses Tj ∩ C0 = ∅ for j ≥ 1, and the third equality uses 1C∈Tj
1i/∈Sj

= 1C∈Uj−1 ·
1C/∈Uj

· 1i/∈Sj
= 1C∈Uj−1 · 1i/∈Sj

for any configuration C such that i ∈ C. By Lemma 3.1, we have

E

[

1i/∈Sj
1C∈Uj−1

∣

∣

∣
Fj−1

]

≥ δ · 1C∈Uj−1 for any C ∈ C and i ∈ C ∩ L. Furthermore, since γ̄C is a

relaxation of C, we have that C(i) =
∑

C′∈C∗ γ̄CC′ · C ′(i). By incorporating these into (12), we have

E

[

d̄ji · 1i∈Sj

∣

∣

∣
Fj−1

]

≤
∑

C∈C\C0

x̄∗C ·
(

Pr (C ∈ Tj | Fj−1)− δ · 1C∈Uj−1

)

·
∑

C′∈C∗

γ̄CC′ · C ′(i)

=
∑

C′∈C∗

C ′(i) ·
∑

C∈C\C0

x̄∗C ·
(

Pr (C ∈ Tj | Fj−1)− δ · 1C∈Uj−1

)

· γ̄CC′ =
∑

C′∈C∗

C ′(i) · λ̄jC′ = w̄j
i

(13)

for every i ∈ L and j ∈ [k]. Also, for any i ∈ I \ L and j ∈ [k], it holds that E

[

d̄ji · 1i∈Sj
| Fj−1

]

=

0 ≤ w̄j
i , as supp(ȳ

∗) ⊆ L and ȳ∗ is the coverage of x̄∗.
By Lemma 2.2 there is a (δ, ϕ(δ))-linear structure Sj of λ̄j for any j ∈ [k].

Claim 3.8. For any j ∈ [k] it holds that

Pr

(

∀ū ∈ Sj : (1Sj
∧ d̄j) · ū ≤ E

[(

1Sj
∧ d̄j

)

· ū
∣

∣ Fj−1

]

+
OPT

ϕ11(δ)
· tol(ū)

)

≥ 1−ϕ(δ)·exp

(

−
OPT

ϕ25(δ)

)

The proof of Claim 3.8 (given in Section 3.4) follows from an application of a concentration bound
. By (13), it holds that E

[

ū ·
(

d̄j ∧ 1Sj

)∣

∣Fj−1

]

≤ ū · w̄j for any j ∈ [k] and ū ∈ Sj; therefore,

Pr

(

∀ū ∈ Sj : (1Sj
∧ d̄j) · ū ≤ w̄j · ū+

OPT

ϕ11(δ)
· tol(ū)

)

≥

≥Pr

(

∀ū ∈ Sj : (1Sj
∧ d̄j) · ū ≤ E

[(

1Sj
∧ d̄j

)

· ū
∣

∣Fj−1

]

+
OPT · tol(ū)

ϕ11(δ)

)

≥ 1− ϕ(δ) · exp

(

−
OPT

ϕ25(δ)

)

.

The last inequality is by Claim 3.8. Thus, by Lemma 3.4, with probability at least

1− k · ϕ(δ) · exp

(

−
OPT

ϕ25(δ)

)

− k · ϕ2(δ) · exp

(

−
OPT

ϕ25(δ)

)

≥ 1− ϕ3(δ) · exp

(

−
OPT

ϕ25(δ)

)

,

it holds that

∀j ∈ [k], j ≤ r ≤ k : OPTf

(

d̄j ∧ 1Sr

)

≤ (1− δ)r−j(1 + 10δ)‖λ̄j‖+ ϕ(δ) + δ10OPT. (14)

11

We henceforth assume that (14), as well as the statements of Lemmas 3.5 and 3.6 hold.
For every j ∈ [k],

‖λ̄j‖ =
∑

C∈C\C0

x̄∗C ·
(

Pr (C ∈ Tj | Fj−1)− δ · 1C∈Uj−1

)

· ‖γ̄C‖

≤
2·δ−1
∑

h=2

∑

C∈Ch

x̄∗C ·
(

Pr (C ∈ Tj | Fj−1)− δ · 1C∈Uj−1

)

·
h

h− 1

=
2·δ−1
∑

h=2

h

h− 1

(

E
[

x̄∗ · 1Tj,h

∣

∣ Fj−1

]

− δ · x̄∗ · 1Uj−1,h

)

≤
2·δ−1
∑

h=2

h

h− 1

(

x̄∗ · 1Tj,h
+ δ10 ·OPT− δ · x̄∗ · 1Uj−1,h

)

≤
2·δ−1
∑

h=2

h

h− 1

(

(1− δ)x̄∗ · 1Uj−1,h
− x̄∗ · 1Uj,h

)

+ δ8 ·OPT.

(15)

The first inequality holds since γ̄C is an h
h−1 -relaxation of C for any C ∈ Ch, the second inequality is

by Lemma 3.5, and the last inequality uses Tj,h = Uj−1,h \ Uj,h.
Combining (14) and (15) with OPT > δ−30ϕ(δ), we have

OPTf

(

d̄j ∧ 1Sr

)

1 + 10δ
≤ (1− δ)r−j

2·δ−1
∑

h=2

h

h− 1

(

(1− δ)x̄∗ · 1Uj−1,h
− x̄∗ · 1Uj,h

)

+ δ7OPT

for every j ∈ [k] and j ≤ r ≤ k. Using the last inequality and (10), we obtain

OPTf (ȳ
∗ ∧ 1Sr)

1 + 10δ
≤

r
∑

j=1

(1− δ)r−j
2·δ−1
∑

h=2

h

h− 1

(

(1− δ)x̄∗ · 1Uj−1,h
− x̄∗ · 1Uj,h

)

+ x̄∗ · 1Ur + δ5OPT

=

2·δ−1
∑

h=2

h

h− 1

(

(1− δ)r · x̄∗ · 1U0,h
− x̄∗ · 1Ur,h

)

+ x̄∗ · 1Ur + δ5OPT

=

2·δ−1
∑

h=2

1

h− 1

(

(1− δ)r · x̄∗ · 1U0,h
− x̄∗ · 1Ur,h

)

+ (1− δ)rx̄∗ · 1U0 + δ5OPT

for every r ∈ {0, 1, . . . , k − 1}. Observe that OPTf (ȳ
∗ ∧ 1Sr) ≤ OPTf (1Sr) ≤ OPTf (1Sj

) for any
1 ≤ j ≤ r; thus, if OPT(1Sj

) ≤ µ(δ) ≤ δ30OPT for some j ∈ [k], then for every r ≥ j it holds that
OPTf (ȳ

∗ ∧ 1Sr) ≤ δ
30OPT . Using the above inequality and Lemma 3.6, we have

OPTf (ȳ
∗ ∧ 1Sr)

1 + 10δ
≤

2·δ−1
∑

h=2

(1− δ)r − (1− δ)h·r

h− 1
· x̄∗ · 1U0,h

+ (1− δ)rx̄∗ · 1U0 + δ4OPT.

12

Thus,

δ
∑k−1

j=0 OPTf (1Sj
∧ ȳ∗)

1 + 10δ

≤δ
k−1
∑

j=0

2·δ−1
∑

h=2

(1− δ)j − (1− δ)h·j

h− 1
· x̄∗ · 1U0,h

+ δ ·
k−1
∑

j=0

(1− δ)j x̄∗ · 1U0 + δ3OPT

=δ

2·δ−2
∑

h=2

x̄∗ · 1U0,h

h− 1

(

1− (1− δ)k

1− (1− δ)
−

1− (1− δ)k·h

1− (1− δ)h

)

+ δ ·
1− (1− δ)k

1− (1− δ)
· x̄∗ · 1U0 + δ3OPT

≤
2·δ−2
∑

h=2

x̄∗ · 1U0,h

h− 1

(

1−
1− δ

h

)

+ x̄∗ · 1U0 + δ3OPT

≤
2·δ−2
∑

h=3

h+ 1

h
· x̄0 · 1U0,h

+ δ3OPT+ δ‖x̄∗‖.

The second inequality holds since (1 − δ)k ≤ δ and (1 − δ)h ≥ 1 − δh. The last inequality uses
x̄∗ · 1U0,h

= x̄0 · 1U0,h
for h ≥ 3, and x̄∗ · 1C2 = 0 by the definition of x̄∗. Since ‖x̄∗‖ ≤ ‖x̄0‖ ≤

(1 + δ2)OPT ≤ 1.01 ·OPT, we have

δ

k−1
∑

j=0

OPTf (1Sj
∧ ȳ∗) ≤

2·δ−2
∑

h=3

h+ 1

h
· x̄0 · 1U0,h

+ 30 · δ ·OPT ≤
4

3
· x̄0 · 1U0\C2 + 30δ ·OPT,

as in the statement of the lemma. As we assumed that (14) and the statements of Lemmas 3.5 and 3.6
hold, it follows the above inequality holds with probability at least

1− ϕ3(δ) · exp

(

−
OPT

ϕ25(δ)

)

− 2 · δ−10 exp
(

−δ50 ·OPT
)

≥ 1− ϕ4(δ) · exp

(

−
OPT

ϕ25(δ)

)

.

Define ȳM as the coverage of x̄0 ∧ 1C2 ; that is, ȳMi =
∑

C∈C2
x̄0C · C(i) for all i ∈ I. To obtain a

bound on δ
∑k−1

j=0 OPTf

(

1Sj
∧ (1I − ȳ

0)
)

, we use the next lemma.

Lemma 3.9. For any i ∈ I it holds that Pr(i /∈ S0) = (1 − δ4)ȳMi if i ∈ L, and Pr(i /∈ S0) = 0
otherwise.

Proof. Let G = (L,E) be the δ-matching graph of the instance. We use N(i) to denote the set of
neighbors of i ∈ L . SinceM is a matching, for every i ∈ L it holds that 1i/∈S0

=
∑

i′∈N(i) 1{i,i′}∈M.
Therefore for any i ∈ L it holds that

Pr(i /∈ S0) = E[1i∈S0] =
∑

i′∈N(i)

E
[

1{i,i′}∈M

]

= (1− δ4)
∑

i′∈N(i)

∑

C∈C2 s.t. {i,i′}⊆C

x̄0C

= (1− δ4)
∑

C∈C2

x̄0C · C(i) = (1− δ4) · ȳMi .

The third equality holds since Pr(e ∈M) = (1− δ4)
∑

C∈C2 s.t. e⊆C x̄
0
C . Also, for any i ∈ I \L it holds

that i /∈
⋃

e∈M e; thus, i ∈ S0, i.e., Pr(i /∈ S0) = 0.

We now derive an upper bound for δ
∑k−1

j=0 OPTf

(

1Sj
∧ (1I − ȳ

∗)
)

.

Lemma 3.10. Assuming OPT > δ−30ϕ(δ), with probability at least 1−exp
(

− OPT
ϕ25(δ)

+ ϕ2(δ) · lnOPT
)

it holds that

δ

k−1
∑

j=0

OPTf

(

1Sj
∧ (1I − ȳ

∗)
)

≤
4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 50δ · (OPT + |M|).

13

Proof. Similar to the proof of Lemma 3.7, we use in the proof Lemma 3.4. To this end, we construct
a vector λ̄ that is used to derive a linear structure S. Subsequently, we show that λ̄ and S admit the
conditions of Lemma 3.4 w.r.t the demand vector 1S0 ∧ (1I − ȳ

∗).
For any 2 ≤ h ≤ 2 · δ−1 and C ∈ Ch let γ̄C be an h

h−1-relaxation of C, and for any C ∈ C0 let

γ̄C be a (1 + 4δ)-relaxation of C. Furthermore, for any C ∈ C such that v(C) ≤ (δ, δ) let τ̄C be a
4δ-relaxation of C. The existence of these relaxations is guaranteed by Lemmas 2.4, 2.5, and 2.6.
Define

λ̄ = δ4
∑

i∈L

ȳMi · 1{{i}} +
∑

C∈T0\C2

x̄0C · γ̄
C +

∑

C∈U0∪C2

x̄0C · τ̄
C\L,

where 1{{i}} ∈ [0, 1]C
∗
= z̄ such that z̄{i} = 1, and z̄C = 0 for C ∈ C∗ \ {{i}}. Observe that C0 ⊆ T0

by definition; thus, v(C \ L) ≤ (δ, δ) for every C ∈ U0 ∪ C2. That is, λ̄ is well defined. Since the
instance does not contain δ-huge items it follows that 1{{i}} is with δ-slack. Hence, λ̄ is with δ-slack
as well. As T0 and U0 are F0-measurable, it follows that λ̄ is F0-measurable. Let w̄ be the coverage
of λ̄ and define d̄ = 1S0 ∧ (1 − ȳ∗). Observe that we may have w̄i > 0 (i.e., i ∈ supp(w̄)) for items
already selected by the matching, that is, items in L \ S0. The coverage of these items can intuitively
be viewed as a placeholder for items i ∈ L ∩ S0 for which w̄i < d̄i.

For any i ∈ I \ L it holds that

w̄i =
∑

C∈C∗

λ̄C · C(i) =
∑

C∈T0\C2

x̄0C · C(i) +
∑

C∈U0∪C2

x̄0C · C(i)

=
∑

C∈C

x̄0C · C(i) = 1 = 1i∈S0(1− ȳ
∗
i) = d̄i

(16)

The forth equality holds as x̄0 is a solution for MLP. The fifth equality holds since ȳ∗i = 0 for all
i ∈ I \ L and by Lemma 3.9. In particular, it follows that w̄ and λ̄ are small items integral and
w̄i − d̄i = 0 for any i ∈ I \ L.

For any i ∈ L, we have

d̄i = 1i∈S0

1−
∑

C∈U0\C2

x̄0C · C(i)

= 1i∈S0 − (1− 1i/∈S0
)
∑

C∈U0\C2

x̄0C · C(i)

= 1i∈S0 −
∑

C∈U0\C2

x̄0C · C(i)−
∑

C∈C\C2

1i/∈S0
· 1C∈U0 · x̄

0
C · C(i)

= 1i∈S0 −
∑

C∈U0\C2

x̄0C · C(i),

where the the forth equality holds since for every C ∈ C such that i ∈ C, if i /∈ S0 then C /∈ U0. Thus,
for every i ∈ L,

w̄i − d̄i = δ4 · ȳMi +
∑

C∈T0\C2

x̄0C · C(i)−

1i∈S0 −
∑

C∈U0\C2

x̄0C · C(i)

= δ4 · ȳMi +
∑

C∈C\C2

x̄0C · C(i)− 1i∈S0

= δ4 · ȳMi + 1− ȳMi − 1i∈S0

= 1i/∈S0
− (1− δ4) · ȳMi ,

(17)

where the third equality holds since

1 =
∑

C∈C

x̄0C · C(i) =
∑

C∈C\C2

x̄0C · C(i) +
∑

C∈C2

x̄0C · C(i) =
∑

C∈C\C2

x̄0C · C(i) + ȳMi .

14

By (16), (17) and Lemma 3.9, it holds that E[w̄i] = E[d̄i] for every i ∈ I.
Using the concentration bounds for SampleMatching, as given in [4], we can show that with high

probability ū · d̄ . ū · w̄ for every ū ∈ R
I
≥0.

Claim 3.11. For any ū ∈ R
I
≥0 it holds that

Pr

(

d̄ · ū > w̄ · ū+
OPT

ϕ11(δ)
· tol(ū)

)

≤ exp

(

−
OPT

ϕ25(δ)

)

The proof of Claim 3.11 is given in Section 3.4.
Let S∗ ⊆ R

I
≥0 be the set defined in Lemma 2.2. Also, by Lemma 2.2, there exists a (δ, ϕ(δ))-linear

structure S of λ̄ such that for any ū ∈ S which satisfies supp(ū)∩L 6= ∅ it holds that ū ∈ S∗. Observe
that S∗ is non-random while S is an F0-measurable random set, as λ̄ is F0-measurable.

Claim 3.11 requires that the vector ū ∈ R
I
≥0 is deterministic, and thus we cannot directly use the

claim with a random vector ū ∈ S. We use the set S∗ to circumvent this issue. Observe that for any
ū ∈ S, if supp(ū) ∩ L = ∅ then d̄ · ū = w̄ · w̄ by (16), and if supp(ū) 6= ∅ then ū ∈ S∗. Thus,

Pr

(

∀ū ∈ S : d̄ · ū ≤ w̄ · ū+
OPT

ϕ11(δ)
· tol(ū)

)

≥ Pr

(

∀ū ∈ S∗ : d̄ · ū ≤ w̄ · ū+
OPT

ϕ11(δ)
· tol(ū)

)

≥ 1− |S∗| · exp

(

−
OPT

ϕ25(δ)

)

≤ 1− exp

(

−
OPT

ϕ25(δ)
+ ϕ(δ) · lnOPT

)

.

The second inequality is by the union bound and Claim 3.11. The third inequality holds since |S∗| ≤
ϕ(δ) · |L|4 ≤ ϕ(δ) · 24 · δ−4 ·OPT4 as OPT ≥ δ

2 |L|. Therefore, by Lemma 3.4, it holds that

∀0 ≤ j ≤ k : OPTf

(

1Sj
∧ (1I − ȳ

∗)
)

≤ (1− δj)(1 + 10δ)‖λ̄‖+ ϕ(δ) + δ10OPT (18)

with probability at least

1− exp

(

−
OPT

ϕ25(δ)
+ ϕ(δ) · lnOPT

)

−ϕ2(δ) · exp

(

−
OPT

ϕ25(δ)

)

≥ 1− exp

(

−
OPT

ϕ25(δ)
+ ϕ2(δ) · lnOPT

)

.

We henceforth assume that (18) holds.
We note that

‖λ̄‖ ≤ δ4 · 1L · ȳ
M +

2·δ−1
∑

h=3

h

h− 1
· x̄0 · 1T0,h

+ (1 + 4δ) · x̄0 · 1C0 + 4δ‖x̄0‖

≤
4

3
· 1T0\C2 · x̄

0 +
1

6
·
2·δ−1
∑

h=3

x̄0 · 1T0,h
+ 10δ ·OPT,

(19)

where the second inequality uses

1L · ȳ
M =

∑

i∈L

ȳMi =
∑

i∈L

∑

C∈C2

x̄0C · C(i) =
∑

C∈C2

x̄0C · 2 ≤ 2 · x̄0 · 1C2 ≤ 2 · (1 + δ2)OPT.

It also holds that

2·δ−1
∑

h=3

x̄0 · 1T0,h
=

∑

C∈C\C0\C2

x̄0C · 1C∈T0 ≤
∑

C∈C\C0\C2

x̄0C
∑

i∈C∩L

1i/∈S0

≤
∑

i∈L

1i/∈S0

∑

C∈C\C2

x̄0C · C(i) ≤
∑

i∈L

1i/∈S0
≤ 2 · |M|.

Plugging the above inequality into (19), we obtain

‖λ̄‖ ≤
4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 10 · δ ·OPT, (20)

15

By (18) and (20), we have

δ

k−1
∑

j=0

OPTf

(

1Sj
∧ (1I − ȳ

∗))
)

≤ δ
k−1
∑

j=0

(

(1− δj)(1 + 10δ)‖λ̄‖+ ϕ(δ) + δ10OPT
)

≤ (1 + 10δ)‖λ̄‖+ δ8OPT

≤ (1 + 10δ)

(

4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 10δ ·OPT

)

+ δ8OPT

≤
4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 50δ(OPT + |M|),

where the second inequality uses OPT > δ−30ϕ(δ), and the last inequality holds since ‖x̄0‖ ≤
1.01 · OPT. As we assumed (18) holds, the above inequality holds with probability at least 1 −

exp
(

− OPT
ϕ25(δ)

+ ϕ2(δ) · lnOPT
)

, as stated in the lemma.

3.3 Asymptotic Approximation Ratio

Proof of Lemma 1.4. Note that we may assume OPT is larger than any function which depends on δ
(but not on the instance). Assume the statements of Lemmas 3.2, 3.3, 3.7 and 3.10 hold. This occurs
with probability at least

1−δ−2·exp(−δ7·OPT)−exp(−δ10·OPT)−ϕ4(δ)·exp

(

−
OPT

ϕ25(δ)

)

−exp

(

−
OPT

ϕ25(δ)
+ ϕ2(δ) · lnOPT

)

≥
1

2

assuming OPT is sufficiently large.
We also assume OPT > δ−30 (ϕ(δ) + µ(δ)). By Lemmas 3.7 and 3.10, we have

k
∑

j=1

ρj ≤ k + (1 + 2δ)δ
k−1
∑

j=0

OPTf (1Sj
)

≤ k + (1 + 2δ)

δ

k−1
∑

j=0

OPTf (1Sj
∧ ȳ∗) + δ

k−1
∑

j=0

OPTf

(

1Sj
∧ (1I − ȳ

∗)
)

≤ k + (1 + 2δ)

(

4

3
· x̄0 · 1U0\C2 + 30δOPT +

4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 50δ(OPT + |M|)

)

≤ k + (1 + 2δ)

(

4

3
· x̄0 · 1C\C2 +

1

3
· |M|+ 80δ(OPT + |M|)

)

≤
4

3
· x̄01C\C2 +

1

3
· |M|+ 90δ(OPT + |M|).

The first inequality uses (6) and the last inequality assumes OPT > k
δ . The number of configurations

returned by the algorithm (assuming the statement of the lemmas hold) is

|M|+
k
∑

j=1

ρj + ρ∗ ≤ |M|+
4

3
· x̄0 · 1C\C2 +

1

3
· |M|+ 90δ(OPT + |M|) + 16δOPT + 1

≤
4

3
· x̄0 · 1C\C2 + 110δ ·OPT+

(

4

3
+ 90δ

)

|M|

≤
4

3
· x̄0 · 1C\C2 + 110δ ·OPT+

(

4

3
+ 90δ

)

·
(

x̄0 · 1C2 + δ2OPT
)

≤

(

4

3
+ 90δ

)

‖x̄0‖+ 110δOPT + 90δ3OPT

≤

(

4

3
+ 250δ

)

OPT

where the last inequality uses ‖x̄‖0 ≤ (1 + δ2)OPT.

16

3.4 Concentration

In this section we give the missing proofs of Sections 3.1 and 3.2.
Let A be an arbitrary set, m ∈ N+ and f : Am → R. For any η ≥ 0, we say that f is of η-bounded

difference if for any x̄, x̄′ ∈ Am and r ∈ [m] such that x̄ℓ = x̄′ℓ for all ℓ ∈ [m] \ {r} (i.e., x̄ and x̄′ differ
only in the r-th entry) it holds that |f(x̄)− f(x̄′)| ≤ η. The following result is due to [17].

Lemma 3.12 (McDiarmid). Given a finite arbitrary set A, m ∈ N+ and η > 0, let f : Am → R be
a function of η-bounded difference. Also, let X1, . . . ,Xm ∈ A be independent random variables. Then
for any t ≥ 0,

Pr (f(X1, . . . ,Xm)− E [f(X1, . . . ,Xm)] > t) ≤ exp

(

−
2 · t2

m · η2

)

.

To motivate our next lemma, consider the following example arising in our setting. Recall that Tj,h
is the set of configurations in Ch that become touched in iteration j, where j ∈ [k] and 2 ≤ h ≤ 2 · δ−1.
For x̄ ∈ [0, 1]C define the random variable 1Tj,h

· x̄, which indicates the total (fractional) number of

bins assigned to Tj,h according to x̄. We can write this random variable as a function of Cj
1 , . . . , C

j
OPT.

For any U ⊆ C and ρ ∈ [OPT] define fU,ρ : C
OPT → R by

fU,ρ(C1, . . . , COPT) =
∑

C∈U

1C∩L∩(
⋃

ℓ∈[ρ]Cℓ)6=∅ · x̄C .

Then it can be verified that 1Tj,h
· x̄ = g(Cj

1 , . . . , C
j
OPT) where g = fUj−1,ρj . However, we cannot

use Lemma 3.12 to show that 1Tj,h
· x̄ ≈ E[Tj,h · x̄] with high probability, since the random variables

Cj
1 , . . . C

j
OPT are not independent, and the function g is random.

Nontheless, we note that at the end of iteration j−1 (Step 1 of Algorithm 1) the values of Uj−1 and
ρj are known (while ρj was not computed yet, its value does not depend on future random samples);
thus, the function g = fUj−1,ρj is known at iteration j of the algorithm. Furthermore, the random

variables Cj
1 , . . . , C

j
OPT are independent (by definition) assuming we have the random samples of the

first (j − 1) iterations. Therefore, we expect Lemma 3.12 to hold in this setting. More formally,
since Cj

1 , . . . , C
j
OPT are conditionally independent15 given Fj−1, and g is a random function that is

Fj−1-measurable, we expect that g(Cj
1 , . . . , C

j
OPT) ≈ E[g(Cj

1 , . . . , C
j
OPT)|Fj−1]. This is formalized in

the next lemma.

Lemma 3.13 (Generalized McDiarmid). Given a finite arbitrary set A, m ∈ N+ and η > 0, let D be a
finite family of η-bounded difference functions from Am to R. Let (Ω,F ,Pr) be a probability space for
which Ω is finite, G ⊆ F a σ-algebra, and g ∈ D a G-measurable random function (i.e., g : Ω→ D with
{ω ∈ Ω| g(ω) ∈ U} ∈ G for every U ⊆ D). Then, for a sequence of random variables X1, . . . ,Xm ∈ A
which are conditionally independent given G, and any t ≥ 0,

Pr (g(X1, . . . ,Xm)− E [g(X1, . . . ,Xm)|G] > t) ≤ exp

(

−
2 · t2

m · η2

)

.

Lemma 3.13 can be derived from Lemma 3.12 using standard arguments from probability theory
(we omit the details). We use Lemma 3.13 to prove the following technical result.

Lemma 3.14. Let j ∈ {0, 1, . . . , k − 1} and t > 0. Also, let ū ∈ R
I
≥0 be an Fj-measurable random

vector. Then,

Pr
(

ū · 1Sj+1 − (1− δ)ū · 1Sj
> t · tol(ū)

)

≤ exp

(

−
2 · t2

OPT

)

.

Proof. Let A be the set of all possible values the random vector ū can take (formally, A = {ū(ω) | ω ∈
Ω}). Since Ω is finite it holds that A is also finite.

For any S ⊆ I, ρ ∈ [OPT] and ā ∈ A define fS,ρ,ā : COPT → R by

fS,ρ,ā(C1, . . . , COPT) =

{

1
tol(ā) · ā · 1S\(

⋃ρ
ℓ=1 Cℓ) tol(ā) 6= 0

0 otherwise

15See, e.g., in [5] for a formal definition of conditional independence.

17

Also, define D = {fS,ρ,ā | S ⊆ I, ρ ∈ [OPT], ā ∈ A}. It can be easily verified that D is finite.
Let fS,ρ,ā ∈ D, (C1, . . . , COPT), (C ′

1, . . . , C
′
OPT) ∈ C

OPT and r ∈ [OPT] such that Cℓ = C ′
ℓ for

every ℓ ∈ [OPT] \ {r}. If tol(ā) = 0 or r > ρ then |fS,ρ,ā(C1, . . . , COPT)− fS,ρ,ā(C
′
1, . . . , C

′
OPT)| = 0.

Otherwise, let T =
⋃

ℓ∈[ρ]\{r}Cℓ =
⋃

ℓ∈[ρ]\{r}C
′
ℓ. Then

∣

∣

∣

∣

fS,ρ,ā(C1, . . . , COPT)− fS,ρ,ā(C
′
1, . . . , C

′
OPT)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

tol(ā)
· ā
(

1S\T\Cr
− 1S\T\C′

r

)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

tol(ā)

∑

i∈(S∩C′
r)\(Cr∪T)

āi −
∑

i∈(S∩Cr)\(C′
r∪T)

āi

∣

∣

∣

∣

∣

∣

≤
1

tol(ā)
·max

∑

i∈(S∩C′
r)\(Cr∪T)

āi,
∑

i∈(S∩Cr)\(C′
r∪T)

āi

≤
1

tol(ā)
· tol(ā) ≤ 1.

The second equality holds as S \ T \ Cr \ (S \ T \ C
′
r) = (S ∪ C ′

r) \ (Cr ∪ T) and symmetrically
S \ T \ C ′

r \ (S \ T \ Cr) = (S ∪Cr) \ (C
′
r ∪ T). Thus fS,ρ,ā is of 1-bounded difference.

Define a random function g = fSj ,ρj+1,ū. Since Sj, ρj+1 and ū are Fj-measurable it follows that g
is Fj-measurable. By the definition of g we have

tol(ū) · g(Cj+1
1 , . . . , Cj+1

OPT) = ū · 1
Sj\
⋃ρj+1

ℓ=1 Cj+1
ℓ

= ū · 1Sj+1 .

Furthermore,

E[tol(ā) · g(Cj+1
1 , . . . , Cj+1

OPT) | Fj] = E[ū · 1Sj+1 | Fj]

=
∑

i∈I

ūi · Pr(i ∈ Sj+1 | Fj) ≤ (1− δ)
∑

i∈I

ūi · 1i∈Sj
= (1− δ) · ā · 1Sj

,

where the inequality is by Lemma 3.1. Therefore,

Pr
(

ū · 1Sj+1 − (1− δ)ū · 1Sj
> t · tol(ū)

)

≤ Pr
(

g(Cj+1
1 , . . . , Cj+1

OPT)− E[g(Cj+1
1 , . . . , Cj+1

OPT | Fj)] > t
)

≤ exp

(

−
2 · t2

OPT

)

,

where the last inequality is by Lemma 3.13.

We use Lemma 3.14 to show the following.

Lemma 3.15. Let j ∈ {0, 1, . . . , k − 1} and t > 0. Also, let ū ∈ R
I
≥0 be an Fj-measurable random

vector. Then,

Pr
(

∃r ∈ [j, k] ∩ N : ū · 1Sr − (1− δ)r−j · ū · 1Sj
> t · tol(ū)

)

≤ δ−2 · exp

(

−
2 · δ4 · t2

OPT

)

.

18

Proof. We note that

Pr
(

∃r ∈ [j, k] ∩ N : ū · 1Sr − (1− δ)r−j · ū · 1Sj
> t · tol(ū)

)

=Pr

∃r ∈ [j, k] ∩ N :

r
∑

ℓ=j+1

(

ū · 1Sℓ
− (1− δ) · ū · 1Sℓ−1

)

· (1− δ)r−ℓ > t · tol(ū)

≤Pr

(

∃r ∈ [j + 1, k] ∩ N, ℓ ∈ [j + 1, r] ∩ N :
(

ū · 1Sℓ
− (1− δ) · ū · 1Sℓ−1

)

· (1− δ)r−ℓ >
t

r − j
· tol(ū)

)

≤Pr

(

∃ ℓ ∈ [j + 1, k] ∩ N : ū · 1Sℓ
− (1− δ) · ū · 1Sℓ−1

>
t

k
· tol(ū)

)

≤
r
∑

ℓ=j+1

Pr

(

ū · 1Sℓ
− (1− δ) · ū · 1Sℓ−1

>
t

k
· tol(ū)

)

≤k · exp

(

−
2 ·
(

t
k

)2

OPT

)

≤δ−2 exp

(

−
2 · δ4 · t2

OPT

)

.

The first inequality holds since if a sum of n variables is greater than T there most be a variable with
value greater than T

n . The forth inequality is by Lemma 3.14, and the last inequality uses k ≤ δ−2.

We can now proceed to the proofs of Lemmas 3.2 and 3.4.

Proof of Lemma 3.2. Define ū ∈ [0, 1]I by ūi = v1(i)+v2(i). For any C ∈ C it holds that
∑

i∈C ūi =
v1(C) + v2(C) ≤ 2, therefore tol(ū) ≤ 2. Furthermore, there is partition Q1, . . . , QOPT of I such that
Qℓ is a configuration for each ℓ ∈ [OPT], therefore

ū · 1S0 ≤ ū · 1I =
OPT
∑

ℓ=1

ū · 1Qℓ
≤ OPT · tol(ū) ≤ 2 ·OPT. (21)

Recall that ρ∗ is the number of configuration used by First-Fit in Step 6 of Algorithm 1. Using Lemma
2.7 we have

Pr(ρ∗ > 16 · δ ·OPT+ 1) ≤ Pr(v1(Sk) + v2(Sk) > 8 · δ ·OPT)

≤ Pr(ū · 1Sk
> 8 · δ ·OPT)

≤ Pr
(

ū · 1Sk
− (1− δ)k · ū · 1S0 > 6 · δ ·OPT

)

≤ Pr (∃r ∈ [0, k] ∩ N : ū · 1Sr − (1− δ)r · ū · 1S0 > tol(ū) · δ ·OPT)

≤ δ−2 · exp

(

−
2 · δ4 · δ2 ·OPT2

OPT

)

≤ δ−2 · exp
(

−δ7 ·OPT
)

.

The third inequality uses (21) and (1 − δ)k ≤ δ. The fifth inequality is by Lemma 3.15. Hence,
Pr(ρ∗ ≤ 16 · δ ·OPT+ 1) ≥ 1− δ−2 · exp(−δ7 ·OPT).

Proof of Lemma 3.4. Let S = {ū1, . . . , ū⌊ϕ(δ)⌋}, where ūℓ is an Fj-measurable random vector for
every 1 ≤ ℓ ≤ ⌊ϕ(δ)⌋ (in case |S| < ⌊ϕ(δ)⌋ the same vector may appear several times in ū1, . . . , ū⌊ϕ(δ)⌋).

19

As S is a (δ, ϕ(δ)) linear structure it holds that

Pr
(

∀r ∈ [j, k] ∩ N : OPTf

(

d̄ ∧ 1Sr

)

≤ (1− δ)r−j(1 + 10δ)‖λ̄‖+ ϕ(δ) + δ10 ·OPT
)

≥ Pr

(

∀r ∈ [j, k] ∩ N, ℓ ∈ [ϕ(δ)] : (1Sr ∧ d̄) · ū
ℓ ≤ (1− δ)r−j · w̄ · ūℓ +

OPT

ϕ10(δ)
· tol(ūℓ)

)

≥ Pr

∀ℓ ∈ [ϕ(δ)] : (1Sj
∧ d̄) · ūℓ ≤ w̄ · ūℓ +

1

ϕ11(δ)
·OPT · tol(ūℓ)

∀ℓ ∈ [ϕ(δ)], r ∈ [j, k] ∩ N : (1Sr ∧ d̄) · ū
ℓ ≤ (1− δ)r−j · (1Sj

∧ d̄) · ū+
OPT

ϕ11(δ)
· tol(ūℓ)

≥ ξ −

⌊ϕ(δ)⌋
∑

ℓ=1

Pr

(

∃r ∈ [j, k] ∩ N : (1Sr ∧ d̄) · ū
ℓ > (1− δ)r−j · (1Sj

∧ d̄) · ūℓ +
OPT

ϕ11(δ)
· tol(ūℓ)

)

≥ ξ − ϕ(δ) · δ−2 · exp

−
2 · δ4 ·

(

OPT2

ϕ11(δ)

)2

OPT

≥ ξ − ϕ2(δ) · exp

(

−
OPT

ϕ25(δ)

)

.

The fourth equality follows from the union bound and the definition of ξ in (8). The fifth inequality
is by Lemma 3.15.

The following technical lemma will be used to prove Lemma 3.5.

Lemma 3.16. Let j ∈ [k] and 2 ≤ h ≤ 2 · δ−1. Then

Pr

(

∣

∣

∣
E
[

x̄∗ · 1Tj,h

∣

∣ Fj−1

]

− x̄∗ · 1Tj,h

∣

∣

∣
> δ20 ·OPT

)

≤ 2 · exp
(

−δ50 ·OPT
)

.

Proof. Let V ⊆ [0, 1]C be all the values x̄∗ can take (formally, V = {x̄∗(ω) | ω ∈ Ω}). Since Ω is finite,
it follows that V is finite as well. Furthermore, since

∑

C∈C x̄
∗
C · C(i) ≤

∑

C∈C x̄
0
C · C(i) = 1 for every

i ∈ I, it follows that
∑

C∈C x̄C · C(i) ≤ 1 for every x̄ ∈ V and i ∈ I.
For any U ⊆ C, ρ ∈ [OPT] and x̄ ∈ V define fU,ρ,x̄ : COPT → R by

fU,ρ,x̄ (C1, . . . , COPT) = x̄ · 1{C∈U | C∩(
⋃ρ

ℓ=1 Cℓ)∩L 6=∅} =
∑

C∈U

x̄C · 1C∩(
⋃ρ

ℓ=1 Cℓ)∩L 6=∅.

Define D = {fU,ρ,x̄ | U ⊆ C, ρ ∈ [OPT], x̄ ∈ V}. It follows that D is a finite set.
Let fU,ρ,x̄ ∈ D, (C1, . . . , COPT), (C ′

1, . . . , C
′
OPT) ∈ C

OPT, and r ∈ [OPT] such that Cℓ = C ′
ℓ for

every ℓ ∈ [OPT] \ {r}. If r > ρ then |fU,ρ,x̄(C1, . . . , COPT)− fU,ρ,x̄(C
′
1, . . . , C

′
OPT)| = 0. Otherwise, let

T =
⋃

ℓ∈[ρ]\{r}Cℓ =
⋃

ℓ∈[ρ]\{r}C
′
ℓ. It holds that

∣

∣

∣

∣

fU,ρ,x̄(C1, . . . , COPT)− fU,ρ,x̄(C
′
1, . . . , C

′
OPT)

∣

∣

∣

∣

=
∣

∣x̄ ·
(

1{C∈U | C∩(T∪Cr)∩L 6=∅} − 1{C∈U | C∩(T∪C′
r)∩L 6=∅}

)∣

∣

=

∣

∣

∣

∣

∣

∑

C∈U

x̄C · 1C∩(T∪C′
r)∩L=∅ · 1C∩Cr∩L 6=∅ −

∑

C∈U

x̄C · 1C∩(T∪Cr)∩L=∅ · 1C∩C′
r∩L 6=∅

∣

∣

∣

∣

∣

≤ max

{

∑

C∈U

x̄C · 1C∩(T∪C′
r)∩L=∅ · 1C∩Cr∩L 6=∅,

∑

C∈U

x̄C · 1C∩(T∪Cr)∩L=∅ · 1C∩C′
r∩L 6=∅

}

≤ max

{

∑

C∈C

x̄C · 1C∩Cr∩L 6=∅,
∑

C∈C

x̄C · 1C∩C′
r∩L 6=∅

}

.

Furthermore,
∑

C∈C

x̄C · 1C∩Cr∩L 6=∅ ≤
∑

C∈C

x̄C
∑

i∈Cr∩L

C(i) =
∑

i∈Cr∩L

∑

C∈C

x̄C · C(i) ≤ |Cr ∩ L| ≤ 2 · δ−1,

20

and by a symmetric argument
∑

C∈C x̄C · 1C∩C′
r∩L 6=∅ ≤ 2 · δ−1. Thus,

∣

∣

∣

∣

fU,ρ,x̄(C1, . . . , COPT)− fU,ρ,x̄(C
′
1, . . . , C

′
OPT)

∣

∣

∣

∣

≤ 2 · δ−1.

That is, all the functions in D are of (2δ−1)-bounded difference.
Define g = fUj−1,h,ρj ,x̄∗. Since Uj−1,h, ρj and x̄∗ are Fj−1-measurable, we have that g is a Fj−1-

measurable random function. For every C ∈ C it holds that C ∈ Tj,h if and only if C ∈ Uj−1,h and

C ∩ L ∩
(

⋃

ℓ∈[ρj]
Cj
ℓ

)

6= ∅. Thus,

g(Cj
1 , . . . , C

j
OPT) = x̄∗ · 1

{C∈Uj−1,h | C∩
(

⋃ρj
ℓ=1 C

j
ℓ

)

∩L 6=∅}
= x̄∗ · 1Tj,h

.

Therefore,

Pr

(

∣

∣

∣
E
[

x̄∗ · 1Tj,h

∣

∣ Fj−1

]

− x̄∗ · 1Tj,h

∣

∣

∣
> δ20 ·OPT

)

= Pr

(

∣

∣

∣E

[

g(Cj
1 , . . . , C

j
OPT)

∣

∣

∣ Fj−1

]

− g(Cj
1 , . . . , C

j
OPT)

∣

∣

∣ > δ20 ·OPT

)

= Pr

(

E

[

g(Cj
1 , . . . , C

j
OPT)

∣

∣

∣
Fj−1

]

− g(Cj
1 , . . . , C

j
OPT) > δ20 ·OPT

)

+ Pr

(

E

[

−g(Cj
1 , . . . , C

j
OPT)

∣

∣

∣ Fj−1

]

+ g(Cj
1 , . . . , C

j
OPT) > δ20 ·OPT

)

≤ 2 · exp

(

−
2 · δ40 ·OPT2

(2δ−1)2 ·OPT

)

≤ 2 · exp
(

−δ50 ·OPT
)

,

where the inequality is by Lemma 3.13.

The proof of Lemma 3.5 follows directly from Lemma 3.16.

Proof of Lemma 3.5. By the union bound, we have

Pr

(

∀j ∈ [k], 2 ≤ h ≤ 2 · δ−1 :

∣

∣

∣

∣

E
[

x̄∗ · 1Tj,h

∣

∣ Fj−1

]

− x̄∗ · 1Tj,h

∣

∣

∣

∣

≤ δ20 ·OPT

)

≥ 1−
∑

j∈[k]

2·δ−1
∑

h=2

Pr

(∣

∣

∣

∣

E
[

x̄∗ · 1Tj,h

∣

∣ Fj−1

]

− x̄∗ · 1Tj,h

∣

∣

∣

∣

> δ20 ·OPT

)

≥ 1− k · 2 · δ−1 · 2 · exp
(

−δ50 ·OPT
)

≥ 1− δ−10 · exp(−δ50 ·OPT),

where the second inequality is by Lemma 3.16 and the last inequality uses k ≤ δ−2.

We use Lemma 3.5 to prove Lemma 3.6.

Proof of Lemma 3.6. For every ε ∈ (0, 0.1) and h ∈ N, it holds that limz→∞

(

1− h
z

)⌈−z·ln(1−ε)⌉
=

(1 − ε)h; thus, there is Mε,h > 1 such that for every z > Mε,h it holds that
(

1− h
z

)⌈−z·ln(1−ε)⌉
≥

(1−ε)h−ε20. Define µ : (0, 0.1) → R+ by µ(ε) = max
{

Mε,h | h ∈ [2, 2 · ε−1] ∩ N
}

for every ε ∈ (0, 0.1).
Note that since the maximum is taken over a finite set of numbers, each greater than one, it follows
that µ(ε) ∈ (1,∞) for every ε ∈ (0, 0.1).

21

Assume the event in (9) occurs. Let j ∈ [k] and 2 ≤ h ≤ 2δ−1. For any C ∈ Ch it holds that

Pr (C ∈ Uj,h | Fj−1) = 1C∈Uj−1,h
· Pr

(

∀ℓ ∈ [ρj] : C
j
ℓ ∩ C ∩ L = ∅

∣

∣

∣
Fj−1

)

= 1C∈Uj−1,h
·

(

1−

∑

C′∈C x̄
j
C′ · 1C′∩C∩L 6=∅

zj

)⌈−zj ·ln(1−δ)⌉

≥ 1C∈Uj−1,h
·

(

1−
h

zj

)⌈−zj ·ln(1−δ)⌉

≥ 1OPTf (1Sj−1
)>µ(δ) · 1C∈Uj−1,h

·
(

(1− δ)h − δ20
)

.

(22)

The first inequality holds since
∑

C′∈C

x̄jC′ · 1C′∩C∩L 6=∅ ≤
∑

C′∈C

x̄jC′ ·
∑

i∈C∩L

C ′(i) =
∑

i∈C∩L

∑

C′∈C

x̄jC′ · C(i) ≤ h

for every C ′ ∈ C. The last inequality in (22) holds since zj ≥ OPTf (1Sj−1) and by the definition of µ.
We therefore have

1Uj,h
· x̄∗ = 1Uj−1,h

· x̄∗ − 1Tj,h
· x̄∗

≥ 1Uj−1,h
· x̄∗ − E

[

1Tj,h
· x̄∗ | Fj−1

]

− δ20 ·OPT

= E
[

1Uj,h
· x̄∗ | Fj−1

]

− δ20 ·OPT

≥ 1OPTf (1Sj−1
)>µ(δ) · 1Uj−1,h

· x̄∗
(

(1− δ)h − δ20
)

− δ20 ·OPT

≥ 1OPTf (1Sj−1
)>µ(δ) · 1Uj−1,h

· x̄∗ · (1− δ)h − δ19 ·OPT.

The first inequality is due to (9), the second inequality follows from (22), and the last inequality uses
1Uj−1,h

· x̄∗ ≤ ‖x̄∗‖ ≤ ‖x̄0‖ ≤ 2OPT. Overall, we showed that

∀j ∈ [k], 2 ≤ h ≤ 2 · δ−1 : 1Uj,h
· x̄∗ ≥ 1OPTf (1Sj−1

)>µ(δ) · 1Uj−1,h
· x̄∗ · (1− δ)h − δ19 ·OPT. (23)

Claim 3.17. For any 2 ≤ h ≤ 2 · δ−1 and j ∈ {0, 1, . . . , k} it holds that

x̄∗ · 1Uj,h
≥ (1− δ)h·j · x̄∗ · 1U0,h

− j · δ19 ·OPT or OPTf (1Sj
) ≤ µ(δ).

Proof. Fix 2 ≤ h ≤ 2 · δ−1. We show the claim by induction over j.
Base case: For j = 0 it clearly holds that x̄∗ · 1U0,h

≥ (1− δ)h·0 · x̄∗ · 1U0,h
− 0 · δ19 ·OPT.

Induction step: Assume the induction hypothesis holds for j − 1. If OPTf (1Sj
) ≤ µ(δ) then the

statement holds for j. Otherwise, OPTf (1Sj
) > µ(δ) and therefore OPTf (1Sj−1) ≥ OPTf (1Sj

) >
µ(δ). By the induction hypothesis, we have

x̄∗ · 1Uj−1,h
≥ (1− δ)h·(j−1) · x̄∗ · 1U0,h

− (j − 1) · δ19 ·OPT. (24)

Therefore,

x̄∗ · 1Uj,h
≥ 1OPTf (1Sj−1

)>µ(δ) · 1Uj−1,h
· x̄∗ · (1− δ)h − δ19 ·OPT

= 1Uj−1,h
· x̄∗ · (1− δ)h − δ19 ·OPT

≥ (1− δ)h
(

(1− δ)h·(j−1) · x̄∗ · 1U0,h
− (j − 1) · δ19 ·OPT

)

− δ19 ·OPT

≥ (1− δ)h·j · x̄∗ · 1U0,h
− j · δ19 ·OPT.

The first inequality is by (23), and the second inequality is by (24). y

By Claim 3.17, for any j ∈ [k] and 2 ≤ h ≤ 2 · δ−2 either OPTf (1Sj
) ≤ µ(δ) or

x̄∗ · 1Uj,h
≥ (1− δ)h·j · x̄∗ · 1U0,h

− j · δ19 ·OPT ≥ (1− δ)h·j · x̄∗ · 1U0,h
− δ10 ·OPT,

as required (the last inequality uses j ≤ k ≤ δ−2). Since we assumed (9) occurs, this property holds
with probability at least 1− δ−10 · exp(−δ50 ·OPT) by Lemma 3.5.

22

We now proceed to the proof of Claim 3.8. We use the same notation as in the proof of Lemma 3.7,
where the claim is stated.

Proof of Claim 3.8 . As in the proof of Lemma 3.16, let V ⊆ [0, 1]C be all the values x̄∗ can take
(formally, V = {x̄∗(ω) | ω ∈ Ω}). It follows that

∑

C∈C x̄C · C(i) ≤ 1 for every i ∈ I and x̄ ∈ V. Also,
let A ⊆ R

I
≥0 be the set of all values the vectors in Sj can take (formally, A = {ū | ∃ω ∈ Ω : ū ∈ Sj(ω)})

As Ω is finite, it follows that V and A are finite.
For any U ⊆ C, S ⊆ I, x̄ ∈ V, ρ ∈ [OPT] and ū ∈ A, we define fU,S,x̄,ρ,ū : COPT → R by

fU,S,x̄,ρ,ū(C1, . . . , COPT) =

1

tol(ū)
·
∑

C∈U

x̄C · 1C∩(
⋃

ℓ∈[ρ]Cℓ)∩L 6=∅ ·
∑

i∈C\S

1i/∈
⋃

ℓ∈[ρ]Cℓ
· ūi tol(ū) 6= 0

0 otherwise

Let D = {fU,S,x̄,ρ,ū | U ⊆ C, S ⊆ I, x̄ ⊆ V, ρ ∈ [OPT], ū ∈ A}. It follows that D is finite.
Let fU,S,x̄,ρ,ū ∈ D, (C1, . . . , COPT), (C ′

1, . . . , C
′
OPT) ∈ C

OPT and r ∈ [OPT] such that Cℓ = C ′
ℓ for

every ℓ ∈ [OPT]\{r}. If tol(ū) = 0 or r > ρ then |fU,S,x̄,ρ,ū(C1, . . . , COPT)− fU,S,x̄,ρ,ū(C
′
1, . . . , C

′
OPT)| =

0. Otherwise, let T =
⋃

ℓ∈[ρ]\{r}Cℓ =
⋃

ℓ∈[ρ]\{r}C
′
ℓ. Then

∣

∣

∣

∣

fU,S,x̄,ρ,ū(C1, . . . , COPT)− fU,S,x̄,ρ,ū(C
′
1, . . . , C

′
OPT)

∣

∣

∣

∣

=
1

tol(ū)
·

∣

∣

∣

∣

∑

C∈U

x̄C · 1C∩(T∪Cr)∩L 6=∅ ·
∑

i∈C\S

1i/∈T∪Cr
· ūi −

∑

C∈U

x̄C · 1C∩(T∪C′
r)∩L 6=∅ ·

∑

i∈C\S

1i/∈T∪C′
r
· ūi

∣

∣

∣

∣

=
1

tol(ū)
·

∣

∣

∣

∣

∑

C∈U

∑

i∈C\S

x̄C · ūi ·
(

1C∩(T∪Cr)∩L 6=∅ · 1i/∈T∪Cr
− 1C∩(T∪C′

r)∩L 6=∅ · 1i∈T∪C′
r

)

∣

∣

∣

∣

≤
1

tol(ū)
·
∑

C∈U

∑

i∈C\S

x̄C · ūi ·
∣

∣

1C∩(T∪Cr)∩L 6=∅ · 1i/∈T∪Cr
− 1C∩(T∪C′

r)∩L 6=∅ · 1i∈T∪C′
r

∣

∣

≤
1

tol(ū)
·
∑

C∈U

∑

i∈C\S

x̄C · ūi ·
(

1C∩(C′
r∪Cr)∩L 6=∅ + 1i∈Cr∪C′

r

)

≤
1

tol(ū)

∑

C∈U

1C∩(C′
r∪Cr)∩L 6=∅ · x̄C ·

∑

i∈C

ūi +
1

tol(ū)
·
∑

i∈Cr∪C′
r

ūi ·
∑

C∈U

x̄C · C(i)

≤
1

tol(ū)
· tol(ū) · 4 · δ−1 +

1

tol(ū)

∑

i∈Cr∪C′
r

ūi

≤ 4 · δ̇−1 +
1

tol(ū)
· 2 · tol(ū)

≤ δ−2,

where the fourth inequality uses
∑

C∈U

1C∩(C′
r∪Cr)∩L 6=∅ · x̄C ≤

∑

i∈(Cr∪C′
r)∩L

∑

C∈C

x̄C · C(i) ≤
∑

i∈(Cr∪C′
r)∩L

1 ≤ 4 · δ−1.

We conclude that all the functions in D are of δ−2-bounded difference.
Recall Sj is a (δ, ϕ(δ))-linear structure of λ̄j . Since λ̄j is Fj−1-measurable, it follows that Sj is

also Fj−1-measurable. As in the proof of Lemma 3.4, we denote Sj = {ū
1, . . . , ū⌊ϕ(δ)⌋} where ūs is an

Fj−1-measurable random vector for every 1 ≤ s ≤ ⌊ϕ(δ)⌋ (in case |Sj | < ⌊ϕ(δ)⌋ the same vector may
appear several times in ū1, . . . , ū⌊ϕ(δ)⌋).

For every s ∈ [ϕ(δ)] define a random function gs = fUj−1,Sj−1,x̄∗,ρj ,ūs . Since Uj−1, Sj−1, x̄
∗, ρj and

ūs are all Fj−1-measurable, it follows that g is Fj−1-measurable as well. Furthermore,

tol(ūs) · gs(Cj
1 , . . . , C

j
OPT) =

∑

C∈Uj−1

x̄∗C · 1C∩
(

⋃

ℓ∈[ρj]
Cj

ℓ

)

∩L 6=∅
·
∑

i∈C\Sj−1

1

i/∈
⋃

ℓ∈[ρj]
Cj

ℓ

· ūsi

=
∑

i∈I

1i∈Sj
· ūsi ·

∑

C∈Tj

x̄∗C · C(i) =
∑

i∈I

1i∈Sj
· ūsi · d̄

j
i = (1Sj

∧ d̄j) · ūs,

23

where the second equality follows from the definition of d̄j . Thus, for any s ∈ [ϕ(δ)] it holds that

Pr

(

(1Sj
∧ d̄j) · ūs > E

[

ūs ·
(

d̄j ∧ 1Sj

) ∣

∣ Fj−1

]

+
OPT

ϕ11(δ)
· tol(ū)

)

= Pr

(

gs(Cj
1 , . . . , C

j
OPT) > E

[

gs(Cj
1 , . . . , C

j
OPT)

∣

∣

∣
Fj−1

]

+
OPT

ϕ11(δ)

)

≤ exp

−
2 ·
(

OPT
ϕ11(δ)

)2

δ−4 ·OPT

≤ exp

(

−
OPT

ϕ25(δ)

)

,

where the last inequality is by Lemma 3.13.
Thus, using the union bound we have that

Pr

(

∀ū ∈ Sj : (1Sj
∧ d̄j) · ū ≤ E

[

ū ·
(

d̄j ∧ 1Sj

) ∣

∣ Fj−1

]

+
OPT

ϕ11(δ)
· tol(ū)

)

≥ 1−

⌊ϕ(δ)⌋
∑

s=1

Pr

(

(1Sj
∧ d̄j) · ūs > E

[

ūs ·
(

d̄j ∧ 1Sj

) ∣

∣ Fj−1

]

+
OPT

ϕ11(δ)
· tol(ū)

)

≥ 1− ϕ(δ) · exp

(

−
OPT

ϕ25(δ)

)

.

It remains to prove Lemma 3.3 and Claim 3.11. We use G = (L,E) to denote the δ-matching graph
of (I, v), and PM(G) to denote the matching polytope of G. Both proofs rely on the concentration
bounds of SampleMatching given below.

Lemma 3.18 ([4]). Let β̄ ∈ PM(G) and γ > 0. Also, denote M = SampleMatching(β̄, γ). Then M
is a matching and for any ā ∈ [0, 1]E the following holds:

1. Pr(e ∈ M) = (1− γ)β̄e for any e ∈ E.

2. For any ξ ≤ E
[
∑

e∈M āe
]

and ε > 0, it holds that Pr
(
∑

e∈M āe ≤ (1− ε) · ξ
)

≤ exp
(

− ξ·ε2·γ
20

)

.

3. For any ξ ≥ E
[
∑

e∈M āe
]

and ε > 0, it holds that Pr
(
∑

e∈M āe ≥ (1 + ε) · ξ
)

≤ exp
(

− ξ·ε2·γ
20

)

.

Proof of Lemma 3.3. AsM = SampleMatching(E(x̄0), δ4), it follows that

E [|M|] =
∑

e∈E

Pr(e ∈ M) = (1− δ4) ·
∑

e∈E

Ee(x̄
0) = (1− δ4) ·

∑

e∈E

∑

C∈C s.t. e∈C

x̄0C = (1− δ4) · 1C2 · x̄
0.

If 1C2 · x̄
0 = 0 then |M| = 0 and the statement of the lemma holds. Otherwise, by Lemma 3.18,

Pr
(

|M| > 1C2 · x̄
0 + δ2 ·OPT

)

= Pr

(

|M| > 1C2 · x̄
0 ·

(

1 +
δ2 ·OPT

1C2 · x̄
0

))

≤ exp

(

−
1

20
· δ4 · (1C2 · x̄

0) ·

(

δ2 ·OPT

1C2 · x̄
0

)2
)

≤ exp
(

−δ10 ·OPT
)

,

where the last inequality uses 1C2 · x̄
0 ≤ (1 + δ2)OPT ≤ 2OPT. Therefore,

Pr
(

|M| ≤ 1C2 · x̄
0 + δ2 ·OPT

)

≥ 1− exp
(

−δ10 ·OPT
)

.

24

Proof of Claim 3.11. We use the same notation as in the proof of Lemma 3.10, where the claim is
stated. If tol(ū) = 0 the claim trivially holds. Thus, we may assume that tol(ū) 6= ∅.

Observe that

w̄ · ū− d̄ · ū =
∑

i∈I

(

w̄i − d̄i
)

ūi =
∑

i∈L

(

1i/∈S0
− (1− δ4) · ȳMi

)

ūi =
∑

i∈L

1i/∈S0
· ūi − E

[

∑

i∈L

1i/∈S0
· ūi

]

,

where the second equality is by (16) and (17), and the last equality is by Lemma 3.9. Furthermore,

∑

i∈L

1i/∈S0
· ūi =

∑

{i1,i2}∈M

(ūi1 + ūi2)

Thus,

Pr

(

d̄ · ū > w̄ · ū+
OPT

ϕ11(δ)
tol(ū)

)

= Pr

(

∑

i∈L

1i/∈S0
· ūi < E

[

∑

i∈L

1i/∈S0
· ūi

]

−
OPT

ϕ11(δ)
· tol(ū)

)

= Pr

∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)

< E

∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)

−
OPT

ϕ11(δ)

≤ exp

−
1

20
· δ4 · E

∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)

 ·

OPT

ϕ11(δ) · E
[

∑

{i1,i2}∈M
ūi1

+ūi2
tol(ū)

]

2

≤ exp

(

−
OPT

ϕ25(δ)

)

.

(25)

The first inequality is by Lemma 3.18; observe that M ⊆ E ⊆ C, therefore
ūi1

+ūi2
tol(ū) ≤ 1 for any

{i1, i2} ∈ E. The last inequality uses

E

∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)

 ≤
|L|

2
≤ δ−1 ·OPT.

It is implicitly assumed in (25) that E
[

∑

{i1,i2}∈M
ūi1

+ūi2
tol(ū)

]

6= 0. In case E
[

∑

{i1,i2}∈M
ūi1

+ūi2
tol(ū)

]

=

0, we have
∑

{i1,i2}∈M
ūi1

+ūi2
tol(ū) = 0, and

Pr

(

d̄ · ū > w̄ · ū+
OPT

ϕ11(δ)
tol(ū)

)

= Pr

∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)

< E

∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)

−
OPT

ϕ11(δ)

= Pr

(

0 < −
OPT

ϕ11(δ)

)

= 0 ≤ exp

(

−
OPT

ϕ25(δ)

)

.

4 Proof of the Structural Lemma

In this section we give the proof of Lemma 2.2. Let δ ∈ (0, 0.1) such that δ−1 ∈ N, and let (I, v) be a
δ-2VBP instance. As in Section 3, we use OPT = OPT(I, v).

We first need to construct the set S∗ ⊆ R
I
≥0. The construction is technical. Its components will

become clearer below. The terms �d, Id,j , h and d̂ defined as part of the construction of S∗ are also
used in the construction of the linear structure S.

Let �∗ be an arbitrary total order over I. For d ∈ {1, 2} we define a total order �d on I by i1 �d i2
if and only if vd(i1) > vd(i2) or (vd(i1) = vd(i2) and i1 �

∗ i2). Let h = δ−2. For any d ∈ {1, 2} and

25

j ∈ [2h] we define a set Id,j =
{

i ∈ L | δ2

2 · (j − 1) < vd(i) ≤
δ2

2 · j
}

. The construction of the linear

structure S implicitly rounds the volume in dimension d of items in Id,j to j ·
δ2

2 , and applies fractional

grouping to round the volume of the items in the dimension other than d, i.e., d̂ = 3−d. For d ∈ {1, 2}

define S∗d =
{

1{i∈Id,j | q1 �
d̂
i �

d̂
q2}

∣

∣

∣
j ∈ [2h], q1, q2 ∈ L

}

. The set S∗d contains an indicator vector

for every possible group which may be generated by the fractional grouping for Id,j . Finally, the set

S∗ is defined by S∗ =
{

ū1 ∧ ū2
∣

∣ ū1 ∈ S∗1 , ū
2 ∈ S∗2

}

. Observe that |S∗| ≤ |S∗1 | · |S
∗
2 | ≤

(

2h · |L|2
)2

=
δ−5 · |L|4 ≤ ϕ(δ) · |L|4.

Let λ̄ ∈ [0, 1]C
∗
be a small items integral vector with δ-slack, and let w̄ ∈ [0, 1]I be the coverage of

λ̄. In Section 4.1 we construct the linear structure S of λ̄, and in Section 4.2 we show the structure
indeed satisfies the requirements in Definition 2.1. The construction and proof of correctness rely on
a technical refinement lemma whose proof is given in Section 4.3.

4.1 Construction of S

Our construction uses a partition of λ̄ into two parts: λ̄1 and λ̄2, such that for any d ∈ {1, 2} and
C ∈ supp(λ̄d) it holds that C has δ-slack in dimension d. Formally, we define λ̄1 ∈ [0, 1]C

∗

by

∀C ∈ C∗ : λ̄1C =

{

λ̄C C has δ-slack in dimension 1

0 otherwise

Also, we define λ̄2 ∈ [0, 1]C
∗
by λ̄2 = λ̄ − λ̄1. Indeed, as λ̄ is with δ-slack, for every d ∈ {1, 2} and

C ∈ supp(λ̄d), it holds that C has δ-slack in dimension d. For d ∈ {1, 2} let w̄d be the coverage of λ̄d.
As mentioned above, for each d ∈ {1, 2} we implicitly give a rounding scheme for the large items,

in which the volume in dimension d of all items in i ∈ Id,j is rounded up to j · δ2

2 . The slack
of configurations in supp(λ̄) is used to compensate for the possible volume increase. In the other
dimension, d̂, we apply fractional grouping, defined as follows.

Definition 4.1. Let E 6= ∅ be an arbitrary finite set, γ̄ ∈ [0, 1]E , � be a total order16 over E and
ξ ∈ N+. A partition G1, . . . , Gτ of E is a ξ-fractional grouping w.r.t γ̄ and � if the following conditions
hold:

1. For every 1 ≤ ℓ1 < ℓ2 ≤ τ , i1 ∈ Gℓ1 and i2 ∈ Gℓ2 it holds that i1 � i2.

2. For every ℓ ∈ [τ − 1] it holds that 1Gℓ
· γ̄ ≥ ‖γ̄‖

ξ .

3. For every ℓ ∈ [τ] it holds that 1Gℓ
· γ̄ ≤ ‖γ̄‖

ξ + 1.

The proof of the next lemma utilizes arguments from [12].

Lemma 4.2. For any finite set E 6= ∅ , γ̄ ∈ [0, 1]E , a total order � over E and ξ ∈ N+, there is a
ξ-fractional grouping G1, . . . , Gτ of E w.r.t γ̄ and � for which τ ≤ ξ.

Proof. If γ̄ = 0 then the partition G1 = E is a ξ-fractional grouping. We henceforth assume γ̄ 6= 0.
W.l.o.g assume E = {1, 2, . . . , ν} = [ν] and a � b if and only if a ≤ b. Define a sequence (qℓ)

∞
ℓ=0

by q0 = 0, and qℓ = min
{

e ∈ E
∣

∣

∣

∑e
f=qℓ−1+1 γ̄f >

‖γ̄‖
ξ

}

∪ {ν}. Also, define τ = min{ℓ ∈ N | qℓ = ν}.

Since ‖γ̄‖ > 0, it follows that (qℓ)
τ
ℓ=0 is monotonically increasing.

We define Gℓ = {e ∈ E | qℓ−1 < e ≤ qℓ} = [qℓ] \ [qℓ−1] for ℓ ∈ [τ]. As q0 = 0, qτ = ν and
(qℓ)

τ
ℓ=0 is monotonically increasing, it follows that G1, . . . , Gτ is a partition of E. Clearly, for any

1 ≤ ℓ1 < ℓ2 ≤ τ , i1 ∈ Gℓ1 and i2 ∈ Gℓ2 it holds that i1 ≤ qℓ1 ≤ qℓ2−1 < i2 thus i1 � i2.

Let ℓ ∈ [τ]. By the definition of qℓ it holds that
∑qℓ−1

f=qℓ−1+1 γ̄f ≤
‖γ̄‖
ξ . Hence, as γ̄qℓ ≤ 1, it also

holds that 1Gℓ
· γ̄ =

∑

e∈Gℓ
γ̄e = γ̄qℓ +

∑qℓ−1
e=qℓ−1+1 γ̄e ≤

‖γ̄‖
ξ + 1.

Let ℓ ∈ [τ − 1]. Then qℓ 6= ν and qℓ = min
{

e ∈ E
∣

∣

∣

∑e
f=qℓ−1+1 γ̄f >

‖γ̄‖
ξ

}

. Therefore, 1Gℓ
· γ̄ =

∑

e∈Gℓ
γ̄e =

∑qℓ
e=qℓ−1+1 γ̄e >

‖γ̄‖
ξ .

16We refer the reader to Appendix B.2 of [8] for a formal definition of total order.

26

Thus, we showed that G1, . . . , Gτ is a ξ-fractional grouping of E w.r.t γ̄ and �. It also holds that

‖γ̄‖ =
∑

e∈E

γ̄e =

τ
∑

ℓ=1

∑

e∈Gℓ

γ̄e ≥
τ−1
∑

ℓ=1

∑

e∈Gℓ

γ̄e >

τ−1
∑

ℓ=1

‖γ̄‖

ξ
= (τ − 1)

‖γ̄‖

ξ
.

Hence, τ −1 < ξ, and as both τ and ξ are integral it follows that τ ≤ ξ. This completes the proof.

For any d ∈ {1, 2} and j ∈ [2h] define a vector γ̄d,j ∈ [0, 1]Id,j by γ̄d,ji = w̄d
i for i ∈ Id,j . By

Lemma 4.2, for any d ∈ {1, 2} and j ∈ [2h] such that Id,j 6= ∅ there is an h-fractional group-

ing
(

Gd,j
ℓ

)τd,j

ℓ=1
of Id,j w.r.t γ̄d,j and the total order �d̂ with τd,j ≤ h. For d ∈ {1, 2} let Gd =

{(j, ℓ) | j ∈ [2h], Id,j 6= ∅ and ℓ ∈ [τd,j]}. It follows that G1,G2 ⊆ [2h]× [h] and thus |G1|, |G2| ≤ 2δ−4.
Our objective is to add to the structure S vectors ū to ensure that if z̄ ∈ [0, 1]I satisfies (5) then

we can decompose z̄ ∧ 1L to z̄1, z̄2 ∈ [0, 1]I such that z̄ ∧ 1L = z̄1 + z̄2 and z̄d · 1
Gd,j

ℓ

. β · w̄d · 1
Gd,j

ℓ

for any d ∈ {1, 2} and (j, ℓ) ∈ Gd. This can be intuitively interpreted as a decrease in demand for

items in Gd,j
ℓ by a factor of β. As we have a rounding scheme for each dimension, an item i ∈ L

may belong to two groups Gd,j
ℓ - one from the scheme for dimension 1 and another from the scheme

of dimension 2. We therefore add into S vectors which represent the intersection of each pair of such
groups, and therefore impose a decrease in demand by a factor of β for each intersection.

Formally, our linear structure will contain the set Slarge defined below.

Slarge =

{

1

G
1,j1
ℓ1

∧ 1
G

2,j2
ℓ2

∣

∣

∣

∣

(j1, ℓ1) ∈ G1, (j2, ℓ2) ∈ G2

}

. (26)

In Section 4.2 we show that if Slarge ⊆ S and z̄ satisfies (5) then we can find the decomposition z̄1

and z̄2 as mentioned above. Furthermore, to show the correctness of the structure we (implicitly) use

a shifting argument (see, e.g., [9]) in which items in Gd,j
ℓ take the place of items in Gd,j

ℓ−1.
We use the rounding schemes for the large items to define a type for each configuration. We then

fractionally associate each small item i ∈ I \ L with the various types, and use this association as
a basis for the linear structure. For d ∈ {1, 2}, the d-type of a multi-configuration C ∈ C∗, denoted
by Td(C), is the vector t̄ ∈ N

Gd defined by t̄(j,ℓ) =
∑

i∈Gd,j
ℓ

C(i) for any (j, ℓ) ∈ Gd. That is, t̄(j,ℓ)

is the number of items in C which belong to Gd,j
ℓ . Since the set Gd,j

ℓ contains only large items, it
follows that t̄(j,ℓ) ≤ 2δ−1. Let Td =

{

Td(C) | C ∈ C∗
}

be the set of all possible d-types. It follows that

Td ⊆ {0, 1, . . . , 2 · δ
−1}Gd , and therefore |Td| ≤

(

1 + 2 · δ−1
)2·δ−4

≤ exp(δ−6).

The small item association of d ∈ {1, 2} and the d-type t̄ ∈ Td is the vector ād,t̄ ∈ [0, 1]I defined by

ād,t̄i =
∑

C∈C∗ s.t.Td(C)=t̄

λ̄dC · C(i), (27)

for i ∈ I \L and ād,t̄i = 0 for i ∈ L. Intuitively ād,t̄i is the fraction of i ∈ I \L selected by configurations
of type t̄ in λ̄d.

For d ∈ {1, 2} define v̄d ∈ [0, 1]I by v̄di = vd(i) for all i ∈ I. Also, we use • to denote element-wise
multiplication of two vectors. That is, for ā, b̄ ∈ R

I let ā • b̄ = c̄, where c̄i = āi · b̄i for every i ∈ I. The
next lemma will be useful towards adding more vectors to the linear structure.

Lemma 4.3 (Small Items Refinement). Let ā ∈ [0, 1]I such that supp(ā) ⊆ I \ L, d ∈ {1, 2} and

q ∈ N, q ≥ 4. Given β ∈
[

1
q , 1
]

, there are subsets H1, . . . ,Hq ⊆ I \ L such that for any Q ⊆ I \ L

satisfying

∀1 ≤ j ≤ q :
∥

∥

∥
1Q∩Hj

• ā • v̄d
∥

∥

∥
≤ β

∥

∥

∥
1Hj
• ā • v̄d

∥

∥

∥
+

OPT

q5
max {vd(C ∩Hj) | C ∈ C} , (28)

there is a set X ⊆ Q which admits the following properties.

1.
∥

∥

1X • ā • (v̄
1 + v̄2)

∥

∥ ≤ 16
q ·OPT+ 2qδ.

27

2.
∥

∥

1Q\X • ā • v̄
d
∥

∥ ≤ β · ā · v̄d.

We refer to H1, . . . ,Hq as the refinement of ā and q in dimension d.

Indeed, the condition in (28) is essentially a variant of (5). Lemma 4.3 plays a central role in
showing the correctness of the structure S. (see the proof of Lemma 4.9). We defer the proof of
Lemma 4.3 to Section 4.3.

We select q =
⌈

exp
(

δ−10
)⌉

. For any d, d′ ∈ {1, 2} and t̄ ∈ Td let Hd,t̄,d′

1 , . . . ,Hd,t̄,d′
q be the

refinement of ād,t̄ and q in dimension d′. We use the small items association and its refinement to
define additional vectors.

Ssmall =

{

1

Hd,t̄,d′

j

• ād,t̄ • v̄d
′

| d, d′ ∈ {1, 2}, t̄ ∈ Td, j ∈ [q]

}

.

Finally, the structure is S = Slarge ∪ Ssmall.

4.2 Correctness

We first observe that

|S| = |Slarge|+ |Ssmall| ≤ |G1|+ |G2|+ 2 · q · (|T1|+ |T2|) ≤ exp(δ−20) = ϕ(δ).

Let ū ∈ S such that supp(ū) ∩ L 6= ∅, then ū ∈ Slarge. Therefore, by (26) there is (j1, ℓ1) ∈ G1 and
(j2, ℓ2) ∈ G2 such that ū = 1

G
1,j1
ℓ1

∧1
G

2,j2
ℓ2

. By Definition 4.1, for d ∈ {1, 2} there are qd1 , q
d
2 ∈ Id,jd such

that Gd,jd
ℓd

= {i ∈ Id,jd | q
d
1 �d̂ i �d̂ q

d
2}; thus, 1Gd,jd

ℓd

∈ S∗d . It follows that ū = 1

G
1,j1
ℓ1

∧ 1
G

2,j2
ℓ2

∈ S∗.

Let β ∈ [δ5, 1] and z̄ ∈ [0, 1]I such that z̄ is small items integral, supp(z̄) ⊆ supp(w̄), and

∀ū ∈ S : z̄ · ū ≤ β · w̄ · ū+
1

ϕ10(δ)
·OPT · tol(ū) (29)

To verify that S is a (δ, ϕ(δ)) linear structure, it remains to show that OPTf (z̄) ≤ β(1 + 10δ) · ‖λ̄‖+
ϕ(δ) + δ10 ·OPT(I, v).

We first generate two vectors z̄1 and z̄2 such that z̄ ∧ 1L and z̄d · 1
Gd,j

ℓ

. βw̄d · 1
Gd,j

ℓ

for every

d ∈ {1, 2} and (j, ℓ) ∈ Gd. Each item i ∈ L belongs to groups G1,j1
ℓ1

and G2,j2
ℓ2

. The demand z̄i of i

is partitioned between z̄1 and z̄2 with the same proportion that w̄1 and w̄2 contributed to the total
demand of items in G1,j1

ℓ1
∩G2,j2

ℓ2
. Specifically, for d ∈ {1, 2}, define z̄d ∈ [0, 1]I by

∀(j1, ℓ1) ∈ G1, (j2, ℓ2) ∈ G2, i ∈ G
1,j1
ℓ1
∩G2,j2

ℓ2
∩ supp(z̄) : z̄di = z̄i ·

(

1

G
1,j1
ℓ1

∧ 1
G

2,j2
ℓ2

)

· w̄d

(

1

G
1,j1
ℓ1

∧ 1
G

2,j2
ℓ2

)

· w̄

(30)

and z̄i = 0 for any other i ∈ I. Observe that since supp(z̄) ⊆ supp(w̄) we never get in (30) a division
by zero. Since for every i ∈ L there is a unique (j1, ℓ1) ∈ G1 and a unique (j2, ℓ2) ∈ G2 such that
i ∈ G1,j1

ℓ1
∩G2,j2

ℓ2
, it follows that z̄ ∧ 1L = z̄1 + z̄2. For every d ∈ {1, 2} and (j, ℓ) ∈ Gd it holds that

z̄d · 1
Gd,j

ℓ

=
∑

(j′,ℓ′)∈G
d̂

∑

i∈Gd,j
ℓ

∩Gd̂,j′

ℓ′
∩supp(z̄)

z̄i ·

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄d

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄

=
∑

(j′,ℓ′)∈G
d̂
s.t.

(

1

G
d,j
ℓ

∧1
G
d̂,j′

ℓ′

)

·w̄ 6=0

((

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· z̄

)

·

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄d

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄

(31)

28

Since 1
Gd,j

ℓ

∧ 1
Gd̂,j′

ℓ′

∈ S, by (29)

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· z̄ ≤ β

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄ +
OPT

ϕ10(δ)
· tol

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

≤ β

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄ +
2 · δ−1

ϕ10(δ)
·OPT.

(32)

The second inequality holds since there are at most 2δ−1 large items in a configuration. Plugging (32)
into (31) we have

z̄d · 1
Gd,j

ℓ

≤
∑

(j′,ℓ′)∈G
d̂
s.t.

(

1

G
d,j
ℓ

∧1
G
d̂,j′

ℓ′

)

·w̄ 6=0

(

β

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄ +
2 · δ−1OPT

ϕ10(δ)

)

·

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄d

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄

≤
∑

(j′,ℓ′)∈G
d̂
s.t.

(

1

G
d,j
ℓ

∧1
G
d̂,j′

ℓ′

)

·w̄ 6=0

β

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄d +
δ−6

ϕ10(δ)
·OPT

≤β · 1
Gd,j

ℓ

· w̄d +
δ−6

ϕ10(δ)
·OPT,

(33)
where the second inequality holds since |Gd̂| ≤ 2 · δ−4.

Therefore, for every d ∈ {1, 2} there is a vector r̄d ∈ [0, 1]I such that, for any (j, ℓ) ∈ Gd,
(

z̄d − r̄d
)

· 1
Gd,j

ℓ

≤ max
{

β · 1
Gd,j

ℓ

· w̄d − 2, 0
}

, (34)

for every i ∈ I it holds that rdi ≤ z
d
i , and ‖r̄

d‖ ≤
(

2 + δ−6

ϕ10(δ)
·OPT

)

· |Gd| ≤ δ
−5 + δ−11

ϕ10(δ)
OPT. Hence,

OPTf (r̄
d) ≤ ‖r̄d‖ ≤ δ−5 + δ−11

ϕ10(δ)OPT, as
∑

i∈I r̄
d
i · 1{i} is a solution for LP(r̄d).

For any d ∈ {1, 2}, let Fd =
⋃

j∈[2h] s.t. (j,1)∈Gd
Gd,j

1 be the set of all items that belong to a first

group in one of the fractional groupings Gd,j
1 , . . . , Gd,j

τd,j . By (34),

(z̄d − r̄d) · 1Fd
≤

∑

j∈[2h] s.t. (j,1)∈Gd

(z̄d − r̄d) · 1
Gd,j

1
≤

∑

j∈[2h] s.t. (j,1)∈Gd

max
{

β · 1
Gd,j

ℓ

· w̄d − 2, 0
}

≤ β
∑

j∈[2k] s.t. (j,1)∈Gd

1Id,j · w̄
d

h
= β

w̄d · 1L
h

≤ 2 · β · δ · ‖λ̄d‖

where the third inequality is by Definition 4.1, and the last inequality follows drom h = δ−2 and

∑

i∈L

w̄d
i =

∑

C∈C∗

λ̄dC ·
∑

i∈L

C(i) ≤
∑

C∈C∗

λ̄dC · 2δ
−1 = 2 · δ−1‖λ̄d‖.

Define Q = supp(z̄) \ L = {i ∈ I \ L | z̄i = 1} and

ȳ =
∑

d∈{1,2}

(

(z̄d − r̄d) ∧ 1L\Fd

)

+ 1Q. (35)

Then,

OPTf (z̄) ≤
∑

d∈{1,2}

(

OPTf (r̄
d) + OPTf ((z̄

d − r̄d) ∧ 1Fd
)
)

+OPTf (ȳ)

≤ OPTf (ȳ) + 2βδ‖λ̄‖+ 2δ−5 +
2 · δ−11

ϕ10(δ)
OPT.

(36)

29

We proceed to derive an upper bound on OPTf (ȳ), which in turn implies an upper bound on OPTf (z̄).

Given d ∈ {1, 2} we define the d-size of (j, ℓ) ∈ Gd, denoted s
d(j, ℓ) ∈ [0, 1]2, by sdd(j, ℓ) =

δ2

2 j and

sd
d̂
= min{vd̂(i) | i ∈ G

d,j
ℓ }. The value sd(j, ℓ) can be viewed a the rounded volume of items in Gd,j

ℓ .
The next lemma gives the basis for our shifting argument.

Lemma 4.4. Let d ∈ {1, 2}, (j, ℓ) ∈ Gd and i ∈ Gd,j
ℓ . If ℓ 6= 1 then v(i) ≤ sd(j, ℓ− 1).

Proof. As i ∈ Gd,j
ℓ ⊆ Id,j, it follows that vd(i) ≤

δ2

2 · j = sdd(j, ℓ − 1). Furthermore, vd̂(i
′) ≥ vd̂(i) for

every i′ ∈ Gd,j
ℓ−1 as (Gd,j

ℓ′)
τd,j
ℓ′=1 is an h-fractional grouping w.r.t to the relation �d̂. Hence,

vd̂(i) ≤ min
{

vd̂(i
′) | i′ ∈ Gd,j

ℓ−1

}

= sd
d̂
(j, ℓ − 1).

We extend the definition of size to d-types by sd(t̄) =
∑

(j,ℓ)∈Gd
t̄(j,ℓ) · s

d(j, ℓ) for any d ∈ {1, 2} and
t̄ ∈ Td.

Lemma 4.5. Let d ∈ {1, 2} and C ∈ C∗ with λ̄dC > 0. Then
∑

i∈I\L v(i) · C(i) ≤ 1− sd
(

Td(C)
)

.

Proof. For any i ∈ L such that C(i) > 0 there is a unique (j, ℓ) ∈ Gd for which i ∈ Gd,j
ℓ . Thus,

∑

i∈I\L

v(i) · C(i) =
∑

i∈I

v(i) · C(i)−
∑

i∈L

v(i) · C(i) = v(C)−
∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

v(i) · C(i). (37)

Therefore, we have

∑

i∈I\L

vd(i) · C(i) = vd(C)−
∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

vd(i) · C(i)

≤ 1− δ −
∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

(

sdd(j, ℓ)−
δ2

2

)

· C(i)

= 1− δ −
∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

sdd(j, ℓ) · C(i) +
δ2

2

∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

·C(i)

= 1− δ −
∑

(j,ℓ)∈Gd

Td
(j,ℓ)(C) · sdd(j, ℓ) +

δ2

2

∑

i∈L

·C(i)

≤ 1− sdd(T
d(C)).

(38)

The first equality is by (37). The first inequality holds as C has δ-slack in dimension d since λ̄dC > 0,

and since vd(i) >
δ2

2 (j− 1) for any i ∈ Gd,j
ℓ ⊆ Id,j. The last inequality holds as there are at most 2δ−1

large items in a multi-configuration. Similarly,

∑

i∈I\L

vd̂(i) · C(i) = vd̂(C)−
∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

vd̂(i) · C(i)

≤ 1−
∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

sd
d̂
(j, ℓ) · C(i)

= 1−
∑

(j,ℓ)∈Gd

Td
(j,ℓ)(C) · sd

d̂
(j, ℓ)

≤ 1− sd
d̂
(Td(C)).

(39)

The first equality follows from (37) and the first inequality is by the definition of sd
d̂
(j, ℓ). The statement

of the lemma follows from (38) and (39).

30

For any d ∈ {1, 2} and t̄ ∈ Td, the prevalence of type t̄ is ηd(t̄) =
∑

C∈C∗ s.t. T
d(C)=t̄ λ̄

d
C . Informally,

ηd(t̄) is the number of configurations of type t̄ selected by λ̄d. Also, define κd(t̄) = ⌈β · ηd(t̄)⌉+2 · δ−1

for any d ∈ {1, 2} and t̄ ∈ Td. We construct a solution of LP(ȳ) in which there are κd(t̄) configurations
with large items of total size at most sd(t̄). For the assignment of large items we use the next lemma.

Lemma 4.6. There are vectors x̄d,t̄ ∈ [0, 1]C for d ∈ {1, 2} and t̄ ∈ Td such that

1. For any d ∈ {1, 2} the coverage of
∑

t̄∈Td
κd(t̄) · x̄

d,t̄ is
(

z̄d − r̄d
)

∧ 1L\Fd
.

2. For any d ∈ {1, 2} and t̄ ∈ Td it holds that ‖x̄d,t‖ = 1.

3. For any d ∈ {1, 2}, t̄ ∈ Td and C ∈ supp(x̄d,t̄), it holds that v(C) ≤ sd(t̄).

The proof of Lemma 4.6 relies on the following combinatorial claim (we omit the proof).

Claim 4.7. Let E be an arbitrary finite set, ξ ∈ N+ and γ̄ ∈
[

0, 1ξ

]E
such that ‖γ̄‖ ≤ 1. Then there

exists a random set K ⊆ E such that |K| ≤ ξ and Pr(e ∈ K) = ξ · γ̄e for every e ∈ E.

Proof of Lemma 4.6. Let d ∈ {1, 2} and for any (j, ℓ) ∈ Gd, define ρ(j,ℓ) =
∑

t̄∈Td
t̄(j,ℓ) · κd(t̄). Then

ρ(j,ℓ) ≥ 2 · δ−1. For any (j, ℓ) ∈ Gd and i ∈ Gd,j
ℓ such that ℓ 6= 1 define pi =

z̄di −r̄di
ρ(j,ℓ−1)

≤ 1
2·δ−1 .

For every (j, ℓ) ∈ Gd with ℓ 6= 1 it holds that

ρ(j,ℓ−1) =
∑

t̄∈Td

t̄(j,ℓ−1) · κd(t̄) ≥ β
∑

t̄∈Td

t̄(j,ℓ−1) · ηd(t̄) = β1
Gd,j

ℓ−1
· w̄d ≥ β

w̄d · 1Id,j
h

≥ max
{

β · w̄d · 1
Gd,j

ℓ

− 1, 0
}

≥
(

z̄d − r̄d
)

· 1
Gd,j

ℓ

.

The second and third inequalities hold since Gd,j
1 , . . . , Gd,j

τd,j is an h-fractional grouping of Id,j . The
last inequality is by (34). Therefore

∑

i∈Gd,j
ℓ

pi ≤ 1.

Fix t̄ ∈ Td, and for any (j, ℓ) ∈ Gd with ℓ 6= 1 let K(j,ℓ) ⊆ Gd,j
ℓ be a random set such that

|K(j,ℓ)| ≤ t̄(j,ℓ−1) and Pr(i ∈ K(j,ℓ)) = t̄(j,ℓ−1) · pi for every i ∈ Gd,j
ℓ . The random sets K(j,ℓ) exist

by Claim 4.7. Furthermore, we may assume the random sets
(

K(j,ℓ)

)

(j,ℓ)∈Gd, ℓ 6=1
are independent.

Define R =
⋃

(j,ℓ)∈Gd s.t. ℓ 6=1K(j,ℓ) and x̄d,t̄C = Pr(R = C) for all C ∈ C∗. It follows that ‖x̄d,t̄‖ =
∑

C∈C∗ Pr(R = C) = 1. Observe that

v(R) ≤
∑

(j,ℓ)∈Gd s.t. ℓ 6=1

v(K(j,ℓ)) ≤
∑

(j,ℓ)∈Gd s.t. ℓ 6=1

t̄(j,ℓ−1) · s
d(j, ℓ − 1) ≤ sd(t̄).

The second inequality holds since |K(j,ℓ)| ≤ t̄(j,ℓ−1) and for every i ∈ K(j,ℓ) it holds that v(i) ≤

sd(j, ℓ − 1) by Lemma 4.5. Thus, for every C ∈ supp(x̄d,t̄) we have that v(C) ≤ sd(t̄). Finally, for

every i ∈ supp
(

(z̄d − r̄d) ∧ 1L\Fd

)

, there is (j, ℓ) ∈ Gd with ℓ 6= 1 such that i ∈ Gd,j
ℓ . Hence,

∑

C∈C

x̄d,t̄C · C(i) = Pr(i ∈ R) = t̄(j,ℓ−1) ·
z̄di − r̄

d
i

ρ(j,ℓ−1)
. (40)

Let w̄′ be the coverage of
∑

t̄∈Td
κd(t̄) · x̄

d,t̄. By construction, we have w̄′
i = 0 for any i ∈ I such

that i 6∈ supp
(

(z̄d − r̄d) ∧ 1L\Fd

)

. For any i ∈ supp
(

(z̄d − r̄d) ∧ 1L\Fd

)

, it holds that

w̄′
i =

∑

C∈C

∑

t̄∈Td

κd(t̄) · x̄
d,t̄
C · C(i) =

∑

t̄∈Td

κd(t̄) · t̄(j,ℓ−1) ·
z̄di − r̄

d
i

ρ(j,ℓ−1)
= z̄di − r̄

d
i ,

where the second equality is by (40), and the last equality is by the definition of ρ(j,ℓ).

31

Recall that Q = supp(z̄) \ L. The assignment of items in Q relies on integrality properties of
polytopes. Define M = exp(−δ−9) ·OPT+ exp(δ−11) and

B = {(d, t̄,m) | d ∈ {1, 2}, t̄ ∈ Td, m ∈ [κd(t̄)]} ∪ [M].

We consider B as a set of bins, and define a polytope

P =

µ̄ ∈ [0, 1]Q×B

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

b∈B

µ̄i,b = 1 ∀i ∈ Q

∑

i∈Q

µ̄i,(d,t̄,m) · v(i) ≤ 1− sd(t̄) ∀d ∈ {1, 2}, t̄ ∈ Td, m ∈ [κd(t̄)]

∑

i∈Q

µ̄i,m · v(i) ≤ 1 ∀m ∈M

(41)

The entry µ̄i,b in P represents a fractional assignment of an item i ∈ Q to bin b. The first constraint
in (41) represents the requirement that each item is fully assigned, and the remaining constraints
represent a volume limit for each bin.

The following is a well known integrality property of P (see, e.g., [2]).

Lemma 4.8. Let µ̄ be a vertex of P . Then |{i ∈ Q | ∃b ∈ B : 0 < µ̄i,b < 1}| ≤ 2 · |B|

Before we use Lemma 4.8, we need to show that P has a vertex.

Lemma 4.9. P 6= ∅.

Proof. Ideally, we would like to define µ̄i,(d,t̄,m) =
ad,t̄i

κd(t̄)
for any i ∈ Q, d ∈ {1, 2}, t̄ ∈ Td and m ∈

[κd(t̄)]. Using (29) we can show that
∑

i∈Q µ̄i,(d,t̄,m) · vd′(i) is not significantly larger than 1 − sd(t̄);

however, we cannot show it is smaller (or equal) to 1 − sd(t̄). Thus, the suggested vector µ̄ may not
satisfy the properties in (41). We use Lemma 4.3 to overcome this difficulty. Specifically, we define

µ̄i,(d,t̄,m) =
ad,t̄i

κd(t̄)
for items i ∈ Q \ X1 \ X2, where the sets X1 and X2 are obtained via Lemma 4.3.

The value of µ̄i,m is subsequently increased for i ∈ X1∪X2 to ensure the first constraint in (41) holds.
Property 1 of Lemma 4.3 is used to show that

∑

i∈Q µ̄i,m · v(i) ≤ 1, and property 2 of the lemma is

used to show that
∑

i∈Q µ̄i,(d,t̄,m) · v(i) ≤ 1− sd(t̄). We now proceed to the formal proof.

Recall that Hd,t̄,d′

1 , . . . ,Hd,t̄,d′
q is the refinement of ād,t̄ and q =

⌈

exp(δ−10)
⌉

in dimension d′. For
every d, d′ ∈ {1, 2}, t̄ ∈ Td and j ∈ [q] it holds that

∑

i∈Hd,t̄,d′

j ∩Q

ād,t̄i · vd′(i) = z̄ ·

(

1

Hd,t̄,d′

j

• ād,t̄ • v̄d
′

)

≤ β · w̄ ·

(

1

Hd,t̄,d′

j

• ād,t̄ • v̄d
′

)

+
1

ϕ10(δ)
·OPT ·max

{

∑

i∈C

1

i∈Hd,t̄,d′

j

· ād,t̄i · v̄d′(i)

∣

∣

∣

∣

∣

C ∈ C

}

≤ β · ‖1
Hd,t̄,d′

j

• ād,t̄ • v̄d
′

‖+
1

ϕ10(δ)
·OPT ·max

{

vd′(H
d,t̄,d′

j ∩ C)
∣

∣

∣
C ∈ C

}

.

The equality follows from the definition of Q. The first inequality follows from (29) and 1
Hd,t̄,d′

j

• ād,t̄ •

v̄d
′

∈ Ssmall ⊆ S. The second inequality holds as w̄ is small items integral and supp(ād,t̄) ⊆ supp(w̄)\L.
Thus, by Lemma 4.3, for every d, d′ ∈ {1, 2}, t̄ ∈ Td and j ∈ [q] there is a set Xd,t̄,d′ ⊆ Q such that

∥

∥

∥
1Xd,t̄,d′ • ā

d,t̄ • (v̄1 + v̄2)
∥

∥

∥
≤

16

q
·OPT+ 2qδ and

∥

∥

∥
1Q\Xd,t̄,d′ • ā

d,t̄ • v̄d
′
∥

∥

∥
≤ β · ād,t̄ · v̄d

′

. (42)

Define µ̄ ∈ [0, 1]Q×B by

µ̄i,(d,t̄,m) =

ād,t̄i

κd(t̄)
i ∈ Q \Xd,t̄,1 \Xd,t̄,2

0 otherwise

32

for every i ∈ Q, d ∈ {1, 2}, t̄ ∈ Td and m ∈ [κd(t̄)]. Also, for every i ∈ Q and m ∈ [M] define

µ̄i,m =
∑

d∈{1,2}

∑

t̄∈Td

ād,t̄i · 1i∈Xd,t̄,1∪Xd,t̄,2

M
.

Next, we show that µ̄ ∈ P . For every i ∈ Q it holds that

∑

b∈B

µ̄i,b =
∑

d∈{1,2}

∑

t̄∈Td

∑

m∈[κd(t̄)]

µ̄i,(d,t̄,m) +
∑

m∈[M]

µ̄i,m

=
∑

d∈{1,2}

∑

t̄∈Td

κd(t̄) ·
ād,t̄i

κd(t̄)
i ∈ Q \Xd,t̄,1 \Xd,t̄,2

M ·
ad,t̄i

M i ∈ Xd,t̄,1 ∪Xd,t̄,2
=

∑

d∈{1,2}

∑

t̄∈Td

ād,t̄ = w̄1
i + w̄2

i = 1,

where the fourth inequality follows from (27).
For every d, d′ ∈ {1, 2}, t̄ ∈ Td we have

ād,t̄ · v̄d
′

=
∑

i∈I\L

vd′(i)
∑

C∈C∗ s.t T
d(C)=t̄

λ̄dC · C(i) =
∑

C∈C∗ s.t T
d(C)=t̄

λ̄dC ·
∑

i∈I\L

vd′(i) · C(i)

≤
∑

C∈C∗ s.t T
d(C)=t̄

λ̄dC ·
(

1− sdd′(t̄)
)

=
(

1− sdd′(t̄)
)

· ηd(t̄),

where the first equality is by (27) and the inequality is by Lemma 4.5. Thus, for every m ∈ [κd(t̄)] we
have

∑

i∈Q

µ̄i,(d,t,m) · vd′(i) =
∑

i∈Q\Xd,t̄,1\Xd,t̄,2

ād,t̄i · vd′(i)

κd(t̄)
≤
β · ād,t̄ · v̄d

′

κd(t̄)
≤
β ·
(

1− sdd′(t̄)
)

ηd(t̄)

κd(t̄)
≤ 1− sdd′(t̄),

where the first inequality is by (42).
Finally, for every m ∈ [M] and d′ ∈ {1, 2} we have

∑

i∈Q

µ̄i,m · vd′(i) =
∑

i∈Q

vd′(i)
∑

d∈{1,2}

∑

t̄∈Td

ād,t̄i · 1i∈Xd,t̄,1∪Xd,t̄,2

M

≤
1

M

∑

d∈{1,2}

∑

t̄∈Td

(

‖1Xd,t̄,1 • ād,t̄ • v̄d
′

‖+ ‖1Xd,t̄,2 • ād,t̄ • v̄d
′

‖
)

≤
1

M

∑

d∈{1,2}

∑

t̄∈Td

(

32

q
·OPT+ 4qδ

)

≤ 1,

where the second inequality is by (42) and the last inequality holds since |Td| ≤ exp(δ−6), q ≥ exp(δ−10)
and M = exp(−δ−9) ·OPT+ exp(δ−11). Thus, µ̄ ∈ P , i.e., P 6= ∅.

We now have the tools to prove the following.

Lemma 4.10. OPTf (ȳ) ≤ (1 + 8δ)|B| + 1

Proof. Let µ̄∗ be a vertex of P , and let QI = {i ∈ Q | ∃b ∈ B : µ̄∗i,b = 1}. By Lemma 4.8 it
holds that |Q \ QI | ≤ 2|B|. As Q ⊆ I \ L, it follows that the items of Q \ QI can be packed into
4δ|Q \QI |+ 1 ≤ 8δ|B|+ 1 bins using First-Fit (Lemma 2.7). Thus, OPTf (1Q\QI

) ≤ 8δ|B|+ 1.

For every b ∈ B define Cb = {i ∈ Q | µ̄∗i = 1}. It follows that QI =
⋃

b∈B Cb. Recall that x̄d,t̄

are the vectors defined in Lemma 4.6. For every (d, t̄,m) ∈ B \ [M] define a vector γ̄d,t̄,m ∈ [0, 1]C by

γ̄d,t̄,mC∪Cd,t̄,m
= x̄d,t̄C for any C ∈ supp(x̄d,t̄), and γ̄d,t̄,mC′ = 0 for any other configuration C ′ ∈ C. By the

definition of P , it holds that v(Cd,t̄,m) ≤ 1 − sd(t̄), and by Lemma 4.6, for every C ∈ supp(x̄d,t̄) it

holds that v(C) ≤ sd(t̄); thus, C ∪Cd,t̄,m ∈ C, and γ̄
d,t̄,m is well defined. Also, for any m ∈ [M] define

γ̄m ∈ [0, 1]C by γ̄mCm
= 1 and γ̄mC = 0 for C ∈ C \ {Cm}.

33

Define x̄ =
∑

b∈B γ̄
b. We show that x̄ is a solution for LP

(

∑

d∈{1,2}

(

(z̄d − r̄d) ∧ 1L\Fd

)

+ 1QI

)

.

For i ∈ L we have
∑

C∈C

x̄C · C(i) =
∑

b∈B

γ̄bC · C(i) =
∑

d∈{1,2}

∑

t̄∈Td

∑

m∈[κd(t̄)]

x̄d,t̄C · C(i) =
∑

d∈{1,2}

∑

t̄∈Td

κd(t̄) · x̄
d,t̄
C · C(i)

=
∑

d∈{1,2}

(

(z̄d − r̄d) ∧ 1L\Fd

)

.

The second equality holds by the definition of γ̄b and since the sets Cb do not contain large items.
The last equality is by Lemma 4.6. For any i ∈ QI there is a unique b ∈ B such that i ∈ Cb. Thus,
∑

C∈C x̄C · C(i) =
∑

C∈C γ̄
b
C · C(i) = 1. Therefore, x̄ is a solution for the linear program. As ‖γ̄b‖ = 1

for every b ∈ B, it follows that ‖x̄‖ = B. Thus,

OPTf

∑

d∈{1,2}

(

(z̄d − r̄d) ∧ 1L\Fd

)

+ 1QI

 ≤ ‖x̄‖ = B,

and by the definition of ȳ (35) we have

OPTf (ȳ) = OPTf

∑

d∈{1,2}

(

(z̄d − r̄d) ∧ 1L\Fd

)

+ 1QI

+OPTf (1Q\QI
) ≤ (1 + 8δ)|B| + 1.

Observe that

|B| =
∑

d∈{1,2}

∑

t̄∈Td

κd(t) +M =
∑

d∈{1,2}

∑

t̄∈Td

(

⌈βηd(t)⌉+ 2δ−1
)

+ exp(−δ−9) ·OPT+ exp(δ−11)

≤ β‖λ̄‖+ (|T1|+ |T2|) · (1 + 2δ−1) + exp(−δ−9) ·OPT+ exp(δ−11)

≤ β‖λ̄‖+ exp(−δ−9) ·OPT+ exp(δ−12).

The first inequality holds since
∑

t̄∈Td
ηd(t̄) = ‖λ̄

d‖, and the second inequality uses |Td| ≤ exp(δ−6).
By the above, Lemma 4.10 and (36), we have

OPTf (z̄) ≤ (1 + 8δ)|B| + 1 + 2βδ‖λ̄‖+ 2δ−5 +
2δ−11

ϕ10(δ)
OPT

≤ (1 + 8δ)
(

β‖λ̄‖+ exp(−δ−9) ·OPT+ exp(δ−12)
)

+ 1 + 2δβ‖λ̄‖+ 2δ−5 +
2 · δ−11

ϕ10(δ)
OPT

≤ β(1 + 10δ)‖λ̄‖+ exp(δ−20) + δ10OPT,

where the last inequality uses ϕ = exp(δ−20). Thus, we showed that S is a linear structure, which
completes the proof of Lemma 2.2.

4.3 Refinement for Small Items

Proof of Lemma 4.3: Define r(i) = vd(i)
v
d̂
(i) for any i ∈ I. W.l.o.g assume that I \L = {1, 2, . . . , s} = [s]

for some s ∈ N, and r(1) ≤ r(2) ≤ . . . ≤ r(s).
If ā · (v̄1 + v̄2) ≤ 1

q2
OPT+ 2qδ define H1 = I \L and Hj = ∅ for j ∈ {2, . . . , q}. Let Q ⊆ I \L and

1
q ≤ β ≤ 1 which satisfies (28). We can select X = I \L. It follows that ‖1Q\X • ā • v̄

d‖ = 0 ≤ β · ā · v̄d

and ‖1X • ā • (v̄
1 + v̄2)‖ = ā ·

(

v̄1 + v̄2
)

≤ 16
q OPT + 2qδ. This shows the lemma holds in case

ā · (v̄1 + v̄2) ≤ 1
q2OPT+ 2qδ. We henceforth assume that

ā · (v̄1 + v̄2) >
1

q2
OPT+ 2qδ. (43)

34

Define h0 = 0 and

hj = min

{

i ∈ [s]

∣

∣

∣

∣

(

ā ∧ 1[s]
)

· (v̄1 + v̄2) ≥
j

q
· ā · (v̄1 + v̄2)

}

∀j ∈ [q] (44)

Observe that the set over which the minimum is taken is non-empty for all j ∈ [q]. Hence, hj is well
defined. Define Hj = {i ∈ [s] | hj−1 < i ≤ hj} = [hj] \ [hj−1] for j ∈ [q].

Let Q ⊆ I \ L and 1
q ≤ β ≤ 1 which satisfy (28). For every j ∈ [q] and C ∈ C it holds that

vd(C ∩Hj) ≤ 1 and

vd(C ∩Hj) =
∑

i∈C∩Hj

vd(i) =
∑

i∈C∩Hj

vd̂(i) · r(i) ≤ r(hj)
∑

i∈C∩Hj

vd̂(i) ≤ r(hj).

Thus, vd(C ∩Hj) ≤ min{1, r(hj)}. We conclude that

∀j ∈ [q] : max {vd(C ∩Hj) | C ∈ C} ≤ min{1, r(hj)}. (45)

We use in our proof the following inequality (that we prove later).

∀j ∈ [q] \ {1} : ‖1Hj
• ā • v̄d‖ ≥

1

2
min{1, r(hj−1)} ·

1

q3
OPT, (46)

For every j ∈ [q] define

βj = max
{

0, ‖1Q∩Hj
• ā • v̄d‖ − β‖1Hj

• ā • v̄d‖
}

.

It follows from (28) and (45) that

βj ≤
OPT

q5
·max {vd(C ∩Hj) | C ∈ C} ≤ min{r(hj), 1} ·

OPT

q5
.

For every j ∈ [q] \ {1} we define a set Xj ⊆ Q∩Hj. If ‖1Q∩Hj
• ā • v̄d‖+ βj−1−βj ≤ β · ‖1Hj

• ā • v̄d‖
then we define Xj = ∅. Otherwise, we define Xj to be a minimal subset of Q ∩ Hj such that
‖1Q∩Hj\Xj

• ā • v̄d‖+ βj−1 − βj ≤ β · ‖1Hj
• ā • v̄d‖. Observe that

‖1Q∩Hj\(Q∩Hj) • ā • v̄
d‖+ βj−1 − βj ≤ βj−1 ≤ min{1, τj−1} ·

OPT

q5
≤ β‖1Hj

• ā • v̄d‖,

where the last inequality follows from β ≥ 1
q and (46). Hence, there exists Xj 6= ∅. As the set is

minimal, it follows that there is xj ∈ Xj such that ‖1Xj\{xj} • ā • v̄
d‖ ≤ βj−1 ≤

OPT
q5 . Thus,

‖1Xj\{xj} • ā • v̄
d̂‖ =

∑

i∈Xj\{xj}

āi · vd̂(i) =
∑

i∈Xj\{xj}

āi ·
vd(i)

r(i)
≤

∑

i∈Xj\{xj}

āi ·
vd(i)

r(hj−1)

=
‖1Xj\{xj} • ā • v̄

d‖

r(hj−1)
≤

βj−1

r(hj−1)
≤

1

r(hj−1)
min{τj−1, 1} ·

OPT(I, v)

q5
≤

OPT(I, v)

q5

where the first inequality holds as Xj ⊆ Hj.
Define X = (Hq ∩Q) ∪

⋃q
j=2Xj. It follows that

‖1Q\X · ā · v̄
d‖ =

q−1
∑

j=1

‖1(Q\X)∩Hj
· ā · v̄d‖

= ‖1(Q\X)∩H1
· ā · v̄d‖ − β1 +

q−1
∑

j=2

(

‖1(Q\X)∩Hj
· ā · v̄d‖+ βj−1 − βj

)

+ βq−1

≤ β

q−1
∑

j=1

‖1Hj
· ā · v̄d‖+ βq−1

≤ β

q−1
∑

j=1

‖1Hj
· ā · v̄d‖+min{r(hq−1), 1} ·

OPT(I, v)

q5

≤ β

q
∑

j=1

‖1Hj
· ā · v̄d‖ = β · ā · v̄d.

35

The first equality holds as supp(ā) ⊆
⋃

j∈[q]Hj. The first inequality follows from the definitions of β1

and Xj (for j ∈ {2, . . . , q − 1}). The last inequality follows from β ≥ 1
q and (46).

Note that ‖1Hq · ā ·
(

v̄1 + v̄2
)

‖ ≤ ā·v̄d

q ≤
2·OPT

q . Thus,

‖1X • 1A • (v̄
1 + v̄2)‖ ≤ ‖1Hq · ā ·

(

v̄1 + v̄2
)

‖+

q
∑

j=2

‖1Xj
· ā ·

(

v̄1 + v̄2
)

‖

≤
2 ·OPT

q
+ q · 2 ·

OPT

q5
+ 2δq ≤

16

q
OPT+ 2δq.

It remains to show that (46) holds. For every j ∈ [q], we have

‖1Hj
• ā • (v̄1 + v̄2)‖ = ‖1[hj] • ā • (v̄

1 + v̄2)‖ − ‖1hj−1
• ā • (v̄1 + v̄2)‖

≥
j

q
ā · (v̄1 + v̄2)−

j − 1

q
ā · (v̄1 + v̄2)− 2δ

=
1

q
ā · (v̄1 + v̄2)− 2δ

≥
1

q

(

1

q2
OPT+ 2δq

)

− 2δ

=
1

q3
OPT(I, v).

(47)

The first inquality follows from (44) and v1(i) + v2(i) ≤ 2δ for all i ∈ I \ L. The second inequality
follows from (43). Additionally, for j ∈ [q] \ {1} we have

‖1Hj
• ā • (v̄1 + v̄2)‖ = ‖1Hj

• ā • v̄d‖+ ‖1Hj
• ā • v̄d̂‖

= ‖1Hj
• ā • v̄d‖+

∑

i∈Hj

āi · vd̂(i)

= ‖1Hj
• ā • v̄d‖+

∑

i∈Hj

āi ·
vd(i)

r(i)

≤ ‖1Hj
• ā • v̄d‖+

∑

i∈Hj

āi ·
vd(i)

r(hj−1)

= ‖1Hj
• ā • v̄d‖ ·

(

1 +
1

r(hj−1)

)

,

(48)

where the inequality follows from r(1) ≤ r(2) ≤ . . . ≤ r(p). Using (47) and (48), we get

∀j ∈ [q] \ {1} : ‖1Hj
• ā • v̄d‖ ≥

(

1 +
1

r(hj−1)

)−1

·
1

q3
OPT ≥

1

2
min{1, τj−1} ·

1

q3
OPT,

where the inequality follows from
(

1 + x−1
)−1
≥ 1

2 min{1, x} for every x ≥ 0. Inequality (46) follows
from the last inequality.

5 Existence of ψ-Relaxations

In this section we prove Lemmas 2.4, 2.5 and 2.6. That is, we show how to obtain relaxations for
various configurations.
Proof of Lemma 2.4: Let S ⊆ C \ L be a minimal set such that either v1(C \ S) ≤ 1 − δ or
v2(C \ S) ≤ 1 − δ. That is, for any i ∈ S it holds that v (C \ (S \ {i})) > (1 − δ, 1 − δ). Such a set
exists since C ∈ C0.

In the following we show that v(S) ≤ (2δ, 2δ). Assume, by way of contradiction, that v1(S) > 2δ
or v2(S) > 2δ. Then S 6= ∅ and there is i ∈ S. W.l.o.g assume v1(S) > 2δ. Then v1(S \ {i}) > δ as
all the items in S are small, and i ∈ S. Therefore,

v1 (C \ (S \ {i})) = v1(C)− v1(S \ {i}) ≤ 1− δ,

36

contradicting the definition of S. Thus, v(S) ≤ (2δ, 2δ).

Define C1 = C \ S and C2 ∈ C
∗ by C2(i) =

{

κ i ∈ S

0 i 6∈ S
for i ∈ I, where κ =

⌊

1
2(δ

−1 − 1)
⌋

. Observe

that C1 has δ-slack by the definition of S. Additionally,

v1(C2) ≤ v1(S) · κ ≤ 2δκ ≤ 2δ ·
1

2
(δ−1 − 1) ≤ 1− δ,

thus C2 is a multi-configuration with a δ-slack.
Define λ̄ ∈ [0, 1]C

∗
by λ̄C1 = 1, λ̄C2 = 1

κ and λ̄C′ = 0 for C ′ ∈ C \{C1, C2}. Clearly, for any C
′ ∈ C∗

such that λ̄C′ > 0 it holds that C ′ has δ-slack. Thus, λ̄ has a δ-slack.
For any i ∈ C \ S we have

∑

C′∈C∗

λ̄C′ · C ′(i) = C1(i) +
1

κ
· C2(i) = 1 + 0 = 1.

For any i ∈ S it holds that

∑

C′∈C∗

λ̄C′ · C ′(i) = C1(i) +
1

κ
· C2(i) = 0 +

1

κ
· κ = 1.

For any i ∈ I \ C it holds that

∑

C′∈C∗

λ̄C′ · C ′(i) = C1(i) +
1

κ
· C2(i) = 0 +

1

κ
· 0 = 0.

Since δ−1 ∈ N, we have κ ≥ 1
2 (δ

−1 − 1)− 1
2 = 1

2δ
−1 − 1. Therefore,

‖λ̄‖ =
∑

C′∈C∗

λ̄C′ = λ̄C1 + λ̄C2 = 1 +
1

κ
≤ 1 +

1
1
2δ

−1 − 1
= 1 +

2δ

1− 2δ
≤ 1 + 4δ,

where the last inequality holds as δ ≤ 0.1
We showed that λ̄ is a (1 + 4δ)-relaxation of C. This completes the proof of the lemma.

Proof of Lemma 2.5: Let C ∩L = {i1, . . . , ih}. Define h configurations C1, . . . , Ch by Cℓ = C \ {iℓ}
for 1 ≤ ℓ ≤ h − 1 and Ch = C ∩ L \ {ih}. It can be easily shown that C1, . . . , Ch are configurations.
Define λ̄ ∈ [0, 1]C

∗
by

λ̄C′ =

{

1
h−1 C ′ = Cℓ for some 1 ≤ ℓ ≤ h

0 otherwise
.

For any 1 ≤ ℓ ≤ h it holds that iℓ is large; thus, there is dℓ ∈ {1, 2} such that vdℓ(iℓ) ≥ δ. Therefore,

vdℓ(Cℓ) ≤ vdℓ(C \ {iℓ}) = vdℓ(C)− vdℓ(iℓ) ≤ 1− δ.

That is, all the configurations C1, . . . , Ch have δ-slack. Thus, for any C ′ ∈ C∗ with λ̄C′ > 0 it holds
that C ′ has δ-slack. Hence, λ̄ has a δ-slack.

For any i ∈ C ∩ L there is 1 ≤ ℓ ≤ h such that i = iℓ. Thus,

∑

C′∈C∗

λ̄C′ · C ′(i) =

h
∑

j=1

1

h− 1
· Cj(iℓ) =

∑

j∈[h]\{ℓ}

1

h− 1
= 1.

For any i ∈ C \ L it holds that i ∈ Cℓ for all 1 ≤ ℓ ≤ h− 1; thus,

∑

C′∈C∗

λ̄C′ · C ′(i) =

h
∑

j=1

1

h− 1
· Cj(i) =

h−1
∑

j=1

1

h− 1
= 1.

37

For any i ∈ I \ C we have i 6∈ Cℓ for all ℓ ∈ [h]. Therefore,

∑

C′∈C∗

λ̄C′ · C ′(i) =

h
∑

j=1

1

h− 1
· Cj(i) = 0.

Finally,

‖λ̄‖ =
∑

C′∈C∗

λ̄C′ =

h
∑

ℓ=1

λ̄Cℓ
=

h

h− 1
.

Thus, we showed that λ̄ is a h
h−1 -relaxation of C.

Proof of Lemma 2.6: Define C ′ ∈ C∗ by C ′(i) =

{

κ i ∈ C

0 otherwise
where κ =

⌈

1
2δ

−1
⌉

and λ̄ ∈ [0, 1]C
∗

by λ̄C′ = 1
κ and λ̄D = 0 for any D ∈ C∗ \ {C ′}. Observe that

v1(C
′) =

∑

i∈I

v1(i) · C
′(i) = κ · v1(C) ≤

⌈

1

2
δ−1

⌉

· δ ≤

(

1

2
· δ−1 + 1

)

· δ ≤
1

2
+ δ ≤ 0.6 ≤ 1− δ,

where the last two inequalities follow from δ ∈ (0, 0.1). Thus C ′ has δ-slack and hence λ̄ is with
δ-slack.

For any i ∈ C it holds that
∑

D∈C∗ λ̄D ·D(i) = λ̄C′ · C ′(i) = 1
κ · κ = 1. Also, for any i ∈ I \ C it

holds that
∑

D∈C∗ λ̄D ·D(i) = λ̄C′ · C ′(i) = 0. Finally

‖λ̄‖ =
1

κ
≤

1
⌈

1
2δ
⌉ ≤ 2δ ≤ 4δ.

Thus λ̄ is a 4δ-relaxation of C, as required.

6 Solving the Matching-LP

In this section we present a PTAS for the MLP problem, thus proving Lemma 1.3. Let δ ∈ (0, 0.1)
and ε ∈ (0, 0.1). Our objective is to obtain a polynomial time (1 + O(ε))-approximation for δ-MLP.
Towards this end, we use a result of Grötschel, Lovász, and Schrijver [14] which describes the ellipsoid
method via separation oracles. A separation oracle for a polytop P ⊆ R

n gets a point x̄ ∈ R
n as an

input and either determines that x̄ ∈ P or finds c̄ ∈ R
n such that x̄ · c̄ < ȳ · c̄ for any ȳ ∈ P . That

is, it finds an hyperplane which separates between x̄ and the polytope P . Given a separation oracle,
the ellipsoid method either determines that P = ∅ or finds x̄ ∈ P in polynomial time in n. As a
consequence, if P = ∅ then the execution of the ellipsoid is comprised of invocations of the separation
oracle that always result in a separating hyperplane. If P 6= ∅ then at least one of the calls to the
separation oracle results in x̄ ∈ P .

We use an approximate variant of the separation oracle which is commonly used to solved linear
programs similar to (1) (see, e.g, [16]). In the classic setting, the ellipsoid method is executed with the
dual of the original linear program, as this program has a polynomial number of variables. For example,
the dual linear program of (1) has |I| variables. This approach cannot be directly implemented for
MLP since the number of variables in both primal and dual linear programs is non-polynomial in the
δ-2VBP instance (I, v), due to the number of linear constraints required to represent the matching
polytop. This difficulty is overcome through projections of polytopes in vector space of non-polynomial
dimension into polytopes with a polynomial dimension. A similar approach was recently used in [11].

Throughout this section we define multiple mathematical optimization problems. We use OPT(P)
to denote the value of the optimal solution to the problem P. To avoid notational overhead, we assume
the input δ-2VBP instance (I, v) is fixed throughout this section, and omit is from the input of the
algorithms. We use G = (L,E) to denote the δ-matching graph of (I, v) as defined in Section 1.2, and
PM(G) as the matching polytope of G. Recall E is the projection function defined in Section 1.2.

38

We first simplify our problem. We can relax the requirement
∑

C∈C x̄C · C(i) = 1 in (4) and use
inequality instead. That is,

rMLP : min
∑

C∈C

x̄C

∀i ∈ I :
∑

C∈C

x̄C · C(i) ≥ 1

E(x̄) ∈ PM(G)

∀C ∈ C : x̄C ≥ 0

(49)

It can be easily shown that the optimum of (4) and (49) are equivalent, and furthermore, that a
solution for (49) can be easily converted to a solution for (4) of the same or lower value.

Our objective is to find a variant of (49) in which the set C is replaced by a polynomial size set
D ⊆ C, while approximately preserving the optimal value. Towards this end we use the following
family of polytopes.

∀D ⊆ C : P (D) =

(x̄, ȳ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̄ ∈ R
D
≥0, ȳ ∈ PM(G)

E(x̄) ≤ ȳ

∀i ∈ I :
∑

C∈D

x̄C · C(i) ≥ 1

(50)

Given D ⊆ C, with a slight abuse of notation we refer to a vector x̄ ∈ R
D
≥0 as a vector in R

C
≥0 where

x̄C = 0 for every C ∈ C \ D. This ensures the term E(x̄) is well defined. Since PM(G) is downward
closed it follows that rMLP is equivalent to the problem of finding (x̄, ȳ) ∈ P (C) such that ‖x̄‖ is
minimal.17 For D ⊆ C we define the rMLP(D) problem as the problem of finding (x̄, ȳ) ∈ P (D) such
that ‖x̄‖ is minimal. It follows that OPT(rMLP(D)) ≥ OPT(rMLP) for any D ⊆ C.

We use P (D) to define a family of additional polytopes in R
E.

∀D ⊆ C, h ∈ R≥0 : Q(D, h) =
{

ȳ ∈ R
E
∣

∣ ∃x̄ ∈ R
D
≥0 : (x̄, ȳ) ∈ P (D) and ‖x̄‖ ≤ h

}

(51)

It thus follows that Q(D, h) 6= ∅ if and only if OPT(rMLP(D)) ≤ h. Furthermore, Q(D, h) is a
polytope in a vector space of polynomial size. We use the ellipsoid method to determine if Q(C, h) = ∅
for various values of h. The separation oracle first checks if ȳ ∈ PM(G), and otherwise finds a
separating hyperplane using a separation oracle for the matching polytope. If ȳ ∈ PM(G) we use the
following linear program, which depends on ȳ ∈ PM(G) and D ⊆ C, to obtain a separating hyperplane.

PRIMAL(ȳ,D) min
∑

C∈D

x̄C

∀i ∈ I :
∑

C∈D

x̄C · C(i) ≥ 1

∀e ∈ E :
∑

C∈S(e)∩D

x̄C ≤ ȳe

∀C ∈ C : x̄C ≥ 0

(52)

where for every e ∈ E we define its superset of configurations as S(e) = {C ∈ C | e ⊆ C}. Using this
notation is holds that (E(x̄))e =

∑

C∈S(e) x̄C . It follows that ȳ ∈ Q(D, h) if and only if ȳ ∈ PM(G)
and OPT(PRIMAL(ȳ,D)) ≤ h.

Recall the set C2 is defined in (2). For any C ∈ C it holds that C ∈ C2 if and only if there is
e ∈ E such that C ∈ S(e). We use this observation to derive the dual of PRIMAL(ȳ,D), which is the

17A polytope P ⊆ R
n
≥0 is downward closed if for any x̄ ∈ P and ȳ ∈ R

n
≥0 such that ȳ ≤ x̄ it holds that ȳ ∈ P .

39

following linear program.

DUAL(ȳ,D) max
∑

i∈I

λ̄i −
∑

e∈E

β̄e · ȳe

∀C ∈ D \ C2 :
∑

i∈C

λ̄i ≤ 1

∀e ∈ E, C ∈ S(e) ∩ D :
∑

i∈C

λ̄i ≤ 1 + βe

∀i ∈ I : λ̄i ≥ 0

∀e ∈ E : β̄e ≥ 0

(53)

Observe that the feasible region of DUAL(ȳ,D) is independent of ȳ. That is, for any D ⊆ C we
can define

R(D) =

(λ̄, β̄) ∈ R
I
≥0 × R

E
≥0

∣

∣

∣

∣

∣

∣

∣

∣

∀C ∈ D \ C2 :
∑

i∈C

λ̄i ≤ 1

∀e ∈ E, C ∈ S(e) ∩ D :
∑

i∈C

λ̄i ≤ 1 + βe

. (54)

Then DUAL(ȳ,D) is the problem of finding (λ̄, β̄) ∈ R(D) for which
∑

i∈I λ̄i−
∑

e∈E β̄e · ȳe is maximal.
We use the following relation between R(D) and Q(D, h) to generate separating hyperplanes.

Lemma 6.1. For any h ∈ R≥0, ȳ ∈ Q(C, h) and (λ̄, β̄) ∈ R(C) it holds that

∑

i∈I

λ̄i −
∑

e∈E

β̄e · ȳe ≤ h.

Proof. As ȳ ∈ Q(C, h) it follows that OPT(DUAL(ȳ, C)) = OPT(PRIMAL(ȳ, C)) ≤ h. Thus, as
(λ̄, β̄) ∈ R(C) we have

∑

i∈I

λ̄i −
∑

e∈E

β̄e · ȳe ≤ OPT(DUAL(ȳ, C)) ≤ h.

LetM∗ be a maximum matching in the graph G. Since each of the vertices in a matching polytope
is a (integral) matching, it holds that

∀ȳ ∈ PM(G) :
∑

e∈E

ȳe ≤ |M
∗| (55)

Since for every e ∈M∗ it holds that e ∈ C2 and therefore v1(e) > (1− δ), for every solution x̄ of rMLP
we have

∑

C∈C

x̄C ≥
∑

C∈C

x̄C · v1(C) ≥
∑

C∈C

x̄C
∑

i∈I

v1(i) · C(i)

=
∑

i∈I

v1(i)
∑

C∈C

x̄C · C(i) ≥
∑

i∈I

v1(i) ≥
∑

e∈M∗

v1(e) > (1− δ)|M∗|.

Hence
OPT(rMLP) > (1− δ)|M∗|.

We combine Lemma 6.1 with the following lemma, which we prove later in this section.

Lemma 6.2. There is a polynomial time algorithm Ellipsoid R which given ȳ ∈ PM(G) and h >
(1− δ)|M∗| returns one of the following.

• A subset D ⊆ C such that |D| polynomial in the input size and OPT(DUAL(ȳ,D)) ≤ (1 + ε) h.

• A point (λ̄, β̄) ∈ R(C) such that
∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe > h.

40

Algorithm 3: Q separator

Input: ȳ ∈ R
E
≥0, h > (1− δ)|M∗|.

1 If ȳ /∈ PM(G) then find a separating hyperplane between ȳ and PM(G) and return it.
2 Run Ellipsoid R (Lemma 6.2) with ȳ and h as it inputs.
3 if Ellipsoid R returned (λ̄, β̄) ∈ R(C) such that

∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe > h then

4 return
∑

i∈I λ̄i −
∑

e∈E β̄e · z̄e = h as a separating hyperplane.
5 else

6 notify the ellipsoid algorithm to abort, and return the set D ⊆ C returned by Ellipsoid R.
7 end

We use the algorithm Ellipsoid R from Lemma 6.2 to derive a separation oracle for Q(C, h). The
pseudo code of the oracle is given in Algorhtm 3. We note there is a polynomial time separation oracle
for the matching polytope (see, e.g, [22]), thus Step 3 can be implemented in polynomial time. While
the algorithm does not formally qualifies as a separation oracle, it provides the following guarantee.

Lemma 6.3. Given ȳ ∈ R
E
≥0 and h > (1− δ)|M∗|, Algorithm 3 does one of the following.

• Returns a separating hyperplane between Q(C, h) and ȳ.

• Notifies the ellipsoid to abort and returns D ⊆ C of polynomial cardinality such that
OPT(DUAL(ȳ,D)) ≤ (1 + ε)h. In this case it must hold that ȳ ∈ PM(G).

Proof. If ȳ 6∈ PM(G) the algorithm finds a separating hyperplane between ȳ and PM(G). As Q(C, h) ⊆
PM(G) this hyperplane also separates between ȳ and Q(C, h).

If the invocation to Ellipsoid R returns (λ̄, β̄) ∈ R(C) such that
∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe > h, then
∑

i∈I λ̄i−
∑

e∈E β̄e ·z̄e = h is a separating hyperplane between ȳ and Q(C, h) by Lemma 6.1. Otherwise,
by Lemma 6.2 the invocation to Ellipsoid R returns a subset D ⊆ C of polynomial cardinality such that
OPT(DUAL(ȳ,D)) ≤ (1 + ε) h. It follows that in this case Algorithm 3 notifies the ellipsoid to abort
and returns D.

Algorithm 4 utilizes Q separator as a separator oracle. The algorithm may return a vector x̄ ∈ R
D
≥0

for some D ⊆ C. Recall we interpret such a vector as a vector in R
C as well.

Algorithm 4: Ellipsoid Q

Input: h > (1− δ)|M∗|
1 Run the ellipsoid method with Q separator (and h) as the separation oracle
2 if the ellipsoid retured that the polytope is empty then

3 Return OPT(rMLP) > h
4 else

5 This case can only happens if the Q separator notified the ellipsoid to abort and returned
a set D ⊆ C.

6 Find an optimal solution (x̄′, ȳ′) for rMLP(D) and return x̄′

7 end

Lemma 6.4. Algorithm 4 is a polynomial time algorithm which either determines that
OPT(rMLP) > h or finds a solution x̄′ for rMLP with ‖x̄′‖ ≤ (1 + ε)h.

Proof. Observe that the execution of the ellipsoid is polynomial. Furthermore, if the algorithm solves
rMLP(D) in Step 5 then by Lemma 6.3 we have that |D| is polynomial, and hence rMLP(D) can
be solved in polynomial time (as there is a separation oracle for E(x̄) ∈ PM(G), and the number of
variables and additional constraints is polynomial).

By Lemma 6.3, if the ellipsoid asserts that the polytope is empty it holds that all the invocations
to Q separator returned a separating hyper plane, thus this is a valid execution of the ellipsoid with a

41

separation oracle for Q(C, h). Hence Q(C, h) = ∅ which implies that OPT(rMLP) = OPT(rMLP(C)) >
h due to (51).

Otherwise, it must hold that the execution of the ellipsoid method has been aborted by Q separator

at some iteration. Let ȳ ∈ PM(G) be the value of ȳ used in the call to Q separator in this iteration,
let D ⊆ C be the subset of configurations found by Q separator, and let (x̄′, ȳ′) ∈ P (D) be the solution
found in Step 5. It holds that ‖x̄′‖ ≤ OPT(PRIMAL(ȳ,D)) = OPT(DUAL(ȳ,D)) ≤ (1 + ε) h where
the last inequality is by Lemma 6.3. Since (x̄′, ȳ′) ∈ P (D) it holds that E(x̄′) ≤ ȳ′ ∈ PM(G), hence
E(x̄′) ∈ PM(G). From the same reason we also have

∑

C∈C x̄
′
C · C(i) ≥ 1 for all i ∈ I. Thus, it holds

that x̄′ is a solution for rMLP of value at most (1 + ε)h.

Algorithm 5: Matching-LP

1 Run a binary search over the range (ℓ, u) = ((1 − δ)|M∗|, |I|), where in each iteration

Ellipsoid Q(h) is called with h = ℓ+u
2 . If Ellipsoid Q returned that OPT(rMLP) > h update

ℓ = h. If Ellipsoid Q returned a solution x̄ update x̄ to be the best solution and u = h.
repeat the process until u− ℓ < ε.

2 If u 6= |I| return the best solution found, otherwise return a vector x̄ ∈ {0, 1}C where x̄{i} = 1
for every i ∈ I and x̄C = 0 for any other C ∈ C.

Our algorithm for δ-rMLP, given in Algorithm 5, uses Ellipsoid Q to guide a binary search.

Proof of Lemma 1.3. We show that Algorithm 5 is a polynomial time (1 + 3ε)-approximation al-
gorithm for rMLP. This immediately implies a PTAS for the MLP problem due to the connection
between MLP and rMLP.

By Lemma 6.4 it holds that OPT(rMLP) > ℓ throughout the binary search, and that if u 6= |I|
then the best solution found x̄ satisfies ‖x̄‖ ≤ (1+ ε)u throughout the execution of the binary search.
Thus, it holds that by the end of its execution, the algorithm returns a solution x̄ such that

‖x̄‖ ≤ (1 + ε)u < (1 + ε)(ℓ+ ε) < (1 + ε)(OPT(rMLP) + ε) ≤ (1 + 3ε)OPT(rMLP),

where the last inequality holds since OPT(rMLP) ≥ 1 (otherwise I = ∅ and x̄ = 0 is an optimal
solution).

We are left to provide the proof for Lemma 6.2. Similarly to Ellipsoid Q, the ellipsoid method is
used with an approximate separation oracle. The ellipsoid method is used with polytopes from the
following family of polytopes, which we define for every h ≥ 0, ȳ ∈ PM(G) and D ⊆ C.

R(ℓ, ȳ,D) =

{

(λ̄, β̄) ∈ R(D) |
∑

i∈I

λ̄i −
∑

e∈E

β̄e · ȳe ≥ ℓ

}

(56)

To derive a separation oracle for R(h, ȳ,D) we use a PTAS for 2-Dimensional Knapsack
(2DK) [13]. Using the terminology already defined in this paper, the input for 2DK is a 2VBP
instance (S, v), a profits vector p̄ ∈ R

S
≥0 and a two dimensional budget b̄ ∈ R

2
≥0. The objective is to

find a subset W ⊆ S of items such that v(W) =
∑

i∈W v(i) ≤ b̄ and p(W) ≡
∑

i∈W p̄i is maximal. We
use (S, v, p̄, b̄) to denote a 2DK instance. We also allow p̄ ∈ RT

≥0 where S ⊆ T . The separation oracle
is given in Algorithm 6. The pseudo code uses NG[j] = {i ∈ L | {i, j} ∈ E} ∪ {j} to denote the closed
neighborhood of j ∈ L in the δ-matching graph G.

As in the case of Q separator, it holds that R separator has properties similar to those of a separation
oracle.

Lemma 6.5. Algorithm 6 is a polynomial time algorithm which given (λ̄, β̄) ∈ R
I × R

E, ȳ ∈ PM(G)
and ℓ ≥ (1− δ)|M∗|, does one of the following.

42

Algorithm 6: R separator

Input: (λ̄, β̄) ∈ R
I × R

E, ȳ ∈ PM(G) and ℓ > (1− δ)|M∗|.
1 If

∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe < ℓ then return it as the separating hyperplane.
2 Find a (1− ε

8)-approximate solution W for the 2DK instance (I \ L, v, λ̄,1). If
∑

i∈W λ̄i > 1
return W as a separating hyperplane.

3 foreach j ∈ L do

4 Find a (1− ε
8)-approximate solution W for the 2DK instance (I \NG[j], v, λ̄,1− v(j)). If

∑

i∈W∪{j} λ̄i > 1 return W ∪ {j} as a separating hyperplane.

5 end

6 foreach e ∈ E do

7 Find a (1− ε
8)-approximate solution W for the 2DK instance (I \ L, v, λ̄,1− v(e)). If

∑

i∈W∪e λ̄i > 1 + β̄e return W ∪ e as a separating hyperplane.

8 end

9 Notify the ellipsoid method to abort and return
((

1− ε
8

)

λ̄, β̄′
)

where β̄′e = min{2, β̄e} for
every e ∈ E.

• Returns a separating hyperplane between R(ℓ, ȳ, C) and (λ̄, β̄).

• Notifies the ellipsoid to abort and returns (λ̄′, β̄′) ∈ R
((

1− ε
2

)

ℓ, ȳ, C
)

.

Proof. Since there is a PTAS for 2DK [13] it immediately follows that Algorithm 6 runs in polynomial
time.

If
∑

i∈I λ̄i−
∑

e∈E β̄e · ȳe < ℓ then the algorithm returns this inequality as a separating hyperplane
in Step 1. This inequality indeed serves as a separating hyperplane by the definition of R(ℓ, ȳ, C)
in (56). Thus, we can assume that

∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe ≥ ℓ for the remaining part of the proof.
If the algorithm returns a set W in Step 2 then it holds that W ⊆ I \ L and v(W) ≤ 1 as a

solution for 2DK. Thus, W ∈ C \ C2 and the inequality
∑

i∈W λ̄i > 1 defines a separating hyperplane
due to (56) and (54). Thus, we can assume that the algorithm did not return a set in Step 2 for the
remainder of the proof. This implies that the optimal solution for the 2DK instance (I \L, v, λ̄,1) has

value of at most
(

1− ε
8

)−1
. Since every C ∈ C such that C ⊆ I \ L is a solution for (I \ L, v, λ̄,1) it

follows that

∀C ∈ C, C ⊆ I \ L :
∑

i∈C

λ̄i ≤
(

1−
ε

8

)−1
. (57)

Consider the case in which the algorithm returns the set W ∪ {j} in Step 4. It holds that v(W ∪
{j}) ≤ v(W)+v(j) ≤ 1−v(j)+v(j) = 1 asW is a solution for the 2DK instance (I\NG[j], v, λ̄,1−v(j)).
Thus W ∪{j} ∈ C. Assume towards a contradiction that W ∪{j} ∈ C2. Thus there is j

′ ∈W ∩L such
that (j, j′) ∈ E and we can conclude W ∩ N [j] 6= ∅, contradiction the definition of W . It therefore
holds that W ∪ {j} ∈ C \ C2. Since

∑

i∈W∪{j} λ̄i > 1 the configuration W ∪ {j} defines a separating
hyperplane due to (56) and (54).

Hence, we can assume that the algorithm did not return a separating hyperplane in Step 4 for the
remainder of the proof. Let C ∈ C \ C2. If C ⊆ I \ L then it holds that

∑

i∈C λ̄i ≤
(

1− ε
8

)−1
by (57).

Otherwise there is j∗ ∈ C ∩L. Consider the iteration of the loop in Step 3 in which j = j∗ and let W
be the set found in this iteration in Step 4. It holds that C \ {j} is a solution for the 2DK instance
(I \ NG[j], v, λ̄,1 − v(j)), thus

∑

i∈W λ̄i ≥
(

1− ε
8

)
∑

i∈C\{j} λ̄i. Since the algorithm did not return

W ∪ {j} it also holds that
∑

i∈W∪{j} λ̄i ≤ 1. Therefore,

∑

i∈C

λ̄i = λ̄j +
∑

i∈C\{j}

λ̄i ≤ λ̄j +
(

1−
ε

8

)−1 ∑

i∈W

λ̄i ≤
(

1−
ε

8

)−1 ∑

i∈W∪{j}

λ̄i ≤
(

1−
ε

8

)−1
.

Thus, we have

∀C ∈ C \ C2 :
∑

i∈C

λ̄i ≤
(

1 +
ε

8

)−1
. (58)

43

Next, we consider the case in which the algorithms returns a the set W ∪ e in Step 7. It holds that
v(W ∪ {e}) = v(W) + v(e) ≤ 1− v(e) + v(e) = 1 since W is a solution for (I \L, v, λ̄,1− v(e)), hence
W ∪ e ∈ C. It follows that W ∪ {e} ∈ S(e). Since

∑

i∈W∪e λ̄i > 1 + β̄e it follows that W ∪ e defines a
separating hyperplane between (λ̄, β̄) and R(ℓ, ȳ, C) (due to (54) and (56)).

We can therefore assume that the algorithm does not return a set in Step 7 throughout its execution.
Let e∗ ∈ E and C ∈ S(e∗), and consider the iteration of the loop in Step 6 in which e = e∗. It holds
that C \ e ⊆ I \ L (otherwise it must be that vd(C) > 1 for some d ∈ {1, 2}) and v(C \ e) ≤ 1− v(e),
thus C \ e is a solution for the 2DK instance (I \L, v, λ̄,1− v(e)). Let W be the approximate solution
found for (I \L, v, λ̄,1−v(e)), it thus holds that

∑

i∈W λ̄i ≥
(

1− ε
8

)
∑

i∈C\e λ̄e. Also, since we assume

the algorithm does not return a set in Step 7 it holds that
∑

i∈W∪e λ̄ ≤ 1 + βe. Therefore, it holds
that

∑

i∈C

λ̄i =
∑

i∈e

λ̄i +
∑

i∈C\e

λ̄i ≤
∑

i∈e

λ̄i +
(

1−
ε

8

)−1 ∑

i∈W

λ̄i ≤
(

1−
ε

8

)−1 ∑

i∈W∪e

λ̄i ≤
(

1−
ε

8

)−1
(1 + βe).

Let e = {j1, j2}. Then it holds that {j1}, {j2}, C \ e ∈ C \ C2. Therefore, by (58), we have

∑

i∈C

λ̄i ≤ λ̄j1 + λ̄j2 +
∑

i∈C\e

λ̄i ≤ 3
(

1 +
ε

8

)−1
.

The above can be summarized into the following inequality,

∀e ∈ E, C ∈ S(e) :
∑

i∈C

λ̄i ≤
(

1−
ε

8

)−1
(1 +min{β̄e, 2}) =

(

1−
ε

8

)−1
(1 + β̄′e). (59)

By (58) and (59) it holds that
((

1− ε
8

)

λ̄, β̄′
)

∈ R(C). Furthermore, it holds that

∑

i∈I

(

1−
ε

8

)

λ̄i −
∑

e∈E

β̄′e · ȳe =
(

1−
ε

8

)

·

(

∑

i∈I

λ̄i −
∑

e∈E

β̄′e · ȳe

)

−
ε

8

∑

e∈E

β̄′e · ȳe

≥
(

1−
ε

8

)

·

(

∑

i∈I

λ̄i −
∑

e∈E

β̄e · ȳe

)

−
ε

4

∑

e∈E

ȳe

≥
(

1−
ε

8

)

ℓ−
ε

4

ℓ

1− δ

≥
(

1−
ε

2

)

ℓ.

The first inequality holds since β̄′e = min{β̄e, 2}, the second inequality uses
∑

e∈E ȳe ≤ |M
∗| < ℓ

1−δ

due to (55). Thus,
((

1− ε
8

)

λ̄, β̄′
)

∈ R
((

1− ε
2

)

ℓ, ȳ, C
)

.

Algorithm 7 uses the ellipsoid method with R separator as the separation oracle.

Proof of Lemma 6.2. Note that Ellipsoid R runs in polynomial time and furthermore it holds that
ℓ > h > (1−δ)|M∗|, thus R separator is used with parameters that match the conditions of Lemma 6.5.

Consider the execution of Algorithm 7. If the ellipsoid returns that the polytope is empty, then
all the separation hyperplanes returned by Ellipsoid R are also separation hyperplanes with respect to
the polytope R(ℓ, ȳ,D), thus it must hold that R(ℓ, ȳ,D) = ∅. This implies that OPT(DUAL(ȳ,D)) ≤
ℓ = h

1− 3ε
4

≤ (1 + ε)h . Since the execution of the ellipsoid is of polynomial time, it follows that |D| is

also polynomial.
If the ellipsoid was aborted, then by Lemma 6.5 it holds that (λ̄, β̄) ∈

((

1− ε
2

)

ℓ, ȳ, C
)

. By (56) we
have that (λ̄, β̄) ∈ R(C) and

∑

i∈I

λ̄−
∑

e∈E

β̄e · ȳe ≥
(

1−
ε

2

)

ℓ =
(

1−
ε

2

) h

1− 3ε
4

> h.

44

Algorithm 7: Ellipsoid R

Input: ȳ ∈ PM(G) and h > (1− δ)|M∗|
1 Run the ellipsoid method with R separator as the separation oracle where R separator is used

with ȳ and ℓ = h
1− 3ε

4

.

2 if the ellipsoid retured that the polytope is empty then

3 Define D as set of configurations which were returned by R separator as a separating
hyperplaines throughout the execution of the ellipsoid. Return D.

4 else

5 This only happens if R separator aborted the ellipsoid and returned
(λ̄, β̄) ∈

((

1− ε
2

)

ℓ, ȳ, C
)

. Return (λ̄, β̄).

6 end

7 References

[1] Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for set
covering problems, with applications to multidimensional bin packing. SIAM Journal on Com-
puting, 39(4):1256–1278, 2010.

[2] Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin packing.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1561–1579. SIAM, 2016.

[3] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM journal
on computing, 33(4):837–851, 2004.

[4] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted matchings and matroid
intersection via dependent rounding. In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, pages 1080–1097. SIAM, 2011.

[5] Yuan Shih Chow and Henry Teicher. Probability theory: independence, interchangeability, mar-
tingales. Springer Science & Business Media, 1997.

[6] Henrik I Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017.

[7] Edward G Coffman, János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo. Bin
packing approximation algorithms: survey and classification. In Handbook of combinatorial opti-
mization, pages 455–531. 2013.

[8] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. Second edition, 2001.

[9] W Fernandez De La Vega and George S. Lueker. Bin packing can be solved within 1+ ε in linear
time. Combinatorica, 1(4):349–355, 1981.

[10] Maxence Delorme, Manuel Iori, and Silvano Martello. Bin packing and cutting stock problems:
Mathematical models and exact algorithms. European Journal of Operational Research, 255(1):1–
20, 2016.

[11] Yaron Fairstein, Ariel Kulik, and Hadas Shachnai. Modular and submodular optimization with
multiple knapsack constraints via fractional grouping. CoRR, abs/2007.10470, 2020.

[12] Yaron Fairstein, Ariel Kulik, and Hadas Shachnai. Modular and submodular optimization with
multiple knapsack constraints via fractional grouping. In 29th Annual European Symposium on
Algorithms (ESA), 2021.

45

[13] Alan M Frieze and Michael RB Clarke. Approximation algorithms for the m-dimensional 0-
1 knapsack problem: worst-case and probabilistic analyses. European Journal of Operational
Research, 15(1):100–109, 1984.

[14] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[15] Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin packing. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
2616–2625. SIAM, 2017.

[16] Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In 23rd Annual Symposium on Foundations of Computer Sci-
ence, pages 312–320. IEEE, 1982.

[17] Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148–
188, 1989.

[18] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics for vector bin packing.
research. microsoft. com, 2011.

[19] Arka Ray. There is no aptas for 2-dimensional vector bin packing: Revisited. arXiv preprint
arXiv:2104.13362, 2021.

[20] Sai Sandeep. Almost optimal inapproximability of multidimensional packing problems. arXiv
preprint arXiv:2101.02854, 2021.

[21] SC Sarin and WE Wilhelm. Prototype models for two-dimensional layout design of robot systems.
IIE transactions, 16(3):206–215, 1984.

[22] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

[23] Frits CR Spieksma. A branch-and-bound algorithm for the two-dimensional vector packing prob-
lem. Computers & operations research, 21(1):19–25, 1994.

[24] Asser N Tantawi and Malgorzata Steinder. Autonomic cloud placement of mixed workload: An
adaptive bin packing algorithm. In 2019 IEEE international conference on autonomic computing
(ICAC), pages 187–193. IEEE, 2019.

[25] Vijay V Vazirani. Approximation algorithms. Springer-Verlag, 2001.

[26] Gerhard J Woeginger. There is no asymptotic ptas for two-dimensional vector packing. Informa-
tion Processing Letters, 64(6):293–297, 1997.

[27] Yonghong Yu and Yang Gao. Constraint programming-based virtual machines placement algo-
rithm in datacenter. In International Conference on Intelligent Information Processing, pages
295–304. Springer, 2012.

46

	1 Introduction
	1.1 Related Work
	1.2 The Algorithm
	1.3 Technical Contribution
	1.4 Organization

	2 Preliminaries
	3 Analysis
	3.1 Probability Space and Properties
	3.2 Analysis of Round&Round
	3.3 Asymptotic Approximation Ratio
	3.4 Concentration

	4 Proof of the Structural Lemma
	4.1 Construction of S
	4.2 Correctness
	4.3 Refinement for Small Items

	5 Existence of -Relaxations
	6 Solving the Matching-LP
	7 References

