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Für Kathleen

Jede Lösung eines Problems ist ein neues Problem.
(Johann Wolfgang von Goethe)





Abstract

The European X-ray Free-Electron Laser (XFEL) at the Deutsches Elektronen Synchtro-
tron (DESY) in Hamburg will, starting in 2015, open up completely new research op-
portunities for scientist and industrial users by exploiting ultrashort X-ray laser pulses.
Bunches of electrons are accelerated by a radio frequency field inside superconducting
cavities up to an energy of 17.5 GeV. A periodic arrangement of magnets forces the accel-
erated electrons onto a tight slalom path leading to a process in that the electrons emit
extremely short and intense X-ray flashes. The generation of equidistant X-ray flashes
with a constant intensity requires an extremely high precision field control in combina-
tion with beam-based signals. FLASH, which can be seen as a pilot test facility, allows
to develop and test controller concepts even before the European XFEL is in operation.

In this thesis it is shown that a physical white box model structure, which describes
the behavior of each subsystem within the radio frequency field control loop, obeys as
first-order approximation the special orthogonal group of dimension two (SO(2)). Pre-
sented is a grey box identification approach, which combines the physical model structure
with general identification methods. The accelerator modules are operated in a pulsed
mode. Thus, the excitation of the system and therefore the identification of the input-
output behavior is only possible within a short time period. Developed is an adaptive
identification approach with a specified SO(2) symmetric model structure. The proposed
controller design strategy fulfills the requirements of a high precision field performance.
Adapting the feedforward signal by using an iterative learning control (ILC) algorithm
reduces remaining repetitive field errors from pulse to pulse. It is shown, that exploiting
the SO(2) symmetric structure and using the developed tensor based ILC representation
simplifies the feedforward update computation. Magnetic chicanes, so-called bunch com-
pressors, are used for a longitudinal compression of the electron bunches. Depending on
the beam energy distribution, the electrons travel on different trajectories through the
bunch compressor. This allows to control the mean beam energy and energy distribution
to minimize the bunch arrival time and bunch compression error at the expense of a non-
constant beam energy. Besides controlling the latter beam-based signals, a distributed
control scheme is presented which minimizes beam energy variations by an information
exchange with neighboring controller modules, leading to an improvement of the beam
energy performance.

The presented results were achieved and measurements were carried out at FLASH. Fur-
ther important plant upgrades for the XFEL project are a completely new hardware
platform, providing a higher sampling rate and measurement precision. The proposed
system identification and controller approaches have been validated experimentally and
in simulation for both hardware platforms.



Zusammenfassung

Der Europäische Röntgenlaser XFEL des Deutschen Elektronen Synchrotron (DESY) in
Hamburg ist eine Röntgenquelle zur Erzeugung ultrakurzer Laserlichtblitze. Diese wird
ab dem Jahr 2015 einzigartige Forschungsmöglichkeiten eröffnen. Elektronen werden in
Paketen mittels eines Hochfrequenzfeldes bis zu einer Energie von 17.5 GeV beschleunigt.
Anschließend senden die Elektronenpakete laserartig gebündelte Strahlung aus, indem
diese durch eine besondere Magnetanordnung auf einen Slalomkurs gezwungen werden.
Die Regelung der Ankunftszeit und Dichte der Elektronenpakete und dementsprechend
die Erzeugung abstands- und intensitätsgleicher Röntgenlaserblitze erfordert die Kombi-
nation einer hochpräzisen Regelung des Hochfrequenzfeldes innerhalb der supraleitenden
Hohlraumresonatoren mit zusätzlichen Strahlinformationen. FLASH, der als Pilotanla-
ge des XFEL betrachtet werden kann, ermöglicht es die notwendigen Regelungskonzepte
bereits vor der Fertigstellung des XFEL zu testen.

Im Rahmen dieser Arbeit wird gezeigt, dass die Kombination des physikalischen Verhal-
tens der einzelnen Komponenten innerhalb der Regelungsschleife einer speziellen orthogo-
nalen Gruppe (SO(2)) gehorcht. Basierend auf der Modellierung des Gesamtsystems wird
gezeigt, wie das System mittels eines SO(2) symmetrischen modelbasierten Ansatzes in
allen Frequenzbereichen identifiziert werden kann. Die Beschleunigungsmodule werden im
gepulsten Modus betrieben, welches die Identifikation des Systems lediglich in einem klei-
nen Zeitintervall ermöglicht. Das daraufhin entwickelte symmetrische Regelungskonzept
erfüllt die Anforderungen an eine hochpräzise Regelung des Hochfrequenzfeldes. Wie-
derkehrende Feldfehler von Puls zu Puls werden minimiert, indem ein iterativ lernender
Algorithmus die Vorsteuerung der Beschleunigungsmodule anpasst. Dieser Algorithmus
konnte durch die Ausnutzung des SO(2) symmetrischen Systemverhaltens und mittels ei-
ner Tensor Darstellung vereinfacht werden. Um die geforderte Intensität des Laserlichts zu
erzielen, werden magnetische Schikanen zur longitudinalen Kompression der Elektronen-
pakete eingesetzt. Abhängig von der Energieverteilung innerhalb eines Elektronenpaketes,
legen die Elektronen einen unterschiedlich langen Weg innerhalb dieser Schikane zurück.
Demzufolge führt eine Elektronenenergieanpassung vor einer Schikane zu der Möglichkeit
die Ankunftszeit und Kompression der Elektronen zu regeln. Es wird gezeigt, dass die Ver-
einigung der strahlbasierten Messdaten mit dem Hochfrequenzfeld zu einer Verbesserung
der Ankunftszeit und Kompression der Elektronenpakete führt. Durch diese Energiemo-
dulation ist es notwendig die Endenergie der Elektronenpakete anzupassen. Ein verteiltes
Regelungskonzept wurde entwickelt, welche es ermöglicht diese Energievariationen model-
basiert mittels der Kommunikation benachbarter Regelungsmodule zu minimieren.

Die gezeigten Ergebnisse und Messungen wurden am FLASH durchgeführt. Die verwen-
dete Hardware am FLASH ist während der Entstehung dieser Arbeit weiterentwickelt
worden. Parallel wurde die Umsetzbarkeit der entwickelten Konzepte unter Verwendung
der neuen Hardware experimentell anhand von Messdaten und in Simulationen validiert.
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Chapter 1

Introduction

1.1 Motivation and Objectives

A device in which charged particles are accelerated on a linear path by a time-dependent
electromagnetic field is called linear accelerator, [Wangler, 1998]. Linear acceleration
was first mentioned by G. Ising in 1924, [Ising, 1925]. The first experimental test by
R. Winderöe in 1928, [Wideröe, 1928], is the forerunner of today’s linear accelerators.
During this time acceleration frequencies in the megahertz range were used, not suitable
to accelerate light particles such as electrons, since the distances between acceleration
gaps would be impracticably large. Nevertheless, with the development of high-frequency
power generators in the gigahertz range and new efficient accelerating structures the first
modern linear accelerators were born and over years their number has grown continuously.
The fundamentals of Free-Electron Lasers (FELs), i.e. acceleration of electrons and the
energy transfer to light flashes by a stimulated emission of synchrotron radiation in a
periodic magnetic field, was invented by J. Madey in 1971, [Madey, 1971]. The first
stimulated emission of radiation by relativistic electrons in a periodic magnetic field has
been observed in 1975 with a wavelength of about 11 µm, [Elias et al., 1976]. The first
FEL oscillator with a spontaneous radiation emitted by the electron beam was operated
with a wavelength of about 3.4 µm in 1977, [Deacon et al., 1977]. Enormous improvements
have been done in this scientific field over the last few decades. Currently FELs generate
laser light with a wavelength down to X-ray range of 0.1 nm (1 Å) by the self-amplified
spontaneous emission (SASE) process from a high-energy electron beam. This has been
demonstrated at various linear accelerators, e.g. at the Stanford Linear Accelerator Center
(SLAC) by using normal conducting accelerator modules. Since 2004 the free-electron
laser facility FLASH in Hamburg, a former project of the TeV-Energy Superconducting
Linear Accelerator (TESLA) collaboration for research with superconducting accelerator
modules, delivers soft X-ray radiation as an user facility.

Scientists and researchers from all over the world appreciate the FEL pulses which can be
as short as 10 fs, with a peak brilliance up to 1033 photons/s/mrad2/mm2/(0.1% band-
width) and a high transverse coherence, [XFEL, 2013]. Achieving a stable and reliable
production of X-ray laser pulses with a pulse-duration in the femtosecond timescale im-
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1.2. SCOPE AND CONTRIBUTION

poses completely new demands. Perturbations, e.g. acceleration field errors in amplitude
and phase, can cause undesired fluctuations of the electron beam peak-current, longitu-
dinal charge fluctuations and variations in the arrival time of the electron beam at the
end of the linear accelerator section. The work of this thesis includes strategies to control
the beam directly by adjusting the radio frequency field inside the accelerator modules.
This includes controlling the bunch arrival time to guarantee equidistant light pulses, the
bunch compression to ensure a constant peak brilliance and the beam energy leading to
the same laser light wavelength for each electron bunch.

1.2 Scope and Contribution

In parallel to the improvements of linear accelerators, several publications are available
which collect an amount of physical system descriptions. In this thesis it is shown how
the physical insight can be exploited not only in the system identification, e.g. the fact
that the acceleration field, which is used to control the beam properties, displays certain
symmetries, i.e. special orthogonal group of dimension two, [Gilmore, 1974]; as short hand
notation SO(2), an introduction to this special Lie group is given in Appendix A. The
work of this thesis is motivated by the demand of high quality laser flashes, Section 1.1,
and symmetric systems, which has been shown as an advantage in many contexts, e.g. the
behavioral framework, [Fagnani and Willems, 1991]. A more general nonlinear case for
an identification of a symmetric oscillator network model is described in [Barany, 2001].
Multi-input multi-output systems with a similar symmetry have also been investigated
before, see [Jugo and Arredondo, 2005]. This thesis presents a systematic system identi-
fication and controller design by making use of the symmetric plant properties, reaching
a high performance electron beam. The contributions are summarized as follows:

• Systematic system identification of linear time-invariant models with the focus on
SO(2) symmetric plant behavior and the ability to block-wise extend the internal
model structure such that additional eigenvalues can be identified independently.

• Interconnection of beam-based signals to RF field properties, a necessary condition
for optimal beam control.

• Fixed order discrete-time controller design strategy by exploiting the SO(2) sym-
metric plant and reliable optimal controller synthesis.

• Integration of beam-based signals within a lumped RF field controller design to
control the arrival time and compression of electron bunches.

• Interaction of neighboring controller units within a distributed observer based con-
trol scheme to ensure a high beam energy performance.

• Simplification regarding iterative learning control (ILC) algorithm usable for SO(2)
symmetric plant models.

• Streamline the norm optimal ILC by using tensor representation.

2



CHAPTER 1. INTRODUCTION

1.3 Structure of this Thesis

This thesis is structured as follows: Chapter 2 introduces the free-electron lasers, which
are a part of this thesis, at DESY in Hamburg. First, an overview of the European
XFEL and FLASH is given. A more detailed description of an RF station, the considered
beam related measurements, the SASE process and possible sources of beam perturbations
conclude this chapter. The system identification problem is addressed in Chapter 3 and
separated in an RF field and beam model. It is shown, that the main RF field system
dynamics obeys a special orthogonal group symmetry, which connects physical modeling
with a mathematical identification problem. The second part covers the beam model
which includes the bunch arrival time and bunch compression. The interaction between
the RF field and beam models are outlined in the third part. In the following, each
chapter is finalized by a conclusion. Based on the mathematical description of the RF
field model, a systematic RF field controller design is presented in Chapter 4. The RF
field controller needs to be optimized to guarantee an optimal RF field performance. In
addition, simplifications of the used norm optimal iterative learning control algorithm,
which improves the feedforward drive to cope with repetitive errors, are given: On the
one hand by exploiting the RF field symmetry and on the other hand by rewriting the
algorithm by tensors. Chapter 5 considers the interconnection of beam-based signals
to the RF field controller to improve the beam performance. This chapter is separated
into two parts depending on the location of action. First, control strategies to improve
the performance for the bunch arrival time and bunch compression, which can only be
controlled within the first part of a linear accelerator, are given and compared to each
other. The second part of a linear accelerator increases the beam energy up to a desired
value. It will be shown that interconnections of the RF controllers are necessary to ensure
high beam energy performance. Firstly, the beam energy may be corrupted by controlling
the beam-based signals within the first acceleration part. Secondly, additional events
affecting the control variable are discussed and a strategy of an interconnected control
scheme is presented, which helps to improve the beam energy performance. Finally,
Chapter 6 summarizes the results and discusses the directions for future developments.
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Chapter 2

Free-Electron Lasers

This chapter gives an overview of the European XFEL and FLASH at DESY. Both free-
electron lasers (FELs) are linear accelerators, while FLASH is currently in operation and
the European XFEL is under construction. The main function of FELs is to generate
thousands of X-ray flashes per second with an outstanding brilliance. The considered
FELs are equipped with superconducting cavities, operated at around 2 Kelvin, which
accelerate electron bunches almost to speed of light. At the end of the main acceleration
section, the electron beam energy is transferred to X-ray flashes, which allows scientists
from all over the world to e.g. map atomic details of viruses or take three dimensional
movies of the nanoworld.

How this exactly works is briefly outlined in the following sections. First an introduction
to the European XFEL and FLASH is given in Section 2.1 and Section 2.2, respectively.
Section 2.3 points out the details and current state of the low level radio frequency (LLRF)
system, used to control the radio frequency (RF) field inside the cavities. The used
beam-based signals within this thesis are briefly discussed in Section 2.4. The process
of converting an electron beam into X-ray flashes and an example of using the latter is
outlined in Section 2.5. Possible perturbations which act as disturbances on the beam
quality are discussed in the last section.

2.1 European XFEL

During the time of writing, the European XFEL, an X-ray Free-Electron Laser for re-
search with X-ray flashes, is under construction with a total length of 3.4 km. The basic
layout is depicted in Figure 2.1.1, initially defined in [Brinkmann et al., 2002] and [Altarelli
et al., 2006]; parts are frequently updated by [FEL Beam Dynamics Group, 2013]. Within
this thesis the latest XFEL layout version is used. Nevertheless, further changes will not
have an impact on the developed system identification and controller design strategies.

The first 1.7 km section of the XFEL accelerates the electrons and can be separated
into four linear acceleration (Linac) parts. Within the Injector 1, an RF Gun together
with an accelerator module I1 and a third harmonic module A3H are used to optimize the
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2.1. EUROPEAN XFEL

BC1
RF GUN I1 A3H

A1

Main Linac (Total: 21 RF stations)

Injector 1

...

Injector
Linac

Booster
Linac

3rd Har.
RF Section

A2 A3 A4

BC2

A5 A6 A7 A23 A24 A25

Undulator

BC0

Figure 2.1.1: Basic overview of the European XFEL.

longitudinal phase space (Appendix B.1) and to accelerate the electrons to a beam energy
of about 120 MeV. The electron bunch length is reduced by a bunch compressor BC0.
The Injector Linac consists of the accelerator module A1. The bunch compressor BC1
compresses the electron bunch at an energy of 500 MeV by a factor of about 20. The
Booster Linac further accelerates the electrons up to 2 GeV, followed by an additional
bunch compressor BC2, which compresses the bunch by a factor of about five. Hence,
an electron bunch leaving the RF Gun with an initial length of about 2 mm (rms) is
compressed by a factor of 100, i.e. to a bunch length of 0.02 mm (rms) to achieve a peak
current of about 5 kA. The Main Linac increases the bunch energy to a maximum final
value of 17.5 GeV. Eventually, the electron bunch enters the Undulator part introduced
in Section 2.5. A further detailed description can be found in [Altarelli et al., 2006].

After the main linac, the electron beam generates laser light by e.g. the SASE process, see
Section 2.5 for a short introduction. This part is not considered within this thesis, since
the main focus is on controlling the accelerator modules and the electron beam itself.

The European XFEL is constructed underground in a tunnel, depicted in Figure 2.1.2.
The hardware driving each accelerator module, see Section 2.3, must fulfill the requirement

Figure 2.1.2: Layout of the linac tunnel, including the accelerator modules (yellow)
and roughly the tunnel diameter, [Altarelli et al., 2006].

to be placed into the tunnel, more precisely below the accelerator modules. New hardware
with a smaller form factor is developed, based on Micro Telecommunications Computing
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CHAPTER 2. FREE-ELECTRON LASERS

Architecture standard; in the following called MTCA system [MTCA.4, 2013]. The basic
improvements compared to the old hardware, based on Versa Module Eurocard standard
in the following called VME system, are given in Section 2.3.

2.2 Free-Electron Laser FLASH

The Free-electron LASer in Hamburg (FLASH) is a smaller version of the European
XFEL and can be seen as pilot test facility. The basic layout is depicted in Figure 2.2.1.
Especially the first part is very similar to the XFEL injector and booster section. First, the

Undulator

BC2

RF Gun ACC1 ACC39 ACC2 ACC3 ACC6 ACC7ACC4 ACC5

BC3
ACC23 ACC45 ACC67

Figure 2.2.1: Basic overview of FLASH, a more detailed sketch can be found in
[FLASH, 2013].

electrons are pre-accelerated by the RF Gun, followed by the accelerator module ACC1.
The longitudinal phase space is optimized by a third harmonic module ACC39, operated
at a 3 times higher frequency than ACC1. A bunch compressor, for historical reasons
BC2, reduces the bunch length and the module ACC23, consisting of ACC2 and ACC3,
further accelerates the electrons. The second bunch compressor BC3 further reduces the
bunch length and the following accelerator modules accelerate the electrons up to their
final energy of maximum 1.25 GeV, corresponding to a laser light wavelength of 4.12 nm,
[FLASH, 2013].

2.3 Overview of an RF Station

The main components of the RF Station can be found in Figure 2.3.1 and will be outlined
in the following. They are distributed in physical parts, i.e. master oscillator, vector
modulator, klystron, waveguide, cavities, pickup antenna, down converter unit, analog-
digital converters (ADC), digital-analog converters (DAC), and software components, i.e.
calibration unit, setpoint, feedforward, which is corrected by an iterative learning control
algorithm, and the MIMO controller.

The operation of the system can roughly be described as follows: The master oscilla-
tor provides a constant RF signal at 1.3 GHz. Within the vector modulator amplitude
and phase of this signal is modulated by control signals, before it is amplified with the
klystron and distributed inside a waveguide system to the cryomodule hosting eight cav-
ities, i.e. the accelerator modules. The latter are resonators supporting standing elec-
tromagnetic waves of the same frequency. To measure the RF fields inside the cavities,
each of them contains a pickup antenna. This signal is down-converted by a mixer from
1.3 GHz to an intermediate frequency (IF) and sampled by an ADC, either by an I/Q or

7



2.3. OVERVIEW OF AN RF STATION
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Figure 2.3.1: Signal flow for an RF Station and the associated LLRF control system.

so-called non-I/Q sampling scheme, [Hoffmann, 2008]. The electric field vector is decom-
posed in its real part I and imaginary part Q, and processed by the control hardware.
The indices I and Q denote ’in-phase’ and ’quadrature’, a common notation not only
in accelerator physics. The signals from the cavities enter a software module inside a
Field Programmable Gate Array (FPGA). The main advantage of this is parallel, high
speed data processing and the possibility of reconfiguration without hardware changes.
Since the measurement equipment is very sensitive to cable movements or different cable
lengths, a calibration of the signals is necessary. This is done by rotating the measured
field vector of each cavity and processing their sum, because only one actuator drives 8
cavities for economic reasons. Finally, the system outputs yI , yQ are subtracted from
the setpoints rI , rQ and the resulting error enters the multi-input multi-output (MIMO)
controller. At the controller output a feedforward signal is added. The linear accelerator
is operated in a pulsed mode, hence it is straightforward to minimize repetitive errors by
an iterative learning control algorithm, which updates the feedforward signal between the
pulses, [Kirchhoff et al., 2008]. Finally the system input signals uI , uQ are converted to
an analog signal and applied to the vector modulator. Thus, the controller can change
the amplitude and phase of the frequency provided by the master oscillator.

The requirements for controlling the RF fields are determined by the X-ray pulses gen-
eration, Section 2.5. The relative energy spread ∆E/E from bunch to bunch and pulse
to pulse should be in the order of 10−4 at the end of the acceleration section. When
an electron beam transverses an undulator, it emits radiation corresponding to a photon

8



CHAPTER 2. FREE-ELECTRON LASERS

wavelength of

λP =
λu

2γ2

(
1 +

K2

2

)
, (2.3.1)

with an undulator periodic length λu, the relativistic Lorentz factor γ and an undulator
specific parameter K, which is in the order of one [Schmüser et al., 2008]. The relativistic
factor γ is the ratio between the electron energy E and electron energy at rest E0

γ =
E

E0

with E = γmec
2 = γE0 ,

where E0 = 0.511 MeV. The first derivative of photon wavelength (2.3.1) is

∂λP

∂γ
= −

λu

γ3

(
1 +

K2

2

)
(2.3.2)

and the emitted photon energy spread can be written as

∂λP

λP

= −2
∂γ

γ
= −2

∂E

E
. (2.3.3)

Example Assume a maximum relative spectral width of 5 · 10−4 (FWHM) for relative
photon wavelength deviation. The relationship FWHM = 2

√
2 ln(2) σ for Gaussian

distribution is used to compute the maximum standard deviation as σ = 2.1 · 10−4.
To achieve this photon wavelength stability, a relative beam energy stability at the end
of an accelerator of about 0.01 % must be guaranteed, e.g. a beam energy variation of
maximum 1.75 MeV at final beam energy of 17.5 GeV for XFEL.

Therefore an RF control system is used to regulate the fields in a disturbed environment.

The main differences between the hardware of the MTCA and VME system can be found
in Table 2.1.

Table 2.1: Differences VME and MTCA system

VME system MTCA system

Intermediate Frequency (IF) 250 kHz 54 MHz

Sampling Frequency (fS) 81 MHz 81 MHz

Sampling Method I/Q non-I/Q

Decimated Sampling Rate 1 MHz 9 MHz

ADC Resolution 14 bit 16 bit

Cryomodules per RF station 1 or 2 1 or 4

Most of the previously described parts are discussed in detail in several publications and
the interested reader is referred to e.g. [Schilcher, 1998] and [Schmidt, 2010]. In the
following, an introduction to the pulsed mode operation and the cavity is given.
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2.3. OVERVIEW OF AN RF STATION

Pulsed Mode Operation To reach a high beam energy, FLASH and later XFEL are
operated in a pulsed mode with an usual repetition rate of 10 Hz, [Altarelli et al., 2006].
A typical pulse pattern is divided into three stages, as shown in Figure 2.3.2, which are
filling, flat-top and decay. At first, the power is increased in the filling phase in order to

Field
gradient
[MV/m]

25

Time [s]0.1

10 Hz mode
Beam Beam

Field
phase
[deg]

-10

Filling Flat-Top Decay

1.46 m0.66 m

Figure 2.3.2: Example of pulsed operation with 10 Hz repetition rate, 660 µs filling
and 800 µs flat-top.

reach a desired level of field gradient. In the following flat-top phase, electron bunches
are injected. This is the most important step, in which the field gradient has to be kept
constant. At the end of the flat-top phase, power is turned off to avoid overheating and
the gradient decays until the next pulse starts.

Cavity A cavity, i.e. a resonator, is used to accelerate the electrons. One can imagine it
as a hollow tube consisting of nine cells as presented in Figure 2.3.3. Into this, electromag-

Figure 2.3.3: Cavity with the main power coupler port, the pick up probe, and two
higher order mode couplers [Altarelli et al., 2006].

netic energy in form of microwaves at about 1.3 GHz is injected through a power coupler,
which is the connection part between the waveguide system and the cavity. The coupling
factor can be adjusted inside the power coupler by moving an antenna in a certain range.

As a result of the cavity geometry, the cavities can house different modes of the electro-
magnetic field applied, see Table 2.2 for frequency location of the fundamental modes.

10



CHAPTER 2. FREE-ELECTRON LASERS

Table 2.2: Fundamental cavity modes, [Vogel, 2007]

Fundamental mode Mean eigenfrequency of 116 cavities

π fπ = (1 300 444 ± 303) kHz

8/9 π fπ − (785 ± 51) kHz

7/9 π fπ − (3 053 ± 94) kHz

6/9 π fπ − (6 501 ± 157) kHz

5/9 π fπ − (10 694 ± 243) kHz

4/9 π fπ − (15 122 ± 347) kHz

3/9 π fπ − (19 237 ± 430) kHz

2/9 π fπ − (22 594 ± 503) kHz

1/9 π fπ − (24 773 ± 543) kHz

The electric component of that field is responsible for the acceleration of the injected elec-
tron bunches. It is intended to transfer as much energy as possible from the field to the
electrons; an optimal mode, i.e. π-mode, is shown in Figure 2.3.4. The arrows indicate

Figure 2.3.4: Cut through a cavity with electric field vectors as example for the
π-mode, used for acceleration, and other unwanted fundamental modes, e.g. 8/9 π-
mode and 7/9 π-mode, [Vogel, 2007].

the electrical component of the RF field in direction of the electron movement and the
length indicates the field amplitude. The cavity geometry is such that the π-mode op-
timally accelerates a relativistic electron beam. This mode shows equal field amplitudes
in all cells with changing signs proceeding from cell to cell. While the electron bunches
pass from cell to cell, the sign of the field amplitude changes synchronously, leading to
beam acceleration over the full cavity length. Beside the fundamental π-mode, several
other fundamental modes are present, i.e. 1/9 π-mode up to the 8/9 π-mode; an example
is depicted in Figure 2.3.4.

The electromagnetic field lines of an ultrarelativistic electron bunch, traveling through a
perfectly conducting cylindrical pipe, move together with the particle. Changes of the
geometry, e.g. of the cells of a cavity, lead to electromagnetic field lines, generated by the
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2.4. BEAM-BASED MEASUREMENTS

charge, behind the electrons. When the beam tube narrows again, so-called wake fields
occur, i.e. reflections of the field. But even without geometry changes, wake fields can
grow up when the beam tube walls have a finite resistivity. An electron following the first
one is affected by those fields which may change its energy or result in an orbit deflection,
for further details see [Baboi, 2001].

To reduce the effect of wake fields, each cavity is equipped with higher order mode (HOM)
couplers, shown in Figure 2.3.3, whereby the stored energy of the HOMs is extracted.
Without going into the detail, two HOM couplers, which are adjusted to minimize the
energy extraction of the π-mode, are used to reduce the higher order mode effects. Since
those are optimized to the π-mode, the additional fundamental modes, e.g. 8/9 π-mode,
may be attenuated by the HOM couplers and the RF field pick up detects a reduced
influence of these modes, [Baboi, 2013] and [Vogel, 2013].

2.4 Beam-Based Measurements

In the following, the focus is on beam-based measurements which are used to directly
control the electron bunch. A short introduction to each measurement device is given,
and further information can be found in the mentioned references.

Bunch Arrival Time Monitor

To measure time-of-flight variations, a bunch arrival time monitor (BAM) has been devel-
oped, [Löhl, 2009] and further improved [Bock, 2012]. The operation principle comprises
the measurement of the bunch arrival time relative to the optical timing reference (refer-
ence laser pulse), which is provided by actively length-stabilized fibre-links of the optical
synchronization system. The basic detection scheme is shown in Figure 2.4.1.

Figure 2.4.1: BAM principle [Bock, 2012].
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CHAPTER 2. FREE-ELECTRON LASERS

The upper left side shows the pick-up system which is installed in the beamline. Feed-
troughs in the horizontal and vertical plane couple out the beam-induced transient signal
which, in both planes, is merged from two opposing antennas into one channel. One is
used for high resolution but has only a small temporal dynamic range in the order of a
few pico-seconds, the other is utilized for a large dynamic range; i.e. the fine and coarse
channel, respectively. The resulting bipolar signals are used to modulate reference laser
pulses in amplitude by an electro-optical modulator (EOM). Arrival time changes of the
voltage zero-crossing relative to the optical reference are transferred into an amplitude
modulation which is detected. Especially the fine channel with a resolution of a few
femto-seconds is highly suitable for controlling the bunch arrival time.

Bunch Compression Monitor

Electron bunches are accelerated to ultrarelativistic energies by the first accelerator mod-
ule. In order to produce photon pulses with a few tens of femto-second duration, the
electron bunch is longitudinally compressed in magnetic bunch compressors, see Sec-
tion 3.2.1. Bunch compression monitors (BCM) were developed [Wesch, 2012] to measure
the bunch peak current behind a bunch compressor. The basic detection principle is
shown in Figure 2.4.2. An electron passing a metallic slit generates coherent diffraction

Figure 2.4.2: BCM principle [Behrens et al., 2010].

radiation (CDR), which is used to determine a relative bunch length, thus bunch current.
A motorize mirror deflects the diffraction radiation (DR) into different detectors, i.e. ei-
ther DR path 1 and 2, which is the new detection strategy, or DR path 3 the old detection
set-up. For simplicity, only the new detection scheme is considered using two channels for
different dynamic ranges. A polarizer separates the vertical and horizontal radiation field
components, which are focused by parabolic mirrors onto pyroelectric elements. The out-
going signal is amplified and sampled. For further details, see [Wesch, 2012] and [Behrens
et al., 2010]. The BCM signals are used to control the energy spread within an electron
bunch by adjusting the RF field phase of the upstream accelerator module.

13



2.5. SASE PROCESS AND PUMP-PROBE EXPERIMENT

Orbit based energy measurements

Electron energy changes result in orbit, hence position, changes within a dispersive sec-
tion. It is foreseen to upgrade all bunch compressors with energy beam position monitors
(EBPM), [Hacker, 2010]. Detecting position deviations from the nominal trajectory al-
lows to compute beam energy changes. The basic principle of an EBPM is depicted in
Figure 2.4.3. The electron bunch passes the pickup and induces a voltage transient which

dx

L

Beam

Beam direction

dφ

Figure 2.4.3: EBPM principle [Mavrič et al., 2012].

travels to the left and right side of the upper and lower coaxial strip lines. The signals on
each side are added to reduce the dependence on the y-direction, i.e. a vertical displace-
ment. The latter is in principle not affected by a bunch compressor, see Section 3.2.1.
Fast ADCs detect a phase difference between the incoming signals from the left and right,
which is proportional to a bunch displacement dx, hence to an energy change ∆E from
its nominal energy, [Hacker, 2010] and [Mavrič et al., 2012].

2.5 SASE Process and Pump-Probe Experiment

SASE Process The main linac accelerates the electron bunches to the target energy.
The collimator protects the undulator against mis-steered and off-energy electron bunches.
The undulator comprised a periodic magnetic field and forces the electron beam onto a
sinusoidal trajectory, depicted in Figure 2.5.1. Hereby the electrons emit photons of high
intensity and quality by the self-amplified spontaneous emission (SASE) process. To
obtain high gain and saturation in the SASE process at nanometer and sub-nanometer
wavelength, an electron beam needs to fulfill tight requirements. Especially within the
injector and booster linac, the bunch length must be stabilized to about 20 µm (rms),
leading to a desired peak current of about 5 kA. In addition, the standard deviation of
arrival time, the so-called arrival time jitter, of each bunch must be better than 30 fs (rms),
further details and requirements can be found in [Altarelli et al., 2006].

The produced X-ray photons with wavelength down to 0.05 nm for XFEL, [XFEL, 2013],
and down to 4.12 nm for FLASH, [FLASH, 2013], are used by scientists and researchers
to investigate the structure of matter, where often the experiment are carried out in a
pump-probe configuration.
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Figure 2.5.1: SASE principle with an electron source, i.e. the FEL, the magnetic
structure and the resulting light. The electron bunches are extracted by an electron
trap, [XFEL, 2013].

Pump-Probe Experiment This example is taken from [Photon Science DESY, 2013].
Two short pulses are required to explore the temporal evolution of various processes such
as atomic motion, expansion of hot plasmas, phase transitions and chemical reactions.

A pump pulse starts the reaction, the probe pulse detects the state of the system. This
can be done for defined time delays such that a sequence of probe pulses allows recording
a movie of e.g. a molecular reaction. Both pulses could originate from the free-electron
laser itself. In this case, the pulse coming from the free-electron laser is split into two
pulses, where one of them is delayed by sending it on a longer path. However, often the
reaction has to be triggered or probed, e.g. to study the evolution of processes, by ultra-
short pulse lasers of optical wavelength with photon energies in the electron volt range;
instead of thousands of electron volts providing the free-electron laser. It is much easier
to change specific properties of the optical laser, e.g. the pulse duration and shape, the
wavelength, the polarization, or the angle of incidence. Nevertheless, those experiments
require a precise synchronization and equidistant arrival time of probe and pulse source.

2.6 Sources of Perturbations

In [Schmidt, 2010], an overview of repetitive and non-repetitive disturbances to the control
system is given. These include microphonics, i.e. mechanical vibrations caused by e.g.
pumps, Lorentz force detuning, i.e. changes of the cavity geometry by the electromagnetic
field used for acceleration, and the electron beam itself. These and other disturbances
have an impact on the stability of the RF field and were studied in [Schmidt, 2010].
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2.6. SOURCES OF PERTURBATIONS

To stabilize the beam, further sources of perturbations must be considered. These can
be separated into two groups, as shown in Table 2.3. Within this thesis mainly the fast
disturbances, which act within a pulse, are considered.

Table 2.3: Sources of perturbations

Slow Drifts Fast Fluctuations

Temperature changes within the tunnel
or waveguide components

RF field amplitude and phase jitter

Switching in electronics, e.g. vans Thermal heating within macro-pulse

Aging of components Photo cathode laser (power, pointing sta-
bility, profile)

Ground motions Vibrations

Electromagnetic interference Electromagnetic interference

Faults in devices and components Lorentz force detuning

Cryogenic pressure drifts Orbit changes due to couples kicks

Stability of magnetic fields Beam loading effects

Multi-bunch effects (Higher order modes)
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Chapter 3

System Identification

This chapter will focus on the mathematical representation of the considered system. A
grey box identification approach, combining a physical white box model structure with
engineering identification methods is presented. It will be seen that fixing the internal
structure of the model, helps to estimate free parameters in the case of an excited system.
The excitation signal itself must be considered as disturbance input. In consequence of
pulsed mode operation, not all frequency ranges of interest can be excited within one
step. The developed grey box identification approach is flexibly designed, such that the
internal model structure can be extended block-wise, depending on estimated models for
different frequency ranges. Having a good plant approximation is a necessary step to
develop control strategies, like RF field controller or iterative learning control, described
in Chapter 4. Model-based controller synthesis allows a systematic tuning procedure
which facilitate the achievement of high-performance control objectives, not only for linear
accelerators.

Parts of this chapter are published in [Pfeiffer et al., 2011] and [Pfeiffer et al., 2012a].

The chapter is organized as follows. Section 3.1 describes the physical RF field charac-
teristics for the main components within the RF field control loop. It will be seen, that
the system behavior, described as real and imaginary part of the RF field amplitude and
phase, obeys a special orthogonal group of dimension two (SO(2)) symmetric structure.
Based on this, a SO(2) symmetric grey box identification approach is presented. Mea-
surement results from tests at the plant conclude this section. Section 3.2 focuses on the
response of electron beam properties w.r.t. RF field changes. First, the main behavior of a
bunch compressor, a device to change the beam properties, i.e. the bunch arrival time and
bunch compression, within the linear accelerator is considered. It will be seen, that the
mathematical representation of the RF field to beam response is static in first-order ap-
proximation, if RF field changes in amplitude and phase are considered. The combination
of an accurate dynamic RF field model and an accurate static beam model, is presented
in Section 3.3, a necessary step for optimal beam control, as presented in Section 5.1.
The longitudinal phase space of the electron beam is linearised using a third harmonic
RF station. The influence and sensitivity to RF field disturbances, e.g. a beam-based
correction signal, is studied in Appendix B.1.
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3.1. RF FIELD MODELING

3.1 RF Field Modeling

This section is divided into four parts. The first subsection considers the models of the
vector modulator and klystron within the RF field chain. Together with the physical
equations of a single cavity, a white box model based on the main system behavior is
designed. Using only those equations does not provide a complete plant model. Several
other components within the signal flow, e.g. the waveguide itself, are not considered.
The European XFEL hosts 27 RF stations, which have to be modeled and the controller
design for each of these should be done within some minutes. Modeling the overall sys-
tem behavior on physical equations is not necessary, as will be shown later. In case of
maintenance or exchange of components a further modeling process would be necessary.
Within the second subsection the result from the white box modeling, which obeys SO(2)
symmetry, is used to design a SO(2) symmetric grey box state space model structure
which helps to fix and identify a reduced number of parameters. These parameters are
estimated by measuring and preprocessing the input/output data. This theoretical ap-
proach together with an example will be presented in the third subsection. This section
is finalized by SO(2) validation and possible plant simplifications.

3.1.1 Introduction

The system modeling for the main RF components within a linear accelerator is discussed
in [Schilcher, 1998], where linear models in Laplace domain with complex variable s of the
vector modulator GVM (s), klystron GKly(s) and cavity GCav(s) are given. Figure 3.1.1
shows the signal flow for a continuous time input signal u(t), i.e. input to the vector
modulator, to the output signal y(t), i.e. the vector sum, see Figure 2.3.1. For com-

GVM(s)
u(t)

GKly(s) GCav(s)
y(t)VM(t) Kly(t)

G(s)

Figure 3.1.1: Signal flow from u(t) to y(t) which forms the model G(s) to be identified.

pleteness, the output of the vector modulator and klystron is down-converted by a mixer
from 1.3 GHz to an intermediate frequency and sampled by an ADC, like the 1.3 GHz
field probe signal shown in Figure 2.3.1. Additional components like ADC, DAC or pre-
amplifier are considered as part of each subsystem.

In this subsection, the developed models will be recalled and discussed with measurement
results. These models are given by I/Q representation of the RF field vector, i.e. in-phase
or real part (I) and quadrature or imaginary part (Q). It will be shown that couplings
from channel I to channel Q and Q to I, respectively, are caused by the vector modulator
and klystron, probably in addition by the waveguide system, cables and other components
within the signal flow, while the dynamic system behavior is mainly given by the cavity
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equation. The series connection of the resulting model

G(s) = GCav(s)GKly(s)GV M(s)

will be used to define an initial model structure for Section 3.1.2.

Vector Modulator Modeling

In [Schilcher, 1998] the model of the vector modulator is given as a first-order approxi-
mation in Laplace domain by

GV M(s) =
ωVM

s + ωVM

· I . (3.1.1)

The vector modulator has two inputs and two outputs, the in-phase part I and quadrature
part Q, respectively. Hereby the given transfer function matrix shows only direct couplings
of the input and output, where I indicates the identity matrix. Previous measurements in
[Schilcher, 1998] have shown that ωVM /(2π) ≈ 10 MHz, which is beyond the maximum
Nyquist frequency of 4.5 MHz for the MTCA system. Within this thesis, it will be
assumed that the model has a static behavior for frequencies up to the maximum sampling
frequency of 9 MHz. Measurements at FLASH with a sampling frequency of 1 MHz, i.e.
the VME system, were done. An excitation signal, e.g. pseudo random binary (PRB)
signal, is added in closed-loop to the setpoint signal. A gain matrix is estimated by the
method of least squares. The measurement and the simulation of the vector modulator is
presented in Figure 3.1.2. Here only the time range during the flattop is considered.
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Figure 3.1.2: Vector modulator input and corresponding measured and simulated
output signal during flattop as validation with the VME system.

The input signal to the vector modulator is shown on the left side, while the output of
the vector modulator is shown on the right side for channel I and Q, respectively. Since
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3.1. RF FIELD MODELING

the real and imaginary part of a vector field is given and with the assumption that the
vector modulator is static up to the Nyquist frequency (ωVM > ωNY ), the resulting model
can be separated into a static scaling and rotation matrix

[
VM I(k)
VM Q(k)

]
= KVM ·

[
cos φVM − sin φVM

sin φVM cos φVM

]
·

[
uI(k)
uQ(k)

]
, (3.1.2)

where k = t/Ts is a sequence of integer numbers, representing a discrete-time signal with
sampling period Ts, KVM as proportional gain and φVM as angle of rotation. This matrix
parametrizes a special orthogonal group of dimension two (SO(2)), with the rotation
matrix as simplest SO(2) representation. The resulting parameters in this example are
identified to be KVM = 6.6 · 10−6 and φVM = 135◦.

Klystron Modeling

The model is described in [Schilcher, 1998] and given in Laplace domain as

GKly(s) =
ωKly

s + ωKly

· I . (3.1.3)

The bandwidth is estimated by measurements to be ωKly/(2π) = 8 MHz [Schilcher, 1998],
which is again above the Nyquist frequency such that only a gain matrix is identified.
Figure 3.1.3 shows on the left side the output of the vector modulator, respectively by
neglecting preamplifier the input to the klystron and, on the right side, the output of the
klystron. Similar to the vector modulator, the static matrix for the klystron (ωKly > ωNY )
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Figure 3.1.3: Klystron input as well as corresponding measured and simulated output
signal during flattop as validation with the VME system.

is given by a SO(2) symmetric structure as
[

KlyI(k)
KlyQ(k)

]
= KKly ·

[
cos φKly − sin φKly

sin φKly cos φKly

]
·

[
VM I(k)
VM Q(k)

]
, (3.1.4)
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with a proportional gain KKly ≈ 1320 and an angle of rotation φKly ≈ 25◦.

As is now apparent, additional cross-couplings, which in the following are described by
a SO(2) symmetric structure, result, among others, from a proportional mapping of the
vector modulator and klystron, obeying a SO(2) symmetry.

Cavity Modeling

The dynamical system behavior is modeled by using the physical cavity equation from
[Schilcher, 1998]. The latter is well known in accelerator physics and can be described by
the differential equation

d

dt

[
VI(t)
VQ(t)

]
=

[
−ω1/2 −∆ω
∆ω −ω1/2

] [
VI(t)
VQ(t)

]
+ RL · ω1/2

[
1 0
0 1

] [
II(t)
IQ(t)

]
, (3.1.5)

in which V is the complex cavity voltage, I the complex driving current, ω1/2 as band-
width, ∆ω = ω0 - ω the detuning and RL the shunt impedance of the cavity. Lets redefine
the output vector V (t) as y(t) and choose the input vector as

u(t) =

[
uI(t)
uQ(t)

]
=

[
RLII(t)
RLIQ(t)

]
, (3.1.6)

an usual notation of plant input and output in control theory. This leads to

d

dt

[
yI(t)
yQ(t)

]
=

A︷ ︸︸ ︷[
−ω1/2 −∆ω
∆ω −ω1/2

] [
yI(t)
yQ(t)

]
+

B︷ ︸︸ ︷[
ω1/2 0

0 ω1/2

] [
uI(t)
uQ(t)

]
,

[
yI(t)
yQ(t)

]
=

[
1 0
0 1

]

︸ ︷︷ ︸
C

[
yI(t)
yQ(t)

]
,

(3.1.7)

with A as system matrix, B as input matrix and C as output matrix. The transformation
of (3.1.7) into the Laplace domain by G(s) = C(sI − A)−1B is

[
YI(s)
YQ(s)

]
=

(ω1/2)(
∆ω

)2
+
(
s + ω1/2

)2

[
s + (ω1/2) −∆ω

∆ω s + (ω1/2)

]

︸ ︷︷ ︸
G(s)

[
UI(s)
UQ(s)

]
. (3.1.8)

The cavity equation is developed around the baseband frequency, meaning the funda-
mental π-mode is located at frequency zero. This differential equation holds only for a
single fundamental mode, e.g. the π-mode. Since other fundamental modes are present,
all cavity mode models are in parallel, thus have to be added to get the overall cavity
model. The field probe signal is measured at the end cell of the cavity, thus each even
mode, e.g. 8/9 π-mode, is sign-inverted such that each fundamental mode is represented
as

Gn
9

π(s) = (−1)n+1Kn
9

π

(ω1/2)n
9

π
(
∆ωn

9
π

)2
+
(
s + (ω1/2)n

9
π

)2

[
s + (ω1/2)n

9
π −∆ωn

9
π

∆ωn
9

π s + (ω1/2)n
9

π

]
,

(3.1.9)
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for n = 1, . . . ,9. This equation is used to compute the transfer function matrix of the
π-mode (n = 9) with Kπ = 1. The variation in the coupling and loaded quality factor for
the remaining modes (n 6= 9) is described in [Vogel, 2007] and requires an adjustment of
static gain, bandwidth and detuning by

Kn
9

π
n6=9
= 2 sin2

(
nπ

18

)
, (3.1.10)

(ω1/2)n
9

π
n6=9
= 2 sin2

(
nπ

18

) πfn
9

π

QL

and (3.1.11)

∆ωn
9

π = 2π
(
fn

9
π − fπ

)
, (3.1.12)

where QL is the loaded quality factor and fπ is the resonance frequency of the π-mode.
The cavity baseband model is the superposition of all fundamental modes

GCav(s) =
9∑

n=1

Gn
9

π(s) . (3.1.13)

Figure 3.1.4 shows the resulting continuous time white box model for the cavity with all
fundamental modes.
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Figure 3.1.4: Continuous time cavity baseband white box model without time delay,
an initial detuning of ∆ωπ = -2π·10 Hz and a loaded quality factor of QL = 3 · 106,
computed by (3.1.9) to (3.1.13). The fundamental π-mode (fπ = 1.3 GHz) is located
at frequency zero.

The loaded quality factor QL = 3 · 106 of the cavity corresponds to a bandwidth

f1/2 =
fπ

2QL

(3.1.14)
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of about 217 Hz. Towards higher frequencies the additional fundamental modes are vis-
ible, which starts with the 8/9 π-mode down to the 1/9 π-mode. Couplings between
channel I and Q and vice versa are caused by an imperfectly tuned cavity, i.e. ∆ωπ 6= 0.
Detuning is almost negligible, since a piezo controller is in operation, which allows this
assumption. Having the detuning information of every pulse and using an adaptive feed-
forward strategy, keeps the detuning within a few hertz around zero, see [Przygoda et al.,
2010]. Additional cross-couplings are related to the previously described static model of
vector modulator and klystron, but also caused by second-order effects, e.g. from the
waveguide system. These components are in series with the cavity model as

G(s) = GCav(s)GKly(s)GV M(s) , (3.1.15)

resulting in off-diagonal transfer functions with decreasing magnitude of -20 dB/dec start-
ing at the bandwidth, defined by the cavity model.

3.1.2 Grey Box Modeling with SO(2) Symmetric Structure

Next, a linear time-invariant (LTI) MIMO model structure with inputs uI , uQ and outputs
yI , yQ will be constructed, which should fulfill the following RF field model requirements:

(1) SO(2) symmetric model structure

(2) Low pass characteristic

(3) Capability to model additional fundamental modes

The first requirement results from the analysis of the vector modulator and klystron, while
the second and third are caused by the cavity equations. Within this section, the discrete-
time modeling structure is specified by a reduced number of free parameters, based on a
grey box modeling approach.

The system is depicted in Figure 2.3.1 (see page 8) and has an input vector u(k), respec-
tively UI(z) and UQ(z), and an output vector y(k), i.e. YI(z) and YQ(z). Both vectors
depend on I and Q, thus represent an amplitude and phase. As seen in the previous sec-
tion, the MIMO system follows SO(2) symmetry. Therefore a linear discrete-time model,
which is SO(2) symmetric, has to have the structure

[
YI(z)
YQ(z)

]
=

[
G1(z) −G2(z)
G2(z) G1(z)

] [
UI(z)
UQ(z)

]
, (3.1.16)

to fulfill the first required statement. Including the dynamics, the low-pass and additional
fundamental modes, into the model structure is discussed in the following part and has
been taken into account in [Gdaniec, 2010]. Consider a linear discrete-time state space
model

x(k + 1) = Φx(k) + Γu(k) ,

y(k) = Cx(k) + Du(k) .
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In the following, Φ, Γ and C will be constrained to fulfill the SO(2) symmetry, such
that the low pass behavior, denoted by subscript r for real eigenvalue, and additional
fundamental modes, denoted by subscript c for complex conjugate pairs of eigenvalues,
result in the transfer function matrix given by (3.1.16). The direct feedthrough matrix D
is set to zero, which holds, if physically realizable systems are modeled.

Low Frequency Behavior

The discrete-time state space model

x(k + 1) = Φrx(k) + Γru(k) ,

y(k) = Crx(k) ,

which fulfills a low pass characteristic is designed by a diagonal system matrix Φr with
real valued parameter λ

Φr =

[
λ 0
0 λ

]
. (3.1.17)

Choosing the input or output matrix similar to a SO(2) structure, leads e.g. to the
following two cases:

(a.i) Antisymmetric off-diagonal input matrix

Γr =

[
b1 −b2

b2 b1

]
(3.1.18)

Output is chosen as identity matrix

Cr =

[
1 0
0 1

]
(3.1.19)

The designed input and output matrices obey the SO(2) symmetry and result in
a discrete-time transfer function matrix

Gr(z) = Cr(zI − Φr)−1Γr =

[
b1

z−λ
−b2

z−λ
b2

z−λ
b1

z−λ

]
.

(a.ii) Antisymmetric off-diagonal output matrix

Cr =

[
c1 −c2

c2 c1

]
(3.1.20)

Input as identity matrix

Γr =

[
1 0
0 1

]
(3.1.21)

Similar to the previous design, this results in

Gr(z) = Cr(zI − Φr)−1Γr =

[
c1

z−λ
−c2

z−λ
c2

z−λ
c1

z−λ

]
,

which obeys the SO(2) symmetry.
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High Frequency Behavior

Additional fundamental modes are included into the designed low frequency model by
extending the structure by complex conjugate pairs of eigenvalues. Through this the model
gets the information about resonant modes, i.e. the additional fundamental modes shown
within the cavity modeling section. First, one mode is designed without the low frequency
behavior to develop the necessary structure such that SO(2) symmetry is fulfilled. This
leads to a state space model structure, which is independent of the model structure for real
eigenvalues. Hereby, possible additional SO(2) symmetric phase changes can be modeled,
without considering the SO(2) symmetric phase for real eigenvalues, applying the freedom
to model the system with different phase couplings.

A single high frequency mode can be represented as a state space model with minimal
order of two

x(k + 1) =

Φ̃c︷ ︸︸ ︷[
σ ω

−ω σ

]
x(k) +

Γ̃c︷ ︸︸ ︷[
b̃1 b̃2

b̃3 b̃4

]
·

[
uI(k)
uQ(k)

]
,

[
yI(k)
yQ(k)

]
=

[
c̃1 c̃2

c̃3 c̃4

]

︸ ︷︷ ︸
C̃c

x(k) .
(3.1.22)

The system transfer function matrix of (3.1.22) is given by
[

YI(z)
YQ(z)

]
= Gc(z)

[
UI(z)
UQ(z)

]
, (3.1.23)

where

Gc(z) = C̃c(zI − Φ̃c)−1Γ̃c . (3.1.24)

Let the transfer function matrix for the given MIMO model be written as

Gc(z) =




NII(z)
D(z)

NIQ(z)

D(z)
NQI(z)

D(z)

NQQ(z)

D(z)


 . (3.1.25)

The common denominator polynomial of Gc(z) is

D(z) = z2 − 2σz + σ2 + ω2 , (3.1.26)

while the four numerator polynomials differ and are given by

NII(z) = (c̃1b̃1 + c̃2b̃3) · (z − σ) + (c̃1b̃3 − c̃2b̃1) · ω , (3.1.27)

NQQ(z) = (c̃3b̃2 + c̃4b̃4) · (z − σ) + (c̃3b̃4 − c̃4b̃2) · ω , (3.1.28)

NIQ(z) = (c̃1b̃2 + c̃2b̃4) · (z − σ) + (c̃1b̃4 − c̃2b̃2) · ω and (3.1.29)

NQI(z) = (c̃3b̃1 + c̃4b̃3) · (z − σ) + (c̃3b̃3 − c̃4b̃1) · ω . (3.1.30)
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For SO(2) symmetry (3.1.27) to (3.1.30) must fulfill the condition

NII(z) = NQQ(z)

NIQ(z) = −NQI(z)

}
∀ z, σ and ω ,

which leads to only two non-zero cases with a minimal order of the state space model to
combine real values of all parameters b̃ and c̃:

(b.i) for antisymmetric off-diagonals

Γ̃c =

[
b̃1 −b̃2

b̃2 b̃1

]
, C̃c =

[
c̃1 −c̃2

c̃2 c̃1

]
(3.1.31)

(b.ii) for antisymmetric diagonal elements

Γ̃c =

[
b̃1 b̃2

b̃2 −b̃1

]
, C̃c =

[
c̃1 c̃2

c̃2 −c̃1

]
. (3.1.32)

In the case of (b.i), the model can be rewritten as SO(2) rotational part including a scaling
factor. Therefore the input and output matrix rotates and scales the corresponding vector.
Considering only the rotation part results in det(Γ̃c) = 1 and det(C̃c) = 1, respectively,
which is SO(2) with a rotation about the origin. Case (b.ii) represents a glide reflection
with det(Γ̃c) = -1 and det(C̃c) = -1, if the determinant is normalized to one. If not,
separating a scaling part from this matrix achieves a normalized determinant. For both
cases symmetry groups are defined.

Besides both representations, an additional term is introduced, i.e. a block diagonal
system matrix with an extended input and output matrix. In principle there exists an
infinite set of input and output matrices which combinations obey the SO(2) symmetry.
Here, the focus is on two representations with an extended system matrix

Φc =




σ ω 0 0
−ω σ 0 0
0 0 σ ω
0 0 −ω σ


 . (3.1.33)

(c.i) Input matrix follows SO(2) like symmetry

Γc =

[
b11 b12 b21 b22

−b21 −b22 b11 b12

]T

(3.1.34)

Output matrix chosen as

Cc =

[
0 1 0 0
0 0 0 1

]
(3.1.35)
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(c.ii) Output matrix follows SO(2) like symmetry

Cc =

[
c11 c12 −c21 −c22

c21 c22 c11 c12

]
(3.1.36)

Input matrix chosen as

Γc =

[
0 1 0 0
0 0 0 1

]T

(3.1.37)

Extending the state space model structure has the benefit to model independently trans-
mission zeros, i.e. input coupling for high frequency resonant modes, of the diagonal
and off-diagonal transfer functions, sometimes called multivariable zeros, [Skogestad and
Postlethwaite, 2005]. Numerical experiments show that the results of the grey box pa-
rameter identification, which is described later, is improved if the state space model is
extended by two additional states. So, the input-output pole direction for cases given by
(b) and (c) does not change, while the input-output zero direction may change, which
improves the system modeling. Such an extended system representation leads to an in-
creased order of the system and to an independent modeling of the transmission zeros,
while the number of parameters remains unchanged.

The discrete-time state space model with low pass character and one resonance frequency
is

x(k + 1) =

[
Φr 0
0 Φc

]
x(k) +

[
Γr

Γc

]
u(k) ,

y(k) =
[
Cr Cc

]
x(k) .

(3.1.38)

The model has two real eigenvalues and either one, for case (b), or two, for case (c),
complex conjugate pairs of eigenvalues and obeys the SO(2) symmetry. Slightly non-
symmetric system behavior is introduced in Appendix B.2. Additional resonant modes
and time delays are considered next by extending the state space model block-wise.

Extension to further resonant modes and time delays

Additional resonant modes can be included by extending the state space model block-wise
by additional block diagonal matrices e.g. leading to

x(k + 1) =



Φr 0 0
0 Φc1 0
0 0 Φc2


 x(k) +




Γr

Γc1

Γc2


u(k) ,

y(k) =
[
Cr Cc1 Cc2

]
x(k) ,

(3.1.39)

which obeys the SO(2) symmetry for each eigenvalue. This allows to include additional
block matrices, while the coupling of the modes, which can vary for different resonant
modes, is independent of the previous identified system, input and output matrices.
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The time delay of the plant will be considered during the identification procedure. The
system to be identified is operated in a pulsed mode operation, such that the output vector
is shifted with respect to the input vector, corresponding the sampling points. After the
system identification, additional states are used to extend the state space model such that
the time delay of the plant is included into the model structure, needed e.g. during the
controller design, Section 4.1.

The described system identification approximates the RF field plant behavior without time
delay to reduce the complexity of the system model. First, the low frequency behavior is
identified, followed by the inclusion of additional resonant modes by extending the state
space model with block matrices, see (3.1.39). Figure 3.1.5 shows the identified SO(2)
symmetric model G(z), in series connection with the time delay Td. The signal flow for

z−Td
· I

Ĝ(z)

[uI , uQ]T
G(z)

[yI , yQ]T

Figure 3.1.5: Identified model G(z), time delay Td and overall plant model Ĝ(z), used
for the controller design.

both channels is similar, hence the time delay is assumed to be equal, resulting in a SO(2)
symmetric model Ĝ(z). The model extension by inclusion of time delays is not necessary
for the identification procedure, while for the controller design it is.

3.1.3 Example at FLASH

The grey box model structure developed within the previous section, will be used to
identify a linear time-invariant discrete-time model with an input signal as input to the
vector modulator and an output signal as vector sum, i.e. the sum of calibrated cavity
probe signals. Such an engineering approach simplifies the complex white box modeling
to an identification procedure, which computes the main system behavior within some
routine steps. The parameter identification is divided into two steps, a consequence of
the pulsed mode operation. The excitation of the system and therefore the identification
of the input-output behavior is only possible within a short time period, leading to an
adaptive identification procedure.

First the location of the low frequency pole, the bandwidth of the system, is identified by
a real eigenvalue with

x(k + 1) = Φrx(k) + Γru(k) ,

y(k) = Crx(k) .
(3.1.40)

This provides the low pass characteristic together with its input matrix by using PRB
signals.

In the second step, the frequency and damping of one or more complex conjugate pairs of
eigenvalues are determined, while the low frequency behavior is fixed. An adaptive exci-
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tation scheme that starts with a wide frequency scan, ends with fine sinusoidal excitation
and finally the pole location of the considered mode. The identification scheme for the
low frequency and high frequency behavior, see (3.1.38), is shown in Figure 3.1.6.

Set Φ
c
, Γ

c
and C

c
= 0

Φ
r
, Γ

r
and C

r

Fix Φ
r
, Γ

r
and C

r

Φ
c
, Γ

c
and C

c

Low Frequency
Model valid?

High Frequency
Model valid?

Initialize and Identify

Initialize and Identify

Choose new Chirp
Sine Signal

yes

no

no

END

yes

Change Excitation
Signal

Figure 3.1.6: Adaptive two step system identification using fixed grey box model
structure to identify a mathematical model for one real eigenvalue and one complex
conjugate pair of eigenvalues.

It is necessary to develop reasonable excitation and preconditioning procedures before
identifying parameters by e.g. the iterative prediction-error minimization method, [Ljung,
1999]. The following example shows, how the grey box system identification is used to
compute a model. For different amplitude setpoints the system shows slightly nonlinear
behavior, caused mainly by the klystron, [Cichalewski and Koseda, 2007]. But in usual
operation the amplitude is fixed and further strategies are used to linearise the behavior
of the klystron. The model identification operates in open loop at a given amplitude and
phase setpoint. Adjusting the feedforward drive before the identification starts, helps to
minimize residual field errors. Minimizing those field errors allows to estimate a model
around the operating setpoint, i.e. during flattop, where a persistent excitation signal is
added to the feedforward signal. By this, the feedforward output signal is overlapped by
an arbitrary excitation signal. High amplitudes of the excitation signal lead to a better
signal-to-noise ratio, but introduce additional cross couplings caused by cavity detuning.
A cavity simulation based on (3.1.8), page 21, point out cross-coupling variations by
changing the detuning and loaded Q (QL), presented in Figure 3.1.7. Changes in QL affect
the diagonal channel, variations of detuning ∆f mainly the off-diagonal channel, while
the ratio of off-diagonal and diagonal coupling is almost constant for both parameters.
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Figure 3.1.7: Coupling of off-diagonal to diagonal channel as function of detuned
cavity (∆f) and different loaded Q (QL). The lower left plot shows the magnitude
changes for the diagonal channel and on the right the off-diagonal channel. These plots
show the frequency response at f = 1 kHz, which is the minimum frequency for flat-top
length of about 1 ms.

During normal operation, i.e. detuning is kept within a few Hertz, the cavity coupling
can be neglected, unlike during a system identification, where the cavity is probably
slightly detuned by the excitation signal itself. In addition this coupling is constant for
QL adjustments within the regulation. Therefore, QL changes lead to a different low
frequency gain, but do not influence the modeling structure. This fact is an important
result for the SO(2) validation and is further considered in Section 3.1.4. Getting only
the influence of an additional excitation signal, used to identify a small signal model, it is
necessary to detrend the measured signal. Drifts and fluctuations are caused by Lorentz
force and microphonics, which will be briefly discussed in the following. Further details
can be found in [Schmidt, 2010].
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Data Preconditioning and Detrending

Microphonics Signal changes from pulse to pulse are primarily caused by microphonics,
e.g. introduced by ground vibrations, pumps and so on. It has been shown that this
disturbance can be minimized by taking a series of measurements, which are averaged,
being a necessary step for system identification [Schmidt, 2010].

Detrend Consider a given setpoint (amplitude and phase), where a linear state space
model has to be identified. Assume a stable linear time-invariant system with a persis-
tent zero mean excitation signal. Before the excitation starts and some time after the
excitation signal, depending on the system dynamics, the output should be zero with
respect to the excitation signal. In this application, changing the amplitude and phase
results in different detuning and therefore in additional cross couplings. Changes of the
electromagnetic field strength inside the cavities vary their length and thus its resonant
frequency. Furthermore, the klystron has shown a nonlinear behavior, which is linearised
by a klystron input-output adjustment, [Cichalewski and Koseda, 2007]. Within the grey
box modeling process those additional effects are not considered, since this detuning will
be removed by a piezo actuator, which changes the length of the cavity for the flattop
phase to reach zero detuning, [Przygoda et al., 2010]. It will be checked first, whether
these effects will have an influence on the identified parameters. Figure 3.1.8 shows the
vector sum in amplitude and phase without and with an added excitation signal.
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Figure 3.1.8: Excitation during flattop with the same excitation signal, either added
(Data 1) or subtracted (Data 2) to the feedforward signal around the operating RF field
setpoint (Data w/o Exc) for slightly detuned cavities.

In a second step this excitation is subtracted from the feedforward drive. It is obvious that
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the amplitude and phase decrease and increase depending on the sign of the excitation
signal. By using the grey box modeling procedure, the small signal model is computed
and validated by both excitation signals, shown in Figure 3.1.9. Here the system response
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Figure 3.1.9: Small signals for the added (Data 1) and subtracted (Data 2) excitation
signal from Figure 3.1.8, used for system identification.

is compensated by a linear detrend, such that the value is zero at both the start and
end of the excitation time. It shows that an error in both channels is present between
the simulated and measured signal, caused either by a detuned cavity or further effects,
e.g. klystron phase drifts caused by non-linear input-output behavior, [Cichalewski and
Koseda, 2007]. But since the controller acts only around the operating setpoint, this effect
is not critical, since the detuning close to the operating setpoint is compensated. Thus,
keeping the SO(2) symmetry within the modeling procedure, reduces detuning effects,
which are only present within the system identification, for comparison see the cross-
validation on page 37. Minimizing the detuning effects by using an excitation signal with
small magnitude, i.e. a lower signal-to-noise ratio (SNR), leads to a non-perfect system
identification, while too high magnitudes may change the detuning, thus cross-couplings
significantly. A necessary excitation magnitude, which leads to good data cross-validation
must be used to increase the signal-to-noise ratio. Nevertheless, small additional cross-
coupling effects caused by non-perfect detuning can be compensated within the controller
design by changing the off-diagonal components for the multi-input multi-output con-
troller, see Chapter 4. For a controller which fulfills the SO(2) symmetry like the system
model, it can be rewritten as scaling and rotation part, shown in Section 3.1.4, such that
adjusting the controller phase is sufficient. The linear detrend for both channels leads
to the measured small signal response. Based on the system excitation and resulting de-
trended signals (Data 1 and Data 2), as shown in Figure 3.1.9, the resulting low frequency
model for both cases is displayed in Figure 3.1.10. Here only one channel for the direct
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and the cross coupling is shown, while the second channel obeys the SO(2) symmetry.
Exciting the system by adding or subtracting an additional input signal and using a lin-
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Figure 3.1.10: Bode diagram for the identified model, either with added (Data1) or
subtracted (Data2) excitation signal, with system response given in Figure 3.1.9.

ear detrend does not change the plant model as shown in Figure 3.1.10. For reliability
and safety reasons only excitation signals, which lower the amplitude are used to identify
the plant.

Summary Figure 3.1.11 illustrates the described procedure for preconditioning and
detrending the datasets:

1. Operate the machine at an usual operating setpoint.

2. Take a series of 60-80 output signals without excitation, e.g. I w/o Exc.

3. Add an excitation signal to the feedforward signal, e.g. FF w/ Exc.

4. Take a series of 60-80 output signals with excitation, e.g. I w/ Exc.

5. Average the output data without and with excitation to get two signals, one without
and one with added excitation.

6. Calculate the difference signal, i.e. ∆I, between the data with and without excitation
computed in Step 5.

7. Shift the signal computed in Step 6 accordingly to the time delay of the plant.

8. Linearly detrend the signal ∆I of Step 7 resulting in ∆IDetrend such that the difference
signal is zero at beginning and end of a non-zero excitation signal.
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Figure 3.1.11: An example for detrending the signal of channel I based on the exci-
tation and the resulting system response.

This procedure is necessary to generate the preconditioned set of signals used by the
parameter estimation method shown in Figure 3.1.6.

Parameter Identification at FLASH for VME System

Using the system identification toolbox of MATLAB, the structure, including fixed and
free parameters, of a linear discrete-time-invariant grey box model can be defined. Using
the function idgrey and estimating a grey box model by the prediction error minimization
method pem, [Ljung, 1999], allows to optimize the frequency output spectrum accordingly
to its input spectrum. The first goal is to estimate the real pole (3.1.17) for low frequency
behavior and its corresponding input matrix (3.1.18). Thus, the model has the form
of (3.1.40). Assume, all parameters are unknown and set the pole and the input matrix
as described in Section 3.1.2. First, initialize the free parameters such that the diagonal
elements should dominate, e.g. initialize b1 to a higher value, e.g. 0.1, b2 as zero or close
to zero and the real pole at around 200 Hz. By assuming that many pulses and thus
columns are combined to a single one, the disturbance caused by microphonics can be
neglected such that the disturbance model is set to zero.

The estimation of the parameters of the low frequency grey box model with two real
eigenvalues, leads by way of example to values

λ1 = 0.9996, b1 = 0.0028, b2 = 0.0014 .

Besides, the parameter λ1 can be calculated by analyzing the decay of the RF field am-
plitude. During this decay phase (see Figure 2.3.2), the feedforward signal is set to zero
and the system is driven in open loop. Using a first-order approximation of the amplitude
decay

A = A0 · e− t
τ
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and a linear fitting of the natural logarithm of the field amplitude leads to a continuous
time eigenvalue of 1/τ , which corresponds to the system bandwidth ω1/2 for low frequency
behavior. Hence, the initial discrete-time eigenvalue of the low frequency behavior can be
computed leading to three free parameters or the computed eigenvalue can be fixed such
that only the input matrix is estimated with two free parameters. As long as the loaded
quality factor QL of each cavity is not changed, the system bandwidth does not change,
see relation in (3.1.14). If the cross validation between measured and simulated data, an
example is shown in Figure 3.1.14, is sufficient for the low frequency behavior, the model
given by (3.1.40) is fixed such that resonant modes, i.e. additional fundamental modes,
can be included and estimated.

High Frequency Parameter Estimation From the baseband cavity model, given in
(3.1.13), it is known that additional resonant modes are present. Using high frequency
excitation signals allows to excite resonances that are difficult to find by PRBS. Chirp
sine signals with a linear increasing frequency constrain the frequency region of interest.

Example: Assume, the resonant mode is located around 200 kHz. Starting with a rough
chirp sine signal, e.g. with a frequency range from 150 kHz up to 250 kHz, shown in Fig-
ure 3.1.12 the region of possible resonances will be scanned first. Analyzing the spectrum
of the output dataset leads to small peaks, which are, verified by decreasing the frequency
range of the chirp sine signal, shown in Figure 3.1.12. Shrinking the frequency range of
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Figure 3.1.12: Excitation signal spectrum for chirp sine signals with given frequency
range and a sinusoidal signal of 200 kHz. The excitation signal length is 800 µs, an
usual flattop length at FLASH, the sampling time is 1 µs, which corresponds to the
VME system.

the excitation signal of fixed length leads to a higher amplitude of the appropriate fre-
quency within the frequency spectrum and thus the system response is more reliable in
that range.

Exciting those modes is difficult since cavities with a high quality factor are used, lead-
ing to a narrow frequency bandwidth. The additional fundamental modes are given
in Section 2.3, Table 2.2 on page 11. Obviously, the first mode, located at f8/9 π ≈

35



3.1. RF FIELD MODELING

785 kHz ± 51 kHz (see Table 2.2 on page 11), is above the Nyquist frequency of 500 kHz
for VME system and hence, an aliased mode should be found around 200 kHz. After
evaluating the input-output datasets, one can identify at least one additional resonant
mode by augmenting the states and matrices from (3.1.40) to the structure of (3.1.38).
Including additional resonant peaks into the model structure is done by further extending
the state equations given in (3.1.38) with block matrices given in (3.1.33)–(3.1.35). The
previous verified and modeled state space matrices will be fixed and the identification
of a second complex conjugate pair of eigenvalues starts at the next frequency region of
interest. Figure 3.1.13 shows the resulting bode diagram of the identified model with a
sampling frequency of 1 MHz. As seen in the previously described data preconditioning
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Figure 3.1.13: Bode diagram for the identified model of the VME system, containing
a real eigenvalue representing the system bandwidth and a complex conjugate pair of
eigenvalues, i.e. the aliased 8/9 π-mode.

and detrending subsection, the simulated system response compared with the measured
signal has an error which is caused by e.g. detuning and klystron non-linearities. A
cross validation in Figure 3.1.14 shows a reduced error if the amplitude and phase of the
RF field is excited close to the operating setpoint by using a higher frequency excitation
signal, i.e. lower detuning effect due to smaller changes of the RF field amplitude. By
reducing RF field errors, e.g. by a MIMO RF field controller presented in Section 4.1, the
operating RF field is kept constant. In addition, further control loops minimize mechan-
ical deformations of the cavity, caused by the detuning. These additional feedback loops
ensure a linear and time-invariant system behavior.
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Figure 3.1.14: A system cross-validation with a high-frequency PRB signal shows
small deviation of the error signal, i.e. the difference between measurement and simu-
lation.

Parameter Identification for MTCA System

The same modeling procedure is used with the MTCA system, see Section 2.3. From the
white box modeling of the cavities it is obvious, that the new model contains a sampled
and non-aliased 8/9 π-mode and 7/9 π-mode. Here, the system bandwidth and the two
mentioned modes are estimated. Starting at low frequencies, first the real eigenvalue is
estimated, followed by the 8/9 π-mode, around 800 kHz, next the 7/9 π-mode around
3 MHz. This example shows the result of an identification by adding and estimating
block-wise additional high frequency matrices; (3.1.33)–(3.1.35).

The low frequency behavior should be almost the same for both systems. The bode
diagrams of the VME and MTCA system are overlapped for comparison in Figure 3.1.15.
The frequency response for the identified model of the MTCA system is indicated by the
normal lines, whereas the grey lines are identified with the VME system. It is clearly
visible that the 8/9 π-mode is mapped to the left at the Nyquist frequency, which is
marked by the black line.

In addition, the magnitude of the aliased mode for the VME system is attenuated by
the sampling method itself, i.e. I/Q-sampling scheme with data averaging, see [Schmidt,
2010], and by destructive interference of eight cavity signals which are added to the vector
sum signal, [Hoffmann, 2008]. Furthermore, a frequency scan with the MTCA system for
both identified resonant modes is presented in [Schmidt et al., 2012], where the 8/9 π-mode
is found at f8/9π = 777 kHz ± 25 kHz and the 7/9 π-mode at f7/9π = 3035 kHz ± 60 kHz.
These frequency ranges are covered by the frequency width of the complex conjugate pairs
of eigenvalues for the MTCA system as shown in Figure 3.1.15. However, the resonant fre-
quency for the aliased 8/9 π-mode should be found at f8/9π = 222 kHz±25 kHz, while it is
found at 197 kHz for the VME system. This is explainable by the ADC detection scheme
which, without going into the details, is based on 250 kHz sampling frequency [Hoffmann,
2008]. Hence, resonance frequencies close to this sampling frequency are further attenu-
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Figure 3.1.15: Bode diagram for the identified model of the MTCA system, containing
a real eigenvalue and two complex conjugate pairs of eigenvalues, i.e. 7/9 π-mode and
8/9 π-mode. Overlapped for comparison is the identified frequency response of the VME
system, i.e. grey lines, up to the Nyquist frequency which is marked by the black line;
see Figure 3.1.13.

ated by the Nyquist-Shannon sampling theorem. As a result, the 8/9π mode for the VME
system is found at the lowest frequency within the frequency spread of eight cavities, i.e.
f8/9π = 197 kHz.

A cross validation compares the low and the high frequency behavior between the mea-
sured and simulated system response, which includes both identified additional modes,
see Figure 3.1.16.

3.1.4 SO(2) Symmetry Validation

In Section 3.1.1 it is shown, by physical equations for the vector modulator, klystron and
the cavities, that the open loop structure for the RF field chain follows a SO(2) symmetric
structure. Within Section 3.1.2, the mathematical state space model structure, based on
a linear time-invariant model in discrete time, is developed to identify a mathematical
approximation of the RF field chain. The frequency spectrum is divided into several
frequency ranges, where for each region of interest, e.g. around bandwidth and additional
fundamental modes, a model could be found. The block-wise extension of the resulting
models shows an improvement in finding the resonant modes. Each block of the state
space model fulfills a SO(2) symmetric structure, with the freedom to model different
couplings, i.e. the phase of the SO(2) structure for each frequency region may change,
which will be checked next. The example in Section 3.1.3 presents the precise system
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Figure 3.1.16: System cross-validation for the MTCA system with excitation signal
u(k). A 5th order polynomial fit of the error signal ∆ey, i.e. ∆ey,p, is used to correct
detuning and other second-order effects of the measured signal ymeas(k), resulting in
ymeas,poly(k). The simulated response ysim(k) is displayed for comparison. In addition,
two subplots, one for channel I and one for Q, are presented with zoomed into time
range, where clearly the 8/9 π-mode is visible and excited by the PRB signal.

modeling by a cross validation, especially for the MTCA system, where both resonant
modes could be identified successfully.

As presented earlier, the model of the MTCA system is well identified and will be used to
study the SO(2) symmetry. Recall, that the defined SO(2) symmetric linear discrete-time
model has to have the structure

[
YI(z)
YQ(z)

]
=

[
G1(z) −G2(z)
G2(z) G1(z)

] [
UI(z)
UQ(z)

]
.

Based on the model structure each frequency region is SO(2) symmetric. Computing the
response for a considered frequency ωi, leads to a transition matrix

F (ωi) =

[
f(1,1)i

f(1,2)i

f(2,1)i
f(2,2)i

]
,

in which the elements obey a SO(2) symmetry, claimed by the model structure

F (ωi) =

[
f(1,1)i

−f(1,2)i

f(1,2)i
f(1,1)i

]
=

[
χ1,i + iζ1,i −(χ2,i + iζ2,i)
χ2,i + iζ2,i χ1,i + iζ1,i

]
.
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Based on the fundamentals of a SO(2) symmetric matrix and the developed system struc-
ture, F (ωi) can be written as

F̃ (ωi) = (χ̃i + iζ̃i)

[
cos(φi) − sin(φi)
sin(φi) cos(φi)

]
,

which decomposes the matrix into a complex scaling factor and a real valued rotation
matrix. Assuming, that the rotation part does not change for all frequencies, leads to a
model representation which is SO(2) symmetric with a fixed plant phase φG = φi.

Consider frequencies below the 8/9 π-mode and compute φG = φi for ωi ≪ ω 8
9

π, then

G(z) = AG(z) · R(φG) (3.1.41)

holds, with

AG(z) =
G1(z)

cos(φG)
and (3.1.42)

R(φG) =
1√

det(G(ωi))
G(ωi) =

[
cos(φG) − sin(φG)
sin(φG) cos(φG)

]
, for ωi ≪ ω 8

9
π . (3.1.43)

This separation is finite for a diagonal dominant system, while for an off-diagonal domi-
nant system, i.e. cos (φG) → 0, the scaling part must be redefined as

AG(z) =
G2(z)

sin(φG)
.

Figure 3.1.15 shows the identified model. One off-diagonal channel has a phase shift of
180 degree, leading to a SO(2) symmetric structure. Close to the first resonant mode,
the phases of the off-diagonal channels are changing its phase relation with the frequency.
Hence, the off-diagonal channel which has a phase shift of 180 degree for low frequencies
is, between the first and second resonant mode, in-phase with the diagonal channels. As a
consequence, caused by the measured signal at the end of a cavity, each even mode has an
inverted sign and therefore an additional phase shift of 180 degree, as presented in (3.1.9)
on page 21. Caused by the SO(2) symmetric model approach, the diagonal channels
are the same and one of the off-diagonal channels is sign-inverted. Nevertheless, since
the dynamic behavior for both, the diagonal and off-diagonal channels are the same, it is
sufficient to consider only one diagonal and one off-diagonal channel. Mapping the model,
shown on the left side of Figure 3.1.17, into a SO(2) symmetric structure with a fixed phase
as described above, leads to the bode diagram on the right side of Figure 3.1.17. In the
upper plot, the black line sketches the ratio of the diagonal and off-diagonal channel, i.e.
variations of the magnitude, which should be constant. In the lower plot, the difference of
the diagonal and off-diagonal channels are shown, i.e. phase drifts between both channels,
which should be zero. Obviously, for a SO(2) symmetric model with fixed phase φG, the
magnitude ratio and the phase change are constant over all frequencies, while for the
identified model it is not. For high frequencies, i.e. frequencies close to the resonant
modes, changes of the phase difference and a stronger coupling between the magnitudes
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Figure 3.1.17: Identified model as comparison to SO(2) model with fixed rotation
matrix R(φG).

with a ratio close to 0 dB is present; with a ratio in magnitude of one, the resonant modes
rotates in I/Q plant on a perfect circle with same amount in I and Q.

Beside SO(2) symmetric model with fixed phase, the high frequency part follows (3.1.26)-
(3.1.30) and has a common denominator polynomial D(z). The numerator polynomials
are independently modeled for the diagonal and off-diagonal channels, such that a model
separation leads to

G(z) =
1

D(z)

[
N1(z) −N2(z)
N2(z) N1(z)

]
. (3.1.44)

The ratio of the magnitude (|G1|/|G2|) and the phase difference (φ(G1) − φ(G2)) differ
for the identified model. This is caused by unequal zeros, i.e. N1(z) 6= N2(z), especially
for frequencies close to resonant modes, here the 8/9 π-mode and 7/9 π-mode.

Nevertheless, for frequencies below the first resonant mode the system can be represented
as dynamic scaling and fixed SO(2) symmetric rotation part. Even in case of QL changes
within the cavities, as shown in Figure 3.1.7 on page 30, the plant phase φG needs not to
be updated, while an adjustment of the proportional gain for the dynamic scaling part is
necessary. This example is performed during the first MTCA tests and the high frequency
behavior, especially the coupling of the resonant modes, must further be studied. Within
the controller design first the fixed SO(2) symmetric model, followed by a controller
optimization with the identified model is considered. It will be shown, that a controller
design based on the SO(2) symmetric model is sufficient as long as passive controllers,
e.g. resonant mode suppression by band-stop filters, are considered.
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3.2 Beam Modeling

Within this section, the knowledge of the RF field system model is used to identify the
relation between RF field and beam in terms of a transfer function model. Within the
first section the focus is set to the physical equations of the bunch compressor (BC). At
FLASH two BCs are installed, which can be used to control the beam. For the European
XFEL it is planned to install three BCs, which will not change the fundamental idea of
beam modeling.

3.2.1 Bunch Compressor

A bunch compressor is a magnetic chicane, where the electrons travel on different trajec-
tories depending on the electron energy. The physical equations of a BC consider path
length changes l, energy deviations δE, orbit changes in x and y and changes of the orbit
derivative, e.g. x

′

= ∂x/∂z, with z as longitudinal position. A first-order approximation,
see [Brown, 1975], for a single electron passing a magnetic chicane, is given by




xf

x′
f

yf

y′
f

lf
δE,f




=




R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0
0 0 R43 R44 0 0

R51 R52 0 0 1 R56

0 0 0 0 0 1







xi

x′
i

yi

y′
i

li
δE,i




, (3.2.1)

where i denotes an initial and f the final vector. The orbit in x and y of each electron
changes with respect to the initial orbit, respectively the first derivative by (3.2.1). First,
consider only the traveling path of an electron. The final path length lf depends on the
initial path length li, the initial electron energy deviation δE,i and xi, x

′

i, respectively.
The path changes are given by the fifth row of (3.2.1) as

lf = R51xi + R52x′
i + li + R56δE,i .

The contributions of xi and x′
i to path changes are small, compared with the relative

energy deviation δE,i, and can be neglected, [Stulle, 2004]. Thus it is sufficient to consider
the path difference to compute the final longitudinal position

zf = zi − (lf − li) = zi − R56δE,i (3.2.2)

of the electron with respect to the bunch center after a BC section [Stulle, 2004]. The rel-
ative energy deviation is related to the nominal energy and given by δE = ∆E/E0. The
matrix element R56 is called the momentum compaction factor or longitudinal disper-
sion, [Stulle, 2004]. An electron entering the BC changes its output position depending
on energy deviations. Hereby, the focus is set to bunch position and therefore bunch
arrival time changes. Electrons, which are leaving the first accelerator module, are ac-
celerated to almost speed of light, thus are ultrarelativistic. Time-of-flight changes are
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proportional to energy variations by

∆tA =
(zf − zi)

ve

=
∆z

ve

= −
R56

∆Ei

E0i

ve

, (3.2.3)

with an electron velocity ve ≈ c. The first bunch compressor at FLASH has a R56 of
about -180 mm, thus the expected bunch arrival time variation is about 6 ps per percent
energy variation (3.2.3). Consider electron bunches where the size and length of each
bunch depends on the bunch charge, thus the number of electrons. Therefore (3.2.3) must
be computed for each electron or simplified for the center of mass. It is obvious that arrival
time changes are caused by energy changes for the center of mass, while energy chirps
along the bunch results in rotation of longitudinal phase space or longitudinal compression
changes, which is straight forward to show by (3.2.3). Figure 3.2.1 sketches a so-called
off-crest acceleration. The leading electrons get less energy than the tailing electrons,
resulting in path length differences for the head and tail of the electron bunch. Therefore
the longitudinal bunch length is reduced after a BC. This leads to path length and thus
arrival time relations of the average beam energy, while the beam energy distribution
is related to the energy spread. Converting those energy properties to field properties
leads to RF field amplitude and phase relations of the RF modules in front of each
BC. Figure 3.2.1 shows the relation of an RF field phase change, thus amplitude, bunch
arrival time and compression changes, respectively. Consider the two upper plots, where

b
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Figure 3.2.1: Sketched bunch compressor with a phase change of the RF field within
the previous RF module.

the electron beam energy distribution is shown. Bunch 1, left side, is accelerated by an
amplitude A1 and a phase φ1. The bunch length extends over a certain RF field phase
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and thus amplitude range, which leads to an electron energy spread within the bunch,
which is usually normalized by the center of mass energy E0. Changing only the RF
field phase from φ1 to φ2, changes the amplitude to A2, shown on the right side. Thus,
by changing the RF field phase the amplitude changes accordingly. Changing only the
amplitude is not affecting the normalized electron energy distribution over the bunch. The
lower plot sketches the electron path through a bunch compressor, e.g. for bunch 1, upper
left sketch, and for a second bunch, upper right sketch. Depending on the initial beam
energy distribution, the bunch arrival time and bunch compression changes are given as
linear approximation by

[
∆tA

∆C

]
=

[
t11 t12

t21 t22

]

︸ ︷︷ ︸
GB

[
∆A
A

∆φ

]
. (3.2.4)

This holds for energy and energy spread changes, respectively amplitude and phase
changes of the RF field around the operating setpoint. This transformation matrix con-
verts relative amplitude and absolute phase deviations to bunch arrival time and bunch
compression changes of a single bunch and will be seen as static beam model GB.

Consider a bunch train, e.g. the whole flattop is loaded with bunches with a bunch
repetition rate of 1 MHz, such that (3.2.4) is written as discrete-time sequence of beam
property changes, as a direct result from field changes,

[
∆tA(k)
∆C(k)

]
=
[
GB

] [∆A
A

(k)
∆φ (k)

]
. (3.2.5)

Rewriting the relative amplitude changes to absolute ones leads to

[
∆tA(k)
∆C(k)

]

︸ ︷︷ ︸
yB(k)

=

G̃B︷ ︸︸ ︷

[GB] ·

[
1
A

0
0 1

] [
∆A(k)
∆φ(k)

]

︸ ︷︷ ︸
ẽF (k)

, (3.2.6)

where a part of the relative amplitude deviation, i.e. 1/A, is separated into the static
beam model G̃B. Thus for given deviations of RF field amplitude and phase, possible
bunch arrival time and bunch compression deviations are computed.

Note: For an off-crest acceleration, i.e. the beam phase w.r.t. RF field phase is non-zero,
the static beam models GB and G̃B are nonsingular.

3.2.2 Example at FLASH

In principle, the identification of the beam model can be done in the same way like the RF
field system. Exciting the system by well known identification input signals, e.g. PRB or
chirp sine signals, leads to a system response in a desired frequency range. Unfortunately,
the electron beam is not always available and especially for long bunch trains, e.g. a fully
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loaded flattop, not easily set up, such that losses within the accelerator are minimal. Thus,
only a static matrix, which maps the RF field to beam properties will be identified. Next,
the dynamic part is superimposed by the field model. Figure 3.2.2 shows an example
for the behavior of bunch arrival time and bunch compression, respectively, depending
on changes in RF field amplitude and phase. Based on this, a transformation matrix,
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Figure 3.2.2: Example for estimating the beam model by a BBF matrix as variation
of the RF field amplitude and phase within the accelerator module ACC1 at FLASH.

mapping field to beam properties, is estimated, using the method of least squares. It has
to be mentioned that ACC1 is operated in series with the third harmonic module ACC39,
which decelerates the bunch by an amplitude of 1/9 of the amplitude of ACC1. As a
consequence, the factor 1/A needs to be defined as

1
A

=
1

AACC1 + AACC39

=
1

AACC1 − 1
9
AACC1

=
1

8
9
AACC1

≈ 1.1
1

AACC1

,

which means that the estimated bunch arrival time change is 1.1 times too high. By this a
bunch arrival time change of about 6 ps per percent energy deviation in ACC1 is expected
and estimated. Here only ACC1 is considered, while the third harmonic RF module is
driven as described in Appendix B.1, i.e. no correction is done.

45



3.3. COMBINATION OF RF FIELD AND BEAM MODEL

3.3 Combination of RF Field and Beam Model

The RF field model contains the dynamics, e.g. the 8/9 π-mode of the system and was
derived within the previous section as

[
yI(k)
yQ(k)

]

︸ ︷︷ ︸
yF (k)

=

[
GII(z) GIQ(z)
GQI(z) GQQ(z)

]
·

[
uI(k)
uQ(k)

]

︸ ︷︷ ︸
u(k)

. (3.3.1)

Converting yF to amplitude and phase, leads to

ỹF (k) = |yF (k)| · ei·arg(yF (k)) (3.3.2)

=
√

y2
I (k) + y2

Q(k) · e
i·arctan

(
yQ(k)

yI (k)

)
, (3.3.3)

such that the RF field model can be combined with the beam model. Figure 3.3.1 shows
the basic idea obtaining the beam model, with the input to the vector modulator as input
signal and the beam properties as output signal. Subtracting the reference of the RF field

G̃BGF (z)
yF (k)u(k)

G(z)

I,Q
A, φ

yB(k)ẽF (k)ỹF (k)

r̃F (k)

Figure 3.3.1: Model based plant design which combines the RF field and beam prop-
erties.

operating setpoint leads to field variations in amplitude and phase, ẽF (k). These small
amplitude and phase deviations change the beam properties, such that a beam model can
be derived. Since the field dynamics are known, the identification of the static matrix
GB or G̃B is sufficient. This model based approach considers changes of the RF field in
amplitude and phase with respect to the bunch arrival time and compression. The latency
from the input signal u(k) to yF (k) is part of the field model GF (z). Next, compare the
latency between the measured RF field and the measured beam-based signal, shown in
Figure 3.3.2. An excitation signal u(k) is added to the feedforward signal of ACC1 for
visualizing the resulting relative amplitude and thus bunch arrival time changes. The
latter are mapped to relative amplitude deviations by dividing ∆tA by R56. Shifting this
signal by 2 µs fits almost to the RF field amplitude changes, thus the bunch arrival time
signal is sampled and preprocessed faster than the RF field signal.

Consider the geometry of each cavity. Only the π-mode is used to accelerate the electrons.
Other fundamental modes, which are present in a nine cell cavity, will be considered as
disturbances of the RF field. An ultrarelativistic electron flying through a cavity is further
accelerated by this disturbed RF field. Consider only the 8/9 π-mode of the cavity. For
this mode, the acceleration field is theoretically superimposed by 4 sinusoidal functions,
in which each electron gets four times more and four times less energy. Assume based
on the latter, each even additional fundamental mode is not seen by the electron if each
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Figure 3.3.2: Latency between measured RF field (VME system) and bunch arrival
time for an excitation signal on the amplitude of ACC1 at FLASH.

cavity is well tuned, i.e. a detuning close to zero. As a consequence, each even additional
fundamental mode has to be removed from the beam model, e.g. by extending the RF
field model by a band-stop filters which removes theses mode. This consideration must
further be studied and verified by beam measurements with a high bunch repetition rate.
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3.4 Conclusion

This chapter has shown the system identification of the RF field and beam model, i.e.
the bunch arrival time and bunch compression. First, a small signal model for the RF
field is identified by exploiting symmetries of the RF-system. The excitation signal is
applied during the flattop phase, i.e. with bounded excitation time, where the RF field
performance must be within predefined specifications, [Altarelli et al., 2006]. As the high
frequency characteristic is only roughly estimated by black box identification, [Schmidt,
2010], a grey box model based on a SO(2) symmetric structure is developed to cope with
this limitation. The identification procedure is separated into two parts, one for the low
frequency characteristic and one for the high frequencies. By analyzing the resulting grey
box model it has been shown, that the model is SO(2) symmetric for all frequencies and
with the limitation of a not changing plant phase it is SO(2) up to the 8/9 π-mode. The
specified symmetric model structure is already successfully used during identification of
the FLASH plant. An example by extending the identification structure by two additional
parameters to cope with non-symmetric plants is presented in Appendix B.2.

Beside the RF field model, the physical equations of the bunch compressor show a direct
mapping from RF field amplitude and phase deviations to bunch arrival time and bunch
compression deviations, which is in first-order approximation a static matrix operation.
This has been verified by measurements at FLASH. The combination of RF field and beam
model is a necessary condition for optimal beam-based feedback, presented in Section 5.1.
One has to take into account, that in theory the even additional fundamental modes of
a cavity are not changing the electron energy during acceleration by a cavity. This must
be further studied and validated by measurements.
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Chapter 4

RF Field Controller Design

This chapter describes the systematic RF field controller design based on the identified RF
field plant model, Section 3.1. Having a good controller minimizes residual errors within
a pulse as well as from pulse to pulse, i.e. intra-train control and adaptive feedforward
strategies, respectively. During the last years RF field control strategies were developed
and included in the LLRF controller [Schmidt, 2010]. In consequence of pulsed mode
operation, two control strategies are necessary. On one hand a multi-input multi-output
(MIMO) controller minimizes RF field amplitude and phase errors within the pulse. On
the other hand iterative learning control (ILC) corrects the feedforward signal to minimize
repetitive errors from pulse to pulse. Both kinds of controllers are essential to achieve
high RF field performance. Optimal RF field control is a necessary step for optimal beam
control.

This chapter is divided into three parts. Section 4.1 considers the RF field feedback con-
troller, acting within a pulse. It will be shown, that making use of the SO(2) symmetric RF
field model helps to optimize the RF field controller. Special controller requirements are
given with respect to the later used beam-based feedback controller. Within Section 4.2
the norm optimal iterative learning control algorithm is recalled and simplifications re-
garding the possibility to implement this algorithm on an FPGA are given. It will be
shown, that the RF field model and the RF field controller leads to a closed-loop plant
which is SO(2), hence the algorithm can be simplified by exploiting the SO(2) symmetry.
Furthermore, the algorithm can be expressed by a tensor based scheme which further
simplifies the algorithm and makes an FPGA implementation possible. The last section
concludes this chapter.

Parts of this chapter are published in [Pfeiffer et al., 2012b], [Pfeiffer et al., 2012c] and
[Pfeiffer and Lichtenberg, 2013].
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4.1 RF Field Feedback Controller

The section is divided into three parts. First, an introduction to the considered RF field
plant properties and the RF field controller requirements is given. Section 4.1.2 consid-
ers the general controller design strategy fulfilling a plant decoupling. This is followed
by a controller extension to avoid the excitation of additional fundamental modes. The
proposed controller design follows a two-step method, i.e. an analytical controller com-
putation, based on the SO(2) symmetric plant structure, is optimized in a second step by
a mixed-sensitivity design. An example for the VME and MTCA system completes this
section.

4.1.1 Introduction

The RF field feedback controller, based on a black box RF field model, are described in
e.g. [Langkowski, 2008] and [Schmidt, 2010].

Within this section, the proposed controller design is on:

• SO(2) symmetric plant model for all frequencies

• Discrete-time eigenvalues inside unit disc

• Discrete-time zeros inside, on, or outside unit disc

Based on the system model, a controller has to be designed, which must fulfill the following
RF field controller requirements:

(1) Low order controller design

(2) Decouple the channels I and Q from reference to vector sum signal

(3) Avoid the excitation of additional fundamental modes

(4) Optimal closed-loop behavior for fixed controller order

These requirements are further necessary steps for an optimal intra-train longitudinal
beam-based feedback controller, see Section 5.1.

First, the controller design of C(z) for a general SO(2) symmetric plant Ĝ(z), see Fig-
ure 3.1.5 on page 28, is considered and visualized in Figure 4.1.1, where the SO(2) grey
box model of the system containing an input-output time delay Td fulfills

Ĝ(z) =

[
Ĝ1(z) −Ĝ2(z)
Ĝ2(z) Ĝ1(z)

]
.
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C(z) Ĝ(z)
r(k) e(k) y(k)u(k)

Figure 4.1.1: Closed-loop model containing the plant model Ĝ(z) and the controller
C(z) to be designed.

4.1.2 General Approach

The general controller design for a SO(2) symmetric plant model is considered to fulfill
the given RF field controller requirements. The designed MIMO controller will be imple-
mented on an FPGA, thus the controller order is limited by constraints, i.e. the FPGA
resource limitation and acceptable processing delays.

Fixed Order Controller Based on the restrictions within the FPGA, each transfer
function of the two-input, two-output controller is implemented with a fixed order. Cur-
rently, the controller is given as

C(z) =

[
C11(z) C12(z)
C21(z) C22(z)

]
, (4.1.1)

where each element is implemented as a second order transfer function, following

Cij(z) =
b0,ij + b1,ijz

−1 + b2,ijz
−2

1 + a1,ijz−1 + a2,ijz−2
, i, j = 1, 2 .

The following sections consider decoupling and mode suppression within the controller
C(z), shown in Figure 4.1.2.

Ĝ(z)

C(z)

DC(z)MC(z)
E(z) U(z) Y (z)

Figure 4.1.2: Design of the controller C(z), which is separated in mode suppression
part MC(z) and a decoupling part DC(z).

Decoupling The closed-loop behavior is designed such that a decoupling of the pro-
cessed signals, here between the real and imaginary part of error signal E(z) and the real
and imaginary part of vector sum signal Y(z), is fulfilled. A strategy for such decoupling
of system is studied in the following. Assume MC(z) is set as identity matrix.

Consider G(z) to be a plant model without time delay which should result in a low order
decoupling part DC(z). The proposed strategy present a system decoupling which comes
with the benefit of a low order decoupling implementation within the FPGA and results
in a controller design by exploiting the SO(2) symmetric plant model.
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We now consider frequencies below the additional fundamental modes, e.g. for the MTCA
system frequencies up to 100 kHz, of the plant model given in Section 3.1. In Section 3.1.4
it is shown that the coupling from the diagonal to the off-diagonal channel is constant up
to a certain frequency and that the ratio is given by the plant model phase φG. This allows
a static decoupling by assuming a constant rotation matrix R(φG) for all frequencies.

The plant is approximated by

G(z) =

[
G1(z) −G2(z)
G2(z) G1(z)

]
= AG(z) ·

R(φG)︷ ︸︸ ︷[
cos(φG) − sin(φG)
sin(φG) cos(φG)

]
, (4.1.2)

see (3.1.41)-(3.1.43), leading to a static decoupling matrix

DC =

R(φG)T

︷ ︸︸ ︷[
cos(φG) sin(φG)

− sin(φG) cos(φG)

]
,

to ensure the system is sufficiently decoupled. Hence, the loop gain for the approximated
system is in low frequency

L(z) = DCG(z) = AG(z)R(φG)T R(φG) = AG(z)I ,

which is decoupled. Since the model is chosen to be SO(2) symmetric with a fixed rotation
matrix, the real system is decoupled up to a certain frequency. The advantage of using a
static matrix for decoupling comes with the benefit that no additional dynamics must be
inserted in C(z).

During the further RF field controller design only this static decoupling is used. It is suf-
ficient to describe the model by (3.1.43), page 40, with a constant rotation matrix R(φG),
since the system behavior up to the desired closed-loop bandwidth for this application is
almost perfectly modeled. The contribution of slight cross-couplings can be neglected to
fulfill the requirement of a low order controller implementation, which is just a static gain
corresponding to R(φG)T .

Mode suppression As known from the white box model, additional fundamental
modes are present. These are the 8/9 π-mode down to the 1/9 π-mode. Exciting these
modes leads to oscillations of the vector sum, while each cavity mode has a narrow band-
width, [Schmidt et al., 2012]. One can think of two different strategies:

1: Active mode suppression

2: Passive mode suppression

In presence of oscillations and thus excited resonant modes, an active mode suppression
has to be used to suppress the regarding oscillations, e.g. in simplified terms by feeding
back the oscillations with a phase shift of 180 degree. Here the vector sum, the sum of
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up to 32 cavity signals, is controlled. It cannot be guaranteed that each resonant mode is
exactly at the same frequency, hence the vector sum can host multiple modes of the same
type. Each identified resonant mode of the RF field model is a distribution of several
resonant modes, where the frequency spread of these modes is given by the width of the
identified resonant mode.

In the following, a passive mode suppression is considered, i.e. the excitation of these
modes is avoided. As presented in Section 3.1.3, each resonant mode is identified as
complex conjugate pair of eigenvalues within one step. The SISO transfer function AG(z)
of G(z), see (4.1.2), contains the dynamics, i.e. the eigenvalue for low frequency behavior
and complex conjugate pairs of eigenvalues as additional resonant modes. Using an inverse
dynamics and setting the complex conjugate pairs of eigenvalues pi for i = 1, . . . , m as
zeros, leads to a SISO transfer function

MC(z) = KMC

(z − p1)(z − p2) · · · (z − pm)
(z − p̂1)(z − p̂2) · · · (z − p̂m)

, (4.1.3)

with KMC
as proportional gain and additional poles p̂i for i = 1, . . . , m to guarantee a

bi-proper system, i.e. an equal number of poles and zeros. The zeros impose band-stop
filters at frequency regions which should not be excited. The real eigenvalue, describing
the system bandwidth, is not considered to keep the controller order low. Select the
necessary poles to be suppressed by defining a frequency range and determine their natural
frequency by

ωni
= Im

{
ln(pi)

Ts

}
, (4.1.4)

where pi is a pole of AG(z) and Ts is the sampling time. The dynamic mode suppression
part is normalized to a low-frequency gain of one by computing

KMC
=

(1 − p̂1)(1 − p̂2) · · · (1 − p̂m)
(1 − p1)(1 − p2) · · · (1 − pm)

, (4.1.5)

which follows from the final value theorem in discrete time. The SO(2) symmetric con-
troller is designed by a dynamic transfer function, which is a SISO band-stop filter con-
taining all resonant modes and a static matrix, which maps the SISO transfer function to
a MIMO controller, i.e. MC(z) and DC , respectively. An additional proportional diagonal
gain KP is included to further reduce the RF field error, while further increasing this gain
causes additional beam energy fluctuations, as presented in [Gerth et al., 2009]. The pro-
portional gain is initially adjusted regarding the minimal energy fluctuations. Up to this
point, the MIMO controller contains a proportional gain and band-stop filters, while the
controller is designed only by the SO(2) symmetric plant approximation with constant
rotation matrix and without time delay. Hence, this analytically computed controller

Cana(z) =
U(z)
E(z)

= KP MC(z)DC (4.1.6)

is further improved with an optimization algorithm based on the plant model with time
delay Ĝ(z), considered in the following.
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Controller Optimization using HIFOOd

Optimality Several optimization algorithms are used to optimize the closed-loop sys-
tem behavior, e.g. a mixed sensitivity design by H∞ optimization, depicted in Figure 4.1.3.

C(z) Ĝ(z)

WS(z)

WCS(z)

WT (z)

r(k) e(k) y(k)u(k)

zS(k)

zT (k)

zC(k)

-

Tzr(z)

Figure 4.1.3: H∞ controller design with constraints from r(k) to e(k), i.e. sensitivity
S(z) weighted by WS(z), control sensitivity C(z)S(z) from r(k) to u(k) is weighted by
WCS(z) and from r(k) to y(k) as complementary sensitivity T (z) weighted by WT (z).

Since the controller order is fixed, an H∞ fixed order optimization in discrete time (HI-
FOOd) [Popov et al., 2010] is used. The goal is to find a controller C(z) such that

‖Tzr(z)‖∞ =

∥∥∥∥∥∥∥




WS(z) · S(z)
WCS(z) · C(z)S(z)

WT (z) · T (z)




∥∥∥∥∥∥∥
∞

< 1 , (4.1.7)

where z(k) = [zS(k), zC(k), zT (k)]T is a fictitious output vector, filtered by WS(z), WCS(z)
and WT (z) to describe the relative importance and frequency content of disturbance,
setpoint and noise signals [Skogestad and Postlethwaite, 2005]. From the definition of
H∞ norm, (4.1.7) is equivalent to

sup
θ∈[0,π]

σ̄







WS(eiθ) · S(eiθ)
WCS(eiθ) · C(eiθ)S(eiθ)

WT (eiθ) · T (eiθ)





 < 1 , (4.1.8)

with σ̄ as maximum singular value of the transfer function matrix Tzr(eiθ).

Without going into detail, the choice of the weighting functions can be summarized as
follows:

• Shaping the sensitivity S(z) by WS(z) covers the low frequency design, including
reference tracking and system bandwidth.
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• The attenuation of measurement noise at high frequencies is expressed by introduc-
ing WT (z) which shapes the complementary sensitivity T (z).

• The control sensitivity C(z)S(z) impose limits on the control effort typically at high
frequencies; here it is used to ensure the resonant mode suppression.

The interested reader is referred to [Skogestad and Postlethwaite, 2005] for further infor-
mation concerning mixed sensitivity design.

The HIFOOd controller optimization is initialized, since HIFOOd typically tends to con-
verge towards local minima, with the previously designed analytically determined con-
troller based on G(z) and in addition the controller structure is specified by

x(k + 1) =

[
Φc 0
0 Φc

]
x(k) +

[
Γ 0
0 Γ

]
e(k) ,

u(k) =

[
C1 C2

−C2 C1

]
x(k) +

[
D1 D2

−D2 D1

]
e(k)

(4.1.9)

to ensure SO(2) symmetry and therefore decoupling. The parameter block Φc defines a
complex conjugate pair of eigenvalues, Γ the input matrix, Ci the output matrix and Di the
direct feedthrough for i = 1, 2, respectively. Besides specifying the controller structure,
one can penalize the sensitivity using the off-diagonal weighting functions, which is not
studied further. Such a SO(2) symmetric approach reduces the set of parameters, which
must be optimized, by a factor of two.

To recap: The controller design is divided into two steps. First, an analytically calculated
MIMO controller, based on the plant approximation without time delay G(z) as shown
in the previous part, followed by a controller optimization with a mixed-sensitivity design
based on the plant model Ĝ(z) containing the time delays.

4.1.3 Example at FLASH

The main parts of the previously described controller design strategy are validated for the
VME and MTCA system, where the focus is on decoupling and suppression of additional
fundamental modes. The latter is mainly important for the MTCA system, where these
modes are located within the Nyquist frequency, see Section 3.1. The first subsection gives
an example for the VME system. Here, it is shown how decoupling improves the system
performance. Afterwards, the proposed controller design is shown with measurements and
simulations for the MTCA system, where the focus is on decoupling, mode suppression
and optimal control. To keep repetitive RF field errors around zero, iterative learning
control (ILC) [Rogers et al., 2010] is used to adapt the feedforward tables from pulse to
pulse, [Kirchhoff et al., 2008] and [Schmidt, 2010], such that only the designed MIMO
controller acts within the pulse. Further ILC details can be found in Section 4.2.
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RF Field Controller Design for VME System

The bode diagram of the identified model with a sampling frequency of 1 MHz, here
ACC1, is shown in Figure 3.1.13 on page 38. It can be seen that the difference of the
magnitude is constant over the frequency up to the aliased additional fundamental mode
around f8/9 π ≈ 200 kHz. Due to the aliased mode and low resonant peak in frequency
domain, the effect of this mode is negligible for the VME system, in contrast to the
identified model for the MTCA system. Thus, a proportional controller will not excite
the aliased 8/9 π-mode and is in principle sufficient for this sampling time. The designed
SO(2) symmetric controller

C(z) =

[
C1(z) C2(z)

−C2(z) C1(z)

]
, (4.1.10)

which is optimized by HIFOOd, is tested at FLASH and compared with a standard
diagonal proportional controller

KP =

[
KP,I 0

0 KP,Q

]
, (4.1.11)

as shown in Figure 4.1.4. During flattop, a PRB signal is added to the reference signal
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Figure 4.1.4: The left side shows the MIMO controller as diagonal proportional con-
troller with KP,I = KP,Q = 40 (≈ 32 dB), the right side the SO(2) symmetric controller
optimized by HIFOOd with a low frequency gain of 56 (≈ 35 dB) and 29 (≈ 29 dB) on
diagonal and off-diagonal channel, respectively.

of the real channel and the effect on the vector sum signal is analyzed, see Figure 4.1.5.
Such a reference change is similar to an error signal on the considered channel. It can be
seen that couplings and therefore remaining errors are reduced by a decoupled closed-loop
plant.
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of diagonal proportional and designed SO(2) MIMO controller during flattop time.

The designed SO(2) symmetric controller is permanently in normal operation at FLASH
and improves the RF field performance. Figure 4.1.6 shows the improvements of a stan-
dard diagonal proportional controller and the computed SO(2) controller for the VME
system. Due to the aliased 8/9 π-mode, the performance is mainly affected by a decoupled
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Figure 4.1.6: Controller comparison for ACC45 driven by the VME system at FLASH.
The RF field performance, given as standard deviation, for KP are ∆A/A = 0.046%
and ∆φ = 0.031o and for C(z) given by ∆A/A = 0.027% and ∆φ = 0.031o.

closed-loop plant and minimal by the 8/9 π-mode. Each bar of the histogram corresponds
to a quantization step of the measured vector sum signal, see Figure 4.1.7.
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Since the RF field performance limit is almost reached and could not be further improved,
the next subsection gives an outlook on the controller design for the MTCA system.

RF Field Controller Design for MTCA System

During this research project, one RF station at FLASH was experimentally equipped with
the MTCA system and the main controller performance result, based on the proposed
SO(2) symmetric controller design strategy, is presented.

In the following, a mixed sensitivity H∞ controller design will be shown, which uses the
SO(2) symmetric RF field structure to suppress the 7/9 π-mode. The 8/9 π-mode, which
does not couple to the beam, see Section 3.3, page 46, is removed from each individual
cavity signal using a notch filter, i.e. band-stop filter with a narrow stopband, [Schmidt
et al., 2012]. Hence, it is assumed that the plant model consists of a real eigenvalue, rep-
resenting the bandwidth, and one complex conjugate pair of eigenvalues, i.e. 7/9 π-mode.
An example for using the proposed RF field controller design to suppress the 8/9 π-mode
can be found in [Pfeiffer et al., 2012c]. The controller design includes plant decoupling,
which is needed for additional longitudinal beam-based feedbacks, shown in Section 5.1.
Furthermore, unwanted additional fundamental modes leading to a degradation of the
regulation performance should be suppressed or at least not excited. In [Vogel, 2007] the
theoretical background for time delay changes within the LLRF system is given, which
is briefly validated with measurements at FLASH for the 7/9 π-mode and 8/9 π-mode.
Further information regarding the influence and the frequency spread of both modes can
be found in [Schmidt et al., 2012].
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Characterization of Feedback Loop for Different Time Delays As is known,
time delays of the plant change the phase for high frequencies, where the additional
fundamental modes are located. Those phase changes feed back excited resonant modes
with a corresponding phase, in worst case with a phase shift of 180 degree, resulting in a
positive feedback. Assume that the controller C(z) is set as proportional gain C(z) = KP I.
An additional time delay, to display e.g. changes in cable length or different processing
times, is introduced by shifting the output signal in steps corresponding to 81 MHz clock
cycles. Figure 4.1.8 shows on the left side the amplitude stability of the 8/9 π-mode for
a feedback gain scan with different additional time delays. The color code represents the
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Figure 4.1.8: Feedback gain scan as function of an additional delay for a diagonal pro-
portional controller without (left plot) and with (right plot) applied 8/9 π-mode notch
filters. The difference between the minimal feedback gain which causes an amplitude
instability corresponds to the magnitude of occurring resonant modes, see Figure 3.1.15
on page 38.

standard deviation of the RF field amplitude error. The red area is unstable consequently
the blue one is the desired stable operating point for proportional feedback controller.
It can be seen, that one important point within the controller design is to avoid the
excitation of this mode and therefore the resulting positive feedback, e.g. by using a
notch filter. The frequency location of this mode is computed by inverting the absolute
value of time difference between two unstable areas, here for an additional time delay of
0.2 µs and 1.5 µs, corresponding 770 kHz. Between these two areas an additional unstable
area is found.

Assume, the 8/9 π-mode is filtered for each cavity signal, thus it is not measurable on the
vector sum signal to be controlled. Figure 4.1.8 presents on the right side the amplitude
stability of the 7/9 π-mode for an increasing proportional gain with different additional
delays. The corresponding resonant mode of about 3 MHz is determined for an additional
time delay of about 0.7 µs and 1.05 µs. With the current signal processing, i.e. without
additional time delay, and by increasing the proportional gain, this mode is fed back with
a positive feedback, such that the amplitude stability is limited by the 7/9 π-mode. For
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the basic controller design, it is sufficient to show how this mode can be suppressed or at
least not excited by using the current controller implementation, following next.

Controller Design with SO(2) Symmetry

First, separate the plant into a scaling AG(z) and rotation matrix R(φG), see (4.1.2). The
complex conjugate pairs of eigenvalues, i.e. the resonant modes, can be computed directly
from AG(z). Place a band-stop filter at these modes, realized as a second order transfer
function in MC(z). The multiplication of MC(z), (4.1.3), with the transpose of plant
rotation matrix RT

G, maps the designed SISO controller back to the MIMO controller,
fulfilling the SO(2) symmetry, thus the decoupling. Figure 4.1.9 shows the bode plot for
the transfer function matrix of the analytically computed controller Cana(z).
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Figure 4.1.9: Bode plot for the analytically computed controller. The colored lines
indicate the 7/9 π-mode filter set in MIMO controller (Data 1 in Figure 4.1.10); the
grey lines visualizes the 8/9 π-mode suppression within the MIMO controller (Data 2 in
Figure 4.1.10), where in addition two poles are set as low-pass filter with p̂1 = p̂2 = 0.85.

The controller performance when using both filters in comparison to the controller which
only suppresses the 8/9 π-mode is shown in Figure 4.1.10. The RF field performance,
given as standard deviation, is improved from

∆A/A = 0.007% and ∆φ = 8 mdeg

to

∆A/A = 0.0057% and ∆φ = 6.6 mdeg .

Remember, the RF field requirement for the European XFEL is ∆A/A < 0.01% and
∆φ < 1·10−2 deg = 10 mdeg, which is already reached by using the analytically computed
controller.
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Figure 4.1.10: MIMO Controller with 8/9 π-mode filter (Data 1), see [Pfeiffer et al.,
2012c], and for comparison the 7/9 π-mode filter set in MIMO controller and an addi-
tional 8/9 π-mode filter (Data 2). The histogram presents the RF field performance for
both analytically computed controllers.

As shown in Figure 3.1.17, the resonant modes destroy the SO(2) symmetry, if the rotation
matrix is static, while the analytical controller design uses this symmetry. Nevertheless,
this analytical approach works fine for the controller design, especially for low frequencies.
A controller optimization with the identified system model Ĝ(z) is introduced in the
following. Using an optimization algorithm, e.g. HIFOOd, should optimize the feedback
controller at high frequencies, where the performance improvements depend strictly on
the decoupling and suppression of the passband modes.

Controller Optimization with HIFOOd

For the implemented controller, given in (4.1.1), one has to optimize 20 parameters, 5 for
each controller transfer function. Using the SO(2) symmetric controller, given in Sec-
tion 4.1.2, only half of these parameters are free. The other half set of parameters is
related to the free parameter such that the SO(2) symmetry is fulfilled. The analytically
computed controller is used as initial controller and can be included as input parameter
by using the optional controller initialization of HIFOOd. To fix the SO(2) structure
and therefore ensure decoupling, specify the controller structure according to (4.1.9). For
this example the shaping filters are visualized in Figure 4.1.11. The controller sensitiv-
ity W −1

CS(z) is chosen as analytical controller in series to a low pass filter, which slightly
suppresses the 7/9 π-mode, shown in the second subplot. This ensures that the opti-
mized controller will have a band-stop filter. Figure 4.1.12 displays on the left side the
analytically computed controller Cana(z) and on the right side the resulting controller
CHIF OOd(z) after the optimization. Especially the high frequency behavior around the
7/9 π-mode is further suppressed, as desired.

The closed-loop behavior in Figure 4.1.13 is marked with light lines to indicate the initial
controller settings and with darker lines for the controller optimization by HIFOOd. For
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Figure 4.1.11: Used shaping filter for HIFOOd design.
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Figure 4.1.12: Analytically computed controller Cana(z) and controller optimization
CHIF OOd(z) using HIFOOd.

high frequencies one can see, that decoupling is not fulfilled. This is due to the fact
that the controller order is fixed to a second order transfer function of each input-output
connection. Ensuring decoupling for all frequencies requires more degrees of freedom
by choosing a higher controller order, not given with the current implementation. In
addition, the closed-loop plant containing the analytically computed controller shows an
intersection point around the 7/9 π-mode. It is obvious that an excited resonant mode
with a weak damping oscillates in the I/Q plane on a perfect circle, hence has the same
contribution on channels I and Q.

Considering a flattop length of about 1 ms the frequency range at this application will be
from 1 kHz upwards. HIFOOd is used to optimize the high frequency range around the
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Figure 4.1.13: Closed-loop bode diagram with the analytically computed controller
and the optimized controller from the reference signal as input to the output signal.

7/9 π-mode, while the low frequencies remain almost unchanged. Figure 4.1.14 points
out a simulation as comparison between the analytically computed controller and the
optimized controller.
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Figure 4.1.14: Simulation of a reference step to one channel and the influence as
comparison between the analytically computed and the HIFOOd optimized controller.

A reference trajectory, here a PRB signal with superimposed random high frequency noise,
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is applied only to channel I. In case of optimal decoupling, channel Q remains unaffected.
However, as seen in Figure 4.1.14, especially for high frequencies, e.g. a step-like reference
signal, this is not achieved. Nevertheless, the optimization of the analytically designed
controller further improves the noise suppression coming from the neighboring channel.
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4.2 Iterative Learning Control

Norm Optimal Iterative Learning Control (NO-ILC) [Ratcliffe et al., 2006] is, since 2010,
in most operation situations applied in digital RF field control at FLASH, [Schmidt, 2010].
The pulsed system has shown to be a prime example for NO-ILC because of the quantity
and quality of its repetitive behavior, [Rogers et al., 2010]. NO-ILC is used to increase
the performance of a system which consequently performs the same task multiple times.
It improves the feedforward signal by learning from previous executions (trials, iterations,
passes) [Bristow et al., 2006] and accordingly without learning the tracking error would
be the same on each trial.

Publications accumulate with a focus on optimization and computation effort. The ap-
proach in [Haber et al., 2011] is to minimize the complexity through exploiting the se-
quentially semi-separable structure of lifted system matrices by using the pseudo-inverse
to update the control output. They derived a novel ILC algorithm which is linear in the
trial length and reduces the computation time. Within the following sections the focus is
on NO-ILC, where model uncertainties are not assumed. Hereby, lifted system representa-
tions which make the calculation effort very complex, especially within an implementation
on an FPGA, are not considered. The time delay in the system is based on regularity con-
ditions of the plant [Amann et al., 1996]. That means that some components within the
system representation are removed and output tables are shifted. Based on the described
RF field behavior in Section 3.1, i.e. SO(2) symmetric plant, and further plant upgrades,
i.e. MTCA system with e.g. a higher sampling rate, the focus is on simplifications of the
algorithm. Approaches for complexity reduction of the ILC algorithm thus are welcome
and improvements not only reduce required memory space but also computation effort.
The latter also helps to minimize possible errors due to fewer parameters to load when
updating the ILC output signal. In addition, within a general NO-ILC, a huge amount
of data must be loaded, processed and saved.

This section is outlined as follows: Section 4.2.1 introduces the standard NO-ILC. Within
Section 4.2.2, fundamental simplifications of the algorithm based on a SO(2) symmetric
plant are given. It will be shown, that complexity of the used Norm Optimal ILC can
be significantly reduced by exploiting symmetries of the plant. Explicit simplifications
of the basic control algorithm using SO(2) symmetric group transformations are given.
An alternative ILC representation based on tensors is described in Section 4.2.3. Hereby
a decoupling of static and dynamic parts of each calculated ILC matrix leads, for com-
putational reasons, to a reduction by an order of magnitude. Based on such a tensor
representation, the Norm Optimal ILC is compressed to a Norm Optimal Tensor ILC
(NO-T-ILC). The reduced number of elements to store the ILC parameter in this ap-
proach simplifies the calculation, especially for high sampled datasets and therefore long
trials. A conclusion of the main results is given in Section 4.3.
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4.2.1 Introduction

In the following, the time-dependence within a trial is given by t = 0, . . . , T , and the
indices k and k + 1 represent the previous and current trial, respectively. Given is a
discrete linear time-invariant state space model

x(t + 1) = Ax(t) + Bu(t) , x(0) = x0 , 0 ≤ t ≤ T ,

y(t) = Cx(t)
(4.2.1)

of the system G(z). The performance index is given by

Jk+1(uk+1) =
1
2

(
T∑

t=1

(r(t) − yk+1(t))
T Q(t) (r(t) − yk+1(t))

+
T −1∑

t=0

(uk+1(t) − uk(t))T R(t) (uk+1(t) − uk(t))

)
,

(4.2.2)

where the weighting matrices Q(t) and R(t) are of compatible dimensions. This is the
familiar performance criterion from linear quadratic optimal control theory.

First, recall the standard Norm Optimal ILC algorithm which is divided into three parts,
[Ratcliffe et al., 2006] and [Rogers et al., 2010] and outlined in the following:

The first level solves backwards the Riccati equation for K(t) and, together
with α(t), the calculation of the required matrices β(t), γ(t), λ(t) and ω is per-
formed. Since all necessary information are present, this step can be computed
before the operation starts.

K(t) = AT K(t + 1)A + CT Q(t + 1)C (4.2.3)

− [AT K(t + 1)B(BT K(t + 1)B + R(t + 1))−1BT K(t + 1)A]

α(t) = (I + K(t)BR−1(t)BT )−1 (4.2.4)

β(t) = α(t)AT (4.2.5)

γ(t) = α(t)CT Q(t + 1) (4.2.6)

ω = R−1(t)BT (4.2.7)

λ(t) = (BT K(t)B + R(t))−1BT K(t)A (4.2.8)

The second level calculates backwards the predictive component equation of
ξk+1(t) which is updated between trials.

ξk+1(t) = β(t)ξk+1(t + 1) + γ(t)ek(t + 1) (4.2.9)

The third level updates the control output uk+1(t) and should be done between
sampling instants.

uk+1(t) = uk(t) − λ(t)[xk+1(t) − xk(t)] + ωξk+1(t) (4.2.10)
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Within this section following assumptions must hold:

• Plant model without time delay is available

• ILC input table is shifted w.r.t. time delay

Lets start with an example for the VME and MTCA system which points out the huge
matrix dimensions. Assume a system with m outputs, which is here equal to the number
of inputs (m = 2), n states (n = 6) and T defined as trial length (T = 1300 µs ·fS) with
fS as sampling frequency, usual values at FLASH. The sizes of each computed ILC matrix
are given in Table 4.1. It is obvious, that especially for the MTCA system a huge amount

Table 4.1: ILC Matrix Dimensions for NO-ILC

General VME system (fS=1 MHz) MTCA system (fS=9 MHz)

K(t) ∈ R
(n·T ×n) K(t) ∈ R

(7806×6) K(t) ∈ R
(70254×6)

α(t) ∈ R
(n·T ×n) α(t) ∈ R

(7806×6) α(t) ∈ R
(70254×6)

β(t) ∈ R
(n·T ×n) β(t) ∈ R

(7806×6) β(t) ∈ R
(70254×6)

γ(t) ∈ R
(n·T ×m) γ(t) ∈ R

(7806×2) γ(t) ∈ R
(70254×2)

λ(t) ∈ R
(m·T ×n) λ(t) ∈ R

(2602×6) λ(t) ∈ R
(23418×6)

ω ∈ R
(m×n) ω ∈ R

(2×6) ω ∈ R
(2×6)

of data must be loaded, processed and saved.

The following sections cope with simplifications of those matrices, first, by exploiting
SO(2) symmetries of the plant and afterwards, as a tensor style representation.

4.2.2 Norm Optimal ILC for SO(2) Symmetric Systems

Consider a SO(2) symmetric plant which is decomposable into a SISO dynamic scaling
part AG(z) and a fixed rotation matrix R(φG), see (3.1.41) on page 40, such that

G(z) = AG(z)R(φG) (4.2.11)

holds. The single-input single-output (SISO) discrete-time state space model of AG(z) is
given as

x(t + 1) = Ãx(t) + B̃u(t)

y(t) = C̃x(t) ,
(4.2.12)

with a system matrix Ã, input vector B̃ and output vector C̃. The SISO model is mapped
to a multi-input multi-output (MIMO) model by the Kronecker product of the input
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vector B̃ with the rotation matrix R(φG) as well as a block-wise extension of the system
and output matrix

x(t + 1) =

[
Ã 0
0 Ã

]
x(t) + B̃ ⊗

[
cos(φG) − sin(φG)
sin(φG) cos(φG)

]
u(t) ,

y(t) =

[
C̃ 0
0 C̃

]
x(t) ,

(4.2.13)

such that the overall model obeys the SO(2) symmetry, see Section 3.1.2. In the following,
the focus is on the model structure given by (4.2.13). Having a block diagonal matrix C,
the state space system representation for a real eigenvalue is given in Section 3.1.2 by
case (a.i), page 24, and for a complex conjugate pair of eigenvalues by case (c.i), page 26.
Depending on the identified state space model, this representation may change the internal
model structure, while the frequency behavior is unchanged. As seen in Section 3.1.2,
the new representation leads to an extended input, output and system matrix of each
complex conjugate pair of eigenvalues. In principle this extension has an adverse impact
on the computation time of the ILC algorithm, but it will be shown that such a system
representation actually helps to reduce the computation time.

Assumptions In order to study possible improvements of the algorithm by a SO(2)
symmetric system structure and its effect on the ILC algorithm, especially the resulting
ILC matrices, following ILC conditions must be satisfied:

(I) SO(2) symmetric model G(z) of plant according to (4.2.13)

(II) Output matrix C of G(z) is block diagonal

(III) ILC weighting

R(t) =

[
R̃(t) 0

0 R̃(t)

]

is block diagonal, the upper block is equal to the lower, and symmetric positive-
definite

(IV) ILC weighting

Q(t) =

[
Q̃(t) 0

0 Q̃(t)

]

is block diagonal, the upper block is equal to the lower, and symmetric positive-
semidefinite

(V) Matrix gain initialization

K(T ) =

[
K̃(T ) 0

0 K̃(T )

]

is block diagonal, the upper block is equal to the lower block
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(VI) Finite trial length t = 1, . . . , T .

From engineering expertise, it is convenient to choose identical diagonal blocks for R(t),
Q(t) and K(T ). The following considered simplifications hold for the special case of equal
block diagonal R̃(t), Q̃(t) and K̃(T ). For simplicity, the time-dependent weightings R(t)
and Q(t) are written time-independent as R and Q.

Simplifications First, consider the backwards computation of the matrix gain K(t),
having instead of an initial a final matrix as K(T ).

Proposition 4.2.1. For SO(2) symmetric systems fulfilling conditions (I)-(VI), the ILC
matrix gain

K(t) =

[
K̃(t) 0

0 K̃(t)

]

is block diagonal.

Remark 4.2.2. The matrix gain block matrices are given by the backwards Riccati equa-
tion for the SISO state space model of AG(z), (4.2.12), by

K̃(t) =ÃT K̃(t + 1)Ã + C̃T Q̃C̃

− [ÃT K̃(t + 1)B̃(B̃T K̃(t + 1)B̃ + R̃)−1 · B̃T K̃(t + 1)Ã] .

Thus, the matrix gain K(t) does not directly depend on the rotation part R(φG) of the
model.

Proposition 4.2.3. For a given SO(2) symmetric system fulfilling the conditions (I)-(VI),
the matrices β(t) and γ(t) are block diagonal, while the matrices ω and λ(t) are SO(2)
symmetric with R(φG)−1 = R(φG)T, where

β(t) =
(
I + K̃(t)B̃R̃−1B̃T

)−1
ÃT ⊗

[
1 0
0 1

]
, (4.2.14)

γ(t) =
(
I + K̃(t)B̃R̃−1B̃T

)−1
C̃T Q̃ ⊗

[
1 0
0 1

]
, (4.2.15)

λ(t) =
(
B̃T K̃(t)B̃ + R̃

)−1
B̃T K̃(t)Ã ⊗ R(φG)T and (4.2.16)

ω = R̃−1B̃T ⊗ R(φG)T (4.2.17)

holds.

The proof of proposition 4.2.1 and 4.2.3 is given in Appendix C.

An example for a given SO(2) symmetric plant at FLASH is outlined in the following.
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Example at FLASH

From basic physics, the model (3.1.16), page 23, of the RF field at FLASH has a SO(2)
symmetric structure and can be represented by a first-order approximation (3.1.43), see
page 40, in discrete-time domain with

G(z) =

[
G1(z) −G2(z)
G2(z) G1(z)

]
= AG(z) ·

R(φG)︷ ︸︸ ︷[
cos(φG) − sin(φG)
sin(φG) cos(φG)

]
. (4.2.18)

Based on the plant, an optimal controller which decouples the plant is computed (see
page 52 ff.), such that the controller fulfills the structure

C(z) =

[
C1(z) C2(z)

−C2(z) C1(z)

]
= KP MC(z) ·

R(φG)T =DC︷ ︸︸ ︷[
cos(φG) sin(φG)

− sin(φG) cos(φG)

]
. (4.2.19)

At FLASH, the ILC is implemented in closed-loop operation. The closed-loop model
is computed directly by the symmetric plant model and the controller. As seen, G(z)
is in first-order approximation SO(2) symmetric with a constant plant phase φG for all
frequencies ω and C(z) decouples the plant, thus is SO(2) symmetric. Both models can
be separated into a scaling and rotation part, based on (4.2.18) and (4.2.19), leading to a
diagonal loop gain

L(z) = C(z) · G(z)

= KP MC(z)R(φG)T · AG(z)R(φG)

= KP MC(z)AG(z)I . (4.2.20)

The closed-loop transfer function matrix from the feedforward correction signal ucorr(t)
to the vector sum y(t), needed to compute the ILC matrices, is given as

Gcl(z) = (zI + C(z)G(z))−1G(z) = ((z + KP MC(z)AG(z))I)−1AG(z)R(φG) .

By (4.2.18) and (4.2.20) the closed-loop transfer function matrix Gcl(z) is SO(2) symmet-
ric. Using the presented SO(2) symmetric ILC algorithm, which computes the necessary
ILC matrices for the SISO model AG(z), leads to a storage and computation reduction
by a factor of about four. For the proposed symmetric ILC it is sufficient to store only
one block matrix for each ILC matrix, see Table 4.2.

These matrices are computed by the SISO system regarding Proposition 4.2.3, thus in
addition either the rotation matrix R(φG) or only φG, which maps the corresponding ILC
matrices back to MIMO, must be stored to update the optimal control signal uk+1(t).
The first column shows the resulting matrices for the general Norm Optimal ILC, while
the second presents the reduced matrices by using a SO(2) symmetric plant model.

In addition, numerical inaccuracies of the computation of an inverse matrix can result
in non-zero off-diagonal blocks within some matrices, while the off-diagonal block is in
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Table 4.2: ILC Matrix Dimensions

General SO(2) sym.

K(t) ∈ R
(n·T ×n) ∈ R(n

2
·T × n

2 )

α(t) ∈ R
(n·T ×n) ∈ R(n

2
·T × n

2 )

β(t) ∈ R
(n·T ×n) ∈ R(n

2
·T × n

2 )

γ(t) ∈ R
(n·T ×m) ∈ R(n

2
·T × m

2 )

λ(t) ∈ R
(m·T ×n) ∈ R(m

2
·T × n

2 )

ω ∈ R
(m×n) ∈ R(1× n

2 )

φG - ∈ R
1

theory zero. Caused by the used backwards computation, where the next matrix depends
on the previous, this error may increase over time, especially for long trials.

This section points out that using a SO(2) symmetric model within the ILC controller
design reduces the computation effort and memory space. It will be possible to consider
slightly nonlinear behavior by just a piecewise adjustment of the considered plant input
matrix. At FLASH, the klystron is linearised over a wide range, [Cichalewski and Koseda,
2007]. Without going into detail, such a linearisation can directly act as input matrix
correction, corresponding to scaling AG(z, t) and phase R(φG)(t) adaptation over the trial.
In addition this correction allows to adjust possible, e.g. temperature varying, repetitive
cross-coupling changes within a trial.

The following section further simplifies the ILC by using a tensor representation for the
resulting ILC update matrices. For completeness, the presented Norm Optimal Tensor
based ILC approach (NO-T-ILC) is in general not restricted to a SO(2) symmetric struc-
ture.

4.2.3 Norm Optimal Tensor ILC (NO-T-ILC)

In the following, a short introduction to a tensor, tensor rank and tensor decomposition
is given. The interested reader is referred to e.g. [Kruskal, 1989] and [Kolda and Bader,
2009] for further details.

Full tensors A tensor is a multidimensional array or more precisely the tensor product
of N vector spaces, each with its own coordinate system, called an N-th order tensor [Kolda
and Bader, 2009]. The basis of this section will be a 3rd order tensor X3, see left side of
Figure 4.2.1. X3 is rank-one if it can be written as outer product of 3 vectors, see right
side of Figure 4.2.1. Hereby, the vector outer product generates the tensor X3 ∈ R

I×J×K ,
defined as X3 = a ◦ b ◦ c, in which the symbol ◦ represents the vector outer product. The
(i,j,k) element of X3 is given by X i,j,k

3 = aibjck .

Lets focus on the ILC algorithm given in (4.2.3) to (4.2.10). Within the first step the
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j = 1 . . . J

i
=

1
..
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K

X3 ≈

a

b

c

Figure 4.2.1: Rank-one third order tensor.

learning gain K(t) is calculated in a backward prediction. Each K(t) is a quadratic matrix
with a dimension of the number of states. If one arranges all K(t), ∀t in series, the first
tensor will appear. Since all other matrices, namely α(t), β(t), γ(t) and λ(t), are results
of K(t) it is obvious to write these matrices also as tensors.
The resulting three dimensional tensors for the standard Norm Optimal ILC are given by

K(t) ∈ R
(n×n×T ), α(t) ∈ R

(n×n×T ), β(t) ∈ R
(n×n×T ),

γ(t) ∈ R
(m×n×T ) and λ(t) ∈ R

(m×n×T ) .

Tensor rank Although, properties of a tensor and matrix rank are different, the def-
inition of a tensor rank is exact analogues to a matrix rank. One difference is that the
rank of a real-valued tensor may be different over R and C, for more details about the
differences see [Kolda and Bader, 2009]. The smallest number of rank-one tensors, where
λi is used to normalize ai, bi and ci, that generate a tensor X3 as their sum is called the
rank of X3, denoted as rank(X3), see Figure 4.2.2.

X3≈

a1

b1

c1

aR

bR

cR

+ . . . +λ1· λR·

Figure 4.2.2: Tensor CP decomposition of three-way array with rank R.

In [Kruskal, 1989], a weak upper bound for the maximum rank of a third order tensor
X3 ∈ R

(I×J×K) is given as

rank(X3) ≤ min {IJ, IK, JK} .

Tensor Decomposition and SVD

Hitchcock proposed in 1927 one of the first decompositions, the so-called polyadic form
of a tensor, which is the sum of a finite number of rank-one tensors [Hitchcock, 1927].
Nowadays different decompositions, like the Tucker decomposition, which is a higher order
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SVD, or the CANDECOMP and PARAFAC decomposition are developed. In this section
a combination of CANDECOMP and PARAFAC, the so-called CP decomposition of a
third order tensor is used [Kolda and Bader, 2009]. This decomposition of X3 leads to the
so-called factorization matrices A, B and C, see Figure 4.2.3. Here, it will be assumed

C

B

A

j = 1 . . . J

i
=

1
..
.I

k =
1 .
. .
K

V

U

Σ

X3

Figure 4.2.3: Full Tensor Decomposition as separation of CP decomposition and SVD
of the third factorization matrix C.

that one dimension of X3 is larger then the other ones, i.e. K ≫ I, J . In the following K
is assumed to be the trial length and I, J are the number of states, input and/or outputs.
Hereby, the dimension of C is given by the trial length times the number of states, input
and/or outputs. By a singular value decomposition of C the matrix reduces to U , Σ
and V .

Tensor CP-Decomposition

Assume X3 is of dimension (I × J × K). If it is possible to reduce the size of the tensor
by a special operation, then this reduces the memory needed and in addition simplifies
the calculation effort, as seen in the following.

Given is a tensor X3 ∈ R
(I×J×K). By a tensor CP-decomposition of rank R, the tensor can

be constructed by the coefficient λr (r = 1, . . . , R) and matrices A ∈ R
(I×R) , B ∈ R

(J×R)

and C ∈ R
(K×R), where λ is used to normalize the column of A and B. This decomposition

factorizes a tensor into a sum of component rank-one tensors [Kolda and Bader, 2009].
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The tensor X3 can be reconstructed by

X3 ≈
R∑

r=1

λrar ◦ br ◦ cr, (4.2.21)

with A =
[
a1 a2 a3 . . . aR

]
, B =

[
b1 b2 b3 . . . bR

]

and C =
[
c1 c2 c3 . . . cR

]
.

Singular Value Decomposition With the assumption that the k-th dimension of X3

is the largest one, we can use the singular value decomposition of the factor matrix C to
rearrange it. This leads to a reduced order of C

C = Ũ · Σ̃ · Ṽ T with Ũ ∈ R
(K×K), Σ̃ ∈ R

(K×I) and Ṽ ∈ R
(I×I), (4.2.22)

if the lower singular values of C are omitted. The upper (I × I) block of Σ̃ contains the
singular values of C. Therefore, only the first I columns of Ũ are necessary such that the
resulting matrices can be separated to

Ũ =
[
Û X

]
and Σ̃ =

[
Σ̂
0

]
, (4.2.23)

where X means arbitrary and therefore unused entries. The separation of used and
unused entries of the resulting singular value decomposition matrices of (4.2.23) leads to
the so-called economy-size SVD [Skogestad and Postlethwaite, 2005], given as

C = Û · Σ̂ · V̂ T (4.2.24)

with Û =
[
û1 û2 . . . ûI

]
∈ R

(I×K) , Σ̂ = I ·
[
σ̂1 σ̂2 . . . σ̂I

]
∈ R

(I×I)

and V̂ =
[
v̂1 v̂2 . . . v̂I

]
∈ R

(I×I) .

Combination of CP and SVD Using the CP-decomposition together with (4.2.24),
cr of (4.2.21) can be replaced by Û · Σ̂ · v̂r, in that v̂r represents the r-th column of V̂ .

X3 ≈
I∑

r=1

λrar ◦ br ◦ (Û · Σ̂ · v̂r) (4.2.25)

It is straightforward to show the general case if the values of σi are similar and therefore
not negligible. This results in

X3 ≈
R∑

r=1

λrar ◦ br ◦ cr =
R∑

r=1

λrar ◦ br ◦ ÛΣ̂v̂r. (4.2.26)

The assumption in the following is that each 3-rd factor matrix C is of rank 1. This
special case of the singular value decomposition for C leads to σ1 ≫ σi (i = 2, . . . , n).
Hence, only the first column/row is used in further calculations, leading to

X3 ≈
R∑

r=1

λrar ◦ br ◦ (û1 · σ̂1 · v̂1(r)) . (4.2.27)
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Since the r-th element of v̂1(r) is constant and in addition λr and σ̂1 are constant,
rewrite (4.2.27) to

X3 ≈
R∑

r=1

λrσ̂1v̂1(r) · ar ◦ br ◦ û1.

The vector û1 is the same for each rank (r = 1, . . . , R) of the CP-decomposition. This
allows to separate the summation part to a matrix

MX3 =
R∑

r=1

λrσ̂1v̂1(r) · ar ◦ br (4.2.28)

and by defining

ãr = λrσ̂1v̂1(r) · ar (4.2.29)

follows

MX3 =
R∑

r=1

ãr ◦ br , (4.2.30)

such that the tensor X3 is decomposable into a matrix MX3 and a vector û1, i.e.

X3 ≈ MX3 ◦ û1 . (4.2.31)

The outer product which connects MX3 and û1 is not the same like for the CP decomposi-
tion. But by extending the vector û1 by the number of ranks which are lost by the singular
value decomposition one can reproduce the tensor X3. Further details are discussed as an
example after (4.2.33).

Brief summary: If the singular values of the third factorization matrix C fulfill σ1 ≫ σi

with i = 2, . . . , n, it follows that the tensor X3 can be written as the outer product of a
matrix MX3 and û1. Hereby, the dimension of MX3 is given by the number of rows in A
times the number of rows in B and û1 represents the number of rows in C, respectively.
The matrix MX3 contains a static gain, whereas the vector û1 represents the dynamics of
the tensor X3(k), with k = 1, . . . , K.

Norm Optimal ILC - Tensor Representation

The general approach is to rewrite first the ILC matrices, see Section 4.2.1, to tensors
and afterwards, separate the static and dynamics of each tensor by a matrix and a vector,
respectively. As presented previously, each time-dependent matrix of (4.2.3)-(4.2.8) can be
written as tensor by placing the resulting matrices for each time step t in series. This leads
to a tensor of dimension 3, e.g. X3, which is mostly the case for iterative learning control.
The x-y dimension is defined by the number of states, inputs and/or outputs, depending
on the respective tensor. The z dimension of the X3 tensor is defined by the trial length.
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4.2. ITERATIVE LEARNING CONTROL

It is not necessary to decompose K(t) since this is only used within the first level of the
ILC computation. The computation time of this level is not critical, and with K(t) in
a tensor representation the calculation time stays almost the same. In addition, K(t) is
used to calculate β(t), γ(t) and λ(t). The computation of α(t) is neglected, because it
simplifies the calculation of β(t), γ(t) and λ(t). Since only these 3 matrices or tensors are
used to calculate the next update step, the focus is on the decomposition of the remaining
tensors β(t), γ(t) and λ(t). The latter are calculated in tensor representation from the
tensor K(t). Figure 4.2.4 visualizes K(t) at a certain time t̃. Based on the matrix at

j = 1 . . . n

i
=

1
..
.n

t =
1 .
. .
T

K(t)

t̃

Figure 4.2.4: Tensor K(t) with dimension number of states n times number of states
n times trial length T and a depicted time slice t̃.

time t̃ the previous matrix at t = t̃ − 1 is calculated by the ILC algorithm, given in
(4.2.3). During the backward prediction, all resulting matrices are stored in a tensor
representation starting at t = T down to t = 1. For K(t) the algorithm is based on a
backwards calculation of the differential Riccati equation with boundary conditions set
in the future. Based on K(t) all other tensors within the first step are calculated and a
tensor decomposition as well as a singular value decomposition are used to compress each
tensor. Due to the observation at FLASH that σ1 ≫ σi (i = 2, . . . , n) for β(t), γ(t) and
λ(t), each tensor reduces to a matrix and a vector. The resulting matrices and vectors
based on (4.2.31) are given by β(t) ≈ Mβ ◦ uβ, γ(t) ≈ Mγ ◦ uγ and λ(t) ≈ Mλ ◦ uλ.
The comparison of the reduced dimensions of the matrices for a Norm Optimal ILC with
respect to a tensor based ILC are given in Table 4.3. The column to the right of each
representation is an example for the number of stored elements, if n = 6, m = 2 and
T = 1300.

Table 4.3: Comparison of ILC Matrix Dimensions

Coeff. NO-ILC E.g. NO-T-ILC E.g.

β(t) ∈ R
(n·T ×n) 46836 ∈ R

(n×n) ◦ R
(T ×1) 1337

γ(t) ∈ R
(n·T ×m) 15612 ∈ R

(m×n) ◦ R
(T ×1) 1313

λ(t) ∈ R
(m·T ×n) 15612 ∈ R

(m×n) ◦ R
(T ×1) 1313

The second (4.2.9) and third level (4.2.10) which update the predictive component equa-
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tion and ILC output, respectively, can be written in tensor representation as

ξk+1(t) = [Mβ ◦ uβ(t)] · ξk+1(t + 1) + [Mγ ◦ uγ(t)] · ek(t + 1) , (4.2.32)

uk+1(t) = uk(t) − [Mλ ◦ uλ(t)] · (xk+1(t) − xk(t)) + ωξk+1(t) , (4.2.33)

where Mβ =
Rβ∑

r=1

ãβ
r ◦ bβ

r , Mγ =
Rγ∑

r=1

ãγ
r ◦ bγ

r and Mλ =
Rλ∑

r=1

ãλ
r ◦ bλ

r .

Consider the matrix vector interconnections (e.g. Mβ ◦ uβ(t)) of (4.2.32) and (4.2.33).
Those may not be possible due to the reduced rank by SVD of the matrix C, leading
to the vector up (p = β, λ or γ). The problem was already introduced on page 75. In
the following, an example is presented which considers a possible strategy to correct the
matrix vector operation.

Rearrangement due to SVD

Consider only the second part of (4.2.32) as an example, given by

ξ̃k+1(t) = [Mγ ◦ uγ(t)] · ek(t + 1) .

Assume, the number of inputs is two [e1
k(t + 1) e2

k(t + 1)]T , the number of states is four
[ξ̃1

k+1(t) , . . . , ξ̃4
k+1(t)]

T and the trial length is 10 (t = 1, . . . , 10), leading to

Mγ ∈ R
(4×2), uγ ∈ R

(10×1) and ek ∈ R
(2×10).

The resulting vector ξ̃k+1 ∈ R
(4×1×10) must hold for the whole calculation. The outer

product of Mγ ◦ uγ(t) holds, if uγ ∈ R
(10×2). Therefore, one has to extend the dimension

of vector uγ to uγ = uγ · [1 1], where the [1 1] vector is according to the normalized
v̂1(r) element. But, due to the dimension of the input vector ek ∈ R

(2×10), it is obvious
to scale the incoming error at time t by uγ(t) with the Kronecker product. This can be
done either directly after the input of each error or within the backward loop of (4.2.32).
Hence, the error vector is modified instead of extending uγ(t) such that the outer product
holds again. Similar results are used for the first part of (4.2.32) by weighting the vector
ξk+1(t + 1) with uβ(t) and generating, after each loop, the tensor ξk+1 backwards from
t = T down to t = 1.

Based on (4.2.32) and (4.2.33), uβ(t) is a weighting on ξk+1(t + 1), uγ(t) weights the error
and the state difference is weighted by uλ(t). At each time step t, uβ(t), uγ(t) and uλ(t)
are only constants and multiplied by the Kronecker product with the appropriate vector.

Finally, the second and third level of the Norm Optimal ILC (NO-ILC), given in Sec-
tion 4.2.1, can be rewritten in a tensor representation as a Norm Optimal Tensor ILC
(NO-T-ILC) by the following equations:

ξk+1(t) = Mβ ◦ [uβ(t) ⊗ ξk+1(t + 1)] + Mγ ◦ [uγ(t) ⊗ ek(t + 1)] (4.2.34)

uk+1(t) = uk(t) − Mλ ◦ (uλ(t) ⊗ [xk+1(t) − xk(t)]) + ωξk+1(t) (4.2.35)
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Each Kronecker product of (4.2.34) and (4.2.35) is considered within one time step t.
The multiplication for a full trial length can be done with the Hadamard- or Khatri-Rao
product [Kolda and Bader, 2009] of the vector up (p = β, λ or γ) and the following matrix.
Therefore, the matrix must be separated in single vectors and connected with up, which
can be done in parallel.

Example at FLASH for MTCA System

In the following example only the MTCA system is considered. The ILC algorithm with
the VME system is almost permanently in operation, such that an update of this is not
necessary, see [Schmidt, 2010].

Due to limitations of the required FPGA space and since not all states are known, the
second and third level are calculated between the trials and hence the ILC tensor λ(t) is
neglected. Therefore, the state feedback within the ILC algorithm in this application is
substituted by an output feedback scheme, i.e. the RF field controller, Section 4.1. See
Figure 2.3.1 on page 8 for the considered signal flow.

Assume that the closed-loop system, based on the RF field model, Section 3.1.3, and the
RF field controller, Section 4.1.3, is given in discrete-time state space representation as

x(t + 1) = Ax(t) + Bucorr(t) ,

y(t) = Cx(t) ,
(4.2.36)

with ucorr(t) =

[
ucorr,I(t)
ucorr,Q(t)

]
and y(t) =

[
yI(t)
yQ(t)

]
.

First, K(t), see (4.2.3), is calculated and rearranged in a tensor representation. Based on
the tensor K(t) the remaining tensors are decomposed in matrix and vector, see (4.2.31).
Reconstructing the original tensor by vector outer product shows a fit of about 99%,
which is sufficient for the recoverability of the corresponding tensors. The ratio of largest
two singular values, i.e. σ1 and σ2, for all third factor matrices is less than 10−4 which
allows to use an SVD of order one.

Figure 4.2.5 presents the results of a real measurement and displays the initial settings for I
and Q, respectively, and the error and feedforward correction signals after the adaptation.
The ILC adaptation in between is outlined by the grey dashed lines and presents a set
of 300 adaptation trials. Three time values are displayed, i.e. 160 µs for start of filling,
660 µs for start of flattop and 1460 µs for the end of the flattop phase, an usual operation
at FLASH. The remaining noisy signals come from a non-filtered test sequence of this
NO-T-ILC test. The main aspect of such a representation is the reduced calculation
effort and a separation of each ILC matrix to a matrix, which contains a static part and
a vector with the dynamic part of each ILC tensor. Together with a state observer the
calculation of the third level can be done inside the FPGA and independently from the
second level.
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Figure 4.2.5: Measurement of Norm Optimal Tensor ILC (NO-T-ILC) applied at
FLASH. The left subplots visualizes the errors in I and Q, the right side the corrections
in I and Q.

4.3 Conclusion

This chapter shows that the RF field performance could be improved using a SO(2)
symmetric model structure. The RF field feedback controller is designed by a two-step
strategy. First, the plant is separated into a SISO like scaling and MIMO like rotation
part. An analytically computed controller based on the dynamic SISO part is mapped
back to MIMO by the transpose plant rotation matrix. Subsequently, a mixed sensitivity
design further optimizes the MIMO controller, where the analytical controller is used as
initial controller setting. It has been shown, that the proposed feedback controller design
strategy leads to reliable and optimal controller parameters and is highly suitable as RF
field feedback controller. This has been verified by measurement results at FLASH.

The second part of this chapter considers simplifications of Norm Optimal Iterative Learn-
ing Control algorithm, which makes the algorithm implementable on an FPGA. It has
been shown, that it is sufficient to consider an ILC algorithm which is based on the SISO
like dynamic scaling part and mapped back to MIMO with either an identity matrix or
the plant rotation matrix. The benefit is a reduced set of parameters to be stored; here by
a factor of about four. In addition, non-linear behavior, e.g. during the transition from
filling to flattop phase, can be included into the ILC algorithm by updating the input
matrix within the trial.

Furthermore, a more practical interpretation of the Norm Optimal ILC, namely by a
tensor based representation, has been developed. Especially for long, high sampled trials
it has been shown, that each ILC matrix can be decomposed to only one vector, with the
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length of a trial, and a matrix. This parameter reduction by using a tensor representation
and by exploiting the SO(2) symmetric plant leads to a reduced computation effort and
makes the algorithm implementable on an FPGA. The tensor based ILC algorithm is
verified at FLASH with measurements. The actually used ILC configuration is considered
without state information, because no state is measurable. That means that the second
and third level of the ILC adaptation is done within one step between the trials. The
Norm-Optimal Tensor ILC with all the simplifications works like desired.
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Chapter 5

Beam-Based Feedback

Electron bunches are accelerated at FLASH and later at the XFEL to generate X-ray
flashes. Each pulse is enabled for about 1 ms (650 µs for XFEL and 800 µs for FLASH).
In this time up to 2400 bunches with a maximum repetition rate of 3 MHz for FLASH and
2700 bunches with 4.5 MHz as maximum repetition rate for XFEL are injected, [XFEL,
2013]. A precise RF field control, Chapter 4, is a necessary step to provide stable and
reproducible photon pulses. In presence of a beam, beam loading compensation is used
to keep the RF field within these performance limits [Schmidt, 2010]. The reason for
controlling the beam-based measurements is given in Section 1.1. Achieving high beam
performance requires a well designed controller strategy which combines beam measure-
ments with the actuator, i.e. the RF field.

This chapter is outlined as follows: Section 5.1 discusses the controller design for bunch
arrival time and bunch compression stabilization. After an introduction, three different
control strategies are compared. It will be shown, that it is sufficient to consider a lumped
controller design within the first section. An example at FLASH displays a significant
beam performance improvement. Controlling the beam energy is covered by Section 5.2,
where a distributed control scheme is necessary to exchange not only possible beam energy
errors. First, possible energy errors are defined and a spatially interconnected plant
description is given. The latter is done by rewriting physical equations for the energy gain
within an accelerator module. It will be shown, that such sophisticated interconnected
controller design for beam energy control is suitable for a linear accelerator.

Parts of this chapter are published in [Pfeiffer et al., 2012a] and [Pfeiffer et al., 2013].

5.1 Bunch Arrival Time and Compression Control

This section describes how the measurements of bunch arrival time tA and bunch com-
pression C are combined with the RF field measurements to improve the beam perfor-
mance. The measurements are processed for each single bunch within a bunch train, i.e.
a sequence of electron bunches, and used for beam-based feedback to remove undesired
machine fluctuations, e.g. residual RF field errors. The bunch arrival time must be stabi-
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lized relative to e.g. pump-probe or to experiments where the electron beam is seeded by
an external seed laser, the reader is referred to [sFLASH, 2013] for further details. The
most challenging goal to meet is reaching the demanded beam performance. In 2010, first
beam-based feedback strategies were tested, [Koprek et al., 2010]. Within this previous
approach, the RF field setpoint signal is modified with respect to the bunch arrival time
and bunch compression errors. It was shown that beam related corrections improve the
beam stability. Within this section, the main focus is on improvements of beam-based
feedback strategies by combining RF field and beam signals. It will be shown how the
analysis of the beam and RF field model helps to further improve the beam performance
towards a bunch arrival time jitter of 10 fs.

This section discusses first the theoretical controller design and finalizes with an example
at FLASH.

5.1.1 Beam-Based Controller Design

In Section 3.3 the combination of the RF plant and beam model is given. This modeling
approach is considered to develop an RF field controller strategy by including beam related
measurements. Recall Figure 3.3.1, introduced in Section 3.3 on page 46. The combined
model contains the model of the RF field, which maps an input vector field to an output
vector field, both in I/Q coordinates. The model of the beam maps amplitude and phase
changes to bunch arrival time and bunch compression changes, respectively. It has been
shown that the latency for RF field and beam measurements are different, especially for
the VME system, where beam signals are two microseconds, i.e. two sampling points,
faster at the LLRF controller. This is due to the fact, that the beam signals are measured
directly in contrast to the I/Q detection scheme for the RF field. The MTCA system
uses a non-I/Q detection scheme such that both time delays can be assumed to be equal.
In the following, the focus is on different beam-based controller strategies and can be
summarized as follows: First, beam measurements correct the setpoint, followed by an
extended MIMO controller and finally a controller approach, which combines RF field
and beam errors.

a) Controller design using setpoint correction First results of this approach were
shown in [Koprek et al., 2010]. The basic idea of correcting the RF field setpoint, depicted
in Figure 5.1.1, leads to an improvement of the beam stability. The setpoint correction
is done by a manipulation of the predefined RF field setpoint, leading to a beam-based
correction. The setpoint modulation block M is given in I/Q coordinates by

[
r̃F,I(k)
r̃F,Q(k)

]
=

M︷ ︸︸ ︷(
1 +

∆A

A

)
·

[
1 −∆φ

∆φ 1

]
·

[
rF,I(k)
rF,Q(k)

]
. (5.1.1)

This approach is the initial point of this section. For further information the reader is
referred to [Koprek et al., 2010]. This controller design will not be further studied, since
it was shown in Section 3.3 that the beam related measurements are available faster than
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Figure 5.1.1: a) Beam-based feedback by setpoint correction, [Koprek et al., 2010].

the RF field measurements. In principle, the setpoint correction is a cascaded controller
strategy with an outer and inner loop, where the outer loop is processed faster then the
inner loop, leading to a delimitation by the RF field properties.

b) Controller design using extended MIMO controller We consider an extended
MIMO controller, given by

[
uC,I(k)
uC,Q(k)

]
=
[
C(z)

]
·




eF,I(k)
eF,Q(k)
∆tA(k)
∆C(k)


 , (5.1.2)

where the RF field and beam error acts as input. Hence, the controller has four inputs
and two outputs, depicted in Figure 5.1.2. Assume the RF field controller is optimal with
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yF

eF

yB

uuC

G(z)

eB
C(z)

Figure 5.1.2: b) Beam-based feedback by an extended MIMO controller.

respect to beam energy fluctuations, an example is given in [Schmidt, 2010]. Thus it is
straightforward to separate the extended controller into an RF field and beam controller

[
uC,I(k)
uC,Q(k)

]
=
[
CF (z) CB(z)

]
·




eF,I(k)
eF,Q(k)
∆tA(k)
∆C(k)


 , (5.1.3)
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where both controllers must be designed to be optimal. Therefore, in case of no beam
or missing beam information, e.g. not working bunch arrival time detector, the RF
field controller must be chosen as optimal w.r.t. bunch energy fluctuations. Assume all
controller input signals are available, hence the beam error acts as input to the MIMO
controller. The beam controller part must be chosen such that the extended MIMO
controller works as desired. As shown in Section 3.2, the bunch arrival time and bunch
compression error is mapped by the inverse of the static nonsingular beam model G̃B

to optimal amplitude and phase changes, (3.2.6) on page 44. Converting amplitude and
phase changes to real and imaginary RF field vector changes, leads in principle to a
similar error as given by the RF field error. Since the information flow, in terms of time
delay, of the measured beam and RF field signals is different, this extension of the MIMO
controller is affected by the time delay differences. E.g. consider a bunch arrival time
error at time k. This means that the controller changes the output. Thus, the RF field
controller part detects the error two sampling instances later and tries to correct this.
This can be avoided by adjusting the RF field setpoint with respect to the beam related
I/Q changes or by different weights for the RF field and beam error. Using the static
matrix of the beam model and superimposing this by the dynamic model of the RF field,
allows to design a controller which optimizes the vector modulator input for bunch arrival
time and bunch compression errors. The dynamic RF field model must be included into
the beam controller design, since additional fundamental modes may be excited.

Consider the beam errors and map those to RF field errors, first to amplitude and phase
changes by

[
∆A(k)
∆φ(k)

]
=

[
t11

A
t12

t21

A
t22

]−1

︸ ︷︷ ︸
G̃−1

B

·

[
∆tA(k)
∆C(k)

]
, (5.1.4)

afterwards to I/Q changes by assuming that ∆φ(k) is small

[
∆I(k)
∆Q(k)

]
=

[
eB,I(k)
eB,Q(k)

]
≈

[
cos(φSP) −QSP

sin(φSP) ISP

]
·

[
∆A(k)
∆φ(k)

]

≈

[
cos(φSP) −QSP

sin(φSP) ISP

]

︸ ︷︷ ︸
M

·

[
t11

A
t12

t21

A
t22

]−1

︸ ︷︷ ︸
G̃−1

B

·

[
∆tA(k)
∆C(k)

]
, (5.1.5)

see Appendix D for the used approximation. As shown, bunch arrival time and bunch

compression errors can be rewritten into RF field related errors, here
[
∆I(k) ∆Q(k)

]T
.

Without going into the details, it is sufficient to change the low frequency gain of the
designed SO(2) symmetric RF field controller, which is optimized to decouple the system
and to suppress additional fundamental modes. Afterwards, a weighting or trust factor
can be defined, which changes the influence of the RF field, respectively beam error.
Such an approach is given next, where not the controller is extended, but a sophisticated
combination of both errors is used.
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c) Controller design using MIMO controller and error combination As seen
at the end of the previous controller design, i.e. case b), each beam related error can be
computed to an RF field error. Thus, instead of extending the RF field MIMO controller,
the remaining beam error is mapped back to the I/Q plane and merged with the RF
field error, shown in Figure 5.1.3 by function eF,B = g(eF , eB). Since the beam is only

C(z)
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rB

rF

yF

eF

yB

uuC

G(z)

eB

eF,B

g(eF , eB)

Figure 5.1.3: c) Beam-based feedback by combining the RF field and beam error.

present during flattop time, it is necessary that the RF field error in front of the injected
beam is as small as possible, while the beam error acts only as correction of the RF field
error. Assume that the RF field measurement has a coarse resolution compared to the
beam measurement. Consider Figure 5.1.4: Assume, the beam error stays inside the RF
field epsilon ball ǫf , which is defined around the operation setpoint as maximal RF field
variations, given by ∆Af/Af < 0.01% and ∆φf < 0.01◦, [Brinkmann et al., 2002] or
[Altarelli et al., 2006]. Beam measurements with a higher resolution should lead to beam

φf

∆φb∆Ab

Af

QSP,f

ISP,f

Q

I

ǫf
ǫb

Figure 5.1.4: RF field and beam error for a given sampling instance during flattop
with beam information.

corrections inside ǫf , such that ǫf > ǫb holds. If the beam corrections leave the ball, an
adaptation of the RF field setpoint is necessary, which is considered within Section 5.1.2.
Combining or merging RF field and beam errors is shown as one of the important points to
improve the beam performance, [Pfeiffer et al., 2012a]. Such an error signal combination
was introduced in (5.1.5), where one has to distinguish between the first and second matrix
which is multiplied by the beam error. The first matrix M is a direct consequence of the
RF field setpoint, while the second, i.e. G̃−1

B , mainly depends on the properties of the
bunch compressor, see Section 3.2. In case of RF field setpoint changes over the flattop,
the first matrix must be adapted. Besides this combination, a second approach is done
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5.1. BUNCH ARRIVAL TIME AND COMPRESSION CONTROL

by (5.1.1). Necessary for this modulation matrix M ∈ R
(2×2) is a mapping of the beam

error to a relative amplitude and absolute phase change, given by nonsingular transition
matrix GB

−1 ∈ R
(2×2), see (3.2.5) on page 44. Note, the combination of RF field and

beam errors according to (5.1.1) holds only around the RF field setpoint. The designed
controller strategy is depicted in Figure 5.1.5 and shortly outlined. First, calculate the
field error eF , lift up the resulting error to the setpoint, modulate the beam error to the
RF field error using (5.1.1) and subtract the setpoint again. The result is an error eF,B

which represents field and beam deviations. Two additional gains, used for an independent

G−1
B

C(z)M

∆A
A

, ∆φ

uFF

∆tA, ∆C

yI , yQ
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yB

eF,B

KF

uuC

KB G(z)

Figure 5.1.5: Cascaded feedback structure for merging field and beam error.

weighting of the RF field by KF and the beam by KB, are implemented and optimized
with respect to the beam performance. As long as the beam is not present, KF is set to
one and KB is set to zero, i.e. usual RF field feedback controller. Combining both errors,
done by choosing weightings for both measurements, leads to an improvement of beam
performance, presented in the following as an example at FLASH.

5.1.2 Example at FLASH

The beam-based feedback strategies to improve the bunch arrival time and bunch com-
pression stability were tested and validated at FLASH. Figure 5.1.6 shows the locations
of the beam related measurements, i.e. BAMs and BCMs, together with their actuators,
i.e. the accelerator modules. The bunch arrival time monitors at FLASH are named by
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Figure 5.1.6: Beam-based feedback sensor and actuator location at FLASH

their location, e.g. 3DBC2 is located 3 meter downstream (3D) of the first bunch com-
pressor; for historical reasons named BC2. Within this thesis, the BAMs are named by
their number within the electron flight direction, see Table 5.1.
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Table 5.1: Bunch Arrival Time Monitor Nomenclature

Nomenclature Location; Comment
Thesis FLASH Typ. resolution for bunch with charge of 0.5 nC

BAM1 1UBC2
Upstream of BC2; Sensor for Laser FB

≈ 15 fs - 20 fs

BAM2 3DBC2
Downstream of BC2; Sensor for BBF ACC1 (ACC39)

≈ 17 fs - 22 fs

BAM3 4DBC3
Downstream of BC3; Sensor for BBF ACC23

≈ 20 fs - 25 fs

BAM4 18ACC7
After main linac; Out of loop measurement

≈ 4 fs - 7 fs

First, only RF field control is considered. A bunch train of 50 bunches with a bunch
repetition rate of 500 kHz is injected during flattop. Since the FEL is operated in pulsed
mode, each bunch train starts at the same flattop time. Aligning the resulting bunch
trains, leads to bunch arrival time measurements shown in Figure 5.1.7. The plot shows
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Figure 5.1.7: Bunch arrival time measurements with RF field control and without
beam-based feedback. The dataset is taken over two minutes and shows the mean and
standard deviation of bunch arrival time. The arrival time range of the first subplot
differs from the other.
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the mean bunch arrival time and the standard deviation over a time range of 2 minutes
for BAM 1 to BAM4. Picking e.g bunch number 1, 5 and 25 of the measurements and
plotting these over the considered time range, displays the fluctuations from pulse to pulse
as shown in Figure 5.1.8. The shape of the bunch train within each pulse can be assumed
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Figure 5.1.8: Usual standard deviation of bunch arrival time without beam-based
feedback for a time range of two minutes. The light line within each plot depicts the
trend.

to be similar, while the overall bunch train fluctuates by hundreds of femto-seconds. It
will be shown, how the standard deviation of the bunch arrival time, the so-called bunch
arrival time jitter, and bunch compression jitter of each individual bunch within a bunch
train is reduced using the beam information.

Furthermore, repetitive bunch arrival time errors, which determine the bunch train shape
are reduced by combining field and beam errors. By doing this, the controller input is a
combined error, which is used to adjust the feedforward table by iterative learning control
(ILC) algorithm, see Section 4.2.
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SP Adaptation and Direct Feedback Approach

Recall the three different beam-based feedback controller strategies, presented in Sec-
tion 5.1.1. The RF field setpoint modulation, Section 5.1.1.a, was presented in [Koprek
et al., 2010]. This approach is compared to the direct feedback control strategy, Sec-
tion 5.1.1.b. The result is shown in Figure 5.1.9. During this controller performance
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Figure 5.1.9: Controlling the bunch arrival time and bunch compression by setpoint
(SP) adaptation and direct feedback (FB) scheme.

comparison, done within a time frame of 30 minutes for the presented three cases, it is
assumed that the machine condition is not changing. The advantage of direct feedback
control, discussed in Section 5.1.1, is shown in comparison to the setpoint adaptation. It
can be seen that the standard deviation of the bunch arrival time and bunch compres-
sion can be reduced over the bunch train. Here case b) on page 83 is considered, i.e.
controller design using extended MIMO controller. This direct feedback approach is used
together with a second MIMO controller CB(z), which is (i) a diagonal proportional con-
troller KP and (ii) a dynamic controller C(z), identical to the RF field controller CF (z),
see (4.1.10) and (4.1.11) on page 56. During beam time, the field and beam measure-
ments are weighted. In this example, field errors are not considered during beam time,
i.e. weighted by zero. Such a weighting is sub-optimal in case of corrupted or missing
beam measurements and will be studied in the following section. Nevertheless, it has been
shown in theory and by measurements that the direct feedback control scheme together
with an optimal controller improves the beam performance significantly.
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Implementation at FLASH

Based on the controller design presented in Section 5.1.1.c, Figure 5.1.10 shows the re-
cently implemented beam-based feedback structure at FLASH. Switch S1 allows to enable
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Figure 5.1.10: Beam-based feedback implementation for all RF stations at FLASH.

or disable the beam-based feedback path. By changing the state of S1, the internal com-
putation time within the FPGA may change. Since the controller C(z) is optimized for
a fixed time delay, the state of S1 is set once to distinguish between the injector, booster
(both are suitable for beam-based feedbacks) and main linac section. From now on S1

is one, i.e. beam-based feedback path is enabled, which allows to superimpose the beam
error with the field error. The second switch S2 is used to activate the beam-based feed-
back. The basic functionality, for S1=S2=1 (beam-based feedback path and beam-based
feedback are enabled) is given as follows. First, compute the difference between field
setpoint and vector sum. The resulting field error is scaled by KF (k), which is one in
case of no beam. By measuring the beam charge q and defining a threshold value qt, the
predefined value of KF (k) scales the field error if q > qt, otherwise feed through the field
error in case of no beam (q ≤ qt). In presence of different beam repetition rates, a zero
order hold block keeps the previous values w.r.t. the bunch spacing, e.g. for 500 kHz
this value is kept for 2 µs. Next the field error is modulated by the beam error, which
is done around the setpoint as described in Section 5.1.1.c. The beam error is computed
from bunch arrival time and compression setpoints and their measurements. The beam
scaling factor is part of the transformation matrix Ǧ−1

B = KB · G−1
B , where KB is a

diagonal matrix whose elements correspond to the weighting of bunch arrival time and
bunch compression, respectively, see (5.1.6).

[
∆A
A

∆φ

]
=

[
KB,1 0

0 KB,2

] [
t11 t12

t21 t22

]−1

︸ ︷︷ ︸
Ǧ−1

B

[
∆tA

∆C

]
(5.1.6)
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If KB = I, the beam related errors are mapped to optimal amplitude and phase changes,
for KB 6= I, those changes are scaled proportionally. A limiter

y(u) =





−a ; u < −a

u ; −a < u < a

a ; u > a

, (5.1.7)

for beam related amplitude and phase correction is implemented to avoid undesired large
field changes if one of the beam measurements is corrupted. Here, the relative amplitude
and phase correction can be limited independently. Within the limits, the input is fed
through to the output, while the output is truncated in case of reached predefined limits.
First, an optimization of field and beam weighting factors is considered, where the main
focus is on improving the bunch arrival time stability.

Optimization of field and beam weighting factor To minimize the arrival time
jitter for the user, a gain scan has been performed and is presented in Figure 5.1.11,
where the bunch arrival time improvement of the monitor under control is shown, i.e.
BAM2 for beam-based feedback with ACC1. If the field weighting is one and the beam
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Figure 5.1.11: Arrival time scan for BAM2 with weighting variation in ACC1 for the
cascaded beam-based feedback.

weighting is zero, then only field control is active. The resulting bunch arrival time jitter
for this special case will be used to normalize the improvements such that a value of one
represents only field control. Higher values, given as color code, represent improvements
of the bunch arrival time compared to simple field control. If the field gain is kept constant
and the beam gain is increased the arrival time stability gets better and after a maximum
becomes worse again. This is explainable by different loop delays of the field and beam
feedback as on the one hand both feedback loops antagonize each other and on the other
hand the individual time delays limit the feedback gain. The lowest arrival time jitter
for ACC1 is found at a field gain factor of zero and a beam gain factor of about 0.6.
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Hence, without field control the minimal arrival time jitter can be found. However in
case of beam cuts, i.e. losses somewhere within the accelerator, the field is driven in open
loop since the field weighting factor is zero which may cause problems like oscillations of
the ILC algorithm, see Section 4.2. Thus, for safety reasons, it is advisable to drive the
system with a small field weighting. In addition consider the out of loop measurement
of BAM4, Figure 5.1.12, which shows the bunch arrival time improvements, while the
scan was done on ACC1. Furthermore, ACC39 and ACC23 are controlled only by field
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Figure 5.1.12: Arrival time scan as in Figure 5.1.11 for BAM4 with weighting variation
in ACC1 in comparison to the out of loop arrival time measurement.

measurements, i.e. without beam information. A wider spread of optimal weighting
coefficients for KF and KB,1 is visible. One possible reason, beside ACC39 and ACC23,
could be uncorrelated noise sources of the field and beam measurement such that both
superimposed weighted errors point, in best case, into the opposite direction. Regarding
this, further studies are needed to understand the wider spread of possible weightings. As
shown in Figure 5.1.12, beside choosing KF = 0 and KB,1 ≈ 0.4, one can set KF ≈ 0.1
and KB,1 ≈ 0.6 such that a similar improvement is reached. Thereby, the field weighting
is not zero, such that in presence of beam cuts the field is not driven in open loop.

Improving bunch arrival time Consider Figure 5.1.13, where the improvements by
controlling the beam properties are shown. Here, 50 bunches with a bunch repetition
rate of 500 kHz are injected. Both, ACC1 and ACC23, are used to control the beam
properties. The bunch arrival time jitter is plotted over the number of bunches, for a
time range of 2 minutes. Here, BAM1 measures the arrival time upstream of the first
bunch compressor (BC2), while BAM2 detects the bunch arrival time after the first BC,
which is fed into the LLRF controller of ACC1. The bunch arrival time at BAM3 is fed
back to ACC23, while BAM 4 is used as out of loop measurement. BAM3 and BAM4
should show the same arrival time for relativistic electron bunches since there is no further
magnetic chicane in between. Figure 5.1.14 presents the correlation of both BAMs for four
selected bunches within the bunch train. Caused by the time delay and low closed loop
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Figure 5.1.13: Standard deviation of bunch arrival time with applied beam-based
feedback to ACC1 and ACC23 at FLASH.
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Figure 5.1.14: Correlation between BAM3 and BAM4; the signal-to-noise ratio (SNR)
is computed as ratio between the diagonal and off-diagonal spread within the bunch
arrival time spread and ρSpearman is a measure of statistical dependence between the
two variables.
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controller bandwidth within the feedback structure, the first bunches cannot be controlled,
such that the bunch arrival time jitter is comparable to the jitter with only field control.
Therefore those bunches show the highest signal-to-noise ratio (SNR). The bunch arrival
time jitter over the bunch train is reduced by the beam-based feedback, such that later
bunches are closer to the measurement resolution, resulting in a smaller SNR. Consider
as example the transition from bunch 1 to bunch 5. After 5 bunches, the bunch arrival
time error of BAM4 reduces from about ± 200 fs peak-to-peak down to about ± 75 fs
peak-to-peak. Respectively, the standard deviation reduces from 60 fs down to 30 fs,
shown in Figure 5.1.13. In the following, the first 10 bunches are not considered within
the computation of the bunch arrival time improvement. The reason for this is given on
a later stage.

One important advantage of the designed beam-based feedback strategy is the super-
imposed field and beam error, which acts directly as input for the ILC algorithm, see
Figure 2.3.1 on page 8 and Figure 5.1.5. This allows to reduce possible repetitive arrival
time spreading within a bunch train without using a second ILC to correct the RF field
setpoint, see Figure 5.1.15; and Figure 5.1.16 which display the bunch arrival time jitter
for some chosen bunches for a longer time period. Such an algorithm has problems,
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Figure 5.1.15: Bunch arrival time with applied beam-based feedback. The arrival
time range of the first subplot differs from the other. The bunch arrival time shape is
flatten by modification of RF field error signal, used for iterative learning control.

especially at edges like switching on and off the beam. For the first few bunches this
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Figure 5.1.16: Usual standard deviation of bunch arrival time with beam-based feed-
back for a time range of two minutes. The light line within each plot depicts the trend.
For comparison reasons, the bunch arrival time axis is not scaled and for all subplots
the same.

is not critical, because those are used to stabilize the beam and can be kicked out such
that only the stabilized bunches are used for e.g. pump-probe experiments. Figure 5.1.16
gives an example how the arrival time jitter is minimized over a longer time range at
FLASH. Starting with the arrival time jitter coming from the GUN (BAM1) the later
BAMs, especially BAM4 used as out of loop measurement, show the improvements of the
bunch arrival time jitter by a factor of 3 where ACC1 and ACC23 are controlled by the
cascaded beam-based feedback structure.

Brief summary: Three different beam-based control strategies were presented. Since the
beam related measurements can be mapped to RF field errors, the optimal beam-based
controller minimizing the bunch arrival time and bunch compression jitter was chosen
as cascaded controller with an inner beam and outer RF field loop. It has been shown,
that with the VME system a bunch arrival time stability in femto-second range and
performance improvements regarding the bunch compression were reached. The proposed
beam-based feedback controller works as desired. However, the beam performance is
limited by measurement accuracy and, for high frequency noise, by the closed-loop system
bandwidth of about 40 kHz.
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MTCA System Integration

The previously presented beam-based feedback controller approach for FLASH needs to
be integrated within the MTCA framework. It has been shown, that the basic accelerator
structure for FLASH and XFEL, especially for the injector and booster section, are very
similar. This allows to give an outlook based on the results from the beam-based feedback
tests for the VME system at FLASH. Beside the reduction of the expected time delay for
RF field measurements, the main focus is on the higher signal precision, i.e. a higher ADC
resolution. This changes, from the theoretical point of view, the size of the ǫF ball, see
Figure 5.1.4, which requires an adaption of the field and beam weightings. Nevertheless,
the outer RF field loop needs to be modulated by beam-based signals, such that the pro-
posed beam-based feedback strategy is highly suitable. The bunch arrival time monitors
are currently in a progression stage to improve the bunch arrival time resolution even for
small electron bunch charges. Thus, by updating the bunch arrival time monitors for a
higher measurement precision, the ǫB size will be reduced.
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5.2 Beam Energy Control with Information Exchange

As presented in Section 5.1, the bunch arrival time and bunch compression is stabilized by
a modulation of the RF field upstream of a bunch compressor. This energy modulation
controls the beam performance at the expense of the beam energy stability, which is
unacceptable because this is proportional to the wavelength of the laser light generated
by the SASE process.

Within this section, the focus is on beam energy control for the European XFEL by an
interconnection of the RF field controllers, which follows a distributed control scheme. The
interconnection of the RF field controllers is not necessary for FLASH, since the main linac
only consists of two RF stations, where the initial and final beam energy measurement
can be fed into the first and second RF station of the main linac simultaneously.

First, an introduction which discusses possible beam energy errors and how to avoid those
is given. Section 5.2.2 starts with the plant requirements for the considered distributed
controller design. It will be shown, that only two measurements for the beam energy, i.e.
the initial and final beam energy of the main linac, are not sufficient for high performance
beam energy control. Hence, the physical equations describing the energy gain within
each accelerator module are rewritten, leading to an observer based controller design.
Efficient tools are available to solve the controller synthesis for large scale systems which
are outlined at the end of this section. Simulation results, with the assumption that the
electron flight time though the main linac is neglectable, complete this section.

5.2.1 Introduction

In the following, a distributed controller design for a linear accelerator such as the Euro-
pean XFEL is developed. At the European XFEL one distinguishes between the injector-,
booster- and main-linac sections. The injector and booster section is the first part of an
accelerator, where bunch compressors are used to force electrons on different trajectories
through the BC to control the beam related measurements, i.e. the bunch arrival time
and bunch compression, described in Section 5.1.

Within the second part of the linear accelerator, i.e. the main linac, the beam energy
is increased by each RF station up to a final beam energy. At the end, an undulator
forces the electron beam on a sinusoidal trajectory, hereby electrons emit light with a
wavelength appropriate to their energy. Keeping the final beam energy constant, results
in the same laser light wavelength for each electron bunch. Within this section, the focus
is on minimizing the final beam energy error by controlling the RF fields of the main linac.
It is sufficient to consider mainly two energy errors, caused by a cavity quench and the
quench protection system. The shape of the beam energy error is almost known, while
the time of action is unknown. In addition, such beam energy errors may occur at several
subsystems.
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Cavity Quench and Quench Protection At FLASH and the European XFEL, su-
perconducting cavities, build from niobium and operated at a temperature of 2 K, are
used to increase the energy of the electrons. At a temperature above 9.2 K, the so-called
critical temperature, niobium becomes normal conducting, [Wangler, 1998]. Often impu-
rities and high gradients of the RF field within a cavity lead to a so-called quench state.
Field emission can cause local areas to heat up, due to tiny particles, until the RF field
within a cavity breaks down. This transition from superconducting to normal conducting
causes the loss of the stored energy. A quench detection server detects an undesired energy
change. If a cavity quench within an accelerating module occurs, the vector sum signal
will decrease due to the RF field drop caused by the quenching cavity. But the RF field
controller tries to keep the field error as small as possible. Thus, additional RF power is
fed into the remaining cavities. Hence, all neighboring cavities are used to recover zero
error by increasing their own RF field. This can result in additional cavity quench events
for the remaining cavities as shown in Figure 5.2.1.
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Figure 5.2.1: Presented is a quench sequence for four succeeding pulses starting from
pulse (p-3) to pulse (p) for accelerator module ACC7 at FLASH (data is taken during
ILC studies in 2012, [ILC, 2013]). Cavity 1 (ACC7.C1) changes at pulse (p-2) the
loaded Q (different slope during decay), while in the following pulses the RF field
controller tries to keep closed-loop operation, leading to cavity quench events for some
remaining cavities.

First, a strategy is considered to avoid cavity quenches, followed by a strategy to recover
the RF station, [Branlard et al., 2012].

Pre-Limiter One possibility is to define an upper RF field limit for each cavity, i.e. a
pre-limiter. If a cavity reaches this limit, the RF field setpoint is decreased over time until
the RF field falls below this limit. Therefore, a pre-limiter helps to avoid cavity quenches.
Within the following simulation results, such a behavior is considered as ramp-like energy
error.
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Adjust the RF field setpoint If a sudden cavity quench occurs, in case the pre-limiter
is deactivated or not fast enough, one could instantaneously lower the RF field setpoint, to
avoid feeding additional RF power to the cavities. Therefore, the RF field setpoint must
be decreased to keep the remaining cavities in closed-loop operation; in the following, this
is simulated as step-like energy error. This error is an extremum since the stored energy
within the cavity decreases by an exponential decay.

The resulting energy error for both scenarios should be compensated by the remaining
RF stations. It is assumed that no control action is taken to bring the disturbed RF
station back to its normal operation. To distinguish between RF fields, which are used to
increase the energy of the electron beam, and the beam energy, two setpoints are defined:
the RF field setpoint, which can be changed by the quench protection system, and an
energy gain setpoint, respectively.

Only in the case that an event within an RF station occurs, the resulting error will be
transmitted to the neighboring RF stations and only the RF field setpoint will be changed.
Otherwise, the local RF field feedbacks are active, such that the field error is as small as
possible.

5.2.2 Distributed Controller Design

It will be shown, that a linear accelerator, more precisely the main linac, can be approxi-
mated by a finite chain of subsystems in spatial domain. In addition, the controller design
considers the possibility to control the overall system by neighboring subsystems to the
left and right, while in theory only one direction would be possible. Since measurements
for the control variable, i.e. the beam energy, are only available for the first and last RF
station, physical equations are rewritten to approximate this variable for the remaining
RF stations. The system equations in spatial and time domain are combined to a general-
ized plant. Each accelerator module itself is an enclosed subsystem, such that remaining
errors, as well as the control signals, must be distributed digitally. First an introduction
to the considered RF field model and possible simplifications are given.

RF Field Model for Homogeneous Distributed Controller Design The physical
plant behavior and the system identification is described in Section 3.1. The resulting
two-input two-output linear time-invariant model in discrete-time takes the form

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k) ,

with u(k) ∈ R
2 as input to the vector modulator and y(k) ∈ R

2 as output, i.e. the vector
sum. Figure 3.1.15, see page 38, displays the frequency response of the identified SO(2)
symmetric model without time delay.
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Within this section the following distributed control assumptions are chosen:

• RF field model of each subsystem is SO(2) symmetric with:

– Constant rotation matrix R(φG) for all frequencies

– Additional fundamental modes are neglected

– Remaining scaling part AG(z) is identical for all RF stations

• Definition of an energy gain setpoint for each RF station

• Allow information exchange with both neighboring RF stations

– without communication delay

– with a constant and not changing communication delay

• Finite chain of RF stations

The first assumption is a necessary condition to consider each RF station as identical.
Therefore, the focus is only set on the system bandwidth, i.e. no additional fundamental
modes are included into the plant model. This assumption is required since each RF
station may have additional fundamental modes at different frequencies, while within the
distributed controller design all subsystems are assumed to be equal. The mode suppres-
sion part can be included afterwards by using the symmetric controller design described
in Section 4.1.2. This allows to extend the resulting distributed controller by additional
block-wise matrices, representing the eigenvalues, input and output matrices for the ad-
ditional fundamental mode suppression. If it is not possible to equalize the individual
subsystems, the reader is referred to [Dullerud and D’Andrea, 2004] who proposed a
method for non-identical subsystems. The second assumption distinguishes between local
RF field control and energy control by an information exchange. The energy gain setpoint
is stored such that the beam energy gain without error can be recovered for the disturbed
RF station. The third assumption, i.e. information exchange between neighboring RF
stations, is necessary for a distributed control approach. The fourth copes with a real
physical plant with boundary conditions and is designed as in [Langbort and D’Andrea,
2003], who model the distributed plant as infinite interconnection by using the method
of images. It will be shown that this is a valid assumption even for a linear accelerator.
Communication delays are neglected during the first simulation results, while the last
subsection copes with communication delays.

An introduction of the used distributed control design for spatially interconnected systems,
based on [D’Andrea and Dullerud, 2003], is given in Appendix E.

Distributed Plant Representation for a Free-Electron Laser

The main linac consists of RF station A5 to A25, depicted in Figure 5.2.2, which accelerate
the beam to the final target energy. The beam energy at the entrance of the main linac
can be measured by an Energy Beam Position Monitor (EBPM) within the last bunch
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Figure 5.2.2: Main linac of the XFEL consisting of 21 RF stations.

compressor, see Section 2.4. The beam energy exiting the main linac can be measured
by combining beam position measurements to an energy signal. Both measurements are
used to control the initial and target beam energy as depicted in Figure 5.2.2. Along the
main linac the beam energy must be estimated by the energy gain of the contributing
RF stations. In the following, the contribution of each RF station is denoted by ∆E(k, s)
with discrete time steps k and spatial domain parameter by s. The beam energy E(k, s)
denotes the beam energy at the RF station exit. Then the final beam energy can be
expressed as sum of the initial beam energy and all energy gains:

E(k, 25) = E(k, 4) +
25∑

s=5

∆E(k, s) . (5.2.1)

In the following a strategy is developed, which allows to reduce the final beam energy error
by an interconnected control scheme. First an introduction in increasing the beam energy
by a single accelerator module is given, followed by the interconnection of all accelerator
modules within the main linac.

Energy gain for an accelerator module It is assumed, that the electrons increase
their energy within an accelerator module only by the real part of the electric field. Other
effects like a not perfectly calibrated beam phase are neglected. Hereby, the energy gain
inside the cavities is given as

∆E(k, s) = E(k, s) − E(k, s − 1) (5.2.2)

= q · A(k, s) · cos(φ(k, s)) , (5.2.3)

where q is the elementary charge, and A(k, s) and φ(k, s) are the RF field amplitude and
phase at spatial location s. Assume that the energy within the main linac is controlled by
keeping the RF field phase constant and changing only the RF field amplitude. Set the
RF field phase φ(k, s) = 0 for all subsystems, i.e. an usual on-crest operation. By this,
only one channel, i.e. the real part of the RF field, is necessary to control the amplitude
and therefore the beam energy. The second channel, i.e. the imaginary channel is zero
by φ(k, s) = 0, which leads to an energy gain

∆E(k, s) = q · yI(k, s) , (5.2.4)
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where q = −e is the charge for an electron and yI(k, i) is the real part of the RF
field, [Towiwat, 2011]. For simplicity, the proportional conversion from voltage to en-
ergy, i.e. from the unit volt [V] to electron volt [eV], which is a multiplication of the RF
field voltage with the electron charge, is absorbed in the output signal

∆EF (k, s) =
∆E(k, s)

q
= yI(k, s) , (5.2.5)

where ∆EF (k, s) is a modified charge free energy gain. As before, all absolute beam
energies are modified as EF (k, s) = E(k, s)/q, which will not change the control problem.

If the RF field phase is non-zero, the second channel can be adjusted afterwards by
a rotation matrix which maps the amplitude change to a complex vector field change.
Nevertheless, the RF field phase has to be kept constant.

Energy error for an accelerator module Beside the RF field setpoint rRF (k, s)
define an energy gain setpoint rE(k, s). During normal operation both setpoints are
equal. As discussed in Section 5.2.1, in case of an error, e.g. cavity quench, the RF
field setpoint is changed to recover closed-loop operation. Hence, (5.2.2) and (5.2.4) are
combined to

EF (k, s) = EF (k, s − 1) + yI(k, s) ,

EF (k, s) = EF (k, s − 1) + rE(k, s) − ǫ(k, s) ,

where

ǫ(k, s) = rE(k, s) − yI(k, s) (5.2.6)

represents the beam energy error within an accelerator module.

Energy error for the FEL Including the beam energy error ǫ(k, s), defined in (5.2.6),
into (5.2.1) and assuming that the charge is absorbed by the energy leads to

EF (k, 25) = EF (k, 4) +
25∑

s=5

rE(k, s) − ǫ(k, s) . (5.2.7)

It is obvious, that the final beam energy error

ǫE(k) = ǫ(k, 4) +
25∑

s=5

ǫ(k, s) (5.2.8)

is the sum of the initial beam energy error and all beam energy errors within the main
linac. Assume that the beam energy measuring system at the end of the main linac
measures a beam energy error ǫE(k). Recall that only one energy detector can be used to
control energy errors within the main linac, e.g. by correcting the RF field of the last RF
station.
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Controllability and Observability With the assumption that only the real part of
the RF field, i.e. yI(k), is needed to control the beam energy and by exploiting symmetry
properties of the plant, see Section 3.1.4 on page 40, the resulting two by two linear
time-invariant model can be decomposed into two SISO transfer functions. Each of the
resulting SISO systems, given in spatial domain s, is represented in state space form as

x(k + 1, s) = AGx(k, s) + BGu(k, s) ,

y(k, s) = CGx(k, s) ,
(5.2.9)

with x ∈ R as state variable, u ∈ R as input to the vector modulator and y ∈ R as output,
i.e. the vector sum; the numerical values are taken from (3.1.43) with frequency response
corresponding to Figure 3.1.15 as

AG = 0.9998 and BG = CG = 0.0194 .

It is assumed, that all accelerator modules can be modeled by the same transfer func-
tion, i.e. they represent a homogeneous chain of subsystems. Therefore, the main linac
consisting of 21 subsystems is represented in state space form as



x(k + 1, 5)
x(k + 1, 6)

...
x(k + 1, 25)




=




AG 0 · · · 0
0 AG · · · 0
...

...
. . .

...
0 0 · · · AG







x(k, 5)
x(k, 6)

. . .
x(k, 25)


+




BG 0 · · · 0
0 BG · · · 0
...

...
. . .

...
0 0 · · · BG







u(k, 5)
u(k, 6)

...
u(k, 25)




,

[
ǫE(k)

]
=
[
−CG −CG · · · −CG

]




x(k, 5)
x(k, 6)

...
x(k, 25)




+ ǫ(k, 4) ,

(5.2.10)

with u(k, s) ∈ R
21 as input to each vector modulator, ǫ(k, 4) as energy error input to the

main linac and ǫE(k) ∈ R as output. The output represents the final energy error (5.2.8)
as sum of energy errors from each accelerator module, i.e. the sign-inverted vector sum
signals (5.2.6). It is straightforward to show that the system (5.2.10) is controllable, since
the controllability matrix

C(A, B) =
[
B AB A2B . . . An−1B

]
(5.2.11)

has full rank for the given numerical values, while the system is not observable, i.e. the
observability matrix

O(C, A) =
[
CT (CA)T (CA2)T . . . (CAn−1)T

]T
(5.2.12)

has a rank lower than the system order; the observability rank is one for the given values.
Based on the energy measurement at the end of the main linac, it is not possible to detect
the location s at which an energy error is first generated. This is an undesired case,
because if a cavity at the beginning of the main linac quenches and the beam energy is
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not corrected close to the disturbed RF station, an adjustment of steerer and quadrupole
magnets, which have a low bandwidth in the order of hertz, is probably necessary to
provide a matched beam optics and straight beam orbit through the accelerator. In
addition, it may happen, that a cavity quench occur within the last RF station if the
RF field needed to correct an energy disturbance is above an RF field limit. Hence, it is
preferable to control the beam energy close to the disturbed module.

To recap: The plant model of spatially interconnected control variable, i.e. beam energy
error, shows that the system is controllable, while it is not observable with only one beam
energy detector. To cope with non-observability of the system, a scheme which distribute
locally computed beam energy errors is chosen. It will be shown that such a spatially
interconnected system together with a distributed control scheme minimizes beam energy
errors locally by exploiting a proper beam energy error distribution to neighboring RF
stations.

Spatially interconnected system The desired and in the following developed inter-
connection structure of the closed-loop system including the plant, with performance
input d(k, s), performance output z(k, s), and the controller is shown in Figure 5.2.3.

C(z,s)

G(z,s)

u(k, s) ǫ(k, s)

vK+ (k, s) wK
+ (k, s)

vK
−

(k, s)wK
−

(k, s)

v+(k, s) w+(k, s)

v
−
(k, s)w

−
(k, s)

LLRF Controller

d(k, s) z(k, s)

Figure 5.2.3: Closed-loop system including the plant G(z, s) with performance input
and output, the controller C(z, s) and the interconnections to neighboring subsystems.

First, the energy quantities are redefined as v(k, s) and w(k, s) representing the energy
error input and output, respectively, of the spatial interconnection.

In case of a FEL, the beam energy is increased towards the positive flight direction of
the electrons by ∆E within each RF station, see (5.2.3). The RF stations are depicted in
Figure 5.2.4 by the real system, where the location of each RF station is defined with a
spatial domain parameter s. An electron bunch passing a disturbed accelerator module
will have an energy error ǫ(k, s) in positive flight direction, which is shown in (5.2.6). Since
the electron bunches travel with almost speed of light through a FEL, it is not possible to
control each bunch directly, e.g. by latencies of the measured signals. Therefore, only the
following bunches can be controlled, which allows to approximate the system behavior.
This and the fact that an electron energy error is not directly detectable within the main
linac lead to an energy error distribution structure, implementable as an additional layer
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of a distributed control scheme, which is illustrated in Figure 5.2.4. In addition, each
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Figure 5.2.4: Beam energy error distribution of the real system, i.e. only in positive
direction, and the approximated system, which allows an energy error distribution in
both directions.

accelerator module may have a different operating RF field setpoint caused by the quench
limit, i.e. the energy gain of each subsystem may differ. Hence, only energy errors within
an RF station are considered. Lets assume, that an energy error at an RF station is
correctable by both neighboring RF stations and is distributed by the same amount, i.e.
by a factor Kw, to the left and right, respectively. Additional energy errors by other RF
stations are distributed in the same way and added:

ǫOUT
+ (k, s) = Kw

(
ǫIN

+ (k, s) + ǫ(k, s)
)

, (5.2.13)

ǫOUT
− (k, s) = Kw

(
ǫIN

− (k, s) + ǫ(k, s)
)

, (5.2.14)

where + indicates the positive direction (the electron flight direction) and − the neg-
ative direction and ǫ(k, s) either an energy error input or output of an RF station.
Adding (5.2.13) and (5.2.14) and select Kw = 1/2, it follows that the full energy er-
ror is distributed. To distinguish between inputs and outputs, the beam energy errors
(5.2.13) and (5.2.14) are interconnected in a distributed scheme, see Figure 5.2.3 , as

w+(k, s) = Kw (v+(k, s) + ǫ(k, s)) , (5.2.15)

w−(k, s) = Kw (v−(k, s) + ǫ(k, s)) , (5.2.16)

with v as interconnection input and w as output, respectively. The pre-factor Kw is used
as additional tuning variable and accomplish the plant model. This allows to distribute
a weighted energy error signal to the neighboring RF stations, which is discussed at the
end of this section.

Boundary conditions The interconnected controller is designed by assuming an in-
finite interconnection, which is not true for a FEL. In [Langbort and D’Andrea, 2003]
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a boundary condition is given allowing this assumption. They make use of symmetries
coming from the method of images reflecting a Neumann boundary condition. Hence, by
mirroring the plant at each end infinite times, the interconnected system itself becomes
infinite. Recall, the energy error ǫ(k, s) is not measurable at neighboring modules, this in-
formation needs to be transmitted and is modeled as additional layer. This allows to make
use of the proposed boundary condition. Hereby, a non-singular matrix M must be found
displaying those images, depicted and simplified in Figure 5.2.5 for three subsystems.

G(z,1) G(z,2) G(z,3)

v+(k, 1) v+(k, 2) v+(k, 3) w+(k, 3)

u(k, 1) ǫ(k, 1) u(k, 2) ǫ(k, 2) u(k, 3) ǫ(k, 3)

v
−
(k, 2)v

−
(k, 1) v

−
(k, 3)w

−
(k, 1)

d(k, 1) z(k, 1) d(k, 2) z(k, 2) d(k, 3) z(k, 3)

M M−1

Figure 5.2.5: Finite system with 3 interconnected modules and boundary condition
matrix M, [Langbort and D’Andrea, 2003].

In the following, the boundary condition matrix M is defined for this application as M=1,
such that for the example depicted in Figure 5.2.5

v+(k, 1) = w−(k, 1) and

v−(k, 3) = w+(k, 3)

holds; for XFEL redefine the first (s=5) and last (s=25) interconnection as

v+(k, s) = w−(k, s) ; s = 5 and

v−(k, s) = w+(k, s) ; s = 25 .

This can be justified as follows: recall that the energy error is transmitted through an
additional layer between the RF stations. It is obvious, that an energy error at the last
RF station can be corrected only by the RF stations upstream. Hence, the energy error
to the open side is connected upstream to distribute the overall error. Further details
about boundary conditions can be found in [Langbort and D’Andrea, 2003].

Construction of a generalized plant Next, the generalized plant using the math-
ematical definitions of the previous subsections is defined. Hence, obtain a state space
model of a subsystem of the approximated plant by




x(k + 1, s)
(∆S,mv(k))(s)

ǫ(k, s)




x0(s)

=



ATT ATS BT

AST ASS BS

CT CS D


 ·



x(k, s)
v(k, s)
u(k, s)


 , (5.2.17)
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where x0(s) = x(0, s) and

ATT = AG, ATS =
[
0 0

]
, BT = BG,

AST =

[
−Kw · CG

−Kw · CG

]
, ASS =

[
Kw 0
0 Kw

]
, BS =

[
0
0

]
,

CT = −CG, CS =
[
0 0

]
, DT = 0.

The equations in (5.2.9) describe the temporal behavior, i.e. the first and last row in
(5.2.17). Using the plant approximation, the temporal states of a neighboring subsystem
are not affected by the interconnected signals v(k, s). The interconnection matrices in
(5.2.17) are designed accordingly to (5.2.15) and (5.2.16) with the tuning parameter Kw.
Within a small signal model, where only errors are considered, ǫ(k, s) is represented as

ǫ(k, s) = −yI(k, s) = −CG · x(k, s) .

A simplified notation for (5.2.17) is introduced as
[
∆mGrG(k, s)

ǫ(k, s)

]
=

[
AG BG

u

CG
y DG

yu

]
·

[
rG(k, s)
u(k, s)

]
, (5.2.18)

with

∆mGrG(k, s) =

[
x(k + 1, s)

(∆S,mv(k))(s)

]
and rG(k, s) =

[
x(k, s)
v(k, s)

]
,

where e.g. AG is the upper left A block of (5.2.17) containing the temporal, spatial and
coupling matrices.

In the following, the tuning parameter Kw is chosen such that the plant interconnection
itself is stable, hence, well-posed which is fulfilled if (∆S,m − ASS) is invertible. In the
following, it is assumed that 0 < Kw < 1 which is needed to describe bounded energy
distributions. Remember that for the real plant the energy error is defined only in positive
direction, where this factor is one. By rewriting the physical equations for both directions,
the error is split-up with a factor of Kw=1/2. Since this is an approximation of the real
plant, Kw is introduced as tuning parameter for the energy error exchange. This factor
can be used to ensure that the beam energy is controlled only by RF stations that are
close to the disturbed RF station, outlined in the following paragraph.

Choice of the tuning factor Kw Assume a beam energy error is observed in one of
the accelerator modules and controlled only by the local RF field controller, i.e. without
controller information exchange. Recall that the energy error signal is not observed by
neighboring modules directly. Instead, the energy error is weighted by Kw, transmitted
to the neighboring RF stations, see (5.2.15) and (5.2.16), and added to the energy error
signal of that RF station according to

ǫC(k, s) = ǫ(k, s) + v+(k, s) + v−(k, s) , (5.2.19)
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where ǫC(k, s) is the input of the local RF field controller. It is desirable to control
the beam energy by RF stations close to a disturbed RF station to minimize second
order effects to other subsystems, e.g. the adjustment of magnets within the FEL. For
this reason, Kw is tuned such that the sum of the squared beam energy error J(Kw) is
minimized in spatial domain:

min
Kw

J(Kw)︷ ︸︸ ︷
25∑

s=6

ǫ(k, s)2 . (5.2.20)

Since only the local controller is active, the minimization is done at the end of a pulse
without considering the transient behavior. Figure 5.2.6 shows the simulated squared
beam energy error if an error, i.e. an energy drop of 60 MeV, is induced. If Kw is
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Figure 5.2.6: Sum of squared energy error along the spatial domain as function of
tuning factor Kw.

small, little information is shared with the neighboring modules, while increasing the
value facilitates local control of the beam energy. If the value is too high, the error is
distributed through the whole chain of subsystems and every RF station tries to contribute
to this error. Hence, the sum of the squared beam energy error becomes larger. In the
following distributed controller design and simulation results a value of Kw = 0.9 is used.

Connection to Distributed Controller

The interconnection of the RF stations is done by using the energy error signal ǫ(k, s) as
input to the controller block, shown in Figure 5.2.7. The optimal output will be computed
and fed back into the plant. In addition, we will allow interconnections of the designed
controller, as usual for a distributed controller design.

Usually, the controller interconnection has a similar or even the same structure as the
plant interconnection. The main focus of the presented controller design approach is
set to a distributed controller design for spatially interconnected systems as described
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Figure 5.2.7: Distributed controller design task consisting of the approximated plant
model and the controller interconnection scheme.

by [D’Andrea and Dullerud, 2003], which results in an optimal and robust interconnected
controller for a predefined closed-loop behavior. This behavior is defined by setting shap-
ing filters within the controller design. The following equations are used to describe the
plant, the shaping filters and the connection to the designed controller:



∆mGrG(k, s)

z(k, s)
ǫ(k, s)


 =




AG BG
d BG

u

CG
z DG

zd DG
zu

CG
y DG

yd DG
yu


 ·



rG(k, s)
d(k, s)
u(k, s)


 . (5.2.21)

The second block row displays matrices needed to include shaping filters, see Controller
Optimization using HIFOOd in Section 4.1.2 with performance input d(k, s) and output
z(k, s), respectively. The performance output variables are taken to be

z1(k, s) = Wuu(k, s) and z2(k, s) = Wǫǫ(k, s) , (5.2.22)

with Wu as penalty to the control effort and Wǫ as weight for the error signal. Furthermore,
the performance input is partitioned into

d(k, s) =

[
d1(k, s)
d2(k, s)

]
,

where d1(k, s) is taken as control input u(k, s) and d2(k, s) as energy error, and Wd1 and
Wd2 are the corresponding shaping filters. The framework of spatially interconnected
systems proposed in [D’Andrea and Dullerud, 2003] provides an efficient way of solving
the controller synthesis problem for a large scale system with many subsystems. The
synthesis problem can be solved by solving an LMI problem for a single subsystem with
the generalized plant model given in (5.2.21) which leads to the controller C(z, s) and is
depicted in Figure 5.2.7. The resulting controller takes the form

[
∆mKrK(k, s)

u(k, s)

]
=

[
AK BK

CK DK

]
·

[
rK(k, s)
ǫ(k, s)

]
. (5.2.23)
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By rewriting the state rK(k, s) in the same way as in (5.2.18), the controller C(z, s) takes
the form




xK(k + 1, s)[
wK

+ (k, s)
wK

− (k, s)

]

u(k, s)


 =



AK

TT AK
TS BK

T

AK
ST AK

SS BK
S

CK
T CK

S DK


 ·




xK(k, s)[
vK

+ (k, s)
vK

− (k, s)

]

ǫ(k, s)


 (5.2.24)

and results in the same controller order as the plant.

5.2.3 Simulation Results for XFEL

A good assumption, even during the RF field controller design, see Section 4.1.2 on
page 51, is to neglect the plant time delay of 2.22 µs, due to the low bandwidth of
the system. In addition, the controller will be implemented on an FPGA such that a low
controller order is desired. The controller can be written in a decoupled form as presented
in Section 4.1.2, as

U(z, s) = C(z, s)E(z, s) , where (5.2.25)

C(z, s) =

[
KP,I(s)MC,I(z, s) 0

0 KP,Q(s)MC,Q(z, s)

]
R(φG)T (s) , (5.2.26)

with U(z) as controller output, E(z) as input, i.e. RF field error, KP (s) and MC(z, s)
as proportional gain and mode suppression part and R(φG)T as static decoupling matrix.
The latter allows to design two SISO controllers, i.e. an independent design of KP,I which
is updated by C(z, s) and MC,I , included afterwards to suppress additional fundamental
modes. The second SISO controller for the imaginary channel needs not to be updated
and follows from Section 4.1.2.

The synthesis problem for the discrete-time distributed controller is solved with the help
of The Multidimensional System Toolbox [D’Andrea, 1999]. The controller obtained this
way is labeled C(z, s) in Figure 5.2.7.

As explained previously, the error signal ǫ(k, s) needs to be propagated through the sys-
tem, since the system structure itself is not able to detect energy errors from neighboring
subsystems. This leads to a modified plant with an additional error interconnection block,
given in state space form as



w+(k, s)
w−(k, s)
ǫC(k, s)


 =



Kw 0 Kw

0 Kw Kw

1 1 1


 ·



v+(k, s)
v−(k, s)
ǫ(k, s)


 ,

where ǫC(k, s) is input to the designed controller C(z, s) and ǫ(k, s) is the local energy
error (5.2.6). The modification of the error signal is given by (5.2.19) and displayed in
Figure 5.2.8. The approximated plant distributes an energy error signal ǫ(k, s) to the
neighboring RF stations, scaled by Kw.

The controller is designed as described in the last subsection. Only energy errors in
one channel are considered for the interconnected controller. The control signals can be
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LLRF Controller

Kw
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Figure 5.2.8: Closed-loop system as in Figure 5.2.7, but here showing the physical
model of an accelerator module G(z,s) and the error propagation layer explicitly. The
output limiter displays a restricted actuator action.

mapped by the RF field phase to a two-dimensional vector field. The controller design
focus is set to increase the rise time and to lower the peak overshoot and steady-state
error. The values for the weights used for simulation are taken as:

Wu = 0.1 , Wǫ = 1 , Wd1 = 0.1 and Wd2 = 0.05 .

Two different kinds of errors, introduced in Section 5.2.1, are considered and shown in
Figure 5.2.9. First, a step-like energy error, an extremum case which corresponds to
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Figure 5.2.9: Error due to pre-limiter and limiter injected in module 13.

an active limiter reducing instantaneously the RF field setpoint, followed by a ramp-like
energy error, which represents an active pre-limiter. The simulation of the system analysis
is done without communication delay. An outlook including the communication delays is
given within the last section. The communication delay results in increase oscillations in
most cases and should be part of the generalized plant. However, this would significantly
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increase the plant and controller order, which is not desired for an implementation on an
FPGA.

Without communication delay

A simulation of the designed distributed controller together with the interconnected plant
for a step-like error is shown in Figure 5.2.10. The beam energy error is visualized in
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Figure 5.2.10: Response to step-like energy error at RF station 13 along the bunch
path, controlled by the distributed control scheme. The plant model contains the inter-
nal plant delays.

temporal and spatial domain. The color code represents the error distribution. The
final beam energy error after the last accelerator module, i.e. module 25, is shown in
Figure 5.2.11, where three cases are considered. The imposed energy error at module
13 is the same as the final beam energy error if this information is not shared with the
neighboring RF stations. To keep the controller order small, the controller synthesis was
done without internal plant delay. The comparison between the simulation with and
without plant delay shows almost no difference. This is due to the fact, that a plant delay
changes the plant phase for high frequencies, while the reached closed-loop bandwidth
for superconducting cavities is in the order of tens of kilohertz. Figure 5.2.12 shows the
temporal and spatial energy error for an induced ramp-like error in module 13, controlled
by the neighboring RF stations. The final beam energy error with and without plant
delay is compared in Figure 5.2.13. It can be seen, that neglecting plant delays for this
application affects the fast transient behavior which results in overshoots and damped
oscillations. Integral action during the controller design is not considered, leading to a
steady state error, which is correctable by iterative learning control within the next few
pulses. Remember, the controller input signal, i.e. the beam energy error signal, is used
to adapt the feedforward signal from pulse to pulse, hence an uncritical case.
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Figure 5.2.11: Final energy error for step-like energy error at RF station 13 for three
different cases.
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Figure 5.2.12: Ramp-like energy error at RF station 13 along the bunch path, con-
trolled by the distributed control scheme.

It has been shown that the controller is able to drive the system in case of RF field,
thus, energy errors. The energy error and the controller state information is exchanged
between neighboring RF stations on both sides to recover zero energy error. Till now the
consideration was done by assuming that the controller exchanges information without
communication delay. If this communication fails, the overall distributed controller is
not connected, such that the last energy monitor detects an energy change which results
in a feedback only by using the last RF station. If the overall communication fails, the
distributed plant is not able to correct energy errors caused by, e.g., cavity quenches.
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Figure 5.2.13: Final energy error for ramp-like energy error at RF station 13, as
comparison with and without internal plant delay.

5.2.4 Outlook - Communication Delays

In the previous distributed controller design, the time delays during the controller synthe-
sis were neglected. This includes the enclosed plant time delay, a good assumption as seen
in Section 4.1 and within the previous simulation results. In addition the communication
delays between the LLRF controllers, as shown in Figure 5.2.14, were not considered. It
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Figure 5.2.14: Spatially interconnected system with included communication time
delays.

is shown in the following simulations, that the interconnected system tends to become
a stable weakly damped oscillation if communication delays are included. To cope with
this effect, without extending the controller order itself, one possibility is to readjust the
tuning factor Kw, considered in the following.

Readjustment of Kw Similar to the optimization of the tuning parameter Kw on
page 107, a tuning parameter scan is shown in Figure 5.2.15 including a communication
delay of 1 µs. Hereby, the tuning parameter is updated within the plant model and the
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controller synthesis is done for each Kw. As presented before, in case of zero commu-
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Figure 5.2.15: Tuning parameter variation of Kw and the resulting final beam en-
ergy error with communication delay of 1 µs and an applied step-like error signal, see
Figure 5.2.9.

nication delay, the best results are achieved with a tuning factor of about Kw = 0.9,
while including a communication delay of 1 µs moves the optimal tuning parameter to-
wards lower values, e.g Kw = 0.8, presented in Figure 5.2.15. Nevertheless, using such
optimization methods avoids to extend the plant model order, thus the controller order.
Figure 5.2.16 shows the simulation results for both occurring energy errors for two dif-
ferent tuning parameters, i.e. the optimal without communication delay (Kw = 0.9) and
the chosen parameter with communication delays (Kw = 0.8). In principle it seems to be
sufficient to readjust the tuning parameter Kw to avoid oscillations in case of communica-
tion delays. Since the RF field error, hence the energy error, is controlled by an iterative
learning control algorithm, see Section 4.2, the remaining error will be reduced within the
next few pulses to an uncritical level. Therefore, the required performance specifications
in relative amplitude and phase, hence in beam energy accuracy, will be met.

It has thus been demonstrated, that a distributed control scheme significantly reduces
the final beam error, thus appearing to be a key element for reaching high beam energy
performance. Nevertheless, further improvements, e.g. observer based control or the in-
terconnection of iterative learning control in a distributed scheme, perhaps improves the
beam performance. For further research, [Eichler et al., 2013] proposes a strategy which
guarantees robust stability for an interconnected system with uncertain time-varying time
delays with integral quadratic constraints.
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Figure 5.2.16: Adjustment of Kw and the resulting final energy error with plant time
delay and with communication delay of 1 µs in a distributed control scheme; Figure 5.2.9
shows the energy error signal.

5.3 Conclusion

The beam-based controller design by a superposition of the RF field with beam informa-
tion has been presented. The free-electron laser, hence the beam-based controller design,
is separated into two parts. First, a lumped beam-based controller design within the
first part of a FEL has been presented. The controller design follows a cascaded feedback
structure and combines the bunch arrival time and bunch compression measurements with
the RF field. Hereby the RF field error, which is the input to the RF field controller is
superimposed by the mentioned beam related measurements, leading to significant im-
provements of the beam stability in bunch arrival time and bunch compression.

The second part considers beam energy control within the main linac. It has been shown
that the beam energy must be estimated and have to be transmitted to the neighboring RF
stations as long as the beam energy is not measurable after each accelerator module. Pre-
sented is a distributed control scheme with interconnections between the LLRF controller.
This allows to exchange beam error information and controller states. Simulation results
present the beam performance gain by exchanging information and controlling the FEL
in a distributed control scheme. Furthermore, it has been shown, that communication
delays have a negative impact on the beam energy performance. Nevertheless, without
extending the controller order an adjustment of one parameter seems to be sufficient to
handle communication delays.
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Chapter 6

Summary and Outlook

In this thesis the problem of beam-based controller design for free-electron lasers is ad-
dressed. Future FELs require a high performance controller design to ensure equidistant
laser light flashes which have the same peak brilliance and wavelength for each laser
pulse. The requirement on the FEL pulses are directly related to requirement on the
electron beam. The proposed controller design includes beam-based measurements, i.e.
the arrival time, compression and energy of electron bunches, which are controllable by
adjusting the acceleration fields inside the accelerator modules. The actuator, i.e. the RF
field, is modeled with high accuracy based on the special SO(2) symmetric group. It has
be shown, that the actuator dynamics, separated in its real and imaginary part, obeys
this symmetry. Based on this, an optimal RF field feedback controller and simplifications
regarding the feedforward drive adaptation by norm optimal iterative learning control
were found and measurement results, displaying the improvements, were presented. The
beam-based signals are proportional to RF field signals, e.g. bunch arrival time and
compression changes are proportional to RF field amplitude and phase changes, which
are seen as static mapping matrix around a given RF field setpoint. The beam-based
controller makes use of a linearised mapping from beam measurements to the real and
imaginary RF field vector field. Measurement results at FLASH show significant im-
provements of beam-based controller, i.e. bunch arrival time and bunch compression, as
comparison to only RF field control. Proposed is a cascaded feedback controller, with an
inner beam-based loop and an outer RF field loop. These beam-based corrections, done
within the first part of the linear accelerator, are on the expense of the beam energy.
The main linear accelerator increases the beam energy up to a desired final beam energy
value which defines the laser light wavelength. The beam energy is directly measurable
at two positions, i.e. the initial and final beam energy, of the main linear accelerator. In
case of an error within the main linac the only possibility is to minimize this occurring
disturbance by adjusting the RF field within the last accelerator module. In this thesis
an alternative approach is considered which allows to control beam energy errors close
to a disturbed module. Hereby, the temporal system equations and physical equations
describing the energy gain in spatial domain are rewritten in a spatially interconnected
plant model. Making use of an interconnected controller, the controller design task is
to find an optimal controller for both, the spatial interconnection and temporal dynam-
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ics. Simulation results present the performance gain by exchanging information between
neighboring controllers. By including communication delays, which are present for real
plant integration, the interconnected controller tends to become a stable weakly damped
oscillation. This is minimized by adjusting one parameter within the controller synthesis.

6.1 Outlook

In the following, a number of relevant problems of further research concerning free-electron
lasers are discussed and outlined.

Distributed control scheme with communication delays Communication delays
between neighboring controllers have a negative impact on beam energy control. Further
research concerning this communication delays within the controller synthesis should lead
to reliable controller without adjusting additional tuning parameters. In [Eichler et al.,
2013] the stability analysis for an interconnected system with uncertain time-varying time
delays by integral quadratic constraints is considered. Further controller synthesis exten-
sions, including time-varying communication delays, packet losses and interconnection
breaks, must be considered for an integration at XFEL to guarantee robust beam energy
stability.

Distributed iterative learning control The beam energy error is connected to RF
field properties, more precisely to the RF field error, where repetitive errors are minimized
from pulse to pulse using an iterative learning algorithm. The interconnected control
scheme exchanges beam energy information between RF stations. Hence, the extension of
an interconnected iterative learning control algorithm may provides a faster reduction of
repetitive beam energy errors. Within this thesis it has be shown that the developed tensor
based ILC is implementable directly within the LLRF controller, which is interconnected
to the neighboring controller, hence those are able to exchange information.

Integration of normal conducting cavity It is foreseen to equip FLASH with a
normal conducting cavity. This, together with low latency measurements and low latency
drive signals, allows to increase the control bandwidth by a factor of about 10. Never-
theless, the drawback is a limited control action such that the proposed controller design
for bunch arrival time and bunch compression needs to exchange information between the
superconducting RF station and normal conducting module. Hereby, the control action
needs to be separated into different frequency ranges, e.g. the normal conducting module
covers high frequency disturbance rejection and the superconducting modules those for
low frequencies, respectively.

Optical synchronization system The previously described beam-based controller de-
sign and by using a fast actuator to minimize fast errors from the electron beam ensures
an optimal electron beam w.r.t. arrival time, compression and energy of the electron
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bunch. However, since the latter are stabilized to a high level, the main task for further
user experiments is a stable clock distribution via optical fibre links, [Schulz et al., 2013].
This problem can be divided into two parts. Firstly, make sure that the master laser oscil-
lator generates equidistant laser pulses for synchronization. Secondly, stabilize the travel
time of the laser pulses within the fibre links which distributes the clock signal to other
subsystems. Those fibre links are sensitive w.r.t. temperature and humidity variations.
The latter must be compensated by a control strategy, especially for the XFEL with fibre
length in kilometer range.
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Appendix A

Introduction Lie Groups and
Subgroup SO(2)

A short introduction to Lie groups, especially the subgroup SO(2), is given in the following.
Those occur in abundance throughout physics and mathematics; a variety of books is
available, e.g. [Gilmore, 1974], [Srinivasa Rao, 1988] and [Sepanski, 2007]. Considering
the general linear group of dimension n

GL(n,F) = {g ∈ Mn,n(F) | g is invertible} , (A.0.1)

with Mn,n as set of n × n matrices over F, where F is either C or R. A Lie group
is a group and a manifold so that the multiplication map and inverse map is smooth,
[Sepanski, 2007]. The orthogonal group is a Lie group, given by

O(n) =
{
g ∈ GL(n,R) | gT g = I

}
, (A.0.2)

with gT as transpose of g. The special orthogonal group of dimension n, as short hand
notation SO(n), is a closed subgroup of the orthogonal group. This group is often denoted
as rotation group, defined by

SO(n) = {g ∈ O(n) | det g = 1} . (A.0.3)

Within this thesis the special orthogonal group of dimension two is considered, which can
be expressed as a two-dimensional rotation matrix

R(φ) =

[
cos φ − sin φ
sin φ cos φ

]
. (A.0.4)

This matrix rotates points in the xy-Cartesian plane counter-clockwise through a rotation
angle φ about the origin. Obviously, the determinant of R(φ) is one for all angles φ,
thus R(φ) obeys the SO(2) symmetry. Lets choose a complex vector x ∈ C which is
decomposable into an amplitude part A and phase part φ,

x = A · eiφ = A · (cos φ + i sin φ) = Re{x} + i Im{x} , (A.0.5)
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with i as imaginary unit, and Re{x}, Im{x} as real and imaginary part of x, respectively.
The phase of the complex variable x ∈ C is rotated by an angle φ1

x̃ = x · eiφ1 = (Re{x} + i Im{x}) · (cos φ1 + i sin φ1) (A.0.6)

= (Re{x} cos φ1 − Im{x} sin φ1) + i (Re{x} sin φ1 + Im{x} cos φ1) , (A.0.7)

leading to a new complex vector x̃. The one dimensional complex problem is mapped
into a two-dimensional problem by separating the real and imaginary part, which obeys
a matrix vector operation

[
Re{x̃}
Im{x̃}

]
=

[
cos φ1 − sin φ1

sin φ1 cos φ1

]
·

[
Re{x}
Im{x}

]
, (A.0.8)

in which the rotation matrix is SO(2) symmetric.
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Appendix B

3rd Harmonic RF Module at FLASH

B.1 Phase Space Linearisation

Since 2010 an additional module, namely ACC39, is installed, [Vogel et al., 2010]. The
main purpose of this module, which is operated with a three times higher frequency
(f0 = 3.9 GHz), is to linearise the longitudinal phase space of the electron bunch; detailed
information can be found in [Vogel et al., 2007] and [Edwards et al., 2010]. The accel-
erating amplitude seen by the electron beam for an acceleration by ACC1 and ACC39
is A(ACC1+ACC39) = AACC1 · cos(−φbeam) + AACC39 · cos(180o + 3 · φbeam). The electron
bunches leaving the RF gun typically have a length of about 2 mm, depending on the
bunch charge. It is straightforward to show that this corresponds to about 3 degree of the
RF field phase upstream the first BC. ACC39 linearises the RF field of the first accelerator
module, such that an electron bunch, which is accelerated by ACC1 and ACC39, have a
linear energy chirp, shown in Figure B.1.1.
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Figure B.1.1: Phase space linearisation at beam phase φbeam = 8 deg. corresponds
to -8 deg. RF field phase for ACC1. ACC39 is operated as decelerating module with
an RF field phase of 180 deg. + 3φbeam, here -156 deg., and 1/9 lower amplitude than
ACC1, see [Vogel et al., 2007].
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B.1. PHASE SPACE LINEARISATION

All RF field phases are shifted w.r.t. the phase of ACC1. Assume a beam phase of 8 deg.,
i.e. an RF field phase of -8 deg. in ACC1; an usual off-crest operation. With an electron
bunch length of 3 deg., the amplitude and phase must be linearised by ACC39 around
−8 deg. ± 1.5 deg., visualized in Figure B.1.2 as centered black line, where Figure B.1.1
is zoomed into the region of interest.
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Figure B.1.2: Simulation of phase linearisation for corrections (from nominal setpoint)
only in ACC1 (two upper subplots) or corrections in ACC1 and ACC39 (two subplots
below). Here an amplitude correction up to ± 2 MV (left side) and a phase correction up
to ± 2 deg. (right side) is assumed. The initial setpoint correction is in- and decreased
in steps of ±0.1, ±0.5, ±1.0, ±1.5 and ±2.0

The colored lines are correction signals, either amplitude or phase corrections, which
shows in the upper two subplots the effect of amplitude or phase changes by ACC1.
In general, such amplitude or phase changes must be compensated by ACC39. Thus
an information exchange between both modules is necessary, since changes of the phase
of ACC1 (upper right subplot) leads to amplitude variations. If the module is able to
exchange those phase corrections to the neighboring module, here ACC39, this amplitude
change can be corrected, see lower right subplot. Consider Figure B.1.3, where the first
derivative of each function is shown and compare the upper and lower two subplots.
Amplitude variations caused by corrections of ACC1 lead to derivative changes, more
precisely to bunch compression changes, if this is not corrected by ACC39. However, such
an additional correction in ACC39 causes a higher sensitive to compression, i.e. a larger
spread of the derivatives. Therefore, if the bunch compression is corrected, i.e. the slope
of the amplitude is changed, the system is more sensitive to the performance of phase
control. Hence, by using a beam-based feedback strategy which corrects simultaneously
the RF field of ACC1 and ACC39 an information exchange between both modules is
necessary.
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Figure B.1.3: First derivative of the functions given in Figure B.1.2 showing the
sensitivity and linearity over the considered phase range.

B.2 Modeling the 3rd Harmonic RF Module

Using the developed SO(2) symmetric grey box structure, Section 3.1.2 on page 23, to
identify the parameters of the mathematical model for the 3rd harmonic RF station,
shows that a non-symmetric modeling approach facilitates the cross-validation. Hence,
the SO(2) symmetric modeling procedure is extended to allow the parameter identification
for slightly SO(2) symmetric disturbances.

Extension to symmetry disturbances

To identify also non-symmetric elements of the system, an example of adapting the input
or output sub-matrices is given. For real eigenvalues, e.g. with representation given in
(a.i) on page 24, the disturbed input matrix

Γ̂r =

[
b1 −b2

k2b2 k1b1

]
, (B.2.1)

can be defined by introducing two variables k1 and k2. In case for k1 = k2 = 1 the model
is SO(2) symmetric again. The input sub-matrix of the high frequency behavior, e.g. for
case (c.i), see page 26, is adapted to

Γ̂c =




b11 b12 k2b21 k2b22

−b21 −b22 k1b11 k1b12




T

. (B.2.2)

An example of such a non-symmetry system is given by modeling the third harmonic
RF station. The procedure, including data preconditioning and detrending follows from
Section 3.1.3.

The plant model is shown in Figure B.2.1 and the cross-validation is presented in Fig-
ure B.2.2. Hereby, one has to consider that the identified model is a small signal model,
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Figure B.2.1: Small signal model for ACC39; identified with the non-symmetric mod-
eling approach.

hence it is valid around the operating point for a small excitation signal. It can be seen
that a disturbance, i.e. the excitation signal itself, has a stronger effect on channel Q,
since the drift of the error signal is much larger compared to channel I. The RF station
was operated with a phase setpoint of 45 degree during the system identification, hence
it is expected that the error variation is similar on both channels. Further studies which
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Figure B.2.2: Cross-validation for the measured and simulated system response of
ACC39.

clarify the variation in error signal are necessary.
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Appendix C

Iterative Learning Control - Proofs

In the following, extend the SISO dynamic scaling part AG(z) back to MIMO by multipli-
cation with fixed rotation matrix R(φG) as G(z) = AG(z)R(φG). The SISO discrete-time
state space model of AG(z) is given as

x(t + 1) = Ãx(t) + B̃u(t) ,

y(t) = C̃x(t)
(C.0.1)

and mapped to a MIMO model by the Kronecker product of the input vector B̃ with the
rotation matrix R(φG) and a block-wise extension of the system and output matrix as

x(t + 1) =

A︷ ︸︸ ︷[
Ã 0
0 Ã

]
x(t) +

B︷ ︸︸ ︷

B̃ ⊗

[
cos(φG) − sin(φG)
sin(φG) cos(φG)

]

︸ ︷︷ ︸
R(φG)

u(t) ,

y(t) =

[
C̃ 0
0 C̃

]

︸ ︷︷ ︸
C

x(t) .

(C.0.2)

Proof of Proposition 4.2.1

Proof. The proof is based on the ILC algorithm given in Section 4.2.1, page 66, and the
ILC assumptions given on page 68. Lets assume K(T ) = 0 and compute K(T −1), which
depends only on the output matrix C and the weighting Q. Since C is designed to be
block diagonal and from the assumption that Q is block diagonal,

K(T − 1) = CT QC =

[
K̃(T − 1) 0

0 K̃(T − 1)

]

is block diagonal. The second element K(T − 2) is computed from

K(T − 2) = AT K(T − 1)A + CT QC

− [AT K(T − 1)B(BT K(T − 1)B + R)−1 · BT K(T − 1)A] .
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The matrix K(T −2) is a summation of three matrices. The first term of the sum is block
diagonal, since A and thus AT and K(T − 1), which is the second term of the sum, are
block diagonal. The third matrix is computed by

M3 = −[AT K(T − 1)B(BT K(T − 1)B + R)−1 · BT K(T − 1)A] .

Lets start with the inverse part of M3, i.e.

M̂ = (BT K(T − 1)B + R)−1 .

The input matrix B is the Kronecker product of

B = B̃ ⊗

[
cos(φG) − sin(φG)
sin(φG) cos(φG)

]
=

[
B̃ cos(φG) −B̃ sin(φG)
B̃ sin(φG) B̃ cos(φG)

]

and the transpose of B is

BT = B̃T ⊗

[
cos(φG) − sin(φG)
sin(φG) cos(φG)

]T

=

[
B̃T cos(φG) B̃T sin(φG)

−B̃T sin(φG) B̃T cos(φG)

]
.

Thus, M̂ is computed by

M̂ =(BT K(T − 1)B + R)−1

=

([
B̃T cos(φG) B̃T sin(φG)

−B̃T sin(φG) B̃T cos(φG)

] [
K̃(T − 1) 0

0 K̃(T − 1)

]

·

[
B̃ cos(φG) −B̃ sin(φG)
B̃ sin(φG) B̃ cos(φG)

]
+

[
R̃ 0
0 R̃

])−1

=

[
B̃T K̃(T − 1)B̃ + R̃ 0

0 B̃T K̃(T − 1)B̃ + R̃

]−1

(C.0.3)

=

[
M̃−1

3,1 0
0 M̃−1

3,1

]
,

which is block diagonal. It is straight forward to show, that the remaining part of K(T −2)
obtains the block diagonal structure, such that K(t) is the sum of three block diagonal
terms, which is block diagonal for SO(2) models with diagonal weighting matrices R(t)
and Q(t) and a block diagonal output matrix C. If K(T ) 6= 0, but block diagonal as given
in assumptions on page 68, it is already shown above that K(t) remains block diagonal.
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Proof of Proposition 4.2.3

Proof. Lets focus first on the computation of

α(t) =(I + K(t)BR−1BT )−1 ,

followed by the other matrices involved in the Norm Optimal ILC. First, consider the
inner part

BR−1BT =



[
B̃ cos(φG) −B̃ sin(φG)
B̃ sin(φG) B̃ cos(φG)

] [
R̃ 0
0 R̃

]−1 [
B̃T cos(φG) B̃T sin(φG)

−B̃T sin(φG) B̃T cos(φG)

])−1

=

[
B̃R̃−1B̃T 0

0 B̃R̃−1B̃T

]
.

As seen in Proposition 4.2.1 on page 69, K(t) is block diagonal, thus

α(t) =

[
I + K̃(t)B̃R̃−1B̃T 0

0 I + K̃(t)B̃R̃−1B̃T

]−1

=




(
I + K̃(t)B̃R̃−1B̃T

)−1
0

0
(
I + K̃(t)B̃R̃−1B̃T

)−1




is block diagonal. Since the result of β(t) and γ(t) are multiplications by block diagonal
matrices, β(t) and γ(t) remains block diagonal and are given by

β(t) = α(t)AT =
(
I + K̃(t)B̃R̃−1B̃T

)−1
ÃT ⊗

[
1 0
0 1

]
and

γ(t) = α(t)CT Q =
(
I + K̃(t)B̃R̃−1B̃T

)−1
C̃T Q̃ ⊗

[
1 0
0 1

]
.

Next, consider the computation of λ(t). Since the first factor was derived in (C.0.3), so
substitute K(T − 1) by K(t).

λ(t) =
(
BT K(t)B + R

)−1
BT K(t)A

=

[
B̃T K̃(t)B̃ + R̃ 0

0 B̃T K̃(t)B̃ + R̃

]−1 [
B̃T cos(φ) B̃T sin(φ)

−B̃T sin(φ) B̃T cos(φ)

] [
K̃(t) 0

0 K̃(t)

] [
Ã 0
0 Ã

]

=




(
B̃T K̃(t)B̃ + R̃

)−1
0

0
(
B̃T K̃(t)B̃ + R̃

)−1




[
B̃T cos(φG)K̃(t)Ã B̃T sin(φG)K̃(t)Ã

−B̃T sin(φG)K̃(t)Ã B̃T cos(φG)K̃(t)Ã

]

=
(
B̃T K̃(t)B̃ + R̃

)−1
B̃T K̃(t)Ã ⊗

[
cos(φG) sin(φG)

− sin(φG) cos(φG)

]

=
(
B̃T K̃(t)B̃ + R̃

)−1
B̃T K̃(t)Ã ⊗ R(φG)T .
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Obviously λ(t) is a result of a multiplication by BT and thus follows a SO(2) symmetry.
The multiplication of the block diagonal matrix R−1 with a SO(2) symmetric matrix BT

results in a SO(2) symmetric matrix

ω = R−1BT = R−1

[
B̃T cos(φG) B̃T sin(φG)

−B̃T sin(φG) B̃T cos(φG)

]
= R̃−1B̃T ⊗

[
cos(φG) sin(φG)

− sin(φG) cos(φG)

]

= R̃−1B̃T ⊗ R(φG)T .
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Appendix D

Amplitude/Phase to I/Q
Linearisation

The goal is to find a matrix M which maps small amplitude and phase corrections to I/Q
changes, where M needs to be a matrix operation as

(
∆I
∆Q

)
=

[
M11 M12

M21 M22

]

︸ ︷︷ ︸
M

·

(
∆A
∆φ

)
,

which must be implementable on an FPGA.

Consider a complex vector field

x = A · eiφ = A(cos(φ) + i sin(φ)) = A cos(φ) + iA sin(φ) = xI + ixQ , (D.0.1)

where a small correction ∆x results in a new complex vector field

y = x + ∆x = (A + ∆A) · ei(φ+∆φ) = (A + ∆A)(cos(φ) + i sin(φ))(cos(∆φ) + i sin(∆φ)) ,

in that ∆A and ∆φ is an amplitude and phase correction, respectively. A separation of
the real and imaginary part of y leads to

yI = A[cos(φ) cos(∆φ) − sin(φ) sin(∆φ)] + ∆A[cos(φ) cos(∆φ) − sin(φ) sin(∆φ)] ,

yQ = A[cos(φ) sin(∆φ) + sin(φ) cos(∆φ)] + ∆A[cos(φ) sin(∆φ) + sin(φ) cos(∆φ)] .
(D.0.2)

With the assumption that ∆φ is sufficiently small

cos(∆φ) ≈ 1 and sin(∆φ) ≈ ∆φ

holds. Hence, (D.0.2) for small corrections can be rewritten as

yI = A[cos(φ) − sin(φ)∆φ] + ∆A[cos(φ) − sin(φ)∆φ] ,

yQ = A[cos(φ)∆φ + sin(φ)] + ∆A[cos(φ)∆φ + sin(φ)] ,
(D.0.3)
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and inserting xI = A cos(φ) and xQ = A sin(φ) from (D.0.1)

yI = xI

∆I=yI−xI︷ ︸︸ ︷
−xQ∆φ + ∆A cos(φ) − ∆A sin(φ)∆φ ,

yQ = xQ +xI∆φ + ∆A sin(φ) + ∆A cos(φ)∆φ︸ ︷︷ ︸
∆Q=yQ−xQ

,
(D.0.4)

both equations are separable in initial vector xI and xQ and corrections ∆I and ∆Q.
Assuming that ∆A∆φ ≪ ∆A and ∆φ allows to use a matrix operation which maps
amplitude and phase corrections to I/Q changes by

(
∆I
∆Q

)
=

(
cos(φ) −xQ

sin(φ) xI

)

︸ ︷︷ ︸
M

·

(
∆A
∆φ

)
,

with xI and xQ as RF field setpoint.

Given is a second approach to determine the matrix M by the total derivative of I and
Q. The real and imaginary part of a complex vector, see (D.0.1), are given as

I = A cos(φ) and Q = A sin(φ) .

The total derivative of the functions I and Q are

dI =
∂I

∂A
dA +

∂I

∂φ
dφ and dQ =

∂Q

∂A
dA +

∂Q

∂φ
dφ ,

in matrix representation
[

∆I
∆Q

]
=

[
dI
dQ

]
=

[ ∂I
∂A

∂I
∂φ

∂Q
∂A

∂Q
∂φ

] [
dA
dφ

]
=

[ ∂I
∂A

∂I
∂φ

∂Q
∂A

∂Q
∂φ

] [
∆A
∆φ

]
,

with matrix elements

∂I

∂A
= cos(φ) ,

∂I

∂φ
= −A sin(φ) ,

∂Q

∂A
= sin(φ) ,

∂Q

∂φ
= A cos(φ) ,

which are the elements of M from the first approach.

132



Appendix E

Introduction to Distributed Control

During the last years, new strategies have been developed to synthesize controller for large
scale interconnected systems, which are typically spatially distributed and separable in a
chain of subsystems. These subsystems can be homogeneous and/or heterogeneous. In
the following, only homogeneous subsystems are considered. A theoretical background in
controlling a distributed system with non-identical subsystems is given in [Dullerud and
D’Andrea, 2004]. The main purpose of considering an infinite chain of identical subsys-
tems, which are interconnected, is to study the ability to synthesize an interconnected
controller which is designed by a single subsystem and can be used to control the overall
system chain. A short introduction based on [D’Andrea and Dullerud, 2003] is given in
the following.

Assume a chain of identical subsystems with short hand notation G(z, s) = Gs as depicted
in Figure E.0.1, where each subsystem can be described by




x(k + 1, s)[
w+(k, s)
w−(k, s)

]

z(k, s)
y(k, s)




x0(s)

=




ATT ATS BT,xd BT,xu

AST ASS BS,wd BS,wu

CT,z CS,z Dzd Dzu

CT,y CS,y Dyd Dyu


 ·




x(k, s)[
v+(k, s)
v−(k, s)

]

d(k, s)
u(k, s)




, (E.0.1)

with an initial state x(0, s) = x0(s); k and s are discrete-time and spatial location, re-
spectively.

v+(k, s) v+(k, s+ 1)

v
−
(k, s) v

−
(k, s+ 1)

w+(k, s) w+(k, s+ 1)

w
−
(k, s) w

−
(k, s+ 1)

d(k, s) z(k, s)

u(k, s) y(k, s) u(k, s+ 1) y(k, s+ 1)

d(k, s+ 1) z(k, s+ 1)

Gs Gs+1

Figure E.0.1: Spatially interconnected system Gs = G(z, s) with a fictive input d(k, s)
and fictive output z(k, s), the plant input u(k, s) and plant output y(k, s) and the
interconnection v(k, s) as input and w(k, s) as output, respectively.
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The interconnection of subsystems follows

v+(k, s + 1) = w+(k, s) ,

v−(k, s − 1) = w−(k, s) ,
(E.0.2)

where v(k, s) is the input and w(k, s) the output of the spatial interconnection to neigh-
boring subsystem. Often the signals are considered at a fixed time. Thus it is convenient
to separate the spatial (index S) and temporal (index T) parts of a signal [D’Andrea and
Dullerud, 2003]. By using m = (m0, m+, m−), in which m0 is the number of internal
temporal subsystem states x(k, s), m+ as size of interconnection variables v+(k, s) and m−

as size of interconnection variables v−(k, s) in positive and negative direction, respectively.
The spatial shift operator is defined as

∆S,m =

[
SIm+ 0

0 S−1Im−

]
, (E.0.3)

such that the interconnection can be substituted as

(∆S,mv(k))(s) = w(k, s) . (E.0.4)

By this, the interconnected system representation is given by




x(k + 1, s)
(∆S,mv(k))(s)

z(k, s)
y(k, s)




x0(s)

=




ATT ATS BT,xd BT,xu

AST ASS BS,wd BS,wu

CT,z CS,z Dzd Dzu

CT,y CS,y Dyd Dyu


 ·




x(k, s)
v(k, s)
d(k, s)
u(k, s)


 , (E.0.5)

for the subsystem G(z, s). Furthermore, if and only if (∆S,m − ASS) is invertible in
spatial domain, then the interconnected system is well-posed and hence itself stable,
further details in [Langbort and D’Andrea, 2003] and [D’Andrea and Dullerud, 2003].
The proposed framework of spatially interconnected systems provides an efficient way of
solving the controller synthesis problem for a large scale system with many subsystems,
because it reduces the problem to solving a synthesis problem for a single unit with
generalized plant model (E.0.5). Moreover, the synthesis problem can be solved by solving
an LMI problem, for which efficient solvers are available. The resulting controller takes
the form




xK(k + 1, s)[
wK

+ (k, s)
wK

− (k, s)

]

u(k, s)


 =



AK

TT AK
TS BK

T

AK
ST AK

SS BK
S

CK
T CK

S DK


 ·




xK(k, s)[
vK

+ (k, s)
vK

− (k, s)

]

y(k, s)


 . (E.0.6)

The control design objective is to find a controller C(z, s) such that the closed-loop sys-
tem is well-posed, stable, and contractive, [D’Andrea and Dullerud, 2003]. The controller
interconnection to neighboring controllers as well as the subsystems is depicted in Fig-
ure E.0.2.
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v+(k, s) v+(k, s+ 1)

v
−
(k, s) v

−
(k, s+ 1)

w+(k, s) w+(k, s+ 1)

w
−
(k, s) w

−
(k, s+ 1)

d(k, s) z(k, s)

u(k, s) y(k, s) u(k, s+ 1) y(k, s+ 1)

d(k, s+ 1) z(k, s+ 1)

Gs Gs+1

vK+ (k, s) vK+ (k, s+ 1)

vK
−

(k, s) vK
−

(k, s+ 1)

wK
+ (k, s) wK

+ (k, s+ 1)

wK
−

(k, s) wK
−

(k, s+ 1)

Cs Cs+1

Figure E.0.2: Spatially interconnected system, where subsystem Gs is connected to
the computed spatially interconnected controller Cs = C(z, s) with the controller inter-
connections vK(k, s) as input and wK(k, s) as output in positive and negative direction,
respectively.
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Appendix F

Symbols and Abbreviations

Symbols

A, B, C, D, Φ, Γ state-space matrices
AG(z) amplitude scaling part of transfer function matrix G(z)
C(z) controller transfer function
E energy
fS, TS sampling frequency, sampling time
G(z) transfer function of a plant
i imaginary unit
K proportional factor
R(φG) rotation matrix with rotation phase φG

RL shunt impedance
R(t), Q(t) weighting matrices
Q, QL quality factor, loaded quality factor
q charge
Td time-delay
V voltage
v, w interconnected signals
∆ω, ∆f detuning of the cavity
∆A/A relative amplitude variation
∆φ absolute phase variation
∆tA bunch arrival time variation
∆C bunch compression variation
s spatial domain parameter
I identity matrix
Re{x} real part of vector field x
Im{x} imaginary part of vector field x
R set of real numbers
C set of complex numbers
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ǫ beam energy error
λ eigenvalue
σ standard deviation, also jitter or root mean square (rms)
ω0 resonance frequency
ω1/2 system bandwidth (ω1/2 = ω0 − ω)
‖G(z)‖∞ H∞ norm of G(z) - system norm induced by signal two

norm
⊗ Kronecker product
◦ vector outer product
σi singular value i from a matrix

Subscripts

+ positive direction (beam flight direction)
− negative direction
acc acceleration
ana analytical
B beam
C controller
cl closed-loop
corr correction
F field
f final
F F feedforward
I in-phase
i initial
ident identified
Kly klystron
meas measured
Q quadrature
S spatial domain
sim simulated
SP setpoint
T temporal domain
V M vector modulator

Superscripts

E related to an energy
F related to an RF Field
K spatially interconnected controller
T transpose

138



CHAPTER F. SYMBOLS AND ABBREVIATIONS

Abbreviations

ACCx Accelerator module number x (FLASH)
Ax Accelerator module number x (XFEL)
ADC Analog-Digital Converter
BAM Bunch Arrival Time Monitor
BBF Beam-Based Feedback
BC Bunch Compressor
BCM Bunch Compression Monitor
DAC Digital-Analog Converter
DESY Deutsches Elektronen Synchrotron
EBPM Energy Beam Position Monitor
FEL Free-Electron Laser
FLASH Free-Electron Laser in Hamburg
FPGA Field Programmable Gate Array
FWHM Full Width at Half-Maximum
HIFOO(d) H-Infinity Fixed Order Optimization (in discrete-time)
HOM Higher Order Mode
I In-phase or real part of a complex vector field
IF Intermediate Frequency
ILC Iterative Learning Control
linac linear accelerator
LLRF Low Level Radio Frequency
LMI Linear Matrix Inequality
LTI Linear Time-Invariant
MIMO Multi-Input Multi-Output
NO-ILC Norm Optimal Iterative Learning Control
NO-T-ILC Norm Optimal Tensor Iterative Learning Control
PRB Pseudo Random Binary
Q Quadrature or imaginary part of a complex vector field
RF Radio Frequency
rms root mean square
SASE Self Amplified Spontaneous Emission
SISO Single-Input Single-Output
SLAC Stanford Linear Accelerator Center
SNR Signal-to-Noise Ratio
SO(2) Special Orthogonal group of dimension 2
TESLA TeV-Energy Superconducting Linear Accelerator
MTCA also MTCA.4, Micro Telecommunications Computing

Architecture standard, [MTCA.4, 2013]
VME Versa Module Eurocard standard
w/ with
w/o without
w.r.t. with respect to
XFEL X-ray Free-Electron Laser
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