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1. Introduction

Gröbner bases have originally been introduced by Buchberger for the algorith-
mic solution of some fundamental problems in commutative algebra [6]. They
have turned out to be a crucial concept for further advance in the field of
computer algebra [1, 2, 8, 11].

Linear codes with their additional algebraic properties, on the other hand,
form an important subclass of error-correcting codes. Their relevance is well
established in the field of coding theory [12, 20].

Recently, it has been emphasized that linear codes over finite fields can be
described by binomial ideals given as a sum of a toric ideal and a non-prime
ideal [4, 5, 15]. In this way, a direct link between the two prospering sub-
jects of linear codes and Gröbner bases has been provided. In the binary case,
this correspondence holds important information about the code like its mini-
mum distance and its minimal support codewords, and allows a new decoding
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method [4, 13]. This has led to new insight into the algebraic structure of lin-
ear codes and using the rich theory of toric ideals [13, 9]. Central to all these
applications is the computation of reduced Gröber bases.

In this paper, we will address the problem of computing the Graver basis
and the universal Gröbner basis for both binomial ideals associated to a linear
code. The essential ideas stem from [18] for the toric case and from [13] which
only considers the modular case.

This paper is organized as follows. Section 2 introduces the required notions
and definitions. Section 3 shows how both ideals associated to linear codes can
be computed from certain toric ideals by substitution of variables. Section 4
provides a method for computing the Graver bases for code ideals. Section 5 de-
scribes a procedure for calculating the universal Gröbner basis from the Graver
basis for a code ideal.

2. Preliminaries

This section will introduce the necessary concepts from commutative algebra
and algebraic coding. We assume familiarity with the basic definitions and
notions of monomial orders and Gröbner bases as introduced in [1, 7].

2.1. Universal Gröbner Bases and Graver Bases

Let K[x] = K[x1, . . . , xn] be the commutative polynomial ring in n indetermi-
nates over a field K and let monomials in K[x] be denoted by xu = xu1

1 · · · x
un
n ,

where u = (u1, . . . , un) ∈ N
n
0 .

For a given ideal I ⊂ K[x] and a monomial order ≻ on N
n
0 , the leading ideal

of I w.r.t. ≻ is denoted by lt≻(I) and the reduced Gröbner basis for I w.r.t. ≻
is designated by G≻(I). For a given ideal I only finitely many different reduced
Gröbner bases exist, and their union is called the universal Gröbner basis for
I denoted by U(I) [17, 18, 21].

If two different monomial orders ≻ and ≻′ on N
n
0 have the same leading ideal

lt≻(I) = lt≻′(I), then the reduced Gröbner bases are also the same G≻(I) =
G≻′(I) [10]. This result can be further generalized by introducing the notion
of weight vectors. For any ω ∈ R

n and any polynomial f =
∑

cix
ui ∈ K[x],

define the initial form ltω(f) of f to be the sum of all terms cix
ui in f such

that the inner product ω · ui is maximal, and for an ideal I define its leading

ideal associated to ω as

ltω(I) = 〈ltω(f) | f ∈ I〉 . (1)
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Note that unlike to the leading ideal w.r.t. a monomial order this ideal is not
necessarily generated by monomials. For a non-negative weight vector ω ∈ R

n
+

and a monomial order ≻ on N
n
0 , a new term order ≻ω is defined by ordering

monomials first by their ω-degree and breaking ties using ≻,

xa ≻ω xb :⇐⇒ a · ω > b · ω ∨ (a · ω = b · ω ∧ xa ≻ xb). (2)

For any non-negative weight vector w ∈ R
n
+ and any monomial order ≻ on N

n
0 ,

ltw(I) = lt≻(I) if and only if ltw(g) = lt≻(g) for all g ∈ G≻(I) [10, Lemma 2.10]
A binomial in K[x] is a polynomial consisting of two terms, i.e., a binomial

is of the form cux
u − cvx

v, where u, v ∈ N
n
0 and cu, cv ∈ K are non-zero. A

binomial is pure if the involved monomials are relatively prime. All binomials
considered here will be pure and henceforth the prefix pure will be omitted. A
binomial ideal is an ideal generated by binomials.

A binomial xu − xv in a binomial ideal I is primitive if there is no other
binomial xu′

− xv′ in I such that xu′

divides xu and xv′ divides xv. The set of
all primitive binomials in I is called the Graver basis for I and is denoted by
Gr(I). The universal Gröbner basis for a binomial ideal I is always a subset of
the Graver basis, U(I) ⊆ Gr(I) [18].

Toric ideals form a specific class of binomial ideals [3]. Affine toric ideals
can be introduced by integer matrices [18]. For an integer d× n matrix A, the
toric ideal associated to A is defined as

IA = 〈xu − xv | Au = Av, u, v ∈ N
n
0 〉 . (3)

Note that each vector u ∈ Z
n can be uniquely written as u = u+−u− where

u+, u− have disjoint support and their entries are non-negative. For instance,
the vector u = (1,−2, 0) splits into u+ = (1, 0, 0) and u− = (0, 2, 0). In this
way, the toric ideal IA can be expressed as

IA =
〈

xu+

− xu−

| u ∈ kerZ(A)
〉

. (4)

2.2. Linear Codes and Binomials Ideals

Let Fq denote the finite field with q elements where q is a prime power. In what
follows, whenever we write q = pr, p shall be a prime and r a non-negative
integer. A linear code C of length n and dimension k over Fq is the image of
a one-to-one linear mapping from F

k
q to F

n
q . Such a code C is called an [n, k]

code whose elements are called codewords, which are always written as row
vectors [12, 20].
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A generator matrix for an [n, k] code C is a k × n matrix G over Fq whose
rows form a basis for C, and a parity check matrix H is an (n− k)× n matrix
over Fq such that a word c ∈ F

n
q belongs to C if and only if cHT = 0.

The support of a word u ∈ F
n
q , denoted by supp(u), is the set of coordinates

i ∈ {1, . . . , n} such that ui 6= 0.
Let C be an [n, k] code over the finite field Fq, where q = pr is a prime

power. Two binomial ideals can be associated to this code.
First, the ordinary code ideal associated to C is an ideal in the polynomial

ring K[x] = K[x11, . . . , x1r, x21 . . . , xnr] given as a sum of binomial ideals [5, 15],

I(C) = I ′(C) + Ip, (5)

where

I ′(C) = 〈xc − xc′ | c− c′ ∈ C〉 (6)

and

Ip =
〈

xpij − 1 | 1 ≤ i ≤ n, 1 ≤ j ≤ r
〉

. (7)

Note that the components of the word c ∈ F
n
q in the exponent of the monomial

xc are replaced by their canonical integer representations using the vector space
isomorphism between Fq and F

r
p.

The binomial xu − xu′

in the code ideal is said to correspond to the code-
word u− u′. In contrast to the integral case, however, different binomials may
correspond to the same codeword. For example, the word (1, 1, 0) in F

3
2 can be

written as (1, 1, 0) = (0, 1, 0) − (1, 0, 0) or (1, 1, 0) = (1, 0, 0) − (0, 1, 0).
In order to define the second binomial ideal associated to C, let α be a

primitive element of Fq and define the crossing map

N : Fn
q → Z

n(q−1)

by

a = (a1, . . . , an) = (αj1 , . . . , αjn) 7→ (ej1 , . . . , ejn),

where ei is the ith unit vector of length q − 1, 1 ≤ i ≤ q − 1, and each zero
coordinate is mapped to the zero vector of length q − 1. For instance, consider
the field F4 = {0, α, α2 = α + 1, α3 = 1} and n = 2. The crossing map
N : F2

q → Z
6 assigns (α, 1) to 100001, (0, 0) to 000000, and (α2, 0) to 010000.

The associated mapping

H : Zn(q−1) → F
n
q
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is given as

(j1,1, . . . , j1,q−1, j2,1, . . . , jn,q−1) 7→

(

q−1
∑

i=1

j1,iα
i, . . . ,

q−1
∑

i=1

jn,iα
i

)

.

This map is the right inverse of N, since H ◦ N is the identity on Z
n(q−1).

Second, the generalized code ideal associated to the code C is an ideal in
the larger polynomial ring K[x] = K[x1, . . . ,xn], where xj = (xj1, . . . , xj,q−1)
for 1 ≤ j ≤ n, given as [14]

I+(C) =
〈

xNa − xNb | a− b ∈ C
〉

. (8)

A generating set for the code ideal I+(C) will contain both a generating set
of the associated linear code as well as their scalar multiples and an encoding
of the additive structure of the field Fq [14, 16]. The latter can be given by the
ideal Iq in K[x] generated by the set

n
⋃

i=1

({xiuxiv − xiw | α
u + αv = αw} ∪ {xiuxiv − 1 | αu + αv = 0}) . (9)

In the following, we write U(C) = U (I(C)) and U+(C) = U (I+(C)) for the
universal Gröbner basis for I(C) and I+(C), respectively, and Gr(C) = Gr (I(C))
and Gr+(C) = Gr (I+(C)) for the Graver basis for I(C) and I+(C), respectively.

For a binary linear code both, the generalized code ideal and the code ideal
are equal. In general, the code ideal is an elimination ideal of the generalized
code ideal. To see this, let C be an [n, k] code over Fq. For any natural number
s ≤ q − 1 and for indices 1 ≤ i1 < i2 < · · · < is ≤ q − 1 denote by xi1,i2,...,is

the
variables

x1i1 , . . . , x1is , x2i1 , . . . , xni1 , . . . , xnis.

The generalized code ideal belongs to the ringK[x] = K[x11, . . . , xn,p−1] whereas
the ordinary code ideal can be considered to belong to the ringK[xi1,...,ir

] ⊂ K[x]
for certain indices i1, . . . , ir,

I(C) =
〈

xa
i1,...,ir

− xb
i1,...,ir

|a− b ∈ C
〉

. (10)

Proposition 1. Let C be an [n, k] code over Fq. The code ideal I(C) as
defined in Eq. (10) is an elimination ideal of the ideal I+(C). More precisely,
for any choice of r indices 1 ≤ i1 < · · · < ir ≤ q − 1 such that αi1 , . . . , αir are
linearly independent in F

r
p holds

I(C) = I+(C) ∩K[xi1,i2...,ir
].
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Proof. Let xa
i1,...,ir

− xb
i1,...,ir

∈ I(C), i.e., a − b ∈ C. For 1 ≤ i ≤ n, let
(ai1, . . . , air) be the vector in F

r
p corresponding to the ith component of a and

analogously for b. Then xa
i1,...,ir

− xb
i1,...,ir

= xa′ − xb′ , where a′ = (a11ei1 +
· · · + a1reir , . . . , an1ei1 + · · · + anrei1) and analogously for b′. Furthermore,
H(a′ − b′) = a− b ∈ C and so, xa

i1,...,ir
− xb

i1,...,ir
∈ I+(C) ∩K[xi1,...,ir

].

Conversely, let xa − xb be a binomial in I+(C) ∩ K[xi1,...,ir
]. Clearly, a − b

must be of the form ((a11 − b11)ei1 + · · · + (a1r − b1r)eir , . . . , (an1 − bn1)ei1 +
· · ·+ (anr − bnr)ei1)) with H (a− b) = a− b ∈ C. And the result follows.

3. Code Ideals From Toric Ideals

In this section, the generalized code ideal I+(C) will be related to a toric ideal.
Such a connection has already been established for the ordinary code ideal I(C)
in the case of a prime field [13, Remark 1 and Proposition 3.1]. To see this,
define for any prime number p and any m× n matrix A over Fp the extended
m× (n+m) integer matrix

A(p) =
(

△A pIm
)

(11)

where △A is an m× n integer matrix such that A = △A⊗Z Fp.

Proposition 2. [13, Remark 1 and Proposition 3.1] The ordinary code
ideal I(C) associated to an [n, k] code C over Fp with parity check matrix H is
given by

I(C) =
{

f(x,1) | f ∈ IH(p)

}

⊂ K[x], (12)

where 1 is the all-1 vector of length n−k and IH(p) is the toric ideal in K[x,y] =
K[x1, . . . , xn, y1, . . . , yn−k] associated to the integer matrix H(p).

This result can be extended to linear codes over any finite field. For this,
take the finite field Fq with q = pr and an Fp-basis B = {b1, . . . , br} of Fq. For
any matrix H ∈ F

m×n
q with row vectors h1, . . . , hm define the extended matrix

H ′ =



























b1h1
...

brh1
...

b1hm
...

brhm



























∈ F
rm×n
q
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given by multiplying the row vectors of H with the elements from the basis
B. Replace each entry by its row representation in F

r
p according to the basis

B and denote the resulting matrix by He ∈ F
mr×nr
p . Finally, the matrix He is

associated to the mr × nr +mr integer matrix

H(q) =
(

△He pImr

)

, (13)

where △He is an mr × nr integer matrix such that △He ⊗Z Fp = He.

Example 3.3. Consider the following 2 × 4 matrix over the finite field
F4 =

{

0, 1, α, α2 = α+ 1
}

,

H =

(

α 0 1 0
α2 α 0 1

)

.

In view of the basis B = {1, α}, we obtain

H ′ =









α 0 1 0
α2 0 α 0
α2 α 0 1
1 α2 0 α









and

He =









0 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 1 0 0 1 0
1 0 1 1 0 0 0 1









giving the integer matrix H(4) = (△He | 2I4 ). ♦

Proposition 4. The ordinary code ideal I(C) associated to an [n, k] code
C over Fq with parity check matrix H ∈ F

n−k×n
q is given by

I(C) =
{

f(x,1)
∣

∣f ∈ IH(q)

}

, (14)

where 1 is the all-one vector of length (n−k)r and IH(q) is the toric ideal in the
ring K[x,y] = K[x11, . . . , xnr, y1, . . . , y(n−k)r] associated to the integer matrix
H(q).

Proof. The code ideal I(C) is generated by binomials and so it is sufficient
to consider only binomials. The ideal IH(q) is toric and for all a, b ∈ Z

nr and

a′, b′ ∈ Z
(n−k)r, the following holds

xaya′ − xbyb′ ∈ IH(q) ⇐⇒ △He(a− b)T ≡ 0 mod p.
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By passing from△He to△He⊗ZFp = He and from a−b ∈ Z
nr to a−b mod p ∈

F
nr
p , a−b belongs to ker(He) if and only if xaya′−xbyb′ ∈ IH(q). But the kernels

ker(He) and ker(H) are isomorphic under the Fp-isomorphism between F
r
p and

Fq and hence the result follows.

A similar result holds for the generalized code ideals. To see this, let α
denote a fixed primitive element of the finite field Fq and let B = {b1, . . . , br}
be an Fp-basis for Fq. For any matrix H ∈ F

m×n
q with columns h1, . . . , hn define

the extended matrix

H ′ =
(

αh1 α2h1 . . . αq−1h1 αh2 . . . αq−1hn
)

∈ F
m×n(q−1)
q .

Replace each entry by its column representation in F
r
p acoording to the basis

B and denote the resulting matrix by H+,e ∈ F
mr×n(q−1)
p . Finally, the matrix

H+,e is associated with the integer mr × n(q − 1) +mr matrix

H+(q) =
(

△H+,e pIrm
)

, (15)

where △H+,e is an mr×n(q−1) integer matrix such that △H+,e⊗ZFp = H+,e.

Example 3.5. Consider the following 2× 3 matrix over the finite field F9

with primitive element α satisfying α2 + α+ 2 = 0,

H =

(

α2 α 0
0 0 α6

)

.

In view of the basis B = {1, α}, the extended matrix is

H ′ =
(

H ′
1 H ′

2 H ′
3

)

where

H ′
1 =

(

α3 α4 α5 α6 α7 α8 α α2

0 0 0 0 0 0 0 0

)

,

H ′
2 =

(

α2 α3 α4 α5 α6 α7 α8 α1

0 0 0 0 0 0 0 0

)

,

H ′
3 =

(

0 0 0 0 0 0 0 0
α7 α8 α α2 α3 α4 α5 α6

)

,

and

H+,e =
(

H1,+,e H2,+,e H3,+,e

)

,
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where

H1,+,e =









2 2 0 2 1 1 0 1
2 0 2 1 1 0 1 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0









,

H2,+,e =









1 2 2 0 2 1 1 0
2 2 0 2 1 1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0









,

H3,+,e =









0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 1 2 2 0 2
1 0 1 2 2 0 2 1









,

giving the integer matrix H+(9) = (△He | 3I4 ). ♦

Proposition 6. The generalized code ideal I+(C) associated to an [n, k]
code C over Fq with parity check matrix H is given by

I+(C) =
{

f(x,1) | f ∈ IH+(q)

}

, (16)

where 1 is the all-one vector of length (n − k)r and IH+(q) is the toric ideal
in the ring K[x,y] = K[x11, . . . , xn,q−1, y1, . . . , y(n−k)r] associated to the integer
matrix H+(q).

Proof. The code ideal I+(C) is generated by binomials and so it is sufficient
to consider only binomials. Let a, a′, b, b′ ∈ Z

n(q−1). Writing

a− b = (c11, . . . , c1,q−1, c21, . . . , c2,q−1, . . . , cn,q−1) = (c1, . . . , cn)

gives

xaya′ − xbyb′ ∈ IH+(q) ⇐⇒ △H+,e(c1, . . . , cn)
T ≡ 0 mod p.

Identifying the entries cij ’s with their images under the canonical mapping
Z → Fp shows that △H+,e(c1, . . . , cn)

T ≡ 0 mod p holds if and only if for all
0 ≤ s ≤ r − 1 and 1 ≤ i ≤ n− k,

n
∑

j=1

(

πs (αhij) cj1 + . . .+ πs
(

αq−1hij
)

cj,q−1

)

= 0 over Fp,
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where πj : Fq → Fp :
∑r

i=1 aibi 7→ aj denotes the projection onto the jth
component according to the basis B. On the other hand, HH(c1, . . . , cn)

T = 0

if and only if for all 1 ≤ i ≤ n− k,

0 =

n
∑

j=1

hij

(

q−1
∑

ℓ=1

cjℓα
ℓ

)

=

n
∑

j=1

(

(hijα) cj1 + · · ·+
(

hijα
q−1
)

cj,q−1

)

over Fq.

Applying the projections πs, 1 ≤ s ≤ r provides the equivalence between both
formulae.

Example 3.7. Take the [3, 2] code C over F4 with parity check matrix

H =
(

α α3 α2
)

,

where α is a primitive element of F4 satisfying α2 + α + 1 = 0. In view of the
F2-basis B = {1, α}, we obtain the matrix

H+(4) =

(

1 0 1 1 1 0 0 1 1 2 0
1 1 0 0 1 1 1 0 1 0 2

)

.

The reduced Gröbner basis for the toric ideal IH+(4) w.r.t. the lexicographic
ordering consists of the binomials

x11 − x33, x12 − x31, x13 − x32,
x21 − x32, x22 − x33, x23 − x31,
x231 − y2, x31x32 − x33, x31x33 − x32y2,
x31y1 − x32x33, x232 − y1, x233 − y1y2.

The substitution y 7→ 1 and a further Gröber basis computation lead to the
reduced Gröbner basis for the generalized code ideal I+(C),

{

x11 − x33, x12 − x32x33, x13 − x32, x21 − x32, x22 − x33,
x23 − x32x33, x31 − x32x33, x232 − 1, x233 − 1

}

.

♦
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4. Computing the Graver Basis

The Graver basis for the ordinary code ideal associated to a linear code over
a finite prime field can be computed as an elimination ideal of the Z-kernel of
the matrix [13, Remark 3]

(

△H 0 pIm
In In 0

)

∈ Z
(m+n)×(2n+m), (17)

where △H gives rise to the parity check matrix H = △H ⊗Z Fp of the code. In
this section, a uniform method for computing the Graver basis for the ordinary
and the generalized code ideal will be developed.

4.1. Generalization of Lawrence Liftings

For each m×n integer matrix△H, let H = △H⊗ZFp and define the p-Lawrence
lifting of △H as the (m+ n)× (2n +m) integer matrix

Λ(H)p =

(

△H 0 pIm
In In 0

)

. (18)

Consider the toric ideal IΛ(H)p in the ring K[x,y, z] where x = (x1, . . . , xn),
y = (y1, . . . , yn) and z = (z1, . . . , zm), and define the ideal IΛ(H) in K[x,y] as

IΛ(H) =
{

g(x,y,1)
∣

∣g ∈ IΛ(H)p

}

. (19)

Proposition 8. The ideal IΛ(H) is binomial and all pure binomials in
IΛ(H) are of the form xuyv − xvyu, where u− v ∈ ker(H).

Proof. Let {g1, . . . , gk} be a generating set for IΛ(H)p . Then by definition,
{g′1, . . . , g

′
k}, where g′i(x,y) = gi(x,y,1) for 1 ≤ i ≤ k, is a generating set for

IΛ(H). Since IΛ(H)p is generated by binomials, so is IΛ(H).

In view of the second assertion, take a binomial xu+

yv+−xu−

yv− in K[x,y].
Then

xu+

yv+−xu−

yv− ∈ IΛ(H) ⇔ ∃c ∈ Z
m : (u+−u−, v+−v−, c) ∈ ker (Λ(H)p)

⇔ u+ − u− ∈ ker(H) ∧ u+ − u− = v− − v+

⇔ u+ − u− ∈ ker(H) ∧ u+ = v− ∧ u− = v+.

This gives the result.
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Proposition 9. For each binomial ideal I in K[x,y] in which every bino-
mial is of the form xayb − xbya, the Graver basis, the universal Gröbner basis
and every reduced Gröbner basis coincide.

Proof. The Graver basis is a Gröbner basis w.r.t. any monomial order since
it contains the universal Gröbner basis. Claim that it is also the reduced
Gröbner basis w.r.t. an arbitrary monomial order. Indeed, suppose there are
binomials xayb − xbya and xcyd − xdyc in Gr(I), where xayb and xcyd are
the respective leading terms. If xayb divides xcyd, then xbya divides xdyc

contradicting the primitiveness of xayb − xbya. By the same argument, the
non-leading term in a primitive binomial is not divisible by the leading term of
another primitive binomial. This proves the claim. By the inclusions the result
follows.

4.2. Application to Code Ideals

In this section, we provide algorithms to establish the Graver bases for both
code ideals.

First, we consider ordinary code ideals.

Proposition 10. Let C be an [n, k] code over Fq with parity check matrix
H, and let G be the reduced Gröbner basis for the ideal IΛ(He) w.r.t. any
monomial order. Then the Graver basis for the ordinary code ideal I(C) is
given by

Gr (C) = {xu − xv |xuyv − xvyu ∈ G } . (20)

Proof. By Prop. 4 and 8, the binomial xu − xv belongs to I(C) if and only
if the binomial xuyv − xvyu belongs to IΛ(He). It follows that the binomial
xu−xv is primitive for I(C) if and only if the binomial xuyv−xvyu is primitive
for IΛ(He), i.e.,

Gr (C) =
{

xu − xv
∣

∣xuyv − xvyu ∈ Gr
(

IΛ(He)

)}

.

Moreover, by Prop. 9, every reduced Gröbner basis for IΛ(He) und the Graver
basis coincide and in particular, G = Gr

(

IΛ(He)

)

. The assertion follows.

This result gives rise an algorithm which computes the Graver basis for the
ordinary code ideal (Alg. 1). It makes use of the following macros:

• triangleHe(H,B) applied to an m× n matrix H over Fq and a basis B
for the Fp-space Fq returns the mr× nr integer matrix △He constructed
from the matrix H according to (13).
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Algorithm 1 Computation of the Graver basis for the ordinary code ideal

Input: Finite field Fq with prime power q = pr and Fp-basis B for Fq, and an
(n− k)× n matrix H over Fq.

Output: Graver basis for the code ideal I(C) associated to the [n, k] code C
over Fp with parity check matrix H.

1: I ← toricIdeal(Λ(H)p, nr, nr, (n − k)r);
2: IΛ(H) ← substitute(I, z→ 1);
3: G← groebnerBasis(IΛ(H),≻);
4: return Gr(C)← substitute(G,y → 1)

• pLawrenceLift(M) applied to an integer matrix M and a prime number
p returns its p-Lawrence lifting.

• toricIdeal(M,m,n, o) applied to an integer matrix M and non-negative
integers m,n, o returns a generating set for the toric ideal associated to
M in K[x,y, z] with x, y and z having the respective lengths m,n, o.

• substitute(S,v → 1) applied to a set of polynomials S and a sequence
of variables v returns the set of polynomials from S where the variables
in v are substituted by 1.

• groebnerBasis(I,≻) applied to a set of polynomials I and a monomial
order ≻ returns the reduced Gröbner basis for I w.r.t. ≻.

Example 4.11. Consider the [3, 2] code C over the field F3 with parity
check matrix

H =
(

1 2 1
)

.

Note that △He =
(

1 2 1
)

and so the 3-Lawrence lifting of the matrix △He

is

Λ(He)3 =









1 2 1 0 0 0 3

I3 I3 0









.

Computing the reduced Gröbner basis for the toric ideal IΛ(He)3 in the poly-
nomial ring F2[x1, x2, x3, y1, y2, y3, z] w.r.t. the grevlex order and substituting
z 7→ 1 yields a generating set for the ideal IΛ(He),

{

x33 + y33, x
3
2 + y32 , x2x3 + y2y3, x

3
1 + y31, x1x

2
3 + y1y

2
3,
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x21x3 + y21y3, x1x2 + y1y2, x3y
2
2 + x22y3, x

2
3y2 + x2y

2
3 ,

x3y1 + x1y3, x
2
1y2 + x2y

2
1, x1y

2
2 + x22y1, x1x3y2 + x2y1y3

}

which is also the reduced Gröbner basis w.r.t. the same monomial order. More-
over, the substitution y 7→ 1 yields the Graver basis for the code C,

Gr (C) =
{

x33 + 1, x32 + 1, x2x3 + 1, x31 + 1, x1x
2
3 + 1, x21x3 + 1, x1x2 + 1,

x3 + x22, x
2
3 + x2, x3 + x1, x

2
1 + x2, x1 + x22, x1x3 + x2

}

.

♦

Second, consider generalized code ideals.

Proposition 12. Let C be an [n, k] code over Fq with parity check matrix
H, and let G be the reduced Gröbner basis for the ideal IΛ(H+,e) w.r.t. any
monomial order. Then the Graver basis for the generalized code ideal I+(C)
associated to the code C is given by

Gr+ (C) = {xu − xv |xuyv − xvyu ∈ G} . (21)

The proof is similar to that of Prop. 10 using the Prop. 8, 6, and 9.
This assertion provides an algorithm for computing the Graver basis for a

generalized code ideal (Alg. 2).
It will make use of the additional macro:

• triangleHe+(H,B) applied to an m × n matrix H over a finite field Fq

and a Fp-basis B for for Fq returns the integer mr×n(q−1) matrix△H+,e

obtained from the matrix H according to (15).

Example 4.13. (Ex. 7 cont’d) The 2-Lawrence lifting of the matrix△H+,e

gives the matrix

Λ (H+,e)2 =













1 0 1 1 1 0 0 1 1 0 2 0
1 1 0 0 1 1 1 0 1 0 0 2

I9 I9 0 0













.

Using this matrix the Graver basis for I+(C) can be computed by Alg. 2. This
basis consists of 135 binomials. ♦
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Algorithm 2 Computation of the Graver basis for the generalized code ideal

Input: Finite field Fq with prime power q = pr, an Fp-basis B for Fq and a
primitive element α, and an (n− k)× n matrix H over Fq.

Output: Graver basis for the generalized code ideal I+(C) associated to the
[n, k] code C over Fq with parity check matrix H.

1: △He+← triangleHe+(H,B);
2: Λ(H)p ← pLawrenceLift(△He, p);
3: I ← toricIdeal(Λ(H)p, n(q − 1), n(q − 1), (n − k)r);
4: IΛ(H) ← substitute(I, z→ 1);
5: G← groebnerBasis(IΛ(H),≻);
6: return Gr(C)← substitute(G,y → 1)

5. Computing the Universal Gröbner Basis

In this section, the universal Gröbner basis for a generalized code ideal will
be established from the Graver basis. The results are equally applicable to
ordinary code ideals.

Lemma 14. Let I be a binomial ideal in K[x] and let xu − xu′

be a
binomial in I. If there is a binomial xv − xv′ ∈ I such that both monomials xv

and xv′ divide either xu or xu′

, then xu − xu′

does not belong to any reduced
Gröbner basis for the ideal I.

Proof. Let ≻ be any monomial order on K[x], let xu be the leading term of
the binomial xu − xu′

, and xv − xv′ be a binomial in I with leading monomial
xv.

First, assume that both terms in xv−xv′ divide xu. But as both divide the
monomial xu, xu − xu′

cannot belong to the reduced Gröbner basis w.r.t. ≻.
Second, assume that both terms in xv−xv′ divide xu′

. This contradicts xu′

being a standard monomial.

Example 5.15. (Ex. 11 cont’d) The Graver basis for the linear code C over
F3 with parity check matrix H = (1 2 1) is given by

Gr (C) =
{

x33 + 1, x32 + 1, x2x3 + 1, x31 + 1, x1x
2
3 + 1, x21x3 + 1, x1x2 + 1,

x3 + x22, x
2
3 + x2, x3 + x1, x

2
1 + x2, x1 + x22, x1x3 + x2

}

.

By Lemma 14, x1x3+x2 does not belong to the universal Gröbner basis because
both terms of the primitive binomial x1 + x3 divide x1x3. In fact, it can be
shown that U(C) = Gr(C) \ {x1x3 + x2}. ♦
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Proposition 16. The universal Gröbner basis for the generalized code
ideal associated to a linear code over a finite field with characteristic two consists
of exactly those primitive binomials whose involved terms are both unequal to 1
with the exception of the binomials of the form x2ij − 1.

Proof. Let C be an [n, k] code over a field Fq with characteristic 2. Note
that all primitive binomials in the generalized code ideal I+(C) are squarefree
since x2ij − 1 ∈ I+(C) for all 1 ≤ i ≤ n and 1 ≤ j ≤ q − 1,

First, claim that no primitive binomial with one term equal to 1 belongs to
the universal Gröbner basis. Indeed, let xc− 1 ∈ I+(C) be a primitive binomial
with deg(xc) > 1. Since xc 6= 1, we can write xc = xijx

c′ for some i, j and
c′ 6= 0. Then xij(x

c − 1) ≡ xc′ − xij mod x2ij − 1 and thus xc′ − xij belongs

to I+(C). Since xc′ and xij are both proper factors of xc, the binomial xc − 1
cannot belong to the universal Gröbner basis by Lemma 14.

Second, claim that any primitive binomial whose involved terms are both
unequal to 1 belongs to the universal Gröbner basis. Indeed, let xu−xu′

∈ I+(C)
be a primitive binomial with u, u′ 6= 0, and put s = deg(xu) and t = deg(xu′

),
and assume that s ≥ t (according to Prop. 23 it is sufficient to show that either
xu − xu′

or xu − xu′

belongs to the universal Gröbner basis).
Assume that this binomial does not belong to the universal Gröbner basis

and therefore not to any reduced Gröbner basis. Let ≻ be a monomial order
with the property that

{

xij | ij /∈ supp(u) ∪ supp(u′)
}

≻
{

xij | ij ∈ supp(u) ∪ supp(u′)
}

and the monomials in {xij | ij ∈ supp(u) ∪ supp(u′)} are compared by their
ω-degree, where ωij = 1 for ij ∈ supp(u) and ωij = s−1

t
for ij ∈ supp(u′). In

view of this order, xu ≻ xu′

because u · ω = s > s− 1 = s−1
t
t = u′ · ω.

Since the considered binomial lies in the ideal I+(C) it must be reduced to
zero on division by the reduced Gröbner basis G≻(I+(C)) It follows that there
must be a pure binomial xv − xv′ ∈ G≻(I+(C)) with leading term xv such that
xv divides xu.

We have supp(v) ∩ supp(v′) = ∅, supp(v) ⊂ supp(u), and by the chosen
monomial order, supp(v′) ⊆ supp(u) ∪ supp(u′). However, supp(v′) 6⊂ supp(u′)
since this would contradict the primitiveness of the binomial xu−xu′

. Moreover,
supp(v′) 6⊂ supp(u) since otherwise the binomial xv+v′−1 ≡ xv′(xv−xv′) mod Iq
would contradict the primitiveness. In other words, the monomial xv′ must
involve variables from both xu and xu′

.
Claim that supp(v) ∪ supp(v′) = supp(u) ∪ supp(u′). Indeed, write xv′

as a product of monomials xu1 and xu2 such that supp(u1) ⊂ supp(u) and
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supp(u2) ⊂ supp(u′). Then xu1(xv − xu1+u2) ≡ xu1+v − xu2 mod Iq belongs to
I+(C), where x

u1+v divides xu and xu2 divides xu′

. Since the binomial xu−xu′

is primitive, it follows that xu1+v = xu and xu2 = xu′

. This proves the claim.
Summing up, xv − xv′ = xu1 − xu2xu′

where xu1xu2 = xu and u1, u2 6= 0.
Since deg(xu) = s there must be an integer i ≥ 1 such that deg(xu1) = s − i
and deg(xu2) = i. Then

u1 · ω = s− i < s ≤ s− 1 + i = u′ · ω + u2 · ω = (u′ + u2) · ω.

shows that lt≻(x
v − xv′) = xv′ , a contradiction. Hence, the binomial xu − xu′

belongs to the universal Gröbner basis.

For linear codes over a finite field with characteristic 2, Prop. 16 provides
an easy way to obtain the universal Gröbner from the Graver basis.

Example 5.17. (Ex. 13 cont’d) The Graver basis consists of 135 binomials.
Removing all binomials with one involved term equal to 1 gives the universal
Gröbner basis consisting of 99 binomials. ♦

For linear codes over a finite field with characteristic > 2 a method similar
to that in [18] for toric ideals can be applied in order to compute the universal
Gröbner basis from the Graver basis.

To this end, for a given non-negative weight vector ω ∈ R
n(q−1)
+ and an ideal

I, denote by Gω(I) the reduced Gröbner basis for I w.r.t. ≻ω, where ≻ is some
tie breaking monomial order.

For any elements u, u′ ∈ N
n(q−1)
0 define the cone

C[u, u′] =
{

ω ∈ R
n(q−1)
+ | ω · u > ω · u′ ∧ xu − xu′

∈ Gω(I+(C))
}

. (22)

This cone is essentially the same as in [18]. In this setting, however, the cone
is restricted to the positive orthant.

Lemma 18. [18, Proposition 1.11] For any monomial order ≻ and any
ideal I in K[x], there exists a non-negative integer vector ω ∈ N

n(q−1) such that
ltω(I) = lt≻(I).

Proposition 19. The primitive binomial xu−xu′

∈ I+(C) belongs to the
universal Gröbner basis of I+(C) if and only if the cone C[u, u′] is non-empty.

Proof. If the cone C[u, u′] is non-empty, then by definition xu−xu′

∈ U+(C).
Conversely, assume that xu − xu′

belongs to the universal Gröbner basis
of I+(C). Then there is a monomial order ≻ such that xu − xu′

∈ G≻(I+(C))
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with xu being the leading monomial and thus xu′

being a standard monomial.

By Lemma 18, there is a weight vector ω ∈ R
n(q−1)
+ such that ltω(I+(C)) =

lt≻(I+(C)). Therefore, xu ∈ ltω(I+(C)). Moreover, xu − xu′

/∈ ltω(I+(C))
because otherwise

xu −
(

xu − xu′

)

= xu′

∈ ltω(I+(C)) = lt≻(I+(C))

contradicting the fact that xu′

is a standard monomial. This implies that
ω · u > ω · u′ and thus that C[u, u′] is non-empty.

Given an [n, k] code C over Fq and a vector u ∈ N
n(q−1)
0 . Define

Co(u) = Co(u, C) =
{

v ∈ N
n(q−1)
0 |Hu− Hv ∈ C

}

(23)

and

M(u) =
{

ω ∈ R
n(q−1)
+ |ω · u < ω · v ∀v ∈ Co(u) \ {u}

}

. (24)

Lemma 20. [18, Lemma 7.4] For u, u′ ∈ N
n(q−1)
0 ,

C[u, u′] =M(u′) ∩
⋂

ij∈supp(u)

M(u− eij). (25)

A proof is given in [18]. The set M(v) and thus the cone C[u, u′] can be
computed from the Graver basis [18]. To see this, note that ω ∈ M(u) implies
that xu /∈ ltω(I+(C)). Moreover,

ltω(I+(C)) = 〈ltω(f) | f ∈ Gr+(C)〉 . (26)

It follows that a monomial xu does not belong to the leading ideal ltω(I+(C))
if and only if for each primitive binomial xv −xv′ in I+(C) such that xv divides
xu, ltω(x

v − xv′) 6= xv, which is equivalent to ω · v ≤ ω · v′. But as the set
M(u) is open, it can be described by all such strict inequalities. This yields an
alternative description of the setM(v),

M(v) =
{

ω ∈ R
n(q−1)
+

∣

∣

∣
∀xu−xu′

∈ Gr+(C) s.t. x
u |xv :

[

ω · u′ > ω · u
]

}

.

(27)

Similar to [18, Corollary 7.9, Proof of Theorem 7.8] it will be shown that if
xu−xu′

belongs to the universal Gröbner basis for I+(C), then so does xu′

−xu.
Although this is true for toric ideals and binomial ideals associated to integer
lattices [18, 19], it does not hold for binomial ideals in general as demonstrated
in the following
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Example 5.21. Take the binomial ideal I =
〈

x2 − xy, y2 − xy
〉

in K[x, y].
The reduced Gröbner basis w.r.t. the lex order with x ≻ y is given by the set
{xy − y2, x2 − y2}. Thus xy − y2 belongs to the universal Gröbner basis for
I. Suppose y2 − xy also belongs to the universal Gröbner basis and therefore
to some reduced Gröbner basis G≻(I) with y2 ≻ xy. Pick any weight vector
ω = (ω1, ω2) ∈ R

2
+ that represents the order ≻. Clearly, ω2 > ω1 and thus

xy ≻ x2. But as xy−x2 ∈ I, the monomial xy cannot be standard contradicting
the assumption that y2 − xy belongs to any reduced Gröbner basis. ♦

Lemma 22. A primitive binomial xu − xu′

in the generalized code ideal
I+(C) with u, u′ 6= 0 belongs to the universal Gröbner basis if there is a non-

negative vector ω ∈ R
n(q−1)
+ such that

ω · u′ ≤ ω · u < ω · v for all v ∈ Co(u) \ {u, u′}.

Proof. Assume that such a vector ω ∈ R
n(q−1)
+ exists. Claim that ω ∈

⋂

ij∈supp(u)M(u− eij), i.e., each proper factor of the monomial xu is standard
w.r.t. the weight vector ω. Indeed, if ω /∈ M(u − eij) for some ij ∈ supp(u),
then there is an element v ∈ Co(u−eij)\{u−eij} such that ω · (u−eij) ≥ ω ·v.
Thus ω · (v+eij) ≤ ω ·u with v+eij ∈ Co(u) \{u}. By hypothesis, v+eij = u′

contradicting the assumption that the binomial xu − xu′

is pure and so not
primitive. This proves the claim.

First, consider the case ω · u′ < ω · u. Then the definition, ω ∈ M(u′) and
the result follows from Prop. 19 and Lemma 20.

Second, consider the case ω · u′ = ω · u. Let ≻ be any monomial order such
that {xij |ij ∈ supp(u)} ≻ {xij |ij ∈ supp(u′)}. Therefore, xu ≻ω xu′

and since
every proper factor of xu is standard, we see that this monomial is actually
a minimal generator in lt≻ω

(I+(C)). Moreover, xu′

is a standard monomial
w.r.t. ≻ω because ω · u′ < ω · v for all v ∈ Co(u) \ {u, u′}. This shows that
xu − xu′

∈ Gω(I+(C)).

Proposition 23. If a binomial xu − xu′

with u, u′ 6= 0 belongs to the
universal Gröbner basis for the generalized code ideal I+(C), then the binomial
xu′

− xu also belongs to the universal Gröbner basis.

Proof. Assume that xu − xu′

belongs to the universal Gröbner basis with
leading term xu. This binomial is pure, primitive, and there is a monomial
order ≻ such that xu − xu′

∈ G≻(I+(C)) and lt≻(x
u − xu′

) = xu.

By Lemma 18, there is a weight vector ω ∈ R
n(q−1)
+ that represents the

order ≻. Suppose all coordinates of ω are strictly positive (otherwise ω can be
replaced by a nearby vector from the same Gröbner cone). Then ω · u > ω · u′.
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Define the weight vector ω′ ∈ R
n(q−1)
+ as follows: Put ω′

ij = 0 for ij ∈
supp(u) and ω′

ij = ωij otherwise. Then 0 = ω′ · u < ω′ · u′. Define another
weight vector

ω′′ = (ω · (u− u′))ω′ − (ω′ · (u− u′))ω.

This vector is non-negative since ω′ · (u−u′) is a negative scalar and ω · (u−u′)
is a positive scalar. By definition, ω′′ · (u− u′) = 0 and so ω′′ · u = ω′′ · u′.

Claim that ω′′ · u < ω′′ · v for all v ∈ Co(u) \ {u, u′}. Indeed, first let
ω · v < ω · u. Then the binomial xu − xv ∈ I+(C) has leading term xu. We
conclude that supp(u) and supp(v) are disjoint because otherwise xu would
have a proper factor that belongs to lt≻(I+(C)). This implies ω′ · v = ω · v.
Furthermore, ω · v > ω · u′ since xu′

is a standard monomial. Hence,

ω′′·v =
(

(ω − ω′) · (u− u′)
)

(ω·v) >
(

(ω − ω′) · (u− u′)
)

(ω·u′) = ω′′·u′ = ω′′·u.

Second, let ω · v ≥ ω · u. Then

ω′′ · v = (ω · (u− u′))(ω′ · v)− (ω′ · (u− u′))(ω · v)

≥ (ω · (u− u′))(ω′ · v)− (ω′ · (u− u′))(ω · u)

> −(ω′ · (u− u′))(ω · u) = ω′′ · u.

This proves the claim. In particular, ω′′ · u = ω′′ · u′ < ω′′ · v for all v ∈
Co(u) \ {u, u′} and hence by Lemma 22, xu′

− xu ∈ U+(C).

Finally, a method for computing the universal Gröbner basis for a code ideal
from its Graver basis is given (Alg. 3). This procedure is similar to that for toric
ideals [18, Algorithm 7.6]. Its correctness follows from Prop. 19, Lemma 20 and
Eq. (27). The proposed algorithm makes use of the following subroutines:

• swap(a, b) applied to variables a and b swaps the contents of these vari-
ables.

• xu | xv applied to monomials xu and xv returns 1 if the monomial xu

divides the monomial xv and 0 otherwise.

• addRow(A, a) applied to an integer m × n matrix A and an integer row
vector a of length m returns the extended matrix A by adding the row a.

• break quits the current for-loop.

• empty(A) applied to an integer m×n matrix A returns 1 if the open cone
defined by {ω ∈ R

n
+ | Aω > 0} is empty and 0 otherwise.

The run-time of the algorithm depends on the size of the Graver basis and
is in the worst-case O

(

|Gr+(C)|
2
)

.
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Algorithm 3 Computation of the universal Gröbner basis

Input: Graver basis Gr+(C)
Output: Universal Gröbner basis U+(C)
1: U+(C)← Gr+(C);
2: A← [ ];
3: for all xu − xu′

∈ Gr+(C) do
4: if |supp(u′)| < |supp(u)| then
5: swap(u, u′);
6: end if

7: for all xv − xv′ ∈ Gr+(C) do
8: a11 ← xv | xu;
9: a12 ← xv | xu′

;
10: a21 ← xv′ | xu;
11: a22 ← xv′ | xu′

;
12: if (a11 ∧ a12) ∨ (a21 ∧ a22) then
13: U+(C)← U+(C) \ {x

u − xu′

};
14: break;
15: end if

16: for all ij ∈ supp(u) do
17: if xv | xu−eij then

18: A← addRow(A, v′ − v);
19: else if xv′ | xu−eij then

20: A← addRow(A, v − v′);
21: end if

22: end for

23: if a12 then

24: A← addRow(A, v′ − v);
25: else if a22 then

26: A← addRow(A, v − v′);
27: end if

28: end for

29: if empty(A) then
30: U+(C)← U+(C) \ {x

u − xu′

};
31: end if

32: end for

33: return U+(C)
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