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Abstract. For a bounded linear operator on a Banach space, we study approximation
of the spectrum and pseudospectra in the Hausdorff distance. We give sufficient
and necessary conditions in terms of pointwise convergence of appropriate spectral
quantities.
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1. INTRODUCTION

Given a bounded linear operator A on a Banach space X, we denote its spectrum and
pseudospectra [14], respectively, by

spec A := {λ ∈ C : A− λI is not invertible}

and
specεA := {λ ∈ C : ∥(A− λI)−1∥ > 1

ε}, ε > 0, (1.1)

where we identify ∥B−1∥ := ∞ > 1
ε if B is not invertible, so that spec A ⊆ specεA

for all ε > 0.
Fairly convenient access to the norm of the inverse is given by the so-called lower

norm, the number
ν(A) := inf

∥x∥=1
∥Ax∥. (1.2)

Indeed, putting µ(A) := min{ν(A), ν(A∗)}, we have

∥A−1∥ = 1/µ(A), (1.3)

where A∗ is the adjoint on the dual space X∗ and equation (1.3) takes the form
∞ = 1/0 if and only if A is not invertible.
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One big advantage of this approach is that, in case X = ℓp(Zd, Y ) with p ∈ [1,∞],
d ∈ N and a Banach space Y , ν(A) can be approximated by the same infimum (1.2)
with x ∈ X restricted to elements with finite support of given diameter D. We can
even quantify the approximation error against D, see [1] and [10] (as well as [8] for
a corresponding result on the norm).

By means of (1.3), we can rewrite spectrum and pseudospectra as follows:

spec A = {λ ∈ C : µ(A− λI) = 0}

and
specεA = {λ ∈ C : µ(A− λI) < ε}, ε > 0.

In other words, spec A is the level set of the function f : C→ [0,∞) with

f(λ) := µ(A− λI) (1.4)

for the level zero, and specεA is the sublevel set of f for the level ε > 0.
For a function g : C→ [0,∞) and ε > 0, let

subε(g) := {λ ∈ C : g(λ) < ε}

denote the sublevel set of g for the level ε.
In general, pointwise convergence gn → g of functions C→ [0,∞) need not coincide

with Hausdorff convergence of their sublevel sets:

Example 1.1. Suppose we have g and gn such that a) gn → g as well as b)
subε(gn) H→ subε(g) hold for all ε > 0. Increasing g(λ) to a certain level ε > 0 in
a point λ, where g was continuous and below ε before, changes the state of a), while it
does not affect clos(subε(g)) and hence b).

So let us look at continuous examples from here on.

Example 1.2. For gn(λ) := |λ|
n → 0 =: g(λ), the Hausdorff distance of the sublevel

sets
subε(gn) = nεD and subε(g) = C

remains infinite, where D denotes the open unit disk in C.

Of course, this problem was due to the unboundedness of subε(g). So let us further
focus on functions that go to infinity at infinity, so that all sublevel sets are bounded.

Example 1.3 (locally constant). Let g(λ) := h(|λ|) and gn(λ) := hn(|λ|) for n ∈ N,
where

h(x) := max{min{|x|, 1}, |x| − 1}, h1(x) := 1
4 x2, hn := h + 1

n (h1 − h)→ h

for x ∈ R and n ∈ N. Then, unlike any gn, g is locally constant in 2D\D. Consequently,

sub1(gn) ≡ 2D ̸H→D = sub1(g) but gn → g.
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Example 1.4 (increasingly oscillating). Let gn(λ) := hn(|λ|) for n ∈ N, where

hn(x) :=
{
| sin(nπx)|, x ∈ [0, 1],
x− 1, x > 1.

Then hn(x) < ε for all ε > 0 and

x ∈ 1
nZ ∩ [0, 1] H→ [0, 1] as n→∞.

It follows that subε(gn) H→ (1 + ε)D for all ε > 0, while gn does not converge pointwise
at all.

For a sequence of bounded operators An on X and their corresponding functions
fn : C→ [0,∞) with

fn(λ) := µ(An − λI), n ∈ N, (1.5)

we show equivalence of pointwise convergence fn → f and Hausdorff convergence of
their sublevel sets, i.e. of the corresponding pseudospectra,

fn → f ⇐⇒ ∀ε > 0 : specεAn
H→ specεA.

This result is not surprising (and similar arguments have been used e.g. in [2] in a more
specific situation) but there are some little details that deserve to be written down as
this separate note.

In [5], the approximation of the lower norm of H(b)−λI for a (generalized) discrete
Schrödinger operator H(b) and λ ∈ C, is established via successive exhaustion of the
set of finite subwords of the potential b ∈ ℓ∞(Z). Together with our paper here, this
yields Hausdorff approximation of the pseudospectrum of H(b), also see [9].

2. LIPSCHITZ CONTINUITY AND NON-CONSTANCY OF µ

Our functions ν and µ, and hence f and fn, have two properties that rule out effects
as in Examples 1.1–1.4: Lipschitz continuity and the fact that their level sets have no
interior points, i.e. µ is not constant on any open set.

The first property is straightforward, but the latter is a very nontrivial subject
[3, 6, 11–13], and it actually limits the choice of our Banach space X as shown in
Lemma 2.2.

Lemma 2.1. For all bounded operators B, C on X, one has

|ν(B)− ν(C)| ≤ ∥B − C∥,

so that also µ(B) = min{ν(B), ν(B∗)} is Lipschitz continuous with Lipschitz constant 1.
The same follows for the functions f from (1.4) and fn with n ∈ N from (1.5).

This result is absolutely standard but we give the (short) proof, for the reader’s
convenience.
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Proof of Lemma 2.1. For all x ∈ X with ∥x∥ = 1, one has

∥B − C∥ ≥ ∥Bx− Cx∥ ≥ ∥Bx∥ − ∥Cx∥ ≥ ν(B)− ∥Cx∥.
Now pass to the infimum in ∥Cx∥ to get ∥B − C∥ ≥ ν(B) − ν(C). Finally, swap
B and C.

It will become crucial to understand when the resolvent norm of a bounded operator
cannot be constant on an open subset. This is a surprisingly rich and deep problem.
As it turns out it is connected to a geometric property, the complex uniform convexity,
of the underlying Banach space (see [11, Definition 2.4 (ii)]).
Lemma 2.2 (Globevnik [6], Shargorodsky et al. [3,11–13]). Let X be a Banach space
which satisfies at least one of the following properties:
(a) dim(X) <∞,
(b) X is complex uniform convex,
(c) its dual X∗ is complex uniform convex.
Then, for every bounded operator A on X, the resolvent norm,

λ 7→ ∥(A− λI)−1∥ = 1/µ(A− λI),

cannot be locally constant on any open set in C, and, consequently,

∀ε > 0 : clos(specεA) = {λ ∈ C : µ(A− λI) ≤ ε}.
For example, every Hilbert space is subject to the condition (b) above, and every

space X = ℓp(Zd, Y ) with p ∈ [1,∞] and d ∈ N falls into this category as soon as Y
does [4].

3. SET SEQUENCES AND HAUSDORFF CONVERGENCE

Let (Sn) be a sequence of bounded sets in C and recall the following notations (see
e.g. [7, §3.1.2]):

lim inf Sn = the set of all limits of sequences (sn) with sn ∈ Sn,

lim sup Sn = the set of all partial limits of sequences (sn) with sn ∈ Sn.

Both limiting sets are closed. Moreover, let us write Sn → S if

lim inf Sn = lim sup Sn = S.

It holds that Sn → S if and only if clos Sn → S, where, as we know, automatically
S = clos S holds.

Here is an apparently different approach to set convergence: For z ∈ C and
S ⊆ C, set dist(z, S) := infs∈S |z − s|. The Hausdorff distance of two bounded sets
S, T ⊆ C is defined via

dH(S, T ) := max
{

sup
s∈S

dist(s, T ), sup
t∈T

dist(t, S)
}

.
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Although dH is a metric on the set of all compact subsets of C, it is just a pseudometric
on the set of all bounded subsets of C: it enjoys symmetry and triangle inequality, but
not definiteness. Indeed, one has dH(S, T ) = 0 if and only if clos S = clos T since

dH(S, T ) = dH(clos S, T ) = dH(S, clos T ) = dH(clos S, clos T ).

Let us still write Sn
H→S if dH(Sn, S)→ 0, also for merely bounded sets Sn, S, knowing

that the limit S in Sn
H→S is not unique: one has Sn

H→S and Sn
H→T if and only if

dH(S, T ) = 0, i.e. clos S = clos T .
Both notions of set convergence are connected, via the Hausdorff theorem:

Sn
H→S ⇐⇒ Sn → clos S. (3.1)

Lemma 3.1. Let Sn and Tn be bounded subsets of C with Sn → S and Tn → T .
In addition, suppose Sn \ Tn ̸= ∅. Then:

(a) in general, it does not follow that

Sn \ Tn → S \ T,

(b) however, it always holds that

lim inf(Sn \ Tn) ⊇ S \ T.

Proof. (a) Consider

Sn := [0, 1]→ [0, 1] =: S and Tn := 1
n
Z ∩ [0, 1]→ [0, 1] =: T.

Then
Sn \ Tn → [0, 1] ̸= ∅ = S \ T.

(b) Let x ∈ S \ T . Since x ∈ S, there is a sequence (xn) with xn ∈ Sn such that
xn → x. We show that xn ̸∈ Tn, eventually. Suppose xn ∈ Tn for infinitely many
n ∈ N. Then there is a strictly monotonic sequence (nk) in N with xnk

∈ Tnk
. But

then
x = lim

n
xn = lim

k
xnk
∈ lim sup

n
Tn = T,

which contradicts x ∈ S \T . Consequently, just finitely many elements of the sequence
(xn) can be in Tn. Replacing these by elements from Sn \ Tn does not change the
limit x. So x ∈ lim inf(Sn \ Tn).
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4. EQUIVALENCE OF POINTWISE CONVERGENCE fn → f
AND HAUSDORFF CONVERGENCE OF THE PSEUDOSPECTRA

Here is our main theorem. Note that we do not require any convergence of An to A.

Theorem 4.1. Let X be a Banach space with the properties from Lemma 2.2 and let
A and An, n ∈ N, be bounded linear operators on X. Then the following are equivalent
for the functions and sets introduced in (1.1), (1.4) and (1.5):

(i) fn → f pointwise,
(ii) for all ε > 0, one has specεAn

H→ specεA.

Proof. (i)⇒(ii). Assume (i) and take ε > 0. For f(λ) < ε, (i) implies fn(λ) < ε for
sufficiently large n. So it follows that

specεA ⊆ lim inf specεAn ⊆ lim sup specεAn.

Now let λ ∈ lim sup specεAn, i.e. λ = lim λnk
with λnk

∈ specεAnk
, so that

fnk
(λnk

) < ε. Then

|f(λ)− fnk
(λnk

)| ≤ |f(λ)− fnk
(λ)|︸ ︷︷ ︸

→0 by (i)

+ |fnk
(λ)− fnk

(λnk
)|︸ ︷︷ ︸

≤|λ−λnk
|→0

→ 0.

Consequently, f(λ) ≤ ε and hence λ ∈ clos(specεA), by Lemma 2.2. We get

specεA ⊆ lim inf specεAn ⊆ lim sup specεAn ⊆ clos(specεA).

Passing to the closure everywhere in this chain of inclusions, just changes specεA at
the very left into clos(specεA), and we have specεAn → clos(specεA). Hence, by (3.1),
we obtain (ii).

(ii)⇒(i). Take λ ∈ C and put ε := f(λ).
Case 1. ε = 0. Take an arbitrary δ > 0. Then, by (ii), λ ∈ specδA

H← specδAn. So,
by (3.1), there is a sequence (λn)n∈N with λn ∈ specδAn = f−1

n ([0, δ)) and λn → λ.
Case 2. ε > 0. Take an arbitrary δ ∈ (0, ε). By (ii), we have

Sn := specε+δAn
H→ specε+δA =: S, i.e. Sn → clos S, by (3.1),

and
Tn := specε−δAn

H→ specε−δA =: T, i.e. Tn → clos T, by (3.1).

By Lemma 3.1 (b),

λ ∈ clos(specε+δA) \ clos(specε−δA) ⊆ lim inf
(

specε+δAn \ specε−δAn

)
,

in short:
λ ∈ f−1(

(ε− δ, ε + δ]
)
⊆ lim inf f−1

n

(
[ε− δ, ε + δ)

)
.

So there is a sequence (λn)n∈N with λn ∈ f−1
n

(
[ε− δ, ε + δ)

)
and λn → λ.
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In both cases, we conclude

|f(λ)− fn(λ)| ≤ |
ε︷︸︸︷

f(λ)−fn(λn)|︸ ︷︷ ︸
≤δ

+ |fn(λn)− fn(λ)|︸ ︷︷ ︸
≤|λn−λ|→0

< 2δ

for all sufficiently large n, and hence fn(λ)→ f(λ) as n→∞, i.e. (i) holds.

Corollary 4.2. Let the assumptions of Theorem 4.1 be satisfied. If X is a Hilbert space
and the operators A and An, n ∈ N, are normal then (i) and (ii) are also equivalent to

(iii) spec An
H→ spec A.

Proof. For normal operators, the ε-pseudospectrum is exactly the ε-neighborhood of
the spectrum, e.g. [14]. But Bε(Sn) H→Bε(S) for all ε > 0 implies Sn

H→S.

Remark 4.3.

(a) The pointwise convergence fn → f is uniform on compact subsets of C. (Take an
ε
3 -net for the compact set and use the uniform Lipschitz continuity of the fn).

(b) It is well-known [14] that specεA ⊆ rD with r = ∥A∥ + ε. So if (An)n∈N is
a bounded sequence then specεB ⊂ rD for all B ∈ {A, An : n ∈ N} with
r = max{∥A∥, sup ∥An∥} + ε. By (a), the convergence fn → f is uniform on
clos(rD).

Remark 4.4. Sometimes (especially in earlier works), pseudospectra are defined in
terms of non-strict inequality:

SpecεA := {λ ∈ C : ∥(A− λI)−1∥ ≥ 1
ε}, ε > 0.

One benefit is to get compact pseudospectra, in which case dH is a metric and H→ has
a unique limit. By Lemma 2.2, SpecεA = clos(specεA) for all ε > 0. But since Sn

H→S
if and only if clos(Sn) H→ clos(S), one could add this further equivalent statement
to Theorem 4.1:

(iv) ∀ε > 0 : SpecεAn
H→SpecεA.
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