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Abstract. Simulating numerically the sound radiation of a rolling tire requires the solution of
a very large and sparse gyroscopic eigenvalue problem. Taking advantage of the automated multi–
level substructuring (AMLS) method it can be projected to a much smaller gyroscopic problem,
the solution of which however is still quite costly since the eigenmodes are non–real and complex
arithmetic is necessary. This paper discusses the application of AMLS to huge gyroscopic problems
and the numerical solution of the AMLS reduction. A numerical example demonstrates the efficiency
of AMLS.
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1. Introduction. A great deal of the overall sound source of road traffic is
caused by rolling noise of road vehicles. For passenger cars at speeds above 40 km/h,
and for trucks above 60 km/h the major source of traffic noise is due to the sound
radiation of rolling tires (cf. [19, 21]). According to Nackenhorst and von Estorff [21]
the simulation of the tire noise is performed in three steps. First, the nonlinear tire
deflections under steady state conditions are computed using an Arbitrary Lagrangian
Eulerian (ALE) approach. Next, the transient vibrations governed by the eigenpairs
of a gyroscopic eigenvalue problem

Q(ω)x := Kx + ωGx + ω2Mx = 0. (1.1)

are assumed to be superimposed onto the nonlinear deflections. Finally, the acoustic
analysis is carried out solving Helmholtz’s equation where the normal velocities at the
wheel surface, extracted from the vibration analysis, are taken as boundary conditions.

In this paper we consider only the second step, i.e. the numerical solution of
the eigenproblem (1.1) where K is the stiffness matrix modified by the presence of
centripetal forces, M is the mass matrix, and G is the gyroscopic matrix stemming
from the Coriolis force. Clearly, K and M are symmetric and positive definite, and
G is skew–symmetric.

Due to the complicated interior structure of a belted tire the matrices K, M
and G of a sufficiently accurate FE model are very large and sparse. Moreover, for
the acoustic analysis many eigenpairs not necessarily at the end of the spectrum are
needed. Therefore, well-established sparse eigensolvers of Arnoldi type with shift and
invert techniques [15] for a linearization of problem (1.1), methods which are based on
structure preserving linearizations like SHIRA [18], and iterative projection methods
for nonlinear eigenproblems [17] are very costly since LU factorizations of complex
valued matrices Q(ωj) for several parameters ωj are required.

Over the last few years, a new method for huge eigenvalue problems, known as
Automated Multi–Level Substructuring (AMLS), has been developed by Bennighof and
co-authors, and has been applied to frequency response analysis of complex structures
[2, 3, 11]. Here the large finite element model is recursively divided into very many
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substructures on several levels based on the sparsity structure of the system matrices.
Assuming that the interior degrees of freedom of substructures depend quasistatically
on the interface degrees of freedom, and modeling the deviation from quasistatic
dependence in terms of a small number of selected substructure eigenmodes, the size
of the finite element model is reduced substantially yet yielding satisfactory accuracy
over a wide frequency range of interest. Recent studies ([11, 13, 24], e.g.) in vibro-
acoustic analysis of passenger car bodies where huge FE models with more than
six million degrees of freedom appear and several hundreds of eigenfrequencies and
eigenmodes are needed have shown that AMLS is considerably faster than Lanczos
type approaches for this sort of problems.

From a mathematical point of view, AMLS is nothing else but a projection method
where the large problem under consideration is projected to a subspace spanned by
a small number of eigenmodes of undamped clamped substructures on several levels.
With respect to this basis the projection of the stiffness matrix K becomes diagonal,
and the mass matrix M is projected to a generalized arrowhead form (cf. Fig. 1).

An obvious way to apply AMLS to gyroscopic problems is to reduce the linear
pencil (K,M) by AMLS and to perform all transformations in the course of the AMLS
method for the gyroscopic matrix G simultaneously. Thus one arrives at a projected
problem

Ky + ωGy + ω2My = 0. (1.2)

Then the projection preserves the gyroscopic structure of problem (1.1), and problem
(1.2) can be solved by (structure preserving) linearization [16, 18, 25] or by an iterative
projection method of Arnoldi [26] or Jacobi-Davidson type [4].

Notice however, that for a realistic model of a rolling tire the projected problem
can still be very large, and solving (1.2) numerically can be very costly, in particular
since a large number of eigenpairs is required in the acoustic analysis, and since the
eigenvectors are non-real, and solving (1.2) requires complex arithmetic.

Since the influence of the skew-symmetric matrix G on the eigenvectors of prob-
lem (1.2) is small compared to the matrices K and M (although not negligible), we
suggest to approximate problem (1.2) further projecting it to a subspace spanned by
eigenvectors of the linear symmetric eigenvalue problem

Kz = λ2Mz (1.3)

corresponding to eigenvalues not exceeding a given bound. These eigenvectors can be
determined in real arithmetic by a well–established sparse eigensolver like ARPACK
[15], and the time for solving problem (1.2) can be reduced considerably.

Our presentation is organized as follows. Section 2 summarizes the AMLS method
for linear eigenvalue problems. In Section 3 we apply it to gyroscopic problems, and
discuss the numerical solution of the projected gyroscopic eigenproblem. Section 4
demonstrates the efficiency of the approach by a numerical example. Although its
dimension is only ca. 125.000 which does not seem to be extraordinary large we call
the problem huge since the structure of its system matrices is complicated and an LU
factorization of Q(ω) requires such an amount of storage and computing time that
the common large eigensolvers of Arnoldi or Jacobi–Davidson type become inefficient.

2. AMLS for linear eigenproblems. In this section we summarize the Auto-
mated Multi-Level Substructuring (AMLS) method for the linear eigenvalue problem

Kx = λ2Mx (2.1)
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Fig. 1: Projected mass matrix
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Fig. 2: Tree of a multi-level substructuring

which was developed by Bennighof and co-workers over the last few years [2, 3, 11],
who applied it to solve frequency response problems involving large and complex
models. Here, K is the stiffness matrix and M the mass matrix of a finite element
model of a structure.

Similarly as in the component mode synthesis (CMS) the structure is partitioned
into a small number of substructures based on the sparsity pattern of the system ma-
trices, but more generally than in CMS these substructures in turn are substructured
on a number of levels yielding a tree topology for the substructures. Fig. 2 shows an
example were each substructure has at most two children.

We stress the fact that substructuring does not necessarily mean that it is ob-
tained by a domain decomposition of a real structure, but it is understood in a purely
algebraic sense. Although substructuring by hand may yield much smaller interfaces
than the ones obtained by automatic partitioners (cf. [7]), the dissection of the matri-
ces can be derived by applying a graph partitioner like CHACO [9] or METIS [12] to
the undirected graph corresponding to the nonzero pattern of the matrices under con-
sideration. These programs have been designed to construct fill–reducing orderings
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of sparse matrices for efficient factorization but have shown to be a beneficial basis
of substructuring methods as well. In either case, because of its pictographic nomen-
clature we will use terms like substructure or eigenmode from frequency response
problems when describing the AMLS method.

Substructures on the lowest level consist of a small number of degrees of freedom,
which are partitioned into two sets: interface degrees of freedom which are shared
with an adjacent substructure, and interior or local degrees of freedom which are
only connected to degrees of freedom in their own substructure. To demonstrate the
AMLS method we distinguish only between two substructures on the lowest level
(corresponding to index sets I1 and I2), the interface between these substructures
(with index set I3) and the remaining degrees of freedom (index set I4). Partitioning
the displacement vector x correspondingly and reordering the matrices K and M the
eigenvalue problem (2.1) obtains the following form
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To remove the off-diagonal blocks Kij , i = 1, 2, j = 3, 4 in K we apply the congruence
transformation with

TT KTy = λTT MTy, y = T−1x

T =
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. (2.3)

Then problem (2.1) is equivalent to
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where

K̃jj = Kjj −
∑

i=1,2

KT
ijK

−1
ii Kij , j = 3, 4

K̃34 = K34 −
∑

i=1,2

KT
i3K

−1
ii Ki4

M̃ij = Mij − MiiK
−1
ii Kij , i = 1, 2, j = 3, 4

M̃jj = Mjj −
∑

i=1,2

(MT
ijK

−1
ii Kij + KT

ijK
−1
ii Mij − KT

ijK
−1
ii MiiK

−1
ii Kij), j = 3, 4

M̃34 = M34 −
∑

i=1,2

(MT
i3K

−1
ii Ki4 + KT

i3K
−1
ii Mi4 − KT

i3K
−1
ii MiiK

−1
ii Ki4).

Taking advantage of the modal representation

KjjΦj = MjjΦjΩj , ΦT
j MjjΦj = I, j = 1, 2, (2.5)
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of the substructures under consideration, and applying the further congruence trans-
formation by the block diagonal matrix T̃ = diag{Φ1,Φ2, I, I} we obtain the equiva-
lent eigenvalue problem
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where

M̂ij = ΦT
i M̃ij , i = 1, 2, j = 3, 4.

These transformations are applied to all substructures on the finest level. The re-
sulting eigenproblem is a quasistatic-modal representation of the structure which is
known as Craig-Bampton form in component mode synthesis method.

It is well known that the high frequency modes of the substructures do not influ-
ence the low frequency modes of the entire structure very much. Hence, similarly as
in the component mode synthesis method we can reduce the dimension of the eigen-
value problem (2.6) considerably if we delete rows and columns which correspond to
frequencies of the substructures exceeding a given cut-off frequency.

The resulting eigenproblem is the projection of problem (2.1) to the subspace
spanned by all interface degrees of freedom and the kept modes of the substructures
of the finest substructuring. It obtains the same block form as problem (2.6), although
the two leading block rows and columns are of much smaller dimension:
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Once substructures on the lowest level have been transformed and reduced by
modal projection they are assembled to parent substructures on the next level. Again
interface and local degrees of freedom are identified, and the substructure models are
transformed similarly as on the lowest level.

For instance, for the parent substructure consisting of the three leading block rows
and columns of the modal reduction (2.7) of problem (2.6) we remove the off-diagonal
block K̃34 by a congruence transformation similar to (2.3) yielding
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with

M i4 = M̂ ′

i4 − M̂ ′

i3K̃
−1
33 K̃34, i = 1, 2, 3,

M44 = M̃44 − M̃T
34K̃

−1
33 K̃34 − K̃T

34K̃
−1
33 M̃34 + K̃T

34K̃
−1
33 M̃33K̃

−1
33 K̃34.
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To perform the modal reduction of the interior degrees of freedom of the current
substructure one would have to solve the eigenvalue problem
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However, since the number of interior degrees of freedom of substructures grows too
large in the course of the algorithm, we reduce the dimension only taking advantage
of the eigenvalue problem corresponding to the right lower diagonal block, i.e.

K̃33Φ3 = M̃33Φ3Ω3, ΦT
3 M̃33Φ3 = I. (2.10)

Applying the congruence transformation with T = diag{I, I,Φ3, I} to problem
(2.6), and dropping all rows and columns in the third block if the corresponding
eigenvalue exceeds the cut-off frequency we further reduce the dimension of the eigen-
problem.

Assembly to higher-level substructures, transformation to quasistatic-modal rep-
resentation, and projection to subspaces spanned by modes of diagonal blocks not
exceeding the cut-off frequency continues, until we arrive at an approximate model
for the entire structure. We end up with a projected eigenproblem

Ky = λMy, (2.11)

where the stiffness matrix K has become diagonal, and the mass matrix is projected
to a matrix M the diagonal of which is the identity, and the only off-diagonal blocks
containing non-zero elements are the ones describing the coupling of the substructures
and its interfaces. Fig. 1 shows the generalized arrowhead structure of the resulting
mass matrix.

Once the multi-level substructuring transformation of the problem (2.1) has been
accomplished, the substructure modes can be collected in a matrix ΦAMLS, and if
(λ, y) is an eigenpair of the projected problem (2.11) then (λ, x) = (λ,ΦAMLSy) is an
approximate eigenpair of problem (2.1) called Ritz-pair.

The cost of performing the projection above consists of the cost of obtaining
the submatrices Φj of ΦAMLS, and transforming the substructure stiffness and mass
matrices K and M . Notice that for every substructure only a partial eigenproblem
has to be solved, and only a small number of eigenpairs is needed. Moreover, the
eigenproblems are usually very small because most of the local degrees of freedom
of a substructure are local degrees of the substructures of the next lower level which
form the current substructure. Hence, the part of the substructure stiffness matrix
corresponding to these degrees of freedom is already diagonal, and we only consider
those local degrees of freedom which did not have this property on the next lower
level, i.e. those interface degrees of freedom of the next lower level which are not
interface degrees of freedom on the current level.

Differently from the iterative projection methods like Lanczos [14], Arnoldi [1],
rational Krylov [22] or Jacobi–Davidson [23] where approximations to the wanted
eigenpairs are obtained from projections of problem (2.1) to subspaces which are
expanded in the course of the algorithm, AMLS is a one shot method, i.e. after
having chosen a cut-off frequency or another dropping rule the method produces one
fixed subspace V and the corresponding projected eigenproblem. If the computed
approximate eigenpairs turn out to be not accurate enough there is no way to expand
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the subspace V reusing the projected problem but one has to repeat the reduction
with a higher cut-off frequency.

In a recent paper Yang et al. [27] considered the component mode synthesis
method, and they obtained a simple heuristic for choosing spectral components from
each substructure suggesting to drop all eigenpairs (ω, φ) of substructures in the
reduction process such that

ρ1(ω) :=
λ1

ω − λ1

≤ τ

where λ1 is the smallest eigenvalue of the problem under consideration, and τ is a
given tolerance.

Taking advantage of a minmax characterization of eigenvalues of nonlinear eigen-
problems in [7] we proved that ρ1(ω) is an a priori bound of the relative error for the
smallest eigenvalue λ1 of problem (2.1), and that similarly ρj(ω) := λj/(ω−λj) is an
apriori bound of the relative error for higher eigenvalues λj not exceeding ω. More
generally we proved the following theorem for the AMLS method:

Theorem 2.1. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of problem (2.1),
and let

λ̃1 ≤ λ̃2 ≤ λ̃m < min
ν=0,...,p

ων ≤ λ̃m+1 ≤ . . .

be the eigenvalues of the projected eigenproblem by AMLS with p levels of substruc-
turing where on the ν-th level eigenvalues exceeding ων are neglected. Then it holds

λ̃j − λj

λj

≤

p
∏

ν=0

(

1 +
λ̃j

ων − λ̃j

)

− 1, j = 1, . . . ,m. (2.12)

Numerical examples demonstrate that these a priori bounds overestimate the real
relative errors by a factor up to 100 (although an example in [7] demonstrates that
the a priori bound can not be improved without further assumptions). They suggest
the following rule of thump for dropping frequencies: if one is interested to obtain
the eigenvalues smaller than ω̂ with relative errors not exceeding 1 % then a cut-off
frequency 10ω̂ usually suffices.

3. AMLS for gyroscopic eigenproblems. We consider the gyroscopic eigen-
problem (1.1) in its equivalent form

Q̃(λ)x := Kx + iλGx − λ2Mx = 0, λ = iω, (3.1)

where K and M are symmetric and positive definite and G is skew–symmetric.
Since the influence of the gyroscopic matrix G on the eigenvectors is usually not

very high compared to the mass and stiffness matrix, it is reasonable to neglect the
linear term when defining the basis transformations and modal reductions correspond-
ing to the substructures. Hence we apply the AMLS reduction to the pencil (K,M),
and we perform the same congruence transformations and modal reductions for the
skew-symmetric matrix G. Thus we obtain the reduced model

Ky + iλGy − λ2My = 0, (3.2)

where the stiffness and mass matrix have the same structure as in the linear case. If
the sparsity pattern of G matches the one of K and M , then the gyroscopic matrix
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G is a skew-symmetric block matrix with generalized arrowhead form. It contains
diagonal blocks corresponding to the (reduced) substructures and interfaces, and only
off–diagonal blocks describing the coupling of a substructure and its interface contain
non–zero elements.

Notice, that all projectors are real, and therefore the reduction can be performed
in real arithmetic.

If the dimension of problem (3.2) is very small, a method at hand is to consider
the linearization

(

iG K
K O

)(

λx
x

)

= λ

(

M O
O K

)(

λx
x

)

(3.3)

of problem (3.2) and to apply any dense solver.
For very large gyroscopic problems (for instance a realistic model of a rolling tire)

the dimension of the projected problem (3.2) will still be quite large. In this case (3.2)
can be solved by an iterative projection method taking advantage of the minmax
characterization of the positive eigenvalues of (3.2) [26], by a structure preserving
Lanczos method [18], or by a sparse solver of the linearization (3.3) like ARPACK
[15]. In all of these cases the solution requires complex arithmetic.

Since the influence of the gyroscopic part on the eigenvectors of (3.2) is not very
large, problem (3.2) can often be solved even more efficiently. First it is projected to
a subspace spanned by eigenvectors of the linear problem

Kz = λMz (3.4)

corresponding to eigenvalues not exceeding a threshold σω2
max where ωmax is an upper

bound of the wanted eigenvalues of problem (1.1) and σ > 1 is a small constant, and
then the projected problem is solved by a dense solver.

A disadvantage of the approach above may be the fact that the eigenvectors of the
clamped substructures not taking into account the gyroscopic part are not appropriate
to model the deviation from quasi–static behavior of the substructures. We therefore
in [8] considered a variant of the AMLS method for gyroscopic problems using the
fact that the restriction

Kjjη + iλGjjη − λ2Mjjη = 0 (3.5)

of problem (3.1) to each of the substructures is gyroscopic itself, and has similar
properties as the linear problem Kjjη = λ2Mjjη: its eigenvalues are real and come in
pairs {λ,−λ}, its positive eigenvalues (ordered by magnitude) can be characterized as
minmax values of a Rayleigh functional (cf. [6]), and the corresponding eigenvectors
are linearly independent. Hence, the matrix Φj in the basis transformation (2.5)
can be replaced by a matrix the columns of which are the eigenvectors of (3.5), and
all columns corresponding to eigenvalues exceeding a given threshold are discarded in
the projected problem. This method has indeed better approximation properties than
the original AMLS method. However, the eigenvectors of (3.3) are non–real, and the
reduction has to be performed in complex arithmetic from the very beginning, and
numerical examples demonstrate that this additional effort does not pay [8].

4. Numerical experiments. AMLS is applied to a finite element model of a
deformable wheel rolling on a rigid plane surface which is obtained by an Arbitrary
Lagrangian Eulerian (ALE) formulation according to the derivation and presentation
in [20]. Our model of a rotating tire consists of 39204 brick elements with 124992



AMLS FOR GYROSCOPIC PROBLEMS 9

Preconditioner SuperLU MA 57
memory CPU time memory CPU time

Linearization complex 6.04 GByte 3910 sec.
nonlin. Arnoldi real 2.70 GByte 1940 sec. 2.86 GByte 1080 sec.

Table 1: Preconditioning resources required for Arnoldi methods

degrees of freedom and accounts for 20 different material groups. The speed is assumed
to be 60 km/h .

Our aim is to determine approximations to the smallest 180 eigenvalues with
relative error smaller than 1% and the corresponding eigenvectors.

Linearizing problem (1.1) in the usual way

(

−G −K
I O

)(

ωx
x

)

= ω

(

M O
O I

)(

ωx
x

)

(4.1)

or by the Hermitian problem

(

iG K
K O

)(

λx
x

)

= λ

(

M O
O K

)(

λx
x

)

(4.2)

and applying the shift-and-invert Arnoldi method requires an LU factorization of
Q(ω) or Q̃(λ) for every shift. Since the eigenvalues of (4.1) are purely imaginary and
a large number of eigenvalues distributed in a large interval is wanted, the shifts ω
have to be chosen imaginary as well, and Q(ω) is a complex matrix. Determining the
factorization by SuperLU [5] requires a memory of 6.04 GByte and a CPU time of
3910 seconds on one PA-RISC (750 MHz) processor of an HP superdome.

Applying the nonlinear Arnoldi method [26] the preconditioners can be chosen
as real matrices K − ω2M , the LU factorization of which requires 2.7 GByte storage
and 1940 seconds with SuperLU, and 2.86 GByte storage and 1080 seconds with the
multi frontal solver MA57 of HSL [10]. Since the LU factorization has to be updated
several times a total CPU time of more than 12 hours results on one processor of the
superdome. Table 1 summarizes the resources required for preconditioning the linear
and nonlinear Arnoldi methods.

AMLS demands much less storage and the problem under consideration can be
solved on a personal computer, namely a Pentium 4 processor with 3.0 GHz and 1
GByte storage. With a cut-off frequency of ωc = 5 × 109 the problem is projected to
a gyroscopic eigenproblem (3.2) of dimension nc = 2635 requiring a CPU time of 976
seconds under MATLAB 7.0. Solving the linearization (3.3) of the projected problem
(3.2) by eigs (i.e. by ARPACK) requires another 124 seconds.

Fig. 3 shows the relative errors of all 180 eigenvalues which are all smaller than
0.65%.

The solution time of the projected problem (3.2) can be further reduced projecting
it to the 262 dimensional subspace spanned by the eigenvectors of the linear problem
(3.4) corresponding to eigenvalues smaller than 1.5ω2

max and solving the projected
problem by the dense solver eig. This way the computing cost is decreased to 35.9
seconds to solve (3.4), 3.5 seconds to obtain the projected problem, and 7.3 seconds
to solve it. The maximum relative error is raised only to 0.68%

Table 2 summarizes the timings for the AMLS reduction and the solution of the
reduced eigenproblem by the implicitly restarted Arnoldi method (ARPACK) and
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Fig. 3: Relative errors of smallest 180 eigenvalues

cut-off freq. ωc red.time ARPACK rel. error. projection rel. error
5 × 109 2635 976 sec. 124 sec. 0.65 % 47 sec. 0.68 %

1 × 1010 4194 984 sec. 255 sec. 0.28 % 133 sec. 0.32 %
2 × 1010 6898 1067 sec. 547 sec. 0.14 % 289 sec. 0.18 %

Table 2: CPU timing for AMLS reduction and solution

by projecting it to an invariant subspace of the linear part and subsequent solution
of the projected problem by a dense solver for different cut-off frequencies ωc. It
demonstrates that the time for reducing the problem by AMLS does not depent very
sensitively on ωc, but increasing the cut-off frequency results in substantial growth of
the time for solving the projected problem.
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