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1 INTRODUCTION 4

Abstract

These notes present a probabilistic framework that enables a for-
mulation of classical probability theory, thermodynamics, and quantum
probability with a common set of four principles or axioms. It explains
everything that usual quantum mechanics and classical probability the-
ory does. We emphasize that this framework is not an interpretation
of quantum mechanics, such as ”many worlds“, ”Kopenhagen interpre-
tation“, or others. It is a probability algorithm that computes prob-
abilities of future events and additionally enables a reconstruction of
quantum theory, thermodynamics, diffusion, and Wiener processes.

We distinguish strictly between possibilities and outcomes. More-
over, we use a time concept based on the classification of future, present,
and past. Well-known paradoxes are resolved. The superposition prin-
ciple obtains a new meaning. The inclusion-exclusion principle, well-
known in probability theory and number theory, is generalized to com-
plex numbers.

Our probabilistic framework is not based on the Hilbert space for-
malism. It requires only simple set theory and complex numbers. Thus,
this theory can be taught in schools.

Our framework may be viewed as an axiomatic approach to prob-
ability in the sense of Hilbert, who asked for an axiomatic probability
theory in his sixth of the twenty-three open problems presented to the
International Congress of Mathematicians in Paris in 1900.

We have applied our probabilistic algorithm to several problems,
including classical problems, statistical mechanics and thermodynam-
ics, diffraction at multiple slits, light reflection, interferometer, delayed-
choice experiments, and Hardy’s Paradox.

1 Introduction

The true logic of the world is in the calculus of probabilities.
James Clerk Maxwell

According to the Cambridge dictionary, a probability is a number that rep-
resents how likely it is that a particular outcome will happen. In 1900, Hilbert
presented his famous fundamental problems, hereunder his sixth problem,
which claimed to treat probability axiomatically, similar to geometry. Many
responses reemerged1. However, more than 100 years later von Weizsäcker2

wrote:

Probability is one of the outstanding examples of the episte-
mological paradox that we can successfully use our basic concepts
without actually understanding them. von Weizsäcker 2006

1 Shafer, Vovk [2006]
2von Weizsäcker [2006, Page 59]
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Even today, classical probability, its relationship to quantum probability, and
the way of assigning probabilities to elementary events is a controversial philo-
sophical discussion. However, there are various interpretations of probability,
including one of the oldest, the frequency interpretation3.

For quantum probability problems, the debates become strange and weird.
Fuchs4 writes about the annual conferences:

What is the cause of this year-after-year sacrifice to the ”great
mystery?” Whatever it is, it cannot be for want of a self-ordained
solution: Go to any meeting, and it is like being in a holy city in
great tumult. You will find all the religions with all their priests pit-
ted in holy war - the Bohmians[3], the Consistent Historians[4], the
Transactionalists[5], the Spontaneous Collapseans[6], the Einselec-
tionists[7], the Contextual Objectivists[8], the outright Everettics[9,
10], and many more beyond that. They all declare to see the light,
the ultimate light. Each tells us that if we will accept their solution
as our savior, then we too will see the light. Fuchs 2002

In the same sense, Weinberg5 2017 writes about quantum theory:

Even so, I’m not as sure as I once was about the future of quan-
tum mechanics. It is a bad sign that those physicists today who are
most comfortable with quantum mechanics do not agree with one
another about what it all means. The dispute arises chiefly regard-
ing the nature of measurement in quantum mechanics. Weinberg
2017

In the following, we show that probability theory, thermodynamics, dif-
fusion, Brownian motion, Wiener integrals, and quantum probability can be
reconstructed with four principles. In particular, we present a predictive algo-
rithm for computing probabilities about macroscopic future events or detector
clicks. The principles distinguish strictly between internal possibilities and
outcomes and are much more general than the axioms of quantum mechanics.
Many well-known paradoxes can be explained, and interpretations like ”many
worlds“ or ”many minds“ are avoided. This paper also summarizes some parts
of two lecture notes6, including some corrections. Both lecture notes contain
many more issues.

The paper is organized as follows. Its main topic is a probabilistic frame-
work consisting of four general principles which, in particular, describe and
merge classical probability and quantum probability. These principles form
the content of Section 2, and they may be viewed as an axiomatic approach
to probability in the sense of Hilbert’s sixth problem. Several examples are
presented in Section 3. Three strange paradoxes, namely Renninger’s Negative-
Result Experiment, Delayed-Choice Experiments, and Interaction-Free Mea-
surements are discussed in sections 4, 5, and 6, respectively. Then, in Section

3See the discussions in Ballentine [2014, Page 32], Drieschner [2020]
4Fuchs [2002]
5Weinberg [2017]
6Jansson [2017], Jansson [2019]
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7, Hardy’s Paradox is investigated in detail. This paradox is based on the idea
of an experimental set-up where classic logic seems to prove that this set-up
is not realizable, although it was realized later. In Section 8, we show that
our probability theory is consistent and contains a U(1) symmetry. The prin-
ciple of inclusion and exclusion, a well-known counting technique belonging to
combinatorics but also applied in measure theory, is generalized in Section 9.
The reconstruction of statistical thermodynamics, described in Section 10, is a
crucial touchstone when applying our probability theory. In the two following
sections, we present the reconstruction of Feynman’s formulation of quantum
mechanics and its close relationships to Brownian motion, Wiener integrals,
and diffusion. Finally, some conclusions are given.

Hamburg, Germany, September 2022
Christian Jansson

2 A Unified Probabilistic Framework

When introducing the axioms of quantum mechanics, Susskind and Friedman7

write:

For a classical system, the space of states is a set (the set of
possible states), and the logic of classical physics is Boolean. That
seems obvious, and it isn’t easy to imagine any other possibility.
Nevertheless, the real world operates along different lines, at least
whenever quantum mechanics is important. The space of states of
a quantum system is not a mathematical set [6]; it is a vector space.
Relations between the elements of a vector space are different from
those between the elements of a set, and the logic of propositions is
different as well.

This section describes a probabilistic framework not based on the Hilbert
space formalism. We understand probability as a prognostic prediction of de-
cidable alternatives, which we call outcomes. These alternatives are described
by sets consisting of elementary possibilities. This framework unifies classi-
cal mechanics, statistical thermodynamics, and quantum mechanics. It has a
predictive power much more extensive than quantum mechanics. It supports
partially the opinion of Fuchs and Peres8:

The thread common to all the nonstandard ”interpretations” is
the desire to create a new theory with features corresponding to
some reality independent of our potential experiments. But, trying
to fulfill a classical worldview by encumbering quantum mechanics
with hidden variables, multiple worlds, consistency rules, or spon-
taneous collapse without any improvement in its predictive power
only gives the illusion of a better understanding. Contrary to those

7Susskind [2014], page 24
8Fuchs, Peres [2000]
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desires, quantum theory does not describe physical reality. What
it does is provide an algorithm for computing probabilities for the
macroscopic events (”detector clicks“) that are the consequences of
our experimental interventions. This strict definition of the scope
of quantum theory is the only interpretation ever needed, whether
by experimenters or theorists. Fuchs and Peres 2000

Shortly spoken, words say nothing but numbers describe everything.
What we observe, what we measure in experiments, are ”detector clicks”.

In the following, we consider experiments in the broadest sense. We describe
an experiment by three sets:

(i) The possibility space P is a set with elements p ∈ P, which we call
elementary possibilities.

(ii) The possibility algebra F, sometimes called field, is defined as the collec-
tion of subsets of P that contains P itself, and is closed under complement
and under countable unions. All subsets F ∈ F are called possibilities. If
they don’t coincide with the elementary possibilities {p}, then they are
called non-elementary.

(iii) The sample space O is a set consisting of pairwise disjoint sets F ∈
F called outcomes. The outcomes form a partition of the possibility
space, such that each elementary possibility p ∈ P is contained in exactly
one outcome F . If an outcome contains more than one element, we
speak of its internal elementary possibilities. The elementary possibilities
contained in some outcome F are called accessible from F .

Moreover, we assume:

(iv) A probability amplitude9 is given. It is defined as a mapping ϕ from the
possibility algebra F into the set of complex numbers:

F → ϕF = ϕ(F ) ∈ C, F ∈ F. (1)

We request that two general principles or axioms are satisfied.
First principle: For any countable set of pairwise disjoint possibilities

Fm ∈ F, such that F = ∪mFm, it is

ϕF = ϕ

(⋃
m

Fm

)
=
∑
m

ϕFm . (2)

We speak of this principle as the principle of superposition of probability
amplitudes. It is more general than Feynman’s first principle: ”When an event
can occur in several alternative ways, the probability amplitude for the event is
the sum of the probability amplitudes for each way considered separately”10.
Feynman’s quantum mechanics differs from our framework, since his theory

9We use the notation in Feynman [1948] p.4
10Feynman Lectures [1963] p.1-16
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does not distinguish between outcomes, possibilities, and internal possibilities,
and is not based on the three time concepts future, present, and past.

Second principle: This is Born’s rule that transforms probability ampli-
tudes of outcomes F to probabilities Pr(F ):

Pr(F ) = |ϕF |2 for all F ∈ O, and
∑
F∈O

|ϕF |2 = 1. (3)

It says that computing the square of the magnitude of probability amplitudes
for the outcomes yields classical probabilities. Summing up the probabilities
of all outcomes gives one. In particular, Born’s rule implies a real probability
measure on the sample space O. Thus, classical probability is incorporated.

We call the quadruplet (P,F,O, ϕ) together with these two principles a
possibility measure space.

Notice that in the literature, frequently, a measure is a non-negative func-
tion in contrast to complex amplitudes. Complex numbers, however, are in-
dispensable and fundamental for describing physical reality11.

We’ll examine some examples in more detail later. But for a first orien-
tation only the coin toss and the double slit experiment are mentioned. For
a coin toss, the elementary possibilities are Heads and Tails. They define the
possibility space. The set of outcomes coincides with these two elementary pos-
sibilities. In the double-slit experiment, the paths from the source, via the wall
of slits, to the detectors represent the elementary possibilities. Each outcome
is described by the set of paths from the source to one of these detectors.

An experiment is called deterministic if the possibility space and the sample
space consist of one element. In this case, the second principle implies that the
probability of this unique outcome is one. An experiment is called classical, if
the possibility space and the sample space coincide. The coin toss is classical,
whereas the double-slit experiment is not classical, since each detector can be
reached via several paths. The paths represent the internal possibilities.

The possibility space can be viewed as a P-fold alternative, that is, the ele-
mentary possibilities are mutually exclusive, meaning that during the execution
of an experiment exactly one possibility can happen. A P-fold alternative gen-
eralizes an 2-fold alternative which is a bit. The sample space can be viewed
as an O-fold alternative of mutually exclusive outcomes, which are empirically
decidable due to the detectors, in contrast to elementary possibilities.

Both principles provide mathematical conditions for probability ampli-
tudes. The second principle implies that it is sufficient to calculate the ampli-
tudes for all outcomes. The first principle shows that we need to compute the
amplitudes for the elementary possibilities only. The content of the following
two principles is about how to compute concrete probability amplitudes.

Third principle: The amplitudes ϕF contribute equally in magnitude for
all accessible elementary possibilities. They are proportional to some constant
times a complex number of magnitude one, namely

e
i
~S(F ). (4)

11Susskind [2014, page 44], Jansson [2017], Section 2.2, Wood [2021]
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The function S(F ) is called the action of the elementary possibility F .
Feynman describes his formulation of quantum theory as follows:

The total amplitude can be written as the sum of amplitudes
of each path - for each way of arrival. For every x(t) that we
could have - for every possible imaginary trajectory - we have to
calculate an amplitude. Then we add them all together. What do
we take for the amplitude for each path? Our action integral tells
us what the amplitude for a single path ought to be. The amplitude
is proportional to some constant times exp(iS/~), where S is the
action for the path. If we represent the phase of the amplitude by
a complex number, Planck’s constant ~ has the same dimensions.
Feynman and Hibbs12

We make no further assumptions about the action, as is done in the case of
space-time paths. Thus, we are very flexible in describing physical problems
outside space-time.

This third principle can also be viewed as a generalization of Laplace’s
principle of indifference where all outcomes are equally likely assigned with
unit one. We just have to replace the unit one by the set of complex numbers
of magnitude one. Then we get back Laplace’s theory, when we define the
phase equal to zero.

Fourth principle: Two possibilities F and G are called independent if
their intersection is non-empty, and if the occurrence of one possibility does
not affect the other one. Mathematically, independence is expressed by the
equation:

ϕF∩G = ϕF ϕG, (5)

that is, the joint amplitude is equal to the product of their amplitudes.
This principle is closely related to Feynman13 : ”When a particle goes by

some particular route, the amplitude for that route can be written as the prod-
uct of the amplitude to go partway with the amplitude to go the rest of the
way.“ Basically, this property goes back to Laplace’s theory. When an exper-
iment that break down into a series of events happening independently, then
the probability of the occurrence of all events is the product of the probability
of each. Our first and fourth principle show that the multiply-and-add rule
carries over to complex probability amplitudes for possibilities.

Let us compare our probability theory with the axiomatic system in geom-
etry. Geometry consists of the following components:

(i) The primitives: points, lines, and planes. (ii) The axioms are statements
about these primitives; for instance, two points are together incident with
one line. (iii) The laws of logic. (iv) The theorems, that are the logical
consequences of the axioms.

Hilbert remarked that primitive terms are empty shells or placeholders
with no intrinsic properties. Instead of points, lines, and planes, we can also

12Feynman, Hibbs [1965], p.19
13Feynman Lectures [1963] p.3-4
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talk about tables, chairs, and windows. When giving concrete meaning to the
primitives of a geometrical system, we obtain a model of the system, and all
theorems are true statements in this model.

Our possibility measure space consists of the following components:
(i) The primitives; elementary possibilities, outcomes, and amplitudes. (ii)

The axioms are statements about these primitives; for instance, each elemen-
tary possibility is contained in exactly one outcome. (iii) The laws of classical
logic. (iv) The theorems, like the inclusion-exclusion principle.

We shall discuss several concrete models, among them Feynman’s formu-
lation of quantum mechanics in spacetime, thermodynamics, or Wiener pro-
cesses. Our possibility measure space has a wide range of applications and can
be viewed as an axiomatic probabilistic system in the sense of Hilbert’s sixth
problem.

3 Examples

Some small examples are intended to understand better how to work with the
principles of our possibility measure space.

Coin Toss

The first and most simple example is a fair coin toss. There are two el-
ementary possibilities, Heads H and Tails T , yielding the possibility space
P = {H,T} and the related possibility algebra F, the power set of P. Two
outcomes coincide with the two elementary possibilities and form a partition-
ing of the possibility space. Hence, this is a classical experiment. We define
the action as equal to zero such that the exponential interference term in (4)
is equal to one. We set

ϕ∅ = 0, ϕ{H} =
1√
2
, ϕ{T} =

1√
2
. (6)

Hence, the probabilities for both outcomes are 1/2, according to the second
principle. The first principle yields

ϕ{H,T} =
1√
2

+
1√
2

=
√

2. (7)

Obviously, |ϕ{H,T}|2 > 1. However, this is no contradiction since we use Born’s
rule only for the outcomes, not for arbitrary possibilities.

Atom in Two States

Smolin14 discussed in his book a simple quantum model of an atom, which
can be in two states, namely in an exited state E and in a ground state G with
the lowest energy. In the unstable exited state E, the atom can decay into G
by emitting a photon. We put a Geiger counter together with an exited atom

14Smolin [2019], Ch.4
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into a box and close this box. The Geiger counter can also be in two states:
in the yes-state Y when the counter has detected a photon and in the state
N when no photon is detected. Initially, this system is in the state (E,N).
When we open the box after some time, the system is either in state (E,N)
or in state (G, Y ). According to quantum mechanics, before opening the box,
the system is assumed to be in a superposition of both states

(E,N) and (N, Y ), (8)

which Smolin calls the ”in between“ state. But we never observe a superposi-
tion after opening the box. Smolin speaks of a seemingly weird situation and
raises some questions. Why are there two dynamical rules, the unitary evo-
lution before opening the box, and the collapse into one of the states (E,N)
or (G, Y ) when opening the box? Why do we treat measurements differently
from other processes? Is a measurement device different from other ones, per-
haps because of the size of complexity? When does the collapse really happen?
Does it happen when the photon interacts with the counter or when we open
the box and become conscious of the outcome? These are typical questions
arising in quantum mechanics.

Our approach is a pure probability theory working on future
events where such questions don’t occur. It is not an interpreta-
tion of quantum mechanics, although it solves quantum problems.
It is different from quantum theory and more comprehensive, as
demonstrated below.

We define the possibility space

P = {(E,N), (E, Y ), (G,N), (G, Y )} . (9)

The possibility algebra consists of all subsets of P, and the outcomes coincide
with the elementary possibilities. In other words, the sample space and the
possibility space are identical, if we identify p ∈ P with {p} ∈ F. There are
no internal possibilities, hence yielding a simple classical statistical system.

Assuming that the system works correctly, we set

ϕ(E, Y ) = ϕ(G,N) = 0, ϕ(E,N) 6= 0, ϕ(G, Y ) 6= 0. (10)

All quantities belong to the prognostic future, describing what might happen
but not what happens in the present. The non-zero amplitudes depend on the
set-up, the atoms, and how long the box is closed15. Born’s rule implies that

|ϕ(E,N)|2 + |ϕ(G, Y )|2 = 1. (11)

In the present, the system tends to move to states of higher probability, al-
though rarely it choose an outcome of low probability. Nothing is strange; we
have no ”in between“ superpositions.

The Double-Slit Experiment
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Figure 1: The double-slit experiment described for a discrete spacetime. The
particle leaves source s, passes one of the two slits a or b, and is finally detected
in d1.

Now let us discuss the double-slit experiment, see Figure 1. In this ex-
periment, the elementary possibilities are piecewise straight paths sadm, sbdm
from the source s, via the wall W with two slits a and b, to the detectors
dm,m = −l, ..., l positioned on the screen D.

We show in detail how changes in the experimental set-up change the statis-
tics. At first, we look at the experiment where slit b is closed. Only paths
through slit a are relevant. Therefore, the possibility space is

P = {sadm : dm ∈ D} . (12)

There are no internal possibilities. The sample space of outcomes

O = {Odm : dm ∈ D} , Odm = {sadm} ∈ F. (13)

coincides with the set of elementary possibilities. Thus, we have a classical
experiment. Our third principle gives us the amplitude

ϕ(Odm) = ϕsadm (14)

via the action on the path sadm. The squared magnitudes of the amplitudes
are, according to the second principle, the probabilities:

Pr(Odm) = |ϕsadm|2 (15)

15We do not assume a time parameter. Clocks can be built outside spacetime; see Jansson
[2017] Ch. 4.14
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Similarly, if slit a is closed, we obtain the amplitudes

ϕ(Odm) = ϕsbdm , (16)

and

Pr(Odm) = |ϕsbdm|2. (17)

Now, we assume that both slits are open. Then the possibility space is
given as

P = {sadm, sbdm : a, b ∈ W,dm ∈ D} . (18)

We have internal possibilities due to the slits a and b, since without detectors
at the slits, it cannot be observed through which slit the particle goes in the
present. The outcomes are defined via the detector clicks. Hence, the sample
space of outcomes is

O = {Odm : dm ∈ D} , where Odm = {sadm, sbdm} . (19)

In agreement with the third principle, we set

ϕsadm =
1√
2
e

i
~S(sadm), ϕsbdm =

1√
2
e

i
~S(sbdm). (20)

These are disjoint elementary possibilities, and the first principle yields the
amplitudes of the outcomes

ϕ({Odm}) = ϕsadm + ϕsbdm for all dm ∈ D. (21)

Using the third principle, we can calculate the amplitudes for the outcomes by
inserting the concrete amplitudes for the elementary possibilities. Born’s rule
provides the probabilities of the outcomes:

Pr(Odm) = | 1√
2
e

i
~S(sadm) + 1√

2
e

i
~S(sbdm)|2

= 1
2

(
|e i

~S(sadm)|2 + |e i
~S(sbdm)|2

)
+

= 1
2
(e

i
~S(sadm))∗e

i
~S(sbdm) + (e

i
~S(sbdm))∗e

i
~S(sadm)).

(22)

The first term in this sum corresponds to the classical probability, and the
second term describes interference.

If e
i
~S(sadm) = e

i
~S(sbdm), from (22) it follows that

Pr(Odm) = 2|e
i
~S(sadm)|2. (23)

This doubles the probability when only one slit is open. Hence, we have con-
structive interference. If e

i
~S(sadm) = −e i

~S(sbdm), the probability that detector
dm clicks is

Pr(Odm) = 0, (24)
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yielding destructive interference. So far, nothing has happened. We have
computed quantities belonging to the future, yielding a pattern of constructive
and destructive interference.

Finally, let us assume that we have information about through which slit
the particle passes, given by two additional detectors da and db, which click
when a particle passes slit a or b, respectively. The detectors should work
correctly, that is, it cannot happen that a particle arrives at detector dm via
slit b and detector da clicks, or both detectors da and db don’t click.

In this case, the possibility space is defined in the form

P = {sadadm, sbdbdm : a, b ∈ W,dm ∈ D} . (25)

The outcomes are defined via the detector clicks. But now we have two addi-
tional detectors da and db. Hence, the sample space of outcomes is

O = {Odadm , Odbdm : dm ∈ D} , (26)

where

Odadm = {sadadm} , Odbdm = {sbdbdm} . (27)

Thus, we get classical probabilities:

Pr(Odadm) = |ϕsadm|2, Pr(Odbdm) = |ϕsbdm|2. (28)

This is a natural explanation of the double-slit experiment. Probabilities,
part of the future, are calculated. In the present, a particle has the tendency
to move on exactly one path of higher probability. The particle doesn’t know
anything about the set-up. This experiment is not a classical model because of
the internal possibilities. In particular, we see that it is essential to distinguish
clearly between elementary possibilities and outcomes.

We have investigated three different experimental setups that lead to dif-
ferent statistics. In the quantum mechanical literature, there are discussed
several questions, among them:

• Non-locality: How does the particle know which slits are open?

• Wave-particle duality: Is every particle also a wave? Is the complete
information about a particle encoded in its wave function?

• Superposition: Is a massive object at various places simultaneously?

The answers depend on the interpretation, frequently accompanied by the
comment that quantum mechanics is weird and magic. What makes quantum
mechanics seemingly hard to understand? The first reason is the mental fix-
ation on the particle, much less than on the experimental set-up. Secondly,
it is the fixation on the (3+1)-spacetime. In our probability theory, time is
replaced by the trinity of time, namely future, present, and past. Future is
timeless, and probability is a measure of future events. The experimental set-
up plays the primary role. The particle is limited to the interaction with the
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experimental set-up in the present, with the tendency to move to outcomes
of larger probability. The particles obey the probabilities calculated from the
experimental set-up. Whether only one slit or both slits are open is a property
of the set-up, not of the particle.

For photons, electrons, and several atoms, slit experiments were performed
in agreement with the statistics above. But they become more difficult for
increasing size of the particles. However, even huge molecules, combined of
810 atoms, show interference. At the University of Vienna, in 2012, a double-
slit experiment was performed using large molecules called phthalocyanine.
Only one molecule is in the set-up at the same time. In a video camera, they
exhibit their macroscopic nature. They arrive localized at small places on the
screen of detectors. The molecules, one after the other, build up an interference
pattern. There is no collapsing wave but a simple probability distribution.

Large molecules and other large macroscopic objects can be viewed as a
cloud of elementary particles, the constituents. If the binding force between
the constituents is weak, then the particles in this cloud can pass independently
of one another both slits yielding interference. If the binding force between
the constituents is large, then all must pass the same slit yielding a stochastic
pattern as in the case where one slit is closed.

The double-slit experiment can be generalized to finitely many slits and
finitely many subsequent walls. Then, the elementary possibilities consist of
all possible paths from the source via the walls to the detectors. Going to
infinitely many slits and walls leads to Feynman’s path integral.

For some other aspects of slit experiments, see Jansson16.

Light Reflection

The seemingly simple problem of how a mirror reflects light is slightly
more complicated. Here, we give a very short presentation. The figures below,
corresponding to the reflection of light, are slight modifications of some figures
in the beautifully written book of Feynman17 about QED.

Usually, the reflection of light is solved using the ray model of light which
holds in many practical situations. The mirror reflects light such that the
angle of incidence is equal to the angle of reflection. The length of the mirror,
as well as the ends of the mirror, do not influence the light that reaches the
detector. In the experimental set-up, the light of one color is emitted, and at
some other point, there is a photomultiplier. During the execution, only one
photon is present in the experiment.

Unfortunately, the ray model does not match several experimental results.
We observe reflection, that is, the detector clicks even if we cut off essential
parts of the mirror, including large areas of the middle part of the mirror.
This observation suggests that the photon may move from the source to the
detector on each possible path.

The third principle in our probabilistic framework says that each possible
path is furnished with a complex amplitude, as shown in Figure 2. In agree-
ment with the first principle, we sum up all vectors corresponding to the paths

16Jansson [2021], Ch. 4
17Feynman [1985]
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1 2 3 4 5 6 7 8 9 10 11 12 13
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Figure 2: The third principle says that a photon has an amplitude equal in
magnitude for each possible path from the source to the detector. Hence, it
can be reflected from every part of the mirror.
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Figure 3: The amplitudes for the paths (the elementary possibilities) are added
together. The major contribution of the final amplitude is due to the paths of
minimal action.

ending at the photomultiplier. Then we obtain the amplitude of the outcome
that the multiplier clicks, see Figure 3.

In many textbooks, it is argued that a photon has to move on all possible
paths from the source to the detector, simultaneously18. In our probabilistic
framework, the amplitudes are related to elementary possibilities, the paths.
The probabilities correspond to future events. Each particle chooses exactly
one path in the present.

In Figures 2 and 3, we have divided the mirror into little squares. Each path
corresponds to one square. The final amplitude length evolves mainly from the
amplitudes of the middle part of the mirror; see Figure 3. The contributions
from the left and right parts almost cancel each other out.

All amplitudes, corresponding to paths distant from the classical path of
least action, interfere destructively. Only the paths in the neighborhood of the
classical path interfere constructively, causing the ray model of light approxi-
mately.

But this is not the whole story. The question is, how the photon finds the
path of extremal action? Does the photon move on all possible paths to find
the right path? Is this imagination only a mathematical description far away
from any reality? However, we should show in an experimental set-up that a
photon also sometimes chooses other paths.

Let us cut off a large part of the mirror such that only three segments on

18For example, this strange interpretation can be found in the pleasant talk of Girvin in
the KITP Public Lectures, see online kitp.edu/online/plecture/girvin.

kitp.edu/online/plecture/girvin
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1 2 3

Figure 4: If the set-up contains only three segments on the left part of the
mirror, then the detector does not click since the amplitudes add up to zero.

1 2 3

Figure 5: A striped mirror reflects a substantial amount of light and is called
a diffraction grating.

the left side are left over; see Figure 4. The amplitudes are displayed in greater
detail than before. When adding all arrows, they cancel out approximately.
Hence, the probability of being detected in the photomultiplier is almost zero.

We now cut off further small segments, as shown in Figure 5. Most of the
vectors point to the right. Adding up the amplitudes, the sum predicts possible
reflection, in agreement with the fact that the photomultiplier sometimes clicks.

It sounds crazy that if you cut off the essential middle of the mirror, then
sometimes we observe reflection. This weird view vanishes in our probabilistic
framework: The paths obtain prognostic amplitudes, but the dynamics happen
in the present. There, the photon moves only on one path with the tendency
that this path belongs to an outcome with high probability.

Dice Unlike Any Dice

Finally, we mention Anthony Zee19. He used the title ”Dice Unlike Any
Dice“ in his book ”Fearful Symmetry“and writes:

Welcome to the strange world of the quantum, where one can-
not determine how a particle gets from here to here. [...] When a

19Zee [2015], p.141
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die is thrown, the probability of getting a 1 is 1/6. The probability
of getting a 2 is, of course, also 1/6. Now, consider the follow-
ing question: What is the probability of getting a 1 or a 2 in one
throw? The answer is evident to gamblers and non-gamblers alike:
The probability is 1/6 + 1/6 =1/3. In everyday life, to obtain the
probability of either A or B occurring, we simply add the probability
of A occurring and the probability of B occurring.

The quantum die is astonishingly different. Suppose we are told
that for the quantum die the probability of throwing a 1 is 1/6, and
the probability of throwing a 2 is also 1/6. In contrast to what our
experience with ordinary dice might suggest, we cannot conclude
that the probability of getting either a 1 or a 2 in one throw is 1/3!
It turns out that the probability of throwing a 1 or a 2 can range
between 1/3 and 0!

It seems that quantum theory, and its various interpretations, yield other
results than classical probability theory. Apparently, Zee views both theories as
incompatible. Our unified probabilistic framework, however, allows us to treat
classical and quantum probabilistic problems. Since we clearly distinguish
between internal possibilities, possibilities, and outcomes, we have a theory
that is not an interpretation of quantum mechanics but is much more extensive.
This will become more clear in the following applications.

4 Renninger’s Negative-Result Experiment

Already in 1960, Renninger20 invented an experiment based on interaction-
free measurements, which is well-known under the name Renninger’s negative-
result experiment21. He was the first to point to the surprising effect that we
can receive information by observing that ”nothing happens“.

He considered a simple experimental set-up where two spherical scintillation
screens with radii r1 < r2 are placed around a light source. The radius of the
outer screen is very large compared to the radius of the inner one.

In large time intervals, a photon is emitted from source S that can move
in all directions. Quantum mechanics describes the state of the photon in
terms of a radially symmetrical wave function ψ depending on both screens.
Suppose, one photon is emitted but not detected at the inner screen. Then
we have the information that the photon is moving outside the inner radius.
But this state does not depend on the inner screen; hence, must correspond
to another wave function ψ′ which reflects the possibility to interact only with
the outer sphere. Without any interaction of the photon with the screens, we
have a reduction of the photon’s wave function ψ → ψ′.

20In 2012, in the hospital of St. Georg in Hamburg, I was cured from an acute Leukemia.
I am indebted to two doctors, Prof. Dr. M. Zeis and Dr. H. Hauspurg, who helped me to
recover via several chemotherapeutics and a bone marrow transplantation. Dr. H. Hauspurg
is a grandson of Mauritius Renninger.

21Renninger [1960]
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Renninger’s experiment shows that knowledge is gained, although nothing
is measured. The sheer possibility that the photon could be detected, although
it does not click, yields a collapse of the wavefunction ψ → ψ′. Some physicists
think that this is a link between the mystery of matter and the observer’s mind;
see the discussions about the many mind interpretations of quantum mechanics
in several books. This interaction-free collapse, however, seems to falsify the
well-known wave particle duality.

In our probability theory, we have a simple two-state system with two ele-
mentary possibilities, namely that the photon interacts with the inner screen r1
or the outer screen r2. These two possibilities also represent the two outcomes.
The amplitudes depend on the geometry of the experiment. They deliver two
probabilities. In the present, the photon chooses exactly one possibility, with
the tendency to the one with the higher probability. No strange arguments,
no collapse of a wave function.

5 Delayed Choice Experiments

For a better understanding of wave-particle dualism, Wheeler22 proposed 1983
so-called delayed choice experiments. These are related to questions about
whether a delayed choice of several ingredients in the experimental set-up for
measuring point-like or wave-like properties change the past?

Let us look at a Mach-Zehnder interferometer.
In this experiment, a photon is generated in a source s0. Then it meets a

beam splitter b1. It can pass b1 and follow the lower path, or it can be reflected
and follow the upper one. On the lower and the upper path, the photon will
be reflected by a mirror, say m1 and m2, respectively. Then both paths meet
at a point where a second half-silvered mirror b2 is positioned. Finally, behind
b2 two detectors d1 and d2 are placed, which detect the photon after it has
passed the second beam splitter.

It is a simple task to describe this experiment within our probabilistic
framework. At first, we define the possibility space P which consists of four
elementary possibilities:

P = { p1 = s0b1m1b2d1,

p2 = s0b1m1b2d2,

p3 = s0b1m2b2d1,

p4 = s0b1m2b2d2}.

(29)

The element p1 denotes the elementary possibility that a photon would
travel on the lower path from source s0, via the half-silvered mirror b1, towards
detector d1. The possibility p2 is the same as p1, except that the photon moves
towards detector d2. The two remaining elementary possibilities are on the
upper path.

22Wheeler [1978, 1983]
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The outcomes are defined as the possibilities

O = {O1, O2}, O1 = {p1, p3}, O2 = {p2, p4} ∈ F. (30)

They describe the two events that the photon would be detected in d1 or would
be detected in d2, respectively. Hence, we have a non-classical experiment with
internal possibilities.

The action for each elementary possibility consists of the interaction with
the mirrors and detectors in succession. The third principle shows how to
compute the amplitudes of the elementary possibilities. When the action is
assumed to be additive, the exponential term is a product of complex numbers.

We define the action such that the number i = eiπ/2 is the probability
amplitude when the photon is reflected, and 1√

2
is the amplitude when the

photon passes a half-silvered mirror straightforward. In the first case, the
path is rotated by a right angle. In the second case, passing straightforwardly
has a 50:50 chance.

It follows immediately that the amplitudes of the elementary possibilities
are

ϕ({p1}) = 1√
2
· i · i√

2
= −1

2
,

ϕ({p2}) = 1√
2
· i · 1√

2
= i

2
,

ϕ({p3}) = i√
2
· i · 1√

2
= −1

2
,

ϕ({p4}) = i√
2
· i · i√

2
= − i

2

.

(31)

From the first principle, it follows that

ϕ(O1) = ϕ({p1}) + ϕ({p3}) = −1 (32)

yielding the probability

Pr(O1) = | − 1|2 = 1, (33)

that the photon is detected in d1.
In the same way, we obtain

ϕ(O2) = ϕ({p2}) + ϕ({p4}) = 0. (34)

yielding the probability zero. Hence, the photon is never detected in d2.
Now we change our experiment by removing the second beam-splitter b2.

Then, we obtain the possibility space.

P = {p1 = s0b1m1d2, p2 = s0b1m2d1}. (35)

and the outcomes

O = {O1, O2}, O1 = {p1}, O2 = {p2} ∈ F. (36)
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This is a classical experiment without internal possibilities. The amplitudes
of the elementary possibilities are

ϕ({p1}) = 1√
2
· i = i

2
,

ϕ({p2}) = i√
2
· i = −1

2
.

(37)

Hence, the probabilities are 1/2 for each outcome.
Imagine realizing this experiment on a cosmic scale: Let a star emit photons

some billions of light-years ago. Each photon must pass a galaxy before arriv-
ing at our experiment. Gravitation makes the light bend around the galaxy.
Billions of years later, when the photons are not far away, we can change our
experimental arrangements. If we put in a beam-splitter with a photographic
plate behind it, we would measure an interference pattern, as calculated above.
Alternatively, we can put in detectors before the beam splitter. Then, we ob-
tain a clump of photons at one detector and a clump of photons at the other
one. In our experiment, we decide whether the beam-splitter is put in when
the particles have already passed the galaxy.

All this is not strange when using our probabilistic framework based on
future events or future possibilities provided by the experimental set-up. But
believing in wave-particle duality, the experiment implies the well-known para-
dox that our late choice influences the statistical patterns.

More precisely, if the second beam-splitter is in front, only detector d1
clicks. Wheeler argues as follows:

[this] is evidence . . . that each arriving light quantum has
arrived by both routes.

Hence, he believes that a particle can move on different routes simultaneously.
If the second beam-splitter is turned out, each photon follows one path or
the other. With probability 1/2, the photon reaches one of both detectors.
Wheeler writes in the same paper:

[either] one counter goes off, or the other. Thus the photon has
traveled only one route.

This seems to be in accordance with the wave-particle duality and the Copen-
hagen interpretation. Either we can measure wave-like properties or particle-
like properties. Since the experimenter could randomly switch the second
beam splitter in the interferometer on and off shortly before the photon ar-
rives, Wheeler writes:

Thus, one decides the photon shall have come by one route or by
both routes after it has already done its travel.

Since no signal traveling at a velocity less than that of light can connect the
two events described above, he writes:

We have a strange inversion of the normal order of time. We, now,
by moving the mirror in or out, have an unavoidable effect on what
we have a right to say about the already past history of that photon.
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Such experiments have been carried out on a small scale, see Jacques et
al.23. In actual experiments, activation and deactivation of the beam splitter
is done when the photon is already in the experiment. This is decided by a
random number generator, not by a person.

The wave-particle duality is doubtful or even falsified if we don’t accept
the inversion of the normal order of time.

6 Interaction-Free Measurement

An interaction-free measurement is a type of measurement, where an object is
located without any interaction or touch between it and the measuring device.

Elitzur and Vaidman24 proposed a modified Mach-Zehnder interferometer,
where an object might be placed on one of the routes.

Let us look at the interferometer as described in Section 5. An object might
be placed on the lower path between beam splitter b1 and mirror m1. Elitzur
and Vaidman describe the object as a bomb that explodes when touched by
a photon. The interferometer is mantled such that it is not possible to decide
whether the bomb is placed in the interferometer or not.

We describe this situation in terms of two experimental setups. The first
one is the interferometer without the object. Then we have interference, such
that all photons are detected in d1.

The second one is the interferometer with the object. Then, we obtain the
possibility space

P = {p0 = s0b1A, p1 = s0b1m2d1, p2 = s0b1m2d2}, (38)

where p0 denotes the possibility that the photon is absorbed by the object.
The set of outcomes is

O = {O0, O1, O2}, O0 = {p0}, O1 = {p1}, O2 = {p2}. (39)

Thus, we have a classical experiment without internal possibilities. The am-
plitudes of the elementary possibilities are

ϕ({p0}) = 1√
2

ϕ({p1}) = i√
2
· i · 1√

2
= −1

2
,

ϕ({p2}) = i√
2
· i · i√

2
= − i

2
.

(40)

Hence, the probability is 1/2 that the photon is absorbed and is 1/4 that the
photon is detected in d1 or d2, respectively. It follows that the object is put
into the interferometer if the photon is detected in d2. In this case, we have
proved that the object is put into the interferometer without any interaction
between the photon and the object.

23Jacques et al. [2006]
24Elitzur, Vaidman [1993]
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It is not strange that the photon is detected in d2. We have a classical
stochastic problem without interference if the object is put in. The photon
chooses in the present one of the three possibilities p0, p1, or p2 in agreement
with the calculated probabilities. Otherwise, we have interference if the object
is outside, as described above. We can say, either the first or the second
experimental set-up applies. Nothing seems to be strange in our probability
theory describing future events.

Elitzur and Vaidman state that obtaining information about an object
without any contact is a paradox. The authors argue that this paradox van-
ishes when using the many-world interpretation, where each possible state of
a quantum superposition is real, thus, yielding a unitary dynamics without
collapse. Actually, the photon interacts with the bomb, causing an explosion,
but not in our world. This explanation represents an unnecessary, tremendous
effort.

7 Hardy’s Paradox

In 1992, Hardy published the idea of an experimental set-up where simple
classical logical arguments show that this set-up is not realizable, although
it was later realized with photons. This experiment is well-known under the
name Hardy’s paradox25. For a nice presentation see also Laloë26. Hardy’s
paradox is a challenge for each quantum interpretation, of course, and also for
our probability theory.

We discuss Hardy’s paradox in terms of a three-slit experiment. It consists
of a source that produces two particles simultaneously. When produced, these
two particles arrive at a wall with three slits. Finally, they interact with
position detectors placed behind the wall of slits. The space of possibilities is
described as follows:

(a) The value a = + represents the possibility that, in the present, the first
particle passes the topmost slit. The value a = − denotes the possibility
that it passes the middle slit.

(b) Analogously, the value b = + represents the possibility that the second
particle passes the lowest slit, and the value b = − denotes the possibility
that the second particle passes the middle slit.

(c) There is a partition in the middle of the wall of slits such that the first
particle cannot pass the lowest slit, and the second particle cannot pass
the topmost slit. Moreover, it is not allowed that both particles pass the
middle slit simultaneously; perhaps, they annihilate each other, or the
slit is too small. If the first particle passes the topmost slit, the middle
slit is open for the second particle, yielding the same interference patterns
as one particle in a double-slit experiment. Similarly, interference occurs
if the second particle passes the lowest slit.

25Hardy [1992]
26Laloë [2001]
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Outcomes a′, b′ = ± Related elementary possibilities p = aba′b′ ∈ P
a′ = +, b′ = + : p1 = + + ++, p2 = +−++, p3 = −+ ++, p4 = −−++
a′ = +, b′ = − : p5 = + + +−, p6 = +−+−, p7 = −+ +−, p8 = −−+−
a′ = −, b′ = + : p9 = + +−+, p10 = +−−+, p11 = −+−+, p12 = −−−+
a′ = −, b′ = − : p13 = + +−−, p14 = +−−−, p15 = −+−−, p16 = −−−−

Table 1: Four outcomes and sixteen elementary possibilities of Hardy’s para-
dox.

(d) The primed value a′ = + describes the possibility that, in the present,
the first particle ends in the area of destructive interference. This is
possible only if the second particle passes the middle slit and therefore
destroys the area of destructive interference for the first particle. The
primed value a′ = − is the negation of a′ = +, thus being detected in the
area of constructive interference. Analogously, the primed values b′ = +
and b′ = − are defined.

When performing this experiment several times, from the description above,
it follows immediately:

(i) The not-primed result, a = − and b = −, never occurs.

(ii) The not-primed result, a = + and b = +, sometimes occurs.

(iii) Both mixed-primed results, a′ = + and b = +, or a = + and b′ = +,
never occur.

(iv) The doubly-primed result, a′ = − and b′ = −, never occurs.

Classical logic implies that this experiment cannot be realized: The sec-
ond condition (ii) guarantees that sometimes the result a = + and b = + is
obtained when performing the experiment several times. But then condition
(iii) implies that b′ = −, since we have a = +, and a′ = −, since b = +. This
violates condition (iv). In other words, these conditions cannot be fulfilled
simultaneously. The experiment seems to be not realizable.

A surprise is a realizable experimental set-up with photons based on a
pair of Mach-Zehnder interferometers that interact through a beam splitter27.
Why is this possible, although classical logic tells us that there cannot be
a realization? In the following, we want to explain this paradox with our
probability theory.

The first step is the definition of the possibility space. We have four binary
quantities a, b, a′, b′ with values ±. Hence, there are sixteen elementary possi-
bilities p = aba′b′ forming the possibility space P. The possibility algebra F is
the power set of P. The sample space O of outcomes consists of four subsets
of P that are characterized by the values a′ = ±, b′ = ±. All outcomes and
related elementary possibilities are displayed in Table 1.

Next, the probability amplitude must be defined. It depends on the con-
crete experimental set-up as well as on the conditions (i), (ii), (iii), and (iv).

27Irvine, et al. [2005]
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Conditions Related possibilities
a = −, b = − : F{a=−,b=−} = {p4, p8, p12, p16}
a = +, b = + : F{a=+,b=+} = {p1, p5, p9, p13}
a′ = +, b = + : F{a′=+,b=+} = {p1, p3, p5, p7}
a = +, b′ = + : F{a=+,b′=+} = {p1, p2, p9, p10}
a′ = −, b′ = − : F{a′=−,b′=−} = {p13, p14, p15, p16}

Table 2: The possibilities corresponding to the conditions.

Amplitudes of the conditions
ϕ(F{a=+,b=+}) = ϕp1 + ϕp5 + ϕp9 + ϕp13 = α 6= 0
ϕ(F{a′=+,b=+}) = ϕp1 + ϕp3 + ϕp5 + ϕp7 = 0
ϕ(F{a=+,b′=+}) = ϕp1 + ϕp2 + ϕp9 + ϕp10 = 0
ϕ(F{a′=−,b′=−}) = ϕp13 + ϕp14 + ϕp15 + ϕp16 = 0

Table 3: The linear equations representing the conditions (i), (ii), (iii), and
(iv).

These conditions can be expressed simply in terms of possibilities contained
in F. The first one, a = − and b = −, is F{a=−,b=−} which contain the four
elementary possibilities {p4, p8, p12, p16}. These are forbidden. A possibility
that does not happen has the amplitude zero. Hence, we obtain four linear
equations:

ϕp4 = ϕp8 = ϕp12 = ϕp16 = 0. (41)

All further conditions are given in Table 2.
Principle 1 implies that the probability amplitude of any possibility F ∈ F

is the sum of the probability amplitudes of the elementary possibilities p ∈ F .
Thus, we obtain four linear equations which represent the conditions (i), (ii),
(iii), and (iv). They are displayed in Table 3.

These eight linear equations, displayed in (41) and Table 3, form an inho-
mogeneous system of full rank with sixteen variables. The space of solutions
is an eight-dimensional linear manifold. This proves that Hardy’s experiment
is realizable. The concrete amplitudes depend on the experimental set-up.
The amplitudes of the outcomes must be normalized such that their sum of
the squared magnitudes is one, yielding probabilities. Given the probabilities,
the two particles choose in the present an elementary possibility p that is not
forbidden but with the tendency to move to high probability outcomes.

8 Consistency and Symmetry

In this section, we show that our probability theory is consistent, that is, it does
not lead to any contradiction. Moreover, we prove that this theory contains
a U(1) symmetry: All probabilistic statements are invariant if one transforms
the amplitudes of all elementary possibilities with one element of U(1).

Firstly, we prove that the probability amplitude is well-defined. The am-
plitude ϕF should not depend on the partitioning of F . If F contains only
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one element, nothing is to prove. Let two disjoint elements be given such that
F = ∪{F1, F2}. Then ϕF = ϕF1 + ϕF2 = ϕF2 + ϕF1 is well-defined. For three
pairwise disjoint possibilities F1, F2, F3, we can partition F = ∪{F1, F2, F3} as
follows:

F1, F2, F3; ∪{F1, F2} , F3; ∪{F1, F3} , F2; ∪{F2, F3} , F1. (42)

Since complex addition is associative and commutative, in each case the first
principle yields

ϕF = ϕF1 + ϕF2 + ϕF3 . (43)

Thus, ϕF is well-defined. The same holds true when we partition F into more
than three elements:

ϕF =
∑
m

ϕFm . (44)

The second principle says that the sum of the square of the magnitudes
of probability amplitudes corresponding to the outcomes is one. This simple
normalization condition can always be achieved.

Secondly, the multiplication of all probability amplitudes with the same
element eiφ ∈ U(1) does, due to Born’s rule, not change the probabilities.
Thus, our framework contains U(1) symmetry. The fundamental symmetry
group U(1) leaves the inner product of two complex numbers and thus their
norm constant. It is well-known that this group is locally isomorphic to the
symmetry group SO(2), the group of rotations in the two-dimensional real
space. U(1) gauge symmetry is well-known in quantum electrodynamics. One
cannot measure the absolute phase of the wave functions of electrons, photons,
or other particles.

9 The Inclusion-Exclusion Principle

The principle of inclusion and exclusion is known to find its most general for-
mulation in the area of measure theory28. Moreover, it is a basic counting tool
for calculating the number of elements contained in a union of sets. Frequently
this principle is used in combinatorics29. Rota30 put this principle in the form:

One of the most useful principles of enumeration in discrete
probability and combinatorial theory is the celebrated principle of
inclusion-exclusion. When skillfully applied, this principle has yielded
the solution to many a combinatorial problem. Rota

Now, it has a wide area of applications: Graph coloring, matching theory,
Euler’s φ function, Stirling numbers, occupancy problems, chromatic polyno-
mials, and many more.

28Cerasoli, Fedullo [2002]
29Roberts, Tessman [2009]
30Rota [1964]
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We generalize this principle to complex amplitudes, which satisfy our first
principle. For two finite sets F and G, it is

ϕ(F ∪G) = ϕ(F ) + ϕ(G)− ϕ(F ∩G). (45)

The simple proof is as follows. Since

F = (F − F ∩G) ∪ (F ∩G), G = (G− F ∩G) ∪ (F ∩G), (46)

and

F ∪G = (F − F ∩G) ∪ (G− F ∩G) ∪ (F ∩G), (47)

we have pairwise disjoint partitions of F ,G, and F ∪ G, respectively. Thus,
our first principle implies

ϕ(F ) = ϕ(F −F ∩G))+ϕ(F ∩G), ϕ(G) = ϕ(G−F ∩G))+ϕ(F ∩G). (48)

Moreover, it follows that

ϕ(F ∪G) = ϕ(F − F ∩G)) + ϕ(G− F ∩G) + ϕ(F ∩G). (49)

Inserting formula (48) finishes the proof.
With induction, the general principle of inclusion and exclusion for n sets

F1, ..., Fn can be proved:

ϕ

(
n⋃
i=1

Fi

)
=

n∑
i=1

ϕ(Fi)−
∑
i<j

ϕ(Fi ∩ Fj) +
∑
i<j<k

ϕ(Fi ∩ Fj ∩ Fk)

+ · · ·+ (−1)n−1
∑
i<...<n

ϕ

(
n⋂
i=1

Fi

)
.

(50)

This inclusion and exclusion formula is fulfilled for all complex-valued func-
tions ϕ that obey our first principle. For example, the function

ϕ(F ) = const
∑
p∈F

ϕ({p}), (51)

where const is any constant, satisfies the first principle. A special case is the
cardinality of F :

ϕ(F ) =
∑
p∈F

1 = |F | , (52)

which is widely used in combinatorics. This principle remains valid when the
classical probability replaces the cardinality. Then our function takes the form

ϕ(F ) =
∑
p∈F

Pr({p}). (53)
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It follows immediately that inclusion and exclusion can be used in measure
theory and statistical thermodynamics. Finally, we mention the case

ϕ(F ) = const
∑
p∈F

e
i
~S({p}), (54)

which is related to Feynman’s path integral. More precisely, if F is an out-
come in a slit experiment, p denotes the path from a source to a detector
corresponding to F , then the formula (53) is the path integral.

Although the important inclusion-exclusion principle is fulfilled for proba-
bility amplitudes, several fundamental inequalities well-known in probability
theory are not satisfied. Examples are

F ⊆ G⇒ ϕ(F ) ≤ ϕ(G), (55)

and

ϕ

(
n⋃
i=1

Fi

)
≤

n∑
i=1

ϕ(Fi). (56)

Both inequalities are satisfied if ϕ denotes the cardinality or a non-negative
measure. Otherwise, they are not satisfied.

For example, let P = {1, 2, 3}, let ϕ({1}) = ϕ({2}) = 1, ϕ({3}) = −1, and
let F = {1, 2}, G = {1, 2, 3}. Then F ⊆ G, but ϕ(F ) = 2 > ϕ(G) = 1, thus
violating inequality (55).

If we define F1 = {1, 3}, F2 = {2, 3}, then ϕ(F1∪F2) = 1 > ϕ(F1)+ϕ(F2) =
0, thus violating inequality (56).

Such violations are natural in physics. For instance, let us look at the
experiment of light reflection. Let G denote all paths reflected at the segments
1, 2, 3 as displayed in Figure 4, and let F be the set of all paths at the segments
displayed in Figure 5. Then F ⊆ G, but Pr(F ) > Pr(G) = 0, thus violating
inequality (55).

10 Thermodynamics

A theory is the more impressive the greater the simplicity of its
premises is, the more different kinds of things it relates, and the
more extended is its area of applicability. Therefore the deep im-
pression which classical thermodynamics made upon me. It is the
only physical theory of universal content concerning which I am
convinced that within the framework of the applicability of its basic
concepts, it will never be overthrown. Albert Einstein, Autobio-
graphical Notes (1946)

Hence, it is an important touchstone to reconstruct thermodynamics using
our probability theory. More details about this reconstruction can be found
in Jansson31. For a nice introduction to the theory of thermodynamics, we
mention Penrose32, and moreover four textbooks33 which are well-suited for

31Jansson [2021], Chapter 5
32Penrose [2005], Chapter 27
33 Schroeder [1999], Gould, Tobochnik [2010], Schwarz [2017], Swendsen [2020]
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engineers.
In thermodynamics, huge numbers of constituents are considered. For ex-

ample, 1 mole of molecules corresponds to Avogadro’s number ≈ 1023. There-
fore, thermodynamics is basically a statistical theory.

A thermodynamic system consists of a large set of constituents. These
are described in terms of microstates; each constituent may have position and
momentum or a quantum of energy. A microstate is a specific configuration of
a system such that all possible microscopic variables are fixed. The microstates
form distinguishable alternatives. They either happen or do not happen in the
present, but two or more microstates cannot occur simultaneously.

Macrostates refer to the thermodynamic system as a whole. A system has
only a few macroscopic variables, like the total energy E, pressure P , volume
V , temperature T , or the total number N of gas molecules. In the following,
we write shortly M for a macrostate and µ for a microstate.

The number of microstates, the configurations with all exact values, may
be huge. In contrast, a macrostate emerges by fixing the value of a few macro-
scopic variables. Each macrostate consists of many microstates, the so-called
accessible ones. The multiplicity of a macrostate M is defined as the number of
its microstates, and is denoted by Ω(M). The total multiplicity Ωtot is defined
as the sum over all multiplicities Ω(M).

The macrostates can be measured in contrast to the microstates. Macrostates
form a partitioning of the set of all microstates of the system.

The fundamental principle in statistical thermodynamics states that all
microstates of a system are equally probable. It follows that the prob-
ability of a macrostate M is the multiplicity of this macrostate divided by the
total multiplicity:

Pr(M) =
Ω(M)

Ωtot

. (57)

The obvious way to connect the concepts of thermodynamics with our prob-
ability theory is to identify the microstates µ as the elementary possibilities
p ∈ P. The macrostates M , as measurable states, correspond to the outcome
F ∈ O.

Now, we reconstruct the probabilities for macrostates (57) with our proba-
bility theory. Our third principle says that all elementary possibilities con-
tribute equally in magnitude, that is, the microstates µ have the amplitudes

ϕµ = const e
i
~S(µ). (58)

We have no further knowledge about the actions of the constituents. Therefore,
it seems natural to set the action S(µ) = 0 for all microstates. Then the
exponential term is one, implying that there is no interaction and interference.
Moreover, we set

const =
1

√
Ωtot

√
Ω(M)

. (59)
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Then

ϕµ =
1

√
Ωtot

√
Ω(M)

· 1. (60)

Since the microstates are pairwise disjoint, we can apply the first principle.
Then the probability amplitude of a macrostate M takes the form:

ϕM =
∑
µ∈M

ϕµ = Ω(M)
1

√
Ωtot

√
Ω(M)

=

√
Ω(M)

Ωtot

. (61)

Computing the square of the magnitude of probability amplitudes accord-
ing to Born’s rule yields the classical probabilities (57) for the outcomes.

Obviously, in our derivation, we did not apply the thermodynamic principle
of indifference. Instead, we define the action of all elementary possibilities
(microstates) as equal to zero, which is a statement about the experimental
set-up, not about probabilities.

11 Reconstruction of Quantum Mechanics

We reconstruct Feynman’s quantum mechanics34, which is based on path in-
tegrals. His theory is known to be mathematically equivalent to Schrödinger’s
and Heisenberg’s formulations of quantum mechanics. Our probability theory
differs from quantum mechanics: At first, our language is set theory in contrast
to the usual quantum axioms formulated with Hilbert spaces. It uses classi-
cal logic only. Our theory significantly distinguishes between possibilities and
outcomes. It works with complex numbers in contrast to the usual measure
theory. Classical probability and thermodynamics can be reconstructed. A
massive object is not at several places simultaneously, as frequently remarked
in the literature; for example, see Penrose35 who writes:

As we have seen, particularly in the previous chapter, the world
actually does conspire to behave in a most fantastical way when
examined at a tiny level at which quantum phenomena hold sway.
A single material object can occupy several locations at the same
time and like some vampire of fiction (able, at will, to transform
between a bat and a man) can behave as a wave or as a particle
seemingly as it chooses, its behavior being governed by mysterious
numbers involving the ”imaginary“ square root of -1. Penrose 2016

Parallel universes are not required; our theory is formulated as a single-world
theory. It is not an interpretation of quantum mechanics. It is a probability
theory, much more general than classical probability and quantum mechanics.

In the following, we derive Feynman’s path integral by using zigzag paths
x(t): For a particle moving from position xa at time ta to xb at time tb in

34Feynman [1948]
35Penrose [2016, p.216]
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spacetime, the time is divided up into n smaller segments ta = t0 < t1 < · · · <
tn−1 < tn = tb all of length ε = (tb − ta)/n.

The possibility space P consists of all paths from a = (xa, ta) to b = (xb, tb)
where b varies in a spacetime subset B. This set may consist of finitely many
points where detectors are positioned. In the following, we consider only
finitely many zigzag paths. Thus the possibility algebra F is the power set
of P. For fixed b ∈ B, the non-elementary possibility

F (b, a) = {x(t) ∈ P : x(ta) = xa, x(tb) = xb} ∈ F. (62)

The set of outcomes O consists of all sets F (b, a) where b varies in B. Hence,
they form a partitioning of P.

Let c = (xc, tc) ∈ C be a point such that ta < tc < tb, then we define the
non-elementary possibility

F (b, c, a) = {x(t) : x(ta) = xa, x(tc) = xc, x(tb) = xb} ∈ F. (63)

It follows that

F (b, c, a) = F (b, c) ∩ F (c, a), (64)

where the sets on the right-hand side are defined as above. Moreover,

F (b, a) =
⋃
c∈C

F (b, c, a). (65)

The paths x(t) ∈ P are pairwise disjoint. Thus, the first principle yields

ϕ(F (b, a)) =
∑

x(t)∈F (b,a)

ϕ({x(t)}). (66)

In the literature, the amplitude ϕ(F (b, a)) is called Green’s kernel of mo-
tion and is denoted by K(b, a). The second principle implies the probability
Pr(b, a) = |K(b, a)|2 to move from a to b.

With the third principle, we obtain the amplitudes for the elementary pos-
sibilities

ϕ({x(t)}) = const exp

(
i

~
S({x(t)})

)
, (67)

where

S({x(t)}) =

tb∫
ta

L(ẋ, x, t)dt. (68)

is the action, defined as the integral over the Lagrangian L. Since we consider
only zigzag paths, the action takes the form

S({x(t)}) =
n∑
j=1

L

(
xj − xj−1

ε
,
xj + xj−1

2
,
tj + tj−1

2

)
. (69)
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Formula (66) is the fundamental point in Feynman’s theory. Hence, we
ask how to perform the sum over all paths. The idea is to proceed as in
the definition of the Riemann integral. There, the integral of a function is
approximated in the form

xb∫
xa

f(x)dx ∝
n∑
j=0

f(xj), (70)

where the points xj are equally spaced. This sum depends on n, and a limit
would not exist. But with the normalization factor δ = (xb−xa)/n we obtain

xb∫
xa

f(x)dx = lim
δ→0

(δ
n∑
j=0

f(xj)). (71)

A similar normalization factor must be introduced for the path integral. But
this turns out to be not trivial.

Putting all together and taking the limit ε = (tb− ta)/n→ 0, formula (66)
yields Feynman’s path integral

K(b, a) = lim
ε→0

1

A

∫
· · ·
∫

exp

(
i

~
S({x(t)})

)
dx1
A
· · · dxn−1

A
, (72)

where A is a normalization constant depending on the Lagrangian.
From (65), the first and fourth principle, and the fact that the classical

action is additive, that is,

S(b, a) = S(b, c) + S(c, a), (73)

it follows that

K(b, a) =

∫
xc

K(b, c)K(c, a)dxc. (74)

More general for (n+ 1) points we obtain

K(b, a) =

∫
x1

∫
x2

· · ·
∫
xn−1

K(b, n−1)K(n−1, n−2) · · ·K(1, a) dx1dx2 · · · dxn−1

(75)

where

K(j, j − 1) =
1

A
exp

(
i

~
εL

(
xj − xj−1

ε
,
xj + xj−1

2
,
tj + tj−1

2

))
. (76)

Changing slightly the notation xb = x, tb = t, xa = y, ta = s and using (74),
we obtain the wave function

ϕ(x, t) =

∫
K(x, t; y, s)ϕ(y, s)dy. (77)
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Hence, the probability amplitude for the outcome of arriving at the point
(x, t) is equal to the sum over all amplitudes to arrive at (y, s) multiplied by
the amplitude to move from (y, s) to (x, t).

In the most used formulation of quantum mechanics, the Schrödinger equa-
tion is postulated. This equation can be derived from (77). We approximate
the wave function in the first order of the time interval ε such that

ϕ(x, t+ ε) =
1

A

∫
exp

(
ε
i

~
L

(
x− y
ε

,
x+ y

2
, t

))
ϕ(y, t)dy. (78)

Let us look at the special Lagrangian L = mẋ2 + V (x). If we substitute
y = x+ µ, integrate and expand the resulting equation to first order in ε and
second order in µ, then we obtain the Schrödinger equation

i~
∂ϕ

∂t
=

~2

2m

∂2

∂x2
ϕ+ V ϕ. (79)

Moreover, the normalization constant turns out to be36

A =

√
2π~εi
m

. (80)

Thus, with our probability theory, we have reconstructed Feynman’s formu-
lation in terms of path integrals, and have derived the Schrödinger equation.
Quantization is an immediate consequence of this equation and hence a conse-
quence of our probabilistic framework. However, quantization can be derived
directly from the path integral, see Kleinert37. In classical probability theory,
quantization cannot be derived.

It can be shown that the construction of the paths leads to the result
that the paths may be continuous in the limit case, but they are nowhere
differentiable, that is, the velocity is discontinuous at all points in spacetime.

The phase space path integral is a more general expression than the space-
time path integral presented here. The momentum is an essential parameter,
connecting quantum mechanics with Hamiltonian formalism. We will not de-
rive this path integral formulation. Almost all details about path integrals can
be found in the monograph written by Kleinert38 and the literature therein.
We refer the reader also to Feynman39.

12 Diffusion and Wiener Integral

Readers with knowledge of statistical mechanics might notice the similarity
between Feynman’s formulation and Brownian motion, where discretization
corresponds to discrete time random walks. The path integral formulation is
almost indistinguishable from that of Brownian motion. In this final section,

36Feynman [1948], Section 6
37Kleinert [2009], Sections 2.6 and 9.2
38Kleinert [2009]
39Feynman [1948], Feynman Lectures [1963], Feynman, Hibbs [1965]
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we sketch some relationships between quantum path integrals, Brownian mo-
tion, Diffusion, and the Wiener Integral. The reader is referred to the book of
Zeidler40 and the literature therein.

The heat equation is a partial differential equation defined as the initial-
value problem with initial time s:

∂ϕ(x, t)

∂t
= −κ ∂

2

∂x2
ϕ(x, t)− V (x)ϕ(x, t), t ≥ s, ϕ(x, s) = ϕ0(x). (81)

Besides applications in many scientific fields like probability theory, financial
mathematics, and image analysis, this equation describes the flow of heat in
an isotropic and homogeneous medium, where ϕ(x, t) denotes the temperature
at point x and time t. Moreover, this equation can be regarded as a diffusion
equation for a mass density ϕ(x, t). Microscopically, diffusion is related to
Brownian motion, that is, the random movement of microscopic particles in a
gas or a liquid.

It can be proved41 that its solution is

ϕ(x, t) =

∫
K(x, t; y, s)ϕ0(y)dy. (82)

where the heat kernel reads as

K(x, t; y, s) = lim
ε→0

1

A

∫
· · ·
∫

exp (−S({x(t)})) dx1
A
· · · dxn−1

A
. (83)

The value S denotes the discrete action for a linear zigzag path x(t) =
(x(ti)). For a Lagrangian, defined as the difference between the kinetic energy
and the potential energy V , it is

S({x(t)}) =
n∑
j=1

1

4κ

(
xj − xj−1

ε

)2

+ V (xj)ε. (84)

Here, we use the same discretization as in Section 11. The normalization
constant for points in the three-dimensional position space is

A = (4πκε)3/2. (85)

As in Feynman’s path integral, the heat kernel K(x, t; y, s) represents a sum-
mation over all paths connecting the starting point y with the final point x.

The path integral (83), also called a Wiener integral, has a rigorous meaning
in the sense of a classical measure on a space of continuous functions42.

13 Time

Time is, perhaps, the most commonly discussed concept in physics and phi-
losophy43? Various questions emerge. Why does time appear in so many

40Zeidler [2006], Ch. 11
41Zeidler [2006], Section 11.8
42Reed, Simon [1972], Vol. II, Section X.11
43Taschner [2007], Ben-Naim [2016] ,Smolin [2013], Rovelli [2018]
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equations? Is time a derived variable, or is it a fundamental variable? How
many fundamental variables exist in physics? In other words, what can we say
about the dimensions of space44?

The time parameter t appears in almost all physical equations. The fun-
damental variables such as the position x(t), the velocity v(t), the momentum
p(t), the energy E(t), and so on, are time-dependent. The harmonic oscilla-
tor, for instance, is described by the well-known Euler-Lagrangian differential
equation.

Equations without time dependence seem questionable at first or even very
strange. However, the variable time appears unnecessary for describing phys-
ical systems. For example, the harmonic oscillator is implicitly defined by
its total conserved energy, namely the sum of kinetic and potential energy.
It represents an ellipse in the phase space. Another example is the famous
Wheeler-de Witt equation which contains no time parameter. This equation is
a candidate for the solution of the well-known quantum-gravitation problem.
See the book of Hamber45, which covers the theory of Quantum Gravitation
with particular attention to Feynman path integrals. The fundamental theory
of statistical thermodynamics, an almost universal physical theory, is time-
less46. The second law of thermodynamics and entropy has nothing to do with
time. Some physicists put forward the idea of ”physics without time “, among
them Rovelli47.

We have introduced a probability theory describing future events. The
future is timeless. However, our third principle requires calculating classical
action, defined as Lagrangian’s integral over time. Thus, a variable time comes
into play through the back door.

Our approach is to replace the (3+1)-dimensional spacetime with a time-
less Euclidean (3+3)-position-velocity space as the basis of physics. This space
has a (+ + + + + +) Euclidean signature, see my lecture notes48. In this
position-velocity space, we can define clocks as machines that produce a de-
rived quantity, which we call time. Then with some simple arguments, we
reconstruct the key of relativity theory, namely the Lorentz transform without
any assumption about ”propagation of light”. The rest of the mathematical
framework of special relativity follows immediately. We don’t use Einstein’s
two postulates, namely that (i) the laws of physics are the same in all inertial
frames of reference, and that (ii) the speed of light in free space has the same
value c in all inertial frames of reference.

There are two other physical models with six-dimensional world coordi-
nates.

Firstly, the twister theory of Penrose49 based on a non-Euclidean signature
(+ + - - - -). He did not pursue this theory because he could not interpret the
six variables appropriately.

44Mirman [2006]
45Hamber [2009]
46Ben-Naim [2018]
47Rovelli [2018]
48Jansson [2017, Sections 4.13 and 4.14]
49Penrose [2005] Ch. 33
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Secondly, the theory of Heim50, which is based on a non-Euclidean signature
(+ + + - - -). His deep and fundamental theory opens a new worldview with
various predictions: We live in a 6-dimensional world, all elementary particles
and their dynamics are 6-dimensional, and human beings are too. Moreover,
he states that there was never a big bang. He is not alone, see also Penrose51,
Ben-Naim52 and Rovelli53.

A surprising and important result of Heim’s theory was to predict the
masses and lifetimes of all known elementary particles to high precision. His
formulas are used in CERN and DESY. Therefore, Heim’s theory goes far
beyond all known theories about quantum mechanics.

14 Conclusion

John Wheeler54 argued that real insight into quantum theory requires that
we would be able to describe this theory in one simple statement that anyone
could understand. Our simple statement is:

Quantum theory can be reconstructed from a probability the-
ory describing future events in terms of possibilities and outcomes,
using classical logic, simple set theory for listing possibilities and
outcomes, and complex numbers.

In more detail, a complex number is assigned to each possibility or out-
come so that the absolute square of an outcome provides a probability. The
described theory can even be taught in schools, similar to Kolmogorov’s theory
of probability.

50 Auerbach, von Ludwiger [1992], von Ludwiger [2013], Eckardt, [2020]
51Penrose [2010]
52Ben-Naim [2016]
53Rovelli [2018]
54Ball, [2017]
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