— TIP: AN INTERMEDIATE LANGUAGE FOR THE
DESCRIPTION OF TEMPORAL SITUATIONS -

- 297 -

ESPRIT 2434

Contribution to:

Activity Task 2.5
-- System Concept for Advanced CIM/AI Controller --
Title:
TIP:
AN INTERMEDIATE LANGUAGE
FOR THE DESCRIPTION OF
TEMPORAL SITUATIONS

Author/Company/Copyright:

Jorg - Ingo Jakob

(c) Philips GmbH Forschungslaboratorium Hamburg 1990/1991

Achievements:

TIP (acronym from Temporal Inference Propagation), a new language for the description of
temporal situations, is presented. It incorporates the work of Allen, Rit and Becker on
qualitative and quantitative representation of temporal situations and expresses this work in a
unifying language approach, enhanced by arithmetic and procedural constructs. TIP is
presented in a formal manner, providing a syntax expressed in BNF. TIP can be used to
describe a temporal situation declaratively offline, or to communicate with the underlying
TIP inference engine interactively online. Several application examples of TIP are given,
amongst them 'real life’ applications from the domains of planning and scheduling.

Summary:

A language for the description of temporal situations (called TIP) is presented. It incorporates
the work of Allen, Rit and Becker on qualitative and quantitative representation of temporal
situations and expresses this work in a unifying language approach, enhanced by arithmetic
and procedural constructs. TIP is intermediate in the sense that it is a kind of assembler
language for the declarative description of temporal situations. By careful choice of TIP's
syntax, mnemonics and structure, TIP allows its application as an interpreted interface
language between user and the underlying TIP inference engine as well. Several application
examples are provided. amongst them 'real life’ applications from the planning and scheduling
domains. An outlook on possible additional language features in future versions of TIP is
given.

PFH
-298-

Index

0. Introduction

1. TIP Situation File Structure

2. TIP's Language Elements (Keywords and Symbols)

3. Basic Concepts and Definitions
3.1 The Initial Empty Net
3.2 Constants and Data Types

4. Leading Keywords
4.1 Net
4.2 Restrict
4.3 Sopo
4.4 Connect
4.5 Relax
4.6 Scope
471t
4.8 Constrain
4.9 Holds
4.10 Situation
4.11 Propagate
4.12 Simplify
4.13 LMinimize
4.14 Minimize
4.15 Label
4.16 Clear
4.17 Exit

5. Symbuols

6. TIP Application Examples
6.1 Example 1: Order Scheduling
6.2 Example 2: Order Scheduling Using the 'Greedy Algorithm'

6.3 Example 3: A Solution to the 'n Parallel Machines’ Problem in Order
Scheduling

6.4 Example 4: A Real Life Example from the Building Area
. 6.5 Example 5: Representing an AIPLANNER Order Schedule

7. Outlook (Proposed Enhancements of TIP)
7.1 General Outlook
7.2 Proposed TIP Enhancements

8. References

Appendix A: Situation File of Example 4

-299.

TIP:
AN INTERMEDIATE LANGUAGE
FOR THE DESCRIPTION OF
TEMPORAL SITUATIONS

0. Introduction

TIP (Temporal Inference Propagation / Propagator) is not only & program, but provides a
language for the description of temporal "situations” as well'. This paper intends to define the
syntax and semantics of TIP's language, as provided by the forthcoming version 2.0 of TIP.

It is assumed that the reader / user of TIP has a background in the field of temporal
representation techniques, and especially has some knowledge of the particular work done by
Allen et al. [Allen 1983] [Rit 1986] [Becker 1988].

Throughout the rest of this paper, TIP is synonymous with “TIP's language™; in contrast to the
program TIP itself, which is then referred to as the "TIP program’, "TIP system'’ or "TIP shell"

1. TIP Situation File Structure

A TIP situation can be provided as a file, or can be fed to the TIP program by its input swream
(which can be regarded as a file as well).

Any temporal situation described by TIP is composed of lines. Each line starts with a unique
keyword out of a set of keywords (cf. chapter 2), Such a leading keyword specializes the
syntax and semantics of the line. Empty lines or lines containing only blanks or tabs are
allowed and are skipped.

Comments always occupy a complete line. In order to distinguish a line containig comments
from an ordinary keyword line, a comment has to starn with a semicolon in the first column of
a line.

There is no explicit syntactical order in which keywords must appear throughout a8 situation.
However, there is an implicit semantical order in which keywords may appear. For example,
an edge referred to in an IF statement must exist. Thus it must have previously been
generated by RESTRICT or CONNECT. Below the syntax is given formally in a BNF-like
meta-language (cf. [Wirth 1974)); the semantical side is given verbally only.

2. TIP's Language Elements (Keywords and Symbols)

Each individual situation is composed of lines, where each line starts with onc of the
following leading keywords:

Net
Restrict

1The term "situation” for the description of coherent temporal facts was originated by Allen [Allen 1983].

PFH
«300-

Sopo
Connect
Relax
Scope

If
Constrain
Holds
Situation
Propagate
Simplify
LMinimize
Label
Clear
Exit

(A keyword is defined as an unique symbol denoting a syntactical and/or semantical unit or a
part thereof.)

Other keywords do exist. These keywords appear throughout a line, but not in a leading
position:

Then
To
Duration.

Then there are symbols (these are not considered to be keywords) which appear throughout a
line, but not in a Jeading position. These are the positive integers of a certain range, and the

symbols for the thirteen primitive temporal relations as introduced by Allen [Allen 1983). Cf.
chapter 3.2.

3. Basic Concepts and Definitions
3.1 The Initial Empty Net

After TIP was invoked from the underlying operating system, it is in its empty or initial state.
In this state, TIP consists of MaxNode unconnected nodes. A node is unconnected, when it
has no temporal relation to any other node. Furthermore, the sopo attached to each initial
node is unspecified. An unspecified sopo is assumed to extend from Zero to Plusinfinity.
(For a definition of the constants MaxNode, Zero and PlusInfinity, cf. chapter 3.2)

3.2 Coﬁstants and Data Types

Definition of Constants:

Cons.tar'ns, as defined .in this formal language description, are used throughout this
description. anstants are not recognized by the TIP parser. Thus they are to be distinguished
from another kind of constants, called symbols, which are recognized by the TIP parser.

PFH
-301-

MaxNode: the largest node recognized by TIP.
MaxEdge: the largest edge recognized by TIP.
The following equation holds always: MaxEdge = MaxNode * (MaxNode-1)/2.

Zero: absolute zero on the time scale.
PlusInfinity: virtual infinity on the time scale.

*: Asterisk is a special constant (and symbol) denoting an unspecified (unavailable) time
point or ime duration. It may be used in place of any point of time.

Nolnfo: a special constant denoting the compound relation composed of all thirteen primitive

relations.

In TIP 2.0:

- MaxNode and MaxEdge are machine-dependent. Current settings (1) for a PC/AT-
compatible computer under MS/DOS is MaxNode = 63, (2) for a VAX workstation
under VAX/VMS is MaxNode = 500.

- Zero = 0. Interpretation: the origin on the time scale.

- PlusInfinity = (231 - 1) /2. Interpretation: time is discretized; there are exactly
PlusInfinity + 1 distinguishable time points on the time scale (including Zero).

Data Types (Defined by Sets of Constants):

EdgeBaseType =[1, MaxEdge].

NodeBaseType = [1, MaxNode].

RelationBaseType = (After, Before, Contains, During, Overlaps, Overlapped-By, Starts,
Started-By, Finishes, Finished-By, Meets, Met-By, Equals } .

StringType : any string of character which does not contain whitespace characters and
whose maximum string length is 72.

TimeType = [Zero, Plusinfinity] .

ExtendedTimeType = TimeTypeU [*).

4. Leading Keywords

4.1 Net

Syntax: Net <FromNode> <ToNode> .

PFH
-302-

Where <FromNode> and <ToNode> are members of NodeBaseType; and
<FromNode> <= <ToNode>.

Semantics: Introduces 2 new temporal net to the TIP shell. Claims all the nodes from
<FromNode> 1o <ToNode> 1o be constituting nodes of this net. Clears all these nodes and all
edges connecting to these or from these nodes; even if these nodes have previously been pant
of another temporal net (which thereby is destroyed). Quantitative meaning: the sopos of
these nodes are unspecified (thus extending from zero to infinity on the time scale).

Qualitative meaning: these nodes are currently not connected to any other nodes by means of
edges.

4.2 Restrict

Syntax: Restrict <FromNode> <ToNode> <PrimitiveRelation>
{ <PrimitiveRelation>) .

Where <FromNode> and <ToNode> are members of NodeBaseTye; and where
each <PrimitiveRelation> is a member of RelationBaseType and may appear once at most.

Semantics: (1) If the edge spanning between <FromNode> and <ToNode> had an "old"
value: the value is restricted to the intersection of the old value and the new value consisting
of all primitive relations appearing in this line. (2) If the edge spanning between
<FromNode> and <ToNode> had no "old" value (i. e. this edge was undefined and did not
previously exist): the edge is gencrated and assigned to span between <FromNode> and
<ToNode>; its value is the relation consisting of all primitive relations appearing in this line.

Notice that in either case, no propagation of new edge values takes place (cf. keyword
Propagate). '

43 Sopo

Syntax: Sopo <Node> <EarliestStart> <LatestStart> <EarliestFinish> <LatestFinish>
<MinimalDuration> <MaximalDuration> .

Where <Node> is a member of NodeBaseType, and <EarliestStart>,
<LatestStart>, <EarliestFinish>, <LatestFinish>, <MinimalDuration> and
<MaximalDuration> are members of ExtendedTimeType, and (1) <EarliestStart> <
<LatestStart> and <EarliestFinish> < <LatestFinish>, (2) <MinimalDuraton> <
<MaximalDuration> [, (3) the < property may be replaced by the <= property by setting the
appropriate switch in TIP's configuration file).

Semantics: The sopo of node <Node> is assigned the 6-tupel (<EarliestStart>
<LatestStart> <EarliestFinish> <LatestFinish> <MinimalDuration> <MaximalDuration>).

Notes: No further restrictions apply (i. e. the sopo will be accepted even if it is not
‘adjusted” in the sense that its durations do not properly match start and finish, in which case
the sopo is adjusted implicitly by TIP).

-303-

44 Connect

Syntax: Connect <FromNode> To <ToNode> |
Connect <Node> { <Node> }".

Where <FromNode>, <ToNode> and <Node> are members of NodeBaseType;
and <FromNode> < <ToNode>.

Semantics: Each node enumerated implicitely (by using the variant using keyword To’) or
explicitely (by using the variant explicitely enumerating nodes) shall be ‘connected’ to each
other node in the current scope (cf. keywords Net, Scope). 'Connecting’ means that edges
spa;;n;ng from this node to any other node are alloted, and that the value of these edges is set
to Noinio.

Note: Keyword Connect is in a sense doing the opposite of keyword Relax.

4.5 Relax

Syntax: Relax <FromNode> To <ToNode> |
Relax <Node> { <Node> } .

Where <FromNode>, <ToNode> and <Node> are members of NodeBaseType;
and <FromNode> < <ToNode>.

Semantics: Each node enumerated implicitely (by using the variant using keyword ‘To'") or
explicitely (by using the variant explicitely enumerating nodes) shall be ‘relaxed’ from each
other node in the current scope (cf. keywords Net, Scope). 'Relaxing' means that edges
spanning from this node to any other node shall be disposed of., i. ¢. that these edge shall be
unconnected from now on.

Note: Keyword Relax is in a sense doing the opposite of keyword Connect.

46 Scope
Syntax: Scope <FromNode> <ToNode> .

Where <FromNode> and <ToNode> are members of NodeBaseType; and
<FromNode> <= <ToNode>.

Semantics: The current scope is set to the range extending from <FromNode> to
<ToNode>. Effects the evaluation of the keywords Propagate and Find. Propagate and Find
will only propagate inside a subnet of the total temporal net. This subnet is delimited by the
scope previously set using the Scope keyword. Cf. Propagate and Find.

4.7 If

Syntax: If <IfEdge> dﬂ’rimitichela;igI»
-304 -

Then <ThenEdge> <ThenPrimitiveRelation>
{ <ThenPrimitiveRelation> } |
If <fEdge> <IfPrimitiveRelation>
Then <ThenNode> Duration <Minimal Duration> <Maximal Duration>

Where <IfEdge> and <ThenEdge> arc members of EdgeBaseType, and
<IfPrimitiveRelation> and <ThenPrimitiveRelation> are members of RelationBaseType, and
<Minimal Duration> and <Maximal Duration> are members of TimeType.

Semantics: The If keyword implements a kind of 'demon’ or "active value’ mechanism.

(1) First form: if the edge <IfEdge> assumes the value <IfPrimitiveRelation>,
then the edge <ThenEdge> will be restricted to the compound temporal relation consisting of
all <ThenPrimitiveRelations>.

(2) Second form: if the edge <IfEdge> assumes the value
<IfPrimitiveRelation>, then the duration of node <ThenNode> will be restricted to the time
interval specified by <Minimal Duration> <Maximal Duration>.

Note: These are procedural enhancements to the purely descriptive temporal logic as
described by Allen et al. (cf. chapter 0. Introduction). Cf. keyword Constrain.

48 Constrain
Syntax: Constrain <Node1> <Node2> <Node3> Duration +.

Where <Nodel>, <Node2> and <Node3> are members of NodeBaseType .

Semantics: Establishes an arithmetic constraint between the durations of <Nodel>,
<Node2> and <Node3>. The constraint is composite; to explain it we introduce the following
two arithmetic functions id and ad: id(S) yields the minimal duration of a sopo S, ad(S) yields
the maximal duration of a sopo S. Then, the following arithmetic constraints hold:

id(<Nodel>) + id(<Node2>) = id(<Node3>), and
ad(<Node1>) + sd(<Node2>) = ad(<Node3>) .

Note: This is an arthmetic enhancement to the purely temporal constraint
propagation mechanism as described by Allen et al. (cf. chapter 0. Inroduction). Cf.
keyword If.

4.9 -Holds

Syntax: Holds <Node> <SimpleRelaton> <Count>.

Where <Node> is one of NodeBaseType, <SimpleRelation> is one of
RelationBaseType, and <Count> is one of EdgeBaseType.

Semantics:. .Qdds a .local constraint to <Node>. This constraint requires thar exactly
<Count> primitive relations emanating fmmp<ﬂl§odc> are a <SimpleRelation>. For conceptual

- 305 -

simplicity, it is assumed that the edges spanning from <Node> 10 all other nodes which are
connected to <Node> are unidirectional in the sense that they always start at <Node>. [This is
contrary to the TIP-internal representation of an edge's direction, which assumes that
<FromNode> < <ToNode>].

Note: This keyword can be useful in describing a temporal situation using an integer
programming style.

4.10 Situation
Syntax: Situation <SituationFileName> .

Semantics: Conveys the file named <SituationFileName> to the TIP parser for
interpretation.

Note: During evaluation of the keyword Situation, another keyword Situation may be
encountered by the TIP reader. Then, situations are evaluated recursively by the TIP reader.
Thus, nesting of situation files is allowed.

4.11 Propagate
Syntax: Propagate .

Semantics: Finds all 'solutions’ to the current temporal net as delimited by the current
scope. A 'solution’ is any instantiation of the net which is qualitatively and quantitatively
consistent, and where each edge inside the current scope contains exactly one primitive
relation as its current value.

Note: Finding all solutions of a the current net may take fractions of a second, or it
may be intractable at all due to run time limitations. (If in doubt, limit the number of
solutions-to-be-found to a number close to 1 in TIP's configuration file.)

4.12 Simplify
Syntax: Simplify .

Semantics: Propagates all constraints that are members of the current scope (cf. keyword
Scope). As a result of this propagation, cither an identical or new net results, or the net may
be found to be inconsistent. In case of a new net, the compound relation on each edge is 2
subset of the compound relation on that edge before propagation started. Cf. keyword Scope.

Note: This propagation is purely qualitative (it does not make use of the quamixatjvc
information contained in sopos in order to prune the edge relation values). This propagation
can be considered to be a pre-processing of the net before the keyword Propagate is applied.

Thereby, the search space is reduced.

PFH
.306 -

4.13 LMinimize
Syntax: LMinimize <Node>;
where <Node> is one of NodeBaseType.
Semantics: Minimizes the duration of node <Node> locally. To that end, all edges which
extend from or to <Node> and whose relation are still compound and not yet unique are

considered. Of those edges, the edge mimizing the duration of node <Node> is selected and
made unique itself.

Note: IMinimze is a procedural enhancement to the purely temporal constraint
propagation mechanism as described by Allen et al. (cf. chapter 0. Introduction). LMinimze

assumes that if-then rules do exist which can possibly fire to minimze node <Node>. Cf.
keyword If.

4.14 Minimize
Syntax: Minimize <Node>;
where <Node> is one of NodeBaseType.

Semantics: Minimizes the duration of this particular node. In effect, if more than one

solution of the current temporal net is found, the solution is retained which minimizes node
<Node>.

Note: In TIP 2.0, at most one node may be a candidate for minimizing a net. If
another, subsequent keyword Minimize is encountered, a previous one is overruled.

4.15 Label
Syntax: Label <Node> <String>.
Where <Node> is one of NodeBaseType and <String> is one of StringType.

Semantics: Attaches a string <String> to node <Node>. In casc a non-empty string was

attached to a node this way, the string will always appear besides the node in all file output
TIP will generate (example: solution file.)

4.16 Clear

Syntax: Clear.

-307-

Semantics: Clears (forgets) the complete temporal net, regardiess of the current scope.
After evaluation of Clear, the TIP shell is in the same state as when freshly invocated from
the underlying operating system. Cf. chapter 3.1.

4.17 Exit

Syntax: Exit.

Semantics: Exits (leaves) TIP and returns control to the underlying operating system.

5. Symbols

As defined in chapter 3.2, symbols are constants which are recognized by the TIP interpreter.
Currently, the following special symbols are recognized:

- the thirteen primitive temporal relations as defined by Allen [Allen 1983): After, Before,
Contains, During, Overlaps, Overlapped-By, Starts, Started-By, Finishes, Finished-By,
Meets, Met-By, Equals.

- the unspecified (unknown) point of time: *.

In addition to special symbols, all integers are recognized in the places proper defined by
TIP's syntax, as described in this language reference.

6. TIP Application Examples

6.1 Example 1: Order Scheduling

The following example (figure 1) is taken from [Baker 1974], p. 95:

-308-

For example, suppose that » process line manufactures four types of
gasoline: racing fuel, premium, regulsr, and Jeadfree. The matrix of setup
times, s, might resemble the one shown in Table 4.2. In a full production

Table 4.2

V)] Q) o “

Racing (1) -_— 30 50 90
Pramium (2) 40 -_— 20 80
Regular (3) 30 a0 - 60
Leadires (4) 20 15 10 -—

eycle, the amount of nonproductive time (i.e., setup time) depends on the
sequence in which these fuels are manufactured. In particular, the total

amount of setup time in each of the six distinct sequences that include all
four products is different.

8(1-2-3-¢-1) 30 + 20 + 80 + 20 = 130
4(1-2-4-3-1) 30 + 80 + 10 + 30 = 150
o(1-3-24-1) 50 + 30 -+ BO + 20 = 180
s(1-3-4-2-1) 50 + 60 + 15 + 40 = 165
3(1-4-2-3-1) 80 + 15 + 20 + 30 = 155
#(1-4-3-2-1) $0 + 10+ 30 + 40 = 170

The implicit assumption in these numbers is that production is continuous,

and that a cyclic plan is always followed.

Figure 1: Baker's example with sequence-dependent setup times [Baker 1974)

A possible formal description using the TIP language is:

2

% Inspired by: Kenneth R. Baker, Introduction to Sequencing and Scheduling,
W New York 1974, p. 95: "Sequence-dependent Setup Times™,

Net 6

Restrict 1 2 Started-By
Restrict 1 6 Finished-By

Restrict 2 3 Before Meets
Restrict 2 4 Before Meets
Restriet 2 5 Before Meets
Restrict 26 Before

Il included, the following edge rules (and others missing) can be applied
i w reduce search space ..,

if 23 Meets then 2 4 Before
Quotation marks serve here 1o indicate begin and end of a file describing a temporal situation or a solution
thereof, PFH

-309.

Restrict 3 5 Afier Before Mects Met-By
Restrict 3 6 Before Meets

Restrict 4 5 After Before Meets Met-By
Restrict 4 6 Before Meets

Restrict 5 6 Before Meets

;: If included, the following edge rules (and others missing) can be applied
;» 10 reduce search space ...

if 2 3 Meets then 2 4 Before
if 2 3 Meets then 2 § Before
if 2 4 Meets then 2 3 Before
if 2 4 Meeis then 2 5 Before
if 2 5§ Meets then 2 3 Before
if 2 5 Meets then 2 4 Before

1 Matrix of setup times (coded as if-then rules). Notice that order 1 is called "order 2" here, etc.

if 2 3 Meets then 2 Duration 30 30
if 2 4 Meets then 2 Duration 50 50
if 2 5 Meets then 2 Duration 90 90

if 2 3 Met-By then 3 Duration 40 40
if 3 4 Meets then 3 Duration 20 20
if 3 5 Meets then 3 Duration 80 80
if 3 6 Meets then 3 Duration 40 40

if 2 4 Met-By then 4 Duration 30 30
if 3 4 Met-By then 4 Duration 30 30
if 4 5 Meets then 4 Duration 60 60
if 4 6 Meets then 4 Duration 30 30

if 2 5§ Mei-By then S Duration 20 20
if 3 5§ Met-By then § Duration 15 15
if 4 5 Mei-By then S Duration 10 10
if 5 6 Meets then $ Duration 20 20

Sopo100°****

-

Result: TIP considers all n! = 3! = 6 possible solutions and finds the optimal manufacturing
sequence 1-2-3-4-1 amongst them.

6.2 Example 2: Order Scheduling Using the 'Greedy Algorithm'

Uses the same example as chapter 6.1. However, the solution shall not be found by
enumeration of all schedules by order permutation. Instead, the solution shall be found by
using a good heuristic. This heuristic is known as the Closest Unvisited City Problem [Baker
1974}, or (more generally) as a Greedy Algorithm [Horowitz et al. 1984].

PFH
-310-

The situation file is identical to the one of chapter 6.1, except that the following lines are
added:

iz Establish CUC (Closest Unvisited City)
LMinimize 2 1o 6

Bolds 2 Meets 1
Holds 3 Meets 1
Holds 4 Meeis 1
Holds 5§ Meets 1
Holds 6 Met-By 1

This way, exactly one solution is found (because the Holds contraints allow only for one

solution). By coincidence, it is not only a heuristically good solution, but the optimium
solution of chapter 6.1.

6.3 Example 3: A Solution to The 'n Parallel Machines' Problem in Order Scheduling

In [Huber 1990], a severe limitation of Allen's qualitative temporal logic is described: it is not
possible to express non-temporal constraints in Allen's temporal logic. Using the Constrain
keyword of TIP 2.0, arithmetical constraints may be introduced to enhance the description of

a temporal situation. Thereby it is possible to solve the 'n Paralle] Machines® Problem (as
stated by Huber [Huber 1990)) for arbitrary n.

In our example, we choose n = 3. Thus we have 3 identical machines, and two jobs J; and J;
which shall be processed on these machines. Job J 1 shall only be produced an machine 1.
Splitting job J5 is admissible, i. e. this job may be splitted into several jobs which may be
processed on different machines.

Net 7

Label ! "The root interval which contains all other intervals.”

Label2 “Job 1 on machine 1. This job shall always be produced on machine 1.”
Label 3 “Job 2 on machine 1.”

Label 4 "Job 2 on machine 2.”

Label 5 "Job 2 on machine 3.”

Label 6 "Auxiliary interval whose duration equals the sum of durations of intervals 3 and 4
Label 7 "Auxiliary interval whose duration equals the sum of duration of intervals § and 6.

Restrict 1 2 Started-By

Restrict 1 3 Finished-By Contains
Restrict 1 4 Started-By Equals
Resrrict 1 § Started-By Equals

Restrici 2 3 Meets
Restrict 2 4 Stants Started-By Equals
Restrict 2 5 Suns Started-By Equals

Restrict 3 4 After Overlapped-By Met-By Finishes During
Restrict 3 § After Overlapped-By Met-By Finishes During

PFH
-311. !

Restrict 4 5 Equals

Sopo100*300%*

Sopo 2 0 0 100 100 100 100
Sopo 3 100 100 * * 0500
Sopo4 00 * *0500
Sopo S 00 * * 0500

Sopo6ereeer
Sopo7****799 801

Constrain 34 6
Coastrain 56 7

TIP 2.0 finds the two possible solutions which hold under the given constraints:

13 is number of simple relations

6 is current qualitative solution ...
1 is current quantitative solutlion ...

10 is

1 1 2 STARTED-BY
2 1 3 CONTAINS
3 1 4 EQUALS
4 1 5 EQUALS
7 2 3 MEETS
8 2 4 STARTS
) 2 5 STARTS
12 3 4 DURING
13 3 5 DURING
16 4 5 EQUALS
0 0 300 300 300 300
nPhe root interval which contalns all other intervals.”
0 100 100 100 100
"Job 1 on machine 1. ..."
100 100 299 299 199 199
®Job 2 on machine 1."
0 300 300 300 300
"Job 2 on machine 2."
0 0 300 300 300 300
*Job 2 on machine 3."
0 15884 499 16383 499 499
» .. eguals the sum of durations of intervals 3 and 4."
0 15584 799 16383 799 799

T .. equals the sum

current qualitative

2 is current quantitative
1 1
2 1
3 1
4 1
7 2
8 2
9 2

12 3
13 3
16 4

of durations of intervals 5 and €.7

solution ..
solution .

STARTED-BY
FINISHED-BY
EQUALS
EQUALS
MEETS
STARTS
STARTS
FINISHES
FINISHES
EQUALS

PFH

-312-

thabhhatlohawh

Sopos:;

[T I N TR)

0 0 299 300 299
"The root interval which contains all other intervals."™

0 0 100 100 100
*Job 1 on machine 1. ...”

100 100 299 300 199

"Job 2 on machine 1.*"

0 0 299 300 299
"Job 2 on machine 2."

0 0 299 300 298
"Job 2 on machine 3."

0 15884 499 16383 489

¥... equals the sum of durations of intervals 3 and 4."

0 15584 799

®... equals the sum of durations of intervals 5 and 6."

PFH
-313-

16383

759

300
100
200
300
300
300
800

6.4 Example 4: A Real Life Example from the Building Area

In [Van Hcr'xtc'nryc.k 1989] and originally in [Bartusch 1983), a real life planning problem
from the bmldmg mdu§try (figure 2) is used for benchmarking different types of programs
devoted to planning using the Critical Path Method (CPM). A situation described using TIP

(Appendix A) finds a solution in a few seconds, which otherwise can be represented using
two charts (figures 3 and 4).

T T2 T3

" s " ve T ////

.

ih
/)

Figure 2: Drawing for example of building area (five pillar bridge) [Bartusch 1983]

-314-

Kame description duration resource

11 PA beginning of project [} -

2| Al excavation {abutment 1) 4 excavator

3 A2 excavation {pillar 1) 2 excavator

4 Al excavation (pillar 2) 2 excavator

S| A4 excavation (pillar 3 2 excavator
6] A5 excavation {pillu 4 2 excavator

71 A8 excavation (pillar §) 5 excavator

s| P foundation piles 2 20 pile-driver

9| P2 foundation piles 3 13 pile-driver
10| UE erection of temporary housing 10 -

114 53 formwork (abutment 1) 8 carpentry
121 82 formwork (pillar 1) 4 carpentry
131 83 formwork (pillar 2) 4 carpentry
4] S« formwork (pillar 3) 4 carpentry
15] S8 formwork {pillar ¢) 4 carpantry
16 S8 formwork {abutment 2) 10 carpentry
17§ B1 concrete foundation {abutment 1) 1 concrete-mixer
18| B2 concrete foundation (pillar 1) 1 con¢rete-mixer
19} B3 concrete foundation {pillar 2) 1 concrete-mixer
201 B4 toncrete foundation {pillar 3 1 concrete-mixer
21| Bs concrete foundation (pillar ¢ 1 concrete-mixer
22) B¢ concrete foundation (abutment 2) 1 concrete-mixer
23 § AB1 | concrete setting time (abutment 1) 1 .

24} AB2 concrete setting time (pillar 1) 1 -

251 AB3 concrete satting time (pillar 2) 1 .

26| AB4 concyete setting time (pillar 3‘ 1 -

27| ABS concrete setting time (pillar 4 1 -

28 | ABS | concrete setting time {abutment 2) 1 .

29| Mi masonry work (abutment 1) 18 bricklaying
30| M2 masonry work (pillar 1)] bricklaying
1l M masonry work {pillar 2) [bricklaying
32| M¢ musoary waork {pillar 3) 8 bricklaying
33| Ms masenry work {pillar 4) 8 bricklaying
34| Ms masonry work (abutment 2) 20 bricklaying
35 L delivery of the preformed bearers 2 trane

| T positioning (preformed bearer 1) 12 crane

37| T2 positioning (preformed bearer 2 12 erane

8| T3 positioning (preformed bearer 3 12 crane

9] T4 positioning (preformed bearer ¢ 12 crane

40] TS positioning (preformed bearer 5 12 crane
41} UA vemoval of the temporary housing 10 .

2t W Slling 1 15 Caterpillar
43t V2 filling 2 10 Caterpillar
4] K1 costing point 3 0 -

45| K2 costing point 2 0 -

46 | PE end of project 0 -

Figure 3: Data for example from building ares [van Hentenryck 1989]

PFH

<315-

NLLLE X
MAY NE 3
A 51 [B [a8~} X
7] ¢ 1] 8 k2K JER KN) 9]t
mix) ¢ 1
Ak NP) 2w
A7] 32 2 asr § [w: L_._]
3l2 3] 1 W] W LA
[Z] I [(3]s =TT
LLE 1S 12
naxng 3 31|12
Y] P $) [2] ARG M) X7
N 8]20 Ve K 25 1 IR D Slo
P A MIN MAX NF J0 L [Pi
110 X1 8] 2 a8 [wle
wlo
maxing 3
A P2 i b At | " mixnf -2 [ua |
512 [BKE uwle 20[)] 320 RRES
MAY [F : ’
Max £F ¢ 1|
S.AX NF 3 EDEED)
AS $5 1] ABS CE [F]
6|2 T [FDIK A 33l s) [0
o]0 nax tF 4 |
ik AF 612 (2032
Ab HAX WF) 3 13 ABb | Wt
BB % | 10 EH K 20031]2
MINNFD | uix;]
— . at—— .."

Figure 4: CPM Plan for example from building area [Bartusch 1983)

6.5 Example 5: Representing an AIPLANNER Order Schedule

AIPLANNER is a production planning expert system for job shops. (Cf. other tasks within
ESPRIT 2434.) Following chapter 6.1, an AIPLANNER plan can be readily translaied into a
TIP-based representation. An auxiliary program is available which converts a valid
AIPLANNER plan to a situation describing the same plan using TIP 2.0. The auxiliary
program creates a string of orders, setup times and break times, which unfold along the time

line using the primitive relations Meets and Met-By.

An original plan as made available for the foreman in a manufacturing line:

Workstation Auftrag Anz. Start Ende

AX2
Al.PR-A.E$013 500 5012/ 6:00 8012/ 7:23
A2.PR-B.ES013 500 8012/ 7:23 9012/ 8:47
Umriistzeit 8012/ 8:47 8012/ 9:07
A3.PR-D.ES013 1060 8012/ 9:07 8012/27:27
AS5.PR-D.ES014 1000 9012/17:27 5013/ 9:47
Umriistzeit 5013/ 9:47 3013/10:07
A4.PR-A.E5014 500 9013/10:07 $013/11:30

SMD1
Al.PR-A.ES013 500 9012/ 7:24 9012/ 8:48
A2.PR-B.ES013 500 9012/ 8:48 8012/10:11
Umriistzeit 9012/15:28 8012/17:28
A3.PR-D.ES013 1000 9012/17:28 8012/20:14
A5.PR-D.ES014 1000 9013/ 9:48 9013/12:34

PFH

-316 -

Umriistzelt 9013/12:34 5013/14:34
A4_PR-A.E3014 500 8013/14:34 5013/15:58

The same plan translated to a situation described using the TIP language:

Net 15

Label 1 "Root intervals. Contains all orders on all machines.”

Label 2 "Order 1 on machine AX2."
Label 3 "Order 2 on machine AX2."
Label 4 "Setwp time between orders 2 and 3 on machine AX2."
Label 5 " Order 3 on machine AX2."
Label 6 "Order § on machine AX2."
Label 7 "Setup time between orders 5 and 4 on machine AX2."
Label 8 "Order 4 on machine AX2."

Label 9 "Order 1 on machine SMD1.”

Label 10 "Order 2 on machine SMD1.”

Label 11 "Sewp time between orders 2 and 3 on machine SMD1."
Label 12 * Order 3 on machine SMD1."

Label 13 “Order 5 on machine SMD1.*

Label 14 "Sewp time between orders 5 and 4 on machine SMD1."
Label 15 “Order 4 on machine SMD1."

Restrict 1 2 Started-By
Restrict 1 15 Finished-By

Restrict 2 3 Meets
Restrict 3 4 Meets
Restrict 4 § Meets
Restrict 5 6 Meeis
Restrict 6 7 Meets
Restrict 7 8 Meets

Restrict 9 10 Meeis

Restrict 10 11 Before
Restrict 11 12 Meets
Restrict 12 13 Before
Restrict 13 14 Meets
Restrict 14 15 Meets

Restrict 2 9 Before

Restrict 3 10 Before
Restrict 5 12 Before
Restrict 6 13 Before
Restrict 815 Before

#» Resolution: minutes. Time scale starts a1 week 1 of year.

Sopolt.."‘

Sopo 2 1800 1883
Sopo 3 1883 1967
Sopo 4 1967 1987

-317.-

Sopo 5 1987 2487
Sopo 6 2487 3467
Sopo 7 3467 3487
Sopo 8 3487 3570

Sopo 9 1884 1968

Sopo 10 1968 2051
Sopo 11 2368 2488
Sopo 12 2488 2654
Sopo 13 3468 3634
Sopo 14 3634 3754
Sopo 15 3754 3838

7. Outlook (Proposed Enhancements of TIP)
7.1 General Outlook

The TIP Language 2.0, as specified in this language description, is a complete and efficient
tool for the description of temporal situations as described by Allen et al. As is indicated by
the inclusion of certain procedural, arithmetic and integer programming enhancements, the
TIP language might not be complete yet; many more such enhancements may be added.

Furthermore, we would like to add
- a capability for performing branch-and-bound algorithms;

- a capability for also using quantitative constraints to immediately pruning search space. As
the TIP inference engine is now, quantitative constraints are only applied after a consistent
qualitative solutions was found.

By the incorporation of such features, TIP might resemble more and more general purpose
constraint propagation languages such as the CHIP language described in [Van Hentenryck
1989]. However, TIP is very strong in the domain of efficient time representation (by the
internal design of its temporal inference engine; and possibly by the use of special hardware
accelerators [Jakob 1991]), and representation of uncertainty in the time domain. In these
domains, it cannot be paralleled by general purpose constraint propagation languages, which
always cope with inefficient internal data representations because of their generality.

Future will show how successful TIP can be applied to its intended application domain

(planning and scheduling tasks from the CIM domain). These application will in turn mature
the TIP language by incorporation of new language features when needed.

72 Proposed TIP Enhancements

List of proposed enhancements:

- A new TIP-internal representation of sopos which allows for monotic reasoning (truth
maintenance) of sopos.

-318-

I s " 3 -

S
i

room ‘mm-..ym;_ s

- An improved TIP-internal representation of “triangles” (three-consistency of edges as
described by Allen [Allen 1983]), where an index of triangles is constantly updated (and noy
only when submitting the keywords Propagate or Simplify to the TIP interpretere).

- A choice of search strategies when making all edges of a scope unique. (Currently, there is

only one built-in depth-first strategy available). This necessitates the introduction of a stack
of "choicepoints”. ‘

8. References

[Allen 1983] J. F. Allen, Maintaining Knowledge About Temporal Intervals; in: Comm.
ACM, Vol. 26 No. 11, November 1983, pp. 832 - 843.

[Baker 1974] K. R. Baker, Introduction to Sequencing and Scheduling, New York 1974 (John
Wiley Interscience).

[Bartusch 1983] M. Bartusch, Optimierung von Netzplinen mit Anordnungsbezichungen bei
knappen Betricbsmitteln, Dissertation an der Fakultit fiir Bauwesen der Rheinisch-
Westfilischen Technischen Hochschule Aachen 1983, Aachen 1983.

[Becker 1988] S. U. Becker, Konzeption und Implementation einer Temporalen
Inferenzkomponente -- Anwendung auf Planungsprobleme in der FlieBproduktion,
Diplomarbeit am Fachbereich Informatik der Universitiit Hamburg 1988, Hamburg 1988.

[Horowitz et al. 1984] Horowitz, E., Sahni, S., Fundamentals of Computer Algorithms,
Rockyville (USA) 1984 (Computer Science Press).

[Huber 1990] A. Huber, Dynamic Scheduling under Different Production Strategies; in:

ESPRIT 2434 Consortium / Philips GmbH [ed.], ESPRIT 2434 18 Months Report,
Supplement B, Task 2.5, Hamburg 1990.

[Jakob 1991} Temporal Inference Unit -~ Implementing An Al Coprocessor; in: ESPRIT

2434 Consortium / Philips GmbH [ed.}, ESPRIT 2434 24 Months Report, Task 2.5, Hamburg
1991.

[Rit 1986] J. - F. Rit, Propagating Temporal Constraints for Scheduling, Proc. Conf.
American Assoc. for Artificial Intelligence 186, pp. 383 - 388.

[Van Hentenryck 1989] P. v. Hentenryck, Constraint Satisfaction in Logic Programming,
Cambridge (Massachusetts / USA) 1989 (The MIT Press).

[Wirth 1974] N. Wirth, Algorithms + Data Structures = Programs, Englewood Cliffs (New
Jersey / USA) 1976 (Prentice-Hall).

-319-

Appendix A: Situation File of Example 4

7 Inspired by: M. Bartusch, Optimierung von Netzplinen mit Anordnungs-
. bezichungen bei knappen Betriebsmitteln, Aachen 1983; p. 134,

T assumes that PointP = TRUE

Net 63

+ Sopos 1 to 46 map directly onto activities (Vorgiinge?) 1 10 46 of CPM plan.
+ Sopos 47 to 63 are auxiliary sopos to implement the CPM constraints (EF, NF, AF, SF).

Relax 1 10 63

;; durations by "Vorgang'
Sopo1****00
Sopo2* * * * 400400
Sopo 3 * ***200200
Sopo4 * ***200200
Sopo 5 ***200200
Sopo 6 ** * *200 200
Sopo 7 ** * * 500 500
Sopo § * * * * 2000 2000
Sopo 9 **** 13001300
Sopo 10* * * * 1000 1000
Sopo 11 * *** 800 800
Sopo 12 * ** * 400 400
Sopo 13 *** * 400400
Sopo 14 * * * * 400 400
Sopo 15 * * * * 400 400
Sopo 16 ** * * 1000 1000
Sopo 17****100100
Sopo 18 *** * 100 100
Sopo 19 **** 100100
Sopo 20 * *** 100 100
Sopo 21 **** 100100
Sopo 22 * ** * 100 100
Sopo23****100100
Sopo 24 * ** * 100 100
_3 Sopo 25 * ** * 100 100
i Sopo 26 **** 100100
i Sopo27****100100
Sopo 28 ****100100
Sopo 29 * * * * 1600 1600
Sopo 30 * * * * 800 800
Sopo 31 * ** * 800 800
Sopo 32 ** * 800800
Sopo 33 * ¢ * * 800800
Sopo34““20002000
Sopo 35 * ** * 200200
Sopo36"“12001200
: Sopo 37 * ** * 1200 1200
| Sopo 38 * * * * 1200 1200
Sop039““120012°0
| , Sopo40"’“120012w PFH

/ -320- ﬁ

sm4lnn..1(m1om
Sopo 42 ** ** 1500 1500
Sopo 43 * * = * 1000 1000
SWO“.‘..OO
swo45..-.oo
5@046“"00

+ sequences by 'Vorgang’
Restrict 1 2 Before
Restrict 211 Before
Restrict 248 Meets
Restrict 11 48 Met-By
Restrict 11 17 Before
Restrict 11 49 Meets
Restrict 17 49 Finishes
Restrict 17 23 Before
Restrict 23 29 Before

Restrict 1 3 Before
Restrict 3 12 Before
Restrict 3 50 Meets
Restrict 12 50 Me1-By
Restrict 12 18 Before
Restrict 12 51 Meets
Restrict 18 51 Finishes
Restrict 18 24 Before
Restrict 24 30 Before

Restrict 1 4 Belore
Restrict 4 8 Before
Restrict 8 13 Before
Restrict 8 52 Meets
Restrict 13 52 Met-By
Restrict 13 19 Before
Restrict 13 62 Meets
Restrict 19 62 Finishes
Restrict 19 25 Before
Restrict 25 31 Before

Restrict 1 § Before
Restrict § 9 Before
Restrict 9 14 Before
Restrict 9 53 Meets
Restrict 14 53 Met-By
Restrict 14 20 Before
Restrict 14 54 Meets
Restrict 20 54 Finishes
Restrict 20 26 Before
Restrict 26 32 Before

Restrict 1 6 Before
Restrict 6 15 Before
Restrict 6 55 Mezts
Restrict 15 55 Met-By
Restrict 15 21 Before
Restrict 15 56 Meets
Restrict 2 56 Finishes
Restrict 21 27 Before
Restrict 27 33 Before

-321-

Restrict 1 7 Before
Restrict 7 16 Before
Restrict 7 57 Meets
Restrict 16 57 Met-By
Restrict 16 22 Before
Restrict 16 58 Meets
Restrict 22 58 Finishes
Restrict 22 28 Before
Restrict 28 34 Before

Restrict 8 44 Before
Restrict 9 44 Before
Restrict 1 10 Meets

Restrict 10 59 Starts Started-By Equals

Restrict 11 59 After
Restrict 12 59 After
Restrict 13 59 After
Restrict 14 59 After
Restrict 15 59 After
Restrict 16 59 After

Restrict 29 36 Before
Restrict 30 36 Before
Restrict 30 37 Before
Restrict 31 37 Before
Restrict 31 38 Before
Restrict 32 38 Before
Restrict 32 39 Before
Restrict 33 39 Before
Restrict 33 40 Before
Restrict 34 40 Before

Restrict 29 45 Before
Restrict 30 45 Before
Restrict 31 45 Before
Restrict 32 45 Before
Restrict 33 45 Before
Restrict 34 45 Before

Restrict 29 60 Before
Restrict 30 60 Before
Restrict 31 60 Before
Restrict 32 60 Before
Restrict 33 60 Before
Restrict 34 60 Before
Restrict 60 63 Met-By

Restrict 41 63 Staried-By

Restrict 1 61 Meets
Restrict 35 61 Met-By
Restrict 35 36 Before
Restrict 35 37 Before
Restrict 35 38 Before
Restrict 35 39 Before
Restrict 35 40 Before

Restrict 36 42 Before
Restrict 42 46 Befare

PFH
-322-

Restrict 37 46 Before
Restrict 38 46 Before
Restrict 41 46 Before
Restrict 39 46 Before
Restrict 40 43 Before
Restrict 43 46 Before
Restrict 45 46 Before
Restrict 44 46 Before

s total project
SopoﬂOO“"
Restrict 1 47 Starts
Restrict 46 47 Finishes

« EF, NF, AF, SF constraints
509048""03«)
S0po 49 * * * * 0400
swomooooosw
Sopo S1* ** * 0400
Sopo52“"0300
sq,os3ooooo3m
m“ooc.o‘w
smsso.ooosw
sopoxooo-o‘m
SopoS7*°***0300
SWOSB““OQ(D
509059""6(”’
509060""00
Sopo 61 * * * * 3000 3000
smao.'04m4w
Sopo63 ****200200

-323.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27

