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ABSTRACT

A method is proposed for determining critical maneuvers of
surface vessels for collision avoidance using the theory of dif-
ferential games. The problem is formulated as a game of kind with
a terminal payoff function assuming two distinct values corre-
sponding to the events of collision avoidance and occurrence. The
kinematic model of a maneuvering ship includes two controls cor-
responding to rudder deflection and engine setting. Examination
of the true trajectory of a typical ship in a hard turn (as com-
puted by an elaborate nonlinear dynamic model) shows that it can
be well approximated by a straight line and a circular arc tra-
versed at different average speeds (thus accounting for speed
loss in a turn). This Jjustifies the use of an approximate simple
kinematic model. Three different versions of the differential
game of a two-ship encounter in the open sea are considered,
namely (a) one ship evades while the other is indifferent, (b)
both ships evade in collaboration and (c) one ship evades in face
of pursuit by the other. The solution for optimal critical ma-
neuvers 1s presented both in closed form and in a graphical form
suitable for radar display. For given approach conditions and ma-
neuvering capability the analysis yields the type of optimal eva-
sive maneuvers (usually hard turns) as wellas when to start and

terminate the maneuvers to ensure a prescribed miss distance.
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1 - INTRODUCTION

The frequency and cost of collisions have increased con-
siderably during the last few years. For example, according to the
175th Annual Report of The Liverpool Underwriters' Association in
1972 approximately 3000 ships over 500 gross registered tons were
involved in collisions including stranding and damages caused by
contacts. Of those involved in collisions one out of forty re-
sulted in total loss. To this figure one has to add the tonnage
lost of ships involved in groundings as a result of collision
which is about four times as much as the tonnage lost in collision.
In an era of increased public concern about the environment atten-
tion should also be paid to the potential hazard due to mammoth
01l tankers sailing along our shores. The cost of cleaning up the
01l spill which may result from a collision of such tankers could
well be higher than the total value of the ships themselves, say
on the order of a hundred million dollars. The problem will be-
come even more severe in the future with continued increase in
ship size and traffic density and with the ruling of more restric-
tive ecological laws.

Recently, various devices have been developed for the purpose
of helping the ship master make a correct decision in potential
collision situations. These include the so-called Collision Avoid-
ance Radar which features a real time display of the total danger
surrounding own ship by automatically tracking all targets. This
radar also provides a pictorial display of the data in a form
suitable for instantaneous assessment of all threats. Ideally,

such a device should not only serve as a threat detector but also



supply optimal navigational instructions for collision avoidance.
Any legal ship maneuver must of course comply with the cofficial
Rules of the Yautical Road. These have been ably summarized in
logic flow diagrams by Luse (19%972) and Kwik (1973) from whom our
Fig. 1 is adapted.

The Rules distinguish between the burdened ship required tc
take early, substantial action and the privileged ship required to
maintain course and speed upto the "last minute". Evidently, if
the burdened ship fails to take timely action, the privileged
ship will have to evade by executing at short range a radical ma-
neuver inveolving full rudder tc starboard or port. However, even
the burdened zhip might often prefer to evade by a relatively
radical maneuver at relatively short range in order to gain time
for more accurate data acgquisition and situation assessment.
Clearly, the probability cf arriving at a correct decision (based
on the target's bearing, range, course and speed) and hence of
collision avoidance depends on the time Interval between first
observation of the target and initiation of an evasive maneuver
by own ship. On the other hand, neither the burdened nor the priv-
ileged ship can afford to wait until it is already too late to
avoid collision by any maneuver of which the ship is capable.
Hence it is practically very important toc know the limiting con-
dltions under which collision can just be avoided. Following
Kenan (1972), in this report the term "critical range" will be
used to denote the shortest range at which collision can still be
avoided making optimal use of the maneuvering capability of own
ship. The ascscciated maneuver will be called a "critical manesuver'.
It is Interesting to note that the Rules expect the master of a

privileged shiu to estimate the critical range of the burdened



gship, as this is essentially the definition of the "last minute”
at which the privileged ship is required to take action. Since
the critical range depends on maneuverability, lacking mutual
communication such an estimate can only be accurate for nearly
identical ships,

This work has been motivated by Project A (Safety of Ships
against Collisions) of the Sonderforschungsbereich 98 which is
seeking to determine a formal relation between the maneuvering
capability of ships and their rates of collision. Hence 1t seems
pertinent to speculate how the consepts of critical range and
critical maneuver could be useful in this connecticon, It follows
from the Rulesz of the Nautical Road that a cecllision can only
occur if both ships involved fail to take appropriate action and
that a collisicn is always preceded by an unsuccessful (or missed)
last minute mzsneuver (LMM). One could therefore construct a mathe-
matical model for calculating collision probability by combining
the probabilities of occurrence of the following three successive
events:

First, we consider the probability that the burdened ship
falls to take early evasive action so that eventually "it beccomes
apparent to the privileged ship that the vessel required to keep
out of the way is not taking appropriate acticn in compliance
with the Rules", see Rule 17a (ii). Let the range at this instant
be dencted by oK Beyond ry it is the scle responsibility of the
burdened ship wo avoid collision. The probability that the bur-
dened ship will take correct action before reaching ry depends on
several factors such as time elapsed since first observation cf
the privileged ship (and subsequent recognition of danger),

quality of nautical instrumentaticn for data acquisition and



training and experience of the officer in command. However, it
will not depend significantly on the maneuvering capability of the
ship.

Below range r, begins the next phase in which the priviieged
ship is allowed (though not reguired) by Rule 17a (ii) to take
evasive action but restricted by Rule 17 (c¢) "not to alter course
to port for a vessel con her own port side". This restriction pre-
sumably holds until a range r, at which "the vessel required to
keep her course and speed finds herself so close that collisicn
cannot be avoided by the acticn of the burdened vessel alcne'" at
which time the privileged ship is allowed and required "to take
zuch action as will best aid to avoid ccllision', see Rule 17 ().
e therefore consider next the probability that the burdened
and/ocr the privileged ship fail to take appropriate action in the
range rq > r > r,. It will alsoc depend on various factors such as

2

the kinematics of the encounter, the time elapsed from range r,

to r correct mutual guessing cf the other ship's acticn and

2 2
also partly (but not crucially) on the maneuvering capability.
Finally we enter the last phase of ranges r < r, where the
privileged ship is required to execute a last minute maneuver,
the success of which depends c¢bviocusly in a crucial manner on the
maneuvering capability of the ship and its correct use by the
ship master. Other factors such as instrument errors and time
needed for situation assessment are here presumably less impor-
tant for we may expect that accurate observations can be made at
such close range and that sufficient time has already elapsed
since first observation of other ship. The decisive question be-

comes whether the maneuverability is still sufficient to avoid

collision and whether it is optimally used. In fact if 7, is



smaller than the "critical range' previously defined, collision
becomes inevitable. The critical ranges (and even the associated
critical maneuvers) depend of course on whether only one ship
maneuvers or both ships maneuver, in the latter case also on
whether they maneuver in collaboration or conflict. Summing up,

the probability of collision in a two-ship encounter in the open
sea may be constructed by combining the probabilities that 1) the
burdened ship will fail to take appropriate acticn before reaching

range r,, 2) the burdened or privileged ship will fail to take

1
correct individual action before reaching range Yo and 3) the
privileged and burdened ship will fail to take correct Joint

action after reaching range »r The maneuvering capability is cf

9
importance mainly at the last stage.

Following Kenan (1972) and Webster (1974) we shall consicer
three types of critical maneuvers for avoiding collision at short
range: 1) One ship maneuvers while the other maintains course
and speed, 2) Both shipsmaneuver in collaboration (best joint
two-ship maneuver) and 3) Both ships maneuver in ccnflict (best
evasive maneuver of one ship in face of pursuit by the cther).
The main result of this report is the determination of critical
ranges (and associated critical maneuvers) for these three types
of encounters as a function of all relevant parameters such as
ship speeds, maneuverability, bearing, relative course angle and
required miss distance. The results are presented analytically,
numerically and in graphical form suitable for radar display.

The critical maneuvers are interpreted as navigational instruc-
tions such as the direction and amount of a turn and the exact

instants at which to start and end the turn. The optimal maneu-

vers are often quite involved and sometimes in contradiction with



simple intuition and the Rules of the Nautical Road. The mathe-
matical method used for determining the critical maneuvers 1is

the recently evolved Theory of Differential Games which resembles
the theory of optimal control. As many readers of this report
will probably be unfamiliar with Differential Games, a summary of

the general technique is given in the next Section before passing

on to its applicatiocn to cur problem.



2 - METHOD OF DIFFERENTIAL GAMHES

Differential games may be defined as games in which the
nosition of each player develops continuously in time. The players
are assumed to have complete information about the current motiocn
and the current control functions employed by all other players
at any instant of time. Based on such information the player
cheoses a new control function from a discrete or continuous set
of available functions and the game continues. Since the players
do not have any information about the future acticn of other
players, thera is a continuous or discrete seguence of decision-
making by each one of the players, which follows a certain pat-
tern with time. The name differential games also suggests that
the analysis is based on the application of differential equa-
tions and game theory.

Tsaacs' (1965) book on Differential Games was the first
attempt toc give a mathematical formulation of the theory of dif-
ferential games. The novelty of Isaacs' book lies not so much in
the rigor of the mathematical analysis but rather in the collec-
tion of many specific examples solved with varying detail using
this theory, which demonstrate the practical complications in-
herent in these sclutions. A more rigorous foundation of differ-
entiazl game theory was presented later on by Friedman (1971).
The close analogy between differential game theory and control
theory has been emphasized by Ho (1965), who pointed out that
contrcl problems may be considered as one-sided differential
games.

Following Isaacs' notation let us consider the dynamic



system given by

where the vector x with components (ml,mz,...,xn) denotes a

point in n-dimensional Euclidean space and the dot denotes dif-
ferentiation with respect to time. The vector function ? with
compenents (fl’fQ""’fn) is a prescribed function of positicn *
and contrcl variables 3 and $ which are mutually independent. One
can think for example that equaticn (1) is the model kinematic
equation of the motion of two points (players) in space. The
motion of cone point is controlled by choosing a value of &
whereas the motion of the other point is controlled by a selec-
tion of ¥. The centrol variables may be alsc numerous, in which
case we denote them by vectors $ and $ with components
(¢1,¢2,...) and (wl,wz,...) regspectively. For example, the steszsr-
ing mechanism cf a vehicle has in fact two distinct controls;

cne 1s the acceleration pedal and the other is the steering
wheel. The choice of the suitable control function by the players
depends on the information available about the control function
cf the other rlayers. For this reason the kinematic equation of
zach one of the players depends on the control variables of ail
players participating in the "game". Usually the word "game" is
used in the sense that the players have conflicting objectives.
Such cases are of much interest. However, the word "game" can
also be generalized to include the case of collaboration betwesn
players which 1s in fact the distinguishing property of the

collision aveidance problem. In the case cof conflicting objec-

tives one player strives to maximize the numerical value of a



certain function, whereas the other player strives to minimize
the value of the same function. In a ccllabeoraticon situation both
players strive to maximize (or minimize) this function. The nu-
merical quantity which the players strive to minimize or maximize

is defined as the "payoff function",
P - J 5(z,3,9)dt + #() (2)

Here t denotes time, X denctes a smooth function which is defined
or. the "terminal surface" and § is the parametric representation
of the terminal surface, The terminal surface is so defined that
whenever a player reaches 1t the game is over. Two types of games
may now be considered: an "integral payoff game™ with ¥ = 0 and

a "terminal payoff game" with & = 0. The payoff function may be

a continuous function of the state variabiles 3, in which case

we usually cpeak of a "game of degree". The other case is when
the payoff function has discrete values, usually two. This is a
"game of kind"., For example, in the present problem of collision
avoidance one may define a game of kind where the payoff has

only two distinct values: P = +1 for the case where the collision
is avoided and P = -1 for the case where the collision occurs.

In order to minimize or maximize the payoff function the
players chooss a certain control {(optimal control) from a s=t of
continuous (or discrete) available values. This optimal control
is alsc known as "strategy", a name borrowed from game theory.
The value of the payoff function defined in (2) when the control
variables ¢ and ¢ are replaced by their optimal values here de-
roted by & and ¥ is the "Value" of the game denoted by ¥(z).

The solution of a particular problem by the method of dif-



ferential games includes the determinaticn of the Value function,
the optimal strategies and the optimal paths. The optimal paths
are defined as the physical trajectories of the players when
using their coptimal strategies and may be found by the integra-
tion of (1) when the controcl variables are replaced by the op-
timal strategies.

The main governing equation (HE1 in Isaacs' notation) of
differential games theory is the following first crder partial

differential equatiocn for the Value

[oR)

¥
D[ Do, £;G8.0 + 6@ | =0 (3)

. . . > .
where ¥ denotes the partial differential of W(x) with respect
J
tC & ..
[

The operator [J depends on the type of strategies involved
in the game. For a game with conflicting objectives a typical
form of [) may be maxmin [$,$], that is to say, choose a value of
= - L] + .
$ that maximizes the brackets of (3) and a value of ¢ that min-
imizes the same term. In a game where the players ccllaborate, a
typical form of [J may be maxmax [$,$].

In the course of the soluticn it is useful to reverse the
time scale, i1.e. to define time to be zerc on the terminal sur-
face and to increase backwards from the terminal surface along

an optimal path. The retrogressive time T is then defined on an

cptimal path as
T = const - ¢ (L)

where the constant in (4) stands for the physical time at which



the player hits the terminal surface. Denoting time derivatives
with respect to t by a small circle, the retrogressive path

equations (RFE), are written in the following form, c¢f. Isaacs

(1865, p. 82)

r o= - F2,5,0) (5)
and

. n df . 3G

W = E L7 —-—57— + — (6)

x &,
ko g d Bxk Bxk

XY
1

where equation (6) has been obtained essentially by differentia-
tion of (3) with respect to z;. The above equations may be con-
sidered as the characteristic equations of the main eguation (3).
Tt should be also mentioned that equations (5) and (6) are iden-
tical with the Hamilton-Jacobi equations, see Friedman (1871,

p. 1u41).

A solution of a particular problem in the retrogressive
sense starts with some "Initial" conditions, say values of Z and
¥(%) on the terminal surface where t = C. Termination of a game
will occur whenever one player can force himself across the
terminal surface. Usually this can occur only along a finite
part of the terminal surface defined as the "useable part" (UP).
The conditicons on the useable part are that the scalar product
c¢f the "velocity" vector g and the ocutward normal vector to the
terminal surface & with components (61,62,...,6H) be negative.
Cn the boundary of the useable part (BUP)} we have therefore the

following condition:



since here the optimal path 1s tangent to the terminal surface
and¢ does not penetrate it.

To complete the set of initial conditions required for the
solution of the system of partial differential equations, we

will denote the parametric representation of the useable part by

z o= Rlsys8,5-0058, 1), (8)
where the vector A with components (hl,hQ,...,kﬂ) is a prescribed
function of the parameters s,. Differentiating the Value on the

useable part yields an additional set of equations

afl 7 ok,
= 1 W —J .k o=1,2,...,n-1, (2)
9, j=1 I 3%

since the Value is identical with the terminal part of the pay-
off on the terminal surface. Equations (8) and (8), together
with (3) evaluated on the useable part with optimal strategies,
consist of a set of 2»n equations for the 2#n unknowns in the pro-

blem, that is (xl,xz,...,xﬂ) and (Wx ,Wx ,...,Wx ).
’ 1 2 n

Yery often the solution to a problem employing the methed
of differential games renders considerable difficulties due to
the appearance of singular or switching surfaces. Singular sur-
faces are defined as boundaries which separate regions of dif-
ferent optimal strategies. We will not discuss here the differ-
ent types of singular surfaces described by Isaacs (1965), but

rather mention only two types of singular surfaces which play



an important role in our analysis.

Consider the optimal paths on the two sides of a singular
surface (assuming that such "sides" exist and may be defined).
The optimal paths may, on each side of the surface, enter the
singular surface or leave it. In the case where the optimal paths
cn the two sides of the surface leave the singular surface (di-
vergent paths), the surface is called a "dispersal surface" (DS).
In the opposite case, where the optimal paths on the two sides
of the surface enter it (convergent paths), the surface 1is
called a "universal surface" (US}. A dispersal surface is thus
the locus of points on which two paths, one from each class (dif-
ferent optimal strategy), meet. Obviously, the Value at the meet-
ing point 1s the same for both paths. The dispersal surface may
be detected in the analysis by an integration of the retrogres-
sive path equations and by determining the geometrical locus
along which these optimal paths intersect. This is not the case
fer a universal surface, since universal surfaces involve no
retrograde path leading to them. The optimal paths which lead to
the universal surface were named "tributaries™ by TIsaacs. The
technique for determining the equations of the tributaries is
somewhat different from the technique of finding the retrograde
paths as will be demonstrated later on in this report. It should
be noted that the universal surface is within itself an optimal
path, whereas, in general, the dispersal surface is not an op-
timal path. For this reascn one may consider a ¢-universal
curve which results from a discontinuity in ¢ across the sur-
face while ¢ is continuous on both sides of the surface. Inver-
sely cne may deal with a yY-universal surface, where only ¢ is

discontinucus across the surface. Such surfaces are one-contrcl-



variable-universal surfaces.
For a problem invelving a one-control-variable-universal
surface (¢ Ifor example), a terminal payoff, and a kinematic

equation of the type

J = 1,2,...,7 (10)

N )
where aj and Bj are linearly independent smooth functions of «,

the conditicrns on the universal surface must be, see Theorem

7.4,1 of Isaacs (1385):

71 71 n
i,k = ; = . W = 11
Loy W, ):BJ V... EYJ W, 0 (11)
i=1 Ig=1 N £ J
wihere
n aa a8 .
v; =1 (B, =L - oy —<) (12)
1=1 ax . 2x
7 7
For the case of n = 3, which happens to suit our problem,

egquation (11) 1is reduced to the following determinant,

Gy P o5
5. By By =0
Y Yo & (13)

where it has been assumed that not all the partial derivatives
of the Value are identically zero and, as previously stated, the
e and the Bj are linearly independent. Equation (13) will be
found to be useful in the detection and in the determination of

the type of the various universal surfaces appearing in the



sclution.

It is hoped that
previously unfamiliar
be able to follow the

understanding of this

with this short summary even the reader
with the theory of differential games will
subsequent analysis and gain a better

technique in course of reading this report.



3 - SIMPLE MCDEL OF SHIP MANEUVERING

The two basic controls in ship maneuvering are the rudder
angle and the engine setting. In mest ships the maximum rudder
angle is limited to 35 degrees to peort and to starboard and can
be varied at a rate cof at least Z degrees per second. Four speed
commands are usually available: Full Anead, Half Ahead, Stop and
Full Astern. The speed change is normally effected by changing
the rate of fuel supplied to the engine. However, a change of
rudder angle (for example in order to initiate a turning maneu-
ver) also leads indirectly to a change of speed even at constant
engine setting. The speed reduction asscociated with a given
rudder angle (and hence a given radius of turn) depends on the
type of propulsion machinery and contrcl.For instance, diesel
engines operate essentially at constant torgue, whereas turbines
cperate at constant power, so that the loss cf speed suffered in
a turn is generally larger for diesel engine ships than for tur-
bine driven ships, see Mandel (1967, Fig. 8u4).

The most ccommon maneuver performed by ships to aveid a
collision in the open sea is a turning maneuver. Accelerating
is not practical for ships sailing at full speed ahead since
the power reserve is rather small. Stopping and braking maneu-
vers may be found to be practical only at harbor speeds since at
full speed collision usually may be avoided more readily by
turning than Ly stopping. Only seldom would ship masters conbins
a rudder maneuver with a simultanecus engine maneuver since they
couid produce copposite effects and partially cancel each other.

Normally, any two different maneuvers would be executed cne at



a time.

A turning maneuver 1s typically executed by moving the
rudder quickly to a new setting and holding it there, The result-
ing trajectory of the ship is a spiral shaped curve beginning
with the initial straight course and ending in a steady turn of
constant radius, The final turning radius, speed and drift angle
will be, for a2 given ship, known functions of the rudder angle
usually determined as part of the standard maneuvering trials.
For example, an actual turning circle maneuver (at 15 kn approach
speed and 35° rudder angle) of a Mariner class ship has been com-
puter-simulated by Oltmann (1974) using an elaborate nonlinear
nathematical model. The results are reproduced in Fig. 2a {(trajec-
tory) and Fig. 2b(speed loss). It is seen that the part of the
trajectory relevant for collision avoidance can be closely ap-
proximated by a straight line segment of 200 m length from point
PO (zero time) to point P1 (26 sec) and a semicircle of 425 m
radius from point P, to point P, (235 sec). If the speed loss is
approximated by a step function (see Fig. 2) sc chosen that the
arrival time at P3 is identical to that in the actual maneuver,
then 1t is easily seen that the maximum error cccurs nearly at
point P2 and amounts to a phase lag of about 54 m or one third
ship length.

It will be seen later that the cptimal maneuvers predicted
by the theory of differential games are generally extreme maneui-
vers in the sense that the optimal path i1s a circular arc of
constant minimum radius and extreme engine setting available to
the ship. It is fortunate that the actual trajectory of a realis-
tic ship maneuver also exhibits these properties, if only we

decompose the trajectory into two phases and account for inertizl



effects by introducing an appropriately reduced constant speed
for the second phase.

In order to investigate the effect of a change in engine
setting on ship speed, the following approximate relation may

be used

[ans
4
—

mll o+ A ) d = T, - ku? (
where m 1s the mass of the ship, A, the longitudinal added mass
coefficient, » and u are the longitudinal velocity and accelera-
tion respectively, T, is the net thrust (after accounting for
the thrust decduction effect), and k¥ is a constant depending on
hull form. For a steady straight course the choice of thrust 7,
determines the value of the advance speed u = /E;7E1 A change in
the engine setting alters the thrust almost instantaneously
which in return gives rise to a longitudinal acceleration or
deceleration of the ship asymptotically leading to a new steady
speed. Berlekom and Goddard (1972) have proposed the following

generalization of the above eguation in order to include the

effect of nonzerc rudder and drift angle on speed in a turn:

where 8§ 1s the rudder angle, f the drift angle, v the transverse
velocity and kl, kz, k3 are given coefficients depending on hull
form

In short, the simple model of ship maneuvering used in this

report implies that only two contrcls are available (rudder and



and a circular arc, each with a constant speed. These simplifi-
cations, which lead to closed form soluticons of our problem, are
not really as restrictive as might seem at first sight. lever-
theless, further generalizations are feasible - presumably at
the cost of closed form solutions - 1f considered necessary at

a future stage.



4 - KINEMATICS OF ENCOUNTERS

4,1 -~ Two Ships in Steady Turns

Consider the situation depicted in Figure 1 where two ships
with centres of gravity at 0 and A are executing constant radius
turning maneuvers. Let Vo denote the velocity of own ship and Va
the velocity of another ship (the "threat"). Ship 0 1s turning
about point 2 with a turning radius ®_ and an assoclated drift
angle Bo measured clockwise from the vector VO to the direction
of the keel. Similarly, ship 4 is turning about point F with
turning radius R, and drift angle Ba. The instantaneocus range
between the two ships i1s denoted by r and the relative bearing
angle by a. The latter is measured clockwise from the direction
of keel of ship 0 as shown 1in Figure 3, The relative course
angle & is also measured clockwise from the velocity of ship 0

=

to the velocity of ship A. (Note that this will differ from the

difference of the indicated headingangles by an amount B, - Ba).
The kinematies of enccounters in which only one ship is turning,
or none, may ke obtained as a specilal case of the general situ-
aticn treated here by taking the appropriate drift angle to be
zero and the turning radius to be infinite.

Let us choose a Cartesian coordinate system attached to
ship ¢ and consider the changes in range, bearing and relative
course angle as observed by ship 0 during the course of the ma-
neuver. The angular velccity of ship ¢ about point J is VO/RO.
Denoting the distance 40 by 4, the linear velocity of ship 4
in the direction normal to A2 becomes -Vo{i/RO. This velocity

may be decomposed into two components, a linear velocity in the



direction of =»:

Voci RO sin(a + BO - 3w/2)
_ . = -V cos(a + BO) (ig)
R d

and an angular velocity in the direction of a:

v {r + F_cosfa + B - 37/2) 1% v
- _° . 2 © } = - 2+ 2 g5inta + B D
& o

r R v
O o

In addition to the above velocities induced at 4 due to the
turning of ship ¢, there are the corresponding components of
velocity due to the *true motion of ship 4, a linear velocity in

the direction of r:
T, \ -
Vg cos(a + B 6

and an angular velocity in the direction of a:
v

a .
- sinfo + Bo - 8)
7

e may now write the following relations for the rate of

change of range and bearing as observed by ship 0:

o= —Vo cos (o + BO) + Va cos(o + BO - 8) (18)

. Vo Vo Ya

o = —— + —= sin(a + Bo) - — sinfo + BO - 09 (18)
RO r r

where again the dot denotes differentiation with respect to time,
The above system of equations is incomplete unless we add a sim-

ilar relation for the rate of change of the relative course



angle 8. For this we note that a right turn of ship ¢ tends to
decrease 6, whereas a right turn of ship 4 tends to increase §.
Hence we may write

: Vs 75

B = — - — (20)

R R
a ol

It is important to note that the radii #_ and R_ in (19) and
(20) are defined to be positive for a right turn and negative

for a left turn.

4,2 - Perfect Collisicn Course

Two ships moving with constant speeds on straight lines
(that is 8 =0, R = @) are said to be on a perfect colli-
0,a 0,a
sion course if the bearing angle remains constant (o = 0) while
the range r is decreasing. For this situation eguation (19)
yields the relation
sin(o - 8) v

= 2, a £ Corm (21)
sino 4

Incidentally, this shows that contrary to the current practice
of taking repeated observations of the bearing angle a and/or
range r, a single observation would suffice to detect instan-
taneously a perfect collision course if the two ships involved
had a way of mutually communicating their speeds and courses.

In any case, for every © there exists a unique value of relative
bearing angle a, corresponding to a perfect ccllision course. Lt
is given by one of the two solutions of

v

w, = arc coct {cot 8 - —2 cosec 6} , 6 # 0 or (22)
|8
a



This equation 1s not unique since both o, and a, + T are admis-
sible solutions. In order to determine the desired solution we
recall that for a perfect collision course in addition toc o = O

it is also necessary to have » < 0, that is from (18)

Vo cosa, = V. cos(a, - B) > 0 (23)
Combining (21) and (23) yields

sin(cxc - 9) cota , - cos(ac - 8) >0 (24)
which can be simplified to

sinac sing < O (25)

Hence equations (22) and (25) determine uniquely the bearing
angle a, for a perfect collision course, except when ®, = 0 or m.
For these particular values the original equation (23) should be
used for testing whether a true collision risk exists.

In passing it may be noted that if Va<:VO, then there are
two values of 8 corresponding to each value of o, The latter
are all contained in the sector

1%

]ac] < arc sin(—é)

v
o

4,3 - Closest Approach

Returning now to the general case of o varying with time,

it would be useful to know in advance the value of range r - and



bearing angle a, at the point of closest approach (CPA) under

the assumption that both ships maintain speed and course, that

is 8 0, 7 = @, The bearing angle is readily found from
0,a 0,a
equation (18) since at the closest approach clearly r = O and
v
¢ = arc tan { -2 cosech - coth } (26)
" v
a
The singular cases & = 0 or m can be treated separately:
If @ = 0 or m then a is alsoc 0 or w, otherwise o is w/2 or
n/2.

In order to find the minimum range we note that a sclution
to the system of egquations (18) and (19) can be given in para-

metric form as

Y sina, - V_ sinfa, = 6)
r(a) = p, -2 12 1 (27)

-1 . .
T - -
v sS1ina v sinf(a 6)

where ras 0y denote the range and bearing from any single ob-
servation. Substituting (26) into (27), the minimum range ro,

also called the predicted passing distance, becomes

Vo sina, - Va 51n(a1— 8) {28)

J v 2 +v 29297V cosh
Q a a o

o= ry
where the denominator is just the speed of ship A relative to 0.
The predicted passing distance is, of course, a very useful
criterion for evaluating any collision threat. An alternative
but equivalent formula based on a pair of observations of range

and bearing (r4, al) and (PQ, az) was derived by Kwik (19873):



r.r, sin(a4q - a2)
12 : (29)

m /”Plz + r22 -2 r,r, cos(a1 - az)

r

Various alternative expressions can be derived using rates of

change of range and/or bearing, for instance

r2g 2ry
r = = = = T ” (32)
4 J (2&)?% + 52 (r?)

The present analysis shows that a single observation of
range and bearing would suffice to establish the predicted pass-
ing distance if there were exchange of information between the
ships concerning speed and course. In the absence of such com-
munication, however, the relative course angle 0 and the speed
of the other ship v, can still be determined from continued ok-
servations of range r and bearing o by own ship 0, for example

using the relations:

Y sina - ro
o)
€ = oo - arctan
Y cosg + r
o

sgnla - 8) = sgn(V_ sina - ra) (31)
2y 2 n 2 1/2
1 = T ; - 1 a7
V4 [(/O sina ra)® + (V_ cosa + r) } (32)
The most efficient way of calculating these quantities in

practice would depend on the system of information acquisition

ard processing available on board.



5 - ANALYSIS AND RESULTS

5,1 - General Ccnsiderations

The polar form of the kinematic equations, given in the
previous section, was found to be useful in deriving some prac-
tical relations between the bearing, the relative course angle
and the speeds of the ships for determining the perfect collision
course or the predicted passing distance. However, for the ana-
lysis in this section it was found to be more convenient to use
Cartesian representation rather than polar. Let a two-dimen-
sional Cartesian coordinate system be defined such that the
x—-axis is in the direction of VO and the y-axis is normal to
V. toward starboard in conformity with nautical practice. The
origin of the coordinate system 1s chosen to coincide with the
center of gravity of ship 0. We may then make the following

transformaticr

z = r cos(a + BO), y = r sin(a + BO) (332

¥p]

ubstituting the above into eqguaticns (18) and (19) yields

&= —y -V + V, cosd (31)
??O
4
. o . _
y - -— x + ¥_ sind (35)
R
o]
¥ v
5 -2 _ o (38)
= A
a o

which avre identical with the reduced-space kinematic equations



in the two-car game of Isaacs (1965, p. 238).

variable control functions.

o]

The kinematic equations in the above form do not contain

i, and R_ denote the minimum turning radii of the ship 0 and 4

respectively. Each ship maneuvers by choosing a turning radius

which is larger or utmost equal to its minimum turning radius.

Let the chosen radili be denoted by RO/¢1 and Ha/wi, where both

For this purpose let us assume that

¢1 and wl in absoclute value are smaller or equal to unity. Thus

¢1 and ¢1 represent the control variables by which the ships

maneuver. According to our notatiocns, positive values of ¢, or

—

e

wl mean right turns, while negative values mean left turns.

In order to indicate the dependence of the kinematic

equations on *the control variables for turning, equations (34)

to (35)

Hote

are rewritten as

v

. e} _
= — vy ¢1 v, + V, cosb (37)
R
c
i1
¥y = -~— vyt ¥V, sins 38)
R
o
. v v
8 = — ¢ - — ¢ (328)
R 1 R 1
a o

that a zero value for ¢1 or wl means that the ship is on

straight course (R » «),

A second control available tc the ship is the engine

(=

setting or thrust. Let Ty o DOW be the maximum thrust the engine

can produce and let -1 < ¢, € 1 be the thrust control variable
for ship 0. Then eguation (1%) can be rewritten as
y - 1 - 2
moﬂ.+ Axo)uo' ¢21ho kouo (&

0)



Similarly, for ship 4

where -1 € Y, € 1 is the thrust contrcl variable of ship 4. For
the sake of simplicity, it is assumed that equations (40) and

(41) hold also for turning maneuvers with

u_ = V_cosB_ , u_ = Va cosBa (uz)

In fact » and ¥V may be interchanged without much error, since
the drift angle in the maximum turn is rather small for most
ships, for instance 8 ¢ 10° for the standard ship Mariner in the
turn shown in Fig., 2 and 3. It is clear that it is also possible
to use equation (15) instead of (14), but it will be shown later
that our critical maneuvers are not sensitive to the choice of

a model equaticn for longitudinal acceleration.

Our preoblem is formulated in such a way that each ship has
two control variables at 1ts disposal: the amount of rudder de-
flection (turning radius) and the engine setting (thrust lesvel).
Following Kenan (1872) and %Webster (1974), we may now consider
three distinet types cof critical maneuvers as already indicated
in the Introduction: 1) Best maneuver of cne ship while the
other szhip is indifferent 2) Best collaborative maneuver of both
ships 3) Best maneuver of cne ship combined with the worst
{(i.e. most conflicting) maneuver of the other ship. Each of
these possibilities will be treated in detall with the intenticon
of obtaining optimal mancuvering rules for overcoming the risk

of collision.



5.2 - One-Ship Maneuvers

In the case where only one ship maneuvers, say ship 0, we
set b, = C and Y, = a constant such that &a = C In equations
(33)and (41). The problem then degenerates to a one-player-game
with two controls ¢1 and ¢2. The governing equations are (237) to
(40) with U, set equal to zero in (3%8). We are dealing here with
what Isaacs (1865) calls a "game of kind" in which the pay-off
funetion has only two distinct values corresponding to the alter-
native events of collision avoidance anc occurrence. We assign
to pay-off the value +1 in case of collsion avoidance and -1 in
case of collision occurrence. The maneuvering ship strives to
maximize the pay-coff. ¥We now have to ask for a precise definition
of collision occurrence. For the present prupose it would suffice
to define "collsions" as the occurrence of a range (measured be-
tween the centers of gravity of the two ships) less than some
given distance L. Since in the following analysis L. is an
arbitrary parameter, we can simulate different problems Jjust by
the cholce of L Vhen applying the analysis to a burdened ship
in the far-field situatiocn, we would choose L, equal to some
critical ranrge (say one or two miles) below which the encounter
would have to be regarded as potentially dangercus in view of
all relevant factors such as traffic density, ship maneuverahbi-
iity, nautical instrumentation, crew training, sea state,
visibility, maneuvering space etc. On the other hand, when
applying the analysis to the last-minute-maneuver of a privi-
leged ship in the near-field situation, we would choose b equal
to about one shilp length, roughly corresponding to an actual
physical collision of the two ships. O0f course, safety margins

may be applied to L, in either case toc compensate for instru-



ment and hunan errors. In any case, the question we are try’ing
to answer is the following: At what minimum range must a ship
(burdened or privileged) initiate a critical maneuver and at
what stage (bearing change) must the maneuver be terminated sc
as to just acrhieve the desired miss distance Lm?

In the present situation we have four "state variables",

i.e. z,y,9 and “g (or VO) and two contrcl variables ¢1 and ¢

5
The main equaticn (HEl) of differential games (3) then reads
v -V
= (2 -1 17 _° =)
qu(¢1,¢2)[Jx(q y¢1 JO+Vacose) + hy( - x¢1+Vaq1nd)
AO o
4 (¢,7, -k _V2)
- We— b+ Wy 2720 0 © } =0 (43)
R o mo(1+Axo)
The solutiorn of this equatiocn implies
5 = v - |7 SR TR
b, sgn {'o (~x "y+ Y {w ae)} (uy)
52 = sgn (WVO) (L3)

wiere ¢, and 52 denote the optimal controls. The above eguations
demonstrate that the optimal strategy requires choosing extrems
values of the control variables in accordance with the bang-bang
principle in control theory. In other words, the optimal manesu-
ver requires the commands: Full Rudder to port or starboard
and Full Ahead or Full Astern as engine setting.

Fcllowing our notaticn, we shall define the "terminal sur-
face" as a circle of radius L, about the center of gravity of
ship ¢. In order to determine the "useable part" of this surface,

we write, in accordance with equations (7), (37) and (38),



pr ¥ yy = @(y cose - V) + yV_sing<C (L6

where the eguality condition in (48) hcolds at the "boundary of
the useable part" (BUP). Further, let the parametric form of the
terminal surface be given by

6 = & % = ( uy )

> = = L_sin s
x meos s Y pSin e

12 1°

whersa 8458, and g4 are parameters defined on the terminal sur-

face. Substituting (47) into (46) yields a relation between a.

Vv - V_cos s
. . © a®9% %5
sins, = 2
1%
T
¥V sins
a 2 L
cos g, = + (48)
v
r
where L is t>e relative velocity given by
v2 = y2 + y2 - 2V V_coss (ug
r o) a o"a 2 (ba)

Equation (48) shows that the boundary of the useable part con-
cists of two diametrically opposite points on the circle of
radius L, . The initial conditions given in (8), (3) and (47)

together with the kinematic equations imply the following

condition on the useable part:

¥ = cos s I = sin s W. = ¥ = 0 (20)
“in S 17? 7] N8y5 g

<
O



since in our solution the terminal pay-off does not depend on
the parameters s.

Substituting (50) into (44) and (4%) shows, to our disgrace,
that the values of 51 and 52 cannot be determined since both
arguments of the signum functions are identically zero. A way to
overcome this difficulty is to investigate the behavior of the
arguments in the immediate neighborhood of the useable part.

This may be done by taking the retrogressive time cerivatives

of the arguments in (44) and (L35):

3. = U (~%H -wk 4GW YR - 51

¢1 sgn {/o( x y y+y LY 8)} (517

52 = sgn (%V ) (52
o

From (37) to (40) we obtain the retrograde path equations

4

z = —-Jzy $1+ Vv = V_coghb (53)
R
O
14

o O

y = —x$y - V_sind (ou)
R
O

o v

8 = — 3, (55)
B
e}

0 -, T, + k_V?

7 = —2fo o (35)
m_(1+x )

To complete the set of retrograde path equations we use (6) to

vield

I'!" (57)



- & W
!/y = - ¢’1 x
o
o (59)
o _ T osh - W _sin
[,‘rﬁ - Va (erC .
o $1 2 I<o Vo
Wy, = - (=xi tyH =W.) - W -~ W, —— (50)
"o B 4 x 0 & /o m_(1+X )
0 o o)

Substituting (53) to (60) into (51) and (52), and recalling
that these functions are evaluated on the useable part where
(473, (48) and (50) hold, we get

¢, = sgn(—wy), 52 = sgn(—wx) (51)

Combining (48) and (50) and substituting the resulting values of

i, and ¥ into (681) finally yields

¢, = sgn (—81nsl)

= ¥ T -1
sgn {+ (/o facossz)}

¢, = sgn (-coss,)

= sgn (*sinsz) (62)

which are the desired expressions for the optimal control
variables.

The upper and lower signs in equation (62) have the follow-
ing meaning. Eguation (47) defines a cylindrical surface of

radius L, and an axis of symmetry in the direction of s, normal

2
to the x and y-axes. This cylinder is in fact the terminal sur-
face. The paramater 54 denotes a terminal bearing angle measured

clockwise from the positive x-axis in the plane §, = const.

Fquation (48) defines the boundary of the useable part as two



curves which are wrapped arcund the cylinder. If Vo > Va one
part of the BUF will lie in the half space y > 0 (righthand
side of =) and may be called the righthand BUP. The other part
lies in y < 0 and may be called the lefthand BUP. On the other
hand, 1f Vo < Va then the twec parts of the BUP do nct stay on
their respective sides of the x-axis, but spiral arcund the
cylinder. To avoid confusion between left and right in case

VO < Va we shall then speak of upper (lower) BUP when referring
to solutions corresponding to the upper (lower) signs in equation
(48), This is further illustrated in Fig. 4 which can be also
interpreted as showing the relaticon between relative bearing 84

and relative ccurse angle s, at the closest point of approach

2
with speed ratio n = Va/Vo as parameter. The upper and lower
signs in eguation (62) as well as in all feollowing equations may
now be explained as always corresponding to the upper BUP and
lower BUP respectively.

In order to proceed further, it will be convenient to

distinguish the cases Vo 2 Vs and VO <V and deal with them

individually.



5.2.1 - Case I (Vo > Va)

We consider first the case that own ship, i.e. the one
aiming to avoid the collision, is faster than the other ship
involved in the encounter. Assuming Vo > Vg equation (62)

yields

=
N
1
+]
|,_\
e
'_h
(@]
A
»
A
=]

I+
|,_\
'_l
'_h
=
A
n
A
)
=

2 (63)

where the upper and lower signs apply to the righthand and left-
hand BUP respectively.

Equation (63) in conjunction with (62) implies that if at
CPA the target 4 is toward port (starboard) the optimal strategy
of 0 is to turn right (left), and if at CPA the target 4 is for-
ward (aft) of abeam the optimal strategy of 0 is to apply back-
ward (forward) thrust. It is satisfying to note that the rather
formal theory of Differential Games has provided us with a ma-
neuvering rule in conformity with the simple intuitive argument
that we should always turn away from the target, and decrease

speed when trying to pass behind, but increase speed when trying

to pass in front of the target. This rule will be useful specially

for vehicles capable of achieving a considerable acceleration or

deceleration by changing the thrust or power. Such a vehicle, for

instance, 1s the automobile with its accelerator and brake pedals.

Ships (and aircraft) however can, in general, generate only



small accelerations by changing the thrust level. With a ship
sailing at service speed, the power reserve is very limited so
that an increase of speed is almost totally impractical. It is
therefore assumed in the following that the critical maneuver 1is
executed only by a rudder command and that the speed of the ship
remains constant from the moment i1t enters the turn. In principle
it is possible to take into account a thrust change using (55)
and (83) as the model equations for ship speed, but it 1s be-
lieved that the results will not differ significantly from those
cbtained for constant speed turns. Moreover, the variable speed
generalization may ccst us the delight of obtaining a closed
form solution to the proklem.

Under the assumption of constant turning speed the retro-
gracde path equations (53) to (55) together with the initial
conditions (47} can be integrated to give (see Appendix A):

v v v
© $1r+31) +RO$1sin(—o 511) -Va"rcos(—2 $1r+.s-2)

o Bo Fq
(Gh3

14 s
. _+_ . 0% - _ o
L 51..(——¢1T+31)+R0¢1 1 cos(——¢1T)

s
PO RO

x = L cos(
m

5
1

. o} ~
Vafbin(__'¢1T+82) (85)

Substitution of (48), which holds on the BUP, into (84) and (&5)

finally yields after elimination of 55 using (66):

z = * £? { —sin(&lT)+nsin8} +$1Sin($1T)-nTcose (67)
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t(: {cos($1T)-nCOSE} + 51 {1—cos($1T)} -nTsin®
1 1
(8)

g
I

where we have introduced the following nondimensional quantities

v v L
n:-2,r=2<¢,1:2L z:-22  g7:.14 (69)
1 I
@] RO HO QO HO
T/r' _ 1/2
and Ww. = —=— = { 1 + n?- 2ncos(8—¢1T)} (733
- 14

Equations (64) to (66) are in fact the equations of the optimal
paths which meet the terminal surface at the BUP. The optimal
raths leading to the righthand BUP form the right barrier, while
the optimal paths leading to the lefthand BUP form the leflt
barrier. Equations (67) and (68) are the desired equations for
intersections of the two barriers with planes 6 = const. The
upper and lower signs correspond to the intersections of the
right and left barrier respectively. Equation (83) implies a left
turn (51 = -1) on the right barrier and a right turn (51 = +1) on
the left barrier.

To understand this maneuvering rule let us consider the
situation depicted in Fig. 5. We are seeking the critical ma-
neuver of own ship 0 so as to avoid collision with another ship
4 moving at a relative course angle €. As defined above, colli-
sion avoidance means that the minimum passing distance be larger
than Lm.The righthand and lefthand BUP are indicated by points &
and U respectively, found by setting T = O in (87) and (88). The
right barrier is the curve emerging from E, while the lef<
barrier is the curve emerging from ». The two barriers meet at

the point F. The region enclosed by the two barriers along with



arc DE (the useable part of the terminal surface) may be called
the "danger =zone". The strategy of ship 0 1s to avold, by timely
action, the wvenetration of ship 4 into the danger zone. The semi-
infinite band bounded by the two tangents drawn from EF and D
along with the arc DF may be called the "alert zone". A risk of
collision exists only if ship 4 is observed inside the alert
zone. It should be noted that the two tangents drawn at the EBUE
are parallel to the relative veloccity vector 4

As noted in Section 3, there is a certaln time lag t, be-
tween the moment a rudder command is given on the bridge and

the moment the ship begins to turn. During this time the ship £

will appear to move a distance

Ad. =V _ ¢ (7

=
]
-

toward ship ¢ in the directicn of the relative velocity vector
Vr as shown in Fig. 5. This may be anticipated by displaying
ship 4 on the radar screen of ship ¢ as the vector A&, rather
than as a discrete peint 4.

The anti-ccllisicn maneuvering rules are now as follows.
Observe the motion of point Al’ if in the alert zcne, until it
mests one of the barriers. If A1 hits the right barrier, then
turn left and vice-versga, as indicated by the marks (:) and
(:) on the barriers. For instance, if Ay hits the barrier at
point ¢, the command should be "full rudder to starboard". By
giving the rudder command at the moment Aq hits the barrier, It
is ensured that the actual turning maneuver will start when

point 4, whicnh represents the center of gravity of ship 4, first

hits the barrier. (The speed reduction in the turn can also be



approximately taken inte account if the barriers are calculated
using for the own ship instead of the approach speed Vo a re-
duced speed appropriate to the rudder angle to be applied).

Now the question arises when such a maneuver should be
terminated., The answer is simple; the turn should be executed
until point 4 touches the circle of radius L. drawn abcut C©.
This denotes the point c¢f closest approach (CPA). At this in-
stant the turn may be terminated. After waiting until a safe
distance has been reached the coriginal course may be resumed.

The eguations of the barrier are given in a parametric
form in terms ©f the nondimensicnal time 7, which means that to
each point on the barrier there corresponds a certain value of
7. The physical interpretation is that T is the time taken tc
reach the UP of the terminal surface alcng an optimal path.
Hence T is the time of executicn of the critical maneuver until
the CPA 1is reached., Ship 0, originally at a relative course
angle 8 with respect to ship 4, should execute the turn until

the relative course angle is as given by equation (&6

which amounts to increasing 6 by —51T. Thus the barriers uniguely
define the type of c¢critical maneuver needed to avoid collision
as well as the instants at which the maneuver must be started
and terminated.
In a restricted or crowded sea a ship is, in general, not
in a positier to turn to port or starboard at will. This may
also be the case when the mariner is feollowing the popular Right

Turn Rule preferred also by international regulations. Qur ma-



neuvering rules can easily be modified to allow for such restric-
tions. Let the left barrier in Fig. 5 be continued beyond ¥
until it intersects the tangent drawn from EF at the point Hg .
Similarly, the right barrier is continued up to its intersection
at HL with the tangent drawn from D. The danger zone for the
case where only right turns are allowed is the region enclosed
by the barrier Diy,, the tangent EHy and the arc DE. Ship ¢
should execute a right turn at the instant Ag is first observed
cn the barrier DHp, . Similarly, the danger zone for the case
where only left turns are allowed is the region enclosed by the
barrier EHy , the tangent DH; and the arc DE. Ship ¢ then exe-

cutes a left turn when 4. is first observed on the barrier #FH,.

1
A particular solution of (6§7) and (68) yields the barrier
when the threat ship 4 1s stationary. Tt simply consists of two
circular arcs of radii I + 1 centered at y = %1 for arbitrary
angles 0.
The danger and alert zones as well as the maneuvering rules

are presentec graphically in Fig. 6 to 10 for n = 1/V2 = 0.707,

7 = 2 and selected wvalues of 0,
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We now consider the case that own ship 0, i.e. the one
aiming to avoilid the collision, is slower than the other ship 4

involved in the encounter. Here equation (62) yields

$, =t 1 if 0 <5, <38
+ 1 if S < S5 < (2m=-3)
£ 1 if (27=5) < 5, < 2 (72)
where
v
coss = — = n !t (737
v
a
A1s5Cc, as 1n the previous case
52 =z 1 if 0 <8y <m
1 if m <8, < 27 (7w

This last eguatlion implies that the optimal maneuver invclves in-

creasing speed if the terminal bearing is abaft of abeam and de-

creasing spesd if the terminal bearing 1s afore of abeam, see

5 = S and 32

singular surfeces. Let us consider first the upper barrier, i.e.

also Fig. 4. At e (2m=-5) one may expect TC encountar

the upper sign in (72), which implies by virtue of (55) that there

is an abrupt decrease in the value of 6§ at §, = 5 and an abrupt

increase at 8.

paths are divergent

85 {27-5) +the

versal curve.

true, 1.e.

(27-5).

opti

a universal curve at 82

This means that at 8 4

5 the optimal
and we have a dispersal curve, whereas at

mal paths are convergent and we have a uni-

On the lower barrier (lower sign) the opposite is

S and a dispersal

41



curve at s, = (2w=8)a

The calculation, or more correctly the detection, of the
dispersal curve 1s straightforward. The intersection of the
dispersal curve with the plane 9 = const yields a pcint on the
barrier at which there is an abrupt change in the values of 51.
In order to cetermine this polint we must plct the optimal paths
glven by (67) and (68) twice for each barrier, i.e. for 51 -3 3 i

Rl

[ne intersection of these two curves determines the point on the
barrier whicr divides it into two sub-barriers with different
strategies.

The calculation of the universal curve is more complicated.
We must first identify the kind of universal curve we have to
deal with. For this we return to the conditions prevailing on a

universal curve as given by (13). Using equations (10}, (12) and

(53) to (55) we derive the following table

Ty oy B L
v v 2
Y - 2z Vasine =
RO RO

v
x =2y V_cosd-v 0

a o

E

C

14
5 - =2 0 0

R

0

Table 1

Inserting the above coefficients into (13) yields 8 =+%5, Equation
(668) then implies that on this universal curve $1U = 0. The

physical meaning is that the ship sails along on a straight



course without turning. Putting 51U = C in the path equaticns

(53) to (55) yields

o
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Integraticn ¢f the above differential equations with the proper

initial conditions, « = ~1, y = 0, € = %5, yields in nondimen-

sional form

-7
L

7 = *7 /n?-1

|
1"

U
i 1 i
8 = ¥ arccos (ﬁ) (76)
where
v
o
ll‘l = —_ i’- (7?)
U R U
o
Here i denctes the physical travelling time along the univer-

sal curve frcm any particular point up to the intersection with
the terminzl surface.

Our next step will be to determine the equations of the
fributariss of this universal curve ($1U = 0). The governing eqgua-
tions of the tributaries are again the kinematic equations (52)
to (£5). However, the initial conditions for the tributaries
c2iffer from (%7) to (49) since the tributaries do not intersect
the terminal surface. What they do intersect i1s the universal
curve. Hence the proper initial conditions are given by (75) and
(76). One can now proceed with the integration of the kinematic

equations and show (see Appendix B) that intersections of the



tributaries with planes 6 = const form the straight lines given

by
Feos (0£5)+7sin(0+5)+1+F, { (825)-5in(625) } = O (78)
The danger and alert zones along with the appropriate ma-
neuvering rules are shown in Fig. 11 to 17 for n = v2, [ = 2

and selected values of 6. In order to understand these rules,
which at first glance seem to be more complicated than those for
n < 1, consider the situation depicted in Fig. 15 for 6 = 20
The coordinate origin is attached to own ship at 0, which is
moving with velocity Y in the direction of the x-axis. A& threat
ship 4 mowving with velocity v, at relative course angle § = S0
is observed within the alert zone bounded by the arc (2 and the
tangents at ¢ and 2. For a preselected minimum passing distance
L, the barrier is shown in Fig. 15. It consists of five distinct
parts. Appearance of A on the part ¢Z of the barrier calls for a
left turn, whereas appearance of A on parts EF or HD calls for a
right turn. The switching-strategy-point £ is in fact the point
where the dispersal curve meets the plane 8 = const. The three
segments of the barrier marked @ or , for left and right
turns respectively, are intersections of this plane with optimal
caths which terminate on the BUP tangent to the terminal surliace.
These paths are given in a parametric form 1in terms of the retro-
grade nondimensicnal time 7 which uniquely determines a point

on the optimal path. The maneuvering rules for these three seg-
ments of the barrier are identical to those discussed in the
previous section. “When the point Ay hits the barrier, start a
turn as marked and continue until point 4 reaches the basic

circle of radius L. At this instant ship ¢ may terminate the



turn. The change Iin relative course angle resulting from a crit-
ical maneuver starting at a point corresponding toc 7 on the
barrier 1s exactly 7,

It now remains to explain the symbol (#) marked on the segment
FGH of the barrier in Fig. 15. The straight lines ¥§G and GH are
intersections of the tributaries of the ¢-universal curves with
plane 8 = const. The equation of these lines is given by (78). The
tributaries terminate on the univéféai-cuf;e, which in the pre-
sent problem i1s simply given by 8 = %5 When the threat ship 4
hits a segment of the barrier like FG, which is a tributary and
cptimal path, a two-step maneuver is required to avoid collision.
This ig indicated by the mark \Z) or (%) in the diagrams. It
means that ship 0 should execute a turn in the direction shown
until the relative course angle 6 eguals %5, then terminate the
turn and proceed along a straight ccurse (which i1s nct neces-
sarily the original course) until the point 4 reaches the lowest
point ¢f the basic circle about 7, i.e. the point x = =L,
y = 0. After awaiting a safe separation ship ¢ may resume origi-
nal course. This two-step strategy 1s better understood if we
recall that the universal curve is given by 51U = 0 (straight
course) and that it emerges from the lowest point of the terminal
surface.

A special case is the situation for 8 = § as depicted in

ig 13. Here the barrier consists conly of an type segment.

5.2.3 - Case IIT (Vo = Va)

We now briefly consider the special case where ships 0 and /4
have equal velocities. The 1limiting soluticns for n = 1 as ob-

tained from Case I (n <« 1) and Case II (n > 1) are identlical.



However, they are found to be indeterminate for § = $1T, that is
to say &, = 7. The reason is that the boundary of the useable
part cannot be defined when the two ships are moving with equal

speeds on the same course angle. The indeterminacy can, however,

be removed by rewriting (67) and (88) as

546, T

T o= iZcos(———l—) + $1sin($1T)—Tcose (78)
2
9+¢. T _ _
g = tlsin(———) + d4 {1—cos(¢1T)} ~- Tsin8 (BC)
2

These equations are valid for all 8 # 0. It is clear that for

£

&€ = 0 a barrier does not exist since the range remains constant
as long as the two ships maintain their common speed and course

angle. In other words, the barrier degenerates into the terminal

circle x? + y?% = 1% itself and any starting condition is itself

the optimal final condition.

Note, however that with n = 1 and s, = 0 any value of s,

satisfies equation (48). Therefore, in addition tco the optimal
paths given by (72) and (80) we must calculate a third family of

paths obtained simply frem (64) to (66) by putting 8, = 0 and

using 0 € s, € 27 as the parameter instead of 7 for calculating

intersecticons with planes 8 = const.



5.3 - Collaborative Two-Ship Maneuvers

We now proceed to analyse the situation where both ships
involved in the encounter maneuver in collaboration with the ainm
cf avoiding a collision. Mathematically this means that in gen-
eral besides ¢1 also wl will be nonzero. However, for the sake
of simplicity we shall allow only rudder angle control, assuming
9, and y, are constants such that ﬁo = ﬂa = 0.

The operator [J defined in (3) now takes the form "maxmax".
Under assumption of constant turning speed we have three stats

variables r,¥,8 and two control variables ¢1 and ¢1' The main

equation (3) then yields the follcocwing relation for the Value:

14 ¥

o o .
maxmax(¢1,w1)[Wx(;—y¢1—vo+vac050)+Wy6—§—w¢1+va51n0)
o o
v Vo
+ (—itp - —-—¢,)] = 0 (81)
9 P 1 s 1
a o

The solution of (81) implies

57 sgn(y Wy~ W, = We) (82)

@1 sgn(#y) (83

The initial conditions at the BUP dc¢ not depend on the maneuvers
of ship 4 and are therefore identical with those given in (47)
te (50). It follows that the arguments of the signum functions
in (82) and (383) are identically zero on the BUP. Hence, in
order to evaluate these functions we resort to differentiaticn

with respect to the retrograde time and obtain



;j_ = 3 a.r',' ro..ol'.--l'o_[,.’ L
¢ gn(y fx+ Y //x x W & W .e) (8L)

al
R

wi = sgn(ﬁe) (g

The retrograde path equations for x and y are given by (53) and

(54). However, the path egquation for 9 has to be modified to

o 4 v
O—-
8= — 3§, -~ — 1
B 1 1

Q a
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The expressions for the retrogressive time derivatives of the
Value functicn (6) are identical with (57) to (59). By repsating
the analysis of Section 5.2 we find that the optimal contrcl

variable ¢, is given by (61). In order to evaluate the optimal

1

control variable @1, we substitute (58) into (85) and get

b, = 5 W : - ¥ si (37

W, gn( yCOSSQ $81n32) 7)
which holds on the BUP. Substituting (50) and (48) into (87)
vields the final expression

L= (V-

v, sgn{ +(.a .Ocossz)} (38)

As before, ¢, is given by (82) which we repeat for ready com-

parison

)
[sla)
X9
L

51 = sgn{_;(vo - VaCOSS2)}

In order to proceed further with the solution it is again con-



venient tc treat separately the cases Vo > Yy and 7V < V.

s — 17
5,3.1 Case I (Vo > ’a)

In this case equaticns (88) and (89) yield

¢ = ¥ 1 (20)
@1 = 1 if 0 < 85 < g

;T 1 if g < s, < (2mw~-8)

t+ 1 if (2w-4) < g, < 2T (21)

where £ 1is given by

According to our notation the upper sign in equaticns (90) and
(91) applies to points on the right barrier (ending at the right-
nhand BUP) anc the lower sign to points on the left barrier (end-
ing at the lefthand BUP). Thus we see that the value of 61 is con-
stant on each sarrier whereas @1 changes sign twice within the

s I =
e

fal

cycle Q < 8, < 2w. For reasons of symmetry we may limit our
cussion to the half-interval 0 < §, < while the other half
m< s, < 2m 1=z obtained by taking the mirror image with respect
to the x-axis.In allwefind two singular points at §, = %@ (on
sach barrier) where we may expect to encounter singular surfaces,
The question 1s: what kind of singular surface?

Cn substituting (90) and (91) into (88) it 1is found that as

a
8, passes through @ in the positive cense, the value of 6 suffers

an abrupt increase on the right barrier and an abrupt decrease on



the left barrier. This means that the righthand BUP at §, =
lies on a Ww-universal curve whereas the lefthand BUP at £
lies on a dispersal curve, and vice versa at S, = -4,

Our next step should be to find the type of the VY-universal
curve and the conditions prevailing alcong it. Since we have here

three state variables, these conditions are given by the sclution

cf (13). Befcre evaluating the determinant in (13) we summarise

i}

the values of the coefficients a,8 and y as obtained from the
substituticn of (37) to (39) into (i0), where ¢ 1is replaced by

Y, and in (12):

© o 8 Y
v V2
7 0 - —9-¢i z + V_sin8é - 2 cos8
Fat R
o a
14 14
z 0 - 51 y - V_+ V_cosH -2 s5insg
o a
R R
o a
s v
2 o 7
s | 2| - =24, 0
,'L? iz?
a o
Table 2
Solving (13) with the above coefficients yields ElU = 0 on the

universal curve (see Appendix C). It should be noted that in
general the c¢ptimal control variable 1s nonzero on the universal
curve and its value has to determined from the proper equations.
In order to determine the optimal path we integrate the
retrograde path eguations (53), (54%) and (86) to obtain the

following noncimensional equations (see Appendix D):



5= s GZE {—sincalf)+nsin<e+%@1f> b e singg,n
A7, {=in(e:2F, 1) —sine} (23)
7 = ii% {cos(@lT)-ncos(e+%@1T)}+51{1—cos($1T)}
+/\@1{cos(9+%$lT)—cose} (gu)
e=52+(51—%¢1>f (55)

where in addition to (89) and (70) we have introduced the abbre-

viations
A RYS
_ a _ rr _ P 2 _ ¢ Nz |
A= — Wy = — = {1+n 2ncos[8 (¢1 X_wl)Tj}

The upper and lower signs in (83) and (94) denote the right and
left barrier respectively. Moreover, on each barrier 51 and ﬁl
have different values as given by (90) and (81).

For detecting the point of switching strategy on the left
barrier we have to find intersection of the dispersal curve with

the plane 8 = const. This can be done as follows: Since the dis-

n (93)

=

persal curve ntersects the left barrier, we set 51 = +1
and (%4) in accordance with (90). Furthermore we take for the
left barrier only the lower sign in (83) and (94%), namely the

+1 and

minus sign. In the resulting equations we put first g

then @1 = -1i. For & = const we plot the two aurves (ﬁl *1).
Their point of intersection is 1intersecticon of the dispersal

curve with ©plane & = const or the point of switching strategy.



For 8 < @ the left barrier emerging from the lefthand BUP has
ﬁl = -1 which changes to §; = +1 at the point of switching
strategy. For 6 > § the opposite 1s true, i.,e. the left barrier
emerges from the lefthand BUF with @1 = +1 which changes to
@1: -1 at thes switching point.

To complete the construction of the barriers it is neces-
sary to calculate intersections of the tributaries with planes

8 = const. These expressions have been derived in Appendix E

and are givern by:

B

:{ z-n51[é$Q—($1-%$1)T ]}cos(e+%$iT )

—Aﬁi[sin(e+%$1T )—sin6J+$isin(6$Q+%$lT ) (37)

Loul |

{ z_ngi{ew-@l-g&lm } sin e+ F,7 )

+A$1[cos(e+§-@iT ) =cosB | - 51 [COS(S$Q+§.@ 7y - 1]

where T is the nondimensional retrogressive time required to

reach the yY-universal curve from a point on its tributaries.

A few numerical examples of the barriers, the danger zones
and the appropriate maneuvering rules for the case of collabo-
rative two-ship maneuvers are plotted in Tig. 18 to 25 for
n = 1/v2, 1 = 2, x = 1/2 and selected values of 6. A second set

-

of examples is shown in Fig. 26 to 33 with A changed to 1,
which however does not seem to alter the danger zone very much.

In these figures the left barrier often consists of two segments



of different Y~-strateglies marked by(:)a and (:)a in addition to
the uniform d-strategy (:)o. The symbols (:) and (:) have their
usual meaning while the indices a and ¢ refer to ship 4 and 0
respectively. The right barrier alsc sometimes consists of two
segments of different Y~strategies marked bya and{f), or @a
and K&)a in addition to the uniform ¢~strategy(:)o. The symbols
(L) and (#yoccur on intersections of the tributaries with
planes €= const. These curves are given by (87) and (88) in teorms
of the parameter I. Hence to each point on these curves there
correspends & unique value of 7. If ship 4 hits such a segment
of the barrier the appropriate maneuvering rules are as follows:
Ship 0 executes a left turn until the desired minimum passing
distance I has been reached. Ship 4 executes a left turn, if
barrier is marked QEE’ cr a right turn, if barrier is marked

&) 5o until the relative course angle 8 has changed by the amount

(@1 % - 51) T which may be positive or negative. A this point
ship A switches to El = 0 which means that it terminates the

turn and moves along a straight ccurse until the desired mini-
mum passing distance 1 1s reached. This is the end of the coliab-

orative critical maneuver.

5.3.2 - Case T (Vv < V)
O a

In this case equations (88) and (89) yield

v, = F 1 (g9)
51 =+ 1 if 0 < s, <58

¥ 1 oif S < s, < (27-5)

+ 1 if (2w-8) < s, < 2m (100)



with § as defined in (73). Again, for reasons of symmetry we need
consider only the half-interval C < §, < M. Here we have a sin-
gular point on the BUP at g5 = 5. I'rom the retrograde path agua-
tion (86) we find that the singular point on the upper barriesr
lies on a dispersal curve, whereas the singular point on the
lower barrier lies on a ¢-universal curve. The opposite holds for
52:—S.Inorder to determine the type of the ¢-universal curve wea
use equations (10), (12), (37) to (33) to solve for the deter-

minant (13). The following table contains the values of the

coefficients used:

o vl 8 Y
v V2
Y - 2 V_sin® =
"!O o
4
2 - Y Y _cosB-V 0
B a o)
o)
14 4
9 - = -2 by 0
R R
o) a
Table 3
The solution cf (13) with the above coefficlernts renders 51U = 0

on the ¢-universal curve (see Appendix ).

The optimal paths for the case n > 1 are also given by (83)
to (96), the difference from the case n < 1 lying in the wvalues
of 51 and @1 to be used. However, the equations of the tribu-
taries for the case n> 1 cannot be determined from (27) and (398)

since the universal curve 1s of a different type. For n < 1 we

had a Y-universal curve, whereas for n > 1 we have a ¢-universal



curve. The proper equations for the tributaries are derived in
Appendix G; their intersections with planes 5 = const are given

by
x = { —Z—T+-%@1($1T¥S-e)} cos(@iT)+$1sin(51T)

+A@1 {sine - sin(@lTIS)} (101)
PR { —Z—T+-%@1(51T¥S—e)} sin(&lT)+$1 {1-005(51T)}

+A@1 {cos(@lTis)-cose } (102)

The critical maneuvers in the present case n > 1 are similar
1o these given previously for the case n < 1, except that the
roles of ship ¢ and ship 4 are reversed. Ship 4 now excutes a
right turn on the lower barrier and a left turn on the upper
barrier. The strategy of ship 0 on either barrier may be dis-
continuous duz to the presence of a dispersal curve. On either
barrier the optimal strategy of ship 0 may comprise two steps:
a partial turn until the relative course angle 6§ has increased by
the amount (@i-% —él)T and then continuing tangentially alcng =
straight course until ship 4 1s observed at the lowest point of
the basic cirele, that is & = -7, ¥ = 0. Such maneuvers, marked
askgjo or(f),. are required whenever ship 4 hits a segment of the
barrier which 1s composed from the tributaries. It should be
noted that it is always the slower ship which has to change its
strategy at singular points according to the appearance of the

singular surfaces,



Some numerical examples of critical collaborative two-ship
maneuvers from the point of view of the slower ship (n > 1) are
presented for selected values of 6 in Fig. 34 to 40 for n = V2,

I =2, A =1/2 and in Fig. 41 to 48 for n = V2, 1 = 2, » = %,

5,3.3 - Case IIT (V_ = V)
o a

Finally, we note that in the special case n = 1 the solu-
+ions obtained from the abowve Case I (n < 1) and Case II (n » 1)

coincide except at
B = (&, - gy (1203)
1 ATl B

where the cptimal path equaticns (93) and (84%) become indeter-
minate. This indeterminacy can be removed by taking the limit

-

cof (33) and (%4) which yields for n = 1,

_ 0+ T+ TN _ _
T = *lcos +¢1sin(¢1T)
2

T
Ay, q8in(8+——)~sind (10%)
- A

oy
In

6+&, T+y., T/ A }
. 1 1 - -
*7lsin +d 1-cos (¢, T)
{ 9 1{ 1 }

A

- b7
+A¢1 cos{8+ )-cosh (105}

These equations are valid for all & # 0, with the optimal controcls

51 = ¥1, @1 = +1. For 8 = 0 a danger zone dces not exist, for the

2 v+ y? = 1, An addi-

barrier degenerates into the terminal circle
tional barrier is obtained from the terminal condition 85 = 0 as

mentioned at the end of Section 5.2.3,



5.4 - Conflicting Two-Ship Maneuvers

We shall now consider the case of conflicting two-ship ma-
neuvers assuning that ship 0 fcllows the strategy best suitec to
avoid collision whereas ship 4 fcllows the strategy best suitec
to cause collision. This is what Kenan (1972) and Webster (1374)
have investigated as the "best" maneuver of ship 0 ccmbined with
the "worst" maneuver of ship 4. Such an extreme situation can
sometimes arise in practice due to lack of communication between
ships, due to a blunder on the part of one of the ships, or as
a side effect of a collision aveidance maneuver with respect to
a third ship. It is, of course, more likely to occur in warfare,
whenever one ship is trying to attack another. Isaacs' (1965
book deals mzinly with such pursuit problems. In his terminology
we might call ship 0 the evader and ship 4 the pursuer.

The solution for the pursuit problem is similar to that of
the collaboration problem cf Section 5.3 in the sense that the
governing equations (the retrograde path eguations and the ini-
tial conditions) are identical. %What 1s different is the operator
D in equation (3). Recalling the definiticn of the pay-off func-

tion, we obtain the main eguation

14 v

maxnin(¢1,w1)[Wx(—ﬁiy¢1—Vo+Vacose)+2@(—-133¢1+Vasin6)
RO Ro
v 14
(2, - 6 )} = 0 (108)
g B 1 B 1
a e

The analysis then follows closely the analysis of Section 5.3
from (82) to (89) except for the appearance of a minus sign on
the right-hand side of equations (83), (85), (87) and (88). The

final expressions for optimal strategies are now



¢1 = sgn-{;(vo - Vacossz)} (1C7)
61 = sgn{:t(va - Vocossz)} (108)

As before, we now distinguish two cases depending upon the

relative speeds of the evader and the pursuer,.

In case the evader 1s faster than the pursuer equations

(107 and (1CB8) imply

¢1 = 71 (108)
@1 = 5 1 if 0<s, <q

+ 1 if g < S5 < (2m-2)

1 if (27-9) < s, < 27 (110)

where @ is defined by (82).
Again we consider only the half-interval 0 < g8, < W and

singular points 8, = 2 on the left and right

barriers. As S5 increases through ¢, the value of 8 as given by

investigate ths

i

(86) increases abruptly on the left barrier and decreases ab-
ruptly on the right barrier. Hence, we have a Y-universal curve

on the left barrier and a dispersal curve on the right barrier,

The copposite is true at the points §, F -2. The value of 51 re-
mains constant on each barrier; it is -1 on the right and +1 on

the left barrier. Following the analysis of Appendix C, which is
also valid for the pursuit problem, we find that con the Y-universal

curve $1U = 0. The general tributaries cf the universal curve and

their intersections with planes 9 =const are derived in Appendix L and



summarized in (97) and (88). The integration of the retrograde
path equations with the proper initial conditions has besen
carried out in Appendix D resulting in (83) to (95). In all these
expressions the values of 51 and @1 dictated by (108) and (110)
must be substituted, and the signs of 1,9 reversed in (97-238).

The criticéi Aéneuvers of the pursuit problem are similar
to those of the collaboraticn problem in so far as separate in-
structions are indicated for each ship on every segment of the
barrier. ¥e recall that the maneuver marked for ship 4 1s the
optimal maneuver for causing a collision with ship 0. From a
practical point of view, we are interested mainly in the extent
of the danger zone and in the optimal strategy of the evader
(ship 0), but not sc much in the strategy of the pursuer (ship 4).

Typical barriers for the case of conflicting two-sghip ma-
neuvers are shown in Fig. 49 to 56 for n = 1//2, 7 = 2, x = 1
and selected values of 6. The maneuvering rules for the evader
(ship 0) are simple: turn right on the left barrier and turn
left on the right barrier., The strategy for the pursuer (ship 47,
however, is Lbeset with the discontinuities introduced by the
dispersal and the universal curves as shown in Fig. 54 for
example,

In the pursuit problem there is no guarantee that the two
barriers will intersect. In other words, the evader may not
always be able to avoid collision irrespective of the action of
the pursuer. It depends on the relative gpeeds and turning radii
of the two ships. However, for n < 1 and X = 1 the two barriers
do intersect as depicted in Fig. 42 to 56, so that a correct

timely maneuver of the faster ship 0 can avoid collision.



5.4.2 - Case IT (V < V_
o a

Finally, we¢ investigate the eritical cvagive maneuvers of a
slower ship required to avoid collision with a faster pursuer.

Equations (1C7) and (108) now imply

J)i =+ 1 (117)
=
P + 1 1if 0 < g, < S

¥ 1 if § < 8, < (2m-5)

t 1 if (27-8) < s, < 27 (112)

where £ 1is defined by (73). It can be shown that at §, = 5 we
have a dispersal curve on the upper barrier and a ¢$-universal
curve on the lower barrier. The analysis of Appendix F may Le
repeated to show that here on the ¢-universal curve we havs

& = 0. The equations of intersections of the tributaries of
the ¢-universal curve with planes © = const are given by (1C1)
and (102) after substituting from (111) and (112) for 51 and @1.
Similarly, the optimal paths are given by (83) and (9u).

Having derived the equations of the optimal paths and of
the tributariss, the two barriers emerging from the BUP may Lbe
constructed. When the pursuer is faster than the evader, 1in most
nases the two barriers in a coordinate system attached to the
evader will not intersect. In other words, the pursuer can cap-
ture the evader. This may be of some interest in warfare, but
need not be pursued any further in the present context.

Cockayne (1867) has shown for the special case of a point

pursuer 4 and a point evader ¢ that the pursuer can capture the

evader from any initial state 1f and only if



=
A%
=
jat]
ol
a7
=
W
Pl
N
[
IR
OJ
L

The generalization for finite pursuers and evaders, i.e. for a

nonzero miss distance I, iIs formulated but not completely solvad

in the two-car game of Isaacs (1965). It is intended to take up

et

this question in a subsequent report.



6 - DISCUSSION AND CONCLUSTIONS

Collsion between surface vessels occurs ultimately due to a
failure of the so-called last minute maneuver at short range. In
an attempt to propose a method for cellision avoidance it 1is
therefore necessary to study the critical evasive maneuvers for
various gecmetries and kinematics of ship encounters. The method
used here for the determination of optimal maneuvers 1s based on
the application of differential game *thecry. The problem is for-
mulated as a game of kind with a terminal pay-off function
assuming one of two distinct values corresponding to the cases
where collision does or does not occur. There is no time limi-
tation on the duration of the game and the game is said to ter-
minate whenever the passing distance is smaller than a prescribed
value.

The mathematical model used in this report describes the
relative motion of two ships. The simple model of ship maneu-
vering takes into account non-linear effects including speed lcss
in a turn by approximating the true trajectory of the ship in a
hard turn by a straight line and a circular arc each with differ-
ent constant speed. Three different possibilities for a two-ship
encounter were considered, namely (a) one-ship maneuvers while
other ship ig indifferent (b) collaborative two-ship maneuver
and (c¢) conflicting two-ship maneuver which resembles the pursuit
and evasion problem. The type of the optimal maneuver is also
determined by the speed-ratio of the ships and for this reason
the cases where the speed of own ship is larger, equal or smaller

than the speed of the threatening ship were considered separately.



The navigational iInstructions of a critical maneuver are
given in terms of twe intersecting barriers which enclcse the
danger zone. The strategy of own ship is to prevent the threaten-
ing one from entering the danger zone. The type of the cptimal
maneuver is determined by the point at which the threatening ship
is first observed at the barriers. The advantage of this graphical
representation is that it could be easily plotted on the radar
display knowing the heading of the other ship. The plotting of the
barriers will show if there is a danger of collision, i.e. if the
cther ship i1g observed within the alert zone. In case the other
ship is threatening, it may be allowed to apprcach own ship until
reaching a pecint eon the barrier. At this instant the evasive ma-
neuver should start and be terminated when the range between the
ships equals the miss distance, For use in a crowded sea 1t 1is
alsc possible to plot different barriers for each ship which may
threaten own ship and determine against which ship avoidance
action should be taken first. It should be noted that the closer
vessel is not always the most threatening as far as collisicon
risk i1s concerned. It may happen that an evasive maneuver agsinst
cne ship may lead to a collision situation with another ship. For
this reascn 1t 1s recommended tc use continucus plotting or dis-
playing of barriers tc determine the several-step optimal maneu-
ver which avoids collision in crowded sea. It should alsc be noted
that the minimum passing distance is a choice of the ship's mastsp.
Since the barriers are presented in a dimensionless form it is
also possible to determine the long-range maneuver which yields a
desired passing distance.

One of the more important conclusions of this work is that

it is impossible to give a simple recipe for critical maneuvers



(frequently attempted in the literature) and each encounter
situation has to be treated separately. Another result cf the
analysis is that the optimal maneuver is not always a cne-step or
a hard maneuver. This happens for example in the case of the
appearance of universal surface which calls for a twec-step mansu-
ver part of which consists of a straight course. In addition it
should be mentioned that the coptimal maneuvers are not always
uniguely defined, and two equivalent optimal maneuvers may exist
ag 1in the case of the appearance of a dispersal surface.

An attempt to relate coptimal evasive maneuvers tc ship ma-
neuverability is also given in Kenan's (1972) work. The method
used is a computer-simulation technique and the results are
restricted in the sense that they are valid only for MARINER class
ship. The critical range is defined by Kenan as the minimum dis-
tance for a given bearing angle, at which an optimal maneuver may
still avoid collision. Kenan claims that the critical range is
uniquely determined by the bearing angle a and by the speed raticn.
For identical values of o and n the largest critical range is
supposed to cccur when both ships are on a perfect collision
course. Kenan alsc presents plots displaying the critical ranges
versus the bearing angle for some selected gecmetries of two-ship
enccounters.

The relative course angle for two ships on a perfect collii-
sion course Bc 1s related to the bearing angle a by Equation (21)
which may be rewritten as

nsin (o - ec) = sing (114)

A plot of the critical range Ec (normalized by R_) versus the



relative course angle 6, is given in Figure 57 for two Lbearing
angles, namely & = 270° and a = 315° corresponding to soveed
ratios n = ¥2 and n =Jj/7 respectively. The magnitude of the
various critical ranges were measured from the corresponding plots
of the barr‘ers as given in Figures 6 to 17. For the two en-
counters depicted in Figure 57, the value of the perfect-colli-

sion-course angle, as computed from Equaticn (114), is Sc = 45°,

It is clearly seen frem this Figure that, generally, the critical
range for a given bearing angle dces ncot attain its maximum value
where both ships are on a perfect collision ccourse. This important
conclusion may raise some questions as to the validity and the
usefulness of Kenan's graphical presentation of his results. It

15 therefore believed that instead of a single critical-range
versus bearing-angle plot, 1t is preferable toc present the results
for different relative course angles as depicted in Figures ¢ tc
50.

A further generalization of Kenan's analysis is given in
tebster (187%) who studied critical maneuvers cof large super-tank-
eng, again using a computer simulation technique. The numerical
values of the non-linear hydrcdynamic coefficients used in
Webster's analysis were those given by Berlekom and Goddard (1372).
The numerical results of the critical maneuvers are also presented
in a way similar to Kenan's, i.e. as a display of the critical
range versus the bearing angle. Based on these curves Webster con-
cluded that "the optimum command is not always the maximum
command”. That is to say that critical maneuvers are not always
chbtained by a maximum rudder deflection. This conclusion seems
tc viclate the well known bang-bang principle of mechnical ccn-

trcl systems and also contradicts the result presented in this



report, namely that critical maneuvers are hard maneuvers., It is
Lelieved that the reason for this disagreement is inherent in
Webster's basic assumption that the critical maneuver consists of
only cne rucder command which is overlocking the possibility <f a
multi-step optimal maneuver, In fact the theory of differentizl
games implies that in certain cases a critical maneuver may be a

twe-step maneuver part of which is a hard turn and the rest

\
H
(s

+
=

"straight ahead”. It is important to note that it is always
slower ship which is cobliged to execute the two-step maneuver,

The effect of combining a rudder command with an engine
setting command has been considered only in the case of cne-ship
maneuver, As discussed in the text such a combined maneuver is
not usually executed at service speed. It is satisfying to note
however, that a rather formal thecry of differential games has
provided us with a maneuvering rule in conformity with the simple
intuitive argument that speed should be decreased when trying to
pass behind other ship and should be increased when trying to
pass in front of other ship, see Jones (1971), Critical mansuvers
wnich combine rudder and engine commands may be alsc analysed in
the same manner for the two-ship maneuver cases.

A study of optimal evasive maneuvers based on the applica-
ticn of optimal control theory is given in Merz (1973)., The
problem is formulated as a game of degree with the miss distance
separating the two ships at closest approach taken as the payoff
function to be minimized. Merz's mathematical model for the
relative moticn cf the two-ships, represents both ships as dis-
tinct points hence ignoring the ship dimensions. HNumerical re-
sults are given only for encounters of two identical ships (same

speed and turning radius). It is demonstrated in Merz's analysis



that the coptimal maneuver 1s not always unique, a result which
has been also found here on dispersal surfaces.

The present analysis could be refined by considering a mcre
elaborate non-linear model for single-ship maneuverability.
However, it 1s expected that the present simplified model which
partially accounts for non-linear effects does exhibit the main
features of the scluticn and the gain in accuracy acguired when
using a more complicated model would be negligible in compariscn

with the additional amcunt of computational work required.
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APPENDIX A

BEarrier for the Case of One-Ship Maneuvers

Differentiate the retrograde path equations for the presen

case as given by (53) to (55) and obtain

¥+ elz = 2¢ Vasine
g+ ety = v, - 2e 7, cos8
o
B = ¢ (A7)
wnere
vV
_ _9 ¢« (272)
¢ = — ¢1 2
It

o

The solution of the above differential equations is given by

x = A.sinet + A, coset - V_tcos?d
1 2 T/a
y = Aasincr t A coseT + -2 - v _tsins
e a
B = eT + A (A3)
As we have the constraints Ag = Anys Ay = A4 from (53) or (5L,

this leaves three unknown coefficients Ai’ AZ, AS to be determinad

from initial conditions (47) at t = 0, leading to
v

z = L cosleT + 8.,) + — sinet - V_tcos8

m 1 e a

. Yo .

y = L _sin(et + 8,) + — (l=coset) - V_t1sind

m 1 o a
6 = T + 5, (AL

Inserting the value of ¢ from (A2) into (AL) finally yields the

sgquations (64) to (66).



APFENDIX B

Tributaries for the Case of One=~Ship Maneuvers

The tributaries for the case of one-ship maneuvers with
n > 1 may be considered to be a two-parametric family of curves.
The two parameters are chosen to be the nondimensional retro-
gressive times T (from the point of intersection with the univer-
2l curve up tc a point on the tributary) and I (measured along
the universal curve from the terminal surface up to the inter-
section with a particular member of the family of tributaries).
Hernce we may seek parametric equations of the type E(T,TU),

Q(T,TU) and 8(T), where following (75) and (78)

E(o,TU) = -1,

y(C,T.) = *#7../n? -1,

gr-aty U

6(0) = ;Ss r\.-__)

The kinematic eguations of the tributaries are identical to
those given in (53) to (55). Their solution has been found in

(A3) which we repeat here ir nondimensional form

~
"
Ry

cos(d.T) - nTcosh

U i 2 1
Flr,T)) = A,sin(e,7) - Eicos($1T) + 1/¢, - nTsing
a8() = 5,7 + A ) (32)

Petermination of the unknown coefficients 4,, EQ and 4. to

satisfy the initial conditicons (B1l) yields



E(T,TU) :-Zcos($1T) +(1/61¥Tufn2—1)sin(5iT) -nTcosd
y(1,7) = ~1sin($T) - (1/51¥TU-/n2-1)cos($1T) +1/4, ~nTsing
3(T) :511" T 35

{B3)

These are the parametric eguations of the surface formed by the
tributaries. Ve can find the curves of intersection of this sur-
face with individual planes & = const by substituting for 7T

the f-eguation into the z- and y-equations:

5(9,TU> = -1oos<ets)+($1¢TU/n2—1)sin(ets>-n51(et5>c@ae
§<e,TU) = -Zsin(etS)-($1¥TU/n2-1)Cos(eiS)
+$1—n$1(8t5)sin8 (Bu)
Here we have made use of 51 = +1 in order to simplify the ex-

pressions. Fow multiply the first equation in (BY) by cos(8:x5),

the second bv sin(6x5), and add toc obtain

Ecas(618)+§Sin(8:8)+Z—@lsin(6t3)+nal(813)COSS = 0

—
(W)
¢n
~

Upon substitution of (73) the above equation is seen tc be

identical with (78),



APPENDIX C

v-Universal Curve for Collaborative Two-Ship Maneuvers (Vo b Va)
2

The soluticn of {(13) with the coefficients from Tabl

v
O

51(ycose - xsind) - V_cos® + V_ = 0O (C1)

It
O

This eguation in itself provides little information about the
type of the universal curve. Hence, we follow Isaacs (1965,p.2L)

and differentiate (C1) with respect to the retrogressive time
to get

7 o v

—s ¢1(Qcose—55in6)+5{705in6mJ2¢1(ysine+xcosﬁ)} =

LN Ro
N (C7)

Substituting the values of z,y and 8 from (53), {L4) ana (85)

into (C2) we get

7
-2 ilU {Vosine - ;9 ¢1(xcose + ysin@)} =0 (C3)

O

The only admissible solution of (C3) is alU = 0 since letting
the braces in (C3) be equal to zero ylelds together with (53),

(54) and (C1)

which cannot heold along the universal curve,



APPENDIX D

Sarrier for Collaborative Two-Ship HManeuvers

The retrograde path equations (53), (54) and (86) may be

rewritten in a way similar to (A1) as

¥ o+ otz = Va(ZC - b) sin®
¥ o+ ety = ¢ Vo= 7 (2¢ - b) cosb
8 e - b (")
ith
14 4
. a - o - B
7] I m— 1J)1, o T —— :1)1 (12)
R R
a o

The solution cf (D1) is given by

v
x = A SineT + A.coseT + —= sind
1 2 5
Ve Vg
y = Agsinet + A, coseT + — - — cosh
e 7
8 = (e-b)1 + A5 (D3
with the consvraints Ay o= AQ, Ay = -4y from (53) or (54). This

leaves thres unknown coefficients to be determined from initial

conditions (47) leeding to

= - . . ) - _ . —S. J_

x meou(31+cT)+8051n(cT)/¢1 Ra{ 51n(32+cT) 1n8} /wi

¥ o= Lmsir(51+CT)+RO{ 1—cos(CT)} /¢1+Ra{ cos(32+cT)—cose }/wi
Va -

0 =5y v le - =T (nu)
‘a

The O-equation can now be sclved for s, and the value substi-

tuted in the z- and y-equations. Finally, substitution of s

from (48) yields the equations (83) to (95).

- Ty -



APPENDIX E

Tributaries for Collaborative Two-Ship Maneuvers (Vo > Va)

Following the treatment of Appendix B, we may consider the
tributaries as a two-parametric family of curves ECT,TU), Q(E,TU)

and 8(7T,7 where the parameters I and TU denote the nondimen-

)
U
sicnal retrogressive time measured along the tributaries and the
universal curve respectively.

On the universal curve we have Vo = 0. Therefcre the retro-

grade path equations of the y-universal curve are

x(O,TU) =-ey V- Vacose
Q(O,TU) = ecx - V_sind
80,7 = o (E1)

with ¢ defired in (A2). Here the first two equations are identi-
cal with (53) and (54%), while the third is derived from (8&) by
substituting $1U = 0. The initial conditions on the BUP are

found from (47) and (48) tc be

nising _ nl

z(0,2) = lcoss, = =
i W
y(0,0) = Zsins1 = % ﬁL (1-ncosg) = + 1/1-n?
2
B(D,2) = ¥ = + arccosn (E2)

with 4§ defined in (92). The general solution of (E1) is given by
(A3), If the unknown coefficients are determined to satisfy the

conditions (£2) the result is



Eco,TU> = (Z—nTU)cos(51TUtQ)+sin($1TU)/51
500,70 = (1-nT)sin(F T,;#Q)+ {1—cos<5ifu> V/E,
9(0,1y) = $1TU1Q (E3)

The above set of equations form the parametric representaticn of

the V-universal curve. They also serve as initial conditions

(at T

grade

= 0) for the determination of the tributaries. The retrc-

path equations of the tributaries are identical to thase

of the optimal paths given in (D1). The general soluticn of (D1)

1s repeated here in nondimensional form

where

as to

w(T,TU) = Alsln(¢1T)+A2cos(¢1T)+(A51n6)/wl
y(T,TU) = A251n(¢1T)-A1cos(¢1T)+1/¢1—(Acose)/wi
e - p n __rl_ v Tl
6($,TU) = A+ (¢1 N wl)i (Ek)
the unknown coefficients Zl’ 52,445are to be determined so
satisfy the initial conditions (E3). The result is

e
1

(nTyy-1)sin(,7,2@) +cos(F, T,) /F,~(A/§ deos(F, 7, o)

i)
[
1"

(2-n7)eos(b, T+ +sinlE, T ) /¢, -(X/¥,)sinld, T, 20)

L, = ¢71TUtQ (E5)

Substituticn of (EL) into (E4) yields (making use of ﬁi = #1)

7,7,) = (I-nT)eos(d,T+5,T,£Q) AP, { 5in($,7+§,7,+0)-51n8 }
+$1sin($1T+51TU)
TLT) = (Z—nTU)sin($1T+$1TUtQ)+A$1 {cos($1T+$1TUtQ)—cose]

+§1 {1—cos(51T+§1TU)} (EB)
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and

— p— .
7T = iy T -0y Y,
6 (7 ,IU) £Q + 0,7 4 (¢>1 1 1)I (=7
In order tc cobtain the desired equations for intersections of the
tributaries with planes § = const, we solve (E7) for T,y and sub-

stitute intc (E6). The result is the cne-parametric family of
curves given by (97) and (98), the single parameter being T,

since 8 is here considered to be & ceonstant.
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APPENDIX F

d-Universal Curve for Collaborative Two-Ship Maneuvers

The solution of (13) with the coefficients from Takle 3 is

v
=4

y@l - VO + Vacose = 0

-

Fii
=

Differentiation with respect to the retrogressive time yvield

¥ R
-2 ﬁEi - Vaesine = 0
F

a

Substitution of (5u4) and (88) into (F2) lezads to

v y
o T a - .

— — zY, - V_sin@ = 0O

R 1 P 1 a

o a

T
|

he factor in braces cannot be zero, since
»Y, = R_si
Y ?a né

does not satisfy the initial conditions on the BUEPF.

only acceptable solution of (F3) is 51U = 0.

(Fi>

—
[l

(r2)

~
fa—
(W]
—r

Hence, the



APPENDIX G

Tributaries for Collaborative Two-Ship Maneuvers (V_ < 7_)

ford

The equaticns of the tributaries are again assumed to be of
the two-parametric form E(T,TU), g(T,TU) and B(T,TU), where the
parameters T and TU are as defined in Appendix E.

Cn the ¢-universal curve we have $1U = 0. The retrcgrade

path equations of such a curve are found from (53), (54%) and

(B6) to be
x(O,TU) = VO - Vacose
y(O,TU) :~Va81n8
o Vo -
G(O,TU) =T - wl (G1)
i

On the BUP we have s, = 5. Hence, (48) implies that §4 = T.

T

[he initial ccnditions (47) on the BUP yield

2(C,0) = -1, y(0,0) = 0, 9(0,0) = %S (G2)

The soluticon of the differential eguations (G1l) with due con-

sideration of the initial conditions (G?2) becomes

20,0,) = —E+TU+A{ +s5ins - sin(R 7,7, %8 }/@1
Q(O,TU) = A{ cos§ - oos(% %FHJiS) }/@1

il _D_r—; ~
6(0,T,) = *5 L 4Ty (537

The general solution for the optimal path equations in case of



two-ship maneuvers is given in (E4). The three unknown coeffi-
cients occurring there are now to be determined so as to satisfy
the initiel conditicns (G3) for the tributaries.

The result s found to be

i
RS
1l

1/51 - (A/@1> cos 8

ey
1

-l o+ Tyt (A/@l) sin §

Substitution of (Gi&) into (EL) yields

@ (1,7, = (7,-1)cos(p,T)+5in(6, 1) /o, +(A/P,) {sine-sint$1f+s>}

U
(53D
g(T,IU) = (Tu—l)sin(51T)+ {1-cos($1T) }/$1+(k/@1){ cos(51T¥S)—CGSB}
(G&)
c oy = Te _ N = - _n-= iy
8(;,1U) = +8 3 Wy Tyt (¢i Afl) T (G7)

In order to derive the desired equations for the Iintersections of

the tributaries with planes 8 = const, we solve (G7) for TU and

substitute into (G5) and (G&). The resulting expressiong after

making use of by = 1, Uy = 1 are given in (101) and (102).
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Logic flow diagram of the International Rules of the

Nautical Road for two-ship encounter in open sea
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Fig. 5 <Cample illustration of critical maneuvers

for collisional avoidance
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Fig.

8

'-<I'

Calculated barriers for one-ship maneuvers (Vo > Va):

Case n = 1/V/2, 1 = 2, 6 = 30°
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8 = 135°

Fig. 9 Calculated barriers for one-ship maneuvers (VO > Va):

Case n = 1/v2, 1 =2, 8 = 135°
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Fig. 10 Calculated barriers for one-ship maneuvers (VO > Va):

Case n = 1/V/7, 1 =12, 8 = 180°
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Fig.

11

<q!

>

Calculated barriers for one-ship maneuvers (Vo < Va):

Case n = +v2, 1 =12, 8 = 0°

_91_



+

<t “

Fig. 12 Calculated barriers for one-ship maneuvers (Vo < V_):

Case n = v2, L =2, 6 = 30°
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Fig. 13 Calculated barriers for one-ship maneuvers (VO < Va):

Case n = V2, 1 =2, 8 = u5°
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Fig.

14

Case

n = /2,

z

2,

8

60

Calculated barriers for one-ship maneuvers (Vo < V)
o
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Fig.

15

Calculated barriers for one-ship maneuvers (Vo < Va):

Case n = v2, 1 =12, 6 = 30°
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Fig. 16 Calculated barriers for one-ship maneuvers (VO < Va):

Case n = v2, 1 =2, 8 = 135°
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Fig. 17 Calculated barriers for one-ship maneuvers (Vo < Va):

Case n = v2, 1 =2, 6 = 180°

- 97 -



Fig.

18

Calculated barriers for collaborative two-ship

> Ra):
- OO

maneuvers (VO >V, s R
A= 1/2, 6 =

o
Case n = 1/¥2, 1 = 2,
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Fig.

19

Calculated barriers for collaborative two-ship

maneuvers (VO >V , R_> Ra):

a o
Case n = 1/¥2, 1 =2, X =1/2, 8 = 30
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Fig. 20 Calculated barriers for collaborative two-ship

> :
maneuvers (VO > Va’ R Ra)

Q
Case n = 1/4/2, 1 =2, i =1/2 @ = u5°

- 100 -



Fig. 21

Calculated barriers for collaborative two-ship
maneuvers (V

o > Va, Ro > Ra):
Case n = 1//2, 1 =2, X = 1/2, 8 = 60°
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Fig.

22

)

Calculated barriers for collaborative two-ship

maneuvers (V

o a?’
Case n = 1/V2, 1
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Fig.

23

Calculated barriers for collaborative two-ship

> > :
maneuvers (VO v R Ra)

a® o
Case n = 1/VZ, 1 = 2, A =1/2, @ = 120°
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Fig. 2% Calculated barriers for collaborative two-ship

maneuvers (Vo > Vs R, > Ra):
Case n = 1/Y/2, 1 = 2, ) = 1/2, 8 = 150°
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Fig.

25

X

Calculated barriers for collaborative two-ship

maneuvers (Vo > Va’ Ro > Ra):
Case n = 1/¥2, 1 =2, X =1/2, 6 = 180°
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Fig. 26 Calculated barriers for collaborative two-ship

R =R ):

maneuvers {(V_ > V
o a

ar o
Case n = 1//7, 1 =12, »=1, 6§ =0°
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Fig. 27 <Calculated barriers for collaborative two-ship

maneuvers (V_ > V¥ R = Ra):

o a!* "o
Case n = 1/V/2, 1 =2, x =1, 8 = 30°
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Fig. 28 Calculated barriers for collaborative two-ship
maneuvers (V_> V_, R = Ra):

o] a o]
Case n = 1//7Z, 1 =2, x =1, 8 = u5°
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Fig. 29 Calculated barriers for collaborative two-ship

maneuvers (VO >V R_ = Ra):

a’> "o
Case n = 1/VZ, 1 =2, x» =1, 8 = 60°
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Fig. 30 Calculated barriers for collaborative two-ship

maneuvers (Vo >V R_ = Ra):

a’

o]
Case n = 1//7, 1 =12, x =1, & = 90°
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Fig. 31 Calculated barriers for collaborative two-ship

maneuvers (Vo > Va’ R, = Ra):
Case n = 1//2, 1 =2, =1, 6 = 120°
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Fig. 32 Calculated barriers for collaborative two-ship
maneuvers (VO > Vo, Ry = Ra):

o
Case n = 1/¥2, 1 =2, A =1, 8 = 150°
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Fig. 33 Calculated barriers for collaborative two=-ship
maneuvers (VO > Vas Ry = Ba):

Case n = 1/V/2, 1 =
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Fig. 34 Calculated barriers for collaborative two-ship

maneuvers (Vo < V., RS> Ra):

o

Case n =+2, 1 =2, A =1/2, & = 0°
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Fig. 35 Calculated barriers for collaborative two-ship

maneuvers (VO < Va’ RO > Ra):

Case n = v2, 1 =12, Xx =1/2, 8 = 30
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Fig. 36 Calculated barriers for collaborative two-ship

maneuver V. =<V
an s ( o a® 8o a

Case n = 2, 1 =2, x =1/2, o = 60°
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Fig. 37 Calculated barriers for collaborative two-ship

maneuvers (Vo <V, By > Ra):

90°

Case n = V2, 1 =2, Xx=1/2, 8
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Fig.

38

——
I

Calculated barriers for collaborative two-ship

maneuvers (Vo <V,, R, > Ra):

o]
Case n =47, Ll =2, x=1/2, 8 = 120°
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Fig. 39 Calculated barriers for collaborative two-ship
maneuvers (VO < Va’ R, > Ra):

Case n = ¢v2, 1 =2, A =1/2, 6 = 150°
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Fig.

-

40 Calculated barriers for collaborative two-ship

maneuvers (VO <V R_ > Ra):

a’> "o
Case n = /2, 1 =2, X =1/2, & = 180°
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Fig. 41 Calculated barriers for collaborative two-ship
maneuvers (Vo < Vgs By a
Case n = v2, 1 =2, A =1, 8 =0
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Fig. 42 Calculated barriers for collaborative two-ship

< - H
maneuvers (Vo Vos By Ra).

Case n =v2, 1 =2, A =1, 8 = 30°
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Fig. 43 Calculated barriers for collaborative two=-ship
maneuvers (Vo < Vgs R, = Ra):

Case n = ¥2, 1 =2, X =1, 8 = 45§
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Fig. 44 Calculated barriers for collaborative two-ship
maneuvers (VO < V.s R,

Case n = V2, 1 =2, X =1, 8 = 60
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Fig. 45 Calculated barriers for collaborative two-ship

maneuvers (VO < V., By = Ra):
Case n = /2, 1 =2, A =1, 8 = 90°
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Fig.

46

n o= V7,

xI

1 =2,
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Calculated barriers for collaborative two-ship
maneuvers (Vo < V_, R
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Fig.

47

maneuvers (VO <V

Calculated barriers for collaborative two-ship

aﬂ
Case

n:/?,Z:
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Fig. 48 Calculated barriers for collaborative two-ship

<
maneuvers (VO Vs o

BE_ = R_):
a

Case n = vZ, 1 =2, X =1, 8 = 180°
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Fig. 49 Calculated barriers for conflicting two-ship

E_ = R_):
a

maneuvers (VO >V o
=2, x=1, 8 =0

a’
Case n = 1/v2, 1
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Fig.

51

>}

Calculated barriers for conflicting two-~ship
maneuvers (V_> V_, R_ = R_):
o a a

Q
Case n = 1//2, 1 =2, A =1, 8 = 45°
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Fig. 50 Calculated barriers for conflieting two-ship

, R = R_):
a a
Z -

maneuvers (VO > v o
Case n = 1/V/7, =2, xA=1, 8 = 30°
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Fig.

52

maneuvers {(V

Calculated barriers for conflicting two-ship

o a?
Case n = 1/V2, 1

> ¥ R
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Fig. 53 Calculated barriers for conflicting two-ship

maneuvers (VO > Vs R, = Ra):
Case n = 1/v/2, 1 =2, XA =1, 8 = 90°
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Fig. 54 Calculated barriers for conflicting two-ship
maneuvers (V_ > V R = Ra):

! a’® "o
Case n = 1/V/2, 1 =2, A =1, 8 = 120°
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Fig. 55 Calculated barriers for conflicting two~ship

R = R_):

maneuvers Vv >V
@ ( o] a’® o a

Case n = 1/v/2, 1 =2, XA =1, 6 = 150°
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Fig.

56

=

Calculated barriers for conflicting two-ship

maneuvers (VO >V R = Ra):

a’* o
Case n = 1//2, 1 =2, A =1, 8 = 180°
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g —a

Fig. 57 Critical range versus relative course angle

for n = 1//7, o = 315° and n = V2, a = 270°
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