
Validated Solution of Large Linear Systems1

Siegfried M. Rump

Dedicated to U. Kulisch on the occasion of his 60th birthday

Abstract

Some new methods will be presented for computing verified inclusions of the solution of large

linear systems. The matrix of the linear system is typically of band or sparse structure. There

are no prerequisites to the matrix such as being M-matrix, symmetric, positive definite or

diagonally dominant. For general band matrices of lower, upper bandwidth p, q of dimension

n the computing time is less than n ·(pq+p2 +q2). Examples with up to 1.000.000 unknowns

will be presented.

Zusammenfassung

Es werden neuartige Methoden vorgestellt zur Berechnung sicherer Schranken der Lösung

großer linearer Gleichungssysteme. Die Matrix des Gleichungssystems hat typischerweise

Bandstruktur oder ist spärlich besetzt. Es werden keinerlei Voraussetzungen an die Matrix

gestellt wie etwa M-Matrix, symmetrisch, positiv definit oder diagonal dominant. Für Band-

matrizen von oberer bzw. unterer Bandbreite p bzw. q der Dimension n ist die Rechenzeit

kleiner als n · (pq + p2 + q2). Es werden Beispiele bis Dimension 1.000.000 diskutiert.

0 Notation

Let IR denote the set of real numbers, IRn vectors and IRn×n matrices over those. The

letter n is only used for the dimension of vectors and matrices, others then n-vectors and

n× n-matrices do not occur in this paper.

IPT denotes the power set over T, IIT the interval extension for T ∈ {IR, IRn, IRn×n}. Usually

hyperrectangulars are used but others are not excluded. It should be stressed that interval

operations producing validated bounds are rigorously and very efficiently implementable on

digital computers, see [25], [1], [5], [28] for details.

1published in R. Albrecht et al. (eds.): Validation numerics: theory and applications, vol. 9 of Computing
Supplementum , pp. 191–212, Springer 1993

1

Intervals are written in brackets a ± b denotes the interval [a − b, a + b], for some interval

[X] is |[X]| := max { |x| | x ∈ [X] }, mid([X]) denotes the midpoint, rad([X]) the radius of

an interval [X]. Those terms apply to vectors and matrices componentwise.

The interior of a set is denoted by int, ρ denotes the spectral radius of a matrix and ρ([A]) :=

max { ρ(A) | A ∈ [A] } for [A] ∈ IIIRn×n. An interval linear system is sometimes written

in short notation [A] · x = [b], solving it means to compute bounds for

∑
([A], [b]) := { x ∈ IRn | ∃ A ∈ [A], b ∈ [b] with Ax = b }.

σ1, . . . , σn denote the singular values of a matrix in nonincreasing order such that σ1 = ‖A‖2.

If not stated otherwise all operations are real or floating-point operations. We use operations

4∗ with upwardly directed rounding, ∗ ∈ {+,−, ·, /} having the property

a4∗ b ≥ a ∗ b

where the latter operation ∗ is the real operation. In case a, b are vectors or matrices the

≤-sign applies componentwise.

1 Introduction

Few papers are known dealing with the problem of finding validated inclusions for the solution

of sparse linear systems without calculating an approximate inverse of the system matrix. All

of the papers known to the author not using an approximate inverse require special properties

of the system matrix which is essentially being an M-matrix. The approximate inverse of a

sparse matrix is in general full thus limiting the size of the tractable problems significantly.

This is because of limitations in memory and because for banded systems the computing

time depends quadratically on n. Our goal is to go large sizes, that is 100.000 unknowns

and beyond and to keep the computing time for banded systems linearly dependant on n.

There are very interesting papers for condition estimation of sparse matrices (cf. [4], [13]).

However, these are yielding estimations rather than verified bounds.

In this paper we describe our method for banded linear systems. The numerical examples

are for banded systems, too. For sparse systems the techniques for reducing bandwidth,

symbolic pivoting and others (cf. [13]) can be applied. The resulting linear system of

reduced bandwidth can be treated by our methods.

There is one yet unpublished method without using an approximate inverse and without

prerequisites on the matrix by Jansson [20]. Despite that there are essentially two different

approaches known in the literature. The first is the direct extension of some numerical

decomposition algorithm by means of replacing every real operation by the corresponding

2

interval operation. It has been shown that, for example, the interval version of Gaussian

elimination is executable in this way for diagonally dominant matrices or M-matrices. In

the general case intervals tend to grow in diameter rapidly due to data dependencies such

that soon a pivot column only consists of intervals containing zero and the algorithm stops

prematurely. This effect depends mainly on the dimension, not on the condition number.

As a rule of thumb for general matrices with floating-point input data, for example for

random matrices, the range of application of this approach is limited to dimension 50 when

calculating in double precision which is roughly 17 decimals. The dimension is even more

limited for interval input data.

The other approach uses fixed point methods. We shortly describe this ansatz because it

gives insight in the problems we have to deal with.

Let a linear system Ax = b with matrix A ∈ IRn×n and right hand side b ∈ IRn be given

together with some x̃ ∈ IRn, R ∈ IRn×n. x̃ is considered to be an approximate solution to

the linear system, R an approximate inverse of A. Krawczyk [21], [22] defines for X ∈ IIIRn

the following operator

K(X) := x̃−R · (Ax̃− b) + (I −RA) · (X − x̃). (1)

He shows that

‖I −RA‖ < 1 and K(X) ⊆ X implies ∃ x̂ ∈ X : Ax̂ = b

(see also [26], [27]). In [29] it has been shown that the assumption ‖I − RA‖ < 1 can be

replaced by K(X) ⊆ int(X). Algorithms were designed to compute validated inclusions

for the solution of general nonlinear systems [30]. There are a number of specializations

to specific problems such as polynomial zeros [7], algebraic eigenproblems [29], evaluation

of arithmetic expressions [8] and others taking advantage of the special situation. A basic

theorem for linear systems is as follows.

Theorem 1.1. Let A ∈ IPIRn×n,B ∈ IPIRn be given and let x̃ ∈ IRn, R ∈ IRn×n, ∅ 6= X ∈
IPIRn, X being compact. Define

Z := R · (B −Ax̃) and C := I −R · A, (2)

L(X) := Z + C ·X, (3)

all operations being power set operations. If

L(X) ⊆ int(X) (4)

3

then R and every A ∈ IRn×n, A ∈ A is nonsingular and for every b ∈ B the unique solution

x̂ := A−1b satisfies

x̂ ∈ x̃ + L(X). (5)

The proof consists of three basic steps. First take fixed but arbitrary A ∈ A, b ∈ B thus

reducing the problem to a point problem. Second, show that C := I −RA ∈ C is convergent

(ρ(C) < 1) and therefore A and R are nonsingular. Moreover, the iteration xk+1 := R(b −
Ax̃)+C ·xk has a unique fixed point x̂ ∈ X. Third show that this fixed point is the (unique)

solution of Ax = b.

Thus theorem 1 already verifies the solvability of the linear system and gives a sufficient

criterion for some X ∈ IPIRn for including the solution. To devise an algorithm for finding

a validated inclusion [X] we have to solve two problems. First the operations have to

become executable on the computer and second we need a constructive way to obtain a

suitable [X]. The first problem is solved by using interval operations rather than power set

operations. On the computer floating-point bounds for the intervals are used. Then systems

with [A] ∈ IIIRn×n, [b] ∈ IIIRn can be attacked. This includes for example point matrices the

entries of which not being exactly representable on the computer by replacing those by the

smallest enclosing machine interval (see [1], [27], [5], [28]).

For the second problem we use an iteration with a so-called ε-inflation (see [29], [31]). In

this technique for a starting interval [X] := [Z] := R · ([b] − [A] · x̃) the iterated interval is

made “fatter” in every step. This is used in combination with an Einzelschrittverfahren. It

can be shown [31] that a validated inclusion will be found

• for a point system Ax = b and power set operations

iff ρ(I −R · A) < 1

• for an interval linear system [A]x = [b] and interval operations

iff ρ(|I −R · [A]|) < 1.

All of the fixed point methods known in the literature basically use theorem 1, especially

(1.2) - (1.4), in one or the other way. Thus in our discussions for sparse linear systems we

may concantrate on how to satisfy those conditions.

For simplicity let a point linear system Ax = b, A ∈ IRn×n, b ∈ IRn be given. We do not

impose restrictions on A or b. For large banded or sparse linear systems the original approach

cannot be used because it needs an approximate inverse R of A which is in general full. We

4

may omit this by using some decomposition of A. For A = LU and R = U−1L−1 we obtain

for x ∈ IRn

R · (b− Ax̃) + (I −RA)x = U−1L−1 · (b− Ax̃ + (LU − A) · x). (6)

L and U preserve a banded structure of A. In a practical application we would think of

replacing U−1 and L−1 by an efficient algorithm for solving triangular systems. From a

mathematical point of view L and U are arbitrary. If for some L,U ∈ IRn×n and [X] ∈ IIIRn

we can show that

M([X]) := U−1L−1(b− Ax̃ + (LU − A) · [X]) ⊆ int([X]) (7)

then theorem 1 implies that A is nonsingular and the unique solution x̂ = A−1 · b satisfies

x̂ ∈ x̃ + M([X]). LU − A can be estimated during the decomposition of A, most simple

and without additional cost for example using Crout’s variant. Thus we have reduced our

problem to computing a validated inclusion of the solution of a linear system with triangular

point matrix and interval right hand side.

In (1.7) b−Ax̃ is of order ε · ‖A‖ · ‖x̃‖ if x̃ is a reasonable approximate solution, for example

the one computed by floating-point Gaussian elimination. Also, numerical error analysis tells

us that LU − A will be of the order ε · ‖A‖. [X] shall contain the error of the approximate

solution x̃ which means that (LU − A) · [X] will be an interval vector of small magnitude.

Thus we would not loose too much accuracy going to intervals being symmetric to the origin.

This saves us half of the storage per interval vector. Clearly, for 0 < x ∈ IRn

U−1L−1 · (|b− Ax̃|+ |LU − A| · x) < x (8)

implies A being nonsingular and A−1b ∈ x̃± x.

This reduces our problem to solving a triangular system with right hand side [b] symmetric

to the origin and we may further simplify it to [b] := [−1, 1]. In other words find

validated bounds for S := {L−1 · b | −1 ≤ b ≤ 1 }, L ∈ IRn×n lower triangular. (9)

All of the papers [11], [12], [23] using the fixed point approach solve (1.9) using interval

backward substitution:

for i = 1 : n do [x]i = ([−1, +1]−
i−1∑

j=1

Lij · [x]j)/Lii (10)

5

all operations in (1.10) being interval operations. Thus the intervals [x]j are symmetric to

the origin and (1.10) can be written using absolute values

for i = 1 : n do xi = (1 +
i−1∑

j=1

|Lij| · xj)/|Lii| (11)

yielding a true inclusion S ⊆ [−x, +x]. The overestimation can be estimated observing

x = 〈L〉−1 · e where e ∈ IRn, ei = 1 for 1 ≤ i ≤ n and 〈L〉 is Ostrowski’s comparison matrix

(see [28]):

〈L〉ij :=




|Lii| for i = j

−|Lij| otherwise.

For our special right hand side the maximal overestimation is the ratio

‖〈L〉−1‖∞/‖L−1‖∞. (12)

If we could estimate ‖L−1‖∞ then our problem (1.9) would be solved. In practical applica-

tions the ratio (1.12) is exponentially increasing with n unless L has special properties. Such

properties are A and therefore L and U being M-matrices in which case L = 〈L〉, U = 〈U〉.
This is the reason why M-matrices can be solved using interval Gaussian elimination with-

out overestimation. To further illustrate the effect consider the following example due to

Neumaier:

L =




1

1 1

1 1 1

1 1 1
. . .

1 1 1




, [b]i = [−1, +1]. (13)

Using interval backward substitution we obtain with E := [−1, 1]

[x]1 = E

[x]2 = E − [x]1 = 2 · E
[x]3 = E − [x]1 − [x]2 = 4 · E
[x]4 = E − [x]2 − [x]3 = 7 · E

6

with exponentially growing diameter of [x]i. This can also be seen from 〈L〉−1 which we show

for n = 7:

〈L〉−1 =




1 0 0 0 0 0 0

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 2 1 1 0 0 0

5 3 2 1 1 0 0

8 5 3 2 1 1 0

13 8 5 3 2 1 1




.

Thus [x] computed by (1.10) is a huge overestimation of the true solution set which computes

to

(L−1 · [b])i = ±|L−1| · E = (i− [i/3]) · E ⊆ n · E.

This can be seen from

L−1 =




1 0 0 0 0 0 0

−1 1 0 0 0 0 0

0 −1 1 0 0 0 0

1 0 −1 1 0 0 0

−1 1 0 −1 1 0 0

0 −1 1 0 −1 1 0

1 0 −1 1 0 −1 1




.

Unfortunately, this behaviour is typical for practical examples with matrices without special

properties.

Methods based on the first approach (replacing floating-point operations by their correspond-

ing interval operations in some numerical decomposition algorithm) are by their nature es-

sentially restricted to diagonally dominant or inverse positive matrices (see for example [1],

[28]. See also [33] for an interval version of Bunemann’s algorithm for Poisson equation.

As we have just seen the fixed point approach as described in the literature is restricted to

a similar class of matrices. This approach is used in [3], [11], [12], [23].

Using a coded version [3] of this algorithm the effect can be demostrated. We used algorithm

DSSSB with IWK = 5 which means the maximum possible amount of work is invested. We

used A = 0.1 · LLT with L from (1.13) and right hand side (1, 0, · · · , 0)T . The factor 0.1 is

used to make the factors of A not exactly representable on the computer. Then using double

precision floating-point format which is approximately 17 decimal digits the algorithm fails

for n ≥ 41. For n = 41 we have cond(A) = 2.3e3. Taking the matrix (4.20) from [16] with

a = 1 and the same right hand side (1, 0, · · · , 0)T the algorithm fails for n ≥ 48. For n = 48

we have cond(A) = 42.

7

The amount of overestimation (1.12) is displayed in the following table.

n 10 20 30 40 50

‖ 〈L〉−1‖∞/‖L−1‖∞ 20.4 1265 1.0e5 9.9e6 9.7e8

Table 1.1 Overestimation of interval Gaussian elimination for L from (1.13)

The figures demonstrate the exponential behaviour of the overestimation.

2 The method

In order to bound (1.9) we may look for the singular values of L. Let Ur be the unit disk

of radius r. Then ‖L−1 · u‖2, u ∈ Ur is bounded by σn(L)−1 · ‖u‖2 = σn(L)−1 · r. Thus a

validated lower bound on the smallest singular value of a triangular matrix would solve the

problem. This, in turn, would also yield a validated condition estimator. The problem of

finding fast and reliable (although not validated) condition estimators has been attacked by

many authors ([9], [10], [15], [17], [18], [2], [6]).

Given an approximation λ̃ of σn(L), λ̃2 is an approximate eigenvalue of LLT . If for some

κ ∈ IR being slightly less than one we could prove that LLT −κλ̃2 · I is positive definite then

κ1/2 · λ̃ proved to be a lower bound of σn(L).

L is a Cholesky factor of LLT . The change of the Cholesky factor L into G with GGT =

LLT − λ̃2I is given by the following formulas:

i∑
ν=1

G2
iν =

i∑
ν=1

L2
iν − λ̃2 for i = j

j∑
ν=1

GiνGjν =
j∑

ν=1
LiνLjν for i > j.

(14)

We need, however, a validation for the fact that LLT − λ̃2I is positive semidefinite. When

performing an exact Cholesky factorization of LLT − λ̃2I this is true if the algorithm is

executable, i.e. if the diagonal elements stay nonnegative. Using floating-point operations we

have to estimate the rounding errors during the computation. Rather than estimating them

a priori by replacing the floating-point operations by the corresponding interval operations

we estimate them a posteriori by estimating the difference of GGT and LLT − λ̃2I for the

computed Cholesky factor G and by using perturbation theory.

For the diagonal elements this means

computing Gii := (
i∑

ν=1
L2

iν −
i∑

ν=1
G2

iν − λ̃2)1/2 approximatively and

8

estimating |(LLT − λ̃2I −GGT)ii| = | i∑
ν=1

L2
iν −

i∑
ν=1

G2
iν − λ̃2| rigorously.

For off-diagonal elements this means

computing Gij := (
j∑

ν=1
LiνLjν −

j−1∑
ν=1

GiνGjν)/Gjj approximatively and

estimating |(LLT − λ̃2I −GGT)ij| = |
j∑

ν=1
LiνLjν −

j∑
ν=1

GiνGjν | rigorously.

The computation and the estimation can essentially be done in one step. First the common

part of both sums, resp. is evaluated with error estimation, then the midpoint is used for the

floating-point component Gii, Gij of G, resp. and the interval part for the error estimation.

If only the four basic interval operations, that is IEEE 754 [19] arithmetic, is available that

is the best we can do. If a precise scalar product [24], [25] is available then we can do better.

For the diagonal elements we compute the exact value

dot :=
i∑

ν=1
L2

iν −
i−1∑
ν=1

G2
iν − λ̃2

and for S being the value of dot rounded to nearest we get Gii := fl(
√

S), that is Gii is the

floating-point square root of S. Then we use the accumulating feature of the scalar product

and compute the exact value of dot − G2
ii. This value rounded to the smallest enclosing

interval provides a very sharp bound for the error (LLT − λ̃2I−GGT)ii. For the off-diagonal

elements we proceed in a similar way. To avoid to formulate the algorithm twice we simply

state in the diagonal case

Compute S, ∆S such that

i∑
ν=1

L2
iν −

i−1∑
ν=1

G2
iν − λ̃2 ∈ S ±∆S.

For basic interval operations this means S being the midpoint, ∆S the radius of the left hand

side computed in naive interval arithmetic. With the precise scalar product we proceed as

described before. The off-diagonal elements are treated similarly.

Having an estimation on E := LLT − λ̃2I − GGT and assuming the diagonal of G being

nonnegative implies that LLT − λ̃2I −E is positive semidefinite. Hence perturbation theory

tells us that the eigenvalues of LLT − λ̃2I are not smaller than −ρ(E) (cf. [14], Corollary

8.1.3) and those of LLT not smaller than λ̃2−ρ(E). Now ρ(E) can be estimated conveniently

by ‖E‖∞ which is done in the following algorithm. There the ith row sum is stored in ei.

When computing the ij-th component of G the error (LLT − λ̃2I −GGT)ij contributes to ei

and ej due to symmetry. To obtain an upper bound on ‖E‖∞ upward directed rounding is

used in the computation of the ei and emax.

We give the algorithm for full matrix L. It can be altered for band matrices in a straight-

forward manner. Pivoting is omitted because LLT − λ̃2I is (hopefully) positive definite.

9

Given nonsingular lower triangular L ∈ IRn×n and λ̃ ∈ IR do

emax := 0

for i = 1 : n do ei := 0;

for i = 1 : n do

for j = 1 : i− 1 do

Compute S, ∆S such that
j∑

ν=1
LiνLjν −

j−1∑
ν=1

GiνGjν ∈ S ±∆S;

Gij := fl(S/Gjj);

Compute ∆T such that

|S −GijGjj| ≤ ∆T ;

d := ∆S 4+ ∆T ; ei := ei 4+ d; ej := ej 4+ d;

Compute S, ∆S such that
i∑

ν=1
L2

iν −
i−1∑
ν=1

G2
iν − λ̃2 ∈ S ±∆S;

Gii := fl(
√

S);

Compute ∆T such that

|S −G2
ii| ≤ ∆T ;

ei := ei 4+ ∆S 4+ ∆T ;

emax := max
i

e;

Algorithm 2.1 Cholesky factorization of LLT − λ̃2I with lower bound for σn(L)

In precise computation, ∆S and ∆T as well as T would be zero according to (2.1). The

main effort in the algorithm goes into the two inner products for computing S together with

a validated bound. If L is a lower triangular band matrix of bandwidth p then the vector e

needs only to be of length p+1 storing the values cyclically. Also, G needs only (p+1)∗(p+1)

elements of storage.

It should be stressed that G is computed in floating-point arithmetic without presumptions

on its accuracy. If the algorithm finishes successfully, i.e. the radicands are nonnegative,

then the Gii are nonnegative and therefore GGT is positive semidefinite with

‖(LLT − λ̃2I)−GGT‖∞ ≤ emax. (15)

The eigenvalues of LLT are the squared singular values of L and are bounded from below

by λ̃2 − emax. This establishes the following theorem.

Theorem 2.1. If algorithm 2.1 finishes sucessfully (all square roots real) then LLT − (λ̃2−
emax)I is positive semidefinite. If λ̃2 ≥ emax then

10

σn(L) ≥ (λ̃2 − emax)
1/2.

The computing time for L with lower bandwidth p (Lij = 0 for i > j + p) is less than

n · p2 + O(np) multiplications and additions plus n(p + 1) divisions and n square roots.

Proof. The first part has been proved above, the computing time is a straightforward

operation count.

In our applications we are particularly interested in sparse linear systems. This fact should

be taken into account when implementing algorithm 2.1. For example, in case of a band

matrix L the scalar products become very short compared to n.

Theorem 2.1 can be applied as follows. Consider some decomposition of A, for example

L̃Ũ ≈ A with Ã := L̃Ũ . Then traditional norm estimates can be used to compute validated

bounds for the solution together with theorem 2.1.

Theorem 2.2. Let A ∈ IRn×n, b ∈ IRn be given as well as nonsingular Ã ∈ IRn×n and

x̃ ∈ IRn. Define ∆A := Ã− A and suppose σn(Ã) > n1/2 · ‖∆A‖∞.

Then A is not singular and for x̂ := A−1b holds

‖x̂− x̃‖∞ ≤ n1/2 · ‖b− Ax̃‖∞
σn(Ã)− n1/2 · ‖∆A‖∞

. (16)

Proof. Since ‖Ã−1 · ∆A‖2 ≤ σn(Ã)−1 · ‖∆A‖2 ≤ n1/2 · σn(Ã)−1 · ‖∆A‖∞ < 1 the matrix

I − Ã−1 ·∆A = Ã−1 · A and hence A is invertible. Now

(I − Ã−1 ·∆A)(x̂− x̃) = Ã−1 · A · (x̂− x̃) = Ã−1 · (b− Ax̃).

Using ‖(I − F)−1‖ ≤ (1− ‖F‖)−1 for convergent F ∈ IRn×n this implies

‖x̂− x̃‖∞ ≤ ‖Ã−1 · (b− Ax̃)‖∞
1− ‖Ã−1 ·∆A‖∞

(17)

and with ‖B‖∞ ≤ n1/2 · ‖B‖2 for B ∈ IRn×n

‖x̂− x̃‖∞ ≤ n1/2 · σn(Ã)−1 · ‖b− Ax̃‖∞
1− n1/2 · σn(Ã)−1 · ‖∆A‖∞

proving the theorem.

In a practical application Ã is some floating-point decomposition of A, for example Ã = L̃Ũ .

Then the application of theorem 2.2 runs as follows. The nonsingularity of Ã is obvious.

Compute an approximate solution x̃ of Ãx = b and a lower bound for σn(Ã) by

11

σn(Ã) = σn(L̃Ũ) ≥ σn(L̃) · σn(Ũ)

and theorem 2.1. Then check for σn(Ã) > n1/2 · ‖∆A‖∞ to satisfy the conditions of theorem

2.1.

In the estimation (2.3) one may try to avoid or diminish the factor n1/2. If B ∈ IRn×n is

sparse with at most τ(B) elements per row, then it is not difficult to prove

‖B‖∞ ≤ τ(B)1/2 · ‖B‖2.

One may hope that given B with τ(B−1) small then also the factor n1/2 may be decreased.

Unfortunately, this is not true. Consider

B−1 =




1

−1

1 −1

1
. . .
. . . −1

1 ε




.

Then for small ε

‖B‖2 ≈ ε−1 · n1/2 , ‖B‖∞ ≈ ε−1 · n with ‖B‖∞/‖B‖2
<∼ n1/2.

To apply theorem 2.1 in order to obtain a lower bound on the smallest singular value of a

triangular matrix L we need an approximation λ̃ ≈ σn(L). There are two ways to obtain such

an approximation. First, we could use our favourite condition estimator. This is fast and,

according to our experimental results, works fine. The second method would be to apply

inverse power iteration to LLT using forward and backward substitution. The heuristic is

that an L occuring in practice has a well separated smallest singular value. Due to our

practical results in most cases 2 or 3 iterations sufficed to generate 3 correct decimal digits.

This is far more than necessary.

In the applications we have in mind we can do better using a 2-norm estimate and taking

advantage of the structure of A. Let A ∈ IRn×n be a band matrix of lower, upper bandwidth

p, q, that is

Aij = 0 for i > j + p and for j > i + q.

Let α := max |Aij|. Then both ‖A‖1 and ‖A‖∞ are bounded by (p + q + 1) · α and using

‖A‖2
2 ≤ ‖A‖1 · ‖A‖∞ yields

‖A‖2 ≤ (p + q + 1) · α. (18)

12

Hence ‖A‖2 ≤ (‖∆A‖1 · ‖∆A‖∞)1/2 will in general be smaller than n1/2 · ‖∆A‖∞. Applying

this to (2.4) we obtain the following result.

Theorem 2.3. Let A ∈ IRn×n, b ∈ IRn be given as well as nonsingular Ã ∈ IRn×n and

x̃ ∈ IRn. Define ∆A := Ã− A and suppose σn(Ã) > (‖∆A‖1 · ‖∆A‖∞)1/2.

Then A is not singular and for x̂ := A−1b holds

‖x̂− x̃‖∞ ≤ ‖x̂− x̃‖2 ≤ ‖b− Ax̃‖2

σn(Ã)− (‖∆A‖1 · ‖∆A‖∞)1/2
. (19)

Theorem 2.3 also follows by a fixed point argument. Using Ã = LU and a disk of radius r

instead of [x] in (2.7) gives according to theorem 1.1

Ã−1 · (b− Ax̃ + (Ã− A) · Ur) ⊆ int(Ur) ⇒
A is not singular and A−1b ∈ x̃ + Ur.

(20)

The inclusion in (2.7) is satisfied if

σn(Ã)−1 · (‖b− Ax̃‖2 + r · ‖∆A‖2) < r.

This yields a bound on r and with a continuouity argument (2.6).

The heuristic is that the elements of ∆A are roughly of the same size, namely ε‖A‖. In the

application of (2.6) we have to check σn(Ã) > (‖∆A‖1 · ‖∆A‖∞)1/2 to verify ρ(Ã−1 ·∆A) < 1

which is according to (2.5) more likely to happen than σn(Ã) > n1/2 · ‖∆A‖∞. Moreover,

computing x̃ by Gaussion elimination we know that the residual ‖b − Ax̃‖ will be of the

order ε · ‖A‖ · ‖x̃‖ (cf. [14]).

In the following we add some computational hints for specific cases being relevant in practice.

I) A is M-matrix. Apply [32].

If A is symmetric positive definite we can use algorithm 2.1 to calculate a lower bound for

σn(A) directly. when replacing

j∑
ν=1

LiνLjν by Aij in row 7 and

i∑
ν=1

L2
iν by Aii in row 13 ,

then obvionsly

σn(A) ≥ (λ̃2 − emax)
1/2.

13

Replacing Ã by A in theorem 2.3 then yields

‖x̂− x̃‖∞ ≤ ‖x̂− x̃‖2 ≤ (λ̃2 − emax)
−1/2 · ‖b− Ax̃‖2. (21)

II) A is symmetric positive definite. Compute a floating-point Cholesky decomposition

A ≈ G̃G̃T and an approximation σ̃ of the smallest singular value of A. Apply algorithm

2.1 altered as described above with λ̃ = 0.9 · σ̃ to compute a lower bound on σn(A)

and apply (2.8).

In case A is not symmetric positive definite one may use the following method. Having some

approximate decomposition A ≈ F̃ · G̃ compute an approximation λ̃ to the smallest singular

value of A by inverse power method applied to F̃ G̃ · (F̃ G̃)T . If F̃ , G̃ are triangular this is

inexpensive. Then apply theorem 2.1 with some obvious modifications to AT A − λ̃2I to

bound σn(AT A).

This approach is working only for moderate condition numbers because the condition number

of AT A is that of A squared. For working precision ε this limits the scope of application to

cond(A) < ε−1/2 rather than cond(A) < ε−1.

In contrast we estimate the smallest singular value of the factors of the decomposition sepa-

rately. We have to take provision that the condition numbers of the factors are of the same

order, namely cond(A)1/2. In this case the square of the condition number of the factors is

still of the order of cond(A) and no additional restrictions are imposed on A.

In the case A is symmetric we can do a little bit better than using LDLT . Instead, let D1, D2

be diagonal such that D1D2 = D, |D1| = |D2| = |D|1/2. Then LDLT = (LD1) · (LD2)
T and

the usual LDLT decomposition can be modified in an obvious way to compute L1 := L ·D1

and L2 := L · D2 directly instead of L and D. Furthermore D1 = Q · D2 with Q being a

diagonal matrix with +1 or −1 in the diagonal thus being orthogonal. Therefore LD1 and

LD2 have the same singular values and lower bound for σn(LD1) suffices for our purposes.

Despite saving computing time the heuristic is that σn(LD1)
2 provides a better lower estimate

for σn(LDLT) than σn(L)2 · σn(D). Practical examples support this heuristic to a certain

point. The same heuristic applies to general nonsymmetric matrices.

III) A is symmetric. Compute an approximate L̃1 · L̃T
2 decomposition as described above

and an approximation σ of the smallest singular value of L̃1. Apply algorithm 2.1 with

λ̃ = 0.9 · σ̃ to compute a lower bound σ on σn(L̃1) and apply theorem 2.2 or 2.3 with

Ã := L̃1 · L̃T
2 and σn(Ã) ≥ σ2.

In the general case we may apply an LU -decomposition. However, L tends to be fairly

well-conditioned whereas the condition of A moves into U . Thus we may run into difficulties

14

trying to estimate σn(UT U). On the other hand the LDMT -decomposition can be altered

in an obvious way to distribute D = D1 ·D2, |D1| = |D2| = |D|1/2 both in L and M as we

did in the L1L
T
2 -decomposition in the symmetric case. This yields an LM -decomposition, L

and M no longer being unit lower triangular. The heuristic is that then L and M are more

or less equally conditioned, the condition number not being much bigger than the square

root of the condition number of A.

IV) A is general nonsymmetric. Compute an approximate L̃ · M̃T -decomposition of A

and approximations σ̃1, σ̃2 for the smallest singular value of L̃, M̃ , respectively. Apply

algorithm 2.1 with λ̃1 = 0.9 · σ̃1, λ̃2 = 0.9 · σ̃2 to compute a lower bound σ1, σ2 on

σn(L̃), σn(M̃) and apply theorem 2.2 or 2.3 with Ã = L̃ · M̃T and σn(Ã) ≥ σ1 · σ2.

It should be pointed out that the heuristic for cases III) and IV) works for many examples

but also has its drawbacks. In the moment we do not know a general strategy for choosing

a decomposition A ≈ F̃ G̃ which maximizes σn(F̃) · σn(G̃). In case of symmetric positive

definite A the method of choice is of course the Cholesky decomposition A = GGT with

σn(A) = σn(G)2.

Let L ∈ IRn×n be of lower triangular of bandwidth p. Then approximations of the smallest

singular value of L are either computed by

• inverse power iteration for LLT at the cost of 2np ops per iteration or

• using some condition estimator at the cost of c · np ops, c small.

As has been pointed out before this is small against np2. Thus the total computing time for

either of the algorithms for a linear system Ax = b with A of lower, upper bandwidth p, q,

respectively, p ¿ n, q ¿ n is

I) A is an M-matrix: n · pq ops

II) A is symmetric positive definite: n · p2 ops

III) A is symmetric indefinite: 3
2
n · p2 ops

IV) A is general matrix: n · (pq + p2 + q2) ops.

Finally we want to mention how to use our methods in an interval setting, that is to solve

[A]x = [b], [A] ∈ IIIRn×n, [b] ∈ IIIRn. Theorem 2.3 extends as follows.

Theorem 2.4. Let [A] ∈ IIIRn×n, [b] ∈ IIIRn be given as well as nonsingular Ã ∈ IRn×n and

x̃ ∈ IRn. Define ∆A := |[A]− Ã| and suppose σn(Ã) > (‖∆A‖1 · ‖∆A‖∞)1/2.

Then every A ∈ [A] is nonsingular and for every x̂ := A−1b, A ∈ [A], b ∈ [b] holds

‖x̂− x̃‖∞ ≤ ‖x̂− x̃‖2 ≤ ‖ |[b]− [A] · x̃| ‖2

σn(Ã)− (‖∆A‖1 · ‖∆A‖∞)1/2
. (22)

15

The proof follows by applying theorem 2.3 to each A ∈ [A], b ∈ [b].

We shortly describe an algorithm for solving a general interval linear system. We use the

property A ∈ [A] ⇒ ‖A‖p ≤ ‖mid([A])‖p + ‖rad([A])‖p for p ∈ {1,∞}.

Let [A] ∈ IIIRn×n, [b] ∈ IIIRn be given.

1) For mA := mid([A]) compute an approximate decomposition L̃ · M̃T := Ã ≈ mA (see

IV)) in floating-point arithmetic together with estimates ζ1, ζ∞ on ‖Ã −mA‖1, ‖Ã −
mA‖∞, resp.

2) Solve L̃ · M̃T · x̃ = mb,mb := mid([b]) by floating-point backward and forward substi-

tution to obtain x̃

3) Compute approximations for the smallest singular value σ̃1, σ̃2 of L̃, M̃ by floating-point

inverse power method applied to L̃L̃T , M̃M̃T , resp. or by some condition estimator

4) Apply algorithm 2.1 to compute lower bounds σ1, σ2 on σn(L̃), σn(M̃) using λ := 0.9·λ̃i.

If algorithm 2.1 does not finish successfully try smaller values for λi.

5) Calculate z = sup(|[b]− [A] · x̃|) and upper bounds η1 ≥ ‖rad([A])‖1, η∞ ≥ ‖rad([A])‖∞
using interval arithmetic (for η1, η∞ upwardly directed roundig suffices).

6) If µ := σ1 · σ2 − ((ζ1 + η1)(ζ∞ + η∞))1/2 > 0 then every A ∈ [A] is nonsingular and

‖x̂− x̃‖∞ ≤ ‖x̂− x̃‖2 ≤ µ−1 · ‖z‖2

for every x̂ = A−1b with A ∈ [A], b ∈ [b].

Algorithm 2.2 Inclusion of the solution of a general interval linear system

If very high accuracy of the inclusion is desived x̃ may be stored in x̃1 and x̃2 with x̃ = x̃1+x̃2

(staggered correction, see [29], [34]). In this case b − Ax̃1 − Ax̃2 should be calculated in

double the working precision. Using this method frequently very high or least significant bit

accuracy is achieved. A simpler way is to perform a residual iteration

xk+1 := xk + M̃−T L̃−1(b− Axk) (23)

as usual. Only in the final step the addition is not executed but x̃1 := xk and x̃2 :=

M̃−T L̃−1(b− Axk) are stored in separate vectors. This saves computing time and produces

similar results to storing x̃ in two parts x̃1, x̃2 from the beginning.

16

3 Computational results

In the following we give numerical results for three different types of our algorithm:

(1) The symmetric positive definite case using a Cholesky-decomposition and proceeding

as described in (II).

(2) The symmetric case using a modified LDLT -decomposition without pivoting as de-

scribed in (III).

(3) The general case using an LU -decomposition with pivoting from LAPACK.

In the following tables we display

n dimension of the matrix

cond(A) approximation of the ‖ · ‖∞-condition number of A

iter number of inverse power iterations to obtain an approximation for σn(A)

σmin(A) lower bound for the smallest singular value of A

‖x̂− x̃‖∞/‖x̃‖∞ upper bound for the relative error of the approximate solution x̃.

The condition number is estimated using the vector obtained by the inverse power iteration.

Working accuracy is IEEE 754 double precision (approximately 17 decimals). As described

in (2.10) we split x̃ into x̃1, x̃2 and compute b− Ax̃1 − Ax̃2 in quadruple precision.

In all of the following examples the

• right hand side b is computed such that the solution x̂ of Ax = b is x̂i := (−1)i+1 · 1/i.

This introduces different magnitudes in the solution together with some roughness.

The first example, only displayed for reference purposes, is a discretisation of a Poisson

equation

n :=




4 −1

−1 4
. . .

.


 ; A :=




M −I

−I M
. . .

.


 (24)

with I being the identity matrix. We used three different bandwidthes p.

17

n p cond iter σmin(A) ‖x̂− x̃‖∞/‖x̃‖∞
200 5 2.90E+01 4 5.24E-01 1.15E-22

2000 5 2.98E+01 3 5.18E-01 1.18E-22

20000 5 2.98E+01 3 5.18E-01 1.18E-22

200 10 7.73E+01 4 3.21E-01 4.49E-22

2000 10 9.78E+01 5 2.86E-01 5.87E-22

20000 10 9.86E+01 3 2.85E-01 5.91E-22

200 20 7.73E+01 4 3.21E-01 8.81E-22

2000 20 3.41E+02 4 1.53E-01 3.94E-21

20000 20 3.57E+02 3 1.50E-01 4.12E-21

Table 3.1 Matrices (3.1) for different bandwidthes.

The second example is (4.16) from Gregory/Karney [16] with bandwidth 2.

A :=




5 −4 1

−4 6 −4 1

1 −4 6 −4 1

. .

1 −4 6 −4 1

1 −4 6 −4

1 −4 5




Example (4.16) from [16]

Here the increasing condition number limits the dimension to the same amount as for a pure

floating-point algorithm.

n cond iter σmin ‖x̂− x̃‖∞/‖x̃‖∞
100 1.71E+07 2 9.67E-04 2.82E-18

200 2.68E+08 2 2.44E-04 6.26E-17

500 1.03E+10 2 3.93E-05 1.87E-15

1000 1.65E+11 2 9.85E-06 3.95E-14

2000 2.63E+12 2 2.46E-06 7.01E-13

5000 1.03E+14 2 3.95E-07 2.53E-11

10000 1.64E+15 2 9.87E-08 5.38E-10

20000 2.63E+16 2 2.47E-08 1.83E-08

50000 1.03E+18 2 4.05E-09 failed

Table 3.2. Matrix (4.16) from [16]

18

Another example with high condition numbers are Hilbert matrices, Aij := 1/(i + j − 1).

The following table shows the results.

n cond iter σmin(A) ‖x̂− x̃‖∞/‖x̃‖∞
5 6.94E+05 3 1.81E-03 1.10E-22

6 2.26E+07 3 3.29E-04 4.44E-21

7 7.42E+08 3 5.91E-05 1.76E-19

8 2.45E+10 3 1.05E-05 1.88E-14

9 8.08E+11 3 1.87E-06 72.45E-16

10 2.68E+13 3 3.31E-07 1.86E-11

11 8.84E+14 3 5.83E-08 8.41E-10

12 2.60E+16 3 1.03E-08 2.38E-11

13 2.72E+17 2 1.21E-09 failed

Table 3.3. Hilbert matrices

Using Neumaier’s example (1.13) we can show the behaviour for larger dimensions. We

used A = 10−1 · LLT producing a matrix of bandwidth 2. The factor 10−1 is introduced

to make the factors of A not exactly representable. Otherwise a decomposition algorithm

would rapidly produce the exact Cholesky factors. Here we observe decreasing precision of

‖x̂− x̃‖∞/‖x̃‖∞ with increasing condition number.

n cond iter σmin(A) ‖x̂− x̃‖∞/‖x̃‖∞
100 1.26E+04 3 2.68E-02 3.49E-21

200 4.95E+04 3 1.35E-02 2.71E-20

500 3.06E+05 3 5.43E-03 8.50E-20

1000 1.22E+06 3 2.72E-03 3.40E-19

2000 4.87E+06 3 1.36E-03 1.36E-18

5000 3.04E+07 3 5.44E-04 8.47E-18

10000 1.22E+08 3 2.72E-04 3.39E-17

20000 4.87E+08 3 1.36E-04 1.35E-16

50000 3.04E+09 3 5.44E-05 8.47E-16

100000 1.22E+10 3 2.72E-05 3.39E-15

500000 3.04E+11 3 5.44E-06 8.47E-14

1000000 1.22E+12 3 2.72E-06 3.39E-13

Table 3.4. Neumaier’s example with A = 10−1LLT , L from (1.13)

Next we go to the symmetric indefinite case. The first example is taken from [16], (4.20)

with a = 1, bandwidth 2.

19

A :=




−1 2 1

2 0 2 1

1 2 0 2 1

.

1 2 0 2

1 2 −1




Example (4.20) from [16]

The eigenvalues are λk =

(
1− 2 cos

kπ

n + 1

)2

−3, 1 ≤ k ≤ n. We also display the computed

upper bound on ‖A− L̃1 · L̃T
2 ‖2. It is σn(L̃1) = σn(L̃2).

n cond ‖A− L̃1 ∗ L̃T
2 ‖2 iter σmin(L̃1) ‖x̂− x̃‖∞/‖x̃‖∞

100 5.37E+01 8.82E-14 3 1.01E-02 8.65E-21

200 9.02E+01 8.82E-14 3 7.66E-03 1.80E-20

500 3.29E+02 8.82E-14 3 2.62E-03 1.28E-19

1000 6.18E+02 2.59E-13 3 1.28E-03 1.02E-18

2000 1.29E+03 6.54E-12 3 3.27E-04 3.43E-18

5000 3.33E+03 6.54E-12 3 1.43E-04 1.82E-17

10000 5.52E+03 6.54E-12 3 9.57E-05 7.57E-17

20000 1.13E+04 6.54E-12 3 5.68E-05 2.62E-16

50000 3.24E+04 7.75E-12 3 2.04E-05 4.13E-15

100000 6.26E+04 7.75E-12 3 1.04E-05 7.62E-14

Table 3.5. Example (4.20) from [16], a = 1

The results show that, as before, few inverse power iterations are necessery to obtain an

approximation for the smallest singular value of L̃1. The iteration is stopped when two suc-

cessive iterates differ relatively less than 10−3. Note that σn(L̃1) is fairly small in magnitude.

This is due to the fact that the decomposition is performed without pivoting. Nevertheless

sharp inclusions of the solution are achieved.

The next two tables show the behaviour for larger bandwidths. We use the abbreviation

M(a, b, c · · ·) denoting a symmetric matrix with value a in the diagonal, b in the first subdi-

agonal, c in the second and so forth.

20

n cond ‖A− L̃1 ∗ L̃T
2 ‖2 iter σmin(L̃1) ‖x̂− x̃‖∞/‖x̃‖∞

100 2.07E+01 6.61E-14 6 2.43E-02 5.06E-20

200 2.82E+01 2.64E-13 6 1.55E-02 1.24E-19

500 1.16E+02 2.64E-13 4 6.78E-03 6.44E-19

1000 1.96E+02 2.64E-13 5 3.66E-03 2.18E-18

2000 4.18E+02 4.08E-12 5 1.12E-03 2.48E-17

5000 1.47E+03 4.46E-12 3 4.49E-04 1.42E-16

10000 1.98E+03 4.46E-12 6 2.93E-04 3.30E-16

20000 4.24E+03 2.15E-11 5 9.86E-05 3.65E-15

50000 1.14E+04 2.15E-11 5 5.06E-05 1.14E-14

Table 3.6. M(1,−2, 3, 4,−5), bandwidth 4

n cond ‖A− L̃1 ∗ L̃T
2 ‖2 iter σmin(L̃1) ‖x̂− x̃‖∞/‖x̃‖∞

100 1.08E+01 1.09E-12 4 2.05E-02 1.36E-19

200 4.38E+01 1.83E-12 3 7.91E-03 8.74E-19

500 7.46E+01 1.83E-12 4 5.26E-03 2.06E-18

1000 2.23E+02 6.48E-12 5 2.11E-03 1.24E-17

2000 2.54E+02 6.48E-12 6 1.89E-03 1.56E-17

5000 9.65E+02 6.48E-12 6 6.94E-04 1.28E-16

10000 2.23E+03 1.13E-11 5 2.41E-04 1.01E-15

20000 3.12E+03 1.13E-11 6 1.93E-04 1.54E-15

Table 3.7. M(1,−2, 3, 4,−5, 5, 4, 3, 2, 1), bandwidth 9

Again the comparitatively small values of σn(L̃1) are due to the lack of pivoting.

Finally we give same examples for the general case. First we show random matrices with

upper and lower bandwidth 8 and uniformly distributed entries in the interval [-1,1].

n cond ‖A− L̃Ũ‖2 σmin(L̃) σmin(Ũ) ‖x̂− x̃‖∞/‖x̃‖∞
100 1.2E+03 1.2E-16 7.1E-02 2.5E-02 5.5E-26

200 3.5E+03 1.4E-16 1.0E-01 5.6E-03 2.6E-25

500 9.3E+04 1.4E-16 2.6E-02 1.9E-03 4.1E-23

1000 6.3E+04 2.1E-16 1.3E-02 4.0E-04 2.1E-21

2000 4.4E+05 3.5E-16 1.4E-02 1.0E-04 7.7E-24

5000 4.9E+05 3.2E-16 7.7E-03 1.7E-04 1.3E-23

10000 8.7E+05 2.9E-16 1.8E-02 5.9E-05 6.0E-23

20000 2.2E+05 3.4E-16 2.4E-02 1.0E-04 5.5E-23

50000 1.6E+06 2.8E-16 1.0E-02 2.3E-05 7.6E-22

Table 3.8. Random matrices, upper and lower bandwidth 8

21

The LU -decomposition is performed using routines DGBTRF and DGBTRS from LAPACK

with pivoting. The smallest singular values of L̃ and Ũ are not too near. This improves

when distributing the diagonal of Ũ among L̃ and Ũ . Finally we show an example being

unsymmetric in upper and lower bandwidth.

n cond ‖A− L̃Ũ‖2 σmin(L̃) σmin(Ũ) ‖x̂− x̃‖∞/‖x̃‖∞
100 5.1E+02 1.1E-16 9.1E-02 2.0E-02 1.3E-26

200 1.4E+03 1.8E-16 4.5E-02 1.2E-03 8.1E-24

500 7.8E+06 2.3E-16 4.3E-02 2.7E-06 4.6E-23

1000 3.6E+07 2.2E-16 3.0E-02 3.8E-07 3.8E-22

2000 2.0E+05 5.8E-16 4.0E-02 5.9E-05 3.4E-24

5000 2.3E+06 4.3E-16 1.0E-02 7.7E-06 2.5E-22

Table 3.9. Random matrices, upper/lower bandwidth 8/6

Random matrices with symmetric upper and lower bandwidth are fairly well-conditioned.

This changes when the bandwidth becomes unsymmetric. Then for moderate dimension we

run into fairly ill-conditioned matrices. Again the numbers become better when distributing

of Ũ among L̃ and Ũ .

4 Conlusion

The presented algorithm in its different versions for symmetric positive definite, symmetric

indefinite and general matrices works for high dimensions. Possible improvements and open

questions are the following.

Using a condition estimator instead of inverse power iteration would eventually be cheaper

but has not been tested yet. For symmetric indefinite and for general matrices it is not clear

how to choose a proper decomposition A ≈ F̃ ·G̃ in order to minimize σn(F̃)·σn(G̃). Using an

LDLT or LDMT decomposition with D equally distributed among the other factors works

fine in many cases but also has its drawbacks. The estimations given by the algorithm are

∞-norm estimates on the relative error of an approximate solution x̃. Componentwise error

estimates are not yet available. However, the results obtained up to now look promising.

22

References

[1] Alefeld, G.; Herzberger, J.: Introduction to Interval Computations, Academic

Press (1983)

[2] Anderson, E.: Robust Triangular Solves for Use in Condition Estimation, Cray

Research (1991)

[3] High-Accuracy Arithmetic Subroutine Library, Program Description and User’s

Guide, Release 3, IBM Publications, Document Number SC 33-6164-3 (1986).

[4] Arioli, M.; Demmel, J.W.; Duff, I.S.: Solving Sparse Linear Systems with

Backward Error, SIAM J. Matrix Anal. Appl. 10, No. 2, 165–190 (1989)

[5] Bauch, H.; Jahn, K.-U.; Oelschlägel, D.; Süsse, H.; Wiebigke, V.: Intervall-

mathematik, Theorie und Anwendungen; Mathematisch-naturwissenschaftliche

Bibliothek, Bd. 72, B.G. Teubner, Leipzig (1987)

[6] Bischof, Ch. H.; Tang, P.T.P.: Robust Incremental Condition Estimators, Ar-

gonne National Lab. (1992)

[7] Böhm, H.: Berechnung von Polynomnullstellen und Auswertung arithmetis-

cher Ausdrucke mit garantierter, maximaler Genauigkeit, Ph.D. dissertation,

University of Karlsruhe (1983)

[8] Böhm, H.; Rump, S.M.: Least Significant bit Evaluation for Arithmetic Ex-

pressions, Computing 30, 189–199 (1983)

[9] Cline, A.K.; Moler, G.B.; Stewart, G.W.; Wilkinson, J.H.: An Estimate for the

Condition Number of a Matrix, SIAM J. Num. Anal. 16, 368–375 (1979)

[10] Cline, A.K.; Conn, A.R.; Van Loan, C.: Generalizing the LINPACK Condi-

tion Estimator, in: Numerical Analysis, ed., J. P. Hennart, Lecture Notes in

Mathematics, No. 909, Springer-Verlag, New York (1982)

[11] Cordes, D.; Kaucher, E.: Self-Validating Computation for Sparse Matrix Prob-

lems, in: E. Kaucher, U. Kulisch, Ch. Ullrich (Eds.): Computerarithmetic:

Scientific Computation and Programming Languages. B.G. Teubner Verlag,

Stuttgart (1987)

[12] Cordes, D.: Spärlich besetzte Matrizen, in: U. Kulisch (Ed.): Wissen-

schaftliches Rechnen mit Ergebnisverifikation — Eine Einführung, ausgear-

beitet von S. Geörg, R. Hammer und D. Ratz. Akademie Verlag, Berlin, und

Vieweg Verlagsgesellschaft, Wiesbaden (1989)

23

[13] Duff, I.S.; Erisman, A.M.; Reid, J.K.: Direct Methods for Sparse Matrices,

Clarendon Press, Oxford (1986).

[14] Golub, G. and v. Loan, C.: Matrix Computations, John Hopkins University

Press, second edition (1989)

[15] Grimes, R.G.; Lewis, J.G.: Condition Number Estimation for Sparse Matrices,

SIAM J. Sci. and Stat. Comp. 2, 384–388 (1991)

[16] Gregory, R.T.; Karney, D.L.: A Collection of Matrices for Testing Computional

Algorithms, John Wiley (1969).

[17] Hager, W.: Condition Estimates, SIAM J. Sci. and Stat. Comp. 5, 311–316

(1984)

[18] Higham, N.J.: Fortran Codes for Estimating the One-norm of a Real or Com-

plex Matrix, with Applications to Condition Estimation, ACM Trans. Math.

Soft. 14, 381–396 (1987)

[19] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard

754 (1985).

[20] Jansson, Ch.: private communication.

[21] Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit

Fehlerschranken, Computing 4, 187–201 (1969)

[22] Krawczyk, R.: Fehlerabschätzung bei linearer Optimierung, in ”Interval Math-

ematics”, edited by K. Nickel, Lecture Notes in Computer Seience 29, Springer

(1975).

[23] Krämer, W.: Verified Solution of Eigenvalue Problems with Sparse Matrices.

Proceedings of 13th World Congress on Computation and Applied Mathemat-

ics, IMACS ’91, Dublin, 32–33 (1991)

[24] Kulisch, U.: Grundlagen des numerischen Rechnens, Reihe Informatik 19, BI-

Verlag (1976).

[25] Kulisch, U.; Miranker, W.L.: Computer Arithmetic in Theory and Practice,

Academic Press (1981)

[26] Moore, R.E.: A Test for Existence of Solutions for Non-Linear Systems, SIAM

J. Numer. Anal. 4 (1977)

[27] Moore, R.E.: Methods and Applications of Interval Analysis, SIAM, Philadel-

phia (1979).

24

[28] Neumaier, A.: Interval Methods for Systems of Equations, Cambridge Univer-

sity Press (1990)

[29] Rump, S.M.: Kleine Fehlerschranken bei Matrixproblemen, Dissertation, Uni-

versitaet Karlsruhe (1980)

[30] Rump, S.M.: Solving Algebraic Problems with High Accuracy, Habilitationss-

chrift, in: A New Approach to Scientific Computation, Hrsg. U.W. Kulisch und

W.L. Miranker, Academic Press, 51–120 (1983)

[31] Rump, S.M.: On the Solution of Interval Linear Systems, COMPUTING 47,

p. 337-353 (1992).

[32] Rump, S.M.: Inclusion of the Solution for Large Linear Systems with M-Matrix,

Report of the Forschungsschwerpunkt Informations- und Kommunikationstech-

nik 91.3, Technical University Hamburg-Harburg (1991)

[33] Schwandt, H.: An Interval Arithmetic Approach for the Construction of an

almost Globally Convergent Method for the Solution of the Nonlinear Poisson

Equation on the Unit Square, SIAM J. Sci. Stat. Comp., 5, No. 2 (1984)

[34] Stetter, H.J.: Sequential Defect Correction in High-Accuracy Floating-Point

Arithmetics, in: Numerical Analysis (Proceedings, Dundee 1983), Lecture

Notes in Math. 1066, 186–202 (1984)

25

