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ABSTRACT

In naval architecture, fluid-structure interaction is highly
important for many applications. The accurate and fast com-
putation of fluid-structure interaction problems is for this reason
a major challenge for a simulation engineer working on flexible
structures interacting with water and wind.

For ship propellers, steel and metal alloy have long been the
dominating choice of material. With the advancement in the de-
velopment of fiber-reinforced polymers such as carbon fiber re-
inforced polymers the consideration of fluid-structure interaction
for ship propellers becomes increasingly important.

This work presents a partitioned coupled solution approach
for the simulation of fluid-structure interaction problems on the
example of a large ship propeller. The in-house developed
software library comana is used as coupling manager together
with the commercial finite element software ANSYS as structural
solver and the boundary element method code panMARE as fluid
solver. comana offers the possibility to couple a number of exist-
ing and highly specialized solvers to solve multifield problems.

For partitioned coupled fluid-structure interaction problems
the increased computational effort due to the necessary coupling
iterations and possible instabilities due to the partitioned cou-
pling should be reduced by suitable predictor and convergence
acceleration methods. For convergence acceleration, the Aitken
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method is one of the most common choices even though Quasi-
Newton methods such as the Quasi-Newton least-squares method
show promising results for the acceleration of fluid-structure in-
teraction simulations.

The simulation of the dynamic structural behaviour of a ship
propeller is introduced and the advantages and disadvantages
of the partitioned fluid-structure interaction simulation approach
are shown. Predictor and convergence acceleration schemes to
improve the solution process are discussed and results for flexible
ship propellers are presented.

INTRODUCTION

The accurate and fast solution of flexible marine structures
deforming under the influence of water and wind is still a ma-
jor challenge for simulation engineers. Fluid-structure interac-
tion (FSI) plays a key role in the modelling of flexible marine
structures. For the numerical simulation of FSI problems, differ-
ent solution strategies exist. Monolithic and partitioned solution
strategies can be used to simulate FSI problems. Monolithic so-
lution strategies solve the fluid and structural sub-problems at
once, which makes the development of a dedicated integrated
FSI solver necessary [1].

Partitioned solution strategies have, compared with this, the
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advantage of reusing existing advanced and specialized solvers
with only small adaptations to the non-coupled solution process
in these solvers. With the partitioned solution approach it is usu-
ally necessary to solve each of the sub-fields multiple times until
all field are in equilibrium which increases the computational ef-
fort for the solution. On the other hand, the computational effort
for the solution of the sub-problems in a partitioned approach is
lower compared to a monolithic approach since the equation sys-
tems of the sub-problems are smaller. The major disadvantage of
partitioned solution approaches is that they are less stable com-
pared to monolithic approaches [1]. The disadvantage of the in-
creased computational effort and the instability in the partitioned
solution approach can be significantly reduced by using predic-
tion and convergence acceleration techniques [2]. In this paper
different convergence acceleration techniques are compared on
the example of a flexible ship propeller. The necessary number
of implicit coupling iterations is used as a measure of the per-
formance of the convergence acceleration method. The in-house
developed software library comana [3] is used together with the
commercial finite element solver ANSYS [4] for the solution of
the structural sub-problem and the in-house developed bound-
ary element solver panMARE [5] for solution of the fluid sub-
problem.

PARTITIONED SOLUTION APPROACH

In this section the partitioned solution approach for FSI
problems used in this paper is introduced and explained. With
the partitioned solution approach for FSI problems the fluid and
structural problems are solved separately with the exchange of
quantities at the interface between the fluid and the structure.
Both sub-problems must be solved multiple times in an implicit
iteration loop until the quantities that are exchanged at the inter-
face are converged.

The in-house developed software library comana was devel-
oped as a coupling manager to enable and control the exchange
of data between different solvers and to manage the solution pro-
cess. With comana [3] adaptations to the existing solvers are
kept small and the existing highly specialized solvers are used as
black-boxes. This means that, except for the repetition of time
steps and the exchange of the coupling quantities at the inter-
face, the solution process in the solvers is not modified. comana
is not only capable to solve FSI problems but also multi-physics
problems in general [6].

For the implicit coupling of FSI problems, the quantities that
are exchanged at the interface between the fluid and structural
sub-problems are chosen to be displacements d computed by the
structural solver and tractions t computed by the fluid solver.

The solution process is depicted in Figure 1. After the ini-
tialisation of the fluid and structural solver, the time step loop
is entered. At the beginning of the simulation no previous data
exists, therefore the displacements at the interface are set to
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FIGURE 1. Partitioned solution approach for FSI problems

zero. When converged displacements from previous time steps
are available, an extrapolation & of the displacement from the
previous time steps

d =&d ... d™m (1)

can be performed to obtain a prediction of the displacement for
the current time step in the first implicit iteration (f’l The extrap-
olation methods are described in more detail in the next section.

With the extrapolated displacements the implicit iteration
loop can be entered and the sub-problems can be solved in a seg-
regated way. The displacements d! are transferred to the fluid
solver % which computes depending on these displacements
tractions on the interface

t =7 (d). )

These tractions are transferred in the next step to the struc-
tural solver . to compute new displacements

d; = .7(t;). 3)

The combination of Eq. (2) and Eq. (3) leads to a fixed-
point iteration that can be repeated until convergence is obtained.
A residual is introduced to check if the result is converged. Two
different convergence criteria are used to check for convergence.
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The first criterion is an absolute convergence criterion which is
fulfilled if the L,-norm of the residual r; is below a predefined
absolute tolerance &,.

ri=d —d, |r<e. )

The second criterion checks a relative convergence tolerance
&, that compares the residual in the first implicit iteration r; with
the residual of the current iteration r; according to

x|
.
[[ry |

®)

If one of the two convergence criteria is fulfilled, the fixed-point
iteration is considered to be converged. When the fixed-point
iteration is converged or the maximum number of implicit iter-
ations is reached, the displacements d’ for the current time step
are saved and the next time step is started with Eq. (1).

If not, a convergence acceleration method <7 (6) is used to
improve the estimated displacement in the next implicit iteration

i, =o/(d,dd_y,..di_,). ©)

EXTRAPOLATOR

A good prediction of the displacement in the current time
step can reduce instabilities and the number of necessary implicit
iterations and with this also the computational effort to solve the
whole system [7]. Well known classes of predictors are for ex-
ample polynomial predictors and predictors based on the Taylor-
series expansion. With polynomial predictors a polynomial of
order p is constructed that takes the values of the previous dis-
placements (d' ', ...,d'~(P*1)) at the previous time steps as

R A
dH =Y Bitt  forj=—1,.,—(p+1). (7)
i=0

The components of the displacement are treated indepen-
dently in x-, y- and z-direction. With Eq. (7) a system of equa-
tions is constructed with that the coefficients ; can be deter-
mined. The resulting polynomial can be evaluated at the current
time 7. This gives a relation between the previous displacements
and the current displacement that is constant if the time step size
is constant. Since every point on the interface is treated sepa-
rately, the approach can easily be extended to vector fields d.

The resulting equations for the polynomial predictor are
listed in Table 1.

TABLE 1. Equations for polynomial extrapolation.

order p equation
Y -1
0 d =d
it _ g1 -2
1 d,=2d"-d

2 dj=3d""-3d"2+d3

CONVERGENCE ACCELERATOR
The purpose of convergence acceleration is to stabilize and
accelerate the implicit iteration loop.

Static relaxation

The simplest method of convergence acceleration is a static
relaxation which multiplies the residual r; with a constant relax-
ation factor @. The aim of this method is mainly to stabilize the
fixed-point acceleration originated from the combination of Eq.
(2) and (3). This approach specifies the accelerator operator <7
as

d, = (d,d)=d+o(d-d)=d+or. @8

The choice of an appropriate relaxation factor is of course
important for the performance of this method and it is not trivial
since for different problems the optimal relaxation factor might
be different. For the simulations with static relaxation in this
work, the relaxation factor is set to @ = 0.5.

Aitken method

Many extensions of the Aitken method for scalar valued
problems [8] to vector valued problems have been developed [9].
Multidimensional Aitken methods compute the relaxation factor
@ in contrast to the previous acceleration method now as a dy-
namic factor. The idea of the method used here is to choose the
relaxation factor  such that in

d; =d; | +o(dj_,—d ;)
i =di+o(d_; —d))

the norm of the difference ||d: —d!_,|| is minimized [9].
After introducing a new residual #; = d} —d/_, the expres-
sion for the computation of the dynamic relaxation factor is

B (B —F)

o =—— .
l &1 — &2

©))

The disadvantage of this method is that the relaxation factor
; can only be computed every 3rd implicit iteration since the
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residuals of the two previous iterations must be known to com-
pute @; according to (9). For the intermediate iterations an relax-
ation factor @,, must be chosen. ,, is set to 1 for the simulations
in this work.

Irons-Tuck relaxation method

Irons and Tuck [10] proposed a modification to the multi-
dimensional Aitken method that enables the computation of the
relaxation factor @ in every iteration by using the residuals of
the previous iterations to update rule to the relaxation factor. For
FSI problems this method is also often also referred to as Aitken
method [11] which would cause here confusion with the previ-
ous method. In this work the method is therefore referred to only
as Irons-Tuck relaxation method. The resulting equation for the
update of the relaxation factor @ is

In the first iteration the relaxation factor wy must be initialized.
For the simulations in this work @y is set to 0.5.

Quasi-Newton least squares method

The quasi-Newton least squares (QNLS) method for the so-
lution of FSI problems has been introduced by Haelterman [12]
and Degroote [13].

The idea of the QNLS method will be briefly illustrated here.
Since QNLS method belongs to the class of the quasi-Newton
methods an approximation of the Jacobi matrix in the Newton
method is computed.

In the first step the fixed point iteration in Eq. (2) and (3)
can be reformulated as

R(d) =.7(F(d)) - d; =, (10

to be solved with the Newton-Raphson method:

OR(d) , - -
) ad; = —r(d)
od! (11)
(= d A
. . . OR(d) . .
Since the Jacobi matrix ad{ in Eq. (11) is unknown and

a computation of the Jacobi matrix e.g. with the finite difference
method is prohibitively expensive, the inverse of the Jacobi ma-
trix in the quasi-Newton methods is approximated based on the

already existing data of the previous implicit iterations. The idea
of the QNLS method is to minimize the residual in the next im-
plicit iteration r; . To this end the unknown residual difference
Ar; ;1 =r;y1 —r;is approximated by a linear combination of the
already known residual difference Ar; ; =r; —r; as

i—1
Arii =Y ajAr ;. (12)
j=0

The minimization problem for the current residual

2
—a; (13)

i—1
ri+ Z (XjAl’iyj
J=0

argmin

is to this end solved in a least squared sense to compute the co-
efficient vector &; = [ ot ... & }T.

With the known coefficients @;, an update rule for the dis-
placements can be formulated. To this end, two new displace-
ment differences are introduced: Ad;; = d’j —d! and A&E’ I
a’j — aﬁ. With these definitions, the residual difference Ar; ; can
be reformulated as

Arjj=rj—ri=d—d,—d;+d; =Ad} ; —Ad; ;.  (14)
Eq. (13) can be now expressed as

i—1 i—1 i—1
ri+ Y oAr =1+ ) oAy — Y ajAd; <0 (15)
Jj=0 j=0 j=0

by assuming that the coefficients resulting from the mini-
mization problem (13) can be transferred to the displacement dif-
ferences, the update rule to compute the displacement increment
in Eq. (11)is

i—1 i—1
ri+ ), oAdi;~ Y oAd; ; ~ Ad;. (16)
j=0 Jj=0

Even though the inverse of the Jacobi matrix in Eq. (11) is
not calculated directly the method provides an approximation of
the displacement increment. In this work the QNLS method is
used in the single time step version without resetting.

Broyden method
Like the QNLS method, the Broyden method [14] belongs
to the class of quasi-Newton method and is therefore based on
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the idea to approximate the Jacobi matrix in Eq. (11). Several
versions of the Broyden method exist. The problem of some ver-
sions of the Broyden method is that they require to store a large
matrix for a high number of degrees of freedom of the vector d.
This disadvantage can be overcome by a restart formulation as
described e.g. in [15]. In this work the version described in [16]
is used.

SIMULATION SETUP

The example considered in this work is the KRISO container
ship (KCS) propeller KP505. The propeller is simulated with the
partitioned solution approach with the commercial finite element
solver ANSYS [4] for the structural domain and the boundary el-
ement solver panMARE [5] for the fluid domain. The coupling
manager comana is used to manage the solution process includ-
ing the extrapolation, interpolation and the convergence acceler-
ation used for the implicit coupling.

The KCS propeller is a well investigated example of a large
scale container ship propeller. The five bladed propeller has a
diameter of d = 7.9m. The advance ratio J of the propeller is
defined as

= — 17
=" A7)

with v being the averaged inflow velocity and n being the number
of r?tations per second. The number of rotations is set to n =
1.5<.

SThe startup of the simulation is performed such that the an-
gle increment is increased only slowly by multiplying it with a
factor f. This is done from the beginning of the simulation at
¢t} = 0 until full rotational speed is obtained at time ¢! = 90At.

The factor f is computed as

£=0.5 (1—cos<t:ts7r>>. (18)

The displacements computed with the angle increment are
prescribed in ANSYS on the hub of the propeller blades. The
time step size At in the simulation is chosen such that the angle
increment is equal to 2° when full rotational speed is obtained.
The time step size is therefore %% = flo S.

Similar to the angle increment the tractions are also applied
with a cosine function like in Eq. (18) with a factor f; such that
Eq. (3) changes to d} = .(f;t}). The tractions are applied after
the full rotational speed is obtained and possible oscillations are

faded out beginning from 2 = 135A¢ until £2 = 180A.

Fluid simulation
The BEM code panMARE that is used for the fluid sim-
ulation is a low order order panel method solver that has been

FIGURE 2. Fluid mesh of the propeller with wake

developed by the Institute for Fluid Dynamics and Ship Theory.

The panel method is based on the potential theory which
means that the assumptions for the fluid field are that it is in-
compressible, irrotational and inviscid. Even though the viscous
force can not be directly used for the fluid solver, a friction model
is used that estimates the friction based on the Schoenherr line as
described in [17]. More details about the panel method and its
implementation can be found in [18].

The fluid mesh as shown in Fig. 2 has in span-wise direction
25 panels and in chord-wise direction 18 panels on each side.
The wake of the propeller is discretized with panels as described
in [18]. The panels of the wake deform to follow the streamlines
which leads to roll-up of the wake as described in [19, p. 22]. In
Figure 2 also the wake panels are visualized.

In panMARE the pressure forces and the friction forces are
evaluated at the panel center and summed up to obtain the to-
tal force for each panel. The total force is divided by the panel
area in order to calculate the tractions that must be computed for
the implicit coupling according to Eq. (2). comana is coupled
to panMARE such that the time steps in panMARE can be re-
peated and the displacement boundary conditions computed by
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structural solver can be set in every time step and implicit itera-
tion. Since the implicitly coupled FSI solution approach requires
the multiple solution of the fluid domain in every time step, a
reduction in computational time is especially important in this
approach.

The propeller operates in an inhomogeneous ship wake field
to include the velocity signature of the ship, leading to a vary-
ing loading condition during the rotation. The advance ratio J
defined in Eq. (17) in the fluid simulation is approximately 0.85.

Compared to approaches to simulate the fluid domain based
on the finite volume method, the panel method has the advan-
tage that only the surface of the propeller and the wake surface
must be discretized which enables a solution of the fluid prob-
lem within a reasonable amount of time. The computation of
the fluid domain with the finite volume method requires the dis-
cretization of the whole fluid volume. The Reynolds averaged
Navier-Stokes approach as described in [20] is expensive since
the domain must be sufficiently large and the resolution close to
the structural surface must be relatively high to account for wall
effects in the boundary layer. Furthermore problems with mesh
distortion can more easily be avoided with the panel method.

Structural simulation

The commercial FEM solver ANSYS is used on the struc-
tural side for the dynamic FEM simulation. In ANSYS, a struc-
tured mesh as depicted in Figure 3 with linear hexahedral ele-
ments is used. Since the structural mesh is in contrast to the fluid
mesh in panMARE a volumetric mesh, the meshing on the lead-
ing and trailing edge as well as on the tip propeller is challeng-
ing. Wedge elements at the trailing and leading edge of the pro-
peller blades are necessary when a structured meshing approach
is used.

A geometrically nonlinear approach is used with a linear
elastic material model. To stabilize the structural simulation
in the coupled solution process, stiffness proportional Rayleigh
damping [21] is applied. As time integration method for the FEM
simulation the Newmark method [22] with the constant aver-
age acceleration method is used corresponding to the parameters
o= % and o = %. To solve the nonlinear system of equation in
ANSYS the Newton-Raphson method [23] is utilized. The Pois-
son number in the simulations in this work is 0.3 and the density
is equal to 77501%.

The tractions computed by the fluid solver are integrated
over the discretized structural surface in order to compute forces
that can be applied on the structural nodes in ANSYS. In this way
the structural solver can be used as defined in Eq. (3) to compute
new displacements.

FIGURE 3. Structural mesh on the suction side of the propeller

COMPARISON OF CONVERGENCE ACCELERATORS

To compare the convergence acceleration methods, the KCS
propeller setup described in the previous section is used.

The number of implicit iteration i that are necessary to ob-
tain convergence according to the absolute criterion Eq. (4) or
to the relative criterion Eq. (5) are used as a measure of perfor-
mance of the accelerator. The assumption is here that the com-
putational effort for the solution of the fluid and structural field
according to Eq. (2) and (3) is much higher than the necessary
effort for the convergence accelerator. The maximum number of
implicit iterations is set to 50 for all the simulations shown here.

TABLE 2. Relative and absolute tolerances (Eq. (4) and (5)) used in
the simulations

rel. tol. € abs. tol. &,
5-1073 106
5-10°% 10~
5-10~1 10713

low tolerance
middle tolerance

high tolerance

The extrapolation method chosen for all the following simu-
lations is the quadratic (p=2) extrapolation with the factors given
in Table 1. The tolerances are varied to the values listed in Table
2. Concerning the stopping criteria, the relative convergence cri-
terion is usually the one which is fulfilled first for the simulation
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FIGURE 4. Comparison of acceleration methods for a Young’s mod-
ulus of 210GPa

setup applied in this work.

The Young’s modulus is varied to 2GPa, 5 GPa, 20 GPa and
210GPa leading to a total number of 12 setups for which the
5 different convergence accelerators and the simulation without
convergence acceleration are compared. The simulations are car-
ried out on the high performance cluster (HPC) of the Hamburg
University of Technology. A selection of the results of the simu-
lations will be presented here.

The Young’s modulus in the structural simulation is varied
since it strongly influences the interaction between the fluid and
the structure and with this the necessary number of internal itera-
tions. For a propeller with a high Young’s modulus made from a
material like steel or a metal alloy, the deflection of the propeller
blade due to the fluid loads is small and therefore the number of
necessary coupling iterations is lower.

In Figure 4 the comparison between the different accelera-
tion methods is shown for a Young’s modulus of 210 GPa and the
middle tolerance criterion.

Before the tractions are applied at time step 135, the num-
ber of implicit coupling iterations is set to 1 since there are no
external forces acting on the structure. The displacements of the
structure are still transferred to the fluid solver therefore the cou-
pling is only one way from the structure to the fluid until time
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FIGURE 5. Number of necessary implicit coupling iterations for a
Young’s modulus of 210 GPa

step 135.

In Figure 5 the number of implicit coupling iterations is plot-
ted for the same simulations visible in Figure 4. Three different
time step ranges are distinguished here. In range 1 from time
step 135 to time step 179 the tractions are slowly applied like
described in the previous section. Range 2 captures the simu-
lation with fully transferred tractions f; = 1 but with no wake
deformation enabled from time step 180 to 369. In range 3 from
time step 370 to the end of the simulation, the wake deformation
is also enabled. The number of implicit coupling iterations is
averaged over the considered range.

In range 1 a jump is visible in Figure 4 for the static re-
laxation with a relaxation factor of 0.5. Figure 4 shows that
the necessary number of coupling iterations without an accel-
eration method and with static relaxation as convergence accel-
erator perform not very well. The number of coupling iterations
is more than twice as high compared to the more advanced con-
vergence acceleration methods. With this also the computational
time for these two approaches is also more than twice as high.
The Trons-Tuck relaxation, the QNLS method and the Broyden
method perform all quite good as convergence accelerator. The
Aitken method converges a little bit slower than these three meth-
ods. When comparing the three most efficient methods in the
three different regions it seems that the QNLS method converges
slower when the wake deformation is enabled.

Another comparison of the different convergence accelera-
tion methods is shown in Figure 5. The results for the lower
Young’s moduli here are similar to the previous results. For a
more flexible propeller, all simulations without a convergence
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accelerator fail. This illustrates the importance of convergence
acceleration for partitioned coupled FSI simulations. The perfor-
mance of the Irons-Tuck relaxation, the QNLS method and the
Broyden method is again quite similar for the different Young’s
moduli. With lower Young’s modulus the performance of the
Aitken method detoriates significantly while the impact of the
lower Young’s modulus on the performance of the static relax-
ation seems to be comparatively smaller.

In Figure 7 a comparison for the different tolerance intro-
duced in Table 2 is carried out for a Young’s modulus of 20 GPa
and range 2.

As before the importance of the usage of a convergence
acceleration method becomes clear since the simulations with-
out convergence acceleration method fail. When comparing the
QNLS method for example with the Aitken method, it is visible
that the QNLS method performs better for middle and high tol-
erances while the Aitken method performs better for the low tol-
erances. An explanation for this might be that the QNLS method
needs a certain number of implicit iterations and with this a suf-
ficiently large equation system that is solved in the least squares
minimization in Eq. (13) before a good approximation of the dis-
placement increment can be computed.

CONCLUSION

A comparison of different convergence acceleration meth-
ods has been conducted for the partitioned FSI simulation of the
propeller of a large vessel. The study shows the importance of
convergence acceleration for partitioned FSI simulations.

For the simulations without convergence acceleration, the
simulations failed for a propeller with a low Young’s modulus.
The static relaxation accelerator performed worse than the other
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FIGURE 7. Number of necessary implicit coupling iterations for a
Young’s modulus of 20 GPa in range 2

accelerators, but it at least enables a stable simulations for most
of the considered simulations.

The Aitken method performed comparatively well for a high
Young’s modulus, while the performance for a lower Young’s
modulus detoriates quickly.

In the comparison the QNLS method, the Irons-Tuck relax-
ation and the Broyden method showed overall the lowest num-
ber of necessary implicit coupling iterations. The QNLS per-
forms better with a higher tolerance compared to e.g. the Aitken
method.

All of the observations made here of course only apply to the
setup that was considered and described in this work. The per-
formance of convergence accelerators strongly depends on the
problem at hand. However, the comparison of convergence ac-
celeration methods in [24] and [25] also showed that the QNLS
method, the Irons-Tuck relaxation and the Broyden method per-
form well for artery simulation and benchmark problems. As
shown in these works, the performance of the QNLS method
could also be improved by using resetting and multi-time step
approaches. These variants are particularly useful when com-
bined with parallel or mixed staggered parallel approaches but
they require the selection of additional parameters such as the
number of reused time steps [26].

The Irons-Tuck relaxation showed a consistently good con-
vergence behaviour over the considered range of parameters. If a
simple approach which is also easy to implement is desired, the
Irons-Tuck relaxation seems to be a suitable choice. It also has
the advantage that only the initial relaxation factor must be set
as parameter. In general the advanced convergence acceleration
methods all show a significant reduction of the necessary number
of implicit coupling iterations and stabilize the solution process.
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