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A B S T R A C T

A continuum formulation for electroactive composites made from nanoporous gold and ion-
conducting polymer is proposed. A novel extension of surface elasticity theory is developed to
account for the high surface-to-volume ratio of nanoporous gold, and to capture the
chemoelectromechanical coupling that occurs on the interface between the metal and the
polymer. This continuum formulation accounts for the fully non-linear behaviour exhibited by
the composite.

The balance of linear momentum, Gauß's flux theorem and a relation for the transport of
charge carriers are introduced in the bulk material as well as on the interface to describe the non-
linear multiphysics and highly coupled response of the actuator. The resulting system of non-
linear equations is solved using the finite element method. A series of numerical examples is
presented to elucidate the theory.

1. Introduction

Actuators translate electrical or chemical energy into mechanical work and are, therefore, crucial in a variety of technical
applications, including robotics (Chi and Xu, 2014; McEvoy and Correll, 2015) or chemical engineering, e.g., in pumps (Laser and
Santiago, 2004). In such applications, functional materials which exhibit a strong coupling between their mechanical and, e.g.,
magnetic or electric behaviour are utilised.

Electromechanical coupling, which allows for the translation of electric signals into deformation or vice versa, occurs in various
materials and can be tailored to different applications (Wilson et al., 2007). For example, piezoceramics exhibit a fast response time,
a high mechanical strength and very small strain amplitudes (Uchino, 1998). Electroactive polymers, by contrast, exhibit actuation
strains in the region of 10% which are about two orders of magnitude larger than those in piezoceramics (Shahinpoor et al., 1998;
Bar-Cohen, 2010). The large strains and the low voltages required for their operation have led to considerable interest in actuators,
sensors and energy harvesters based on electroactive polymers in the last decade. There exist numerous different types of
electroactive polymers that differ not only in properties such as actuation strain, operating voltages or their capacitance but also in
the underlying coupling mechanisms.

These different actuation mechanisms produce a variety of possible responses and, therefore, require different modelling
approaches. For instance, the active behaviour in so-called electronically activated polymers is based on piezoelectric or
electrostrictive effects and is commonly modelled using the concept of the Maxwell stress to express the mechanical effect of
electric forces, see, e.g., Hong (2011) and Bustamante and Rajagopal (2013).

Ionically activated polymers, on the other hand, require the investigation of ion transport coupled to the electrical and
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mechanical behaviour of the material. The most prominent example of this class of electroactive polymers are ionic polymers (Jo
et al., 2013). They are typically realised in composites of the hydrated polymer with metal electrodes, so called ionic polymer metal
composites (IPMCs). Phenomenological modelling approaches often exploit the typical layered bending setup of IPMCs actuators
(Alici et al., 2008; Fang et al., 2008; Mutlu et al., 2014) but neglect ion transport. To describe ion transport the Poisson-Nernst-
Planck framework is most commonly used. In Porfiri (2008), an analytical solution for the Poisson-Nernst-Planck equations is
presented. Nemat-Nasser and Li (2000); Pugal et al. (2011) and Nardinocchi et al. (2011) extend the Poisson-Nernst-Planck
equations to account for chemoelectromechanical coupling in IPMC actuators. Such physics-based models provide valuable insight
into the underlying mechanisms of, for example, actuation (Cha and Porfiri, 2014), back relaxation phenomena (Schicker and
Wallmersperger, 2013) and sensing (Farinholt and Leo, 2004; Chen et al., 2007; Aureli and Porfiri, 2013; Cha et al., 2013) in IPMCs.
Furthermore, these models introduce many concepts to describe the various types of electroactive polymers.

Another class of materials that has recently gained attention for its electromechanically coupled behaviour are nanoporous
metals which have a unique structure of interconnected nanoscale wires, cf. Fig. 1, resulting in an expectationally high surface-to-
volume ratio. Due to this high surface-to-volume ratio, seemingly small surface modifications strongly affect the mechanical
behaviour. For example, if immersed in a liquid electrolyte, nanoporous metals exhibit macroscopic actuation behaviour, due to
electrically charging the metal's surface and electroadsorption of a monolayer of ions (Weissmüller et al., 2003; Jin and Weissmüller,
2010). This charging induces variations of the surface stress that are visible in a deformation of the bulk material.

Furthermore, an electrostatic modification of the surface of nanoporous metals alters the metal's mechanical properties. For
example, Mameka et al. (2014) conducted a compression test on a nanoporous gold sample during potential sweeps, showing that
the material's stiffness is increased up to ∼8% by surface modification. As surface modification is caused by interaction with charge
carriers that migrate in an electric field, these effects are fully reversible by removing or reversing the applied electric potential.

To date, utilisation of electromechanical coupling in nanoporous metals requires an electrolyte to provide ions. As most common
electrolytes are liquids, potential applications of nanoporus metal actuators are limited to environments in which evaporation of the
electrolyte is prevented and contact with aqueous or flammable liquids is uncritical. However, recent studies aiming to overcome this
limitation, propose nanocomposites of nanoporous metals and electroactive polymers (Lang et al., 2012). In the same vein, a
completely dry setup in which the nanoporous metal is filled with a polymeric solid electrolyte is desirable.

Upon application of an electric potential, ions migrate within the polymer towards the metal/polymer interface. Just as in liquid
electrolyte setups, ions interact with the metal surface and, thus, induce stresses and modify the interface. Consequently, the
fundamental processes occurring in a dry setup are the same as in setups with liquid electrolytes. However, in solid electrolytes, ion
transport takes place at different time scales and may be much slower or faster than the transport in liquid electrolytes depending on
the material. Furthermore, regions of ion excess formed at the metal/polymer interface induce stresses within the polymer that
result in macroscopic deformation (Shahinpoor et al., 1998; Mazzoldi et al., 1998) that is superimposed on the deformation of the
metal. The behaviour in composite actuators, therefore, is considerably more complex and requires a new theoretical framework that
is able to capture both bulk and interface mechanisms of electromechanical coupling.

In the following, such a material model for an electroactive metal/polymer composite that incorporates electromechanical
coupling and focusses on the pronounced influence of the metal/polymer interface is introduced. To this end, an interface elasticity
framework is combined with a continuum mechanical model that couples the mechanical behaviour of the metal and the polymer
with ion transport in an electric field occurring in the polymer.

Classical continuum theories generally do not account for the influence surfaces and interfaces have on the response of the bulk
material. Their role, however, becomes significant if one considers nanoporous materials which are characterised by a large surface-
to-volume ratio. In the proposed model, the important impact of interfaces on the overall functionality of the actuator is described
using an extension of the surface elasticity theory of Gurtin and Murdoch (1975). In this theory, surfaces are endowed with their own
thermodynamic structure, that is, they have their own free energy and a resulting stress measure which is governed by a balance
equation. The consistent micro-to-macro transition for Gurtin-Murdoch type interfaces is introduced in McBride et al. (2012).

In the following, the balance of linear momentum, Gauß's flux theorem and a relation for the transport of charge carriers are
developed in the bulk and on the interface to describe the highly coupled response of the actuator. In addition, the continuum
formulation accounts for the physically reasonable fully non-linear (geometric and material) response exhibited by electroactive
composites.

Fig. 1. Scanning electron micrograph of nanoporous gold showing the interconnected network of pores that is responsible for the exceptionally high surface-to-
volume ratio. The gold nanowires have a diameter of ca. 30 nm. (Image courtesy of Nadiia Mameka at Helmholtz-Zentrum Geesthacht.)
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2. Governing equations

A metal/ion-conducting polymer composite can be described as a body consisting of three physical domains that exhibit
considerably different behaviour, namely the metal, the polymer, and the metal/polymer interface. In the model, the domains are
represented in a decomposition of a continuum body 0 in the reference configuration according to = ∪̇ ∪̇m p

0 0 0 0 , see Fig. 2,
where the disjoint union ≔ ∪̇m p

0 0 0 represents the bulk and 0 is the interface. The position of a material point in 0 is denoted by
X and is mapped to the current configuration at time t via the motion φ as x φ X t= ( , ). The interface 0 is assumed to be material and
geometrically coherent, i.e., there is no discontinuity in the motion φ over the interface and a material point on the interface is
denoted by X X= | 0. Here and in the following, interface properties are denoted by an overbar •. Furthermore, no bulk material is
transported over the interface, i.e., every material point Xm, Xp and X remains in its initial domain.

The deformation gradients in the bulk and on the interface are defined by

F φ F φ≔Grad and ≔Grad ,

where the interface gradient operator is the projection of the bulk operator to the interface IGrad•≔Grad•· with the rank-deficient
second-order interface identity tensor I I N N≔ − ⊗ . The link to the notation adopted here and a representation in a curvilinear
coordinate system is presented in Javili et al. (2014). The interface divergence is defined by IDiv•≔Grad•: . A jump of a quantity •
over the interface 0 is defined by • ≔•| − •|m p

0 0
, where m

0 and p
0 denote the two sides of the interface.

The extended divergence theorems in the bulk and on the interface are given by

∫ ∫ ∫N NV A ADiv(•)d = •· d − • · d ,
∂0 0 0 (1a)

∫ ∫ ∫N N NV L ADiv(•)d = •· d + Div •· d ,͠
∂0 0 0 (1b)

where N and N͠ are the normal vectors to the body's surface and the curve bounding the interface, respectively. For further details,
refer to Javili et al. (2013).

Using these definitions and identities, the governing equations for the primary fields, i.e., the displacement, electric potential and
ion concentration, in the bulk and on the interface are derived from fundamental balance equations.

The proposed interface elasticity framework accounts for the unique behaviour of nanoporous metals (and other nanoscale
materials) that arises due to the large surface-to-volume ratio these materials exhibit. Thus, seemingly small changes in the surface
properties can have a noticeable influence on the overall material behaviour. For instance, the electroactive behaviour in nanoporous
metals is a direct consequence of changes in the surface energy due to electroadsorption of electrolyte ions (Jin and Weissmüller,
2010). Such effects are naturally described in the proposed framework as it takes into account interface energies and interface
properties.

Furthermore, the extention to include interphase effects in the proposed model is straight-forward. An alternative approach to

Fig. 2. Schematic representation of a continuum body 0 that is separated into two domains m
0 and p

0 by the coherent interface 0. (a) Each of the two volumes

includes one side of the interface 0. For the corresponding interface normals the relation N X N X N X( )≔ ( ) = − ( )p m holds. (b) Material points are mapped from the

reference configuration to the current configuration by the motions φ and φ φ= | 0.
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model interphases like those in ionomeric polymer/metal composites has been proposed by Cha et al. (2012). Here, interphases in
which metal particles are dispersed in the polymer and which result from the composite production are modelled using the concept
of composite layers, whereby interphases are homogenised to account for their distinct influence on the electrical properties of the
composite. In the present contribution, however, the interface-enhanced framework is used to model effects that purely result from
the physics of a polymer/metal interface exhibiting perfect contact.

2.1. Deformation

Following the presentation by Javili and Steinmann (2010) and extending it to account for inertia effects, the global balance of
linear momentum for a continuum body 0 with a coherent interface 0 is derived from the integral balance:

∫ ∫ ∫ ∫ ∫ ∫u u P N P N B Bρ V ρ A A L V A¨d + ¨d = · d + · d + d + d .͠
0 0

∂ ∂0 0 0 0 0 0 (2)

Here,
⎡
⎣⎢

⎤
⎦⎥ρ kg

m0 3 and
⎡
⎣⎢

⎤
⎦⎥ρ kg

m0 2 are the mass densities with respect to the reference bulk volume and reference interface area, respectively.

The displacement vector is denoted by u, P is the first Piola-Kirchhoff stress tensor and B and B are body forces. A superimposed dot
denotes a material time derivative. As every material point X remains on the interface during deformation, time derivatives are well-
defined on the interface. For details of the extension to a moving interface, refer to Cermelli et al. (2005).

As the interface is assumed to be mechanically coherent, there is no jump in the displacement over the interface and, hence,
u u u= | = |p m

0 0 .
Localising Eq. (2) for an arbitrary control region in the bulk that does not include any part of the interface yields the balance of

linear momentum in the well known form

u P Bρ ¨ = Div + in .0 0 (3)

At a point X ∈ 0, using the divergence theorems in the bulk Eq. (1a) and on the interface Eq. (1b) the balance of linear
momentum becomes

⎡
⎣⎢

⎤
⎦⎥∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫u u P P N P N P N B B

t
ρ V ρ A V A A L V Ad

d
̇d + ̇d = Div d − · d + Div d + Div [ · ]d + d + d .0 0

∂0 0 0 0 0 0 0 0

(4)

Recognising that the interface Piola-Kirchhoff stress P is, by definition, a superficial tensor and, therefore, P N· = 0, localisation
for → ∅0 (resp. →0 0) yields the balance of linear momentum for the interface

u P B P Nρ ¨ = Div + + · on .0 0 (5)

Following a similar argument to Javili et al. (2013), the balance of angular momentum reduces to

F P P F· = · in ,T T
0 (6)

F P P F· = · on .T T
0 (7)

2.2. Electrostatics

For ion-conducting polymers, any changes in the electric fields can be considered instantaneous in comparison to the slow charge
carrier transport occurring in ion-conducting polymers (Hallinan and Balsara, 2013). Therefore, the evolution of electric fields upon
application of an electric potential is described within the electrostatic framework. Furthermore, magnetic fields are not considered
as their influence on ion transport is negligible.

In the electrostatic framework, the electric field with respect to the reference configuration,1 i.e., the nominal electric field, is
denoted by E and defines the electric potential by E Φ≕ − Grad .

The sources of electric fields are electric charge carriers which, in a continuum framework, can be described by “smeared” charge
densities Xq ( )0 . In condensed matter, one can distinguish between mobile, “free”, charges q0

f such as electrons or ions, and bound
charges q0

b which arise from dipole moments in a polarisable material.
To separate the effects arising from the different kinds of charges, the nominal polarisation field P E( ) describing the dipole

density and the nominal electric displacement fieldD E( ) are introduced (Dorfmann and Ogden, 2014). These three fields are related
by

D E PCε J≔ · + ,0
−1 (8)

where ε0 is the vacuum permittivity, J is the determinant of the deformation gradient F and C F F= ·T denotes the right Cauchy-

1 Note that, classically, electrostatic fields and relations are defined in the current configuration. Details on the pull back employed here and in the following can be
found in Dorfmann and Ogden (2005).
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Green deformation tensor.
Gauß's flux theorem relates the electric flux through a closed surface to the enclosed electric charges and follows from the time

integration of the charge carrier mass balance. Following Chatzigeorgiou et al. (2014) (an electrostatics framework accounting for
surface effects), Gauß's law for the bulk and the interface is given by

D D∫ ∫ ∫ ∫N NA L q V q A0 = − · d − · d + d + d ,͠ f f

∂ ∂ 0 0
0 0 0 0 (9)

Here, the free charge density qf0 is the sum over all free charges present and, thus, is expressed in terms of the concentrations of the
different charge carrier types c i

0 as X Xq F z c( ) = ∑ ( )f
i

i i
0 0 with the Faraday constant F and the species valence zi.

Localisation of Eq. (9) using the same arguments as employed for the linear momentum balance in Section 2.1, and applying the
divergence theorems for the bulk Eq. (1a) and the interface Eq. (1b), yields

D q0 = −Div + in ,f
0 0 (10)

D D DN N Nq0 = −Div + Div [ · ] + − · on .f
0 0 (11)

As the electric displacement field originates from free charges that emit fields in all directions (see Fig. 3), D is, unlike the interface
fields introduced in Sections 2.1 and 2.3, not a tangential vector. Thus, the second right-hand-side term of Eq. (11) does not vanish
as it does in the other interface equations.

2.3. Charge carrier transport

Charge carriers are transported within a body as a reaction to an applied electric field. To describe this transport, the balance of
mobile species mass is evaluated as the charge carrier mass is a conserved quantity. The relations derived in the following are valid
for any mass transport phenomenon, such as diffusion or advection. To maintain this generality, no assumptions about the
continuity of material fluxes or concentrations over the boundary 0 are made.

The mass balance for the diffusing species i is expressed in terms of the mass concentration in the bulk ci0 [mol/m ]3 and on the
interface c [mol/m ]i

0
2 . The concentration is given as the amount of ions per volume or area, respectively, with respect to the reference

configuration. This yields the mass balance for the system

∫ ∫ ∫ ∫ ∫ ∫J N J Nc V c A A L W V W Ȧ d + ̇ d = − · d − · d + d + d .͠i i i i i i
0 0

∂ ∂0 0 0 0 0 0 (12)

The interface flux J i is a tangential vector that possesses the orthogonality property J N· = 0i . Wi and W i are source terms that
account for, e.g., chemical reactions that add or remove ions from the system. In most applications, these source terms vanish but
they are included here for the sake of completeness.

Application of the divergence theorems (Eq.s (1a) and (1b)) yields

∫ ∫ ∫ ∫ ∫ ∫ ∫J J N Jc V c A V A A W V W Ȧ d + ̇ d = − Div d − · d − Div d + d + d .i i i i i i i
0 0

0 0 0 0 0 0 0 (13)

Localisation of Eq. (13) to the bulk and to the interface yields, for every diffusing species i, the general diffusion laws

Jc Ẇ = −Div + in ,i i i
0 0 (14)

J J Nc Ẇ = −Div + − · on .i i i i
0 0 (15)

Similarly, diffusion laws with respect to an energetic surface are presented in McBride et al. (2011).
The balance equations on the interface are valid for any mass transport mechanism. The nature of the transport is described by

the constitutive relations for the diffusion fluxes J i and J i. Furthermore, the behaviour at the interface has to be specified for
different transport phenomena.

For the limiting case of a non-permeable interface, such as the one in a metal/ion-conducting polymer composite, J N· = 0i and,

Fig. 3. Schematic representation of the electric field induced by (positive) interface charges.
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thus, any change in the interface concentration solely arises from interface effects according to Jc Ẇ = −Div +i i i
0 .

Assuming continuity in the concentration over the interface, i.e., c = 0i
0 , the interface concentration becomes

c c c c= | = | = |i i i i
0 0 0 0m p

0 0 0. This case could be called a “highly diffusive” interface following the terminology for heat conduction
across interfaces, see Javili et al. (2013).

2.4. Balances of energy and entropy

Transport of ions within the polymer network is associated with the “mixing” of ions and polymer chains. This mixing contributes
to the system's internal energy and entropy via the specific enthalpy φmixi

and the specific entropy ηmixi
. These two quantities define

the chemical potential of mixing μ φ θη≔ −mix mix mixi i i
, where θ is the absolute temperature.

Furthermore, the charge carried by the ions contributes to the system's energy. In an electrostatic framework, the potential
energy per charge is described by the electric potential Φ. Thus, the balance of internal energy for the system includes mechanical,
electrical and chemical contributions and is given by:

D ∑P F Jρ ε Φ ΦFz c φ c φ̇ = : ̇ − ̇ ·Grad − [ − ̇ + ·Grad ] in ,
i

i i i i
0 0

mix
0

mix
0

i i

(16)

D∑ ∑P F J J Nρ ε ΦF z c Φ φ c φ φ φ̇ = : ̇ − ̇ − ̇ ·Grad + [ ̇ − ·Grad − [ − ] · ] on .
i

i i

i

i i i
0 0

mix
0

mix mix mix
0

i i i i

(17)

Furthermore, the localised form of the entropy inequality reads

∑ Jρ η η η̇ − [ − ·Grad ] ≥ 0 in ,
i

i
0

mix mix
0

i i

(18)

∑ Jρ η η η̇ − [ − ·Grad ] ≥ 0 on .
i

i
0

mix mix
0

i i

(19)

The full integral formulations of the balances of energy and entropy are presented in Appendix A. The isothermal case is considered
here but it can easily be extended to account for thermal effects using the well-known principles of thermoelasticity.

Substituting the balances of internal energy into the entropy inequalities and evaluating them using the Coleman-Noll formalism
yields the constitutive relations

E
D

E
D

P
F

F
C

P
F

F
C

ρ Ψ ρ Ψ ρ Ψ ρ Ψ ρ Ψ ρ Ψ μ Fz Φ ρ Ψ
c

μ Fz Φ ρ Ψ
c

= ∂
∂

= 2 ·∂
∂

, = ∂
∂

= 2 ∂
∂

, = ∂
∂

, = ∂
∂

, = + ∂
∂

, = + ∂
∂

,i
i

i
i0 0 0 0 0 0

mix
0

0

mix
0

0

i i

as well as the requirements that

∑ ∑J J J Nμ μ μ μ− ·Grad ≥ 0 and − [ ·Grad + [ − ] · ] ≥ 0.
i

i

i

i imix mix mix mixi i i i

(20)

For the bulk, these relations are identical to ones for other types of electroactive polymers, e.g., Hong et al. (2010); Cha and Porfiri
(2014).

3. Material modelling

The governing equations derived in Section 2 are summarised in Table 1. In order to model the behaviour of a metal/ion-
conducting polymer composite, these equations are combined with appropriate constitutive equations that describe the different
types of material behaviour observed in the ion-conducting polymer, in the metal and on the interface.

3.1. Ion-conducting polymer

In ion-conducting polymers, the conduction mechanism is based on transport of ions that are either introduced into the solid
polymer bulk by doping or by immersion in a liquid electrolyte (Hallinan and Balsara, 2013). Migration of ions in an applied electric
field leads to the build-up of space charges, i.e., ion accumulation in some areas and other areas that are ion-deprived. This causes
deformation and stressing within the material, i.e., a chemoelectromechanical coupling in the bulk polymer. Polarisation of the
polymer may induce stresses in the bulk as well. Furthermore, ions that are brought into contact with the electrode in this process

Table 1
Governing equations.

Bulk Interface

Linear momentum u P Bρ ¨ = Div +0 u P B P Nρ ¨ = Div + + ·0
Gauß's law D q0 = −Div + f

0 D D DN N Nq0 = −Div + Div [ · ] + − ·f
0

Diffusion Jc Ẇ = −Div +0 J J Nc Ẇ = −Div + − ·0
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are electroadsorbed onto the metal and, thus, alter the interface properties. These three mechanisms of electromechanical coupling
are incorporated in the proposed model, where electroadsorption is captured by the interface model.

The behaviour of the bulk polymer is described by a Helmholtz free energy which is assumed to be additively decomposed into a
part describing the purely mechanical behaviour and two parts describing the electrically and chemically induced behaviour:

D DC C C CΨ c Ψ Ψ Ψ c( , , ) = ( ) + ( , ) + ( , ).0
mech elecmech chemmech

0 (21)

The purely mechanical part of the Helmholtz free energy is modelled by a Neo-Hookean material model:

C C I Iρ Ψ μ λ J μ J( ) =
2

[ − ]: +
2

ln − ln ,0
mech 2

(22)

where μ and λ are the Lamé parameters. The electromechanical part of the free energy for an isotropic and electrically linear material
is, following Cha and Porfiri (2014), given by

D
D DC Cρ Ψ

ε ε J
( , ) = 1

2
: ⊗ .

r
0

elecmech

0 (23)

The chemomechanical part of the Helmholtz free energy density is comprised of two contributions, the energy associated with
deformation of the polymer in regions of ion excess or depletion and the energy of mixing these ions into the polymer network:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥Cρ Ψ c

z
kq J Rθ

c
c

c( , ) = − 1 ln + ln − 1 .f
0

chemmech
0
mobile

mobile 0
0
mobile

0
initial 0

mobile

(24)

Here, the first term on the right-hand-side accounts for the coupling of concentration and deformation with the proportionality
constant k. The second right-hand-side term is a classical expression for the mixing contribution, where R is the gas constant and
c0

initial denotes the mobile ion concentration in the initial state without any loads or potential differences applied. In the case of a
single-ion conducting electrolyte as considered here, the free charge density is determined by q F z c z c= [ + ]f

0
mobile

0
mobile immobile

0
immobile .

Given this form of the Helmholtz free energy,2 the first Piola-Kirchhoff stress tensor P in the polymer bulk is decomposed into a
mechanically, an electromechanically and a chemomechanically induced contribution:

D D
D D

⎡
⎣⎢

⎤
⎦⎥P F

C
F F C F F F

P P P

ρ Ψ
μ λ J μ

Jε ε z
kq= 2 ·

∂
∂

= + [ ln − ] − 1 [ : ⊗ ]
2

· − · ⊗ − 1

= + + .

T

r

T f T0 −

0

−
mobile 0

−

mech elecmech chemmech (25)

The electromechanical stress Pelecmech is the nominal Maxwell stress well known from the description of dielectric materials (see,
e.g., Dorfmann and Ogden (2005); Ericksen (2007)). This stress contribution arises from forces induced during polarisation of the
material in an electric field. The chemomechanical stress Pchemmech, on the other hand, is caused by the free charge carrier
accumulation and is proportional to the charge density. This relation is an extension of the one proposed in Nemat-Nasser and Li
(2000) that also accounts for the mobile species valance zmobile such that the stress is independent of the kind of mobile ion species
and, thus, valid for various types of ion-conducting polymers. This coupling solely arises from stresses induced by the repulsive
forces and molecular interactions in regions of high or low mobile charge carrier concentration. From here on, the superscript mobile
will be omitted for readability.

The polymer has an isotropic and linear electric behaviour, so that

E
D

DC
ρ Ψ

Jε ε
=

∂
∂

= 1 · .
r

0

0 (26)

Recalling that the electric potential Φ is defined by E Φ= −Grad , Eq. (10) is written as

Cε ε J Φ q0 = Div( ·Grad ) + .r
f

0
−1

0

The chemical potential of mixing is given by

⎛
⎝⎜

⎞
⎠⎟μ ΦFz

ρ Ψ
c

Fz Φ k J Rθ c
c

= +
∂
∂

= [ − ln ] + ln .s
0

0

0

0
initial

(27)

In combination with the requirement J μ− ·Grad ≥ 0mix , the constitutive expression for the ion flux can be determined. Transport of
the free charge carriers is driven by the potential gradient and is also influenced by concentration gradients. Thus, the flux J of
charge carrier species i can be described by a general relation J M C Φ c μ= − ( , , )·Grad0

mix, where M is the mobility tensor. With
M D c= ( )c

Rθ 0
0 and neglecting any dependence on the deformation state, this yields the classic Nernst-Planck equation as the sum of

the fluxes arising from diffusion and migration as

2 Note that this formulation for the Helmholtz free energy is limited to the most fundamental coupling and mixing effects, as the focus of this contribution is the
development and presentation of a model accounting for interface effects in chemoelectromechanical coupling. Different choices for the Helmholtz free energy are
possible, for example ones that take size effects into account, see, e.g., Borukhov et al. (2000) and Kilic et al. (2007).
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EJ D D

J J

c c zF
Rθ

= − ·Grad + ·

= + .

0 0

diffusion migration (28)

This formulation is valid for any transport mechanism, such as diffusion of solvated ions in a liquid or conformational movement of
polymer chains.

Eq. (14) has to be solved for every free charge carrier species occurring in the material, which due to the requirement that charges
are balanced within a body, are at least two. Here, a polymer electrolyte is considered in which either anions or cations are
immobilised due to strong interactions with the polymer and only the counterions are free to move (Hallinan and Balsara, 2013).
Taking into account that no ions are produced or destroyed within the material, yields the diffusion law

D Dc c zF
Rθ

c Φ̇ = Div( ·Grad ) + Div( ·Grad )0 0 0 (29)

for the mobile ions and a constant, homogeneous concentration distribution for the immobilised ions.

3.2. Metal

In a bulk metal, the charge carrier and electric potential distributions are assumed to be perfectly homogeneous for all
phenomena occurring in this application case. Any charge building up in the metal is strictly localised to the interface and is,
therefore, described by the interface formulation presented in Section 3.3. Hence, no further information would be gained from
modelling electrostatics or ion transport within the metal bulk. Therefore, the modelling of the metal domain is limited to solving the
non-linear momentum balance Eq. (6) together with a Neo-Hookean constitutive relation

C C I Iρ Ψ μ λ J μ J( ) =
2

[ − ]: +
2

ln − ln .0
2

(30)

Thus, the first Piola-Kirchhoff stress is given by

P F
C

F F
ρ Ψ

μ λ J μ= 2 ·
∂

∂
= + [ ln − ] .T0 −

(31)

The metal considered here is gold, which, despite being a very exclusive material, is of great interest in case of nanoporous metals
because under compression it deforms up to large plastic strains (e.g., up to 120% true strain (Wang and Weissmüller, 2013)),
whereas nanomaterials usually only allow for small deformations. Current research aims at finding suitable materials that can
replace gold and, thus, make electroactive nanocomposites available for diverse technical applications.

3.3. Interface

As both bulk materials exhibit a Neo-Hookean mechanical behaviour, the interface between them does as well. To account for the
interface modification that occurs due to either capacitive charging or ion adsorption on the interface, a Helmholtz free energy has to
be formulated that depends on the charge density at the interface q f

0 . For nanoporous gold immersed in a liquid electrolyte, Mameka
et al. (2014) investigated the electro-elastic coupling parameter ξ as the derivative of the surface elastic excess constant with respect
to the surface charge density. Extending this definition to the interface Helmholtz energy in our model yields the definition

I
F

ξ
ρ Ψ

q
≔−

∂
∂ ∂

,f

3
0

2
0 (32)

with I being the fourth-order interface identity tensor. With this, the electromechanically coupled interface Helmholtz free energy is
expressed as

F F F F Fρ Ψ q μ λ J μ J ξq( , ) =
2

[ : − 2] +
2

ln − ln − 1
2

: .f f
0 0

2
0 (33)

Electromechanical coupling at the interface arises from two different mechanisms that are connected to the two different kinds of
charge carriers. There is electroadsorption in which ions are adsorbed onto the boundary and the formation of an interface charge
which balances the space charge in the polymer by a shift of the electron concentration at the interface, see Fig. 4.

During electroadsorption, the monolayer of ions directly located at the polymer side of the interface q q= |f f
0 0

p
0
is chemically

adsorbed to the electrode and, thus, alters the interface stress. To describe this process, it is necessary to transfer the bulk
concentration information to the interface using the relation c c= V

A0 0 , where A denotes the reference interface area and V the
reference polymer volume.

The build-up of an interface charge in response to an applied electric field in a metallic conductor is described by the interface
electrostatic Eq. (11). Furthermore, the classic interface condition for electric fields EN × = 0 holds (see also Chatzigeorgiou et al.
(2014)), i.e., the tangential component of the electric field is continuous across the interface. In a metallic conductor E = 0, thus, it
follows that the electric potential distribution is perfectly homogeneous along the interface (in fact, in the subsequent numerical
implementation the electric potential is applied as a boundary condition on the interface). Hence, no separate interface effects occur
and Eq. (11) on the interface reduces to
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D Nq0 = − · .f
0 (34)

With this, the electromechanically coupled interface Helmholtz free energy is expressed as

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥F F F F Fρ Ψ q λ J μ J ξq Rθ c

c
c( , ) = 1

2
ln + 1

2
[ : − 2 − 2 ln ] − 1

2
: + ln − 1 ,f f

0 0
2

0
0

0
initial 0

(35)

yielding an interface stress

P F F Fμ λ J μ ξq= + [ ln − ] − .T f−
0 (36)

The mechanical interface parameters can be determined from density functional theory (B. Elsner, S. Müller, S. Bargmann, J.
Weißmüller) or molecular dynamics computations, while the coupling parameters ξ are identified from experiments (Mameka et al.,
2014).

The charge carriers in a metal are electrons. Their transport along the interface is described by Eq. (15) which requires a
constitutive expression for the diffusion flux J that obeys the requirement Eq. (20)). Here, a non-permeable interface is considered,
so that J N· = 0. Hence, Eq. (20)) reduces to J μ− ·Grad ≥ 0mix . This is fulfilled if J M C c μ= − ( , )·Grad0

el mix. With D MRθ=
c
1

0
el and

the chemical potential

⎛
⎝⎜

⎞
⎠⎟μ Fz Φ ρ Ψ

c
FzΦ Rθ

c
c

= + ∂
∂

= + ln ,mix el
0

0
el

0
el

0
el,initial

(37)

this yields the expression

J D c= − ·Grad ,0
el (38)

and the diffusion law

Dc ċ = Div( ·Grad ).0
el

0
el (39)

4. Numerical example

In the following section, a structure consisting of a dry, single-ion-conducting polymer sandwiched inbetween two gold electrodes
is considered as a benchmark example for a nanoporous metal/polymer composite to elucidate the theory developed in the previous
sections. This sandwich structure is rigidly clamped on the bottom face and a potential difference of 1 V is applied as a boundary
condition on the electrode surfaces, see Fig. 4. This setup highlights the different coupling mechanisms by having two differently
charged interfaces. The material parameters used for the bulk and the interface are summarised in Tables 2 and 3, respectively.

4.1. Implementation

To solve the highly non-linear and strongly coupled system of equations, the finite element method is applied within an in-house
code using the finite element library deal.II (Bangerth et al., 2007). Temporal discretisation is performed using a backward Euler
finite difference scheme. An iterative Newton scheme is used to linearise and solve the resulting residual equations.

The interface is represented by a two-dimensional manifold that is embedded in the surrounding three-dimensional volume. The
nodes of the interface mesh coincide with the respective nodes of the bulk mesh, thus, ensuring geometrical coherency in the
solution. The deal.II library provides a number of routines and methods which calculate derivatives of fields on manifolds, thus,
enabling a straightforward implementation of the interface operators.

This implementation is an extension of the surface-elasticity framework presented in Javili et al. (2014) and McBride et al.

Fig. 4. Schematic depiction of the charge density distribution in an electrochemical cell consisting of two metal electrodes with an ion-conducting polymer electrolyte
sandwiched in between. In the polymer, ions accumulate in a broad area at the metal/polymer interface. This charge accumulation induces a balancing charge in the
metal surface by causing an increased or decreased electron concentration. Both kinds of charge are involved in the electromechanical coupling.
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(2015) to interfaces (see also Davydov et al. (2014)). However, these frameworks deal with uncoupled mechanics problems only, i.e.,
the only degrees of freedom considered are the displacement components, which are continuous over the interface due to material
and geometrical coherency. The metal/polymer composite modelled here exhibits electromechanical coupling and, thus, the
framework is extended to a multiphysical one including electric potential and charge carrier concentration fields.

Furthermore, these fields differ between the three domains metal, polymer and interface. In the bulk metal, no electric fields or
differences in the electron concentration occur, while both the interface and the polymer require information about the electric
potential and, respectively, the electron and ion concentration.

In addition, special care has to be taken in mapping information from the bulk to the interface because the interface equations
are coupled to bulk values, for example in the jumps of fields over the interface or in determining the ion concentration at the
interface.

4.2. Boundary conditions

The response of the sandwich structure presented in Fig. 5 to an applied potential difference is modelled here. The specimen's
bottom face is mechanically constrained in all directions and a potential difference of 1 V is applied using constant Dirichlet
boundary conditions imposed on the nodes located at the metal/polymer interface. This choice of the boundary conditions takes into
account that the electric potential in a perfect conductor such as gold is homogeneous and models a potential difference that is held
constant after application, i.e., a voltage step load.

The ion flux is assumed to be zero over all surfaces, i.e., no charge carriers can leave the volume. Furthermore, the interface
between polymer and metal is modelled as non-permeable, that is J N· = 0, because ions cannot cross the interface to enter the
metal. The displacement and the electric potential on the other hand are assumed to be continuous over the interface, i.e., u u= | 0
and Φ Φ= | 0, thus, ensuring mechanical and electrical coherence on the interfaces.

4.3. Effects of the interface

An interface has a distinct influence on the overall behaviour of a composite. This is usually neglected in classic continuum
models which is reasonable for materials where the bulk dominates the behaviour. However, in nanomaterials, interface effects
cannot be neglected. Fig. 6 illustrates the role of the interface using a simulation of bulk electromechanical coupling in the sandwich

Table 2
Bulk material parameters and constants.

Symbol Value Source

Faraday constant F 96485.337 C/mol
Vacuum permittivity ε0 8.854·10 F/m−12

Polymer
Mass density ρ0 1.47 g/cm3 Lòpez Cascales and Otero (2004)

Lamé parameters λ 1.13 GPa Vernitskaya and Efimov (1997)
μ 0.75 GPa

Relative permittivity εr 1·103 Aureli et al. (2009)

Valence mobile species z −1
Mobile ion concentration c0 1200 mol/m3 Pugal et al. (2012)

Diffusivity D 10·10 m /s−11 2 Pugal et al. (2012)

Electromechanical coupling parameter k 50 J/C Nemat-Nasser and Li (2000)

Gold
Mass density ρ0 19.3 g/cm3

Lamé parameters λ 198.6 GPa Balk et al. (2009)
μ 27.08 GPa

Table 3
Interface material parameters.

Symbol Value Source

Lamé parameters λ m−2.0 N/
μ 3.5 N/m

Electromechanical coupling parameter (electroadsorption) ξ ion 12 J/C a

Electromechanical coupling parameter (interface charge) ξ el 30 J/C a

Diffusivity D 5·10 m /s−8 2

a Provided by N. Mameka at Helmholtz-Zentrum Geesthacht based on Mameka et al. (2014).
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structure first without the interface and then including the purely mechanical behaviour of the interface.
It is apparent that by considering the stiffness of the interface, the interface resists the bending imposed by the polymer bulk,

yielding a smaller deformation of the gold electrode. As the electric fields depend on the deformation of the composite, there is also a
pronounced difference in the ion distribution. Modification of the interface's behaviour, thus, modifies the behaviour of the whole
composite.

In Fig. 7, the deformations of the bulk and the interface due to the chemoelectromechanical coupling on the interface and in the
bulk polymer illustrates how the interface bends and, depending on the side, contracts or elongates in the X2 direction. The influence
of the chemoelectromechanical coupling on the interface is described further in Section 4.4.

In addition to the mechanical influence, the interface exhibits charge carrier transport. The interface charges arise from electric
fields in the bulk which are deformation dependent and, thus, the charge distribution over the interface is not homogeneous.
However, as the cahrge carriers diffuse along the interface, ultimately a uniform charge distribution is established, see Fig. 8.

4.4. Effects of electromechanical coupling

Four different mechanisms cause chemoelectromechanical coupling in the metal/ion-conducting polymer composite. In the
polymer bulk (Eq. (22)), the coupling arises from differences in ion concentrations and polarisation of the material while on the
interface, both interface charges and electroadsorption of ions influence the mechanical response.

The latter two mechanisms are separated in the sandwich setup employed here as it has two differently charged interfaces. For
the case of mobile anions, negatively charged anions from the polymer bulk are electroadsorbed onto the “positive” electrode upon
which the positive electric potential is applied. The “negative” electrode has a negative interface charge (i.e., a high electron
concentration c0

el).
Fig. 9 depicts the deformed sandwich structure with chemoelectromechanical coupling activated either in the bulk or on the

interface as well as the case in which chemoelectromechanical coupling in the bulk interacts with electromechanical coupling on the
interface. Electromechanical coupling in the bulk causes the polymer to swell inregion close to the “positive” electrode where there is
an ion excess and to contract in regions of reduced ion concentration, causing a bending deformation of the composite block. For the
case of mobile anions as depicted here, the “negative” electrode contracts due to the negative interface charge that strengthens the
atomic bonds. In contrast, the “positive” electrode expands upon electroadsorption, resulting in a bending towards the metal

Fig. 5. Sketch of the gold-polymer sandwich structure. The structure's bottom face is rigidly clamped and the potential difference is imposed as a boundary condition
on the interface.

Fig. 6. Difference between the deformation and ion concentration at the interface if interface elasticity is neglected resp. taken into account.
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electrode. If all three coupling mechanisms are activated, the deformation is increased as both, bulk and interface coupling, act in the
same direction.

The electromechanical coupling in the polymer bulk arises due to two different mechanisms as depicted in Fig. 10. Polarisation
induces a volumetric expansion of the polymer upon application of a potential difference. By contrast, deformation due to ion migration
occurs in regions close to the electrodes in which space charges arise. This type of coupling is responsible for the bending deformation
visible in Fig. 9 and is strongly influenced by the superposition of the interface coupling effects which may counteract or amplify the
deformation. For the example of a polymer in which only anions are mobile, the interface coupling effects amplify the bulk deformation.
However, in many polymer electrolytes, the anion is fixed to the polymer chain and the cation is mobile. This has a significant influence
on the actuation behaviour of the composite, as electroadsorption of cation results in a contraction of the interface as opposed to the
expansion that arises upon adsorption of anions (Haiss, 2001). This is illustrated Fig. 11, in which the norm of the interface
displacement vector u is shown over the X2-length of the interface. As the ion concentration is almost homogeneous along the interface,
it deforms evenly upon electroadsorption of either anions or cations. If anions are electroadsorbed onto the interface, the interface
expands and curves outwards. The coupling in the bulk polymer acts in the same direction and, thus, amplifies the effect, cf. Fig. 10. If
cations are electroasorbed, however, the interface contracts while the polymer close to the interface expands due to increased ion
concentration, i.e., interface and bulk coupling are opposing effects, resulting in a more complex deformation behaviour.

5. Summary

A thermodynamically consistent continuum framework for modelling the chemoelectromechanically coupled behaviour of
nanoscale metal/ion-conducting polymer composites has been proposed. Due to the nanocomposites’ characteristically high
interface-to-volume ratio, any modification of the interface strongly affects their mechanical behaviour. Such modification in
response to an electric field is fully reversible which makes these nanocomposites excellent candidates for actuation or sensoring
applications.

To model the pronounced influence the interface has on the electromechanical response in nanocomposites, the governing
equations for deformation, electrostatics and diffusion are developed for the bulk material and on the interface in a general manner.
This interface theory is the first to describe a system coupling electromechanical behaviour and diffusive charge carrier transport.
This novel framework is then utilised to model the fully coupled behaviour of a nanoporous metal filled with an ion-conducting
polymer.

Suitable constitutive equations are formulated that describe different mechanisms of electromechanical coupling in such
materials. That is, not only bulk coupling within the ion-conducting polymer but also the modification of the metal/polymer interface

Fig. 7. Plot of deformed bulk and interfaces. The colour map of the bulk specimen illustrates the norm of the stress tensor while for the interface the displacement
perpendicular to the interface is shown. Electromechanical coupling on the interface causes curving of the interfaces both along their planes as well as perpendicularly
to them.

Fig. 8. Variation of the interface electron concentration for two points at the bottom and the top of the specimen for both interfaces. The initial difference due to the
deformed geometry is balanced by diffusion along the interface.

J. Wilmers et al. J. Mech. Phys. Solids 99 (2017) 163–177

174



through both, the formation of an interface charge and electroadsorption of electrolyte ions, are taken into account. Numerical
studies elucidate the influence of the interface and investigate different coupling mechanisms and their interaction with each other.
The results provide valuable insight into the functionality of electroactive nanocomposites.

The framework presented here describes fundamental effects causing actuation in nanoporous metal/polymer composites.
Therefore, a natural extension of the model would be the incorporation of sensing behaviour. Furthermore, different factors
influencing the electroactive behaviour such as steric effects, capacitive properties and interphase regions should be investigated.
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Fig. 9. Comparison of deformation states caused by different electromechanical coupling mechanisms. In the bulk polymer, expansion occurs at the “positive”
electrode due to ion excess and contraction arises in regions of reduced ion concentration. If only interface coupling mechanisms are considered, the “negative”
electrode contracts due to the interface charge while the “positive” electrode expands upon electroadsorption. These effects are superimposed if the electromechanical
coupling in the bulk and on the interface is accounted for.

Fig. 10. Displacement at the top of the specimen as induced by different coupling mechanisms. Electromechanically induced deformation caused by polarisation of
the material occurs over the whole polymer volume while deformation due to chemomechanical coupling is localised to regions close to the electrodes. The bulk
coupling as a superposition of both mechanisms differs only minimally from that induced by chemomechanical coupling.

Fig. 11. Norm of interface displacement vector u for adsorption of differently charged ions. The deformation due to electroadsorption of anions is amplified by
deformation of the bulk polymer, while for the electroadsorption of cations, the effects counteract each other.
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Appendix A. Integral energy and entropy balances

The work performed on an electroactive body can be portioned into a mechanical, an electrical and a chemical contribution, see
for example Hong et al. (2010) and Nardinocchi et al. (2011) for discussions of the work performed on polyelectrolyte gels and ionic
polymers, respectively. Thus, the balance of energy is of the form

̇ = + + ,mechanical electrical chemical (40)where denotes the system's total energy and denotes a power.
In the modelling framework proposed in this contribution, the metal/polymer interface is considered to be energetic, i.e., it has

its own energetic behaviour. Hence, contributions for both, the electroactive body 0 and the interface 0, are accounted for in the
balance equations
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2
̇· ̇ d .0 0 0 0

0 0 (41)

The mechanical power in the volume and on the interface is expressed in terms of the stresses P and P and the specific body
forces b and b according to

∫ ∫ ∫ ∫u P N u b u P N u bA ρ V L ρ A= ̇· · d + ̇· d + ̇· · d + ̇· d .mechanical
∂

0
∂

0
0 0 0 0 (42)

The electric power in the system arises from changes in the free charge distribution as characterised by the electric displacement field
D and external sources of electric energy such as batteries that provide or consume electrons resulting in a change in the electron
charge density q0

el:

D D∫ ∫ ∫ ∫N NΦ A Φq V Φ L Φq A= − ̇ · d + ̇ d − · ̇ · d + ̇ d .electrical
∂ 0

el

∂ 0
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0 0 0 0 (43)

Furthermore, mass transport within the system contributes to the internal energy of the system, yielding
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The balance of entropy for the isothermal case is
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Here, Γ0 and Γ0 denote the entropy production rates in the bulk and on the interface, respectively. Both entropy production terms are
non-negative, thus, ensuring that the second law of thermodynamics is obeyed in both domains as well as in the whole system.

Application of the divergence theorems Eqs. (1a) and (1b), localisation and insertion of the governing equations for the
deformation, the electrostatic behaviour and the charge carrier transport as summarised in Table 1, finally yield the localised balance
Eqs. (16)–(19).
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