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Abstract. In this paper we consider sparse, symmetric eigenproblems which are rational pertur-
bations of small rank of linear eigenproblems. Problems of this type arise in structural dynamics and
in vibrations of fluid–solid structures. Taking advantage of the limit behaviour of certain parameter
dependent linear eigenproblems we construct a suitable initial basis for iterative projection methods
of Jacobi–Davidson or Arnoldi type.
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1. Introduction. In this contribution we consider the rational eigenvalue prob-
lem

Kx = λMx+

p
∑

j=1

λ

σj − λ
Cjx (1.1)

where K ∈ Rn×n and M ∈ Rn×n are sparse symmetric and positive definite matrices,
and Cj ∈ Rn×n are symmetric and positive semi-definite matrices of small rank, and
0 < σ1 < · · · < σp are positive numbers. Problems of this type arise in (finite ele-
ment models of) vibrations of fluid–solid structures or plates with elastically attached
masses (cf. [4]).

In [1] and [9] we discussed iterative projection methods of Jacobi–Davidson and
of Arnoldi type for symmetric nonlinear eigenproblems T (λ)x = 0 which allow min-
max characterizations of their eigenvalues. In this case the eigenvalues can be deter-
mined one after the other from projections to subspaces of small dimension which are
expanded in the course of the algorithm. The projected eigenproblems inherit the
symmetry, and its eigenvalues can be determined efficiently by safeguarded iteration.
However, to start this method one needs to know a suitable initial space and the
number of eigenvalues in the range of the Rayleigh functional.

For the rational eigenproblem (1.1) this is no problem for the eigenvalues in
[0, σ1) since the smallest eigenvalue is a first eigenvalue, and the safeguarded iteration
converges globally for any initial vector in the domain of definition of the Rayleigh
functional. After convergence the method has collected enough information to find
the second eigenvalue, and consecutively the further eigenvalues in [0, σ1). The only
problem remains that we do not know in advance the number of eigenvalues of problem
(1.1) in [0, σ1), and therefore we do not know whether the method has found all
eigenvalues in this interval. For intervals Ij := (σj , σj+1), j = 1, . . . , p− 1 we neither
know a suitable initial search space, nor the number of eigenvalues in Ij a priori. In
this paper we take advantage of an embedding of problem (1.1) into a family of linear
eigenproblems from which we gain the missing information.

The paper is organized as follows. Section 2 presents two examples yielding
rational eigenproblems, and Section 3 summarizes the minmax characterization of
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eigenvalues for nonoverdamped problems and the safeguarded iteration to determine
a particular eigenvalue. Section 4 outlines iterative projection methods for symmetric
nonlinear eigenproblems, and Section 5 determines the number of eigenvalues in an
interval Ij , and presents a suitable initial space for an iterative projection method.
The paper closes with a numerical example from vibrations of fluid–solid structures.

2. Examples of rational eigenproblems. In this section we present two ex-
amples of rational eigenproblems of type (1.1).

2.1. Plates with elastically attached loads. Consider the flexurable vibra-
tions of an isotropic thin plate the middle surface of which is occupying the plane
domain Ω. Denote by ρ = ρ(x) the volume mass density, D = Ed3/12(1 − ν2) the
flexurable rigidity of the plate, E = E(x) Young’s modulus, ν = ν(x) the Poisson
ratio, and d = d(x) the thickness of the plate at a point x ∈ Ω. Assume that for
j = 1, . . . , p at points xj ∈ Ω masses mj are joined to the plate by elastic strings with
stiffness coefficients kj . Then the vertical deflection w(x, t) of the plate at a point x
at time t and the vertical displacements ξj(t) of the load of mass mj at time t satisfy
the following equations

Lw(x, t) + ρd
∂2

∂t2
w(x, t)−

p
∑

j=1

mk

∂2

∂t2
ξjδ(x− xj) = 0, x ∈ Ω, t > 0 (2.1)

Bw(x, t) = 0, x ∈ ∂Ω, t > 0 (2.2)

mj

∂2

∂t2
ξj + kj(ξj(t)− w(xj , t)) = 0, t > 0, j = 1, . . . , p. (2.3)

Here B denotes some suitable boundary operator, δ(x) denotes Dirac’s delta distri-
bution, and L the plate operator

L = ∂11D(∂11 + ν∂22) + ∂22D(∂22 + ν∂11) + 2∂12D(1− ν)∂12

where ∂ij = ∂i∂j and ∂i = ∂/∂xi.
The eigenmodes and eigenfrequencies obtained from the ansatz

w(x, t) = u(x)eiωt and ξj(t) = cje
iωt

satisfy the eigenproblem

Lu(x) = λρdu+

p
∑

j=1

λσj
σj − λ

mjδ(x− xj)u, x ∈ Ω (2.4)

Bu(x) = 0, x ∈ ∂Ω (2.5)

where λ = ω2 and σj = kj/mj , and discretizing by finite elements yields the rational
matrix eigenvalue problem (1.1).

2.2. Fluid–structure interaction. Another rational eigenproblem of type (1.1)
is governing free vibrations of a tube bundle immersed in a slightly compressible fluid
under the following simplifying assumptions: The tubes are assumed to be rigid, as-
sembled in parallel inside the fluid, and elastically mounted in such a way that they
can vibrate transversally, but they can not move in the direction perpendicular to
their sections. The fluid is assumed to be contained in a cavity which is infinitely
long, and each tube is supported by an independent system of springs (which simu-
lates the specific elasticity of each tube). Due to these assumptions, three-dimensional
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effects are neglected, and so the problem can be studied in any transversal section of
the cavity. Considering small vibrations of the fluid (and the tubes) around the state
of rest, it can also be assumed that the fluid is irrotational.

Mathematically this problem can be described in the following way (cf. [6], [2]).
Let Ω ⊂ R2 (the section of the cavity) be an open bounded set with locally Lipschitz
continuous boundary Γ. We assume that there exists a family Ωj 6= ∅, j = 1, . . . , p,
(the sections of the tubes) of simply connected open sets such that Ω̄j ⊂ Ω for every
j, Ω̄j ∩ Ω̄i = ∅ for j 6= i, and each Ωj has a locally Lipschitz continuous boundary Γj .

With these notations we set Ω0 := Ω \
⋃K
j=1 Ω̄j . Then the boundary of Ω0 consists of

p+ 1 connected components which are Γ and Γj , j = 1, . . . , p.
We denote by H1(Ω0) = {u ∈ L2(Ω0) : ∇u ∈ L2(Ω0)

2} the standard Sobolev
space equipped with the usual scalar product

(u, v) :=

∫

Ω0

(u(x)v(x) +∇u(x) · ∇v(x)) dx.

Then the eigenfrequencies and the eigenmodes of the fluid-solid structure are governed
by the following variational eigenvalue problem (cf. [6], [2])

Find λ ∈ R and u ∈ H1(Ω0) such that for every v ∈ H1(Ω0)

c2
∫

Ω0

∇u · ∇v dx = λ

∫

Ω0

uv dx+

p
∑

j=1

λρ0
kj − λmj

∫

Γj

un ds ·

∫

Γj

vn ds. (2.6)

Here u is the potential of the velocity of the fluid, c denotes the speed of sound
in the fluid, ρ0 is the specific density of the fluid, kj represents the stiffness constant
of the spring system supporting tube j, mj is the mass per unit length of the tube
j, and n is the outward unit normal on the boundary of Ω0. Again, discretizing by
finite elements yields a rational eigenproblem (1.1).

3. Minmax characterization for nonoverdamped problems. For λ ∈ J
in an open real interval J let T (λ) ∈ Rn×n be a family of symmetric matrices the
element of which are differentiable. We assume that for every x ∈ Rn \ {0} the real
equation

f(λ, x) := xTT (λ)x = 0 (3.1)

has at most one solution λ ∈ J . Then equation (3.1) defines a functional p on some
subset D ⊂ Rn which obviously generalizes the Rayleigh quotient for linear pencils
T (λ) = λB−A, and which we call the Rayleigh functional of the nonlinear eigenvalue
problem

T (λ)x = 0. (3.2)

We further assume that

xTT ′(p(x))x > 0 for every x ∈ D (3.3)

generalizing the definiteness requirement for linear pencils. By the implicit function
theoremD is an open set, and differentiating the identity xTT (p(x))x = 0 one obtains,
that the eigenvectors of (3.2) are stationary points of p.
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Under the conditions above we proved in [10] a minmax principle for the nonlinear
eigenproblem (3.2) if the eigenvalues are enumerated appropriately. λ ∈ J is an
eigenvalue of (3.2) if and only if µ = 0 is an eigenvalue of the matrix T (λ), and by
Poincaré’s maxmin principle there exists m ∈ N such that

0 = max
dimV=m

min
x∈V, x6=0

xTT (λ)x

‖x‖2
.

Then we assign this m to λ as its number and call λ an m-th eigenvalue of problem
(3.2).

With this enumeration it holds (cf. [10]) that for every m ∈ {1, . . . , n} problem
(3.2) has at most one m-th eigenvalue in J , which can be characterized by

λm = min
dimV=m,D∩V 6=∅

sup
v∈D∩V

p(v). (3.4)

Conversely, if

λm := inf
dimV=m,D∩V 6=∅

sup
v∈D∩V

p(v) ∈ J, (3.5)

then λm is an m-th eigenvalue of (3.2), and the characterization (3.4) holds. The
minimum is attained by the invariant subspace of T (λm) corresponding to itsm largest
eigenvalues, and the supremum is attained by any eigenvector of T (λm) corresponding
to µ = 0.

To prove this characterization we took advantage of the following relation

λ







>
=
<







λm ⇔ µm(λ) := max
dimV=m

min
x∈V, x6=0

xTT (λ)x

‖x‖2







>
=
<







0. (3.6)

The enumeration of eigenvalues and the fact that the eigenvectors of (3.2) are
the stationary vectors of the Rayleigh functional suggests the method in Algorithm 1
called safeguarded iteration for computing the m–th eigenvalue.

Algorithm 1 Safeguarded iteration

1: Start with an approximation σ1 to the m-th eigenvalue of (3.2)
2: for k = 1, 2, . . . until convergence do

3: determine an eigenvector xk corresponding to the m-largest eigenvalue of T (σk)
4: solve xTk T (σk+1)xk = 0 for σk+1
5: end for

The following theorem contains the approximation properties of the safeguarded
iteration. It was already proved in [11] but because this technical report is not easily
available we repeat its proof here.

Theorem 3.1.

(i) If λ1 := infx∈D p(x) ∈ J and σ1 ∈ p(D) then the safeguarded iteration con-
verges globally to λ1.

(ii) If λm ∈ J is a m-th eigenvalue of (3.2) which is simple then the safeguarded
iteration converges locally and quadratically to λm.

(iii) Let T (λ) be twice continuously differentiable, and assume that T ′(λ) is pos-
itive definite for λ ∈ J . If xk in step 3. of Algorithm 1 is chosen to be
an eigenvector corresponding to the m largest eigenvalue of the generalized
eigenproblem T (σk)x = µT ′(σk)x then the convergence is even cubic.
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Proof. (i): Assume that xk−1 ∈ D. Then σk = p(xk−1) ≥ λ1, and (3.6) yields

µ1(σk) = max
x6=0

xTT (σk)x

xTx
=

xTk T (σk)xk
xTk xk

≥ 0. (3.7)

Suppose that xk 6∈ D. Then it follows from (3.7) that xTk T (λ)xk > 0 for every λ ∈ J .
Let x̃ ∈ D be an eigenvector of T corresponding to λ1. Then we get from (3.3)

x̃TT (λ)x̃ < 0 for every λ ∈ J , λ < λ1. Hence for fixed λ ∈ J , λ < λ1

q(t) := (x̃+ t(xk − x̃))TT (λ)(x̃+ t(xk − x̃)) = 0

has a solution t̃ ∈ (0, 1), i.e. w := x̃+ t̃(xk − x̃) ∈ D and p(w) = λ < λ1 contradicting
(3.4).

The monotonicity of {σk} follows directly from the definition of σk+1, (3.7) and
(3.3). Let σ̂ := limk→∞ σk and let {xkj

} be a convergent subsequence of {xk}, xkj
→

x̂ 6= 0.
Then by the continuity of T (λ)

0 = xTkj
T (σkj+1)xkj

→ x̂TT (σ̂)x̂,

i.e. x̂ ∈ D and p(x̂) = σ̂, and we get from the continuous dependence of µ1(σ) on σ

T (σ̂)x̂ = lim
j→∞

T (σkj
)xkj

= lim
j→∞

µ1(σkj
)xkj

= µ1(σ̂)x̂.

Multiplying this equation by x̂T yields µ1(σ̂) = 0, and hence σ̂ = λ1.
(ii): If λm is a simple eigenvalue of T then it is an easy consequence of the

implicit function theorem that for |λ − λm| small enough the function λ → x(λ) is
defined and continuously differentiable, where x(λ) denotes the suitably normalized
eigenvector of T (λ) corresponding to the m-largest eigenvalue. Because D is an open
set, h(λ) := p(x(λ)) is defined in a neighbourhood of λm, and since the eigenvalues of
T are the stationary values of p, we get

h′(λm) = p′(x(λm))x′(λm)) = 0.

This proves the quadratic convergence of σk = h(σk−1) to λm.
(iii): Let T ′(λ) be positive definite and denote by µ(λ) the m-largest eigenvalue

of the generalized eigenproblem T (λ)x = µT ′(λ)x and by x(λ) a corresponding eigen-
vector which is suitably normalized such that x(·) is continuous. If λm is an m-th
eigenvalue of T (·) then µ(λm) = 0, and differentiating T (λ)x(λ) = µ(λ)T ′(λ)x(λ)
yields

T ′(λm)x(λm) + T (λm)x′(λm) = µ′(λm)T ′(λm)x(λm).

Multiplying by x(λm)T from the left we get µ′(λm) = 1, and therefore

T (λm)x′(λm) = 0. (3.8)

If we define h analogously to part (ii) by h(λ) = p(x(λ)) then as before h′(λm) = 0,
and from

h′′(λm) = −2
x′(λm)TT (p(x(λm)))x′(λm)

x(λm)TT ′(p(x(λm)))x(λm)

and (3.8) it follows h′′(λm) = 0, i.e. the safeguarded iteration converges cubically.
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4. Iterative projection methods. For sparse linear eigenvalue problems

Ax = λx (4.1)

iterative projection methods are very efficient. Here the dimension of the eigenprob-
lem is reduced by projection to a subspace of much smaller dimension, and the reduced
problem is handled by a fast technique for dense problems. The subspaces are ex-
panded in the course of the algorithm in an iterative way with the aim that some of
the eigenvalues of the reduced matrix become good approximations of some of the
wanted eigenvalues of the given large matrix.

Generalizations to nonlinear eigenproblems are discussed in [1], [7], [8] or [9]. A
typical example is the nonlinear symmetric Arnoldi method in Algorithm 2. Actually,
the underlying idea is not to construct a Krylov space or an Arnoldi recursion, but sim-
ilarly as in the Jacobi–Davidson method the search space is expanded by a direction
which has a high approximation potential for the eigenvector wanted next (namely
the improvement by the residual inverse iteration [5]). However, if it is applied to
a linear problem then the preconditioned Arnoldi method results, and therefore the
approach is called Arnoldi method.

Algorithm 2 Nonlinear Arnoldi Method

1: start with an initial pole σ and an initial basis V , V HV = I;
2: determine preconditioner M ≈ T (σ)−1, σ close to first wanted eigenvalue
3: k = 1
4: while m ≤ number of wanted eigenvalues do

5: compute appropriate eigenvalue µ and corresponding eigenvector y of the pro-
jected problem TV (µ)y := V HT (µ)V y = 0.

6: determine Ritz vector u = V y and residual rk = T (µ)u
7: if ‖rk‖/‖u‖ < ε then

8: PRINT λm = µ, xm = u,
9: if m == number of wanted eigenvalues then

10: STOP
11: end if

12: m = m+ 1
13: if (k > 1) & (‖rk−1‖/‖rk‖ > tol) then

14: choose new pole σ
15: determine new preconditioner M ≈ T (σ)−1

16: end if

17: restart if necessary
18: choose approximations µ and u to next eigenvalue and eigenvector
19: determine residual r = T (µ)u
20: k = 0
21: end if

22: v = Mr
23: v = v − V V Hv ,ṽ = v/‖v‖, V = [V, ṽ]
24: reorthogonalize if necessary
25: update projected problem TV (µ) = V HT (µ)V
26: k = k + 1
27: end while

A crucial point in iterative projection methods for general nonlinear eigenvalue
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problems when approximating more than one eigenvalue is to inhibit the method to
converge to the same eigenvalue repeatedly. In the linear case this is no problem.
Krylov subspace solvers construct an orthogonal basis of the ansatz space not aiming
at a particular eigenvalue, and one gets approximations to extreme eigenvalues without
replication (at least if reorthogonalization is employed). If several eigenvalues are
computed by the Jacobi–Davidson method then one determines an incomplete Schur
factorization thus preventing the method from approaching an eigenvalue which was
already obtained previously (c.f. [3]). For nonlinear problems a similar normal form
does not exist.

However, if T (λ) is a family of symmetric matrices allowing a minmax charac-
terization of its eigenvalues then the projected problems inherit this property. The
eigenvalues can be determined one after the other by safeguarded iteration, and ap-
proximating the m-th eigenvalue usually enough information about the next eigen-
vector is gathered to compute the (m+1)-th eigenvalue safely. This approach has the
advantage that it is most unlikely that the method converges to an eigenvalue that
has already been found previously. The only problem is to initialize this process, i.e.
to determine the number of the smallest eigenvalue of the problem in the interval J
under consideration and a suitable initial space V , and to make sure that all eigenval-
ues in J have been found. For the rational eigenproblem (1.1) this will be the subject
of the next section.

In the following we comment briefly on some of the other steps. A broader
discussion of Algorithm 2 is contained in [9].

2. In our numerical examples we used the LU factorization of T (σ) if this could
be determined inexpensively and otherwise an incomplete LU factorization,
but every other preconditioner is fine.

3. k counts the number of iterations for fixed m. This is only needed to mea-
sure the speed of convergence and to decide whether a new preconditioner is
recommended in condition 13.

13. The residual inverse iteration with fixed pole σ is known to converge linearly
(cf. [5]), and the contraction rate satisfies O(|σ − λm|). We therefore update
the preconditioner if the convergence measured by the quotient of the last
two residual norms has become too slow.
In our numerical examples it happened that the condition in step 7. was
fulfilled in the first step after having increased m. In this case the quotient
of the last two residual norms does not say anything about the speed of
convergence, and we do not update the preconditioner.

17. As the subspaces expand in the course of the algorithm the increasing storage
or the computational cost for solving the projected eigenvalue problems may
make it necessary to restart the algorithm and purge some of the basis vectors.
Since a restart destroys information on the eigenvectors and particularly on
the one the method is just aiming at we restart only if an eigenvector has just
converged.

23. v is orthogonalized with respect to the current search space V by classical
Gram–Schmidt. It may be replaced by modified Gram–Schmidt for stability
reasons. Notice, however, that the classical Gram-Schmidt procedure is able
to use BLAS3, and thus can be faster than classical Gram–Schmidt by a
better use of the cache.

5. Locating eigenvalues of rational eigenproblems. To determine the num-
ber of eigenvalues between two consecutive poles σk and σk+1 of problem (1.1) we
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consider for µ ∈ (σj , σj+1) the parameter dependent linear eigenvalue problem

(

K +

k
∑

j=1

µ

µ− σj
Bj

)

x = λ
(

M +

p
∑

j=k+1

1

σj − µ
Bj

)

x. (5.1)

We denote by λm(µ) them-smallest eigenvalue. Then λ̂ is an eigenvalue of the rational

eigenproblem (1.1) if and only if λ̂ is a fixed point of λm : (σk, σk+1)→ R, and it is
easily checked that it is an m-th eigenvalue.

For the Rayleigh quotient Rµ(x) of problem (5.1) it holds Rµ1
(x) ≥ Rµ2

(x) for
µ1 ≤ µ2 and every x 6= 0, and therefore each of the functions λm(·) is monotonely
nonincreasing. Hence, if N(µ) for µ ∈ (σk, σk+1) denotes the number of eigenvalues
of problem (5.1) which are less than µ, then for σk < α < β < σk+1 the interval
[α, β) contains N(β) − N(α) eigenvalues of the rational problem (1.1), and they are
enumerated by N(α) + 1, N(α) + 2, . . . , N(β).

To determine the number of eigenvalues between the poles σk and σk+1 we have
to study the limit behaviour of the function λm(µ) for µ tending to the boundaries of
the interval. In [4] we obtained the following results which were even proved for the
infinite dimensional case.

Lemma 5.1.

κm := lim
µ→σk+

λm(µ)

is the m-th eigenvalue of the reduced problem
Find λ ∈ R and x ∈ Hk := {x ∈ H : Ckx = 0} such that

(

K +
k−1
∑

j=1

σk
σk − σj

Cj

)

x = λ
(

M +

p
∑

j=k+1

1

σj − σk
Cj

)

x, (5.2)

If κm is a simple eigenvalue then the eigenvectors xm(µ) corresponding to λm(µ)
(and normalized suitably) converge to an eigenvector corresponding to κm

Lemma 5.2. Let rk+1 = rank(Ck+1). Then

lim
µ→σk+1−

λj(µ) = 0 for j = 1, . . . , rk+1.

For m > rk+1

lim
µ→σk+1−

λm(µ) =: κ̃m = λ̃m−r,

where λ̃m−r is the m− r smallest eigenvalue of the reduced problem
Find λ ∈ R and x ∈ Hk+1 := {x ∈ H : Ck+1x = 0} such that

(

K +

k
∑

j=1

σk+1
σk+1 − σj

Cj

)

x = λ
(

M +

p
∑

j=k+2

1

σj − σk+1
Cj

)

x,

These results demonstrate that it is reasonable to call a pole σj anm-th eigenvalue
of the rational eigenproblem (1.1) if and only if it is the m-smallest eigenvalue of the
restricted problem (5.2).
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Fig. 1: Eigencurves of (5.1) for a plate with 4 masses

If we connect the m + rk+1-th eigencurve in (σk, σk+1) to the m-th eigencurve
in (σk+1, σk+2) then we obtain a joint curve which is continuous at σk+1. Figure 1
contains the eigencurves for a plate to which 3 identical masses and one further mass
are attached.

For the number of eigenvalue of (1.1) between two consecutive poles we obtain
from Lemmas 5.1 and 5.2.

Theorem 5.3. Let mk be the number of eigenvalues λj of the reduced problem
(5.2) satisfying λj ≤ σk, and let rk be the rank of Ck.

Then the rational eigenproblem

Kx = λ
(

M +

p
∑

j=1

1

σj − λ
Cj

)

x,

has nk+1+rk+1−nk eigenvalues in (σk, σk+1] enumerated by nk+1, nk+2, . . . , nk+1+
rk+1.

Theorem 5.3 answers the question how to initialize the Arnoldi method for the
rational eigenproblem (1.1). For the interval J1 := (0, σ1) the infimum of the Rayleigh
functional is contained in J1, and due to the global convergence of the safeguarded
iteration we can start with any one dimensional space V such that p(V ) ∈ J1, and
can compute the eigenvalues in J1 one after the other until the method leaves the
interval J1. Let Ñ1 be the number of the largest eigenvalue λÑ1

of (1.1) found in J1.
To start the method for J2 := (σ1, σ2) we choose µ̂ = σ1 + ε, ε > 0 small, and

determine the eigenvalues of the linear problem (5.1) for µ = µ̂ which are less than
µ̂. We assume that these are ñ1. If ñ1+ r1 = N1 then all eigenvalues in J1 have been
found, no eigenvalue exist in (σ1, µ̂), and we can start the Arnoldi method for J2 with
an orthonormal basis of the eigenspace of problem (5.1) corresponding to the ñ1 + 1
smallest eigenvalues. Otherwise we have to explore the intervals (λÑ1

, σ1) and (σ1, µ̂)
for further eigenvalues. For the subsequent intervals we can proceed in the analogous
way.
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Fig. 2: Eigenvalues in [0,0.2); no restarts
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Fig. 3: Eigenvalues in (0.2,1); no restarts

6. Numerical example. We consider the rational eigenvalue problem (2.6)
where Ω is the ellipse with center (0, 0) and length of semiaxes 8 and 4, and Ωj ,
j = 1, . . . , 9 are circles with radius 0.3 and centers (−4,−2), (0,−2), (4,−2), (−5, 0),
(0, 0), (5, 0), (−4, 2), (0, 2) and (4, 2). We assume that kj = 1 for alle j, mj = 5 for
j=1,2,3, and m1 = 1 for j = 4, . . . , 9.

Discretizing problem (2.6) by finite elements one gets a rational matrix eigenvalue
problem

T (λ)x := −Kx+ λMx+
λ

0.2− λ
C1x+

λ

1− λ
C2x = 0 (6.1)
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Fig. 4: Eigenvalues in (1,3); no restarts

where C1 and C2 collect the contributions of the first 3 and 6 remaining tubes,respectively.
K,M , and C1 and C2 are symmetric matrices, K, C2 and C2 are positive semidefinite,
and M is positive definite. In our example the dimension is n = 36040.

Since every tube contributing to Cj increases the rank of Cj by 2 we have r1 = 6
and r2 = 12, and since m1 = 4 and m2 = 11, there are 10 eigenvalues in [0, 0.2)
enumerated 1, . . . , 10 and 19 eigenvalues in (0.2, 1) enumerated 5, 6, . . . , 23. The in-
terval (1,∞) contains 36029 eigenvalues enumerated 12, 13, . . . , 36040, 19 of which are
contained in the interval (1, 3). The largest eigenvalue λ̃23 = 0.9920 in (0.2, 1), and

the smallest eigenvalue λ̂12 = 1.0044 are very close to the pole σ2 = 1, and we had to
apply bisection to catch λ̃23.

The experiments were run under MATLAB 6.5 on an Intel Centrino M processor
with 1.7 GHz and 1 GB RAM. We preconditioned by the LU factorization of T (σ),
and terminated the iteration if the norm of the residual was less than 10−8. Figures
2. – 4. show the convergence histories of Arnoldi’s method for the three intervals
[0, 0.2), (0.2, 1) and (1, 3). The CPU times for the Arnoldi method are 30.0 seconds,
77.8 seconds and 94.4 seconds, respectively, including the respective CPU times 0.10,
1.56 and 2.56 seconds to solve all projected nonlinear eigenproblems. The methods
needs some initial steps to collect enough information, after that every 3 – 4 iterations
it finds the next eigenvalue.
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