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Summary

In this thesis, a theory is presented which predicts the reflection coefficients and the flow within forcing zones in finite-
volume-based flow simulations with (hydro-)acoustic waves and free-surface waves. Forcing zones (such as absorbing
layers, damping zones, sponge layers, relaxation zones, etc.) can be used to reduce undesired wave reflections at the
domain boundaries. They introduce source terms to one or several of the governing equations in a zone adjacent to the
corresponding boundaries, with the intention of gradually forcing the solution within the zone towards some reference
solution.

The theory is intended to be used to optimize the forcing zone’s case-dependent parameters before performing the flow
simulation. It is derived based on a generic forcing zone formulation, thus the present findings can be applied to different
forcing zone formulations in different flow solvers in a straightforward manner.

The theory is validated against results from 1D- to 3D-flow simulations with (hydro-)acoustic waves and free-surface
waves, including irregular and highly nonlinear waves. A novel forcing zone arrangement for strongly-reflecting floating
bodies subjected to long-crested far-field waves is proposed. The mechanisms by which forcing zones reduce undesired
wave reflections are investigated. The influence of the case-dependent parameters of forcing zones are discussed, resulting
in recommendations for engineering practice.

When the forcing zone was tuned using the developed theory, the simulation results for the reflection coefficient were
in most cases smaller or nearly equal to those predicted by theory, but never more than 3.4% larger. The developed
theory is therefore suitable for optimization of the forcing zone parameters in flow simulations with (hydro-)acoustic or
free-surface waves.
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Nomenclature

Wave parameters with index ‘0’ denote deep water conditions. Deviations from the following nomenclature are mentioned
in the text.

1D one-dimensional
2D two-dimensional
3D three-dimensional
CFD computational fluid dynamics
CV control volume
DOF degree(s) of freedom
FFT fast Fourier transform
FVM finite volume method
HRIC high resolution interface capturing
KCS Kriso container ship
LES large eddy simulation
RANS Reynolds-averaged Navier-Stokes
SIMPLE semi-implicit method for pressure linked equations
VOF volume of fluid
A analytical solution for an infinite number of constant-blending zones in a forcing zone; area
Ah analytical solution for a forcing zone subdivided into constant-blending zones with thickness h
A0 displacement amplitude for fluid particles in a (hydro-)acoustic wave
a wave amplitude
an Fourier amplitude of the wave component with frequency fn

arefl amplitude of the wave reflected at forcing zone and domain boundary
b′(t) blending function for generation of irregular (hydro-)acoustic waves
b(x) blending function
CR reflection coefficient
CR,j reflection coefficient at the interface between zones j and j + 1
CR,opt optimum reflection coefficient for given b(x) and xd

CR,sim simulation result for reflection coefficient
CR,theory theory prediction for reflection coefficient
CR,θi reflection coefficient for wave incidence angle θi

CT,j transmission coefficient at interface between zones j and j + 1
c phase velocity
cg group velocity
D diameter
E energy
EA, ER, ET absorbed, reflected, and transmitted part of the total wave energy
Egen energy of the generated wave
Ekin kinetic wave energy
Ekin,xi kinetic wave energy component in xi-direction
Epot potential wave energy
Erefl energy of the reflected wave
Etot total wave energy
Fxi,p pressure forces in xi-direction, integrated over the body surface
f1 parameter from Appendix B equal to forcing strength γ

fn frequency of wave component n
fpeak peak frequency for irregular waves
∆fn frequency interval between wave components n and n− 1
Fr Froude number
g = (0, 0,−g)T vector for the gravitational acceleration
g gravitational acceleration
H wave height
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Hbreak breaking wave height
Hmax largest wave height recorded in the vicinity of the forcing zone
Hmin smallest wave height recorded in the vicinity of the forcing zone
Hrefl height of the wave reflected at forcing zone and domain boundary
Hs significant wave height
h water depth
he enthalpy
ij unit vector in xj-direction
k wave number; turbulent kinetic energy
kj wave number within zone j
L characteristic length scale; waterline length of the ship in Appendix B
Lmodel, Lfull characteristic length scale for model and full scale
Lx, Ly, Lz dimensions of the simulation domain in x-, y-, and z-direction
n unit vector normal to surface S
n blending exponent; scaling factor; number of constant-blending zones in a forcing zone
p pressure; order of convergence in Richardson extrapolation in Sect. 4.4
pa pressure amplitude
pa,s significant pressure amplitude
q forcing term in wave equation
qc source term for mass
qi source term for momentum in xi-direction; forcing term in zone i
qα source term for volume fraction α

qϕ source term for transport quantity ϕ
R gas constant
r radius
S closed surface of control volume CV
T wave period
Tpeak peak wave period for irregular waves
Tref wave period in reference simulation
t time
tend end of a simulated time interval
tstart start of a simulated time interval
∆t time step; time interval
U characteristic velocity; ship speed
Umodel, Ufull characteristic velocity for model and full scale
ua velocity amplitude
ui,ref reference velocity component in xi-direction
umax largest velocity amplitude recorded in the vicinity of the forcing zone
umin smallest velocity amplitude recorded in the vicinity of the forcing zone
V volume of a control volume CV; volume occupied by a fluid
Vθ volume along a thin slice along the wave path with incidence angle θ

v =

⎛⎜⎝u

v

w

⎞⎟⎠ =

⎛⎜⎝u1

u2

u3

⎞⎟⎠ velocity vector with components u, v, w in xi-direction, also denoted as u1, u2, u3

vg velocity vector of the moving CV surface
∆x,∆y,∆z cell size in x-, y- and z-direction

x =

⎛⎜⎝xy
z

⎞⎟⎠ =

⎛⎜⎝x1

x2

x3

⎞⎟⎠ vector with Cartesian coordinates x, y, z, also denoted as x1, x2, x3

x̃ shortest distance of x to the closest domain boundary to which a forcing zone is attached
x̃, ỹ, z̃ shortest distance to closest x-, y-, or z-normal domain boundary in Sect. 5.4
xd forcing zone thickness
xdj forcing zone thickness for zone j
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xdj,1D forcing zone thickness for zone j and normal wave incidence
xdj,2D effective forcing zone thickness for zone j and oblique wave incidence
xd,ref forcing zone thickness in reference simulation
zb,zfs locations of domain bottom and free-surface in Eq. 115
α volume fraction of water
αref reference solution for volume fraction α

βj+1 part of the equation for CRj at interface between zones j and j + 1
Γ diffusion coefficient
γ forcing strength
γj forcing strength introduced in the conservation equation denoted by j (cf. Sect. 4.1.2)
γopt optimum forcing strength γopt, at which for given b(x) and xd a minimum of CR occurs
γopt,sim simulation results for optimum forcing strength γopt for given b(x) and xd

γopt,theory theory prediction for optimum forcing strength γopt for given b(x) and xd

γref forcing strength in reference simulation
γ̃ forcing strength for forcing ∝ ω|ω|
ϵ turbulent dissipation
εh error estimate for grid spacing h in Richardson extrapolation
η free-surface elevation, measured from the location of the calm surface
ϑ temperature
Θ phase shift
θ wave incidence angle
λ wavelength
λpeak peak wavelength for irregular waves
λref wavelength in reference simulation
µ primary wave propagation direction
ρ density
ρref reference density
τ relaxation parameter for relaxation zones
τopt optimum relaxation parameter τopt, at which for given b(x) and xd a minimum of CR occurs
τopt,sim simulation results for optimum relaxation parameter τopt for given b(x) and xd

τopt,theory theory prediction for optimum relaxation parameter τopt for given b(x) and xd

τref relaxation parameter in reference simulation
τij component of the viscous stress tensor
Υ generic transport equation
ϕ a generic transport quantity; velocity potential
ϕref reference solution for generic transport quantity ϕ
χ fluid particle displacement in a (hydro-)acoustic wave
ψ velocity stream function
ψj velocity stream function in zone j
ψref reference solution for velocity stream function
ω angular wave frequency; specific dissipation
ωfull angular wave frequency in full scale
ωmodel angular wave frequency in model scale
ωref angular wave frequency in reference simulation
R corresponds to the term

∫
V

(ϕ−ϕref) dV in Eq. 22
X horizontal fluid particle displacement in a free-surface wave
Z vertical fluid particle displacement in a free-surface wave
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1 Introduction

Key findings

• In flow simulations, undesired wave reflections at domain boundaries can produce significant errors

• An overview over techniques to reduce such undesired reflections is given

• Forcing zones can reduce undesired reflections by applying source terms in the vicinity of domain boundaries, but
contain case-dependent parameters

• In this thesis, an analytical approach is developed to optimally tune the case-dependent parameters of forcing zones

• This work focuses on finite-volume-based flow simulations with free-surface waves for typical ocean engineering and
shipbuilding applications

• Further, (hydro-)acoustic flow simulations will be performed as a computationally efficient model of shallow water
waves

In flow simulations, it is usually desired to choose the computational domain as small as possible to reduce the computa-
tional effort. Thus when simulating free-surface wave propagation, undesired wave reflections at the domain boundaries
must be minimized. If this is not achieved, the reflections travel back into the solution domain and can lead to large
errors in the results.

For finite-volume-based flow solvers there are many unresolved problems, especially

– reliable reduction of reflections at the domain boundaries,

– prediction of the amount of undesired wave reflection before performing the simulation.

This work aims to provide further insight to solve these problems for flow simulations based on Navier-Stokes-type
equations (Reynolds-averaged Navier-Stokes (RANS), Euler equations, Large Eddy Simulations (LES), etc.) discretized
via the finite volume method.

In Sect. 1.1, different techniques to reduce undesired wave reflections at domain boundaries are compared. Subsequently,
the aim of the present thesis is outlined in Sect. 1.2, followed by an overview of the thesis structure in Sect. 1.3.

1.1 Comparison of techniques to reduce undesired wave reflections

Undesired wave reflections at domain boundaries1 can be reduced via increasing the domain size, beaches, active wave
absorption techniques, grid stretching, absorbing boundary conditions, and/or forcing zones. Some of these approaches
are shown in Fig. 1.

beach active wave absorption

grid stretching forcing zone

Figure 1: Illustration of wave damping for a right-going wave via wave breaking at a beach, flap-like motion of a domain boundary
for an active wave absorber, intentional increase of discretization errors due to grid stretching, and gradual decrease of wave height
due to source terms inside a forcing zone (shaded gray)

1Most common boundary conditions such as wall boundary, symmetry boundary, velocity inlet, and pressure outlet are nearly perfectly
reflecting. Detailed information on the implementation of these boundary conditions can be found in Ferziger and Perić (2002).
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Increasing the domain size delays the time at which undesired wave reflections reach the domain part of interest. This
approach substantially increases the computational effort: First, because the number of cells increases. Second, because
the waves have to travel a larger distance to the domain part of interest, so the time-step and the mesh size may have
to be refined, or else numerical dissipation and dispersion errors could lead to a change in wave height or phase. Thus
in practice this approach is rarely suitable, except perhaps for very short simulations (e.g. a single wave impact on a
structure).

Beaches trigger wave breaking via a gradual decrease of water depth. As in experiments, even when the beach slope is
optimally tuned to the incidence wave, reflection coefficients2 of 5% to 10% must be expected (Cruz, 2008; Lloyd, 1998;
Ursell et al., 1960). Note that in wave tank experiments, measurements are usually stopped when the first reflections
from the beach reach the measurement location. The role of the beach is to decrease the ‘waiting’ time between two
experiments; with the beach it typically takes O(20 min) until there is again a calm water surface in the tank, without
the beach it can take several hours. Thus beach reflection coefficients are seldom reported for experiments (Lloyd, 1998).
In flow simulations however, the solution domain is usually small compared to real wave tank dimensions. Thus to avoid
the accumulation of undesired wave reflections, flow simulations require lower reflection coefficients than beaches can
typically provide.

Active wave absorption techniques are available in the world’s most expensive wave basins, and the approach can also
be used in flow simulations. Active wave absorbers detect approaching waves and move the domain boundary (or in the
wave basin: the wave-maker flap/piston) so that it eliminates wave reflections via destructive interference (e.g. Cruz,
2008; Higuera et al., 2013; Schäffer and Klopman, 2000). While for selected wave periods and steepnesses reflection
coefficients well below 5% can be obtained (Schäffer and Skourup, 1997), in general reflection coefficients of 10% or more
may occur (Higuera et al., 2013; Troch and De Rouck, 1999). Further, the reflection coefficient increases with increasing
wave incidence angle (Schäffer and Skourup, 1997). Depending on the implementation, the necessity to move the whole
domain boundary may especially in 3D increase the computational effort. In principle though, it seems possible that
correctly tuned active wave absorption could be capable of providing satisfactory (say CR ≲ 2%) reduction of undesired
wave reflection, as long as the waves are not too steep and do not break. A drawback of the approach is that (at least
in experiments) it does not permit flow through the wave-maker boundary.

Grid stretching (also called grid extrusion, numerical beach, etc.) gradually decreases the resolution of the computational
grid towards the corresponding boundaries, so that the waves are damped by numerical diffusion and other numerical
errors. The approach is easy to implement, but increases the size of the computational domain and the number of grid
cells. Further, it cannot be applied to wave generating boundaries. Since the main mechanisms behind the wave damping
are discretization and iteration errors, the reflection coefficient depends on the discretization scheme and on its order,
on the mesh size, and on the time step. Thus when conducting grid- and time-step-dependence studies, the reflection
coefficient changes for each simulation, which is undesired. Additionally, it is not known how to reliably predict the
reflection coefficients before performing the simulation (Colonius, 2004; Perić and Abdel-Maksoud, 2016).

Absorbing boundary conditions (also called non-reflecting boundary conditions, artificial boundary conditions, radiation
boundary condition, Dirichlet to Neumann boundary condition, etc.) are applied at the boundary, i.e. they require no
increase of the domain size or of the number of grid cells. They can be implemented by prescribing suitable values for
the solution at the boundary, which may be derived e.g. from the analytical solution of the exterior problem. Such
boundary conditions were shown to work successfully for many problems where linearization of the wave field near the
boundary is possible and where the far-field solution is known. Although much is known regarding their stability and
accuracy, there are still unsolved problems, e.g. compatibility conditions at the domain corners. Moreover, applying the
analytical formulations for the boundary conditions to discretized equations may produce undesired reflections. Thus the
resulting reflection coefficients cannot always be reliably predicted before the simulations. Further, the theory behind
many advanced absorbing boundary conditions can be quite complex, so that the choice and the implementation may be
time-consuming, especially for non-experts in this field. The main drawback though is that when significant nonlinear
effects occur close to the boundary, it may either be impossible to formulate such boundary conditions, or boundary
conditions of such a high order may be required that the computational effort becomes too large for practical purposes.
This is typically the case for flows where turbulence occurs close to the boundaries. For steep free-surface waves, especially
for irregular, short-crested, or breaking waves, no satisfactory absorbing boundaries conditions have been presented so
far; indeed, it seems unlikely that it is possible to find a theoretical solution that satisfactorily describes all relevant

2The reflection coefficient CR = Hrefl/H is the ratio of the reflected wave height Hrefl to the generated wave height H, as described in
detail in Sect. 3.
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aspects of such complicated, nonlinear flows. However, for simpler flows such as linear sound wave propagation they can
be applied with success. Further information on absorbing boundary conditions can be found e.g. in Colonius (2004),
Givoli (2004), Hu (2004), Israeli and Orszag (1981), Marburg and Nolte (2008), Novak and Bonazzola (2004), or Romate
(1992).

Forcing zones (also called absorbing layers, damping zones, dissipation zones, numerical beach, sponge layers, Euler
overlay method, coupling or relaxation zones) introduce source terms to one or several of the governing equations in
a zone adjacent to the corresponding domain boundaries, with the intention of gradually forcing the solution towards
some reference solution within the forcing zone, as described in Sect. 2. Prescribing a steady far-field solution often
simply corresponds to a damping of the waves which enter the layer (e.g. Arai et al., 1993; Choi and Yoon, 2009;
Israeli and Orszag, 1981; Park et al., 1999). Prescribing an unsteady far-field solution can be used to generate waves
which travel from the forcing zone into the domain, while simultaneously damping waves which enter the forcing zone
(e.g. Jacobsen et al., 2012; Kim et al., 2012; Vukčević et al., 2016, 2016b). Forcing zones can also be used to couple
two different flow solvers, e.g. a finite-volume-based flow solver, which resolves the viscous near-field of a structure,
to a boundary-element-based flow solver, which resolves the inviscid far-field (Guignard et al., 1999); the blending
between the two solvers can be achieved by applying two forcing zones, one for each solver, in-between the near- and
the far-field domains. Forcing zones usually have a thickness of one to two wavelengths, and thus moderately increase
the computational effort. Apart from this, they have none of the aforementioned drawbacks. However, there is one
aspect which is critical to their successful application: the forcing function contains case-dependent parameters, which
must be tuned for every simulation (Berenger, 1996; Mani, 2012; Perić and Abdel-Maksoud, 2016; Romate, 1992).
Prior to the work presented in this thesis, forcing zones were usually considered ‘ad-hoc’ approaches (Benacchio and
Bonaventura, 2013); the case-dependent parameters were tuned by trial and error or kept at default values, resulting
in unreliable reduction of undesired wave reflections (Bodony, 2006; Colonius, 2004; Perić and Abdel-Maksoud, 2016).
When correctly tuned though, they have been demonstrated to reliably provide low reflection coefficients (say CR ≲ 2%)
for a wide range of wave conditions (Perić and Abdel-Maksoud 2016, 2018, 2018b; Perić et al., 2018).

In summary, forcing zones appear to be the most promising candidate to achieve the desired minimization of undesired
wave reflections at domain boundaries, to enable flow simulations of free-surface waves without any restriction of the
simulated time interval and without restrictions of application to steep waves, breaking waves, or waves with superposed
currents. Further, forcing zones enable the coupling to reference flow solutions. Thus the rest of this work focuses
exclusively on forcing zones.

1.2 Aim of this thesis

The aim of this thesis is to develop an analytical approach to optimally tune the case-dependent parameters of forcing
zones before performing the flow simulations, with focus on finite-volume-based flow simulations with free-surface waves
for typical ocean engineering and shipbuilding applications. The approach should be ‘practical’ in the sense that it
should be as simple as possible and as accurate as necessary to enable wide use in industrial practice; thus this theory
is intended to predict the flow features relevant for determining optimum or close-to-optimum tuning, but not all flow
details in the forcing zone need to be fully captured.

In this thesis, the theory is validated3 via results from two-dimensional (2D) and three-dimensional (3D) finite-volume-
based flow simulations, with regard to typical ocean engineering and shipbuilding applications. Simulations are performed
for regular and irregular waves in deep water to shallow water conditions. Further, simulations are carried out to
determine the influence of the wave steepness, of the forcing zone parameters, of the choice of governing equations to
which forcing is applied, and of the decision which forcing zones to apply at which domain boundaries.

Although the focus of this thesis is on free-surface flows, also (hydro-)acoustic flow simulations with forcing zones are
performed, with sound waves used as a computationally efficient model of shallow-water waves, because in both cases
dispersion4 is approximately zero. The advantage of performing flow simulations with sound waves is that it reduces the
complexity of the flow problem by one dimension: In free-surface waves, fluid particles travel on orbital paths (Clauss
et al., 1992), so their motion is both longitudinal (i.e. in wave propagation direction) and transverse (i.e. perpendicular

3In this work, the term ‘validation’ is used based on the definition in Eça et al. (2010), i.e. that validation aims at identifying modeling
errors via comparison to results from experiments or, in the present case, flow simulations.

4If a medium is dispersive, the wave’s phase velocity depends on the wavelength. Free-surface waves become non-dispersive in the
shallow water limit, since then the phase velocity is c|h≤0.05λ =

√
g
k tanh(kh)|h≤0.05λ ≈

√
gh with water depth h, wavelength λ = 2π/k,

and gravitational acceleration g ≈ 9.81 m/s2 according to linear wave theory (cf. Clauss et al., 1992).
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to the wave propagation direction). Thus ‘1D-wave-propagation’, e.g. a long-crested wave traveling in one direction,
requires a 2D-flow simulation to resolve the flow below the free surface, and ‘2D-wave-propagation’ requires a 3D-flow
simulation. In contrast, the particle motion in sound waves is only longitudinal. Thus ‘1D-’ and ‘2D-wave-propagation’
can be computed in 1D or 2D, which drastically reduces the computational effort and enables the simulation of larger
wave propagation distances. Further, for free-surface waves it was found that reflection coefficients smaller than ≈ 1%
could not be reliably detected (Perić and Abdel-Maksoud, 2018), since the approach to account for the two fluid phases,
i.e. the volume of fluid (VOF; Hirt and Nichols, 1981) method with interface sharpening (Muzaferija and Perić, 1999),
can create a slight background noise in the approaches to determine reflection coefficient CR (Larsen et al., 2019; Perić
and Abdel-Maksoud, 2018). Such schemes are not required when simulating sound wave propagation in a single phase
medium, so then reflection coefficient CR can be calculated much more accurately, as demonstrated in Sect. 5. Finally,
the (hydro-)acoustic flow simulations demonstrate that the theory is not restricted to free-surface waves, but can be
extended to waves in other mediums in a straight-forward manner.

To facilitate the use of the presented theory for other researchers, computer programs to evaluate the theory for free-
surface and sound waves have been published as free software. The download links can be found in Sects. 4.1, 4.2, and
4.3.

1.3 Thesis structure

In Sect. 2, a generic formulation of forcing zones is presented, of which the forcing-zone-type approaches listed in Sect.
1.1 are special cases. Thus the present findings can be applied to all these approaches in a straight-forward manner. It
is shown how the case-dependent parameters scale so that similar forcing can be obtained when up-/down-scaling the
waves. ‘Relaxation zones’, a special case of forcing zones, are discussed, as well as forcing zones for (hydro-) acoustic
waves.

In Sect. 3, an overview over techniques to calculate reflection coefficient CR is given. In the present work, only approaches
with low background noise (≲ 1%) are used.

In Sect. 4, the derivation of the theory for predicting reflection coefficients for forcing zones in flows with free-surface
waves and flows with (hydro-)acoustic waves is given. The theory is presented for the case of long-crested (1D) wave
propagation, and then extended to 2D and 3D to cover oblique wave incidence.

In Sect. 5, the theory is validated via simulation results for flows with (hydro-)acoustic waves and forcing zones.
The investigations include a grid- and time-step-dependence study, damping of regular and irregular sound waves with
different periods, amplitudes and forcing zone parameters in 1D-/2D-/3D-flows, damping of highly nonlinear waves,
forcing towards an unsteady reference solution, and prediction of reflection coefficients for oblique wave incidence.

In Sects. 6 to 8, the theory is validated via simulation results for flows with free-surface waves and typical ocean
engineering and shipbuilding applications. The investigations include grid- and time-step-dependence studies, damping
of regular and irregular free-surface waves with different periods, wave steepnesses, water depths and forcing zone
parameters in 2D-/3D-flows, relaxation zones using two different flow solvers, forcing towards an unsteady reference
solution, source terms in different governing equations, and the choice of forcing zones for 3D-flow simulations. A
recommended forcing zone arrangement for 3D-flow simulations with strongly reflecting bodies in long-crested far-field
waves is proposed.

In Sect. 9, the findings, the benefits, and the limitations of the theory are discussed and an outlook for possible future
research is given. After a brief conclusion in Sect. 10 two appendices present flow simulations results for (hydro-)acoustic
wave propagation through thin forcing zones in Appendix A and the use of forcing zones for improving the convergence
in ship resistance computations in Appendix B.
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2 Forcing zones

Key findings

• A generic formulation of forcing zones is presented

• Forcing zones contain three case-dependent parameters:

– forcing strength γ, which regulates the source term magnitude,

– blending function b(x), which regulates how the source term magnitude varies within the zone

– and zone thickness xd

• It is shown how these parameters scale with the wave

• The application of forcing zones to the governing equations for flow simulations with free-surface waves or (hy-
dro-)acoustic waves is described, as well as ‘relaxation zones’, a special case of forcing zones

Forcing zones apply source terms to the governing equations in a zone adjacent to the corresponding domain boundaries
as illustrated in Fig. 2. Such approaches have been presented under many different names, such as absorbing layers
(Wei et al., 1999), damping zones (Cao et al., 1993; Jose et al., 2017; Kim et al., 2014; Park et al., 1999; Perić and
Abdel-Maksoud, 2016), dissipation zones (Park et al., 1993), numerical beach (Clément, 1996), sponge layers (Brorsen
and Helm-Petersen, 1999; Choi and Yoon, 2009; Ha et al. 2013; Hu et al., 2015; Israeli and Orszag, 1981; Larsen and
Dancy, 1983; Zhang et al., 2014), Euler overlay method (Kim et al., 2012; Kim et al., 2013), forcing zones (Perić, 2015;
Siemens STAR-CCM+ manual version 11.06), and coupling or relaxation zones (Jacobsen et al., 2012; Jasak et al., 2015;
Meyer et al., 2017; Schmitt and Elsaesser, 2015; Vukčević et al., 2016, 2016b; Wöckner-Kluwe, 2013).

The general principle behind all these approaches is that they apply source terms to one, to several, or to all5 of the
governing equations, with the intention of gradually forcing the solution towards some reference solution within a zone
(layer) attached to the domain boundary. This damps waves which travel into the zone, but it can also be used to
generate waves or to couple different flow solvers (e.g. a viscous solver for the near-field and an inviscid solver for the
far-field).

A possible distinction could be that terms like forcing zone and relaxation zone are more general, while others are more
specific; for example, the Euler overlay method forces the flow towards the analytical solution of an undisturbed wave.
Damping zones, absorbing layers and sponge layers often apply source terms only in a single governing equation, with
the forcing term formulated so that it can be interpreted as a damping term. Yet in several cases there seems to be no
clear distinction and some of the names are used synonymously.

Thus in the following, the term forcing zone will be used to highlight that the results in this work are applicable to all
of the above approaches. To illustrate this, a generic formulation of forcing zones is presented in Sect. 2.1. Section 2.2
shows how the case-dependent parameters of forcing zones scale. In Sects. 2.3 to 2.5, the generic forcing zone formulation
is applied to flows with free-surface waves and (hydro-)acoustic waves; further, the application to ‘relaxation zones’, a
special case of forcing zones, is presented.

Figure 2: Qualitative sketch of a flow simulations with free-surface wave propagation, using a forcing zone (shaded gray) with
zone thickness xd and blending function b(x) to minimize undesired wave reflections at a domain boundary

5With one exception: no forcing source terms are applied in the pressure-correction equation, since it is derived from the continuity
equation with the intention to achieve that velocities and densities fulfill both the continuity and the momentum conservation equations
(cf. Patankar, 1980). In the case of incompressible flows, velocities are the only variables in the continuity equation and they are forced
through their corresponding momentum equations. In the case of compressible flows, one can additionally apply forcing to the energy
equation and/or the equation from which the density is computed (depending on whether a density-based or a pressure-based algorithm is
used). Thus additional forcing of the pressures could impair convergence of the pressure correction.
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2.1 A generic formulation of forcing zones

The following generic formulation of forcing zones is given for the generic transport equation for transport quantity ϕ,
which is described e.g. in Ferziger and Perić (2002)

∂

∂t

∫
V

ρϕ dV +
∫

S

ρϕv · n dS =
∫

S

Γ∇ϕ · n dS +
∫

V

ρqϕ dV , (1)

with time t, density ρ, volume V of the control volume (CV) bounded by the closed surface S, velocity vector v =
(u1, u2, u3)T = (u, v, w)T with Cartesian components ui (equivalent to u, v, w), unit vector n normal to S and pointing
outwards, diffusion coefficient Γ, and source term qϕ.

Within the forcing zone, the following source term is introduced in Eq. (1)

qϕ = γb(x) (ϕref − ϕ) , (2)

with forcing strength γ, blending function b(x) and reference transport quantity ϕref .

Forcing strength γ regulates the magnitude of the source term, i.e. how strongly the solution for ϕ at a given cell is
forced against the reference solution ϕref .

Blending function b(x) regulates how the magnitude of the source term varies within the forcing zone. Outside the
forcing zone holds b(x) = 0, and inside the forcing zone holds 0 ≤ b(x) ≤ 1. Usually, b(x) is ≈ 0 at the entrance to the
forcing zone and gradually increases within the zone as illustrated in Fig. 3.

Figure 3: Different blending functions b(x) as a function of x-location in the forcing zone; x̃ is the shortest distance of x to the
closest domain boundary to which a forcing zone of thickness xd is attached; waves enter the zone at (xd − x̃) /xd = 0, and the
boundary to which the zone is attached lies at (xd − x̃) /xd = 1; for constant (Eq. (3)), linear (Eq. (4)), quadratic (Eq. (5)),
exponential (Eq. (9)), and cos2 (Eq. (7)) blending

In this work, the following blending functions are used:

Constant blending
b(x) = 1 , (3)

linear blending
b(x) =

(
xd − x̃

xd

)
, (4)

quadratic blending

b(x) =
(
xd − x̃

xd

)2
, (5)

power blending
b(x) =

(
xd − x̃

xd

)n

, (6)

cos2-blending
b(x) = cos2

(
π

2 + π

2

(
xd − x̃

xd

))
, (7)

cos2n-blending
b(x) =

[
cos2

(
π

2 + π

2

(
xd − x̃

xd

))]n

, (8)
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exponential blending

b(x) =
(
e((xd−x̃)/xd)2

− 1
e1 − 1

)
, (9)

and exponential blending with power n

b(x) =
(
e((xd−x̃)/xd)n

− 1
e1 − 1

)
, (10)

where x̃ is the shortest distance of location x to the closest domain boundary to which a forcing zone of thickness xd is
attached (cf. Fig. 2), and n regulates the shape of the blending function.

The problem with forcing zones is to find optimum values for the case-dependent parameters forcing strength γ, blending
function b(x), and zone thickness xd, before performing the simulation. These parameters must be tuned for every
simulation. Using default coefficients can lead to large errors in the simulation results as shown in Perić and Abdel-
Maksoud (2016).

2.2 Scaling of case-dependent parameters in forcing zones

In engineering practice, flow simulations are often performed both for model and for full scale. Then it is desired to
have the same reflection coefficients in both cases. To achieve this, the case-dependent parameters of the forcing zone
described in Sect. 2.1 need to be scaled accordingly.

Geometric similarity requires that the zone thickness xd must scale with the wavelength λ. The blending function b(x)
is non-dimensionalized by xd and thus requires no further scaling. Kinematic similarity and dimensional analysis of Eqs.
(1) and (2) show that forcing strength γ has the unit [1/s] , so γ scales with the inverse of the wave period.

Let the scaling factor be
n = Lmodel

Lfull
,

with characteristic lengths Lmodel and Lfull in model and full scale. Geometric similarity requires the wavelength λ to
scale as λ ∝ n. Kinematic and dynamic similarity require the Froude number Fr, which denotes the ratio of inertia force
to gravity force, to be identical in model and full scale, with

Fr = U√
gL

, (11)

with characteristic velocity U , gravitational acceleration g, and characteristic length L. It follows that Umodel/Ufull ∝
√
n.

Since the velocity can be interpreted as a characteristic length scale over a characteristic time scale, it follows that the
characteristic time scale and thus the wave period T scale with T ∝

√
n; a detailed derivation can be found e.g. in

McCormick (2007).

Thus forcing strength γ and forcing zone thickness xd scale as

γ ∝ T−1, xd ∝ λ , (12)

with wave period T and wavelength λ.

Therefore, to achieve the same reflection coefficient and similar free-surface elevations within the forcing zones when
performing two flow simulations, the parameters γ and xd for the second simulation have to be adjusted as

xd = xd,ref · λ

λref
, (13)

γ = γref · Tref

T
, (14)

where xd,ref , λref , Tref and γref are the corresponding parameters from the first simulation.

Note that equivalently γ could be scaled with the angular wave frequency ω = 2π
T

via

γ ∝ ω , (15)
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and thus instead of Eq. (14) one obtains
γ = γref · ω

ωref
. (16)

Therefore, both [1/s] and [rad/s] are used as unit for γ in the following.

2.3 Governing equations and forcing zones for flows with free-surface waves

In this work, the flow simulations with free-surface waves are governed by the equation for mass conservation, the three
equations for momentum conservation and the equation for the volume fraction, which describes the distribution of the
phases:

d
dt

∫
V

ρ dV +
∫

S

ρ(v − vg) · n dS = 0 , (17)

d
dt

∫
V

ρui dV +
∫

S

ρui(v − vg) · n dS =∫
S

(τijij − pii) · n dS +
∫

V

ρg · ii dV +
∫

V

ρqi dV , (18)

d
dt

∫
V

α dV +
∫

S

α(v − vg) · n dS =
∫

V

qα dV . (19)

Here V is the control volume (CV) bounded by the closed surface S, v is the velocity vector of the fluid with the
Cartesian components ui, vg is the grid velocity, n is the unit vector normal to S and pointing outwards, t is time, p is
the pressure, ρ are fluid density, τij are the components of the viscous stress tensor, ij is the unit vector in direction xj ,
with volume fraction α of water. The results in this work apply regardless which formulation for τij is chosen or whether
it is neglected altogether, since, unless wave breaking occurs, the propagation of ocean waves is an approximately inviscid
phenomenon.

Based on the forcing zone formulation in Eq. (2) from Sect. 2.1, undesired wave reflections can be minimized by applying
source terms for momentum, qi, and volume fraction, qα, as

qi = γb(x)(ui,ref − ui) , (20)

qα = γb(x) (αref − α) , (21)

with reference velocity component ui,ref , reference volume fraction αref , forcing strength γ and blending function b(x).
As before, γ regulates the source term magnitude and b(x) can e.g. be selected from Eqs. (3) to (10). Forcing may be
applied only for horizontal momentum (qx, qy), or for vertical momentum (qz), or for volume fraction (qα), or for any
combination of these. If the reference solution is the hydrostatic solution for the undisturbed free surface (e.g. ui,ref = 0),
then the forcing can be interpreted as ‘wave damping’.

Apart from Eq. (20), some forcing-zone-type approaches have been proposed in which the source terms are not directly
proportional to the forced quantity; these are discussed in Sect. 6.9.

Empirical approaches to tuning the case-dependent parameters of forcing zones, such as Carmigniani and Violeau (2018)
and Perić and Abdel-Maksoud (2016), demonstrated that the optimum forcing strength γopt and the corresponding
reflection coefficient CR,opt can be determined with comparatively low computational effort for a given blending function
b(x), zone thickness xd, and wave period T , by performing 2D-flow simulations for different forcing strength γ. For
waves with a different period T , the reflection coefficient can be expected to be CR ≈ CR,opt if zone thickness xd and
forcing strength γopt are scaled via Eqs. (13) and (14), given that the waves are roughly similar and the same blending
function b(x) is used. Then γopt can for practical purposes be considered independent of the wave steepness, independent
of the discretization (time step, mesh size, order and choice of discretization scheme), and roughly independent of zone
thickness xd within some interval such as 1λ ≲ xd ≲ 2λ; for example for blending according to Eq. (9), Perić and
Abdel-Maksoud (2016) obtained γopt ≈ πω, which gives CR < 1% for xd = 2λ. A drawback of this approach is that, for
a different blending function b(x) or zone thickness (i.e. xd < 1λ or xd > 2λ), the above calibration process has to be
carried out again. Thus a more efficient approach to tuning forcing zones is required, which was the motivation for the
present work.
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2.4 Governing equations and relaxation zones for flows with free-surface waves

Relaxation zones blend, say a generic transport equation Υ for transport quantity ϕ, over to a reference solution via

(1 − b(x)) Υ + b(x)
τ

R = 0 , (22)

where b(x) is a blending function such as e.g. Eqs. (3) to (10), Υ corresponds e.g. to Eqs. (18) and (19), and R
corresponds to

∫
V

(ϕ−ϕref) dV with reference solution ϕref for transport quantity ϕ.

The relaxation parameter τ has unit6 [s], scales with the wave period T as τ ∝ T , and regulates the magnitude of the
source term in such a way that a large value of τ implicates a small source term and vice versa.

Hence the conservation equations for momentum and volume fraction take the form

(1 − b(x))
[

d
dt

∫
V

ρui dV +
∫

S

ρui(v − vg) · n dS

−
∫

S

(τijij − pii) · n dS −
∫

V

ρg · ii dV
]

+ b(x)
τ

[∫
V

ρ (ui − ui,ref) dV
]

= 0 , (23)

(1 − b(x))
[

d
dt

∫
V

α dV +
∫

S

α(v − vg) · n dS
]

+ b(x)
τ

[∫
V

(α− αref) dV
]

= 0 (24)

with reference velocities ui,ref and reference volume fraction αref .

Relaxation zones can be interpreted as a special case of the forcing zones as shown in Sect. 4.2. Whereas the forcing
zones from Sect. 2.3 are frequently applied to just a single governing equation in literature, relaxation zones usually
blend all governing equations except for the pressure-correction equation. Further, relaxation zones ‘blend out’ all terms
except the source terms in the governing equations via the factor (1 − b(x)); as illustrated in Fig. 4, forcing zones do
not have this factor, thus with forcing zones the whole governing equations remain active in the whole domain, whereas
within relaxation zones as in Eqs. (23) and (24), the terms from the governing equations that are active in the solution
domain of interest are faded out and the reference solution is faded in7.

Forcing zones Relaxation zones

Figure 4: Illustration of the difference in implementation between forcing zones from Sect. 2.3 and relaxation zones; in forcing
zones, the governing equations are active in the whole solution domain and the forcing source terms are added to them; in relaxation
zones, the governing equations are blended-out inside the forcing zone while the reference solution is blended-in

In this work, the relaxation is implemented implicitly as described in Jasak et al. (2015) and Vukčević et al. (2016,
2016b). Note that also explicit implementations as in Jacobsen et al. (2012) are possible.

As with the forcing zones from Sect. 2.3, also relaxation zones have three case-dependent parameters, i.e. relaxation
parameter τ , blending function b(x), and relaxation zone thickness xd. Therefore, to achieve the same reflection coefficient
and similar free-surface elevations within the relaxation zones when performing two flow simulations, the relaxation

6Note that τ has sometimes been interpreted as a numerical stability parameter, and thus has occasionally been omitted from Eq. (22)
in literature. However, dimensional analysis shows that it has a unit and requires scaling as described in Sects. 2.2 and 2.4.

7A distinct behavior of relaxation zones appears when relaxation parameter τ → ∞, so that the term with the reference solution
vanishes, i.e. (b(x)/τ)R → 0. At the same time, the governing equations are blended out in the vicinity of the boundary to which the zone
is attached, since (1 − b(x)) Υ → 0 for x̃ → 0. Thus all terms in Eq. (22) go to zero. In this case the reference solution (e.g. the far-field
wave) cannot be maintained as shown in Fig. 140, which underlines the necessity of correctly tuning relaxation parameter τ .
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parameter τ and the relaxation zone thickness xd for the second simulation have to be adjusted as

τ = τref · T

Tref
, (25)

where Tref and τref are the corresponding parameters from the first simulation, and xd is adjusted via Eq. (13).

2.5 Governing equations and forcing zones for flows with (hydro-)acoustic waves

The governing equations for the single-phase flow simulations with (hydro-)acoustic waves are the equation for mass
conservation and the three equations for momentum conservation:

∂

∂t

∫
V

ρ dV +
∫

S

ρv · n dS =
∫

V

qc dV , (26)

∂

∂t

∫
V

ρui dV +
∫

S

ρuiv · n dS =∫
S

(τijij − pii) · n dS +
∫

V

ρg · ii dV +
∫

V

ρqi dV , (27)

with volume V of control volume (CV) bounded by the closed surface S, fluid velocity vector v with the Cartesian
components ui, unit vector n normal to S and pointing outwards, time t, pressure p, fluid density ρ, components τij of
the viscous stress tensor, unit vector ij in direction xj , mass source terms qc, and momentum source terms qi.

Since many acoustic wave phenomena are approximately inviscid, the results in this work apply regardless which formu-
lation for τij is chosen or whether it is neglected altogether; this was verified by performing selected simulations from
Sect. 5 first with the standard k-ω turbulence model (see. e.g. Wilcox, 1993), then as laminar simulation (i.e. without
any modeling in Eq. (18)), and as inviscid simulation; as expected, no significant differences in wave absorption were
encountered.

The energy equation is

∂

∂t

∫
V

ρE dV +
∫

S

ρhev · n dS = −
∫

S

q̇ · n dS , (28)

with total energy E = he − p/ρ, total enthalpy he = cpϑ + 1
2 |v|2, heat capacity cp at constant pressure, temperature ϑ

and heat flux vector q̇.

The fluid mediums investigated in this work are liquid water using the IAPWS (1997) model and ideal gases using the
ideal gas law

pV = nRϑ , (29)

with pressure p, volume V , amount of gas substance n in moles, gas constant R = 8.314JK−1mol−1, and absolute
temperature ϑ.

Forcing zones can be implemented using the following source terms in Eqs. (26) and (27)

qc = γb(x) (ρref − ρ) , (30)

qi = γb(x) (ui,ref − ui) , (31)

with reference density ρref , density ρ, reference velocity component ui,ref , velocity component ui, forcing strength γ, and
blending function b(x) such as Eqs. (3) to (10). As in Sect. 2.3, forcing may be applied to a single or a combination
of several governing equations. Unless mentioned otherwise, the reference solution is the medium at rest, so ui,ref =
0 m

s .
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3 Calculating reflection coefficient CR

Key findings

• Approaches for calculating reflection coefficient CR are presented

• In this work, only approaches with low background noise (CR ≲ 1%) are used

• Different approaches are used for different flows

The reflection coefficient for free-surface waves is defined as the ratio of reflected wave height Hrefl to the generated wave
height H as

CR = Hrefl

H
. (32)

For harmonic waves, the reflection coefficient may equivalently be written as

CR = arefl

a
. (33)

with amplitude arefl of the reflected and amplitude a of the generated wave; for example for linear sound waves, these
could be velocity or pressure amplitudes ua and pa. It holds 0 ≤ CR ≤ 1, with CR = 1 for perfect wave reflection and
CR = 0 for no wave reflection.

In flows with free-surface waves or sound waves, the ratio of the energies of the reflected wave (Erefl) to the generated
wave (Egen) is Erefl/Egen = C2

R, since according to linear wave theory the wave energy E is E ∝ H2 (for free-surface
waves with wave height H) or E ∝ u2

a and E ∝ p2
a (for sound waves with velocity and pressure amplitudes ua and pa).

Thus a reflection coefficient of CR = 10% means that the forcing zone reflects 1% of the wave’s energy.

For regular monochromatic waves, the superposition of the generated wave and the wave which is partially reflected at
the forcing zone creates a so-called ‘partial’ standing wave, which can be recognized by the ‘bumps’ in the wave height
envelope as shown in Fig. 5. The height of these ‘bumps’ can be used to calculate the reflection coefficient. The domain
size and simulation duration should be chosen so that wave reflections have fully developed in the evaluation interval,
while possible wave re-reflections (e.g. at the inlet boundary) have not yet traveled back into the evaluation interval,
which was fulfilled in all simulations in this work. The approach works equally well for dispersive and non-dispersive
mediums as shown in Sects. 3.1 and 3.2.

For irregular waves in non- or weakly-dispersive mediums, a wave packet can be generated. After the wave packet has
fully encountered the forcing zone, the energy in the wave packet for forcing with forcing strength γ can be related to
the energy for the case of perfect reflection to obtain a reflection coefficient.

For irregular waves in dispersive mediums, accurate calculation of reflection coefficients CR requires larger computational
effort for the following reasons. Due to dispersion, waves of different wavelengths travel at different speeds; thus a wave
packet in a dispersive medium will not remain compact. It holds for all approaches for calculating the reflection coefficient
CR for irregular waves that the domain size and simulation duration should be chosen so that all waves of interest have
passed through the forcing zone once and have fully traveled into the evaluation interval, while possible wave re-reflections
(e.g. at the inlet boundary) have not yet traveled back into the evaluation interval, which was fulfilled in all simulations
in this work. Thus a significantly larger domain must be used to avoid that, in the time in which the slowest wave
component has traveled the desired distance, the fastest wave component has crossed the whole domain, was re-reflected
at the wave-maker and enters the evaluation interval again. The larger domain size requires possibly a finer discretization
to ensure that numerical discretization and iteration errors do not lead to a substantial decay of the height of the shorter
wave components.

The calculation of reflection coefficients CR according to Sects. 3.1 and 3.2 in this work is based on the above approaches,
since these are comparatively simple and have a low background noise of ≈ 1% for reflection coefficients with free-surface
waves (see Sects. 6 to 8) and ≪ 1% for flows with sound waves (see Sect. 5).

Apart from the approaches used in this work, various other methods to calculate CR have been presented in literature.
For example, in wave tank experiments it is common to record the surface elevation using two (e.g. Goda and Suzuki,
1977) or more (e.g. Mansard and Funke, 1980) wave probes, usually positioned in-line in wave propagation direction.
From data analysis in the frequency domain, reflection coefficient CR can be estimated. However, such approaches were
reported to exhibit errors in the measurement of CR of up to 8% − 10% or more (Hughes, 1993; Isaacson, 1991; Mansard
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too weak forcing (γ = 2.5 rad/s): reflection occurs mainly at vertical domain boundary x/λ = 6

close-to-optimum forcing (γ = 10 rad/s): reflection occurs throughout the zone and cancels via destructive interference

too strong forcing (γ = 640 rad/s): reflection occurs mainly near the entrance to the zone at x/λ ≈ 4

Figure 5: Theory predictions and simulation results for free-surface elevation as a function of x-location according to the results
from Sect. 6.2, plotted for several equally spaced time-instances during the last simulated period; for regular waves with period
T = 1.6 s and wavelength λ = 4 m; with forcing zone (shaded gray area) for exponential blending via Eq. (9), zone thickness
xd = 2λ and forcing of horizontal momentum

and Funke, 1980; McKee et al., 2018), and are thus not used in the present work. For further details, the reader is
referred to the above references and the references therein.

3.1 Calculating reflection coefficient CR for free-surface waves

To calculate reflection coefficient CR for long-crested monochromatic free-surface waves, the surface elevation in the whole
domain is recorded at a sufficient number (say 80) of evenly spaced time intervals during the last simulated wave period.
The evaluation interval contains all cells outside the forcing zone which are within a distance of slightly more than one
wavelength to the forcing zone. The overall highest and lowest wave heights recorded in this interval are determined as
Hmax and Hmin. From Hmax and Hmin, the reflection coefficient is calculated as in Ursell et al. (1960) via

CR = (Hmax −Hmin) / (Hmax +Hmin) . (34)

This approach contains only a small background noise of ≈ 1% as seen from the results in Sects. 6 to 8, which was
considered accurate enough for the present purposes.

To calculate reflection coefficient CR for irregular free-surface-wave packets, the surface elevation in the whole domain is
recorded after each simulation. Then a Fourier analysis is performed of the recording, e.g. via a fast Fourier transform
(see e.g. Cooley and Tukey, 1965; Moin, 2010), to obtain the amplitudes and frequencies of the wave components.

The overall reflection coefficient CR is then computed from the Fourier analysis results for the given forcing strength γ

in relation to the Fourier analysis results for the case without forcing, i.e. γ = 0, by

CR =
∑N

n=1 an∆fn|γ∑N

n=1 an∆fn|γ=0
, (35)
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with the total number of frequencies N , Fourier amplitude an of the wave component with frequency fn, and frequency
interval ∆fn = fn − fn−1.

3.2 Calculating reflection coefficient CR for (hydro-)acoustic waves

For regular monochromatic (hydro-)acoustic waves in 1D, reflection coefficient CR can be computed as in Eq. (34) via
maximum and minimum velocities umax and umin, which occur during the last simulated period for all cells outside the
forcing zone which are within a given distance (here: slightly more than one wavelength) to the forcing zone:

CR = |umax| − |umin|
|umax| + |umin| . (36)

Alternatively, for cases with wave packets in 1D, 2D, or 3D, reflection coefficient CR can be determined based on the
energy in the domain at time t = tend when the simulation is finished, by relating it to the energy in the domain after
repeating the simulation without forcing (i.e. for γ = 0)

CR =
√

(Ekin + Epot)|γ=γi, t=tend

(Ekin + Epot)|γ=0 t=tend
, (37)

where γi is the forcing strength used in the simulation, and the kinetic and potential energies are

Ekin =
∫

V

1
2ρ|v|2 dV , Epot =

∫
V

1
2
p2

ρc2 dV , (38)

with density ρ, velocity vector v = (u, v, w)T, pressure p relative to reference pressure, phase velocity c = λ/T of the
wave, and control volume V ; see e.g. Lerch et al. (2009) for a detailed derivation. The domain size and simulation
duration should be chosen so that at t = tend the whole wave packet has passed through the forcing zone once, which
was fulfilled in all calculations in this work.

For wave trains of arbitrary length in 1D, 2D, or 3D, another option is to obtain reflection coefficient CR based on the
maximum energy inside a certain domain part in a time interval after the wave train has passed once through the forcing
zone (e.g. ∆t1 = {t ∈ R | t1,start ≤ t ≤ t1,end}), by relating it to the energy in the same domain part during some earlier
time interval of the simulation (e.g. ∆t0 = {t ∈ R | t0,start ≤ t ≤ t0,end}), when the wave train has been fully generated
but has not yet encountered any forcing zone. The domain part used for evaluation can e.g. comprise all cells outside
the forcing zone which are within a given distance to the forcing zone, e.g. when investigating forcing zones which
simultaneously generate out-going waves and damp waves that enter the zone as in Sect. 5.7, but it can also comprise
the whole domain8 which would be an option e.g. for short wave packets. Thus the reflection coefficient is

CR =
√

max (Ekin + Epot|γ, ∆t1 )
max (Ekin + Epot|γ=0, ∆t0 ) , (39)

with Ekin and Epot according to Eq. (38).

8It is recommended to use Eq. (39) only when using Eq. (37) is not feasible. This is because in flow simulations, discretization and
iteration errors can accumulate over time, and thus dissipate wave energy. Therefore, Eq. (39) requires a sufficiently fine discretization, so
that the energy loss due to numerical errors is negligible between the first and the second time interval used for evaluation of the energies;
assume e.g. that a coarse discretization is used, so that there is a 10% loss of wave energy in the domain between these time intervals,
then for full reflection the approach would give CR = 0.99 instead of the correct value CR = 1. Since Eq. (37) evaluates all energies at the
same time, the effects of discretization and iteration errors are similar in all simulations and hence do not affect the calculation of reflection
coefficient CR.
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4 Theory for predicting reflection coefficients for forcing zones

Key findings

• Waves are reflected at every location within the forcing zone where ∇b(x) ̸= 0

• A theory is derived which predicts reflection coefficients for forcing zones for 1D-wave-propagation of free-surface
waves and (hydro-)acoustic waves

• The theory is derived to hold for all continuous or discontinuous blending functions b(x)

• This is achieved by converting continuous blending to a piece-wise constant blending; with decreasing piece-size
the theory solution converges quickly towards the solution for continuous blending

• The theory is extended to cover oblique wave incidence into the forcing zone for 2D- and 3D-wave-propagation

In this section, an analytical solution to predict reflection coefficients for forcing zones is derived. This theory can be
used to optimally tune the case-dependent parameters of forcing zones before performing the flow simulations. The
theory is based on the assumptions that waves are reflected everywhere within the forcing zone where ∇b(x) ̸= 0, which
was confirmed by the results from flow simulations in Sects. 5 to 8, and Appendix A.

In practice, many different blending functions b(x) can be used as indicated in Sect. 2. Instead of deriving analytical
solutions for each possible continuous blending function b(x), the following theory is derived to hold with good ap-
proximation for every continuous or discontinuous blending function b(x). This is achieved by replacing the possibly
continuous blending function b(x) by a piece-wise constant blending function b(x), as illustrated in Fig. 6.

Figure 6: Replace continuous by piece-wise constant blending function b(x′); x′ is the location in wave propagation direction,
with x′ = 0 at the entrance to the forcing zone and x′ = 1 at the domain boundary to which the forcing zone is attached

Sections 4.1 to 4.3 derive the theory for long-crested (or 1D-) wave propagation for free-surface waves and (hydro-)acoustic
waves. Section 4.4 demonstrates that the theory solution for piece-wise constant blending b(x) quickly converges towards
the solution for the continuous blending function b(x), which agrees with findings from Sects. 5 to 8 that, for practical
discretizations, the forcing zone behavior in the flow simulations was found to be independent of the time-step size, the
mesh size, as well as the choice and order of the discretization scheme. Finally, Sect. 4.5 extends the 1D-theory to 2D
and 3D to cover oblique wave incidence into the forcing zone.

4.1 1D-theory for predicting forcing zone behavior in flows with free-surface waves

This section considers the propagation of long-crested free-surface waves. As illustrated in Fig. 7, the waves are generated
at x = 0, and travel towards boundary x = Lx, to which a forcing zone with thickness xd is attached. The coordinate
system origin lies at the level of the undisturbed free surface on the wave generating boundary as illustrated in Fig.
7. The x-direction points in wave propagation direction and the z-direction is normal to the undisturbed free surface
pointing away from the liquid phase.

Outside the forcing zone, the waves fulfill the one-dimensional wave equation

ψtt = c2ψxx , (40)

with location x in wave propagation direction, velocity stream function ψ, and phase velocity c.
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Figure 7: Solution domain filled with air (white) and water (light gray, water depth h), wave-maker at x = 0 and forcing zone
(shaded dark gray) with thickness xd; three fluid particles (black dots) are sketched with their particle paths (circles) and velocity
vectors (arrows)

According to linear wave theory in the complex plane, the velocity stream function for an undamped wave is

ψ = Hω

2k
sinh(k(z + h))

sinh(kh) ei(−ωt+kx) , (41)

with wave height H, angular wave frequency ω = 2π/T , wave period T , wave number k = 2π/λ, wavelength λ, and
water depth h. Horizontal and vertical velocity components u and w are

u = ψz ,

w = −ψx .

Horizontal and vertical particle displacements X and Z are

X = i
H

2
cosh(k(z + h))

sinh(kh) ei(−ωt+kx) , (42)

Z = H

2
sinh(k(z + h))

sinh(kh) ei(−ωt+kx) . (43)

Thus outside the forcing zone, Eq. (40) is equivalent to

Xtt = c2Xxx . (44)

A detailed discussion of linear wave theory can be found e.g. in Clauss et al. (1992), McCormick (2007), and Mei et al.
(1989).

4.1.1 Forcing of x-momentum

Undesired wave reflections at a domain boundary can be reduced by attaching a forcing zone to the boundary, where
the horizontal particle velocity u = Xt is forced to a reference velocity u = Xt,ref

Xtt = c2Xxx + γb(x)(Xt,ref − Xt)  
q

, (45)

with forcing strength γ and blending function b(x). The last term in Eq. (45), q, is equivalent to the forcing source term
in Eq. (20). In the following, Xt,ref = 0 so that Eq. (45) corresponds to a wave damping zone. Further, Eq. (45) is
equivalent to

ψtt = c2ψxx + γb(x)(ψt,ref − ψt) , (46)

with temporal derivative of the reference stream function ψt,ref = 0.

Inserting Eq. (41) into Eq. (40) gives the wave number outside the forcing zone

k =

√
ω2

c2 = ω

c
. (47)

Inserting Eq. (41) for piecewise-constant blending b(x) into Eq. (46) gives the wave number inside the forcing zone
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k =

√
ω2

c2 + i
ωγb(x)
c2 . (48)

Thus inside the forcing zone, the wave number contains an additional imaginary part which damps the wave amplitude
but does not change the wavelength.

The following procedure is taken to analytically determine the reflection coefficient for a wave entering a forcing zone
according to Eqs. (40) and (46); the approach is somewhat analogous to the way in which forcing source terms are
applied in numerical flow simulations on finite grids.

The solution domain is discretized into a finite number of cells as illustrated in Fig. 8. Each cell j corresponds to a
forcing zone, within which the stream function is given by ψj , and the complex wave number kj has a constant value.
For this, b(x) is evaluated at the cell center:

kj =

√
ω2 + iωγb

(∑j−1
n=1 xdn + 1

2xdj

)
c2 , (49)

with thickness xd,j of zone j; xd,j is equivalent to the size of the cell in x-direction. Thus the damping is constant within
every zone. Reflection and transmission may occur at every interface between two cells.

The benefit of this approach is that even non-continuous blending functions and the influence of the discretization can be
considered. With increasing resolution, the theoretical results are expected to converge to the solution of the continuous
problem. The latter is not derived here, since for practical purposes only the analytical solution to the discretized
problem is of interest. In this manner, the problem remains linear and the solution can be derived as follows.

Consider a wave propagating in positive x-direction. The wave is generated at x = 0 following the coordinate system in
Fig. 8. Let the stream function at x = 0 be

ψ0 = Hω

2k0

sinh(k0(z + h))
sinh(k0h) ei(−ωt) , (50)

with wave height H, angular wave frequency ω, wave number k0, vertical coordinate z, and time t. Set the transmission
coefficient CT0 = 1 and the reflection coefficient CR0 = 0, thus the ‘inlet’ boundary is perfectly transparent, and waves
propagating through it in negative x-direction will be fully transmitted without reflection.

For illustration, a domain with 4 zones is depicted in Fig. 8. Let the wave number k1 = 2π/λ1 within zone 1 equal
the wave number k0 = 2π/λ0 of the wave generated at x = 0, where λ0 and λ1 are the corresponding wavelengths.
Thus within the first zone 0 ≤ x ≤ xd1 , there is no wave damping, i.e. q(x) = 0. At the end of the domain, i.e. at
x =

∑4
n=1 xdn , the boundary is perfectly reflecting (a typical ‘wall boundary condition’ in computational fluid dynamics),

so the transmission coefficient CT4 = 0 and the reflection coefficient CR4 = 1. Within each zone in zones 2 to 4, the
damping is constant, i.e. q(x) = qj = −γb(

∑j−1
n=1 xdn + 1

2xdj )Xt, yet q2 to q4 may be of different magnitude, which is
indicated through the different shading of the zones in Fig. 8.

Figure 8: Example of a solution domain decomposed into 4 zones; within each zone j of thickness xd,j holds stream function ψj ,
wave number kj and damping term qj ; at each interface j between two zones, transmission and reflection coefficients are CTj

and
CRj

By requiring that the particle displacements and velocities must be continuous at every interface between two zones, as
they should be at the interfaces between two cells in a flow simulation, the periodic solution is obtained. As Eqs. (59)
to (62) show, this requirement is equivalent to requiring that the velocity stream function ψ and its spatial derivative
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ψx are continuous in the whole forcing zone.

For a domain with j zones, the solution for the velocity stream function ψ(x) within zone j > 0 can be written as a sum
of a right-going (incoming) and a left-going (reflected) wave component

ψj = ψ0

(
j−1∏
n=0

CTn

)
·
[

ei
(∑j−1

n=1
knxdn +kj

(
x−
∑j−1

n=1
xdn

))
−CRj ei

(∑j−1
n=1

knxdn +kj 2xdj
−kj

(
x−
∑j−1

n=1
xdn

))]
, (51)

with ψ0 according to Eq. (50). The derivative of ψj with respect to wave propagation direction x is thus

ψx,j = ikjψ0

(
j−1∏
n=0

CTn

)
·
[

ei
(∑j−1

n=1
knxdn +kj

(
x−
∑j−1

n=1
xdn

))
+CRj ei

(∑j−1
n=1

knxdn +kj 2xdj
−kj

(
x−
∑j−1

n=1
xdn

))]
. (52)

Requirement 1: At the interface between zones j and j + 1, the solution for the zone on the left, i.e. ψj , must equal
the solution for the zone on the right, i.e. ψj+1:

[ψj = ψj+1]
x=
∑j

n=1
xdn

. (53)

Inserting Eq. (51) into Eq. (53), dividing by

ψ0

(
j−1∏
n=0

CTn

)[
ei
(∑j−1

n=1
knxdn

)]
,

inserting

x−
j−1∑
n=1

xdn = xdj , x−
j∑

n=1

xdn = 0 ,

and rearranging for CTj gives

CTj =
1 − CRj

1 − CRj+1 ei
(

kj+12xdj+1

) . (54)

Requirement 2: At the interface between zones j and j + 1, the spatial derivative with respect to x of the solution for
the zone on the left, i.e. ∂ψj/∂x = ψx,j , must equal the spatial derivative with respect to x of the solution for the zone
on the right, i.e. ∂ψj+1/∂x = ψx,j+1:

[ψx,j = ψx,j+1]
x=
∑j

n=1
xdn

. (55)

Inserting Eq. (52) into Eq. (55), dividing by

iψ0

(
j−1∏
n=0

CTn

)[
ei
(∑j−1

n=1
knxdn

)]
,

inserting CTj , and setting

βj+1 =
1 + CRj+1 ei

(
kj+12xdj+1

)
1 − CRj+1 ei

(
kj+12xdj+1

) . (56)

gives
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CRj = kj+1βj+1 − kj

kj+1βj+1 + kj
, (57)

For practical purposes, mainly the ‘global’ reflection coefficient CR is of interest, which is the ratio of the amplitude of
the wave, which is reflected back into the solution domain, to the amplitude of the wave, which enters the forcing zone.
The global reflection coefficient CR corresponds to the magnitude of CRj at the interface to the forcing zone, which
depends on all CRj inside the whole forcing zone. So if the forcing zone starts at zone 1, then

CR = |CR1 | =
√

Re{CR1 }2 + Im{CR1 }2 , (58)

where Re{X} and Im{X} denote the real and the imaginary part of the complex number X.

Since for the complex exponential functions in this case the order of derivatives and integrals can be exchanged, when
setting integration constants to zero one obtains

uj = ψz,j = k0
cosh(k0(z + h))
sinh(k0(z + h))ψj , (59)

Xj =
∫
ψz,j dt = k0

−iω
cosh(k0(z + h))
sinh(k0(z + h))ψj , (60)

wj = −ψx,j , (61)

Zj =
∫

−ψx,j dt = 1
iω
ψx,j . (62)

Thus ψj , ψx,j and and all particle displacements and velocities are continuous throughout the domain.

The theory is implemented in a computer program, which is made publicly available as free software. The source code
and manual can be downloaded from:
https://github.com/wave-absorbing-layers/absorbing-layer-for-free-surface-waves

4.1.2 Forcing of volume fraction α, x-, y- or z-momentum and combinations thereof

In Sect. 4.1, the theory for predicting reflection coefficients for forcing zones was derived for forcing of x-momentum9.
The present section extends the theory to hold for applying forcing source terms in the equations for volume fraction
α as well as y- and z-momentum, and combinations thereof. This is achieved by relating the forcing strength γ to the
wave energy component(s) associated with the governing equations to which the source terms are applied: forcing of
x-momentum acts directly on the horizontal component Ekin,x of the kinetic wave energy, forcing of z-momentum acts
directly on the vertical component Ekin,z of the kinetic wave energy, and forcing of volume fraction α acts directly on
the potential wave energy Epot.

According to linear wave theory, the average energy Ē =
∫ λ

0

∫ η

−h

∫ 1 m
0 E dydzdx in a regular free-surface wave traveling

in x-direction can be subdivided as
Ē = Ēpot + Ēkin

=Ēkin,x+Ēkin,z

, (63)

with free-surface elevation η measured from the still water level z = 0, water depth h, average potential and kinetic
energy Ēpot and Ēkin, and the x- and z-component Ēkin,x and Ēkin,z of the average kinetic energy.

9In this thesis, the following terms will be used synonymously: forcing of xi-momentum, forcing of velocity component ui, applying
forcing source terms in the governing equation for momentum conservation in xi-direction.
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Then, for all water depths holds10

Ēpot = Ēkin , (64)

Ēkin,x =
(

sinh(2kh) + 2kh
sinh(2kh) − 2kh

)
Ēkin,z , (65)

with wave number k and water depth h.

For deep-water conditions (water depth h ≥ 0.5λ), Eq. (65) simplifies to

Ēkin,x = Ēkin,z = 1
2 Ēkin , (66)

while for shallow-water conditions (h ≤ 0.05λ) holds11

Ēkin,x ≫ Ēkin,z , so Ēkin,x ≈ Ēkin . (67)

The equations for volume fraction α and fluid momentum in horizontal and vertical directions x and z are coupled, so
assume that forcing of one equation acts on the other equations immediately12. Thus for example the whole wave can
be damped by applying forcing source terms to just a single governing equation, as demonstrated e.g. in Sect. 6.2 and
6.3.

To obtain the same reflection coefficient CR when applying forcing source terms to different governing equations, require

γj

∑
Ej = const. , (68)

where j denotes the equations to which forcing is applied (here: x for forcing of x-momentum, z for forcing of z-
momentum, α for forcing of volume fraction α, or combinations of these), forcing strength γj , and

∑
Ej is the sum of

the wave energy components associated with these equations (here: Ēkin,x for forcing of x-momentum, Ēkin,z for forcing
of z-momentum, and Ēpot for forcing of volume fraction α).

As an example for the application of Eq. (68), forcing of x-momentum with forcing strength γ is equivalent to forcing of
volume fraction α, x-, and z-momentum with a forcing strength γαxz, when holds

γ =
(
Ēkin,x + Ēkin,z + Ēpot

Ēkin,x

)
γαxz . (69)

From Eq. (69) follows that in deep water, forcing of volume fraction α, x-, and z-momentum with a forcing strength
γαxz is equivalent to forcing of x-momentum with forcing strength γ when

γ = 4γαxz , (70)

since in deep water
(
Ēkin,x + Ēkin,z + Ēpot

)
= 4Ēkin,x.

10The linear wave theory solution for arbitrary water depth h of horizontal and vertical velocity amplitudes are ua = ω H
2

cosh(kz+kh)
sinh(kh)

and wa = ω H
2

sinh(kz+kh)
sinh(kh) , with wave height H, angular wave frequency ω, and wave number k. Therefore the ratio of the average kinetic

energy components in vertical and horizontal direction is

Ēkin,z

Ēkin,x

∝
1
h

∫ 0

−h
w2

a dz

1
h

∫ 0

−h
u2

a dz
=

1
h

∫ 0

−h

(
ω H

2
sinh(kz+kh)

sinh(kh)

)2
dz

1
h

∫ 0

−h

(
ω H

2
cosh(kz+kh)

sinh(kh)

)2
dz

=
sinh(2kh) − 2kh

sinh(2kh) + 2kh
.

11According to linear wave theory, the horizontal and vertical velocity components in a shallow water wave are u = ω H
2

1
kh sin (kx − ωt)

and w = −ω H
2

(
z+h

h

)
cos (kx − ωt), with wave height H, wavelength λ, wave period T , water depth h ≤ 0.05λ, angular wave frequency

ω = 2π/T , wave number k = 2π/λ, time t and horizontal and vertical coordinates x and z. Further holds for the kinetic energy
components Ēkin,xi

∝
∫ 0

−h
u2

i,a dz. The squared velocity amplitudes ua and wa averaged over the water depth h are 1
h

∫ 0

−h
u2

a dz =
1
h

∫ 0

−h

(
ω H

2
1

kh

)2
dz ≥ ω2H2

0.04π2 and 1
h

∫ 0

−h
w2

a dz = 1
h

∫ 0

−h

(
ω H

2

(
z+h

h

))2
dz = ω2H2

12 . Thus integrated over one wavelength holds

Ēkin,z

Ēkin,x

=

∫ 0

−h
w2

a dz∫ 0

−h
u2

a dz
≤

ω2H20.04π2

12ω2H2 < 3.3% ,

so Ēkin,x ≫ Ēkin,z and Ēkin,x ≈ Ēpot.
12The results in Sects. 6 to 8 demonstrate that this assumption holds with good approximation. An exception is forcing of z-momentum if

the forcing source terms change rapidly within the forcing zone, i.e. for comparatively thin forcing zones (say xd < 0.5λ) or for significantly
larger-than-optimum forcing strength γ (when most of the wave is reflected close to the entrance of the forcing zone, see e.g. Fig. 5 bottom);
in this case, the assumption is not entirely fulfilled and reflection coefficients CR were lower than theory predictions, cf. Sects. 6.3 and 6.5.
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In contrast, in shallow water holds
γ = 2γαxz , (71)

since in shallow water
(
Ēkin,x + Ēkin,z + Ēpot

)
= 2Ēkin,x, as follows from Eqs. (63) to (67). Thus when simultaneously

forcing α, x- and z-momentum, e.g. each with forcing strength γ = 20 rad/s, then the theoretical prediction for the
reflection coefficient CR is the same as when using the theory from Sect. 4.1.1 with γ = 80 rad/s for deep-water conditions
or γ = 40 rad/s for shallow-water conditions.

Following the same procedure yields13

γ =
(
Ēkin,x

Ēkin,x

)
γx =

(
Ēkin,z

Ēkin,x

)
γz =

(
Ēkin,x + Ēkin,z

Ēkin,x

)
γxz =

(
Ēpot

Ēkin,x

)
γα =

(
Ēkin,x + Ēkin,z + Ēpot

Ēkin,x

)
γαxz . (72)

For deep water conditions, this corresponds to

γ = γx = γz = 2γxz = 2γα = 4γαxz , (73)

whereas for shallow water conditions, this corresponds to

γ = γx = γxz = γα = 2γαxz . (74)

The case of forcing of z-momentum deserves special attention, since it is the default approach for wave damping zones
in several flow solvers at the time of writing: In shallower water depths, the optimum value for forcing strength γz can
then be several orders of magnitude larger than the optimum value of forcing strength γ for forcing of x-momentum (cf.
Eq. (72)), since the vertical kinetic wave energy becomes small compared to the horizontal kinetic energy as visualized
in Fig. 9. This is discussed in more detail in Sect. 6.7.

Figure 9: Ratio of vertical (Ēkin,z) to horizontal (Ēkin,x) components of the average kinetic wave energy as a function of water
depth h per wavelength λ, calculated based on linear wave theory via Eq. (65)

To sum up, the optimum value of forcing strength γ can depend on which governing equations the forcing is applied
to14. This is considered in the open-source computer program for evaluating the theory, mentioned in Sect. 4.1.

4.2 Extension of 1D-theory to relaxation zones

To extend the theory from Sect. 4.1 to relaxation zones as described in Sect. 2.3, multiply Eqs. (23) and (24) by the
factor 1/ (1 − b(x)). Then the relaxation can be interpreted as a forcing, where the source terms in Eqs. (18) and (19)
are

qi = b(x)
τ(1 − b(x)) (ui,ref − ui) , (75)

13When rotating the coordinate system around the z-axis from (x, y, z) to (x′, y′, z) so that the wave propagation direction has
both an x′- and y′-component, then replace Ēkin,x by Ēkin,x′ + Ēkin,y′ in the numerator in Eq. (72), for example via γ =(

Ēkin,x′ +Ēkin,y′ +Ēkin,z+Ēpot
Ēkin,x

)
γαx′y′z , and therefore γαx′y′z = γαxz since Ēkin,x′ + Ēkin,y′ = Ēkin,x.

14It is not recommended to apply forcing in a governing equation which is associated with a wave energy component which is zero or
negligible compared to the other energy components. For example, a long-crested wave traveling in x-direction has no velocity components
in y-direction and thus no corresponding kinetic energy Ēkin,y = 0. Therefore, forcing of y-momentum towards zero (i.e. vref = 0 in Eq.
(20)) with the intention of damping these waves would have no effect. Another example is forcing of vertical (i.e. z-) momentum in shallow
water; when Ēkin,z/Ēkin,x approaches zero (cf. Fig. 9), at some point the optimum forcing strength γ becomes so large (cf. Eq. (72)) that
stability problems or simulation blow-up might occur.
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qα = b(x)
τ(1 − b(x)) (αref − α) , (76)

with blending function b(x), relaxation parameter τ , velocity ui, reference velocity ui,ref , volume fraction α, and reference
volume fraction αref . Thus by setting γ in Eqs. (46) to (58) to

γ = 1
τ(1 − b(x)) , (77)

the theory is extended to relaxation zones.

Note that unless τ = 0, Eqs. (75) to (77) do not become singular, since for the piecewise-constant blending in Eq. (49)
b(x) is evaluated at the center of each segment and thus is always < 1. The exception to this statement is b(x) = 1,
which is the only case for which relaxation zones according to Eqs. (23) and (24) behave differently from the otherwise
equivalent formulation in Eqs. (75) to (77). However, this case is not of practical interest, since b(x) = 1 would mean
that within the relaxation zone there is no interaction between the reference solution and the governing equations for
fluid flow, since the latter equal zero and the solution inside the relaxation zone equals the prescribed reference solution.
Thus the entrance to the relaxation zone would behave like a fully reflective velocity inlet boundary condition, but with
an increased computational effort.

A simple computer program to evaluate the theory for predicting the relaxation zone behavior has been published as
free software.

The source code and manual can be downloaded from the following link:
https://github.com/wave-absorbing-layers/relaxation-zones-for-free-surface-waves

4.3 1D-theory for predicting forcing zone behavior in flows with (hydro-)acoustic waves

(Hydro-)acoustic, one-dimensional wave propagation with forcing of fluid momentum follows with good approximation
the wave equation

χtt = c2χxx + γb(x)(χt,ref − χt) . (78)

with particle displacement χ, velocity u = χt, and speed of sound c. The wave equation describes waves e.g. in an
ideal gas, liquid or solid under isothermal conditions and is derived e.g. in Feynman et al. (2011). The forcing term is
formulated in analogy to Eq. (45) with forcing strength γ, blending function b(x) and reference velocity uref = χt,ref . In
the following, set χt,ref = 0 m

s to damp the waves within the zone.

The derivation of the 1D-theory for (hydro-)acoustic waves follows the derivation in Sect. 4.1 except that instead of the
velocity stream function, the equations for particle displacement χj are used to obtain the analytical solution for the
reflection coefficient. Thus for a domain with j zones, the solution for the particle displacement χj(x) within zone j > 0
can be written as a sum of a right-going (incoming) and a left-going (reflected) wave component

χj = χ0

(
j−1∏
n=0

CTn

)[
ei
(∑j−1

n=1
knxdn +kj

(
x−
∑j−1

n=1
xdn

))
−CRj ei

(∑j−1
n=1

knxdn +kj 2xdj
−kj

(
x−
∑j−1

n=1
xdn

))]
, (79)

with the particle displacement at x = 0 set to
χ0 = A0e−iωt , (80)

with wave number kj in zone j with thickness xdj , transmission and reflection coefficients CTj and CRj , displacement
amplitude A0, angular wave frequency ω = 2π/T , wave period T , and time t.

Requiring that the particle displacements, their spatial derivatives, and velocities must be continuous at every interface
between two adjacent zones, as they should be at the interfaces between two zones in a flow simulation, the analytical
solution is obtained. This can be achieved by requiring that at the interface between zones j and j + 1, the solution for
the zone on the left, i.e. χj , and its spatial derivative, ∂χj/∂x = χx,j , must equal the solution for the zone on the right,
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i.e. χj+1, and its spatial derivative, ∂χj+1/∂x = χx,j+1, so

[χj = χj+1]
x=
∑j

n=1
xdn

, (81)

[χx,j = χx,j+1]
x=
∑j

n=1
xdn

. (82)

Thus the same equations for transmission and reflection coefficients as in Sect. 4.1 are obtained, i.e.

CTj =
1 − CRj

1 − CRj+1 ei
(

kj+12xdj+1

) , (83)

and

CRj = kj+1βj+1 − kj

kj+1βj+1 + kj
, with βj+1 =

1 + CRj+1 ei
(

kj+12xdj+1

)
1 − CRj+1 ei

(
kj+12xdj+1

) . (84)

Therefore, the particle displacements χ, their spatial derivatives χx, the velocity u = χt, and the velocity potential ϕ are
continuous throughout the forcing zone.

The theory is implemented in a computer program, which is made publicly available as free software. The source code
and manual can be downloaded from:
https://github.com/wave-absorbing-layers/pressure-wave-absorption.

4.4 Convergence of the theory solution for piecewise-constant blending to the solution for con-
tinuous blending

The theory from Sects. 4.1 to 4.3 was derived by subdividing the forcing zone into n zones with constant blending b(x) as
illustrated in Fig. 10. This section demonstrates that, if n is larger than a certain threshold, then the theory results can
be considered independent of n. Thus also the forcing zone behavior in flow simulations can be expected to be basically
grid-independent, if the number n of grid cells, by which the forcing zone is discretized in wave propagation direction, is
above the same threshold.

Figure 10: Blending function b(x′) according to Eq. (9) as a function of x′-coordinate; x′ is directed in wave propagation direction
and linearly scaled such that it is 0 at the entrance to the forcing zone and 1 at the boundary to which the zone is attached; for
forcing zones consisting of 4 and 16 zones with piece-wise constant blending b(x′) and for continuous blending b(x′)

Figure 11 shows for a subdivision into 32 zones, that the results are barely distinguishable from subdivisions into larger
numbers of zones. This agrees well with findings from Fig. 16, where the wave damping was observed to be grid-
independent for practical flow simulation setups (i.e. grids with at least 30 cells per wavelength).
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xd = 0.75λ xd = 3λ

Figure 11: Theory prediction for reflection coefficient CR as a function of forcing strength γ for waves with period T = 0.00227 s;
for a forcing zone according to Eq. (31) with exponential blending (Eq. (9)), zone thickness xd = 0.75λ, and xd = 3.0λ; for b(x)
subdivided into n = 32, 64, 128 and 1024 zones the average difference between the results is < 0.08% and the largest deviation
from the results for n = 1024 is < 0.9%

Figure 12 shows that for subdivision into less than 16 zones, the results differ significantly from the results for > 32
zones. This is relevant when assessing flow simulations, in which a combination of grid stretching and forcing zones is
used to damp the waves; in industrial practice, these two wave damping approaches are sometimes combined with the
intention to lower the computational effort and to improve the damping. However, Figs. 11 and 12 show that, if due to
the grid stretching the number of grid cells per zone thickness drops below a certain threshold, then grid stretching can
significantly increase reflection coefficient CR. Based on the present results, it is recommended to have cell sizes of at
most λ/10 when combining grid stretching and forcing zones.

xd = 0.75λ xd = 3λ

Figure 12: As Fig. 11, except that b(x) is subdivided into n = 1, 4, 16 and 1024 zones; the average difference between the results
is < 0.23% (n = 16), < 4.2% (n = 4), and < 20% (n = 1); the largest deviation from the results for n = 1024 is < 3.4% (n = 16),
< 27% (n = 4), and < 63% (n = 1); for a subdivision into n = 1 and n = 4 zones, the results differ significantly compared to
subdivisions into 16 or more zones, and reflection coefficients CR for optimum tuning increase substantially

If the forcing zone is subdivided into a sufficient number of zones n, then the difference between the theory solutions for
different n can be estimated by a Richardson-type extrapolation. Detailed information on Richardson extrapolation can
be found e.g. in Ferziger and Perić (2002), Richardson (1911), or Richardson and Gaunt (1927). Say

A = Ah + εh , (85)

where A is the analytical solution for n = ∞, Ah is the analytical solution for n = xd/h, and εh is the error. Let all
zones have the same thickness xd,j = h, with a total forcing zone thickness of xd =

∑n

j=1 xd,j . Thus when using zones
of twice the thickness, i.e. xd,j = 2h, one obtains

A = A2h + ε2h , (86)

and similar for further refinement or coarsening.

Taylor-series analysis of truncation errors suggests that the error εh is proportional to some power p of the zone thickness
h, i.e. εh ∝ hp. It follows that the error with a twice coarser spacing is

ε2h = 2pεh , (87)

where p is the order of convergence. Setting Eqs. (85) and (86) as equal and inserting Eq. (87) leads to

εh = Ah −A2h

2p − 1 . (88)
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Insert Eq. (87) into Eq. (88) written for ε2h finally gives

p =
log
(

A2h−A4h
Ah−A2h

)
log (2) . (89)

Figures 11 and 12 show that the deviation of CR can differ depending on γ. Thus to estimate εh and p in Eqs. (88) and
(89), set

A2h −A4h ≈ max{CR,2h(γ) − CR,4h(γ)} , (90)

Ah −A2h ≈ max{CR,h(γ) − CR,2h(γ)} , (91)

where CR,h(γ) is the reflection coefficient for zone thickness xd,j = h and forcing strength γ, and the max{X(γ)}-function
delivers the maximum value of X of all γ-values in the considered range (here: 10 s−1 ≤ γ ≤ 106 s−1).

Figure 13 shows, exemplarily for b(x) according to Eq. (9), that the analytical solution converges with 2nd-order to
the analytical solution for n = ∞. For the blending functions investigated in Sect. 5.3, all curves showed 2nd-order
convergence (i.e. p → 2 if n → ∞), except constant blending (b(x) = 1), for which the solution naturally must be exact
independent of the number of zones. It is out of the scope of this work to rigorously prove that for all possible b(x) the
order of convergence will be at least p = 2, so this is left for future research; however, the present results suggest that
this is the case. Figure 13 also shows that the error estimate εh for different n decays accordingly. Thus for practical
grids in flow simulations, as well as for the theory results plotted in this work, the forcing zone behavior can be assumed
to be independent of the number n of zones or grid cells.

Figure 13: Order of convergence p (left) and error estimate εh (right) as a function of the number of zones n, for the forcing zones
in Figs. 11 and 12

Given the simulation setups in Sects. 5 to 8 it is expected that, when the grid resolution increases, the wave damping
behavior in the flow simulation will converge towards the solution for the specified continuous blending function b(x).
Since Sects. 5 to 8 show that the theory from Sect. 4 predicts flow simulation results with high accuracy, it is expected
that the results of the theory from Sect. 4, which is based on discontinuous piece-wise constant blending b(x), will converge
towards the analytical solution for any given continuous blending function b(x), if the forcing zone is subdivided into a
sufficient number of zones n.

In the following, the theory will be evaluated for a subdivision into n = 200 zones, so that for practical purposes the
theory predictions can be considered discretization-independent.

4.5 2D-/3D-theory for predicting forcing zone behavior in flows with oblique wave incidence

In 2D- and 3D-flows, the reflection coefficient may differ locally, for example due to different wave incidence angles as
discussed in Sect. 5.4. To accurately predict both the global reflection coefficient CR and the flow inside the domain as for
the 1D-case, the theory would need to take into account the wave evolution in the whole domain, including the influence
of reflecting and possibly moving bodies placed within the domain. This makes an accurate theoretical description for
every possible 2D-case difficult.

Therefore this section follows a more practical approach: The 1D-theory is modified to describe 2D- and 3D-waves that
enter the forcing zone at an angle θ as shown in Fig. 14. Thus the influence of θ on CR is obtained, and it is possible
to judge whether 1D-theory predictions can be used with confidence for the 2D- and 3D-case as Sect. 5.4 suggests, and
roughly to what extent the 1D-theory predictions will be conservative or not.
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To extend the 1D-theory to 2D and 3D, the 1D-theory is modified as follows. The incoming waves are approximated
as plane waves, assuming that the waves are generated sufficiently far from the forcing zone and that a comparatively
thin segment of the forcing zone is considered. The waves enter the forcing zone at an incidence angle θ between wave
propagation direction and the layer-normal vector as shown in Fig. 14; by looking at the plane spanned by these two
vectors, every 3D-problem is reduced to a 2D problem. Hence in the following, the subscript ‘2D’ denotes the modified
theory which is applicable to 2D- and 3D-flows. As in the 1D-case in Sects. 4.1 to 4.3, the forcing zone is composed of
several zones with constant blending b(x), and the shortest distance between two neighboring zone interfaces j and j+ 1
is xdj,1D . Waves can be partially reflected at each interface between two zones, and interference occurs between those
reflected wave components which travel along the same path.

Two mechanisms modify the reflection behavior in contrast to the 1D-case. First, the wave travels a larger distance
through the forcing zone, which acts like an increase of the layer thickness xd proportional to the increase in propagation
distance within the layer; thus each zone acts on the wave as if it had thickness

xdj,2D =
xdj,1D

cos(θ) , (92)

with thickness xdj,1D of zone j and incidence angle |θ| ≤ 90 deg.

Second, the amount of destructive interference depends on the phase shift between the reflected waves. In 1D-theory the
distance shift between the crests of waves reflected at two adjacent zone interfaces j and j + 1 is always 2xdj,1D ; for the
2D-case, the distance shift is ≤ 2xdj,2D , since a wave reflected at a certain location will interfere with wave reflections
which occur at neighboring positions as illustrated in Fig. 14.

Figure 14: Wave crest ( EE′) propagates with incidence angle θ towards a forcing zone (shaded gray, only the first zone is
depicted); given are the paths for reflection at the layer entrance for the crest segment close to E (path EAB) and for reflection at
the interface to the second zone for the crest segment close to E′ (path E′C′D′); both reflected paths lie on top of each other and
create interference; distances AC′ = xdj,2D and AA′ = EE′′ = 2xdj,2D sin θ give the distance shift between reflected waves at two
adjacent layer interfaces as E′E′′ = 2xdj,2D sin2 θ

Trigonometric considerations (see Fig. 14) show that the distance shift is

∆x = 2xdj,2D sin2 θ . (93)

For reflections at the interface between zones j and j + 1, this leads to a phase shift for the reflected wave component in
zone j + 1 by factor

Θ = eik0(−∆x) , (94)

where k0 is the wave number outside the forcing zone.

Therefore, the 2D-problem can be reduced to a 1D-problem to save computational effort: The reflection coefficients for
the 2D-case in Fig. 14 are equivalent to those obtained using 1D-theory, if the thickness of the zones is set to xdj,2D

instead of xdj,1D , and additionally the phase shift between waves reflected at adjacent zones is adjusted according to Eq.
(94).

Consider two adjacent zones j and j + 1. For example for (hydro-)acoustic waves, the particle displacements for the
equivalent 1D-case are
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χj = χ0

(
j−1∏
n=0

CTn

)[
ei
(∑j−1
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, (95)

χj+1 = χ0

(
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n=0

CTn

)[
ei
(∑j

n=1
knxdn,2D +kj+1

(
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. (96)

Requiring as in Sect. 4.3 that at the interface between zones j and j + 1 should hold [χj = χj+1]
x=
∑j

n=1
xdn

and

[χx,j = χx,j+1]
x=
∑j

n=1
xdn

, transmission and reflection coefficients for interface j can be derived as

CTj =
1 − CRj

1 − Θ · CRj+1 ei
(

kj+12xdj+1,2D

) , (97)

CRj = kj+1βj+1 − kj

kj+1βj+1 + kj
, (98)

with

βj+1 =
1 + Θ · CRj+1 ei

(
kj+12xdj+1,2D

)
1 − Θ · CRj+1 ei

(
kj+12xdj+1,2D

) . (99)

If the forcing zone starts at zone 1, the ‘global’ reflection coefficient CR for the 2D-case is

CR = |CR1 | =
√

Re{CR1 }2 + Im{CR1 }2 , (100)

where Re{X} and Im{X} denote the real and the imaginary part of the complex number X.

For free-surface waves, the same results as in Eqs. (97) to (100) are obtained by following the above derivation procedure,
when starting from adjacent velocity stream functions

ψj = ψ0
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, (101)

ψj+1 = ψ0
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n=0
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and requiring [ψj = ψj+1]
x=
∑j

n=1
xdn

and [ψx,j = ψx,j+1]
x=
∑j

n=1
xdn

.
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5 Forcing zones for (hydro-)acoustic waves

Key findings

• The theory from Sect. 4.3 satisfactorily predicts the reflection coefficient CR and the flow within the forcing zone
for linear and highly nonlinear, regular and irregular (hydro-)acoustic waves in 1D-, 2D-, and 3D-flows

• For irregular or highly nonlinear waves, it is recommended to use slightly thicker zones than theoretically necessary
to ensure satisfactory reduction of undesired wave reflections

• Depending on the case, tuning towards more efficient narrow-banded or more reliable wide-banded wave absorption
characteristics can be more appropriate

• Theory predictions for reflection coefficients apply also when using forcing zones to generate waves

The theory predictions from Sect. 4.3 are compared in Sect. 5.2 to results from finite-volume-based flow simulations with
regular and irregular acoustic wave propagation in gases and liquids, based on the setup described in Sect. 5.1, followed
by a discussion of the implications of the theory regarding the choice of blending functions and the recommended setup
in Sect. 5.3.

In Sect. 5.4, it is found that for many practical 2D- and 3D-wave problems, the 1D-theory from Sect. 4.3 suffices to
tune the forcing zone parameters. If greater accuracy is required, Sect. 5.5 demonstrates via 2D-flow simulation results
that the 2D-/3D-theory from Sect. 4.5 satisfactorily predicts reflection coefficients for waves entering the forcing zone
at oblique incidence angles θ. Practical recommendations are given for setting up forcing zones in 2D- and 3D-flow
simulations.

Sections 5.6 and 5.7 demonstrate that the theory is also suitable to tune forcing zones for highly nonlinear waves as well
as for simultaneous generation and damping of waves within forcing zones.

When the forcing zone was tuned using the theory, in all simulations from Sect. 5 held CR,sim − CR,theory < 1.7%, with
reflection coefficients from simulation results CR,sim and the corresponding theory predictions CR,theory. Thus the theory
predictions were considered to be of satisfactory accuracy for engineering practice.

5.1 Simulation setup

In Sect. 5.2, flow simulations of 1D-wave-propagation are performed on a computational domain with dimensions
0 ≤ x ≤ Lx as illustrated in Fig. 15. The coordinate system has its origin at x = 0 m. At boundary x = 0 m, a sinusoidal
pressure fluctuation is prescribed to produce a continuous regular wave of period T = 2.27 · 10−3 s, which corresponds to
modern standard concert pitch A 440 Hz. The wave propagates in positive x-direction, is partially reflected, absorbed and
transmitted at each cell within the forcing zone, and the remaining wave is fully reflected at the wall boundary x = Lx.
The simulations are performed quasi-one-dimensional, i.e. they consist of a uniform Cartesian three-dimensional grid,
with 1 cell in y- and z-direction and symmetry boundary condition for the y- and z-normal boundaries; thus all gradients
in y- and z-direction are zero.

In Sects. 5.4 to 5.6, simulations of 2D- and 3D-wave-propagation are performed on the solution domains shown in Figs.
29, 34, 37, and 40. The wave generation is discussed in the corresponding sections. The 2D-simulations are performed
quasi-two-dimensional, i.e. they consist of a uniform Cartesian three-dimensional grid, with 1 cell in y-direction and
symmetry boundary condition for the y-normal boundaries.

All simulations are performed using the commercial flow solver STAR-CCM+ (version 8.02.008-R8) by Siemens (formerly
CD-adapco) based on the governing equations and the forcing zone formulation given in Sect. 2.5. Unless mentioned
otherwise, the reference velocity is set to ui,ref = 0, so the forcing zone damps the waves. The solver is based on the finite
volume method (FVM) and the implicit unsteady segregated solver is used. All approximations are of second order in
time and space, and under-relaxation is 0.8 for velocities, 0.2 for pressure and 0.9 for energy. The initial conditions are
pressure p = 0, velocity ui = 0 and density ρ = ρref , the reference density of the fluid. Unless stated otherwise, the wave
is discretized by ≥ 30 cells per wavelength and the time step is ≥ T/100, with 8 outer iterations per time step. Detailed
information on finite-volume-based flow simulations can be found e.g. in Ferziger and Perić (2002).

Unless mentioned otherwise in the corresponding sections, simulations are performed for liquid water using the Interna-
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tional Association for the Properties of Water and Steam (IAPWS) model as in IAPWS (2007) and solving the energy
Eq. (28) for temperature ϑ, with reference temperature ϑref = 300 K, or simulations are performed for an ideal gas with
speed of sound c = 291.5 m

s , which corresponds to air at temperature ≈ −62◦C or to an appropriate mixture of oxygen
and carbon dioxide at room temperature. The gas is considered isothermal, so Eq. (28) is not solved. For simplicity,
these fluids will be denoted ‘water’ and ‘ideal gas’ in the following. The simulations are performed with different forcing
zone parameters, such as forcing strength γ, layer thickness xd, or blending function b(x). For better visualization,
several of the following figures (such as e.g. Fig. 16) show the same results in two or three plots: without and with a
logarithmic vertical axis, or with close-up views of parts of the plot.

5.2 1D-results

The theory presented in Sect. 4.3 is compared to flow simulation results for 1D regular and irregular pressure waves in
an ideal gas and in liquid water. First, results for regular waves are presented. The waves have period T = 2.27 · 10−3 s
and the amplitude of the pressure fluctuations at the wave-maker is 10 Pa (ideal gas) or 1000 Pa (water). The setup is
described in Sect. 5.1. The computational domain with forcing zone based on Eq. (31) is sketched in Fig. 15.

Figure 15: Computational domain with wave-maker at x = 0 m and forcing zone (shaded gray) attached to domain boundary at
x = Lx = 9λ

On a single core 2.6 GHz processor, the time to perform a simulation was in the order of 1 min. The reflection coefficient
CR is computed via Eq. (36). The theory is evaluated for same wavelength, period and forcing zone parameters in Eq.
(31) as in the simulations.

Figures 16 and 17 show reflection coefficients and velocities for sound waves in water. The zone thickness is xd = 1λ and
exponential blending according to Eq. (9) is used. Theory and simulation results agree well. The peaks in the partial
standing wave in Fig. 17 have different locations depending on forcing strength γ. This shows that, with increasing
γ, the effective reflection location shifts from the boundary, to which the zone is attached (here x/λ = 9), towards the
entrance to the forcing zone (here x/λ = 8); this underlines the importance of including reflections which occur within
the zone in the analysis.

In Fig. 16, results are given for the grid and time step from Sect. 5.1, and also for twice and four times refined mesh
and time-step size. The difference between the results is small, thus the coarsest discretization is used for the rest of the
simulations in this section.

Figure 16: Reflection coefficient CR as a function of forcing strength γ from simulation and theory; for the sound wave from
Fig. 17 with period T = 0.00227 s in water; for forcing of x-momentum via Eq. (31) with exponential blending via Eq. (9) and
zone thickness xd = 1λ; for coarse (time step ∆t = T/100, cell size ∆x = λ/30), medium (∆t = T/200, ∆x = λ/60), and fine
(∆t = T/400, ∆x = λ/120) discretization; for all simulation results CR,sim and corresponding theory predictions CR,theory holds
CR,sim − CR,theory < 1.9% and on average |CR,sim − CR,theory| < 0.7%; for the forcing strength γ ≥ γopt,theory closest to the
theoretical optimum value γopt,theory holds CR,sim − CR,theory < 0.6%

Subsequently, the simulations are repeated with the same setup, except once with linear blending (Fig. 18) and once
with constant blending (Fig. 19). Again the results show good agreement between theory and simulation. Compared to
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too weak forcing (γ = 2560 s−1)

close-to-optimum forcing (γ = 10240 s−1)

too strong forcing (γ = 81920 s−1)

Figure 17: Theory predictions (left) and simulation results (right) for velocity in water as a function of x-coordinate, given at
equally spaced time instances during the last simulated period; for a sound wave with period T = 0.00227 s in water; for forcing
of x-momentum via Eq. (31) with exponential blending via Eq. (9), forcing zone (shaded gray) thickness xd = 1λ, and different
forcing strengths γ

Figs. 16 and 17, the optimum values γopt of the forcing strength are different. For the investigated blending functions it
holds roughly that the smaller the area below the blending function b(x) is, the larger is the value for γopt.

Simulation results for acoustic waves in an ideal gas are shown in Figs. 20 to 21 for forcing zones with thickness xd = 1.18λ
and xd = 2.35λ. Theory predictions and simulation results are in good agreement. Figure 20 (at γ = 10240 s−1)
demonstrates that, for certain choices of xd and for a very narrow range of wave frequencies, it is possible to achieve
reflection coefficients more than one order of magnitude smaller than are possible for slightly smaller or larger xd, which
is investigated in more detail in Sect. 5.3. This is expected to be an effect of especially favorable destructive interference
between the reflected waves. Figure 21 shows that there may be more than one local optimum for γ.

Figure 18: Reflection coefficient CR as a function of forcing strength γ from simulation and theory; for a sound wave with period
T = 0.00227 s in water; for forcing of x-momentum via Eq. (31) with linear blending via Eq. (4) and zone thickness xd = 1λ;
for all simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim − CR,theory < 1.9% and on average
|CR,sim − CR,theory| < 0.4%; for the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds
CR,sim − CR,theory < −0.8%
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Figure 19: As Fig. 18, except for constant blending via Eq. (3); for all simulation results CR,sim and corresponding theory
predictions CR,theory holds CR,sim − CR,theory < 2.3% and on average |CR,sim − CR,theory| < 0.4%; for the forcing strength
γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < −1.1%

Figure 20: Reflection coefficient CR as a function of forcing strength γ from simulation and theory; for a sound wave with period
T = 0.00227 s in an ideal gas; for forcing of x-momentum via Eq. (31) with exponential blending via Eq. (9) and zone thickness
xd = 1.18λ; for all simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim −CR,theory < 1.6% and
on average |CR,sim −CR,theory| < 0.5%; for the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory
holds CR,sim − CR,theory < −0.02%

Figure 21: As Fig. 20, except for zone thickness xd = 2.35λ; for all simulation results CR,sim and corresponding theory predictions
CR,theory holds CR,sim − CR,theory < 2.8% and on average |CR,sim − CR,theory| < 0.6%; for the forcing strength γ ≥ γopt,theory
closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < −0.02%

The next 1D example is the prediction of reflection coefficients for irregular wave trains. Apart from the following
modifications, the setup is the same as in the previous simulations. The fluid is air as ideal gas with speed of sound
c = 347.28 m

s and the temperature variation is accounted for via Eq. (28). The domain length is Lx = 13.36λpeak, where
λpeak ≈ 0.78 m is the wavelength corresponding to peak wave period Tpeak. The forcing zone based on Eq. (31) is attached
to boundary x = Lx, with zone thickness xd = 2λpeak and exponential blending as in Eq. (9). To generate irregular
waves, pressure fluctuations at the inlet are prescribed using the JONSWAP-spectrum by Hasselmann et al. (1973),
except that the ‘significant wave height’ Hs was replaced by twice the ‘significant pressure amplitude’ 2pa,s = 10 Pa; the
parameters are peak wave period Tpeak = 0.00227 s, and a peak-shape parameter of 3.3. The spectrum is discretized into
50 wave components.

Figure 22 shows the waves generated by prescribing the pressure at the inlet as p(t)b′(t), where p(t) corresponds to a
linear superposition of the pressures of the irregular wave components, and b′(t) is a blending-in and -out during the
first 6.6Tpeak of simulation time:

b′(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos2 (π

2 (t− 2.2Tpeak)/(2.2Tpeak)
)

if t < 2.2Tpeak

1.0 if 2.2Tpeak ≤ t ≤ 4.4Tpeak

cos2 (π
2 (t− 4.4Tpeak)/(2.2Tpeak)

)
if 4.4Tpeak < t < 6.6Tpeak

0.0 if t ≥ 6.6Tpeak

. (103)
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Figure 22: Pressure as a function of x-location at time t = 21.27Tpeak with no damping (γ = 0)

The total simulated time is tend = 21.27Tpeak. The waves are discretized by ≈ 62 cells per peak wavelength λpeak and
the time step is ∆t = Tpeak/200, with 10 iterations per time step. At the end of each simulation, the pressure over
space is analyzed using the fast Fourier transform (FFT) algorithm to obtain the pressure amplitude spectrum of the
reflected wave. For γ = 0, the wave is perfectly reflected, so the resulting pressure amplitude spectrum corresponds
to the initially generated spectrum; thus for γ ̸= 0, the amount of reflection can be judged by comparing the pressure
amplitude spectrum for the reflected wave to the case for no damping (γ = 0). Thus the global reflection coefficient CR

was obtained by Eq. (37).

Figure 23 shows that the resulting pressure amplitude spectrums agree well with the predictions according to the theory
from Sect. 4; the theory predictions are based on the assumption that the wave can be treated as a linear superposition
of wave components with different frequencies, and that the reflection coefficient for each component equals the reflection
coefficient as predicted by the theory from Sect. 4.

too weak forcing (γ = 640 s−1)

close-to-optimum forcing (γ = 5120 s−1)

too strong forcing (γ = 163840 s−1)

Figure 23: Theory predictions (left) and simulation results (right) for generated and reflected pressure-amplitude spectrum as a
function of wave frequency; for an irregular wave train in air with peak period Tpeak = 0.00227 s; with forcing of x-momentum via
Eq. (31), exponential blending via Eq. (9) and zone thickness xd = 2λpeak

Figure 24 shows that the resulting overall reflection coefficients agree well for simulation and theory; the differences in
CR between simulation and theory are < 1%.
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Figure 24: Theory predictions and simulation results for overall reflection coefficient CR according to Eq. (37) as a function of
forcing strength γ for the irregular wave train from Fig. 23; for all simulation results CR,sim and corresponding theory predictions
CR,theory holds CR,sim − CR,theory < 0.9% and on average |CR,sim − CR,theory| < 0.05%; for the forcing strength γ ≥ γopt,theory
closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 0.2%

Figure 25 shows that 1D-theory for a regular wave with period T = Tpeak gives a satisfactory prediction of the optimum
tuning for the forcing zone, except that close to the optimum settings the reflection coefficients are slightly underpredicted.
Thus in practice, 1D-theory can be used to tune the forcing zone, when the zone thickness xd is selected slightly larger
than theoretically necessary to ensure reliable wave damping.

Figure 25: As Fig. 24, except that additionally the theory prediction for a regular monochromatic wave with wave period
T = Tpeak is shown; Tpeak is the peak period of the irregular wave; the results show that tuning the forcing zone to the peak period
in the wave spectrum can often be sufficiently accurate for practical purposes, at least for comparatively narrow-banded spectrums
as are typically found for ocean waves, such as the JONSWAP spectrum used here

5.3 Theory implications for the choice of blending function b(x)

Since Sect. 5.2 demonstrated that the theory from Sect. 4 is reliable in its predictions, this section shows theory
predictions without backup from simulation results. This is mainly because, to obtain the following results, a very large
number of simulations would be required, the combined computational effort being out of the scope of this study.

In Fig. 26, theory predictions are shown for a wave with period T = 2.27 · 10−3 s and forcing zone thicknesses varying
between xd ∈ [0.5λ, 6λ]. These results can be applied to waves of any other period: If γ and xd are scaled as described
in Sect. 2.2, the curves in Fig. 26 need only to be shifted sideways accordingly. The results can guide regarding the
choice between the different blending functions b(x) from Sect. 2.1.

As Fig. 26 shows, the quadratic, cos2 and exponential blending functions b(x) typically produce lower reflection coef-
ficients than linear or even constant blending b(x). Although the curves for quadratic, cosine-squared and exponential
blending are substantially different as seen in Fig. 3, their results seem on the whole nearly equally satisfactory, perhaps
with a slight preference for the exponential blending function.

For some values of xd in Fig. 26, quadratic or cosine-squared blending produces lower optimum reflection coefficients
than exponential blending, e.g. for xd = 0.5λ. This can be explained by Fig. 27, which shows that there exist certain
values for forcing zone thickness xd, for which especially favorable absorption may occur. This means that the resulting
reflection coefficient CR for optimum forcing strength γ can be two orders of magnitude lower than it would be if xd was
selected slightly larger or smaller, as illustrated in Fig. 28. This phenomenon may be used to produce satisfactory (say
CR ≲ 1%) wave damping with very thin (say xd ≲ 0.5λ) forcing zones. The results in Fig. 20 confirm the existence of this
phenomenon. It is expected that a combination of grid stretching and forcing zones may produce similar effects.

However, according to the present investigations, these settings, seen as ‘negative peaks’ in Figs. 27, occur only for
a narrow range of wavelengths. This would make the absorption behavior rather sensitive to slight deviations in the
wavelength (cf. Fig. 28). For example in finite-volume-based flow solvers, discretization and iteration errors can lead to

32



a change in the wavelength of several percent for coarse discretizations, see e.g. Perić and Abdel-Maksoud (2015b, 2016)
or Sect. 7.1. Furthermore, when a superposition of waves of different frequencies is considered, then it is important to
have satisfactory minimization of all undesired reflections, not only of those belonging to a specific wave component.
Trying to optimize the forcing zone towards one of these negative peaks of CR may therefore lead to false security, and
should only be exercised with caution.

In practice, it is desired (especially when the wave may be modified within the domain) to know for a given forcing zone
setup the range of forcing strengths γ for which the reflection coefficients will be below a certain threshold. As shown
for an example threshold of CR < 10% in Fig. 27, this range is larger for the quadratic, cos2 and exponential blending
functions.

constant blending linear blending

quadratic blending cosine-squared blending

exponential blending

Figure 26: Reflection coefficient CR as a function of forcing strength γ; for a wave with period T = 0.00227 s; for different forcing
zone thickness xd and different blending b(x) via Eqs. (3), (4), (5), (7), and (9)
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constant blending

linear blending

quadratic blending

cosine-squared blending

exponential blending

Figure 27: Optimum reflection coefficient CR,opt (left) and range of γ values for which CR < 0.1 (right) as a function of zone
thickness xd per wavelength λ; for a wave with period T = 0.00227 s; for different blending b(x) via Eqs. (3), (4), (5), (7), and (9)
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xd = 0.35λ xd = 0.422λ xd = 0.5λ

Figure 28: An example of especially favorable absorption for a forcing zone with linear blending b(x) via Eq. (4), different zone
thickness xd and a wave with period T = 0.00227 s; top left: reflection coefficient CR as a function of forcing strength γ; top right:
optimum reflection coefficient CR,opt (i.e. lowest reflection coefficient that can be obtained for given b(x) and xd) as a function
of zone thickness xd per wavelength λ; bottom: surface elevation for several time instances per wave period near forcing zone
(shaded gray) at optimum reflection coefficient for given zone thickness xd; although reflection coefficient CR ≈ 0.1% can already
be obtained for xd = 0.422λ (cf. first ‘negative peak’ in top right plot), then increasing or decreasing the zone thickness xd or the
wavelength λ by 8% increases the reflection coefficient CR by two orders of magnitude

5.4 Application of 1D-theory to 2D- and 3D-flows

This section demonstrates that the wave damping behavior in two or more dimensions can be described using 1D-theory
with good approximation in many practical cases. For example, waves are often reflected at or generated by bodies
within the domain, and are radiated as more or less circular waves towards the domain boundaries. As a test case
for such a behavior, 2D- and 3D-flow simulations are conducted using a point-like wave source. In the 2D-simulations,
the source is placed in the center of a quadratic domain filled with water as shown in Fig. 29; the domain dimensions
are 0 ≤ x, z ≤ 16λ. In the 3D-simulations, the source is placed in the center of a cubic domain with dimensions
0 ≤ x, y, z ≤ 16λ with all domain sides set as symmetry boundary conditions.

Waves are generated for the first 8T of simulation time by introducing a mass source term in Eq. (26) for 3.95 m ≤
x, y, z ≤ 4.05 m as

qc =

⎧⎪⎪⎨⎪⎪⎩
10 · sin(−ωt) · cos2( π

2 + π
2

t
4T

) kg
s if t ≤ 4T

10 · sin(−ωt) · cos2( π
2

t−4T
4T

) kg
s if 4T < t ≤ 8T

0 if t > 8T

, (104)

with time t and angular wave frequency ω. This produces a wave packet with period T = 0.00033 s and wavelength
λ ≈ 0.5 m.

To each x- and z-normal boundary, a forcing zone according to Eq. (31) is attached to damp the waves via

qx = −γ
(

1 − x̃

xd

)2
u , qz = −γ

(
1 − z̃

xd

)2
w . (105)

In the 3D-simulations, there is further a forcing zone applied to each y-normal boundary with

qy = −γ
(

1 − ỹ

xd

)2
v , (106)

with forcing strength γ, Cartesian velocity components u, v, and w, zone thickness xd = 1λ and quadratic blending,
where x̃, ỹ, and z̃ give the shortest distance to the nearest x-, y-, and z-normal boundary. Simulations are performed for
different values of γ. The reflection coefficient is calculated using Eq. (37).

The time step is ∆t = 1.65 · 10−6 s = T/200 and 6 iterations are performed per time step. The simulated time interval
is 0 ≤ t ≤ 0.00627 s = 19T . The wave is reflected either once, when the incidence angle measured from the boundary
normal is ≲ 27 deg, or twice for larger angles. In the 2D-simulations, a cell size of ∆x = 0.00625 m ≈ λ/80 in both x- and
z-direction is used, which results in a total of ≈ 1.6 · 106 cells. In the 3D-simulations, the grid was chosen substantially
coarser to reduce the computational effort. Polyhedral cells with diameter of ≈ 0.02 m ≈ λ/25 were used, resulting in
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≈ 71.2 · 106 cells; although the resulting 3D-grid is rather coarse, it was considered sufficient for the present purposes,
i.e. to demonstrate that 1D-theory has its value also for setting up forcing zone parameters in 2D- and 3D-simulations.
The time to perform the parallel simulations was in the order of several hours (2D) or days (3D) with 12 2.6 GHz
processors.

Figure 29: Pressure in 2D-domain at time t ≈ 9T (left) and at t = 19T (middle: γ = 5 · 103 s−1 (too weak damping); right:
γ = 5 · 104 s−1 (≈ optimum damping))

Figures 30 and 31 show that the optimum choice for γ and the resulting reflection coefficients agree well with predictions
by the 1D-theory from Sect. 4. This indicates that the damping behavior does not change substantially for moderate
deviations (say ≲ 30 deg) of the wave incidence angle relative to the boundary normal. Further, for larger incidence
angles the waves are reflected twice before propagating back into the domain; this is expected to improve the damping
since the waves encounter two forcing zones, and at least one of the two reflections must occur with incidence angle
≤ 45 deg; this explains why most simulation results for CR are slightly lower than 1D-theory predictions. Thus when
changing the position of the wave source, or when extending the 2D- or 3D-domains in x-, y-, or z-direction to achieve
rectangular or cuboid domain shapes, comparable results can be expected. Tuning the forcing zone parameters according
to 1D-theory predictions can therefore be considered sufficiently accurate for many practical 2D- and 3D-flow simulation
problems.

However, if the emitted sound intensity would vary substantially with propagation direction, then parameter settings
and accuracy of the 1D-theory should be assessed using 2D- and 3D-theory as given in Sects. 4.5 and 5.5.

Figure 30: Reflection coefficient CR as a function of forcing strength γ for 2D-simulation and 1D-theory from Sect. 4; for a 2D
sound wave with period T = 0.00033 s in water; for forcing of x- and z-momentum with quadratic blending via Eq. (105) and zone
thickness xd = 1λ; for all simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim−CR,theory < 0.4%;
for the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 0.4%
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Figure 31: As Fig. 30, except for 3D-simulation and 1D-theory from Sect. 4; for all simulation results CR,sim and corresponding
theory predictions CR,theory holds CR,sim − CR,theory < 0.8%; for the forcing strength γ ≥ γopt,theory closest to the theoretical
optimum value γopt,theory holds CR,sim − CR,theory < 0.8%

5.5 2D-results

To verify the 2D-theory from Sect. 4.5, 2D-flow simulations are performed based on the setup in Sect. 5.4, except that
the domain dimensions are −43λ ≈ −21.5 m ≤ x ≤ 0 m and 0 m ≤ z ≤ 12.9 m ≈ 26λ, with coordinate system as shown
in Fig. 34. The mass source term from Eq. (104) is applied for −0.05 m ≤ x ≤ 0 m and 12.85 m ≤ z ≤ 12.9 m to generate
circular waves, and there is a symmetry boundary condition at all walls to reduce the number of cells. This produces a
wave packet with period T = 0.00033 s and wavelength λ ≈ 0.5 m. The waves are reflected at most one time at boundary
z = 0 m, to which a forcing zone is attached according to Eq. (31)

qx = −γb(z)u , qz = −γb(z)w , (107)

with velocities u and w, forcing strength γ and quadratic blending b(z) = ((xd − z)/xd)2. Thus waves are reflected for
continuous incidence angles in the range 0 ≤ θ ≲ 50 deg. Time step and cell sizes are as in Sect. 5.4. The simulated
time interval is 0 ≤ t ≤ 0.016995 s = 51.5T . For volume Vθ of a thin domain slice along the paths of waves reflected at
θ = 0 deg, 11.25 deg, 22.5 deg, 33.75 deg and 45 deg as indicated in Fig. 34, the energy of the reflected waves is integrated.
Relating these energies for the damped (γ ̸= 0) and undamped (γ = 0) case, and evaluating Eq. (37) at t = 51.5T gives
the reflection coefficient CR for each angle θ.

First, flow simulations are performed with zone thickness xd = 1λ for different forcing strengths γ. Figures 32 to 33 show
that the influence of incidence angle θ on reflection coefficient CR is satisfactorily predicted. Up to optimum forcing
strength (0 ≤ γ ≲ γopt) the predictions are highly accurate. For too strong damping (γopt ≲ γ) the predictions are
slightly conservative. With increasing incidence angle θ, the reflection coefficient CR decreases or stays roughly the same
for most values of γ in the range of 0 ≤ θ ≤ 45 deg; only for γ close to its 1D-optimum value a significant increase in CR

occurs, since the 2D-optimum value of γ decreases when increasing θ.

Figure 32: Reflection coefficient as a function of forcing strength γ for different incidence angles θ; for a 2D sound wave with
period T = 0.00033 s in water; for forcing of x- and z-momentum with quadratic blending via Eq. (107) and zone thickness
xd = 1λ; for incidence angles 0 deg (+), 11.25 deg (▽), 22.5 deg (×), 33.75 deg (△), 45 deg (⃝), and for 2D-theory (dashed lines);
for all simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim − CR,theory < 1.9% and on average
|CR,sim − CR,theory| < 1.5%; for the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds
CR,sim − CR,theory < 0.7%
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Figure 33: Reflection coefficient CR as a function of incidence angle θ; for a 2D sound wave with period T = 0.00033 s in water;
for forcing of x- and z-momentum with quadratic blending via Eq. (107) and zone thickness xd = 1λ; for γ ≲ γopt,1D (left) and for
γ ≳ γopt,1D (right), where γopt,1D ≈ 50000 1

s is the optimum forcing strength for incidence angle θ = 0; for forcing strengths γ = 0 1
s

(+), γ = 1000 1
s (▽), γ = 5000 1

s (×), γ = 10000 1
s (△), γ = 25000 1

s (⃝), γ = 50000 1
s (⋄), γ = 100000 1

s (❇), γ = 500000 1
s (□),

and for 2D-theory (dashed lines)

Further, Fig. 34 shows that for γ slightly below 1D optimum (here: γ = 25000 s−1), the reflection coefficient may first
decrease (0◦ ≤ θ ≲ 45◦), and then increase again (θ ≳ 45◦); this is also predicted by 2D-theory in Fig. 33.

Figure 34: Pressure in domain at time t = 51.5T for γ = 25000 s−1; straight lines within domain denote the paths of waves
reflected at incidence angles θ = 11.25 deg, 22.5 deg, 33.75 deg, 45 deg relative to boundary normal; the forcing zone (shaded gray,
thickness xd = 1λ) is attached to boundary z = 0; the reflection coefficient decreases from 0 deg until ≈ 45 deg, and increases for
larger incidence angles, as predicted by 2D-theory (see Fig. 33)

Second, the flow simulations are repeated with zone thickness xd = 2λ. Figures 35 to 36 show that, as before, the
2D-theory from Sect. 4.5 satisfactorily predicts the reflection coefficients for incidence angles in the range of practical
interest. Apart from improved damping due to the increased zone thickness, the trends of the curves are similar as
before; again, for γ slightly below 1D optimum (here: γ = 25000 s−1) the decrease (0◦ ≤ θ ≲ 40◦) and subsequent
increase (θ ≳ 40◦) of CR for increasing θ is captured by 2D-theory as Figs. 36 and 37 show.
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Figure 35: Reflection coefficient as a function of forcing strength γ for different incidence angles θ; for a 2D sound wave with
period T = 0.00033 s in water; for forcing of x- and z-momentum with quadratic blending via Eq. (107) and zone thickness
xd = 2λ; for incidence angles 0 deg (+), 11.25 deg (▽), 22.5 deg (×), 33.75 deg (△), 45 deg (⃝), and for 2D-theory (dashed lines);
for all simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim − CR,theory < 1.1% and on average
|CR,sim − CR,theory| < 0.7%; for the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds
CR,sim − CR,theory < 0.07%

Figure 36: Reflection coefficient CR as a function of incidence angle θ; for a 2D sound wave with period T = 0.00033 s in water;
for forcing of x- and z-momentum with quadratic blending via Eq. (107) and zone thickness xd = 2λ; for γ ≲ γopt,1D (left) and for
γ ≳ γopt,1D (right), where γopt,1D ≈ 50000 1

s is the optimum forcing strength for incidence angle θ = 0; for forcing strengths γ = 0 1
s

(+), γ = 1000 1
s (▽), γ = 5000 1

s (×), γ = 10000 1
s (△), γ = 25000 1

s (⃝), γ = 50000 1
s (⋄), γ = 100000 1

s (❇), γ = 500000 1
s (□),

and for 2D-theory (dashed lines)

Based on the results in this section, the following procedure is recommended for practice: When using forcing zones that
can be described in terms of the generic formulation given in Sect. 2.1, then 1D-theory from Sect. 4 can be used to
tune the forcing zone parameters (forcing strength γ, blending function b(x), zone thickness xd) to the specific problem;
in most 2D- and 3D-flow problems, the prediction for optimum forcing strength and corresponding reflection coefficient
will already be sufficiently accurate for practical purposes.

If higher accuracy is needed, or if the problem is such that strong wave incidence at larger angles θ may occur, then the
2D-theory from Sect. 4.5 should be used, and with the following procedure it is possible to obtain a theory prediction
for the upper bound for the overall reflection coefficient CR. The results show that, for rectangular domains with
forcing zones at all boundaries, waves that are reflected twice before traveling back into the solution domain encounter
a forcing zone at least once with an angle |θ| ≤ 45 deg; thus then reflection coefficient CR can be considered with good
approximation to be lower or equal to the 1D-theory prediction based on the findings from Sects. 4.5, 5.4 and 5.5; if
higher accuracy were required, the desired reflection coefficients could also be obtained from 2D-theory15.

15For a square domain with forcing zones at all sides as in Fig. 29, if a wave segment originating from a domain part close to the
center is reflected twice at a domain boundary before traveling back towards the solution domain center, then the first reflection occurs for
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Therefore it suffices to look at the range for θ in which reflection occurs only once, which in most cases can be determined
easily; for example for the problem in Sect. 5.4, where single reflection occurs for |θ| < 30 deg, the upper bound for
the overall reflection coefficient CR for a given forcing strength γ corresponds to the maximum CR(θ) for 2D-theory in
the range |θ| < 30 deg. Since a 2D-theory prediction for one angle requires roughly the same computational effort as
a 1D-theory prediction, a plot like Fig. 36 can be generated within a few seconds on a single core 2.6GHz processor.
Problems in 3D can be reduced to 2D by considering the plane spanned by wave propagation direction and forcing zone
normal vector.

Figure 37: Pressure in domain at time t = 51.5T for γ = 25000 s−1; straight lines within domain denote paths of waves reflected
at incidence angles θ = 11.25 deg, 22.5 deg, 33.75 deg, 45 deg, measured between wave propagation direction and boundary normal;
the forcing zone (shaded gray, thickness xd = 2λ) is attached to boundary z = 0; the reflection coefficient decreases from 0 deg
until ≈ 40 deg, and increases for larger incidence angles, as predicted by 2D-theory (see Fig. 36)

5.6 Damping of highly nonlinear (hydro-)acoustic waves in 1D- and 2D-flows

This section investigates the capability of forcing zones for damping of highly nonlinear 1D and 2D (hydro-)acoustic
waves. Nonlinear sound waves occur in a variety of applications, such as biomedical imaging (Spadoni and Daraio, 2010),
sound generation of musical instruments (Myers et al., 2012), or medical use of ultrasound (Lerch et al., 2009). Nonlinear
sound waves can change their shape the further they travel. For example, they tend to take a saw-toothed shape as seen
in Fig. 38 when they travel a sufficient distance, see e.g. Lerch et al. (2009) for a detailed discussion.

For the 1D-flow simulations, the setup from Sect. 5.1 is used with the following modifications. The domain has dimensions
0 ≤ x ≤ 23.87 m ≈ 30.2λ. At boundary x = Lx ≈ 30.2λ, pressure p(t) is prescribed to generate waves traveling in negative
x-direction. The opposite boundary x = 0 is a fully reflective wall, to which a forcing zone with exponential blending
according to Eq. (9) and forcing according to Eq. (31) with reference solution uref = 0 is attached to damp the waves.
The simulations are performed for air as ideal gas with temperature variations accounted for via Eq. (28) and speed
of sound c ≈ 347.28 m

s . The mesh size is ∆x = 0.0062504 m ≈ λ/125 and 10 iterations are performed per time-step
∆t = 1.136 s ≈ T/200.

At the inlet, pressure p(t) is prescribed to generate the saw-tooth wave packet shown in Fig. 38 via

p(t) =
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− 5.0
)
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) Pa if 6T < t ≤ 10T

0 if t > 10T

, (108)

with time t, modulo operator ‘ mod ’, and angular wave frequency ω = 2π/T , and wave period T = 0.00227 s.

incidence angle 0 deg ≤ θ1 ≤ 90 deg with reflection coefficient CRθ1
, and the second reflection occurs at incidence angle θ2 = 90 deg − θ1

with reflection coefficient CRθ2
. The overall reflection coefficient CR for this wave segment is then CR = CRθ1

· CRθ2
.
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The simulations start at t = 0 and end at t = 0.1136 s, when the whole wave packet has encountered the forcing zone
once. Flow simulations are performed for different values of forcing strength γ and zone thickness xd. The reflection
coefficient is calculated according to Eq. (37).

Figure 38: Pressure as a function of x-location from simulations without forcing (i.e. γ = 0), before (t ≈ 16T ) and after (t ≈ 50T )
reflection at boundary x = 0

Figure 39 shows that the theory satisfactorily predicts the optimum setting of γ and the corresponding reflection coeffi-
cients CR.

zone thickness xd = 0.5λ

zone thickness xd = 1λ

zone thickness xd = 2λ

zone thickness xd = 4λ

Figure 39: Reflection coefficient CR as a function of forcing strength γ from simulations and 1D-theory; for a highly nonlinear
wave train with period T = 0.00227 s in an ideal gas; for forcing of x-momentum via Eq. (31) with exponential blending via Eq. (9);
for all simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim − CR,theory < 8.3% and on average
|CR,sim − CR,theory| < 2.1%; for the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds
CR,sim − CR,theory < 1.7% (xd ≤ 1λ) and < 0.2% (xd ≥ 2λ)
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Compared to the results for nearly linear sound waves in Sects. 5.2, the reflection coefficients for close-to-optimum tuning
in Fig. 39 are slightly under-predicted though; thus for highly nonlinear waves, it is recommended to select the zone
thickness slightly thicker than theoretically necessary, so that the desired reflection coefficient is obtained.

In the following, the capability of forcing zones for damping of highly nonlinear pressure waves for 2D-wave-propagation
in water is investigated. For this, flow simulations are performed with the same setup as in Sect. 5.4, except that instead
of a sine wave a saw-tooth wave is generated. The saw-tooth wave has a cos2-type blending-in/-out and is generated by
introducing the following mass source term in Eq. (26) within the domain part 3.95 m ≤ x, y, z ≤ 4.05 m as

qc =

⎧⎪⎪⎨⎪⎪⎩
10 ·

(
t mod T

T
− 5.0

)
· cos2( π

2 + π
2

t
4T

) kg
s if t ≤ 4T

10 ·
(

t mod T
T

− 5.0
)

· cos2( π
2

t−4T
4T

) kg
s if 4T < t ≤ 8T

0 if t > 8T
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with time t, modulo operator ‘ mod ’, and angular wave frequency ω. This produces a highly nonlinear wave packet
with period T = 0.00033 s and wavelength λ ≈ 0.5 m.

Figures 40 and 41 demonstrate that the 1D-theory satisfactorily predicts the optimum values for the case-dependent
parameters of the forcing zones. Further, theory predictions and simulation results for the corresponding reflection
coefficients agree well, with simulation results being slightly lower than theory predictions. Therefore, the theory is
recommended for tuning forcing zones in flow simulations with highly nonlinear (hydro-)acoustic waves. Since the results
for liquid water and air as an ideal gas agree well, the findings are expected to apply also to other mediums for sound
wave propagation.

Figure 40: Pressure in 2D-domain for nonlinear sound wave in water at time t ≈ 8T (left) and at t = 19T (middle: no damping
(γ = 0 s−1); right: close-to-optimum damping (γ = 5 · 104 s−1)); for forcing of all fluid velocities towards ui,ref = 0 with quadratic
blending according to Eq. (105) and zone thickness xd = 1λ

Figure 41: Reflection coefficient CR as a function of forcing strength γ for 2D-simulations with nonlinear sound waves in water
and 1D-theory from Sect. 4.3; for forcing according to Eq. (105) with zone thickness xd = 1λ and forcing of all fluid velocities
towards zero; for all simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim − CR,theory < 0.06%;
for the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 0.06%
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5.7 Simultaneous generation and damping of (hydro-)acoustic waves

This section investigates to which extent the theory predicts reflection coefficients CR for forcing zones which simulta-
neously generate waves and reduce undesired wave reflections. For this, a standing pressure wave is simulated based on
the setup from Sect. 5.1, with the following modifications.

Figure 42 shows the simulation domain with dimensions 0 ≤ x ≤ Lx with Lx ≈ 3.5448 m ≈ 4.49λ. The fluid is air as
ideal gas with temperature variations accounted for via Eq. (28). At the inlet boundary x = 0, a monochromatic wave
is generated by prescribing velocity as

uref = ua sin(−ωt+ kx) , (110)

with reference velocity amplitude ua = 0.4331 m/s, angular wave frequency ω = 2π/T , wave period T = 0.00227 s, wave
number k = 2π/λ, wavelength λ ≈ 0.789 m, location x in wave propagation direction, and time t.

Figure 42: Solution domain with wave-generating forcing zone (shaded gray) opposite to a fully reflecting wall boundary

Attached to the inlet is a forcing zone for x-momentum according to Eq. (31) with source term

qx = γb(x)(uref − u) , (111)

with forcing strength γ, quadratic blending function b(x) according to Eq. (5), velocity u, reference velocity uref according
to Eq. (110), and forcing zone thickness xd = 2λ. Thus the solution is forced towards the desired, monochromatic wave
traveling in positive x-direction.

The wave travels through the domain, is perfectly reflected at the no-slip wall boundary x = Lx, and then travels
back towards the inlet, so that the superposition of generated and reflected wave forms a perfect standing wave. This
is the intended solution for the present simulations, corresponding to a reflection coefficient of CR = 1 within the
domain.

Without the forcing zone, the reflected wave would reach the inlet again after traveling a distance of 2Lx ≈ 8.98λ. The
following re-reflection at the inlet would then produce nearly perfect constructive interference due to the negligible phase
difference, resulting in a standing wave of roughly twice the amplitude as before (CR ≈ 2). To avoid this worst-case
solution, the forcing zone is tuned using the theory from Sect. 4 to minimize undesired re-reflections and obtain the
target solution with CR = 1.

The mesh size is ∆x ≈ 0.00438 m = λ/180 and the time-step size is ∆t ≈ 5.682 · 10−6 s ≈ T/400. Per time-step, 5
iterations are performed with under-relaxation of 0.8 for velocities, 0.2 for pressure, and 0.9 for energy. The simulated
time interval is 0 ≤ t ≤ 0.046 s ≈ 20.24T .

The potential and kinetic energies on interval 2.0 m ≤ x ≤ 3.544 m are recorded as a function of time according to Eq.
(38). Note that energy E ∝ C2

R ∝ u2
a, so the superposition of two standing waves with same amplitude ua results in four

times larger peaks in energies Epot and Ekin compared to a single standing wave with amplitude ua, as shown in Fig.
44.

The reflection coefficient is obtained from the maximum kinetic and potential energies during the time interval 0.043 s ≤
t ≤ 0.046 s, i.e. when re-reflections have fully developed, compared to the time interval 0.018 s ≤ t ≤ 0.022 s, i.e. when
the desired standing wave is fully developed but no re-reflections are present yet, via

CR =

√
max (Ekin + Epot|γ, 0.043 s≤t≤0.046 s)

max
(
Ekin + Epot|γ=0 s−1, 0.018 s≤t≤0.022 s

) , (112)

Figures 43 to 46 demonstrate that the theory from Sect. 4 is suitable also for forcing zones where the reference solution
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is unsteady. For too weak forcing, wave reflections accumulate so that a standing wave with a larger than desired
amplitude occurs (CR ≈ 2 without forcing (i.e. γ = 0)). For too strong forcing, most undesired reflections occur close to
the entrance of the forcing zone; since the effective location of reflection changes with forcing strength γ, undesired wave
reflections will interfere destructively or constructively with the reference wave depending on their phase difference. Thus
recorded reflection coefficients may be larger or smaller than the target value of CR = 1; the corresponding deviation
margins are satisfactorily predicted by theory as Fig. 46 shows. For close-to-optimum forcing, the desired standing wave
with amplitude 2ua is obtained, which corresponds to a reflection coefficient of CR = 1; the solution is periodic and
shows no noticeable accumulation of undesired reflections.

reference wave solution uref no forcing (γ = 0 s−1)

close-to-optimum forcing (γ = 10 240 s−1) too strong forcing (γ = 327 680 s−1)

Figure 43: Velocity u as a function of x-location for several equally spaced time-instances during the last simulated wave period;
for close-to-optimum tuning of the forcing zone (shaded gray), the desired periodic standing-wave solution is obtained

negligible forcing too weak forcing

close-to-optimum forcing too strong forcing

Figure 44: Potential and kinetic energy as a function of time in domain part 2.0 m ≤ x ≤ 3.544 m; since this interval (≈ 1.95λ) is
no perfect multiple of the wavelength, the peaks of Ekin are roughly 8% higher than peaks of Epot, which was verified to have no
significant influence on the results; a perfect standing wave occurs ca. during 0.015 s to 0.025 s; the additional superposition of the
wave re-reflected at the inlet occurs ca. from 0.036 s to 0.045 s
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Figure 45: Simulation results for the absolute deviation of the reflection coefficient CR from its target value CR = 1 as a function
of forcing strength γ; for a standing wave with period T = 0.00227 s, forcing of x-momentum via Eq. (111) with quadratic blending
via Eq. (5), zone thickness xd = 2λ, and reference solution uref according to Eq. (110); for all simulation results CR,sim and
corresponding theory predictions CR,theory holds |CR,sim − 1| − CR,theory < 10.5%; for the forcing strength γ ≥ γopt,theory closest
to the theoretical optimum value γopt,theory holds |CR,sim − 1| − CR,theory < −0.2%

Figure 46: Simulation results for reflection coefficient CR as a function of forcing strength γ for the case in Fig. 45, and theoretical
deviation margins from target solution CR = 1
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To raise awareness that the presence of undesired wave reflections can sometimes be difficult to detect, the simulations
are repeated with a larger domain size of Lx ≈ 4.0467 m and an accordingly increased simulated time interval of
0 ≤ t ≤ 0.05 s.

In this case, the distance a wave travels from the inlet (x = 0) to the reflecting wall (x = Lx) and back to the inlet is
2Lx ≈ 10.25λ. Thus for no or too weak forcing, the resulting phase difference relative to the generated wave leads to
partial destructive interference, so the superposition of reference and re-reflected wave produces a standing wave with
an amplitude of significantly less than the 4ua obtained in the previous simulations.

Therefore, although for the smallest γ-values in Figs. 47 and 48 there is nearly complete reflection at the inlet boundary,
this does not show in the values for reflection coefficient CR, since depending on the phase difference the values may lie
anywhere within the range given by theory. However, for close to optimum forcing, results agree well as before and a
periodic solution is obtained.

The findings demonstrate that the theory is suitable for tuning forcing zones with unsteady reference solutions, regardless
of the phase difference between the reference wave and the wave entering the forcing zone.

Figure 47: As Fig. 45, except for different domain size Lx ≈ 4.047 m and thus a different phase between generated and re-reflected
wave, which results in different destructive interference and thus reflection coefficients CR can be lower than theoretically predicted;
for all simulation results CR,sim and corresponding theory predictions CR,theory holds |CR,sim − 1| − CR,theory < 1.8%; for the
forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds |CR,sim − 1| − CR,theory < 0.1%

Figure 48: As Fig. 46, except for different domain size Lx ≈ 4.047 m; as before, the CR-values stay roughly within the theoretically
expected deviation margins
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6 Forcing zones for free-surface waves in 2D-flow simulations

Key findings

• Theory predictions for reflection coefficient CR and flow inside the forcing zone agree closely for forcing of horizontal
fluid momentum

• If forcing is applied to the vertical fluid momentum (as well), then the flow becomes more complex and simulation
results for CR can be significantly lower than theory predictions; however, the theory still captures the relevant flow
features, so predictions for optimum forcing parameters and corresponding reflection coefficients are satisfactory

• When correctly tuned, there appears to be no preference for introducing source terms to one governing equation
over the other, so similar reflection coefficients CR can be expected

• The theory gives satisfactory results for a wide range of wave steepnesses, regular and irregular waves, under
shallow-water and deep-water conditions

In this section, the theory from Sect. 4.1 is validated via results from finite-volume-based 2D-flow simulations with
long-crested waves. The simulation setup is given in Sect. 6.1.

For forcing of horizontal fluid momentum in Sect. 6.2, theory predictions and simulation results agreed closely, both for
the flow within the forcing zone and for the reflection coefficients CR (average difference of < 0.9%).

In contrast, for forcing of (also) the vertical fluid momentum in Sects. 6.3 to 6.5, not all flow features were captured by
the theory, and for some forcing strengths γ (especially for γ-values larger than optimum) reflection coefficients CR were
significantly lower than theory predictions. However, since the optimum values of the forcing zone parameters and the
corresponding reflection coefficients CR were satisfactorily predicted, it was argued that the relevant flow features were
captured by the theory regardless of which governing equations the forcing source terms are applied to.

Section 6.6 demonstrates that the wave’s nonlinearity has a negligible influence on the forcing zone behavior.

Section 6.7 shows that the reflection coefficient for irregular waves can be predicted using two approaches. The more
accurate approach is to compute the reflection coefficient for each wave component of the spectrum. The more practical
approach is to evaluate the theory for a regular wave with the same period as the irregular wave’s peak period, i.e. the
period for which the wave energy spectrum takes its largest value; this approach satisfactorily predicted the optimum
tuning of the forcing zone; however, since it slightly under-predicted the corresponding reflection coefficients, it is
suggested to choose the zone thickness slightly larger than theoretically necessary to reliably obtain the intended reduction
of undesired wave reflections.

Section 6.8 shows that the theory predictions hold in shallow water as well, demonstrating that the theory applies in all
water depths of practical engineering interest.

Section 6.9 discusses two widely-used implementations of forcing zones, followed by a discussion of theory implications
regarding the tuning of forcing zones with special focus on the choice of blending functions in Sect. 6.10.

When the forcing zone was tuned using the theory, in all simulations from Sect. 6 held CR,sim − CR,theory < 2.4%, with
reflection coefficients from simulation results CR,sim and the corresponding theory predictions CR,theory. Thus the theory
predictions were considered to be of satisfactory accuracy for engineering practice.

6.1 Simulation setup

In the following, the setup for the flow simulations in Sect. 6.2 to 6.5 is given. Unless mentioned otherwise, as e.g. for
the setup modifications given in Sects. 6.6 to 6.9, the setup applies for the simulations in Sect. 6.

The commercial flow solver STAR-CCM+ version 11.06.010-R8 from Siemens (formerly CD-adapco) is used for the
simulations. The governing Eqs. are (17) to (19). The volume of fluid (VOF) method is used to account for the two
fluid phases, liquid water and gaseous air, using the high resolution interface capturing scheme (HRIC) as given in
Muzaferija and Perić (1999). The governing equations are applied to each cell and discretized according to the finite
volume method. All integrals are approximated by the midpoint rule. The interpolation of variables from cell center
to face center and the numerical differentiation are performed using linear shape functions, leading to approximations
of second order. The integration in time is based on assumed quadratic variation of variables in time, which is also a
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second-order approximation. Each algebraic equation contains the unknown value from the cell center and the centers
of all neighboring cells with which it shares common faces. The resulting coupled equation system is then linearized
and solved by the iterative STAR-CCM+ implicit unsteady segregated solver, using an algebraic multigrid method
with Gauss-Seidel relaxation scheme, V-cycles for pressure and volume fraction of water, and flexible cycles for velocity
calculation. The under-relaxation factor is 0.9 for velocities and volume fraction and 0.4 for pressure. For each time step,
eight iterations are performed; one iteration consists of solving the governing equations for the velocity components, the
pressure-correction equation (using the SIMPLE method for collocated grids to obtain the pressure values and to correct
the velocities) and the transport equation for the volume fraction of water. Further information on the discretization
of and solvers for the governing equations can be found in Ferziger and Perić (2002) or the STAR-CCM+ software
manual.

Regular long-crested free-surface waves are created and propagate in positive x-direction towards a forcing zone as
sketched in Fig. 7, where they are partly reflected and partly absorbed. The waves have height H = 0.16 m, period
T = 1.6 s, wavelength λ ≈ 4 m and are moderately nonlinear (steepness H/λ is ≈ 29% of the maximum steepness).
Deep-water conditions apply (h/λ ≥ 0.5 with water depth h).

The forcing approaches from Sect. 2.3 are used to minimize wave reflections. Simulations are either performed with
forcing of x-momentum (qx), of z-momentum (qz), of both x- and z-momentum (qx, qz), or of volume fraction α and x-
and z-momentum (qα, qx, qz). The forcing zone has exponential blending according to Eq. (9) and the solution is forced
towards the calm-surface solution. Forcing zone thicknesses xd in the range between 0.25λ and 2λ are investigated.

The simulations are performed quasi-2D, i.e. with only one layer of cells in y-direction and symmetry boundary conditions
applied to the y-normal boundaries. The domain has dimensions 0 ≤ x ≤ Lx and −h ≤ z ≤ 0.5λ, with domain length
Lx = 6λ and water depth h = 4.5λ.

The volume fraction and velocities in the solution domain are initialized according to Fenton’s (1985) 5th-order Stokes
wave theory to reduce the simulation time. The wave is generated by prescribing the volume fraction and velocities
according to Fenton’s (1985) 5th-order Stokes wave theory at the inlet boundary (x = 0).

Due to the Stokes drift of the fluid particles in the wave, the inlet produces a net mass flux into the domain, which
acts to raise the mean water level; by prescribing the hydrostatic pressure at either the vertical boundary to which the
forcing zone is attached (x = Lx) or the bottom boundary (z = −h), such an undesired accumulation of mass can
be avoided. Perić and Abdel-Maksoud (2015) found that the first option can lead to low-frequency fluctuations in the
amount of mass within the domain, since the forcing zone can delay how the pressure boundary regulates the amount of
mass within the domain; prescribing the pressure at the domain bottom resolved this problem. In practice however, it
is far more common to prescribe the pressure at the boundary to which the forcing zone is attached. For this reason, all
cases investigated in this work were simulated with pressure prescribed at boundary x = Lx.

Additionally, the simulations with xd = 2λ from Figs. 51 and 58 were repeated with pressure prescribed at the bottom
boundary z = −h and vertical boundary x = Lx set to no-slip wall. The results confirmed that the choice for the pressure
boundary does not significantly influence the reflection coefficients (on average < 1% difference).

Therefore in practice, the theory presented in this work can be used for both boundary choices. Yet from an academical
point of view, there is a difference: as illustrated in Fig. 49, prescribing the pressure at the vertical boundary x = Lx

produces a node in the surface elevation at that boundary; when the boundary condition for x = Lx is set to wall instead,
there occurs a maximum amplification point. The theory in Sect. 4.1 is derived for the latter case. Thus in Sect. 6,
comparisons of surface elevation with theory (Figs. 52 and 59) are given for the simulations with pressure prescribed
at the domain bottom for better comparison; all other results are given for pressure prescribed at x = Lx, because this
approach is primarily used in practice and the observed difference in results for the reflection coefficient between the two
approaches were insignificant.

All remaining boundaries are no-slip walls. For further details on boundary conditions, see Ferziger and Perić (2002).

The domain is discretized using a rectilinear grid with local mesh refinement around the free surface. The free surface
stays at all times within the region of the finest mesh with 100 cells per wavelength and 16 cells per wave height. The
computational grid, which consists of ≈ 43 000 cells, is shown in Fig. 50. The total simulated time is 18 s ≈ 11.3T with
a time step of ∆t = T/1000. The reflection coefficient CR is calculated via Eq. (34).
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Figure 49: Simulated free-surface elevation for equally spaced time instances during the last simulated wave period, with vertical
boundary x = Lx = 24 m set as prescribed pressure (left image, node at x = 24 m) or wall boundary (right image, maximum
amplification at x = 24 m); results from Sect. 6.2 for xd = 2λ and weak damping (γ = 0.625 rad/s)

Figure 50: Computational grid with close-up, showing the initialized location of the free surface (thick black curve) and of the
liquid phase (shaded dark gray)

6.2 Results for forcing of x-momentum

Flow simulations are carried out with the setup from Sect. 6.1 and compared to the theory presented in Sect. 4.1.
Forcing of x-momentum according to Eq. (20) with exponential blending from Eq. (9) is used to damp waves with
period T = 1.6 s and height H = 0.16 m. Simulations are performed for different values of forcing strength γ and zone
thickness xd.

Comparing simulation results and theory in Figs. 51 and 52 shows that the theory predicts reflection coefficient CR with
high accuracy. Although the waves are moderately nonlinear (≈ 29% of maximum steepness), the differences between
theory predictions and simulation results are small.

Figure 51: Theory predictions and simulation results for reflection coefficient CR as a function of forcing strength γ; for deep-
water waves with period T = 1.6 s; for forcing of x-momentum with exponential blending via Eq. (9) and different values of zone
thickness xd; the theory predicts reflection coefficient CR with high accuracy; for all simulation results CR,sim and corresponding
theory predictions CR,theory holds CR,sim −CR,theory < 2.4% and on average |CR,sim −CR,theory| < 0.9%; for the forcing strength
γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 2.4% (xd = 0.25λ) and < 1.1%
(xd ≥ 0.5λ)
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The close-up in Fig. 51 right shows that simulation results were not able to reproduce reflection coefficients below ≈ 1%,
see e.g. the curve for xd = 2λ at γ ≈ 20 rad/s in the right plot in Fig. 51; this was attributed to a background noise in
the approach for calculating CR possibly due to the interface-capturing and -sharpening schemes.

Further, while for the thinner zones (xd < 1.5λ) in Fig. 51 there is a single optimum for forcing strength γ, for thicker
zones (xd = 2λ) there is more than one local optimum.

negligible forcing (γ = 0.625 rad/s)

too weak forcing (γ = 2.5 rad/s)

close-to-optimum forcing (γ = 10 rad/s)

stronger-than-optimum forcing (γ = 80 rad/s)

too strong forcing (γ = 640 rad/s)

Figure 52: Theory predictions (left) and simulation results (right) for surface elevation as a function of x-coordinate, evaluated
for equally spaced time intervals during the last simulated period; with a forcing zone (shaded gray) with forcing of x-momentum,
exponential blending via Eq. (9) and zone thickness xd = 2λ, for different values of forcing strength γ; the theory predicts the
surface elevation with high accuracy
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Figure 52 explains why in Fig. 51 the reflection coefficient CR increases for stronger than optimum forcing, i.e. for
γ > γopt with γopt being the forcing strength at which the lowest value for CR occurs.

For too weak forcing (i.e. forcing strength γ < γopt), the wave is mainly reflected at the domain boundary to which the
forcing zone is attached (here x = 24 m), as seen in the upper two images in Fig. 52. Since the main reflection location
is the same, the peaks in the wave height envelope stay at the same positions.

For close-to-optimum forcing (i.e. forcing strength γ ≈ γopt), the wave is partially reflected throughout the forcing zone
and the wave heights of these partially reflected waves are small compared to the original wave’s height, so that destructive
interference of these partial reflections improves the wave absorption and the forcing zone’s reflection coefficient CR is
minimized.

For too strong forcing (i.e. forcing strength γ > γopt), the wave is mainly reflected close to the entrance of the forcing zone
(here x = 16 m), as seen in the lower two images in Fig. 52. The remaining part of the forcing zone does not contribute
significantly to the wave damping, since there the surface elevations and velocities are negligible; thus essentially the
same solution could be obtained if these domain parts were not there at all, i.e. if a smaller computational domain
were used. With increasing forcing strength γ the effective reflection location moves closer towards the entrance of the
forcing zone, which can be seen from the different locations of the peaks in the wave height envelope. This underlines
the importance of including reflections which occur within the zone in the analysis.

The simulated and theoretical surface elevations agree well as shown in Fig. 52. Just as the surface elevations, the
theory predictions for horizontal and vertical velocities agree well with simulation results; since there are no significant
differences, these are not plotted here.

Figure 53 shows that the forcing produces vorticity (here: ∂w
∂x

− ∂u
∂z

) in the flow field within the forcing zone. Although
the generated amount of vorticity is comparatively small, it is clearly visible. Further, small amounts of vorticity are also
generated at the free surface and at locations where the mesh size changes, as artifacts of the interface capturing scheme
and the discretization; however, such a vorticity generation is discretization dependent, i.e. it disappears on infinitely
fine grids, whereas the forcing-generated vorticity turned out to be grid-independent.

Figure 54 shows that the theory predicts the forcing-based vorticity generation remarkably well.

Figure 53: Simulation results at time t = 18 s for vorticity in a domain section including the forcing zone with zone thickness
xd = 2λ; for forcing of x-momentum with exponential blending via Eq. (9) and forcing strength γ = 10 rad/s; the dotted green line
denotes depth z = −1.2 m where vorticity is evaluated in Fig. 54

While the velocities and particle displacements are continuous everywhere within the domain according to the theory
given in Sect. 4.1, evaluating vorticity ∂w

∂x
− ∂u

∂z
for the theory shows that the vorticity is continuous within each zone,

as well as at each interface between two zones where the blending function b(x) has the same value. When b(x) changes
between two adjacent zones, then the vorticity must be discontinuous at the interface between these zones.

To show that this is realistic and occurs in the flow simulations as well, the simulations are repeated using a strongly
discontinuous blending function b(x) as depicted in Fig. 55

b(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.25 if 16 m ≤ x < 18 m ,

0.5 if 18 m ≤ x < 20 m ,

0.75 if 20 m ≤ x < 22 m ,

1.0 if 22 m ≤ x ≤ 24 m ,

0 else ,

(113)
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with forcing zone thickness xd = 24 m − 16 m = 8 m ≈ 2λ.

Figures 56 and 57 show that, as predicted by theory, also in the flow simulations the vorticity is discontinuous between cells
where b(x) changes, and is continuous otherwise; the agreement between theory and simulation was again satisfactory,
as is exemplarily shown for γ = 10 rad/s in Fig. 57.

too weak forcing (γ = 2.5 rad/s)

close-to-optimum forcing (γ = 10 rad/s)

too strong forcing (γ = 1280 rad/s)

Figure 54: Vorticity as a function of x-coordinate for theory (left) and simulation (right); evaluated at z = −1.2 m below the
free-surface for equally spaced time intervals during the last simulated period; for forcing of x-momentum with exponential blending
via Eq. (9) and zone thickness xd = 2λ; theory predictions for vorticity in forcing zone (shaded gray) are highly accurate

Figure 55: Discontinuous blending function b(x) according to Eq. (113) as a function of x-coordinate

Figure 56: Simulation results at time t ≈ 17.06 s for vorticity magnitude in domain section including the forcing zone, for forcing
of x-momentum with forcing strength γ = 10 rad/s, zone thickness xd = 8 m, and step-like blending according to Eq. (113)
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Figure 57: Vorticity as a function of x-coordinate for theory (left) and simulation (right); evaluated at depth z = −1.2 m below
the free-surface for equally spaced time intervals during the last simulated period; for forcing of x-momentum with forcing strength
γ = 10 rad/s, zone thickness xd = 8 m and step-like blending according to Eq. (113)

Thus the theory from Sect. 4.1 predicts reflection coefficient CR and the whole flow inside the forcing zone with high
accuracy.

6.3 Results for forcing of z-momentum

The simulations from Sect. 6.2 are repeated with forcing of z-momentum instead of x-momentum. Comparing Figs. 58
and 59 with Figs. 51 to 52 shows that, when the source term strength increases comparatively slowly, for example for
zone thickness xd ≥ 1λ and close-to-optimum or lower values (γ ≲ 40 rad/s) of forcing strength γ, the results for forcing
of x- and z-momentum both agree well with theory predictions.

When the source term strength increases comparatively rapidly, though, simulation results for CR are lower than theory
predictions, as for example for zone thickness xd = 0.5λ, or for too strong forcing (γ ≳ 40 rad/s), where most wave
reflections occur over a comparatively short interval close to the entrance of the forcing zone as shown in the bottom
images in Fig. 59. For such cases, the flow becomes more complex than for forcing of horizontal momentum. For example,
Fig. 59 shows that for such γ-values the mean surface elevation can increase within the forcing zone, which becomes
more pronounced with increasing forcing strength γ. Thus stronger-than-optimum forcing of z-momentum leads to a
noticeable net mass flux into the forcing zone in the simulation. In the present case, this mass flux resulted in a lower
reflection coefficient CR compared to x-momentum forcing for the same γ.

However, the relevant flow behavior was satisfactorily predicted, since the theory predictions for the optimum forcing
strength γ and the corresponding reflection coefficients CR agree well with the simulation results.

Figure 58: Theory predictions and simulation results for reflection coefficient CR as a function of forcing strength γ; for deep-
water waves with period T = 1.6 s; for forcing of z-momentum with exponential blending via Eq. (9) and different values of zone
thickness xd; the theory satisfactorily predicts optimum forcing strength γ and corresponding reflection coefficient CR; for all
simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim −CR,theory < 0.8%; for the forcing strength
γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 0.8%
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too weak forcing (γ = 2.5 rad/s) close-to-optimum forcing (γ = 10 rad/s)

too strong forcing (γ = 640 rad/s) much too strong forcing (γ = 2560 rad/s)

Figure 59: Simulation results for surface elevation as a function of x-coordinate for forcing of z-momentum, exponential blending
via Eq. (9) and forcing zone (shaded gray) thickness xd = 2λ; evaluated for equally spaced time intervals during the last simulated
period; for γ ≲ than optimum (upper two plots) there are no noticeable differences to x-momentum forcing (compare Fig. 52);
for stronger than optimum damping (lower two plots) a rise in water level (the dashed line indicates the undisturbed free surface)
occurs close to the domain boundary at x = 24 m, which indicates a net mass flux into the forcing zone that does not occur for
x-momentum forcing

6.4 Results for forcing of x- and z-momentum

Repeating the simulations from Sect. 6.2 with forcing of both x- and z-momentum shows that the theory, with the
extension given in Sect. 4.1.2, reliably predicts the optimum forcing strength γ and the corresponding reflection coefficient
CR. As expected from the results in Sects. 6.2 and 6.3, Fig. 60 shows that for stronger than optimum forcing the theory
overpredicts the reflection coefficients.

Figure 60: Theory predictions and simulation results for reflection coefficient CR as a function of forcing strength γ; for deep-water
waves with period T = 1.6 s; for forcing of x- and z-momentum with exponential blending via Eq. (9) and different values of zone
thickness xd; for all simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim −CR,theory < 0.9%; for
the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 0.9%

6.5 Results for forcing of volume fraction α and x- and z-momentum

Repeating the simulations from Sect. 6.2 with forcing of volume fraction α and both x- and z-momentum shows that the
theory, with the extension given in Sect. 4.1.2, satisfactorily predicts the optimum forcing strength and the corresponding
reflection coefficient. Figure 61 shows that for stronger than optimum damping the theory overpredicts the reflection
coefficients, otherwise the results agree well.
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Figure 61: Theory predictions and simulation results for reflection coefficient CR as a function of forcing strength γ; for deep-water
waves with period T = 1.6 s; for forcing of x- and z-momentum and volume fraction α, with exponential blending via Eq. (9)
and different values of zone thickness xd; for all simulation results CR,sim and corresponding theory predictions CR,theory holds
CR,sim − CR,theory < 1.5%; for the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds
CR,sim − CR,theory < 1.3%

6.6 Results for forcing of steep free-surface waves

This section investigates the applicability of the theory from Sect. 4.1 to forcing of nonlinear free-surface waves in deep
water. For this, flow simulations are performed using the setup from Sect. 6.1 with the following exceptions: The
local mesh refinement was extended further away from the calm-surface level, so that the same grid could be used for
all simulations. The free-surface was discretized by > 100 cells per wavelength and > 14 cells per wave height. The
time-step was ∆t > T/500 in terms of wave period T and 8 iterations were performed per time-step.

Simulations were performed with different wave height H ranging from 50% to 85% of the breaking wave height Hbreak

according to Michell (1893). For better comparability, the following approximation will be used Hbreak = 0.142λ0 =
0.589 m, where λ0 is the wavelength according to linear wave theory. Steeper waves were not generated since 5th-order
Stokes wave theory was used to initialize and generate the waves; close to breaking steepness, the theory becomes
inaccurate and thus introduces disturbances that can trigger wave breaking, after which a calculation of reflection
coefficient CR was not considered feasible16. As in previous sections, reflection coefficients below 1% ≲ CR could not be
detected due to the background-noise of the approach to calculate CR as discussed in Sect. 6.2 .

Figures 62 and 63 show that the influence of the wave steepness – and thus also the wave’s nonlinearity – can be
considered negligible for practical purposes.

Figure 62: Reflection coefficient CR as a function of forcing strength γ for different wave heights H relative to wave breaking
height Hbreak, according to simulation results and theory prediction; for deep-water waves with period T = 1.6 s; for blending
according to Eq. (9), zone thickness xd = 2λ0, and forcing of x-momentum towards uref = 0; for all simulation results CR,sim and
corresponding theory predictions CR,theory holds CR,sim − CR,theory < 7.4% and on average |CR,sim − CR,theory| < 3.1%; for the
forcing strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 1.9%

16In the simulations presented in this section, slight wave breaking occurred only in a few simulations for H ≥ 0.8Hbreak and for γ-values
significantly smaller (γ ≲ O(1 s−1)) or larger (γ ≳ O(103 s−1)) than optimum; these values can differ noticeably in reflection coefficient
compared to the other simulation results.
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too weak forcing (γ = 2.5 s−1) close-to-optimum forcing (γ = 20 s−1)

too strong forcing (γ = 640 s−1)

Figure 63: Simulation results for surface elevation as a function of x-coordinate in the vicinity of the forcing zone (shaded gray),
evaluated for equally spaced time intervals during the last simulated period; for the waves from Fig. 62 with height H ≈ 0.85Hbreak
relative to breaking wave height Hbreak

Figure 64 shows that the theory also applies to forcing of all velocities ui and volume fraction α. Although for too
strong forcing the theory over-predicts CR, the optimum values for the case-dependent parameters of the forcing zone
are predicted reasonably well as before.

Therefore the theory is also recommended for tuning forcing zones in the presence of nonlinear free-surface waves.

Figure 64: As Fig. 62, except for forcing of x- and z-momentum as well as volume fraction α towards the calm-surface solution;
for all simulation results CR,sim and corresponding theory predictions CR,theory holds CR,sim − CR,theory < 2.1%; for the forcing
strength γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 2.1%

6.7 Results for forcing of irregular free-surface waves

This section investigates to which extent the theory from Sect. 4.1 is suitable for predicting reflection coefficients for
forcing zones with irregular free-surface waves. For this, simulations are performed based on the setup from Sect. 6.1,
with the following exceptions: The solution domain from Fig. 7 is used with dimensions 0 ≤ x ≤ Lx = 400 m and
−h ≤ z ≤ 0.5 m. It is filled with water to a depth of h = 1 m, the rest is filled with air. Initially velocities ui and
volume fraction α are prescribed according to the solution for the calm free-surface. At the top boundary (z = 0.5 m)
atmospheric pressure is prescribed. All other boundaries are no-slip walls, except the inlet (x = 0), where velocities ui
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and volume fraction α are prescribed to generate an irregular wave train traveling in positive x-direction. The wave
train is generated during the first 60 s of simulated time, using the analytical solution for a JONSWAP wave energy
spectrum (see e.g. DNV, 2014; Hasselmann et al., 1973) discretized into 300 wave components, to obtain a peak period
Tpeak = 12.82 s, significant wave height Hs ≈ 0.056 m, peak wavelength λpeak and peak-shape parameter 3.3. The peak
wave period is the period for which the wave energy spectrum takes its maximum value. The wave travels in positive x-
direction until it encounters the forcing zone attached to the opposite boundary (x = Lx), where it is partially absorbed,
depending on the settings of the forcing zone. The reflected part of the wave travels back into the domain. When the
simulation ends at tend = 220 s, the whole wave train has encountered the forcing zone once.

After each simulation, the surface elevation in the whole domain is written to a file and a fast Fourier transform (FFT)
is performed on the recording to obtain the amplitudes and frequencies of the wave components. For the simulation
results, the overall reflection coefficient CR is then computed from the FFT results for the given forcing strength γ in
relation to the FFT results for the case of γ = 0 via Eq. (35).

The theory prediction of the overall reflection coefficient CR is obtained via Eq. (35) by inserting an|γ ≈ CR,nan|γ=0,
with amplitude an|γ=0 obtained for the simulation results for the case without forcing, and the corresponding reflection
coefficient CR,n for each wave component n is obtained from the 1D-theory from Sect. 4.1. The underlying assumption
is that the FFT-results can be treated as a linear superposition of waves so that the theory from Sect. 4 can be applied
to each wave component separately.

The forcing zone is based on Eqs. (20) and (21) with exponential blending via Eq. (9). Simulations are performed
for different forcing zone thickness xd, different forcing strength γ, and with source terms applied in different governing
equations. The free-surface is discretized with cell sizes ∆x = 0.625 m ≈ λpeak/64 and ∆z = 0.0098 m ≈ Hs/6. The grid
consists of ≈ 40 000 cells. The time-step is ∆t = 0.012823 s ≈ Tpeak/1000. Per time-step, 10 iterations are performed
with under-relaxation of 0.9 for velocities and volume fraction, as well as 0.4 for pressure.

For most wave components hold shallow-water conditions (h ≤ 0.05λ), or else intermediate-water conditions (0.05λ < h <

0.5λ) which are sufficiently close to shallow water, so that the wave propagation shows comparatively small dispersion;
for example, for wavelengths between 0.25λpeak and 4λpeak, phase velocity c varies by ≲ 6% according to linear wave
theory. Therefore, although the wave train will change its shape during propagation, it will remain relatively compact,
so that Eq. (35) is suitable for computing the reflection coefficient.

Figures 65 to 67 show that, for a zone thickness of xd ≈ 1λpeak ≈ 40 m and forcing of velocity u towards uref = 0, theory
predictions and simulation results for reflection coefficient CR show satisfactory agreement. Further, Fig. 67 shows that
1D-theory for a regular wave with period T = Tpeak can be used to tune the forcing zone: the optimum value for γ is
reasonably well predicted, although the reflection coefficient is under-predicted; thus when tuning only according to the
peak period, thicker forcing zones should be used to ensure that the desired reflection coefficient is obtained.

no forcing (γ = 0) too weak forcing (γ = 0.1925 s−1)

close-to-optimum forcing (γ = 1.54 s−1) too strong forcing (γ = 98.56 s−1)

Figure 65: Surface elevation as a function of x-location at time t = 220 s; for irregular waves with peak period Tpeak = 12.82 s in
intermediate to shallow water; for forcing of x-momentum with blending via Eq. (9) and zone thickness xd ≈ 1λpeak
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γ = 0.09625 s−1 γ = 0.385 s−1

γ = 1.54 s−1 γ = 24.64 s−1

Figure 66: Simulation results and theory predictions for wave amplitude an as a function of frequency fn, obtained from FFT of
the surface elevation at time t = 220 s as in Fig. 65; for irregular waves with peak period Tpeak = 12.82 s in intermediate to shallow
water; for forcing of x-momentum with exponential blending via Eq. (9) and zone thickness xd ≈ 1λpeak

Figure 67: Top left, top right, bottom left: Overall reflection coefficient CR for damping of the irregular wave train from Fig.
66 as a function of forcing strength γ, from theory prediction and simulation results; for forcing of x-momentum with exponential
blending via Eq. (9) and zone thickness xd ≈ 1λpeak; for all simulation results CR,sim and corresponding theory predictions
CR,theory holds CR,sim − CR,theory < 4.4% and on average |CR,sim − CR,theory| < 1.3%; for the forcing strength γ ≥ γopt,theory
closest to the theoretical optimum value γopt,theory holds CR,sim −CR,theory < 0.8%; the curve for 1D-theory for a monochromatic
wave with Tpeak shows that tuning the forcing zone for the peak period gives a satisfactory guess at the optimum choice of γ;
bottom right: absolute difference between theory prediction and simulation results for CR as a function of γ
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Repeating the simulations from Figs. 65 to 67 with only forcing of volume fraction α, the results in Figs. 68 to 70 are
remarkably similar to those obtained for forcing of x-momentum.

no forcing (γ = 0) too weak forcing (γ = 0.1925 s−1)

close-to-optimum forcing (γ = 1.54 s−1) too strong forcing (γ = 98.56 s−1)

Figure 68: As Fig. 65, except for forcing of volume fraction α; note that for too strong forcing (γ = 98.56 s−1), the surface
elevation looks like the inverted corresponding plot from Fig. 65, meaning that all wave troughs from Fig. 65 are peaks in Fig.
68 and all peaks are troughs; this explains why forcing of both x-momentum and volume fraction α in Fig. 72 produces low
reflection coefficients even for substantially stronger than optimum forcing, since the wave components reflected due to forcing of
x-momentum and volume fraction α cancel

γ = 0.09625 s−1 γ = 0.385 s−1

γ = 1.54 s−1 γ = 24.64 s−1

Figure 69: As Fig. 66, except for forcing of volume fraction α
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Figure 70: As Fig. 67, except for forcing of volume fraction α; for all simulation results CR,sim and corresponding theory
predictions CR,theory holds CR,sim − CR,theory < 2.1% and on average |CR,sim − CR,theory| < 0.6%; for the forcing strength
γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 0.8%

Repeating the simulations from Figs. 65 to 67 with only forcing of z-momentum, the results in Fig. 71 differ considerably
from those obtained for forcing of x-momentum: The optimum value for γ is two orders of magnitude larger. This was
expected, since linear wave theory shows that the vertical component of the kinetic energy is two orders of magnitude
smaller than the horizontal kinetic energy due to the limited water depth. Since the forcing acts on the vertical kinetic
energy, a significantly larger forcing strength is therefore required as outlined in Sect. 4.1.2.

Figure 71 further shows that for too weak forcing the theory overpredicts reflection coefficient CR. In the extension of
the theory for applying forcing source terms in different governing equations in Sect. 4.1.2, it was assumed that it does
not matter to which governing equations forcing is applied, as long as the forcing occurs gradually over a thick enough
zone. The present findings implicate though, that predictions may be less accurate when applying forcing to a governing
equation which has a negligible contribution to the overall wave energy (for a wave with period T = Tpeak, the vertical
kinetic energy is only Ekin,z ≈ 0.006Ekin,x, i.e. roughly 0.3% of the total wave energy). In spite of the slight decrease
in accuracy for parameter settings far from the optimum values, for close-to-optimum forcing the theory predictions and
simulation results agree reasonably well as before.

Figure 71: As Fig. 67, except for forcing of z-momentum; for all simulation results CR,sim and corresponding theory predictions
CR,theory holds CR,sim − CR,theory < 1.5%; for the forcing strength γ ≥ γopt,theory closest to the theoretical optimum value
γopt,theory holds CR,sim − CR,theory < 1.5%

Additionally, the simulations from Figs. 65 to 67 were repeated with forcing of velocities u and w as well as volume
fraction α towards the calm-surface solution. The theory predictions for optimum γ-values provide satisfactory reduction
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of undesired wave reflections, and tuning the forcing zone to the peak wave period Tpeak again predicts these settings
reasonably well.

As with regular waves, Figs. 72 to 74 show that reflection is over-predicted by theory for larger-than-optimum values
of γ. In contrast to deep-water conditions, the range for satisfactory reduction of undesired reflections (say CR < 5%)
is significantly wider and extends onto several orders of magnitude larger values of forcing strength γ than theoretically
expected.

Comparison of Figs. 65 and 68 (bottom, right) shows that for too strong forcing in shallow water, forcing of volume
fraction α reflects the waves with similar reflection coefficients but with inverted surface elevation compared to forcing
of x-momentum as explained in the caption of Fig. 68. The reason for the low reflection coefficients for theoretically
too-strong forcing in Figs. 72 to 74 is therefore destructive interference due to the cancellation of the waves reflected
due to the forcing of x-momentum and due to the forcing of volume fraction α.

no forcing (γ = 0) too weak forcing (γ = 0.1925 s−1)

close-to-optimum forcing (γ = 1.54 s−1) too strong forcing (γ = 98.56 s−1)

Figure 72: As Fig. 65, except for forcing of x- and z-momentum and volume fraction α

γ = 0.09625 s−1 γ = 0.385 s−1

γ = 1.54 s−1 γ = 24.64 s−1

Figure 73: As Fig. 66, except for forcing of x- and z-momentum and volume fraction α
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Figure 74: As Fig. 67, except for forcing of x- and z-momentum and volume fraction α; for all simulation results CR,sim and
corresponding theory predictions CR,theory holds CR,sim −CR,theory < 2.4%; for the forcing strength γ ≥ γopt,theory closest to the
theoretical optimum value γopt,theory holds CR,sim − CR,theory < −1.3%

Finally, repeating the simulations with x-momentum forcing with a thicker forcing zone (xd = 2λpeak) in Figs. 75 to
77 shows that the range of γ-values which provide satisfactory reduction of undesired wave reflections widens and the
reflection coefficient CR at optimum tuning decreases. The theory predicts the simulation results reasonably well, though
reflection coefficients at close-to-optimum setting are slightly under-predicted. Thus it is recommended to use slightly
thicker forcing zones than theory may suggest to ensure reliable damping.

As before, tuning the forcing zone to the peak period detects the optimum choice of forcing strength γ reasonably
well, although it underpredicts the corresponding reflection coefficients CR more strongly than the theory for the overall
reflection coefficient.

no forcing (γ = 0) too weak forcing (γ = 0.1925 s−1)

close-to-optimum forcing (γ = 1.54 s−1) too strong forcing (γ = 98.56 s−1)

Figure 75: As Fig. 65, except for zone thickness xd = 2λpeak
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γ = 0.09625 s−1 γ = 0.385 s−1

γ = 1.54 s−1 γ = 24.64 s−1

Figure 76: As Fig. 66, except for zone thickness xd = 2λpeak

Figure 77: As Fig. 67, except for zone thickness xd = 2λpeak; for all simulation results CR,sim and corresponding theory
predictions CR,theory holds CR,sim − CR,theory < 4.5% and on average |CR,sim − CR,theory| < 1.3%; for the forcing strength
γ ≥ γopt,theory closest to the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 1.4%

6.8 Forcing of regular free-surface waves in shallow water

To verify that the theory from Sect. 4.1 holds in shallow water as well, flow simulations were performed using the setup
from Sect. 6.1, with the following exceptions: The computational domain has dimensions 0 ≤ x ≤ Lx with Lx = 6 m
and −h ≤ z ≤ h with water depth h = 0.04 m, which corresponds to shallow-water conditions (h ≤ 0.05λ). The regular
free-surface waves have the period T = 1.6 s, wavelength λ ≈ 1 m, and wave height = H = 0.0001 m.

A forcing zone based on Eqs. (20) and (21) with exponential blending via Eq. (9) is attached to boundary x = Lx.
Inside the forcing zone, the flow is forced towards the calm surface solution. Simulations are performed for different
forcing zone thickness xd and forcing strength γ.

Simulations start at time t = 0 with volume fraction and velocities initialized in the whole domain according to linear
wave theory and end at t = 12.8 s = 8T . Per time-step ∆t = 0.0004 s there are 8 iterations with under-relaxation
factors of 0.9 for velocity and volume fraction, and 0.4 for pressure. The mesh sizes within the zone of finest local mesh
refinement are ∆x ≈ 0.0061 m ≈ λ/164 and ∆z ≈ 5.4 · 10−6 m ≈ H/18. The total number of cells is 1.35 · 105.

Figure 78 shows that, for forcing of x-momentum, the theory predicts the simulation results for reflection coefficients CR

with high accuracy.
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Figure 78: Simulation results and theory predictions for reflection coefficient CR as a function of forcing strength γ; for shallow-
water waves with period T = 1.6 s, wavelength λ ≈ 1 m, and water depth h = 0.04 m; for different zone thickness xd with exponential
blending via Eq. (9) and forcing of x-momentum; for all simulation results CR,sim and corresponding theory predictions CR,theory
holds CR,sim −CR,theory < 3.9% and on average |CR,sim −CR,theory| < 4.2%; for the forcing strength γ ≥ γopt,theory closest to the
theoretical optimum value γopt,theory holds CR,sim − CR,theory < 0.9%

For forcing of volume fraction α as well as x- and z-momentum in Fig. 79, reflection coefficients are lower than theory
predictions when forcing strength γ is chosen larger than the theoretical optimum; however, the optimum choice of γ is
again reasonably well predicted by theory. So far, the results agree with those from the deep-water case from Sects. 6.2
to 6.5.

Figure 79: As Fig. 78, except for forcing of x- and z-momentum as well as volume fraction α; for all simulation results CR,sim
and corresponding theory predictions CR,theory holds CR,sim −CR,theory < 3.3%; for the forcing strength γ ≥ γopt,theory closest to
the theoretical optimum value γopt,theory holds CR,sim − CR,theory < 0.5%

In contrast to the deep-water case, the results for forcing of both x- and z-momentum in Fig. 80 are nearly identical
to those for forcing of x-momentum in Fig. 78. This was expected, since in shallow-water waves, the vertical velocity
amplitudes are negligible compared to the horizontal velocity amplitudes, so the forcing source terms in x-direction
dominate as discussed in Sect. 4.1.2.

Figure 80: As Fig. 78, except for forcing of x- and z-momentum

The good agreement between theory predictions and simulation results for the shallow-water to deep-water conditions
investigated in this work demonstrates that the theory from Sect. 4 applies to all water depths of practical engineering
interest.

64



6.9 Forcing proportional to the velocity squared

Examples of widely used wave damping implementations are the approaches by Choi and Yoon (2009, implemented in
STAR-CCM+ by Siemens) and by Park et al. (1999, implemented in ANSYS Fluent), which are

qzCCM+ = γb(x)(−w)  
forcing ∝ w

+ γ̃b(x)(−w)|w|  
forcing ∝ w|w|

, (114)

qzANSYS = 0.5
(

1 − z − zfs

zb − zfs

)
  

additional factor

γ̃b(x)(−w)|w|  
forcing ∝ w|w|

, (115)

with vertical velocity w, forcing strengths γ and γ̃, vertical coordinate z with domain bottom at zb, and vertical location
zfs of the free surface. Blending b(x) is exponential (Eq. (9)) in Eq. (114) and quadratic (Eq. (5)) in Eq. (115). In
Eq. (114), the first term corresponds to Eq. (20) and is therefore directly proportional to the vertical velocity, while
the second term contains an additional factor |w|, which renders this forcing term directly proportional to w|w|, and
thus the corresponding forcing strength scales as γ̃ ∝ λ−1. Equation (115) corresponds to the second term in Eq. (114),
except for a factor 0.5, an additional vertical blending

(
1 − z−zfs

zb−zfs

)
and a slightly different b(x) (see Fig. 3).

At the time this work was conducted, the default values in the commercial codes for forcing strengths in Eqs. (114) and
(115) are γ = 10.0 rad/s and γ̃ = 10.0 m−1. Perić and Abdel-Maksoud (2016) found that for a w|w|-proportional forcing,
as in the second term in Eq. (114) and in Eq. (115), the optimum value for γ̃ is more than one order of magnitude
larger than the optimum value for γ. Thus with default settings in STAR-CCM+, the second term in Eq. (114) has a
negligible effect compared to the first term.

Both w-proportional and w|w|-proportional forcing produced reflection coefficients with ≈ 1% difference at optimum
settings, so both approaches can be used to damp waves successfully. However, for a fixed forcing strength, directly-
proportional forcing as in Eq. (20) has a wider range of wave frequencies which are damped satisfactorily, as illustrated
in Fig. 81. Historically, w|w|-proportional forcing terms may have been introduced as analogy to porous media flows,
where for larger flow rates effects like turbulence lead to nonlinearities which can be expressed as quadratically dependent
on the flow velocity, such as the Forchheimer or Brinkman extension to Darcy’s law, see Straughan (2008). However,
this analogy is not entirely valid. Even in steep nonlinear ocean waves, turbulence effects are insignificant unless there is
wave breaking. Moreover, Fourier approximation methods allow to split nonlinear waves into different regular harmonics,
so applying a forcing directly proportional to the velocity according to Eq. (20) acts on the higher harmonics as well, so
the damping of the higher harmonics is already accounted for in w-proportional forcing.

Figure 81: Reflection coefficient CR as a function of angular wave frequency ω scaled by optimum angular wave frequency ωopt,
given for simulation results from Perić and Abdel-Maksoud (2016); for forcing zone thickness xd = 2λ and blending b(x) according
to Eq. (9); for forcing using only the first term in Eq. (114) (continuous line) with fixed forcing strength γ, versus using only the
second term in Eq. (114) (dotted line) with fixed forcing strength γ̃

6.10 Theory implications for tuning forcing strength γ and for the choice of blending function
b(x)

Since the theory from Sect. 4 was validated in the previous sections and can be considered sufficiently accurate for
practical purposes, this section shows theoretical predictions without backup from simulation results.

For a typical forcing zone setup, Fig. 82 illustrates the necessity of adjusting the forcing strength γ for different
waves.
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Figure 82: Theory prediction for reflection coefficient CR as a function of forcing strength γ; for forcing of x-momentum with
zone thickness xd = 1λ, blending b(x) via Eq. (9) and deep-water waves; for three different wavelengths λ = 0.2 m, 20 m, 2000 m; it
is evident that forcing strength γ must be adjusted for each wave

Figure 83 shows that common choices for blending functions such as quadratic blending (Eq. (5)), cosine-square blending
(Eq. (7)) and exponential blending according to Eq. (9) perform similarly well, with perhaps a slight preference towards
the exponential blending. Constant blending (Eq. (3)) and linear blending (Eq. (4)) are not recommended, since they
typically lead to considerably higher reflection coefficients, which agrees with literature findings (Israeli and Orszag,
1981; Kim et al., 2014).

constant blending linear blending

quadratic blending cos2-blending

exponential blending

Figure 83: Theory prediction for reflection coefficient CR as a function of forcing strength γ; for forcing of x-momentum with
different forcing zone thickness 0.5λ ≤ xd ≤ 4λ and free-surface waves with period T = 1.6 s; for constant (Eq. (3)), linear (Eq.
(4)), quadratic (Eq. (5)), cosine-square (Eq. (7)) and exponential (Eq. (9)) blending; the results agree with the findings from Sect.
5.3
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7 Forcing zones for free-surface waves in 3D-flow simulations

Key findings

• The theory from Sect. 4 satisfactorily predicts optimum forcing zone parameters for 3D-flow simulations with
strongly reflecting bodies in free-surface waves

• Forcing zone arrangements in 3D-flow simulations can differ in the choice of

– governing equations, to which source terms are applied

– reference solutions, towards which the flow is forced

– domain boundaries, to which forcing is applied

• If waves travel tangential to a forcing zone, discrepancies between the simulated flow and the reference solution
can create flow disturbances for some forcing zone arrangements

• A forcing zone arrangements is proposed which is free of the aforementioned discrepancies and disturbances

• Correct tuning of the forcing zones enables the use of smaller domains and thus reduces the computational effort

This section demonstrates, as Sects. 4.5, 5.4, and 5.5 suggest, that the theory from Sect. 4 predicts optimum forcing
zone parameters for 3D-flow simulations with strongly reflecting floating bodies in free-surface waves, so that it can be
recommended for use in engineering practice.

In practice, different ‘forcing zone arrangements’ are used in 3D-flow simulations, which can differ in the choice of the
governing equations to which forcing source terms are applied, the reference solution towards which the flow is forced,
and the domain boundaries to which forcing zones are attached.

Common choices range from forcing velocities towards zero in the vicinity of the domain outlet (e.g. Choi and Yoon,
2009; Park et al., 2001) as in the left image of Fig. 84, to forcing of volume fraction and all velocities towards the
incidence wave field at all vertical domain boundaries (e.g. Chen et al., 2006; Kim et al., 2012; Vukčević et al., 2016,
2016b) as in the right image of Fig. 84.

Force towards calm-surface solution Force towards far-field wave

Figure 84: Examples of different forcing zone arrangements used in practice; forcing zones (shaded gray) may be attached to one
or several domain boundaries, source terms can be applied in different governing equations and the flow can be forced towards
different reference solutions

Section 7.1 gives an overview of common forcing zone arrangements, compares their benefits and limitations based
on the literature and theoretical considerations, and discusses which of these arrangements are recommended for 3D-
flow simulations with strongly reflecting bodies in waves. Theoretical considerations suggest, for forcing of velocities
and volume fraction towards the far-field wave, that if waves travel tangential to such forcing zones, then discrepancies
between simulated flow and reference solution can create flow disturbances, which is verified in the following Sect. 7.2. In
Sects. 7.1 and 7.3, a forcing zone arrangement is proposed for which no such discrepancies or disturbances occur.

Section 7.4 investigates the proposed forcing zone arrangement via 3D-flow simulations with a strongly reflecting body
subjected to regular waves, based on the setup in Sect. 7.3. The results demonstrate that the theory from Sect. 4.1
can be recommended for tuning forcing zones in 3D-flow simulations. Further, tuning the forcing zones via the theory
enables the use of smaller computational domains and can thus decrease the computational effort substantially.

In Sect. 7.5, flow simulations are performed with other forcing zone arrangements, regular and irregular waves, and
also with a different wave-reflecting body within the domain. The results indicate that forcing zones should be applied
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near all vertical domain boundaries. If forcing was applied only near the outlet boundary, significant errors occurred.
If undesired wave reflections occurred only at the inlet boundary, it was shown that whether acceptable results can be
obtained depends on the directionality of the wave reflections that occur at the body placed within the domain. From
the results follow recommendations for using forcing zones in 3D-flow simulations.

7.1 Discussion of choice of forcing zones for different domain boundaries

As illustrated in Fig. 84, different ‘forcing zone arrangements’ are commonly used in 3D-flow simulations. This indicates
that perhaps there is not one arrangement that suits all needs, but depending on the problem different arrangements may
be more efficient or accurate. In the following, a few common arrangements are discussed, with focus on long-crested
incidence waves.

A natural approach would be to apply forcing zones at all vertical domain boundaries and in all governing equations
(except the pressure-correction equation) as in the right image of Fig. 84. The solution is forced towards the incidence
wave field, as it would develop when no reflecting structures were present; this reference solution could be taken from
some wave theory or e.g. from coupling to another flow solver, as used with success e.g. in Gatin et al. (2017) or
Vukčević et al. (2016). With such approaches, comparatively small simulation domains can be used, which can reduce
the computational effort. However, this approach can be problematic if the wave in the simulation domain propagates
differently than the reference solution, for the following reason.

In finite-volume-based flow simulations, discretization and iteration errors lead to numerical diffusion and dispersion.
Thus the wave’s height and phase change the further it travels within the solution domain (Mayer et al., 1998; Perić and
Abdel-Maksoud, 2015 and 2015b). Even when the forcing zone is correctly tuned, if the wave in the simulation does not
fit with the reference solution as illustrated in Fig. 85, disturbances can occur. For example, this becomes problematic if
the domain size is large compared to the wavelength or when irregular waves are simulated: since each wave component is
discretized by a different number of cells per wavelength, discretization errors will be different for each wave component;
therefore, the wave will develop differently than in the reference solution. Although the disturbances may vanish for an
infinitely fine discretization (given that the reference solution is exact), for practical discretizations further research is
necessary to better assess the conditions of validity of such a forcing approach.

Figure 85: Wave propagation for flow simulation with discretization and iteration errors (full line) and theory (dotted line);
surface elevation (top) and location of wave crests (bottom): if the zones with theory and simulation results were coupled using
forcing zones, the discrepancy between wave crest locations could produce disturbances, which would be radiated into the solution
domain in the form of undesired waves

Chen et al. (2006) presented an approach to avoid such flow disturbances due to discrepancies between computed and
reference solution. As shown in Fig. 86, they suggest to compute the flow twice, first without and then with the
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wave-disturbing body. By using the same discretization for both simulations and taking the solution of the simulation
without wave-disturbing body as the reference solution for the forcing in the simulation with the wave-disturbing body,
the numerical diffusion and dispersion in both simulations is similar. Thus discrepancies between simulated and reference
wave propagation are avoided and no disturbances will occur. However, since two instead of one simulations have to be
performed, the computational effort increases17.

1st flow simulation: without wave-reflecting body 2nd flow simulation: with wave-reflecting body

Figure 86: Illustration of the approach by Chen et al. (2006); flow disturbances due to discrepancies between computed flow
and reference solution are avoided by first performing the flow simulation without reflecting bodies using only a wave damping
zone (shaded gray) at the outlet boundary, and then performing a second simulation with similar discretization with forcing zones
(shaded gray) at all vertical domain boundaries and forcing velocities and volume fraction towards the solution from the first
simulation

The present work proposes to use a combination of damping and forcing as illustrated in Fig. 87.

(a) Forcing of x-momentum at outlet... (b) ... plus forcing of y-momentum at domain sides

(c) ... plus forcing of volume

fraction α, x-, y−, and z-momentum at inlet

Figure 87: Forcing zone arrangements investigated in this work; forcing via Eq. (116) with uref = 0 to damp waves at the outlet
boundary (zone 4), forcing via Eq. (117) with vref = 0 to damp waves at the domain sides but let waves traveling in x-direction
pass through undisturbed (zones 2 and 3), and forcing via Eqs. (118) and (119) with uref and αref according to the far-field wave
solution, to simultaneously generate the desired wave traveling in x-direction and minimize undesired wave reflections at the inlet
boundary (zone 1)

This approach (i.e. forcing zone arrangement (c) from Fig. 87) combines forcing of all governing equations (except the
pressure-correction equation) towards the incidence wave field at the inlet boundary (to simultaneously generate waves
and reduce reflections) with damping (i.e. forcing towards the solution for the calm free surface) of the boundary-normal
velocity component at the outlet18 and side boundaries. Thus the far-field wave passes through zones 2 and 3 undisturbed,
since it has no velocity component in y-direction (i.e. in boundary-normal direction), while waves which were reflected

17For long-crested far-field waves, the efficiency of this approach could be improved by performing the flow simulation without the
wave-disturbing body as 2D simulation; to the best knowledge of the author, this has not yet been investigated.

18The proposed forcing zone arrangement works equivalently when in zone 4 the velocities ui and/or volume fraction α are forced towards
the solution for the calm surface. Thus if there is a current with velocity u∞ superposed on the generated wave uref,wave, then the velocities
in zone 4 should be forced towards uref,zone 4 = u∞, whereas the velocities in zone 1 should be forced towards uref,zone 1 = u∞ + uref,wave.
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at the floating body and travel towards domain sides 2 and 3 are damped. Thus the same reduction of undesired wave
reflections can be obtained as in the approach by Chen et al. (2006), but with half the computational effort.

In some flow solvers, forcing towards an incidence wave field at all vertical domain boundaries as in Chen at al. (2006) or
Vukčević et al. (2016) is not trivial to implement. However, simple forcing zones for wave damping as in the upper two
images in Fig. 87 are comparatively easy to implement. Although less efficient, this approach (forcing zone arrangement
(b) from Fig. 87) can also produce satisfactory results. Consider Fig. 88, where a structure within the domain reflects
waves evenly in all directions. The crests of the reflected waves form a circle. The further the reflections travel, the larger
becomes the circle’s circumference and the smaller becomes the wave power per meter wave crest, since its integral over
the circumference remains constant. Assume that waves are fully damped at all boundaries except at the inlet, where
they are reflected again. If the distance r between the structure and the inlet is sufficiently large, then only a small part
of these re-reflected waves reaches the structure again, as indicated in Fig. 88. For example, require that less than 5%
of the waves reflected at the structure should reach the structure again. Then by relating the structure diameter D to
the wave crest circumference 2πr one obtains D/(2πr) ≤ 0.05, and thus r ≥ 10D/π ≈ 3.2D, so the structure should be
positioned 3.2D away from the inlet. Note though that different body shapes and orientations can produce uneven wave
reflection, which may increase/decrease this distance as discussed in Fig. 126.

Figure 88: Domain with forcing zones (shaded gray) for wave damping at all domain boundaries except for the inlet (left
boundary); reflections at a structure (dark circle) within the domain lead to roughly circular waves (gray lines); most of these will
be damped by the forcing zones, and even of those wave components that are re-reflected at the inlet only a comparatively small
part (marked green) reaches the structure again, given that the distance between structure and inlet is sufficiently large

Further, for some applications forcing at the outlet may suffice. Especially when the body can be considered transparent
(diameter D < 0.1λ), or at least not strongly reflecting, then the influence of undesired wave reflections on the results
will be lower than for the strongly reflecting bodies investigated in the rest of Sect. 7.

In the following, the approaches in Fig. 87 will be investigated to assess the influence of undesired wave reflections for
different forcing zone arrangements.

7.2 Investigation of flow disturbances due to discrepancies between computed flow and reference
solution in 3D-flow simulations with free-surface waves

To investigate the influence of discrepancies between computed flow and reference solution discussed in Sect. 7.1, 3D-flow
simulations are performed of long-crested free-surface wave propagation. Inside the domain there are no wave-disturbing
bodies, so that all flow disturbances that occur can be traced back to the forcing zone arrangement used.

In this section, the simulation domain has dimensions −80 m < x < 140 m, 0 < y < 156 m, −13.104 m < z < 14.976 m.
The coordinate system lies at the calm free surface level (0, 0, 0)T, with x pointing in wave propagation direction and z

pointing upwards as shown in Fig. 89.
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Figure 89: Computational grid with local mesh refinement near the free surface (left), and top view on solution domain (right)
with forcing zones (shaded gray) attached to inlet, outlet, and one side boundary, and forcing of velocities and volume fraction
towards the far-field waves

The wave is generated by forcing velocities and volume fraction towards the far-field wave solution as given in Sect.
2.3 in combination with accordingly prescribing volume fraction and velocities at all vertical domain boundaries, except
for side boundary y = 156 m which is set to a symmetry boundary condition to reduce the total number of cells. At
the top boundary z = 14.976 m atmospheric pressure is prescribed and the bottom boundary z = −13.104 m is set to
a slip wall. The forcing zone thickness is xd = 50 m ≈ 2λ, so that with correct tuning no significant wave reflections
are expected from the theory predictions shown in Fig. 90. As initial condition, volume fraction and velocities in the
whole domain are initialized according to the far-field wave. The wave parameters are (peak) wave period T = 4 s, wave
height H = 3 m, (peak) wavelength λ ≈ 25 m, and thus steepness H/λ ≈ 85% of the maximum steepness. Deep water
conditions apply.

Figure 90: Reflection coefficient CR as a function of forcing strength γ for the wave with period T = 4 s used in this section
according to the theory from Sect. 4.1; at close-to-optimum forcing (γ = 2.5 s−1), wave reflections at the forcing zone should be
negligible

The finite-volume-based commercial flow solver STAR-CCM+ version 11.06.010-R8 from Siemens (formerly CD-adapco)
is used, with settings as in Sect. 7.3. The under-relaxation factor is 0.9 for velocities and volume fraction and 0.4 for
pressure. The domain is discretized using a rectilinear grid with local mesh refinement around the free surface as shown
in Fig. 89. The free surface stays at all times within the region of the finest mesh with ≈ 23 (coarser grid) or 47 (finer
grid) cells per (peak) wavelength and ≈ 10 cells per (significant) wave height. The computational grid, which consists of
≈ 1 · 106 (coarser grid) or ≈ 4 · 106 (finer grid) cells, is shown in Fig. 89. The total simulated time is 60 s ≈ 15T with a
time step of ∆t = T/500. Six iterations are performed per time-step.

First, the reference solution for the forcing will be the linear wave theory solution for the steep wave. Since no flow-
disturbing body is present within the domain, and since the mesh size does not change in horizontal directions, the
correct solution would be a long-crested wave traveling through the domain undisturbed. The linear wave theory was
deliberately chosen as an example for a reference solution that does not fit the flow solution within the domain, since
the flow within the domain will take on a realistic wave shape, which for the given steepness would have a slightly
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different shape and a ca. 11.8% larger wavelength and phase velocity than the linear reference solution. Figure 91 shows
that even for close-to-optimum tuning of the forcing zone parameters, the mismatch between the reference solution and
the computed flow solution produces disturbances within the whole domain. These disturbances were generated by the
forcing zone parallel to the wave propagation direction and seem unaffected by the discretization, or perhaps even more
pronounced on the finer grid. As expected, on the coarse grid an additional loss in wave height is observed. On the finer
grid, this loss is reduced in most domain parts, but remains in the vicinity of the forcing zone due to the cancellation
between reference and computed flow solution. This example highlights that if there is a discrepancy between the
reference solution for the forcing and the actually computed flow within the domain (including effects of discretization
and iteration errors), then the forcing zone at the domain sides can produce significant disturbances, which are radiated
as undesired waves into the solution domain.

coarser discretization finer discretization

Figure 91: Free-surface elevation in solution domain at time t = 60 s for forcing towards linear wave theory with close-to-optimum
forcing strength γ; for coarser (≈ 1 · 106 cells) and finer discretization (≈ 4 · 106 cells)

Figure 92 shows that if the forcing zone parameters are set to theoretically ineffective values, these also produce unsat-
isfactory forcing in the flow simulations. If the source terms are too weak, then even close to the domain boundaries the
reference solution is not maintained (Fig. 92 top left), and reflections at the outlet boundary produce a partial standing
wave. For too large source terms, the reference solution is enforced nearly up to the entrance to the forcing zone, so
reflections occur at the entrance to the forcing zone and disturbances reach even further into the solution domain (Fig.
92 bottom).

To investigate to which extent these disturbances will be present if a more accurate reference solution is used, the
simulations were repeated using Fenton’s (1985) 5th-order Stokes wave theory to obtain a highly accurate prediction
of the wave propagation for the case that no discretization or iteration errors are present. Figure 93 shows that with
this setup, the discrepancy between reference and computed flow solution is smaller; yet even for the fine discretization,
flow disturbances are clearly visible (cf. the ‘zig-zag’ shape of the wave crests), although especially on the finer grid
the discrepancy between theoretical and computed wave phases is rather small. This error is expected to reduce when
refining the mesh. To investigate this, the simulation is repeated on a further refined discretization, with 95 cells per
wavelength λ, and 20 cells per wave height H, and 666 time-steps per period T . The resulting mesh contains 14.6 · 106

cells and is shown in Fig. 94. Due to the comparatively fine discretization, the parallel computation took several weeks
to complete on 24 intel E5-2680V3 processors. Figure 95 shows that further refining the discretization decreases the flow
disturbances which were clearly visible on the coarser discretizations (cf. Fig. 93). However, Fig. 96 illustrates that flow
disturbances are still present in the results, although their magnitude has been reduced so far that their influence would
be considered negligible for typical flow simulations with bodies in waves. These findings demonstrate that when the
waves travel tangential to a forcing zone with forcing of all velocities ui and volume fraction α towards the far-field wave
solution, then finer discretizations than commonly used can be required to reduce the flow disturbances which occur due
to the mismatch between computed flow and reference solution.
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too weak forcing (γ = 0.1 s−1) close-to-optimum forcing (γ = 1 s−1)

too strong forcing (γ = 100 s−1)

Figure 92: Free-surface elevation in solution domain at time t = 60 s for forcing towards linear wave theory solution at all domain
boundaries for different values of forcing strength γ

coarser discretization finer discretization

Figure 93: Free-surface elevation in solution domain at time t = 60 s for forcing towards 5th-order Stokes wave theory with
close-to-optimum forcing strength γ; for coarser (1 · 106 cells) and finer discretization (4 · 106 cells)

73



Figure 94: Mesh section in the vicinity of the free surface (black line) for further refined discretization (14.6 · 106 cells)

Figure 95: Free-surface elevation in solution domain at time t = 60 s for forcing towards 5th-order Stokes wave theory with
close-to-optimum forcing strength γ and further refined discretization (14.6 · 106 cells)

Figure 96: As Fig. 95, except for side view and uniformly colored free surface, to illustrate that flow disturbances are still present
even with the further refined discretization (14.6 · 106 cells)
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Another case when theoretical and computed solutions are expected to show considerable discrepancies is when simulating
irregular waves as shown in Fig. 97 left.

forcing towards linear theory damping boundary-normal velocities at outlet and sides

Figure 97: Free-surface elevation in solution domain at time t = 40 s for forcing towards linear wave theory solution for an
irregular wave as a superposition of linear wave components (left) compared to employing forcing zone arrangement (b) from Fig.
87, i.e. forcing only boundary-normal velocities towards zero at the outlet and domain sides (right); despite the comparatively
coarse discretization, forcing zone arrangement (b) from Sect. 7.1 (right) does not create flow disturbances

For the proposed forcing zone arrangement (c) from Fig. 87 in Sect. 7.1, such errors due to discrepancies between
computed flow and reference solution do not occur as demonstrated in Sect. 7.4.

7.3 Simulation setup

In the flow simulations in Sects. 7.4 and 7.5, long-crested free-surface waves are created and propagate in positive
x-direction. The waves have height H = 2 m, period T = 5 s, wavelength λ ≈ 39.6 m, and are moderately nonlinear
(steepness H/λ is ≈ 36% of maximum steepness). The water depth is h ≈ 0.41λ (intermediate-water conditions), which
is close to deep-water conditions, i.e. the difference in wavelength to the deep-water (h > 0.5λ) case is only ≈ 1%.

Forcing of horizontal momentum Forcing of volume fraction α, horizontal and vertical momentum

Figure 98: Theory prediction for reflection coefficient CR as a function of forcing strength γ for the considered wave (period
T = 5 s, wavelength λ ≈ 39.6 m) for zone thickness xd = 1λ, 2λ based on Sect. 4; the optimum value of γ depends on to which
governing equations forcing source terms are introduced

The solution domain is box-shaped with dimensions 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, and −0.41λ ≤ z ≤ 0.46λ as shown in Fig.
99. Unless mentioned otherwise simulations are performed in a small domain ( Lx = 3.55λ, Ly = 3.94λ). To investigate
the influence of the domain size, some simulations are performed in a larger domain (Lx = 7.09λ, Ly = 7.88λ). The
origin of the coordinate system lies on the calm free-surface level at the inlet boundary as shown in Figs. 99 and 100. At
the inlet boundary x = 0, velocities and volume fraction according to Fenton’s (1985) 5th-order Stokes wave theory are
prescribed to generate the wave. At the outlet boundary x = Lx, the hydrostatic pressure and volume fraction for the
calm water-surface solution is prescribed. All remaining boundaries are no-slip walls. As initial condition, the volume
fraction and velocities in the solution domain are prescribed according to Fenton’s (1985) 5th-order Stokes wave theory
to reduce the simulation time, as shown in Fig. 99 middle.
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Figure 99: Top (left) and side view (middle, right) on simulation domain with floating pontoon (left, middle) or cylinder (right)
in waves and forcing zones 1 to 4 (shaded gray), with forcing of x-momentum (zone 4), y-momentum (zones 2 and 3) and all
momentum plus volume fraction (zone 1)

Figure 100: Slice through the computational grid at y ≈ 1.7λ with pontoon (gray)

Positioned within the domain is either a box-shaped semi-submerged pontoon or a vertical cylinder, as depicted in
Fig. 99. The structures are placed slightly off-center so that undesired wave reflections at the domain sides will be
asymmetrical.

The pontoon is a rectangular cuboid with side lengths lx = ly = 0.985λ in horizontal direction, and lz = 0.364λ in
vertical direction. Initially, its center is located at x ≈ 1.71λ, y ≈ 1.94λ, z = 0 (small domain) or x ≈ 3.48λ, y ≈ 3.91λ,
z = 0 (large domain). The angle between the normal vectors of the inlet boundary and of the pontoon boundary facing
the inlet is 25 deg. The pontoon weighs 1.2168 · 107 kg, has a draft of 0.202λ and uniform density. In some simulations
the pontoon is held fixed (0DOF), in others it is allowed to move with 6 degrees of freedom (6DOF), i.e. surge, sway,
heave, roll, pitch, and yaw.

The cylinder is surface-piercing, extends from domain bottom to top, has a diameter of D = 0.91λ, and its center is
located at x = 1.47λ, y = 1.72λ. The cylinder is held fixed (0DOF).

Forcing zones 1 to 4 from Fig. 87 have different source terms:

Forcing zone 4 damps waves traveling towards the outlet boundary by applying

qx = −γb(x)u , (116)

in Eq. (20) for the x-momentum.

Forcing zones 2 and 3 damp waves traveling towards the domain sides by applying

qy = −γb(x)v , (117)

in Eq. (20) for the y-momentum.

Forcing zone 1 forces the waves towards the incidence wave field by applying

qx = γ

4 b(x)(uref − u) , qy = γ

4 b(x)(vref − v) ,

qz = γ

4 b(x)(wref − w) , (118)

in Eq. (20) for the x-, y-, and z-momentum, combined with

qα = γ

4 b(x)(αref − α) , (119)
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in Eq. (21) with b(x) according to Eq. (9), forcing strength γ, Cartesian velocities v = (u, v, w)T, volume fraction α, and
uref , vref , wref , and αref being the corresponding quantities from the far-field wave according to 5th-order Stokes wave
theory. The factor 1/4 in Eqs. (118) and (119) is necessary to obtain forcing of similar strength when applying source
terms in 4 governing equations simultaneously as compared to applying forcing only in a single governing equation as
described in Sect. 4.1.2.

Simulations are performed for the different forcing zone arrangements shown in Fig. 87:

(a) Forcing zone 4: damp x-momentum at the outlet boundary via Eq. (116); even when optimally tuned, wave
reflections at the inlet and at the domain sides will be present

(b) Forcing zones 2, 3, and 4: damp x-momentum at the outlet boundary via Eq. (116) and y-momentum at the
domain sides via Eq. (117); even when optimally tuned, wave reflections at the inlet will be present

(c) Forcing zones 1, 2, 3, and 4: damp x-momentum at the outlet boundary via Eq. (116) and y-momentum at the
domain sides via Eq. (117) and force towards the incidence wave at the inlet boundary via Eqs. (118) and (119);
when optimally tuned, wave reflections at all domain boundaries are minimized

Unless mentioned otherwise, the forcing zone thickness is xd = 1λ. Simulations are performed for different forcing
strengths (0.0 s−1 ≤ γ ≤ 131.2 s−1). The results are compared to the theory predictions for forcing zone behavior shown
in Fig. 98. Simulations are performed without or with additional turbulence modeling using the standard k-ω-model
from Wilcox (1993); where no turbulence modeling is mentioned in the text, the flow is considered laminar and no
turbulence model is used.

For the flow simulations, the finite-volume-based commercial flow solver STAR-CCM+ version 11.06.010-R8 from Siemens
(formerly CD-adapco) is used. The volume of fluid (VOF) method accounts for the two phases, liquid water and gaseous
air, using the high resolution interface capturing scheme (HRIC) as given in Muzaferija and Perić (1999). All discretization
approximations are of second order. The linearized equation system is solved by the iterative STAR-CCM+ implicit
unsteady segregated solver, using an algebraic multigrid method with Gauss-Seidel relaxation scheme, V-cycles for
pressure and volume fraction of water, and flexible cycles for velocity calculation. The under-relaxation factor is 0.9 for
velocities and volume fraction and 0.4 for pressure. Eight iterations are performed per time-step; one iteration consists
of solving the governing equations for the velocity components, the pressure-correction equation (using the SIMPLE
method for collocated grids to obtain the pressure values and to correct the velocities) and the transport equation for
the volume fraction of water. Further information on the discretization of and solvers for the governing equations can
be found in Ferziger and Perić (2002) or the STAR-CCM+ software manual.

The domain is discretized using a rectilinear grid with local mesh refinement around the free surface. The free surface
stays at all times within the region of the finest mesh with > 30 cells per wavelength and > 6 cells per wave height. The
computational grid, which consists of ≈ 0.6 · 106 cells for the small domain or ≈ 2.2 · 106 cells for the large domain, is
shown in Fig. 100. The discretization was chosen as roughly the coarsest discretization that would be used in engineering
practice. The total simulated time is 60 s = 12T with a time step of ∆t = T/500.

In finite-volume-based flow solvers, discretization errors and iteration errors usually produce a certain amount of numerical
diffusion and dispersion; thus the wave’s height and phase change the further the wave travels through the domain19

(see e.g. Larsen et al., 2019; Perić and Abdel-Maksoud, 2015b). Since the wave forces F on the structure are F ∝ H2,
the change in wave height H has to be compensated to obtain correct results. For this, the change in wave height was
determined via computationally inexpensive 2D-flow simulations of wave propagation without the structure using similar
discretization (mesh size, time step, etc.) as in the 3D-flow simulations. The loss of wave height was ≈ 0.7% for the
small domain and ≈ 3.5% for the large domain.

To obtain the correct wave height at the structure, possible approaches would be to perform the simulations with a
considerably finer discretization, which increases the computational effort, or to perform the simulations with corre-
spondingly increased wave height at the inlet. In the present work, an alternative approach is taken: Since the loss of
wave height is comparatively small, the forces are first-order-scaled as

F = Fsimulated · (H/Hsimulated)2 , (120)

where Fsimulated is the force on the structure obtained from the simulation, Hsimulated is the wave height that occurs in
19This effect is independent of the choice of boundary conditions. Whether or not forcing is used does not influence the change in wave

parameters when the wave travels a certain distance within the solution domain.
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the simulation at the location of the structure center, H is the intended wave height, and F is the approximation of the
force on the structure for the intended wave height H.

7.4 Results for proposed forcing zone arrangement for 3D-flows with strongly reflecting bodies
in free-surface waves

Flow simulations are performed for the pontoon as described in Sect. 7.3. First, simulations are performed for the small
domain with the pontoon held in fixed position (0DOF). Forcing zone arrangement (c) from Fig. 87 is used, i.e. wave
damping at outlet and domain sides combined with forcing towards the incidence wave at the inlet boundary. The forcing
zone thickness is xd = 1λ.

Figures 101 and 102 show that the optimum value for forcing strength (here: γ ≈ 4.6 s−1) is well predicted by theory
(cf. Fig. 98). For close-to-optimum forcing strength γ, a periodic solution is obtained as expected. The more γ deviates
from its optimum value, the stronger are influences of undesired wave reflections visible in the results: the solution can
become aperiodic and the forces on the body can increase due to the accumulation of reflected wave energy in the solution
domain. This illustrates the necessity of tuning the forcing zone parameters.

To assess the validity of the presented results, a grid- and time-step-dependence study was performed for the small domain
case. The mesh size in all directions was changed by factor 1/

√
2 (finer grid) and by factor

√
2 (coarse grid). Simulations

were performed with time-steps ∆t = T
500 (coarse grid), ∆t = T√

2·500 ≈ T
707 (original, medium grid), and ∆t = T

1000 (fine
grid). For better comparison, Fig. 103 shows the results for optimum forcing setup without any scaling.

Both medium and fine grid produced the desired wave. On the coarse grid, the wave height diminished until it reached
the pontoon, resulting in significantly lower forces (up to 8.6% lower force amplitudes) and a slight phase shift due to
the change in wave steepness. Medium and fine grid results are nearly identical, with a difference in maximum force
amplitude of < 0.2%, and correspond closely to the results in Fig. 101, which were performed on the medium grid but
with the coarse time step ∆t = T

500 . Thus the loss in wave height for the coarse grid can be mainly attributed to the
mesh size. Based on these results, the medium grid was considered sufficient for the present purposes.

too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 101: Force components in x- (left) and y-direction (right) integrated over pontoon surface as a function of time; for small
domain with zone thickness xd = 1λ and forcing zone arrangement (c); for close-to-optimum forcing strength (γopt ≈ 4.6 s−1),
a periodic solution is obtained as expected; for too weak/strong forcing strength γ, undesired reflections influence the results, so
forces can increase and become aperiodic
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too weak forcing (γ < γopt):

close-to-optimum forcing (γ ≈ γopt):

too strong forcing (γ > γopt):

Figure 102: Force amplitude as a function of frequency for the results from Fig. 101; for x- (left) and y-component (right) of the
forces integrated over the pontoon; the forces increase the further γ deviates from its optimum, which indicates the accumulation
of undesired wave reflections

Figure 103: As Fig. 101 except for coarse, medium, and fine grids and time-steps with close-to-optimum forcing (γ = 4.6 s−1)
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Figure 104 shows that repeating the simulations from Fig. 101 with turbulence modeling using the standard k-ω-model
has no significant influence on the results. Thus the performance of the forcing zones can be considered independent of
the use of turbulence models.

too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 104: As Fig. 101, except with additional k-ω-turbulence modeling

To investigate the influence of the domain size and the forcing zone thickness, the simulations are repeated for the large
domain with increased zone thickness xd = 2λ. Again the optimum setting for γ is satisfactorily predicted by the theory
as Figs. 105 and 106 show. Further, the range of γ-values, for which undesired wave reflections are reduced satisfactorily,
widens as predicted.

too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 105: As Fig. 101, except for larger zone thickness xd = 2λ
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too weak forcing (γ < γopt):

close-to-optimum forcing (γ ≈ γopt):

too strong forcing (γ > γopt):

Figure 106: Force amplitude as a function of frequency for Fig. 105; for x- (left) and y-component (right) of the forces integrated
over the pontoon

For close-to-optimum forcing strength γ, the differences between the results for the large and the small domain are
negligible as Figs. 107 to 109 show. This indicates that undesired wave reflections were satisfactorily reduced on both
the small and the large domain. Thus, as expected from the findings in Sects. 5.4 to 5.6, the 1D-theory from Sect. 4.1
can be considered sufficiently accurate for tuning forcing zones in 3D-flow simulations with free-surface waves.

Figure 107: Force components in x- (left) and y-direction (right) integrated over the pontoon surface as a function of time; for
large domain with zone thickness xd = 2λ and for small domain with zone thickness xd = 1λ, both with forcing zone arrangement
(c); the results are nearly identical as Fig. 108 confirms

close-to-optimum forcing (γ ≈ γopt):

Figure 108: Force amplitude as a function of frequency from FFT of Fig. 107; for x- (left) and y-component (right) of the forces
integrated over the pontoon; the largest force amplitude occurs at frequency f = 0.2 Hz; the largest force amplitude on the small
(xd = 1λ) and large domain (xd = 2λ) differ by less than 0.7% (x-component) and 1.4% (y-component), and the average difference
over all force amplitudes per plot is less than 1.2% (x-component) and 1.1% (y-component) in terms of the corresponding maximum
force amplitude; thus with correct tuning of the forcing zones, satisfactory results can be obtained already with the small domain
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large domain small domain
zone thickness xd = 2λ zone thickness xd = 1λ

Figure 109: Free-surface elevation at the end of the simulation; the results for the large domain with larger zone thickness
(xd = 2λ) and the small domain with smaller zone thickness (xd = 1λ) are nearly identical in the vicinity of the pontoon; therefore
correct tuning of forcing zones enables the use of smaller domains and thus can decrease the computational effort substantially

Therefore the main finding of this section is that with correct tuning of the forcing zones, satisfactory results can be
obtained with smaller domains and thinner forcing zones than commonly used. In the present case, using the small
instead of the large domain in Fig. 109 provided similar results, but reduced the computational effort by more than
72%.

7.5 Results for other forcing zone arrangements in 3D-flows with strongly reflecting bodies in
free-surface waves

To investigate the influence of undesired wave reflections at the inlet boundary, the above simulations are repeated with
forcing zone arrangement (b) from Fig. 87, i.e. with wave damping at outlet and domain sides, and full reflections at
the inlet boundary.

Figures 110 and 111 show that the optimum tuning of forcing strength γ is again well predicted by theory.

Figure 112 shows that, despite the small domain size and full reflections at the inlet boundary, the results differ compar-
atively little to the previous ones from forcing arrangement (c) (Figs. 101 and 105).

In Sect. 7.4 with forcing arrangement (c), increasing domain size and forcing zone thickness xd did not significantly
change the results; this indicates that undesired wave reflections were satisfactorily minimized.

For forcing arrangement (b) however, increasing domain size and forcing zone thickness xd changed the results. Figure
113 shows that on the larger domain, the differences to the results from forcing arrangement (c) are < 1.8%, whereas
they were < 5.4% on the smaller domain. This indicates that increasing the distance to the inlet decreased the influence
of undesired wave reflections at the inlet, which was expected from the discussion on Fig. 88. However, the close-up
in Fig. 114 reveals that the force amplitudes fluctuate significantly with forcing arrangement (b), which indicates that
forcing arrangement (c) is indeed more accurate.

On the whole though, the errors due to undesired wave reflections at the inlet with forcing arrangement (b) were
comparatively small. This indicates that, for some 3D-flow problems with strongly reflecting bodies in free-surface waves
(such as the present case), also with forcing zone arrangement (b) acceptable results can be obtained.

82



too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 110: Force components in x- (left) and y-direction (right) integrated over the pontoon surface as a function of time; for
small domain with layer thickness xd = 1λ and forcing zone arrangement (b)

too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 111: As Fig. 110, except for increased zone thickness xd = 2λ
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Figure 112: Force components in x- (left) and y-direction (right) integrated over the pontoon surface as a function of time; for
small domain with zone thickness xd = 1λ with forcing zone arrangement (b) (‘velocity inlet’) and large domain with zone thickness
xd = 2λ with forcing zone arrangement (c) (‘forcing at inlet’) at close-to-optimum forcing strength (γ = 4.6 s−1); an FFT-analysis
of the above curves shows that for forcing zone arrangements (b) and (c) the results for the force amplitudes differ by < 5.4% (Fx,p)
and < 3.3% (Fy,p) in terms of the maximum force amplitude; thus the difference between the simulations with (b) and without (c)
undesired wave reflections at the inlet boundary is comparatively small for this case

Figure 113: Force components in x- (left) and y-direction (right) integrated over the pontoon surface as a function of time; for
large domain with zone thickness xd = 2λ; with forcing zone arrangement (b) (‘velocity inlet’) and (c) (‘forcing at inlet’) at close-
to-optimum forcing strength (γ = 4.6 s−1); an FFT-analysis of the above curves shows that for forcing zone arrangements (b) and
(c) the results for the force amplitudes differ by < 0.9% (Fx,p) and < 1.8% (Fy,p) in terms of the maximum force amplitude; thus
the difference between the simulations with (b) and without (c) undesired wave reflections at the inlet boundary is comparatively
small for this case

Figure 114: Close-up of left image from Fig. 113; the amplitude of Fx,p varies ca. 10% without (forcing arrangement (b), ‘velocity
inlet’) and only ca. 2% with (forcing arrangement (c), ‘forcing at inlet’) minimization of undesired wave reflections at the inlet
boundary
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Figure 115 shows the results for repeating the simulations with the small domain with forcing zone arrangement (a), i.e.
wave damping at the outlet in zone 4 and full reflections at the domain sides and at the inlet. The forces are aperiodic
and contain significant errors due to undesired wave reflections at the domain sides.

Thus forcing zone arrangement (a) is unacceptable for simulations with strongly reflecting bodies in waves. Forcing zones
should be used at least at the domain sides and at the outlet boundary.

Figure 115: Force components in x- (left) and y-direction (right) integrated over the pontoon surface as a function of time; without
(forcing arrangement (a), small domain, zone thickness xd = 1λ) and with (forcing arrangement (c)), large domain, zone thickness
xd = 2λ) minimization of undesired wave reflections at inlet and side boundaries, for close-to-optimum forcing (γ = 4.6 s−1); an
FFT-analysis of the above curves shows that for forcing zone arrangements (a) and (c) the results for the force amplitudes differ
by < 5.7% (Fx,p) and < 41% (Fy,p) in terms of the maximum force amplitude; thus when waves are only damped near the outlet
boundary but fully reflected at the other boundaries, undesired wave reflections can have an unacceptably strong influence on the
results

The findings from Sect. 6.7 suggest that tuning the forcing zone parameters to the peak wave period and using a
slightly larger zone thickness provides a satisfactory reduction of undesired wave reflections for irregular waves. To
investigate this, the simulations in the small domain with forcing zone arrangement (b) are repeated with JONSWAP
and Pierson-Moskowitz wave spectra (see e.g. DNV, 2014; Hasselmann et al., 1973; Lloyd, 1998).

As discussed in previous sections, flow simulations with irregular waves are especially challenging. First, discretization
and iteration errors are different for each wave component, so the wave will propagate differently in the simulation
compared to the exact solution. Second, for realistic wave steepnesses linear superposition does not hold, so the wave
propagation cannot be exactly described by analytical wave theories; while the correct velocities, pressures and elevations
over a given distance of wave propagation may be predicted numerically e.g. by a higher-order nonlinear potential or
spectral method as in Gatin et al. (2017), such codes are at the time of writing not always at hand and introducing the
results into commercial flow solvers is not always possible or may at least be cumbersome.

Thus for the sake of simplicity, forcing arrangement (b) was used (i.e no forcing at the inlet boundary), since in the
above investigations for the given configuration the influence of wave reflections at the inlet was found to be acceptably
small (cf. Fig. 112). The significant wave height is Hs = H = 3 m and the peak wave period is Tpeak = T = 5 s
and an irregular wave is prescribed at the inlet by superposition of 200 linear wave components. The zone thickness is
xd = 1λpeak = 39.6 m as before; the forcing zone thickness was not increased since the original thickness in the previous
simulations was already slightly larger than theoretically required.

Figures 116 and 119 indicate that both for Pierson-Moskowitz- and JONSWAP-spectrum, the theory predicts the op-
timum forcing strength (γ ≈ 4.6 s−1). As before, the differences in the resulting forces are smallest when the forcing
strength γ is selected close to its optimum. As previous sections suggest, these differences could be further reduced by
increasing the zone thickness and by using forcing arrangement (c) to minimize undesired wave reflections at the inlet
boundary.
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too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 116: As Fig. 110, except with wave generation based on the Pierson-Moskowitz spectrum

too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 117: FFT-analysis of the curves from Fig. 116; the force amplitudes in x- (left) and y-direction (right) at the peak
frequency fpeak = 0.2 Hz differ by < 10% and < 18% (too weak forcing), < 7% and < 3% (close-to-optimum forcing), < 69% and
< 28% (too strong forcing)
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too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 118: As Fig. 110, except with wave generation based on the JONSWAP spectrum

too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 119: FFT-analysis of the curves from Fig. 118; the force amplitudes in x- (left) and y-direction (right) at the peak
frequency fpeak = 0.2 Hz differ by < 119% and < 94% (too weak forcing), < 18% and < 5% (close-to-optimum forcing), < 65%
and < 9% (too strong forcing)
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The simulations with the pontoon held in a fixed position in the small domain with forcing zone arrangement (c) were
repeated using an overset mesh with the pontoon in 6DOF-motion. Figures 120 to 122 show that the choice of forcing
zone parameters affects the results as before. When forcing strength γ is close to its optimum value, the motions of
the platform show smaller differences, which become larger the further γ deviates from its optimum value; note that
for too strong damping, where reflection occurs at the entrance to the damping zone, the reflections reach the structure
sooner (Fig. 121, bottom image) than for weak damping, where the reflections occur mainly at the domain boundaries.
Therefore also the motions of the pontoon are strongly influenced by the forcing zone setup.

too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 120: As Fig. 101, except that the pontoon moves unrestrained with six degrees of freedom (6DOF)

too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 121: Motion in x-direction (left) and rotation around y-axis (right) of the pontoon from Fig. 120 as a function of time
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too weak forcing (γ < γopt):

close-to-optimum forcing (γ ≈ γopt):

too strong forcing (γ > γopt):

Figure 122: Force amplitude as a function of frequency for Fig. 120; for x- (left) and y-component (right) of the forces integrated
over the pontoon floating with six degrees of freedom

In the light of the considerations from Sect. 7.1 it first seemed somewhat surprising that also forcing zone arrangement
(b) provided acceptable results in Figs. 110 to 113. With the strongly reflecting pontoon placed so close to the fully
reflecting inlet boundary, a stronger influence of undesired reflections could have been expected. The question therefore
arose whether forcing zone arrangement (b) can be recommended in general, or whether this depends on the reflecting
body and its orientation within the domain?

To answer this question, simulations in the small domain and forcing zone arrangements (b) and (c) were repeated with
a fixed cylinder placed within the domain instead of the pontoon, as described in Sect. 7.3. Figure 99 shows the cylinder
geometry and surface elevation in the solution domain.

As before, theory predicts the optimum forcing setup well as shown in Fig. 123 for forcing zone arrangement (b).
However, repeating the simulations with forcing zone arrangement (c) in Fig. 124 shows large differences between the
results for forcing arrangements (b) and (c) at optimum parameter settings; the maximum force amplitudes differ by
more than > 21%.

That forcing arrangement (c) produces the correct solution is verified by repeating the simulation in the large domain
with thicker forcing zone (xd = 2λ). Figure 125 shows that the results for forcing arrangement (c) in small and large
domain are nearly identical, indicating that undesired wave reflections were satisfactorily minimized.

This demonstrates that, whereas the pontoon in its 25 deg-position reflected waves primarily sideways as indicated in
Fig. 126, the cylinder reflected waves more evenly in all directions; thus more undesired wave reflections from the inlet
reached the cylinder. Therefore the investigated pontoon simulations are an example for a case when forcing arrangement
(b) can lead to acceptable results, while the cylinder case shows that this does not hold generally, but rather depends
on the directional reflection characteristics of the body in waves.

Thus it is generally recommended to use forcing arrangement (c). Arrangement (b) may be used if the body is only
weakly reflecting (or even transparent), or if it is strongly reflecting but reflects waves mainly sideways, so that reflections
at the inlet are mostly re-reflected towards the damping zones at domain sides or outlet and only insignificantly towards
the body in waves.

89



too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 123: Force components in x- (left) and y-direction (right) integrated over the cylinder surface as a function of time; in
small domain with zone thickness xd = 1λ for forcing zone arrangement (b)

too weak forcing (γ < γopt)

close-to-optimum forcing (γ ≈ γopt)

too strong forcing (γ > γopt)

Figure 124: Force components in x- (left) and y-direction (right) integrated over the cylinder surface as a function of time; in
small domain with zone thickness xd = 1λ for forcing zone arrangement (c)
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Figure 125: Left: as Fig. 123 at close-to-optimum forcing strength γ for forcing arrangement (b), compared to repeating the
simulation with forcing zone arrangement (c) in small and large domain; right: FFT-analysis of the curves in the left plot; for forcing
zone arrangement (c), the small and large domain results for the force amplitudes differ by < 1.1% in terms of the maximum force
amplitude; the difference in force amplitudes between forcing zone arrangements (b) and (c) are < 22% in terms of the maximum
force amplitude from forcing zone arrangement (c); thus forcing zone arrangement (b) contains significant errors due to undesired
wave reflection at the inlet boundary

Figure 126: Sketched paths of waves reflected at the pontoon with forcing arrangement (b); although the inlet boundary reflects
the waves, they mostly pass into the forcing zones where they are damped without encountering the pontoon again; this is an
example where forcing arrangement (b) can be used with good results; however, if the pontoon was turned so that its sides are
parallel to the domain sides, or if the pontoon were replaced by the cylinder from Fig. 99, then undesired reflections at the inlet
would travel back towards the body in the domain and would cause significant errors as the results from Fig. 125 show
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8 Relaxation zones for free-surface waves

Key findings

• Relaxation zones simultaneously blend-out the governing equations and blend-in a specified reference solution

• The theory from Sect. 4.2 satisfactorily predicts reflection coefficients CR for 2D- and 3D-flow simulations with
free-surface waves

• When correctly tuned, relaxation zones and forcing zones produce similar reflection coefficients CR

• Tuning of the relaxation zones enables the use of smaller domains and thus reduces the computational effort

Sections 8.2 to 8.7 demonstrate that the theory from Sect. 4.2 satisfactorily predicts reflection coefficients for relaxation
zones in flow simulations with free-surface waves. Simulations are performed based on the setup in Sect. 8.1 with two
different flow solvers, Siemens STAR-CCM+ and the foam-extend Naval Hydro Pack. The validation is performed
via parameter studies for different blending functions b(x), zone thicknesses xd, source term magnitudes and reference
solutions. Simulations are performed for long-crested waves under shallow-water and deep-water conditions in 2D and
for deep-water conditions in 3D with an additional strongly reflecting body within the domain. Based on these findings,
recommendations for setting up relaxation zones are given.

When the relaxation zone was tuned using the theory, in all simulations from Sect. 8 held CR,sim − CR,theory < 3.4%,
with reflection coefficients from simulation results CR,sim and the corresponding theory predictions CR,theory. Thus the
theory predictions were considered to be of satisfactory accuracy for engineering practice.

8.1 Simulation setup

For the 2D-simulations in Sects. 8.2 to 8.6, the solution domain is box-shaped as seen in Fig. 127. The origin of
the coordinate system lies at the calm free-surface level, with z pointing upwards and x pointing in wave propagation
direction. The domain dimensions are 0 m ≤ x ≤ 24 m, −2 m ≤ z ≤ 0.24 m for the simulations with deep water conditions
(water depth h ≈ 0.5λ) and 0 m ≤ x ≤ 24 m, −0.2 m ≤ z ≤ 0.01 m for the simulations with shallow water conditions
(h ≈ 0.05λ). The simulations are performed as quasi-2D, i.e. with only one layer of cells in y-direction and the y-normal
boundaries set to symmetry planes. Waves are generated by prescribing volume fraction and velocities according to
Rienecker and Fenton’s (1981) stream function wave theory (64th order) at the velocity inlet x = 0. The deep-water
cases had wave period T = 1.6 s, wavelength λ ≈ 4 m and wave height H = 0.16 m. The shallow-water cases had wave
period T = 2.893 s, wavelength λ ≈ 4 m and wave height H = 0.009 m. The waves travel in positive x-direction towards
a relaxation zone attached to the pressure outlet boundary at x = 24 m. At the outlet, pressure and volume fraction are
prescribed according to the calm free-surface solution.

The governing equations are Eqs. (23) to (24). In the relaxation zone, the waves are blended towards a reference
solution to reduce undesired wave reflections. The relaxation zone parameters were tuned as described in Sect. 4.2.
Simulations were performed for different values of zone thickness xd, different blending functions b(x), and different
reference solutions. The bottom boundary had a slip-wall boundary condition and at the top boundary atmospheric
pressure was prescribed.

Figure 127: Solution domain filled with air (white) and water (light gray, water depth h), velocity inlet at x = 0 and relaxation
zone (shaded dark gray) with thickness xd; three fluid particles (black dots) are sketched with their particle paths (circles) and
velocity vectors (arrows)
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The simulations in this work were performed using the open-source solver foam-extend version 4.1, a community driven
fork of the solver OpenFOAM (Weller et al., 1998), combined with the commercial software Naval Hydro Pack. The
governing equations are Eqs. (23) to (24), so no turbulence modeling was used. All approximations were of second order.
The solvers were conjugate gradient with Incomplete Cholesky preconditioner for pressures, bi-conjugate gradient with
ILU0 preconditioner for volume fraction and velocities and the PIMPLE scheme was used with two pressure correction
steps per each of the two nonlinear iterations in a given time-step. No under-relaxation was used. In all simulations,
the Courant number C = |v|∆t/∆x was well below 0.4. Further information on the discretization of and solvers for the
governing equations can be found in Ferziger and Perić (2002) and the flow solver manuals.

In Sect. 8.4, selected simulations were repeated with the commercial flow solver STAR-CCM+ version 10.6 by Siemens
(formerly CD-adapco), using the grid and simulation setup from Sect. 6.1, except that the forcing zones in STAR-CCM+
were tuned via Eqs. (75) to (77) in such a way that they mimic the behavior of the relaxation zones from the Naval
Hydro Pack.

Figure 128 shows the rectilinear grid with local mesh refinement. The free surface stays at all times within the zone with
the finest mesh, with 25 (coarse grid), 35 (medium grid), or 50 (fine grid) cells per wavelength λ, and 5 (coarse grid),
7 (medium grid), or 10 (fine grid) cells per wave height H. The grid consists of 12 000 (coarse grid), 27 000 (medium
grid), or 48 000 (fine grid) cells. The time-step was 0.01 s = T/160 (coarse grid), 0.0071 s = T/226 (medium grid), or
0.005 s = T/320 (fine grid). The reflection coefficient CR is calculated via Eq. (34).

Figure 128: Mesh for 2D simulations with coarse mesh; far view (top) and close-up (bottom); the color denotes the volume
fraction (red: water, blue: air)

For the 3D-simulations in Sect. 8.7, the setup is identical to the deep-water 2D simulations, with the following exceptions.
The domain has dimensions 0 m ≤ x ≤ 10 m, 0 m ≤ y ≤ 10 m, −5 m ≤ z ≤ 5 m, so the water depth is h = 5 m as seen
in Fig. 129. In the center of the domain, a semi-submerged pontoon with dimensions 1 m × 1 m × 1 m is held in fixed
position. It has a draft of D = 0.5 m and slip wall boundary conditions. The wave has period T = 1.6 s, wave height
H = 0.4 m, wavelength λ ≈ 4.3 m and steepness H/λ ≈ 71% of the breaking steepness.

The free surface is discretized by 12.9 (coarse grid), 25.8 (medium grid), or 38.7 (fine grid) cells per wavelength λ and 2
(coarse), 4 (medium), or 6 cells per wave height H as shown in Fig. 129. Per wave period 160 (coarse grid), 225 (medium
grid), or 320 (fine grid) time steps were used.

The relaxation zone thickness was xd = 3 m ≈ 0.7λ and power blending according to Eq. (6) with exponent n = 0.46
was used. Simulations are performed for different relaxation parameters 0.001 s ≤ τ ≤ 1000 s. This setup was expected
to be close to the minimum domain size for the simulation of such a strongly reflecting body.
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Figure 129: Fine mesh for 3D simulations with initialized volume fraction

8.2 Discretization dependence study for using relaxation zones to damp waves

First, the relaxation zone is set up to damp the waves by setting the hydrostatic solution for the calm free surface as
reference solution in Eqs. (23) to (24) using the 2D-flow simulation setup from Sect. 8.1. Exponential blending via Eq.
(10) with coefficient n = 3.5 is used, which is the default setting in the Naval Hydro Pack. Simulations are performed
for different values of zone thickness xd and relaxation parameter τ .

Figure 130 shows that the theory from Sect. 4.1.2 predicts the optimum parameter settings reasonably well, and the
theoretical reflection coefficients CR can with good approximation be taken as an upper bound for the recorded values.
For the investigated setup, the Naval Hydro Pack default value of τ (i.e. τ = ∆t; here time step ∆t = 0.005 s) is
comparatively close to the optimum value of ca. 0.1 s ≲ τ ≲ 0.5 s, though not as close as the theory predictions. Further,
with the Naval Hydro Pack default setting τ = ∆t the reflection coefficients will increase for finer time steps, since Sect.
4.4 showed that the reflection behavior of relaxation zones can be considered independent of the discretization, which is
supported by the results in Fig. 131. For example for a time step of ∆t ≲ 1 · 10−3 s, the same reduction of undesired
wave reflections, that would be obtained with default settings for a relaxation zone thickness xd = 1λ, can be obtained
for a zone thickness of only xd = 0.5λ when τ is tuned according to theory.

For many engineering applications though, the results suggest that setting τ = ∆t when using the default blending
function should provide acceptable reduction of undesired wave reflections, if the zone thickness is chosen sufficiently
large; for xd ≥ 1.0λ, reflection coefficients of CR < 10% can be expected. Since the time step ∆t ∝ T with wave period
T , the default value for τ in the Naval Hydro Pack also scales correctly (cf. Eq. (12)), so that the default coefficients
provide acceptable ‘black box’ default settings.
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Figure 130: Theory predictions and simulation results for reflection coefficient CR as a function of relaxation parameter τ ,
for deep-water waves with period T = 1.6 s; for different relaxation zone thickness xd, exponential blending via Eq. (10) with
exponent n = 3.5 and coarse discretization; for all simulation results CR,sim and corresponding theory predictions CR,theory holds
CR,sim − CR,theory < 3.8%; for the forcing strength τ ≤ τopt,theory closest to the theoretical optimum value τopt,theory holds
CR,sim − CR,theory < 1.9%

coarse discretization medium discretization

fine discretization

Figure 131: As Fig. 130, except for coarse, medium, and fine discretization; as theory suggests, results can be considered
discretization-independent for practical discretizations; for all simulation results CR,sim and corresponding theory predictions
CR,theory holds CR,sim − CR,theory < 5.3%; for the relaxation parameter τ ≤ τopt,theory closest to the theoretical optimum value
τopt,theory holds CR,sim − CR,theory < 1.9%

8.3 Using relaxation zones to damp waves in shallow water

The theory in Sect. 4.2 was derived to hold for all water depths and Fig. 132 confirms that the predictions are of
satisfactory accuracy also for shallow water depths. Compared to the deep-water case, the simulation results for the
reflection coefficient CR are lower for smaller-than-optimum values of relaxation parameter τ , but show no substantial
qualitative difference otherwise.

Recently, Carmigniani and Violeau (2018) used forcing zones for horizontal and vertical velocities to damp regular
waves in finite-difference-based flow simulations for linearized Navier-Stokes-equations; they observed a decrease in the
optimum value of the source term strength for decreasing water depth. In contrast, the present results show no significant
dependence of the optimum value of relaxation parameter τ on the water depth.

However, one should point out that in Figs. 130 to 136 the optimum τ from the simulation results is sometimes slightly
larger or smaller than theory predicts. The relaxation parameter for the simulation result with the lowest reflection
coefficient CR took values within τopt,sim ∈ [ 1

12τopt,theory, 2τopt,theory], where τopt,theory denotes the theoretically predicted
optimum τ -value.
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Since there did not seem to be a clear trend in these deviations and since they were comparatively small, this detail
seems to be of minor importance for engineering practice.

Figure 132: As Fig. 130, except for shallow water waves with period T = 2.893 s; for all simulation results CR,sim and correspond-
ing theory predictions CR,theory holds CR,sim −CR,theory < 0.8%; for the forcing strength τ ≤ τopt,theory closest to the theoretical
optimum value τopt,theory holds CR,sim − CR,theory < 0.5%

8.4 Comparison to relaxation zone in a different flow solver

Similar to the way in which Sect. 4.2 extended the theory for forcing zones to relaxation zones, the behavior of relaxation
zones can be ‘modeled’ using forcing zones. To demonstrate this, simulations for the wave from Sect. 8.2 are repeated
with a different flow solver, STAR-CCM+ by Siemens. STAR-CCM+ does not have relaxation zones implemented, but
forcing zones according to Eqs. (18) and (19) are available.

To obtain relaxation-zone-like behavior, Eqs. (75) and (76) are introduced as source terms in Eqs. (18) and (19). This
formulation has the disadvantage that at the domain boundary holds b(x) = 1, so that qi, qα → ∞. Thus stability
problems must be expected when relaxation parameter τ → 0 and when the cell sizes close to the domain boundary are
small. The STAR-CCM+ simulations indeed blew up for small τ values, which is the reason for the missing data points
(τ ≤ 10−2 s) in Figs. 133 and 134. These stability issues are due to the different implementation of forcing zones and
relaxation zones, so using one approach to ‘mimic’ the other would theoretically give the same results, but practically
can be significantly less stable for certain settings by allowing source terms to become extremely large.

Note that no stability issues occur when using forcing zones (Eqs. (18) to (21)) or relaxation zones (Eqs. (23) and (24))
in the way they were intended, as the results in Sect. 6 demonstrate. Further, comparing the present results to the
ones from Sect. 6 indicates that forcing zones and relaxation zones both work equally satisfactory when correctly set
up.

Figures 133 and 134 show that the results of the two different codes agree well. Thus one can confidently expect both
the present results and the theory from Sect. 4 to be applicable to all computational fluid dynamics (CFD) solvers using
any implementation of relaxation zones.

foam-extend Naval Hydro Pack Siemens STAR-CCM+

Figure 133: Theory predictions and simulation results from two different CFD codes for reflection coefficient CR as a function of
relaxation parameter τ , for deep-water waves with period T = 1.6 s; for fine discretization, exponential blending via Eq. (10) with
exponent n = 3.5, and different relaxation zone thickness xd
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foam-extend Naval Hydro Pack Siemens STAR-CCM+

Figure 134: As Fig. 133, except that linear blending according to Eq. 6 with n = 1 was used; for all simulation results CR,sim
and corresponding theory predictions CR,theory holds CR,sim −CR,theory < 3.9%; for the forcing strength τ ≤ τopt,theory closest to
the theoretical optimum value τopt,theory holds CR,sim − CR,theory < 3.4%

8.5 Relaxation towards background wave vs. relaxation towards calm water solution

In practice, the reference solution in relaxation zones is often the far-field wave. Thus the simulations from Sect. 8.2
were repeated with the reference solution set to the stream function solution for the far-field wave.

Figure 135 shows that, although Sects. 8.2 and 8.5 use substantially different reference solutions, again the optimum
value for relaxation parameter τ is well predicted. Compared to Fig. 130 though, the values for reflection coefficient CR

are much lower. Further, in Fig. 135 reflection coefficient CR is lower for the finer discretization than for the coarser
discretization. This was expected, since the closer the solution within the simulation domain is to the reference solution,
the smaller will the reflections become, since (ui,ref − ui) → 0 and (αref − α) → 0 in Eqs. (23) and (24).

However, in practice the wave entering the relaxation zone usually does not correspond to the far-field wave, because it
will be modified by wave reflecting bodies or discretization and iteration errors within the domain. Thus for the general
case of forcing towards the far-field wave, one should rather expect reflection coefficients CR as in Fig. 131.

coarse discretization fine discretization

Figure 135: As Fig. 130, except for relaxation towards the far-field wave; for all simulation results CR,sim and corresponding
theory predictions CR,theory holds CR,sim − CR,theory < 2.9%; for the forcing strength τ ≤ τopt,theory closest to the theoretical
optimum value τopt,theory holds CR,sim − CR,theory < 1.6%

8.6 Influence of choice of blending function

The simulations from Sect. 8.2 were repeated using different blending functions. Figure 136 shows results for power
blending according to Eq. (6) for different relaxation parameter τ , different zone thickness xd, and different coefficients
n. The results show good agreement between simulation and theory, indicating that the theory is a suitable tool for
tuning the relaxation zone parameters.

For τ → ∞ the relaxation source terms vanish to zero, so one would expect that the solution behaves as if there were
no relaxation zone; this would result in a standing wave (i.e. CR ≈ 1), since the outlet boundary is nearly perfectly
reflecting. Instead, the reflection coefficients remained significantly lower than 1, which becomes more pronounced for
smaller values of n. It is possible that this is due to the term (1 − b(x)) on the left hand side of the governing equations,
since if there is no reference solution to blend over to, then the blending out of the flow solution may behave like a
damping. Note though that such large values of τ are not of practical interest since they cannot be used for combined
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generation and damping of waves as is illustrated in Sect. 8.7 in Figs. 139 and 140. Thus answering this question was
considered outside the scope of this study and remains open for further research.

n = 10 n = 2.8

n = 0.46 n = 0.1

Figure 136: As Fig. 130, except for power blending via Eq. (6) with different values for exponent n; theory predicts the shift in
optimum value for τ when changing exponent n; for all simulation results CR,sim and corresponding theory predictions CR,theory
holds CR,sim − CR,theory < 8.4% (n = 0.1), < 4.7% (n = 0.46), < 4.2% (n = 2.8), and < 2.3% (n = 10); for the forcing strength
τ ≤ τopt,theory closest to the theoretical optimum value τopt,theory holds CR,sim − CR,theory < 2.7% (n = 0.1), < 3% (n = 0.46),
< 2.0% (n = 2.8), and < −1.5% (n = 10)

Not only do the optimum values for τ and the curves for reflection coefficient CR as a function of τ change as seen
in Fig. 136, but also the optimum choice of coefficient n depends on the zone thickness xd as Figs. 137 and 138
demonstrate.

xd = 0.5λ xd = 1λ

xd = 2λ

Figure 137: Theory predictions for reflection coefficient CR as a function of relaxation parameter τ for deep-water waves with
period T = 1.6 s; for power blending according to Eq. (6) with different values for exponent n
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xd = 0.5λ xd = 1λ

xd = 2λ

Figure 138: As Fig. 137, except for cos2n-blending according to Eq. (7) with different values for exponent n; the optimum
exponent n increases with increasing zone thickness xd

For the investigated blending functions, the larger the relaxation zone thickness xd becomes, the larger becomes the
optimum value for n. For practical choices of xd, the tendency seems to be that n should be > 1 for xd ≳ 1.5λ, whereas
for xd ≲ 1.0λ then n should be < 1.

The complexity of the curves for CR(τ) suggests that no simple empirical relationship can be found to determine the
optimum setting. Further, depending on the investigated wave spectrum a different tuning of the reflection-reducing
characteristics of the relaxation zone may be appropriate. Thus it is recommended to use the theory to tune the forcing
zone parameters to the wave of interest before each simulation.

It remains to say that by correctly tuning the relaxation zone parameters, the reduction of undesired wave reflections can
be significantly improved, so that when correctly tuned already with a zone thickness of 0.5λ ≤ xd ≤ 1.0λ (depending
on the intended reflection coefficient) satisfactory results can be obtained, whereas with default settings an at least two
to three times larger zone thickness would be required for the same reduction of undesired reflections.

8.7 Results of 3D-flow simulations with relaxation zones

To investigate the validity of the present findings for practical 3D-flow simulations, the flow around a strongly reflecting
semi-submerged pontoon subjected to steep deep-water waves is simulated with the setup from Sect. 8.1. The solution
domain was selected intentionally small, with relaxation zones attached to all vertical domain boundaries with a zone
thickness of only xd ≈ 0.7λ. With respect to the tuning for the optimum blending function from Sect. 8.6, a power
blending according to Eq. (6) with coefficient n = 0.46 was used. According to the theory prediction, a relaxation
parameter of τ = 2.5 s should provide a satisfactory reduction of undesired wave reflections (CR ≈ 5%), while values
larger or smaller by a factor of 10±1 should produce significant reflections.

If reflections are satisfactorily reduced, then a periodic solution is expected to occur after several wave periods, and
long-time simulations are possible without the accumulation of errors due to undesired wave reflections. Figure 139
shows that indeed such periodic results are obtained for the optimum setting. As shown in Fig. 140, too large values of
τ damp not only undesired reflections but also the incident wave, while too small values produce wave reflections at the
entrance to the relaxation zone, as can also be seen from the aperiodicity and change of amplitude of the forces on the
pontoon.
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Figure 139: Force component in x-direction integrated over the pontoon surface as a function of time t for the medium grid; with
relaxation zone thickness xd ≈ 0.7λ, power blending with exponent n = 0.46 and different values of relaxation parameter τ ; theory
predicts an optimum of τ = 2.5 s, for which a periodic solution is obtained; the further τ deviates from the theoretical optimum,
the stronger are the visible influences of undesired wave reflections in the results

too small relaxation parameter (τ = 0.01 s) close-to-optimum relaxation parameter (τ = 2.5 s)

too large relaxation parameter (τ = 100 s)

Figure 140: Simulation results for free-surface elevation at t ≈ 15 s with too small (τ = 0.01 s), too large (τ = 100 s), and
close-to-optimum (τ = 2.5 s) choice of relaxation parameter τ ; for τ = 0.01 s, the blending towards the far-field wave is too strong,
so that reflection occurs mainly at the entrance to the relaxation zone; for τ = 100 s, the blending towards the far-field is too
weak, so that the far-field wave is not sustained; for τ = 2.5 s, the waves reflected at the pontoon decay smoothly over the whole
relaxation zone as intended

Figure 141 shows that the correct tuning of the relaxation zone enables a periodic solution for simulations over arbitrarily
long simulation times.

Figure 141: As Fig. 139, except for longer simulation duration; with close-to-optimum relaxation (τ = 2.5 s), simulations were
performed for 30T without noticeable accumulation of reflections
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Figures 142 and 143 show that the difference between medium and fine grid is comparatively small, but for the coarse
grid the force amplitudes are ≈ 10% lower. For the present purposes all grids were considered suitable to demonstrate
the benefits of tuning relaxation zones to the wave parameters.

coarse discretization medium discretization

fine discretization

Figure 142: As Fig. 139, except for coarse, medium and fine discretization

Figure 143: Left: as Fig. 139, except for close-to-optimum relaxation parameter τ on coarse, medium and fine discretization; right:
force amplitude as a function of frequency for FFT-analysis of the curves from the left plot during time interval 10 s ≤ t ≤ 18 s; the
difference between the coarse and fine discretization are significant (all differences are < 660 N, which corresponds to over 20% of
the first harmonic’s amplitude); the difference between the medium and fine discretization are small (all differences are < 190 N,
which corresponds to ≈ 6% of the first harmonic’s amplitude), so already the medium discretization is considered acceptable for
the present purposes
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9 Discussion and Outlook

Key findings

• Forcing zones are not ‘ad-hoc’ approaches, but can be well described mathematically via the presented theory

• For practical discretizations, forcing zones behave roughly independent of the discretization and flow solver used

• Although the theory was extended to cover oblique wave incidence in 2D/3D, already the 1D-version of the theory
suffices for tuning forcing zones in typical 2D-/3D-flow simulations

• For future research, application of the presented theory to other wave propagation mediums in expected to be
promising

As described in Sect. 1, forcing zones had been considered to be ‘heuristic’ or ‘ad-hoc’ approaches. Possibly because they
are often used in complex flows for which there is no analytical solution, such as flows with nonlinear waves or turbulence,
it was questioned whether there was a mathematical foundation to these approaches. Thus at the time of writing it
is still common practice to use forcing zones with their case-dependent parameters set to the solver’s default values or
tuned by trial and error, which often does not provide the intended reduction of undesired wave reflections.

In Sect. 4, a theory was presented which can predict the reflection coefficients CR and the flow within the forcing
zone, and thus can be used to optimally tune the forcing zone before performing the flow simulations. The comparison
to simulation results in Sects. 5 to 8 for various linear and highly nonlinear flow problems demonstrates that forcing
zones are not ‘ad-hoc’ approaches, but can be well described mathematically. As predicted by theory, for practical
discretizations the forcing zones were found to behave independent of the chosen discretization scheme, its order, the
mesh size, the time-step size, and also of the used flow solver. The theory shows that the influence of the wave parameters
on the optimum choice of forcing zone parameters is quite complex and cannot be fully captured by simple empirical
formulas.

The benefit of the theory for engineering practice was verified via flow simulations of typical ocean engineering applications
of strongly reflecting bodies subjected to free-surface waves. As demonstrated especially in Sects. 7 and 8, tuning forcing
zones using the theory enables the use of smaller domains and thinner forcing zones than commonly used, which can
substantially reduce the computational effort. The theory has been extended to predict reflection coefficients for oblique
wave incidence in 2D-/3D-flows in Sect. 4.5. However, the findings from Sects. 5.4, 5.5, 7 and 8.7 demonstrate that
already the 1D-theory from Sects. 4.1 to 4.3 provides a decent estimate for the upper limit of the overall reflection
coefficient for typical flow simulation setups with 2D- and 3D-wave-propagation. A simple, user-friendly, open-source
software to evaluate the theory was published along with this work. Thus it is recommended to use the theory in
engineering practice.

Although the theory was developed for flow problems with free-surface waves in ocean engineering and shipbuilding
applications, it was shown to hold also for (hydro-)acoustic wave propagation in gases and liquids. The present findings
suggest that the theory will also hold for wave propagation in other mediums. Thus the application of the present
approach to forcing zones in other research fields is expected to be promising. Computer simulations of wave propagation
phenomena are carried out in various disciplines within mathematics, physics and engineering, and for various single- or
multiphase mediums, including gases (Colonius and Lele, 2004; Hesthaven, 1998; Hu, 1996; Hu, 2008; Lorenzzetti and
Wang, 1986; Marburg and Nolte, 2008), liquids (Bodony, 2006; McDonald, 2003; Modave et al., 2010; Zhang et al., 2014),
non-porous (Appelö and Kreiss, 2006; Collino and Tsogka, 2001; Komatitsch and Martin, 2007; Komatitsch and Tromp,
2003; Semblat et al., 2011) as well as porous (Straughan, 2008; Zeng et al., 2001) solids, and fields (e.g. gravitational
(Novak and Bonazzola, 2004; Rinne et al., 2007) or electromagnetic (Abarbanel and Gottlieb, 1998; Berenger, 1994;
Berenger, 1996; Gedney, 1996; Katz et al., 1994; Petropoulos at al., 1998; Turkel and Yefet, 1998).

Aside from wave phenomena, forcing zones have also been used in an ad-hoc manner to damp other flow phenomena, for
example to reduce reflections of Kármán vortex streets, vortex pairings, or turbulent flows at the outlet domain boundary
(Andersson et al., 2004; Bogey et al., 2000; Enger et al., 2014; Manning and Lele, 2000; Spalart, 1989; Wanderley and
Levi, 2005; Wang et al., 2006). The present findings suggest that it could be worthwile to investigate whether the present
theory could be modified to enable the tuning of forcing zones for such applications as well.

Thus the present work opens up an interesting new research field, i.e. the theoretical investigation of forcing zones over
various fields, with many intricate aspects that deserve further study; some of these are discussed in the following.
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9.1 Forcing strength γ

Key findings

• Theory predictions and simulation results for the optimum value of forcing strength γ agreed closely in most cases

• Differences by more than factor 2±1 were attributed to background noise in the scheme for detecting reflection
coefficient CR, increased flow complexity when forcing transverse velocity components and the existence of multiple
local minima for thicker forcing zones

• For close-to-optimum tuning of γ, simulation results for reflection coefficient CR were never more than 3.4% larger
than theory predictions

For all (hydro-)acoustic wave simulation results, the optimum value γopt,sim of the forcing strength γ was γopt,sim ∈
[ 1

2γopt,theory, 2γopt,theory] in terms of the optimum value γopt,theory predicted by theory (cf. Sect. 5). Considering that
the flow simulations were performed for forcing strengths γi+1 = 2γi where index i corresponds to the ith simulation
from each parameter study, and that several results indicate close agreement between theory predictions and simulation
results close to the theoretical optimum value of γ (cf. e.g. Figs. 16 and 20), for flows with (hydro-)acoustic waves
the theory predictions for the optimum choice of forcing strength γ can be expected to be of satisfactory accuracy for
practical purposes.

For most free-surface wave simulation results, γopt,sim ∈ [ 1
2γopt,theory, 2γopt,theory] held as well (cf. Sects. 6 to 8). However,

there were a few exceptions, which were attributed to the following causes.

First, since reflection coefficients CR ≲ 1% could not be detected reliably (cf. Sects. 3 and 6.2), for forcing zone thickness
xd = 2λ the simulation results formed a plateau with CR ≈ 1% over several γ-values (cf. e.g. Figs. 51, 62 and 78).
There, the differences between the CR-values were in the order of O(0.1%). These differences were assumed to be due
to background noise in the scheme for determining CR, and it was found that the lowest value of CR could lie anywhere
on the plateau, i.e. not necessarily on the theoretically predicted optimum. There appeared to be no clear trend where
on the plateau the lowest CR-value would occur and this held independently of the water depth as shown in Sects. 6.2
and 6.8. A detailed investigation of this phenomenon was considered out of the scope of the present study and is left for
future research.

Second, when applying forcing source terms (also) in the equation for the vertical fluid velocity w, it was found, especially
for γ ≫ γopt,theory, that simulation results for reflection coefficient CR could be significantly lower than theory predictions
(cf. e.g. Sects. 6.3 to 6.5). Consequently, for zone thickness xd = 2λ the plateau formed by simulation results with
CR ≈ 1% over several γ-values widens and extends to larger γ-values than in the case of forcing of the horizontal fluid
velocities. This holds for relaxation zones as well, and since relaxation parameter τ ∝ γ−1 the range with CR ≈ 1%
therefore extends to smaller τ -values than predicted by theory (cf. e.g. Figs. 131 and 136). Another configuration which
can lead to such behavior is forcing of both volume fraction α and horizontal velocities in shallow water (cf. e.g. Figs.
74 and 79).

Third, for larger zone thicknesses such as xd = 2λ the theoretical curve for reflection coefficient CR as a function of
γ may have several local minima. Thus depending on the choice of γ-values for which simulations are performed, the
lowest simulation result for CR did not always occur for the γ-value next to the global theoretical minimum of CR; in
some cases (cf. e.g. Fig. 51) it occurred for a γ-value close to a local theoretical minimum.

Thus for Figs. 51, 58, 60, and 61 held γopt,sim ∈ [ 1
4γopt,theory, 4γopt,theory], for Figs. 64 and 74 held γopt,sim ∈

[ 1
2γopt,theory, 12γopt,theory], for Fig. 80 held γopt,sim ∈ [ 1

2γopt,theory, 33γopt,theory], and for Figs. 130 to 136 held τopt,sim ∈
[ 1

12τopt,theory, 2τopt,theory], where as before γopt,sim and τopt,sim are the forcing strength and relaxation parameter for the
simulation result with the lowest reflection coefficient CR in the corresponding figure, and γopt,theory and τopt,theory are
the theoretically predicted optimum values.

Even in the cases when theory predictions and simulation results for the optimum value of forcing strength γ differed by an
order of magnitude, the simulated reflection coefficient CR,sim at the theoretically predicted optimum setting for forcing
strength γ or relaxation parameter τ was for all simulations < 3.4% larger than the corresponding theoretically predicted
reflection coefficient CR,theory, as shown in Sect. 9.7. Therefore also for flow simulations with free-surface waves, the
theory predictions for the optimum forcing strength γ can be considered of satisfactory accuracy for engineering practice.
Thus tuning forcing strength γ and relaxation parameter τ via the theory from Sect. 4 is recommended.
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9.2 Zone thickness xd

Key findings

• Increasing the forcing zone thickness tends to decrease the reflection coefficient CR and to widen the range of
wavelengths that are satisfactorily damped

• For certain combinations of blending function b(x) and zone thickness xd, reflection coefficients of CR < 1% can
be achieved with comparatively thin forcing zones (xd < 0.5λ), though only for a narrow range of wavelengths

• To ensure reliable minimization of undesired wave reflections, the use of thicker forcing zones (1λ ≲ xd ≲ 2λ) is
recommended for engineering practice

Sections 5.3 and 7.1 show that increasing the zone thickness xd tends to reduce the reflection coefficient CR at optimum
tuning of forcing strength γ and also widens the range of wavelengths for which satisfactory reduction of undesired wave
reflections will occur. However, it also increases the domain size and therefore the computational effort, thus the choice
of zone thickness xd corresponds to finding a compromise between ensuring reliable minimization of undesired wave
reflections and keeping the computational effort as low as possible.

An interesting phenomenon is that, for monochromatic waves and certain combinations of blending function b(x) and
zone thickness xd, exceptionally effective absorption was observed in Sect. 5.3, which can be seen as negative peaks
in the left images of Fig. 27. For these settings, reflection coefficients CR at optimum tuning can be several orders of
magnitude lower than they would be if the zone thickness were increased or decreased by a few percent. By utilizing this
phenomenon, satisfactory minimization of undesired wave reflections can be obtained using very thin forcing zones; for
example, reflection coefficients of CR < 1% can be realized for a zone thickness of xd ≈ 0.3λ, cf. the first negative peak in
the top image of Fig. 27. Figure 20 shows that such negative peaks can indeed be realized in flow simulations. However,
the use of such thin forcing zones is in general not recommended. The reason for this is that this phenomenon is highly
sensitive to the wavelength of the incoming wave. As shown in Sect. 7.1, discretization and iteration errors can lead to
a change in wavelength in finite-volume-based flow simulations, which then could lead to significantly larger reflection
coefficients than expected. Thus such a tuning could lead to false decisions and animate inexperienced users to apply
too thin forcing zones in cases where this is not suitable. However, the phenomenon may be utilized as a favorable effect
when the forcing zones are selected sufficiently thick, so that also with modifications of the wavelength due to numerical
errors satisfactory forcing is ensured. Then this phenomenon may be used for example to improve the damping of the
peak wave period or some other relevant period for irregular waves. Future research is expected to yield further insights
into why this phenomenon occurs, how it can be evoked, whether it can be tuned to reduce undesired wave reflections for
two or more different wave periods at the same time, and whether a similar phenomenon can be achieved by combining
grid stretching and forcing zones.

Reliable minimization of undesired wave reflections is typically more important than the last few percent of computational
efficiency, since such reflections can lead to substantial errors in the simulation results. Moreover, despite the overall
remarkable agreement between theory predictions and simulation results in this work, there were some cases, for example
nonlinear (Fig. 39) or irregular (Fig. 77) waves, for which theory was observed to slightly under-predict reflection
coefficient CR. It is therefore strongly recommended not to ‘over-tune’ the forcing zone, but rather to use slightly
thicker zones than theoretically necessary. Typically, increasing the zone thickness by xd = 0.5λ to xd = 1λ does not
substantially increase the computational effort, but it increases confidence that undesired reflections will be satisfactorily
reduced.

For typical ocean engineering applications, it is therefore recommended to select the zone thickness as 1.2λ ≤ xd ≤ 2λ,
depending on the expected flow complexity; when tuning the forcing zone according to the theory from Sect. 4, reflection
coefficients of CR ≲ 1% can be expected with exponential blending as shown in Fig. 27. Experienced users of the theory
may achieve similar reflection coefficients with zone thicknesses of 0.5λ ≤ xd ≤ 1.2λ.
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9.3 Blending function b(x)

Key findings

• Quadratic, cosine-squared or exponential blending b(x) produced comparable reflection coefficients CR

• Constant and linear blending functions b(x) typically produced larger reflection coefficients CR than quadratic,
cosine-squared or exponential blending

• Results indicate that the optimum choice for blending function b(x) depends on the zone thickness and on the
investigated wave spectrum

Consider the case for constant blending b(x) = 1, where wave reflections theoretically can only occur at the entrance
to the forcing zone and at the domain boundary to which the zone is attached. Within the forcing zone the wave is
attenuated by absorption due to the source terms. Require that the forcing zone should produce a reflection coefficient
of CR < 1%. Evaluating the theory shows that, with optimum tuning of forcing strength γ, this is achieved by all zone
thicknesses xd ≥ 30.2λ in terms of wavelength λ, as well as for selected zone thicknesses below 30λ when especially
favorable interference occurs as discussed in Sect. 9.2.

In contrast, for exponential blending via Eq. (9), where partial wave reflections occur throughout the zone, CR < 1% is
achieved by all zone thicknesses xd ≥ 1.04λ when optimally tuned, and for a zone thickness of xd = 10λ the reflection
coefficients are three orders of magnitude lower than for constant blending. Figure 144 demonstrates that the choice of
blending function b(x) can have a significant influence on the zone thickness required to obtain satisfactory reduction of
undesired wave reflections, and that blending functions b(x) that gradually fade-in the source terms are typically more
effective than constant blending functions.

Figure 144: Theory prediction for surface elevation η per wave height H in the vicinity of a forcing zone (shaded gray) as a
function of x-location in wave propagation direction per wavelength λ for several time instances during a wave period; each plot
represents the optimum tuning of forcing strength γ for the given zone thickness xd and blending function b(x), where zone thickness
xd takes the smallest value for which holds that CR < 2% (constant blending) or CR < 1% (other blending functions) for all larger
zone thicknesses, given than γ ist optimally tuned; for constant (Eq. (3)), linear (Eq. (4)), cos2 (Eq. (7)), quadratic (Eq. (5)),
and exponential (Eq. (9)) blending

The results from Sects. 5.2, 5.3, and 7.1 indicate that quadratic (Eq. (5)), cosine-squared (Eq. (7)), and exponential (Eq.
(9)) blending b(x), even though these functions differ significantly, produce nearly equivalently satisfactory reduction of
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undesired wave reflections, with perhaps a slight preference for exponential blending b(x). Thus it is recommended to
use blending via Eqs. (5) to (10), whereas constant or linear blending via Eqs. (3) and (4) should not be used.

Note though that these findings do not directly apply to relaxation zones and the same holds vice versa, since when
formulating relaxation zones as a special case of forcing zones as in Sect. 4.2, then using linear blending b(x) via Eq. (4)
corresponds indeed to an effective blending of b(x)/ (1 − b(x)). Thus for relaxation zones, linear blending b(x) can be an
effective choice.

The findings in Sects. 8.6 and 8.7 demonstrate that there is no single optimum blending function b(x) which applies
for all cases. Rather, the choice of optimum blending depends on the zone thickness xd and on how broad-banded the
investigated wave spectrum is, i.e. how broad the range of γ-values should be for which satisfactory absorption is to be
obtained. This indicates that the ‘perfect’ choice of blending function b(x) has to be made case-dependently.

The present theory can be evaluated fast enough so that parameter studies for different choices of blending b(x) can be
performed within seconds on a standard desktop computer, and thus a suitable blending b(x) can be selected.

Future research could be directed towards automation of the selection of a suitable b(x) and investigation of the influence
of b(x) on the occurrence of local minima for reflection coefficient CR for different forcing strengths γ.
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9.4 Influence of wave nonlinearity and how forcing zones reduce reflections

Key findings

• The mechanisms behind how forcing zones reduce undesired wave reflections are

– wave absorption

– partial wave reflections, which occur where ∇b(x) ̸= 0

– destructive interference of these reflections

• For close-to-optimum tuning, forcing zones ‘split’ nonlinear waves into many approximately linear wave components
that interfere destructively; thus forcing zone behavior for nonlinear waves was well predicted via linear theory

The results from Sects. 5.6 and 6.6 demonstrate that the theory from Sect. 4 satisfactorily predicts reflection coefficients
CR of forcing zones for highly nonlinear waves. It was found that the wave’s nonlinearity had a negligible influence on
the accuracy of the theory’s predictions. Since the theory was derived based on linear wave theory, the question arises
how can its predictions be so accurate also for highly nonlinear waves?

This question can be answered based on the findings from Sects. 4, 5.6 and 6.6, which show that forcing zones reduce
undesired wave reflections via three mechanisms: wave absorption, partial wave reflection occurring everywhere within
the forcing zone where ∇b(x) ̸= 0 (cf. Figs. 17, 52, and 63), and destructive interference of these partial wave reflections
(cf. Fig. 68). The present findings demonstrate that all three mechanisms need to be considered to accurately predict
the optimum forcing strength γ and the corresponding reflection coefficient CR for a given blending function b(x) and
zone thickness xd.

Figure 145 illustrates that when a forcing zone is optimally tuned, then the wave height gradually decreases within
the forcing zone and partial wave reflections occur throughout the whole forcing zone with small amplitude; thus when
optimally tuned, forcing zones ‘split up’ nonlinear waves into many approximately linear wave components, which interfere
destructively due to their phase differences.

This behavior characterizes a key difference between forcing zone approaches and boundary-based wave absorption
techniques (cf. Sect. 1.1) such as absorbing boundary conditions or active wave absorption: Boundary-based approaches
can neither utilize partial wave reflections nor their destructive interference, since they act only at the boundary. This
explains why forcing zones, despite their simple formulation, are capable of damping even highly nonlinear waves in
complex flow problems, where high-order boundary-based wave damping approaches would fail.

Free-surface elevation = right-going (generated) wave + left-going (reflected) wave

Figure 145: Theory prediction for surface elevation as a function of x-location at several time instances during one wave period
(left), decomposed into generated (middle) and reflected wave components (right, with zoomed-in vertical axis); for a forcing zone
(shaded gray) with thickness xd = 2λ in terms of wavelength λ, blending via Eq. (9), and close-to-optimum tuning of forcing
strength γ; as seen in the right image, the wave is reflected with comparatively low amplitude at the domain boundary x/λ = 4
and at first looses amplitude when traveling in negative x-direction until ca. x/λ ≈ 3.7, which could be explained by absorption;
however, the following increase in the amplitude of the left-going wave until ca. x/λ ≈ 2.8 cannot be explained by absorption, thus
it is due to the occurrence of partial wave reflections; since these occur throughout the forcing zone and with different phases, the
partially reflected waves can be expected to interfere destructively

The aforementioned mechanisms are further confirmed by the simulation results in Appendix A and the agreement
between theory predictions and simulation results in Sects. 5 to 8, and explain why, when correctly tuned, forcing zones
produced similar reflection coefficients regardless whether the investigated waves were linear or highly nonlinear.
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9.5 Choice of governing equations in which forcing source terms are introduced

Key findings

• For forcing of longitudinal fluid momentum, theory predictions are nearly accurate

• For forcing of transversal fluid momentum, theory predictions provide an estimate of the upper limit for the
reflection coefficient

• Theory predicts optimum forcing zone parameters and corresponding reflection coefficients with satisfactory accu-
racy for engineering practice

• For close-to-optimum tuning, similar reflection coefficients were obtained regardless in which governing equations
forcing source terms were applied

When applying forcing source terms in the conservation equation for the momentum in longitudinal (i.e. in wave prop-
agation) direction, then the theory predictions for reflection coefficients, free-surface elevation, velocities, and vorticity
within the whole forcing zone are nearly perfectly accurate as demonstrated in Sects. 5 and 6.2.

When applying forcing source terms (also) in the conservation equation for the transversal momentum for dispersive
mediums (i.e. vertical momentum for free-surface waves in intermediate- or deep-water conditions), then the flow within
the forcing zone becomes more complex, so that some flow details are not fully described by the theory anymore. As
Sects. 6.2 to 6.5 show, for some choices of forcing strength γ the simulation results for reflection coefficient CR were
then lower than the theory predictions. Note though that this effect occurred mainly for impractical forcing parameter
settings (cf. discussion in Sect. 6.2). However, the relevant flow features appeared to be predicted by the theory, since
the optimum choice of the forcing zone parameters and the corresponding reflection coefficients were predicted with
satisfactory accuracy for engineering practice.

In this work, when forcing was applied simultaneously in several governing equations, the same forcing strength γ was
used for all equations. Section 4.1.2 shows that applying forcing to several equations can be related to the case of
applying forcing in a single equation. Also from the results from Sects. 5 and 6.2 no preference towards applying source
terms in certain governing equations is made out; as long as forcing strength γ is optimally tuned, the resulting reflection
coefficients appear to be similar as Fig. 146 implies. The present findings indicate that this also holds for relaxation zones
from Sects. 2.3, since relaxation zones can be considered as a special case of forcing zones as shown in Sect. 4.2.

Figure 146: Reflection coefficient CR as a function of forcing strength γ, from Perić and Abdel-Maksoud (2016b)
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9.6 Choice of forcing zone arrangements for 2D- and 3D-flows

Key findings

• Different combinations of forcing zones can be used to successfully minimize undesired wave reflections

• Forcing fluid momentum and volume fraction towards the far-field wave solution can create flow disturbances for
forcing zones tangential to the wave propagation direction

• For 3D-flow simulations with bodies subjected to long-crested far-field waves, a forcing zone arrangement was
presented which does not produce the aforementioned flow disturbances

Section 7.1 showed that ‘forcing zone arrangements’ in 3D-flow simulations can differ in the choice of governing equations
to which source terms are applied, the choice of reference solutions towards which the flow is forced, and the choice of
domain boundaries to which forcing zones are attached. It was found that usually several different forcing arrangements
can produce satisfactory results for a given flow problem.

However, Sects. 7.1 and 7.2 demonstrated that even when correctly tuned, some forcing arrangements, such as forcing
of velocities ui and volume fraction α towards the far-field wave, can produce undesired flow disturbances. These occur
when waves travel tangential to the forcing zone and additionally the computed flow, including changes in wave height
and phase due to numerical diffusion and dispersion, does not match the prescribed reference solution. Further research
is necessary to quantify the errors due to such disturbances. The present results suggest that to reduce these disturbances
such forcing arrangements require finer discretizations than commonly used, and thus a larger computational effort. If the
reference solution is inaccurate, as e.g. when using low-order wave theories as reference solution, then such disturbances
cannot be controlled by refining the discretization.

For long-crested far-field waves, forcing arrangements have been presented for which the above discrepancies or distur-
bances do not occur. Examples are the approach by Chen et al. (2006) or the forcing arrangement proposed in Sects.
7.1 and 7.4. The latter is computationally more efficient and is thus recommended.

Although not the topic of the present investigation, the present findings indicate that the case of short-crested far-field
waves can be treated as follows. One option is to select the solution domain as small and the far-field solution as
accurate as possible. Such a far-field solution can be obtained e.g. from a higher-order spectral method or a nonlinear
potential flow solver. Apply forcing towards the velocities and volume fraction of the far-field solution near all vertical
domain boundaries. Since this approach can produce flow disturbances as outlined above, a finer than commonly used
discretization may be required to ensure that no significant disturbances occur. Alternatively, an approach along the
lines of Chen et al. (2006) could be constructed. However, this is not entirely straight-forward, since the first simulation
in Chen et al. (2006) was designed for long-crested wave propagation, and it is not obvious how the simulation could
be performed with a superposition of multiple waves with arbitrary propagation directions. However, often for realistic
directional wave energy spectrums the majority of the wave energy is distributed over wave propagation directions
close to one primary direction (Lloyd, 1998). In such cases, the intended wave energy spectrum may be simplified by
only considering waves with propagation direction µ ± 45 deg, where µ is the primary wave propagation direction. By
prescribing the directional wave generation to a single domain boundary and applying wave damping zones to all other
boundaries, the first simulation can be carried out, and from here the approach again follows Chen et al. (2006). Thus
the approach is also suitable for coarse discretizations. Future research is necessary to develop and investigate these and
possibly also further forcing zone arrangements for short-crested waves.
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9.7 Accuracy of theory predictions

Key findings

• For forcing of longitudinal fluid momentum, the average difference between theory predictions and simulation
results for reflection coefficient CR was less than 4.3% in all simulations

• Even for settings far from optimum, no simulation result for CR was more than 10.5% larger than theory predicted

• For close-to-optimum tuning, simulation results for CR were never more than 3.4% larger than theoretically pre-
dicted, and in most cases CR,sim − CR,theory was < 2%

As discussed in Sect. 9.5, the accuracy of the theory predictions depends on which governing equations forcing source
terms are applied to. First, consider those simulations from the present work where theory closely predicts the reflection
coefficients CR, such as when forcing is applied to the fluid momentum directed in wave propagation direction.

Figure 147 shows the upper limit of the average difference between theory predictions and simulation results for all figures
from the present work, except for those where significant differences between theory predictions and simulation results
were to be expected. Not included are figures which show overall reflection coefficients for flows with 2D- and 3D-wave-
propagation, figures which show results for simultaneous wave generation and damping in a forcing zone, figures which
show results for forcing of (also) vertical fluid momentum or of all fluid momentum as well as volume fraction α, and
figures which show results for relaxation zones; in these cases, the findings from Sects. 5 to 8 show that, even if for these
figures the theory successfully predicts the optimum tuning of the forcing zone, further away from the optimum settings
the simulation results for reflection coefficient CR can e.g. be significantly lower than the theory predictions.

For the results in Fig. 147, theory and simulation results differ on average less than 2%, with three exceptions: For
the highly nonlinear sound waves in Fig. 39, the theory slightly underpredicts the reflection coefficients resulting in an
average difference of < 2.1%. For the highly nonlinear free-surface waves in Fig. 62, the wave steepness is so large that
wave breaking occurs in a few simulations where forcing strength is γ ≪ γopt or γ ≫ γopt relative to the optimum value
γopt, which increases the average difference to < 3.1%. For the shallow water free-surface waves in Fig. 78, reflection
coefficients were, especially for thinner zones, lower than predicted by theory; this favorable effect resulted in an average
difference of < 4.2%.

Thus Fig. 147 indicates that for the depicted flows the theory predictions based on Sect. 4 on average agree closely with
the simulation results.

Figure 147: For each of the above figures (i.e. Figs. 16, 18, ...), the location of the cross (x) marks the upper limit of
|CR,sim − CR,theory|, with reflection coefficient obtained from simulation results (CR,sim) and according to theory prediction
(CR,theory) for the same forcing strength γ; the average is taken over all simulation results and corresponding theory predic-
tions belonging to the same curve, after which its absolute value is calculated; the upper limit applies to all curves in the figure; for
most figures holds |CR,sim − CR,theory| < 2%, which indicates close agreement between simulation results and theory predictions

For engineering practice, it is desired that simulation results for reflection coefficient CR should not substantially exceed
theory predictions. Figure 148 shows that for all considered flow simulations, the simulated results for reflection coef-
ficients were never more than 10.5% larger than the corresponding theory predictions. Indeed, the simulated reflection
coefficients exceeded the theory predictions by more than 5% only for a few simulations in the following figures:
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For the highly nonlinear sound waves in Fig. 39, simulation results exceeded theory predictions most severely for the
smallest forcing zone thickness (xd = 0.5λ) by < 8.3%, for larger zone thicknesses this reduced to < 5.5%.

In Fig. 45, when using forcing zones to simulate standing (hydro-)acoustic waves, for one simulation with a forcing
strength γ nearly an order of magnitude lower than its theoretical optimum value the theory underpredicted the reflection
coefficient by 10.5%; for close-to-optimum tuning, however, differences between theory predictions and simulation results
were well below 1%.

For the highly nonlinear free-surface waves in Fig. 62, the wave steepness was so large that for a few simulations wave
breaking occurred, which led to results for CR being < 7.4% larger than theory predictions for a few simulations with
forcing strength γ several orders of magnitude away from its optimum value.

For the relaxation zones in Fig. 131, simulation results for CR exceeded theory predictions by < 5.3% for relaxation
parameters τ nearly an order of magnitude larger than its theoretical optimum.

In Fig. 136, the relaxation zones with blending exponent n = 0.1 rapidly blended-in the source terms (i.e. b(x) changes
from 0 to 0.5 in the first 1% of the relaxation zone), so that for zone thickness xd = 0.5λ the simulation results for CR

exceeded the theory predictions for one τ -value by < 8.4%. With increasing zone thickness the difference decreased to
< 2.6% for zone thickness xd = 2λ. Also for larger exponents n the difference decreased, so that for n = 10 no simulation
results exceed theory predictions by more than 2.3% for all zone thicknesses.

In the present work, a wide range of different flow problems have been investigated. These include irregular waves,
highly nonlinear waves, oblique wave incidence in 2D and 3D, simultaneous wave generation and wave damping, a wide
range of forcing zone parameters, as well as deep and shallow water conditions. In this regard it seems remarkable that
simulation results were found to be at all times either comparatively close to or lower than theory predictions. Thus
keeping in mind the above uncertainties if comparable cases are investigated, the theory may be used with confidence
even for forcing zone settings far from their theoretical optimum.

Figure 148: For each of the above figures (i.e. Figs. 16, 18, ...), the location of the cross (x) marks the upper limit for
CR,sim − CR,theory, i.e. for every simulation result (CR,sim) and the corresponding theory prediction (CR,theory) for reflection
coefficient CR in that figure, the value of CR,sim −CR,theory remains below the threshold given in the above plot; in this work, no
simulation result for reflection coefficient CR,sim was more than 10.5% larger than the corresponding theory prediction CR,theory,
and in most figures CR,sim − CR,theory was below 5%, indicating that the theory from Sect. 4 rarely overpredicts the reflection
coefficient significantly
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Figure 149 shows that, if the forcing zone is tuned close to the theoretical optimum setting, then simulation results for
reflection coefficients (CR,sim) were at most < 3.4% larger than the corresponding theory predictions (CR,theory).

For all flow simulations with (hydro-)acoustic waves and forcing zones in Sect. 5 held CR,sim − CR,theory < 1%, except
for forcing of highly nonlinear waves with zone thickness xd ≤ 1λ in Fig. 39 with 1.7%.

For all flow simulations with free-surface waves and forcing zones from Sect. 6 held CR,sim − CR,theory < 2%, except for
forcing of x-momentum with small zone thickness xd = 0.25λ in Fig. 51 with 2.4% and for forcing of highly nonlinear
waves with forcing of x- and z-momentum as well as volume fraction α in Fig. 64 with 2.1%.

For all flow simulations with free-surface waves and relaxation zones from Sect. 8 held CR,sim − CR,theory < 2%, except
for forcing with less effective blending functions as investigated in Figs. 134 and 136, where values up to < 3.4% were
recorded.

Figure 149: For each of the above figures (i.e. Figs. 16, 18, ...), the location of the cross (x) marks the upper limit for
CR,sim − CR,theory with the parameters of the forcing zone tuned close to the theoretical optimum; with reflection coefficient
obtained from simulation results (CR,sim) and according to theory prediction (CR,theory) for the same forcing strength γ; for each
curve per figure, CR,sim −CR,theory is evaluated at the forcing strength γ ≥ γopt,theory closest to the theory prediction γopt,theory
of the optimum value for forcing strength γ; for relaxation zones, CR,sim − CR,theory is evaluated at the relaxation parameter
τ ≤ τopt,theory closest to the theory prediction τopt,theory of the optimum value for relaxation parameter τ ; the results show
that when the forcing zone was tuned using the theory from Sect. 4, simulation results were never more than 3.4% larger than
theoretically predicted, and in most cases CR,sim − CR,theory was < 2%, which demonstrates that the theory predictions are of
satisfactory accuracy for typical engineering purposes

Consider tuning a forcing zone via the theory from Sect. 4. Assume that the theoretical reflection coefficient is CR,theory <

0.6%, and that the worst-case from Fig. 149 holds with CR,sim − CR,theory < 3.4%. Thus follows that the simulation
results for reflection coefficient are CR,sim < 4%. As discussed in Sect. 3, the energy Erefl of the reflected wave relative
to the energy E of the generated wave is Erefl/Egen ≈ C2

R. Inserting CR,sim < 4% gives Erefl/Egen < 0.0016. Therefore,
the wave energy reflected back into the domain parts of interest is less than 0.16% of the energy of the generated wave,
which can be considered negligible for typical engineering purposes.

Thus the present results indicate that for typical ocean engineering and shipbuilding applications, the theory from Sect. 4
predicts the optimum values for the forcing zone parameters and the corresponding reflection coefficients with satisfactory
accuracy for engineering practice. Therefore, the theory is recommended for the tuning of forcing zones in typical flow
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problems with (hydro-)acoustic waves or free-surface waves, as was demonstrated for typical ocean engineering and
shipbuilding applications (cf. Sects. 7, 8.7 and Appendix B).

Given the demonstrated accuracy of the theory predictions, future work to further increase the accuracy of the theoretical
predictions seems promising.

First, it could be attempted to derive the theory from Sect. 4 for forcing in the equations for vertical fluid momentum
and/or volume fraction, with the intention to predict the corresponding complex flow behaviors. Examples of such
complex flow behaviors include the occurrence of net mass flux into the forcing zone for forcing of vertical fluid momentum
as observed in Fig. 59, or the reflection of waves with inverted surface elevation for forcing of volume fraction as observed
in Fig. 68.

Second, for (hydro-)acoustic waves the derivation might be attempted for different nonlinear wave equations, and ac-
cordingly for free-surface waves the application of nonlinear wave theories may improve predictions. This may be used
to assess in more detail the accuracy of the theory for flows with nonlinear waves, and investigate whether there are
further challenging nonlinear flow problems for which reflection coefficient CR is under-predicted by theory.

Third, investigations over a wide range of Mach numbers could be performed, although applications to such flows
does not suggest a strong variation in optimum tuning of the forcing zone parameters as the example in Appendix B
suggests.

Fourth, the derivation could also be extended to unsteady reference flow solutions, to provide further theoretical foun-
dation why the optimum forcing zone parameters were found to be nearly independent of the choice of reference solu-
tion.

The above investigations may require more complicated derivations, increased computational effort, longer evaluation
times, and might possibly be more complicated to use if they require more knowledge about the investigated flow from
the user.

Finally, further results from flow simulations are necessary to assess in more detail the forcing zone behavior with
rogue or breaking ocean waves (Perić et al., 2015; Perić and Abdel-Maksoud, 2016), and also with different types of
(hydro-)acoustic wave distortion than in Sect. 5.6.
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10 Conclusion

In this thesis, a theory was presented which predicts the reflection coefficients and the flow within forcing zones in
finite-volume-based flow simulations with (hydro-)acoustic waves and free-surface waves.

The theory is intended to be used to optimize the forcing zone’s case-dependent parameters before performing the flow
simulation. It was derived to hold with good approximation for every continuous or discontinuous blending function b(x)
and is based on a generic forcing zone formulation, so that it can easily be applied to many existing implementations in
different flow solvers. To facilitate the use of the presented theory in the scientific community, computer programs to
evaluate the theory for free-surface and (hydro-)acoustic waves have been published as free software.

The main mechanisms behind how forcing zones reduce undesired wave reflections were shown to be wave absorption,
partial wave reflection occurring throughout the forcing zone where ∇b(x) ̸= 0, and the destructive interference of the
partially reflected waves. All three mechanisms need to be considered to accurately predict the optimum forcing strength
γ and the corresponding reflection coefficient CR for a given blending function b(x) and zone thickness xd. For close-
to-optimum tuning, partial wave reflections occur throughout the forcing zone so that the amplitudes of these reflected
waves are small compared to the amplitude of the wave that entered the forcing zone. Thus forcing zones ‘split up’
nonlinear waves into many low-amplitude (i.e. nearly linear) wave components which can then cancel via destructive
interference. This mechanism explains why, when correctly tuned, forcing zones produced similar reflection coefficients
regardless whether the investigated waves were linear or highly nonlinear.

Further, it was found that there exists no general optimum setup for the parameters in the forcing zone formulation.
Instead, the optimal choice of parameters is case-dependent and differs depending on the intended reflection coefficient
CR and the investigated wave energy spectrum.

In 3D-flow simulations, different ‘forcing zone arrangements’ can be used, which differ in the choice of the governing
equations to which forcing source terms are applied, the reference solution towards which the flow is forced, and the
domain boundaries to which forcing zones are attached. Different types of forcing zones can be combined in a simulation,
and several combinations can produce satisfactory results. However, it was shown that some forcing zone arrangements
produce flow disturbances when waves travel tangential to the forcing zone and when there is a mismatch between the
computed flow and the reference solution.

For long-crested far-field waves, an efficient forcing zone arrangement was proposed which does not produce such flow
disturbances: The flow near the inlet boundary is forced towards the incidence wave, to generate the desired wave
while minimizing undesired reflections at the inlet. Near the domain sides, the boundary-normal velocities are gradually
forced to zero, thus the waves generated at the inlet pass through these zones undisturbed, whereas waves traveling
towards the domain sides (e.g. due to reflections at a body within the domain) are damped. At the outlet boundary,
all waves are damped by forcing the boundary-normal velocities towards zero or, in the presence of currents, by forcing
the flow towards the calm-surface solution for the flow with currents. This forcing zone arrangement reliably reduced
undesired wave reflections in several flow simulations for typical ocean engineering and shipbuilding applications with
strongly reflecting bodies subjected to free-surface waves. The results showed that the presented forcing arrangement
with optimization of the forcing zone parameters according to the theory enables the use of smaller domains and thinner
forcing zones than those commonly used, which can substantially reduce the computational effort.

The theory predictions were demonstrated to be of satisfactory accuracy for forcing zones in 1D-, 2D- and 3D-flow
simulations with (hydro-)acoustic waves and free-surface waves, with regular and irregular, linear and highly nonlinear
wave propagation, normal or oblique wave incidence, both in dispersive (free-surface waves in deep-water conditions)
and non-dispersive (free-surface waves in shallow-water conditions; sound waves in an ideal gas and in liquid water)
mediums, for different forcing zone parameters, for forcing in different governing equations, for forcing towards different
reference solutions, and for forcing zones applied to different domain boundaries. As predicted by theory, for practical
discretizations the forcing zones were found to behave independent of the chosen discretization scheme, its order, the
mesh size, the time-step size, and also of the used flow solver.

When the forcing zone was tuned using the developed theory, the simulation results for reflection coefficient CR were
in most cases smaller or nearly equal to those predicted by theory, but never more than 3.4% larger. The developed
theory is therefore suitable for optimization of the forcing zone parameters for flow simulations with (hydro-)acoustic or
free-surface waves.
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A Appendix: (Hydro-)acoustic wave propagation through thin constant-blending forc-
ing zone in the domain center

Key findings

• At every location within the forcing zone where ∇b(x) ̸= 0, waves are partially reflected

• At every location within the forcing zone where ∇b(x) = 0, no wave reflection occurs

• The amount of transmission, reflection and absorption depends on the value of forcing strength γ

This section investigates the reflection and transmission behavior of a thin forcing zone. The results are the basis for some
of the assumptions used in the derivation in Sect. 4. The setup for the flow simulations in this section is as described in
Sect. 5.1, with domain size Lx = 6λ, given in relation to wavelength λ. The following exceptions apply.

Figure 150 shows a sketch of the domain. The forcing zone is based on Eq. (31) and is located in the middle of the
domain, with b(x) = 1 for the cell located at x = 3λ and b(x) = 0 for all other cells, i.e. the forcing zone is one cell thick
with constant blending. The cell size is ∆x = λ

30 , so the thickness of the zone is xd = λ
30 . The reference solution is set

to uref = 0 to damp the waves. Simulations are performed for five wave periods T with a time step of ∆t = T
100 and for

different forcing strengths γ.

The simulations are performed once with liquid water, and once with an ideal gas as fluid. The main differences are that
the speed of sound is larger in water, so the domain and the cell sizes were scaled to fit ∆x = λ

30 and Lx = 6λ. Further,
the amplitude of the pressure fluctuation at the wave-maker is 10 Pa for the ideal gas (in air, this would correspond to
≈ 113 dB(SPL)) and 1000 Pa in water (≈ 180 dB(SPL)).

Figure 150: Sketch of the computational domain with wave-maker at x = 0 m and 1-cell-thick forcing zone (shaded gray)

The wave is generated at the wave-maker boundary x = 0 m during the time interval 0 ≤ t ≤ 1T . After this, the pressure
at boundary x = 0 is set to the reference pressure. Thus only a sinusoidal wave pulse of one wavelength (cf. Fig. 151
bottom) is created, which travels in positive x-direction.

When it reaches the one-cell forcing zone at x = 3λ, the wave is partly transmitted, absorbed and reflected, the percentage
of which depends on the forcing strength γ. The energy of the generated wave is obtained by integrating the wave energy
in the whole domain at time instance t = 2T , when the wave is fully generated and has not yet encountered the forcing
zone, via Etot|t=2T =

∫
A

∫ 6λ

0 Ekin + Epot dxdA|t=2T , with kinetic and potential energy evaluated via Eq. (38) and
cross-section area A = ∆y∆z of the quasi-1D simulation domain.

At time t = 5T , the wave has fully encountered the forcing zone, and the reflected part of the wave is on the interval
0 ≤ x < 3λ whereas the transmitted part of the wave is on the interval 3λ < x ≤ 6λ as shown in Fig. 151 bottom. By
computing the wave energy in the corresponding domain parts, the reflected component ER, the transmitted component
ET and the absorbed component EA of the total energy of the generated wave, normalized by the total energy of the
generated wave Etot|t=2T , are obtained via

ER =
∫

A

∫ 3λ

0 Ekin + Epot dx dA|t=5T∫
A

∫ 6λ

0 Ekin + Epot dxdA|t=2T

, (121)

ET =
∫

A

∫ 6λ

3 Ekin + Epot dx dA|t=5T∫
A

∫ 6λ

0 Ekin + Epot dx dA|t=2T

, (122)

ER + ET + EA = 1 , (123)
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with wavelength λ, time t, wave period T , location x in wave propagation direction, kinetic and potential energies Ekin

and Epot evaluated via Eq. (38), and cross-section area A = ∆y∆z.

Figure 151 shows that the simulation results for ET, ER, EA for the ideal gas and liquid water are nearly identical,
despite the different mediums and wavelengths. Thus with a single-cell forcing zone of thickness λ/30, roughly 50% of
the energy of the incoming wave can be absorbed at optimum setting of γ; as expected, for γ set close-to-optimum, i.e.
γ = 20480 s−1 in bottom image of Fig. 151, this results in a transmitted and a reflected wave with roughly the same
velocity amplitude ≈ 1

2ua, where ua is the velocity amplitude of the initially generated wave. Via the scaling of γopt ∝ ω

and xd ∝ λ given in Sect. 2.2, these results can be applied to a wave of any period, which would correspond to a sideways
shifting of the curves in Fig. 151.

The similar forcing zone behavior (i.e. the values for ET, ER and EA) for gas and liquid suggests that the present findings
could also apply in other wave propagation mediums such as solids. The theory from Sect. 4 suggests that, if the forcing
zone formulation can be traced back to the generic formulation in Eq. (2), and if the wave period T and wavelength λ

are known, then no further information about the wave propagation medium are required to predict reflection coefficient
CR.

ideal gas liquid water

Figure 151: Propagation of a wave with period T = 0.00227 s in an ideal gas (left) and liquid water (right) through a thin forcing
zone (shaded gray) positioned roughly in the domain center; for forcing via Eq. (31) with constant blending via Eq. (3) and zone
thickness xd = λ/30; top: transmitted (ET), reflected (ER), and absorbed (EA) components of the total energy as a function of
forcing strength γ; bottom: velocity in the domain at time t = 5T for forcing strengths γ = 1.28 · 103 1

s (mostly transmission),
γ = 2.048 · 104 1

s (roughly equal transmission and reflection) and γ = 8.192 · 104 1
s (mostly reflection)

Figure 152 shows that similar results as before in Fig. 151 are obtained when the simulations are repeated with finer dis-
cretization but same zone thickness xd = λ

30 . This shows that the original discretization (selected as roughly the coarsest
discretization that would be used in engineering practice) was sufficient to capture the forcing zone behavior, although
the finer discretization has a smoother wave resolution. It also supports the finding from Sect. 4.4, that the behavior of
the forcing zone can thus be considered independent of the discretization for most practical configurations.

Simulations with 8 or 2 times refined discretization, as well as corresponding simulations with ideal gas as fluid were
conducted and showed the same behavior, and thus are not depicted. Since the forcing zone thickness xd = λ

30 was
maintained, the forcing zone contains more than one cell for the finer discretized simulations. As this does not affect the
result, it follows that no reflection occurs at the interfaces between cells in which the forcing strength γ is the same, which
is equivalent to ∇b(x) = 0; further, reflection occurs at the interface between two cells if there holds ∇b(x) ̸= 0.

Considering Figs. 151 and 152, it is remarkable that the energy absorption is so large for such a thin zone. However,
literature (e.g. Israeli and Orszag, 1981) and the discussion in Sect. 9.3 indicate that the damping performance (i.e. the
decrease in CR) will improve comparatively slowly when increasing the zone thickness xd for the constant blending used
(b(x) = 1); Israeli and Orszag (1981) suggest for a related case that at least a zone thickness of xd > 15λ is required
to obtain reflection coefficient CR < 1%, and the discussion in Sect. 9.3 shows that, for precisely this case, to obtain
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CR < 1% requires a zone thickness of xd ≥ 30.2λ with optimum tuning20 of forcing strength γ, and that the damping
can be substantially improved by gradually increasing the blending function b(x) within the zone as found in Sects. 5.3
and 7.1.

Figure 152: As in Fig. 151 for water, except for 4 times smaller cells size ∆x and time step ∆t; thus instead of 1 cell in Fig.
151, the above forcing zone contains 4 cells; the forcing zone’s reflection, transmission, and absorption characteristics are nearly
identical to those from Fig. 151, which demonstrates that in the parts of the forcing zone where ∇b(x) = 0, no wave reflection
occurs

20The exception to this statement are those smaller xd-values, for which the especially favorable interference (cf. Fig. 27) occurs; however,
for these zone thicknesses the reflection coefficient CR can be highly sensitive to the wavelength as discussed in Sect. 9.2.
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B Appendix: Tuning forcing zones to improve convergence for ship resistance compu-
tations

Key findings

• Applying forcing zones near all vertical domain boundaries can improve the convergence of ship resistance compu-
tations

• When performing simulations in model and full scale, the forcing strength must be correctly scaled to ensure that
the solution converges in a similar manner

• If the forcing strength is not scaled, the solution may not converge

• It is recommended to tune the forcing zones to the period and wavelength of the transversal wave in the ship wake

This section compares results from model and full scale resistance computations in 3D of the Kriso container ship (KCS)
at Froude number 0.26. The simulations in this section are based on the simulations reported in detail in Enger et
al. (2010). For detailed information on the setup and discretization, the reader is referred to Enger et al. (2010). In
the following, only a brief overview of the setup and differences to the original simulations are given for the sake of
brevity. The present model-scale simulations differ only in the forcing zone setup (and slight modifications of the used
grid) from the fine grid simulation in Enger et al. (2010). The KCS is fixed in its floating position at zero speed. To
simulate the hull being towed at speed U , this velocity is prescribed at the inlet domain boundaries and the hydrostatic
pressure of the undisturbed water surface is prescribed at the outlet boundary behind the ship. The domain is initialized
with a flat water surface and flow velocity U for all cells. As time accuracy is not in the focus here, the first-order
implicit Euler scheme is used for time integration. The k-ϵ turbulence model by Launder and Spalding (1974) is used.
The computational grid consists of roughly 3 million cells. The pressure components of the drag and vertical forces are
compared, which are obtained by integrating the x-component for the drag and z-component for the vertical component
of the pressure forces over the ship hull. The simulation starts at time t = 0 s and is stopped at time tend = 90 s.

The Kelvin wake of the ship can be decomposed into a transversal and a divergent wave component. The wave damping
setup is based on the ship-evoked transversal wave (wavelength λt ≈ 3.1 m). The wave period is calculated from the
wave’s phase velocity c, which equals the ship speed U , via T = λt/c. Forcing zones for vertical momentum according to
Eq. (20) with reference solution wref = 0 and with exponential blending according to Eq. (9) have been attached to all
vertical domain boundaries with zone thickness xd = 2.3λt and forcing strength γ = f1 = 22.5 s−1. This setup provided
convergence of drag and vertical forces in model scale. Figure 153 shows the wake pattern for the finished simulation.
The results for the forces are in agreement with the findings from Enger et al. (2010). The obtained resistance coefficient
CT,sim = 3.533 · 10−3 compares well with the experimental data (CT,exp = 3.557 · 10−3, 0.68% difference to CT,sim) by
Kim et al. (2001) and to the simulation results by Enger et al. (2010) (CT,Enger = 3.561 · 10−3, 0.11% difference to
CT,exp).

Figure 153: Wave profile for model scale ship with f1 = 22.5 s−1 for converged solution
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Additionally, full scale simulations are performed with Froude similarity. The scaled velocity and ship dimensions are
shown in Table 1. The grid is similar to the one for the model scale simulation except scaled with factor 31.6.

Table 1: KCS parameters

scale waterline length L (m) service speed U (m/s)
model 7.357 2.196

full 232.5 12.347

To obtain similar wave damping as in model scale, zone thickness xd was scaled according to Eq. 13 by factor 31.6 and
forcing strength γ = f1 was scaled according to Eq. 16; the correctly scaled f1 value for the full scale simulation is thus
f1, full = f1, model · ωfull/ωmodel = 22.5 s−1 · 1/

√
31.6 ≈ 4 s−1. Additionally, the full scale simulations were performed with

the same forcing strength as in the model scale simulations, i.e. f1 = 22.5 s−1. Otherwise the setup corresponds to the
one from the model scale simulation.

Figure 154 shows drag and vertical forces as a function of time when both model and full scale simulations are performed
with the same value for damping coefficient f1. In contrast to the model scale forces, the full scale forces oscillate and a
converged solution is not obtained for the full scale case.

In contrast, Fig. 155 shows that indeed similar wave damping is obtained when forcing strength f1 is correctly scaled,
since in both cases the forces converge in a qualitatively similar fashion. Note that a perfect match of the curves in
Fig. 155 is not expected, since Froude-similarity is given, but not Reynolds-similarity. Thus although the pressure
components of the forces on the ship converge to the same values (if scaled with L3), the amplitude and frequency of
the force oscillation is different.

Figure 154: Drag (left image) and vertical (right image) pressure forces on ship as a function of time for model (red) and full
scale (gray); for the full scale simulation, the same forcing strength f1 = 22.5 s−1 as in the model scale simulations is used; since
f1 is not correctly scaled, the wave damping is not similar and the full scale simulation does not converge

Figure 155: As Fig. 154, except that the forcing strength f1 in the full scale simulation is correctly scaled to provide similar wave
damping as in the model scale simulation, and thus forces converge in a similar manner
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