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ABSTRACT

A method is proposed for determining critical maneuvers of

surface vessels for collision avoidance using the theory of dif-

ferential games. The problem is formulated as agame of kind with

a terminal payoff function assuming two distinct values corre-

sponding to the events of collision avoidance and occurrence. The

kinematic model of a maneuvering ship includes two controls cor-

responding to rudder deflection and engine setting. Examination

of the true trajectory of a typical ship in a hard turn Cas com-

puted by an elaborate nonlinear dynamic model) shows that it can

be weIl approximated by a straight line and a circular arc tra-

versed at different average speeds Cthus accounting for speed

loss in a turn). This justifies the use of an approximate simple

kinematic model. Three different vers ions of the differential

game of a two-ship encounter in the open sea are considered,

namely Ca) one ship evades while the other is indifferent, Cb)

both ships evade in collaboration and Cc) one ship evades in face

of pursuit by the other. The solution for optimal critical ma-

neuvers is presented both in closed form and in a graphical form

suitable for radar display. For given approach conditions and ma-

neuvering capability the analysis yields the type of optimal eva-

sive maneuvers Cusually hard turns) as wellas when to start and

terminate the maneuvers to ensure a prescribed miss distance.
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1 - INTRODUCTION

The frequency and cost of collisions have increased con-

siderably during the last few years. For example, according to the

175th Annual Report of The Liverpool Underwriters' Association ln

1972 approximately 3000 ships over 500 gross registered tons were

involved in collisions including stranding and damages caused by

contacts. Of those involved in collisions one out of forty re-

sulted in total loss. To this figure one has to add the tonnage

lost of ships involved in groundings as a result of collision

which is about four times as much as the tonnage lost in collision.

In an era of increased public concern about the environment atten-

tion should also be paid to the potential hazard due to marnrnoth

oil tankers sailing along our shores. The cost of cleaning up the

oil spill which may result from a collision of such tankers could

well be higher than the total value of the ships themselves, say

on the order of a hundred million dollars. The problem will be-

come even more severe in the future with continued increase ln

ship Slze and traffic density and with the ruling of more restric-

tive ecological laws.

Recently, varlOUS devices have been developed for the purpose

of helping the ship master make a correct decision in potential

collision situations. These include the so-called Collision Avoid-

ance Radar which features a real time display of the total danger

surrounding own ship by automatically tracking all targets. This

radar also provides a pictorial display of the data in a form

suitable for instantaneous assessment of all threats. Ideally,

such a device should not only serve as a threat detector but also

- 1 -



supply optimal navigational instructions for collision avoidance.

Any legal ship maneuver must of course comply with the official

Rules of the Nautical Road. These have been ably summarized in

logic flow diagrams by Luse (1972) and Kwik (1973) from whom our

Fig. 1 is adapted.

The Rules distinguish between the burdened ship required to

take early, substantial action and the privileged ship required to

maintain course and speed upto the "last minute". Evidently, if

the burdened ship fails to take timely action, the privileged

ship will have to evade by executing at short range a radical ma-

neuver involving full rudder to starboard or port. However, even

the burdened ship might often prefer to evade by a relatively

radical maneuver at relatively short range in order to ga in time

for more accurate data acquisition and situation assessment.

Clearly, the probability of arriving at a correct decision (based

on the target's bearing, range, course and speed) and hence of

collision avoidance depends on the time interval between first

observation of the target and initiation of an evasive maneuver

by own ship. On the other hand, neither the burdened nor the priv-

ileged ship can afford to wait until it is already too late to

avoid collision by any maneuver of which the ship is capable.

Hence it is practically very important to know the limiting con-

ditions under which collision can just be avoided. Following

Kenan (1972), in this report the term "critical range" will be

used to denote the shortest range at which collision can still be

avoided making optimal use of the maneuvering capability of own

ship. The associated maneuver will be called a "critical maneuver".

It is interesting to note that the Rules expect the master of a

privileged ship to estimate the critical range of the burdened

- 2 -



ship, as this is essentially the definition of the "last minute"

at which the privileged ship is required to take action. Since

the critical range depends on maneuverability, lacking mutual

communication such an estimate can only be accurate for nearly

identical ships.

This work has been motivated by Project A (Safety of Ships

against Collisions) of the Sonderforsahungsbereiah 98 which is

seeking to determine a formal relation between the maneuvering

capability of ships and their rates of collision. Rence it seems

pertinent to speculate how the consepts of critical range and

critical maneuver could be useful in this connection. It follows

from the Rules of the Nautical Road that a collision can only

occur if both ships involved fail to take appropriate action and

that a collision is always preceded by an unsuccessful (or missed)

last minute maneuver (LMM). One could therefore construct a mathe-

matical model for calculating collision probability by combining

the probabilities of occurrence of the following three successive

events:

First, we consider the probability that the burdened ship

fails to take early evasive action so that eventually "it becomes

apparent to the privileged ship that the vessel required to keep

out of the way is not taking appropriate action in compliance

with the Rules", see Rule 17a (ii). Let the range at this instant

be denoted by r1. Beyond r1 it is the sole responsibility of the

burdened ship to avoid collision. The probability that the bur-

dened ship will take correct action before reaching r1 depends on

several factors such as time elapsed since first observation of

the privileged ship (and subsequent recognition of danger),

quality of nautical instrumentation for data acquisition and

- 3 -



training and experience of the officer in command. However, it

will not depend significantly on the maneuvering capability of the

ship.

Below range r1 beg ins the next phase in which the privileged

ship is allowed (though not required) by Rule 17a (ii) to take

evasive action but restricted by Rule 17 (c) "not to alter course

to port for avesseI on her own port side". This restriction pre-

sumably holds until a range r2 at which ~the vessel required to

keep her course and speed finds herself so close that collision

cannot be avoided by the action of the burdened vessel alone" at

which time the privileged ship is allowed and required "to take

such action as will best aid to avoid collision", see Rule 17 (b).

We therefore consider next the probability that the burdened

and/or the privileged ship fail to take appropriate action in the

range r1 > r > r2. It will also depend on various factors such as

the kinematics of the encounter, the time elapsed from range r1

to r2, correct mutual guessing of the other ship's action and

also partly (but not crucially) on the maneuvering capability.

Finally we enter the last phase of ranges r < r2 where the

privileged ship is required to execute a last minute maneuver,

the success of which depends obviously in a crucial manner on the

maneuvering capability of the ship and its correct use by the

ship master. Other factors such as instrument errors and time

needed for situation assessment are here presumably less impor-

tant for we may expect that accurate observations can be made at

such close range and that sufficient time has already elapsed

since first observation of other ship. The decisive question be-

comes whether the maneuverability is still sufficient to avoid

collision and whether it is optimally used. In fact if r2 is

- 4 -



smaller than the ncritical rangen previously defined, collision

becomes inevitable. The critical ranges (and even the associated

critical maneuvers) depend of course on whether only one ship

maneuvers or both ships maneuver, in the latter case also on

whether they maneuver in collaboration or conflict. Summing up,

the probability of collision in a two-ship encounter in the open

sea may be constructed by combining the probabilities that 1) the

burdened ship will fail to take appropriate action be fore reaching

range r1, 2) the burdened or privileged ship will fail to take

correct individual action before reaching range r2, and 3) the

privileged and burdened ship will fail to take correct joint

action after reaching range r2. The maneuvering capability is of

importance mainly at the last stage.

Following Kenan (1972) and Webster (1974) we shall consider

three types of critical maneuvers for avoiding collision at short

range: 1) One ship maneuvers while the other maintains course

and speed, 2) Both ships maneuver in collaboration (best joint

two-ship maneuver) and 3) Both ships maneuver in conflict (best

evasive maneuver of one ship in face of pursuit by the other).

The main result of this report is the determination of critical

ranges (and associated critical maneuvers) for these three types

of encounters as a function of all relevant parameters such as

ship speeds, maneuverability, bearing, relative course angle and

required miss distance. The results are presented analytically,

numerically and in graphical form suitable for radar display.

The critical maneuvers are interpreted as navigational instruc-

tions such as the direction and amount of a turn and the exact

instants at which to start and end the turn. The optimal maneu-

vers are often quite involved and sometimes in contradiction with

- 5 -



simple intuition and the Rules of the Nautical Road. The mathe-

matical method used for determining the critical maneuvers is

the recently evolved Theory of Differential Games which resembles

the theory of optimal control. As many readers of this report

will probably be unfamiliar with Differential Games, a summary of

the general technique is given in the next Section before passing

on to its application to our problem.

- 6 -
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2 - METHOD OF DIFFERENTIAL GAMES

Differential games may be defined as games in which the

position of each player develops continuouslyin time. The players

are assumed to have complete information about the current motion

and the current control functionsemployed by all other players

at any instant of time. Based on such information the player

chooses a new control function from a discrete or continuous set

of available functions and the game continues. Since the players

do not have any information about the future action of other

players, there is a continuous or discrete sequence of decision-

making by each one of the players, which follows a certain pat-

tern with time. The name differential games also suggests that

the analysis is based on the application of differential equa-

tions and game theory.

Isaacs' (1965) book on Differential Games was the first

attempt to give a mathematical formulation of the theory of dif-

ferential games. The novelty of Isaacs' book lies not so much in

the rigor of the mathematical analysis but rather in the collec-

tion of many specific examples solved with varying detail using

this theory, which demonstrate the practical complications in-

herent in these solutions. A more rigorous foundation of differ-

ential game theory was presented later on by Friedman (1971).

The close analogy between differential game theory and control

theory has been emphasized by Ho (1965), who pointed out that

control problems may be considered as one-sided differential

games.

Following Isaacs' notation let us consider the dynamic

- 7 -
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system given by

.

~ -+ -+ -+ -+
X = f(x,~,~) (1)

where the vector; with components (x1,x2,...,xn) denotes a

point in n-dimensional Euclidean space and the dot denotes dif-

fe ren ti at ion with respect to time. The vector function j with

+
components (f1,f2,...,fn) is a prescribed function of position x

+ +
and control variables ~ and ~ which are mutually independent. One

can think for example that equation (1) is the model kinematic

equation of the motion of two points (players) in space. The

motion of one point is controlled by choosing a value of ~

whereas the motion of the other point is controlled by a selec-

tion of ~. The control variables may be also numerous, in which

case we denote them by vectors ; and ~ with components

(~1'~2"") and (~1'~2"") respectively. For example, the steer-

lng mechanism of a vehicle has in fact two distinct controls;

one is the acceleration pedal and the other is the steering

wheel. The choice of the suitable control function by the players

depends on the information available about the control function

of the other players. For this reason the kinematic equation of

each one of the players depends on the control variables of all

players participating in the "game". Usually the word "game" is

used in the sense that the players have conflicting objectives.

Such cases are of much interest. However, the word "game" can

also be generalized to include the case of collaboration between

players which is in fact the distinguishing property of the

collision avoidance problem. In the case of conflicting objec-

tives one player strives to maximize the numeri ca 1 value of a

- 8 -



certain function, whereas the other player strives to minimize

the value of the same function. In a collaboration situation both

players strive to maximize (or minimize) this function. The nu-

merical quantity which the players strive to minimize or maximize

is defined as the "payoff function",

(2)

Here t denotes time, H denotes a smooth function which is defined

on the "terminal surface" and : is the parametric representation

of the terminal surface. The terminal surface is so defined that

whenever a player reaches it the game is over. Two types of games

may now be considered: an "integral payoff game" with H = 0 and

a "terminal payoff game" with G = O. The payoff function may be

. ..-

a continuous function of the state varlables x, in which case

we usually speak of a "game of degree". The other case is when

the payoff function has discrete values, usually two. This is a

"game of kind". For example, in the present problem of collision

avoidance one may define agame of kind where the payoff has

only two distinct values: P = +1 for the case where the collision

is avoided and P = -1 for the case where the collision occurs.

In order to minimize or maximize the payoff function the

players choose a certain control (optimal control) from a set of

continuous (or discrete) available values. This optimal control

is also known as "strategy", a name borrowed from game theory.

The value of the payoff function defined in (2) when the control

variables ~ and ware replaced by their optimal values here de-

..-
noted by ~ and ijj is the "Value" of the game denoted by W(x).

The solution of a particular problem by the method of dif-

- 9 -
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ferential games includes the determination of the Value function,

the optimal strategies and the optimal paths. The optimal paths

are defined as the physical trajectories of the players when

using their optimal strategies and may be found by the integra-

tion of (1) when the control variables are replaced by the op-

timal strategies.

The main governing equation (ME1 in Isaacs' notation) of

differential games theory is the following first order partial

differential equation for the Value

(3)

where W denotes the partial differential of w(1) with respectx.
J

to x..
J
The operator D depends on the type of strategies involved

in the game. For agame with conflicting objectives a typical

form of D may be maxmin [~,$], that is to say, choose a value of

$ that maximizes the brackets of (3) and a value of ~ that min-

imizes the same term. In agame where the players collaborate, a

typical form of D may be maxmax [$,~J.

In the course of the solution it is useful to reverse the

time scale, i.e. to define time to be zero on the terminal sur-

face and to increase backwards from the terminal surface along

an optimal path. The retrogressive time T is then defined on an

optimal path as

T = const - t (4)

where the constant in (4) stands for the physical time at which

- 10 -
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and

0 n af. aG
W = I w -'L + (6 )

xk x.
j=l J aXk aXk

the player hits the terminal surface. Denoting time derivatives

with respect to T by a small circle, the retrogressive path

equations (RPE), are written in the following form, cf. Isaacs

<1965, p. 82):

o
;;

= - J(;;,<P,~) (5 )

where equation (6) has been obtained essentially by differentia-

tion of (3) with respect to xk. The above equations may be con-

sidered as the characteristic equations of the main equation (3).

It should be also mentioned that equations (5) and (6) are iden-

tical with the Hamilton-Jacobi equations, see Friedman (1971,

p. 141).

A solution of a particular problem in the retrogressive

+
sense starts with some "initial" conditions, say va lues of x and

+W(x) on the terminal surface where T = O. Termination of agame

will occur whenever one player can force hirnself across the

terminal surface. Usually this can occur only along a finite

part of the terminal surface defined as the "useable part" (UP).

The conditions on the useable part are that the scalar product

+of the "velocity" vector x and the outward normal vector to the

terminal surface 6 with components (ol,02,...,on) be negative.

On the boundary of the useable part (BUP) we have therefore the

following condition:

- 11 -
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n
l:
O.
J

j=l

(7)

since here the optimal path lS tangent to the terminal surface

and does not penetrate it.

To complete the set of initial conditions required for the

solution of the system of partial differential equations, we

will denote the parametric representation of the useable part by

(8)

where the vector h with components (h1,h2,...,hn) is a prescribed

function of the parameters Bk' Differentiating the Value on the

useable part yields an additional set of equations

=

n
l:

j=l

Wx.
J

k = 1,2,...,n-l, (9)
aB

since the Value is identical with the terminal part of the pay-

off on the terminal surface. Equations (8) and (9), together

with (3) evaluated on the useable part with optimal strategies,

consist of a set of 2n equations for the 2n unknowns in the pro-

blem, that is (x
1 ,x2'...,xn

) and (W ,W ,...,W ).
xl x2 xn

Very often the solution to a problem employing the method

of differential games renders considerable difficulties due to

the appearance of singular or switching surfaces. Singular sur-

faces are defined as boundaries which separate regions of dif-

ferent optimal strategies. We will not discuss here the differ-

ent types of singular surfaces described by Isaacs (1965), but

rather mention only two types of singular surfaces which play
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an important role ln our analysis.

Consider the optimal paths on the two sides of a singular

surface (assuming that such "sides" exist and may be defined).

The optimal paths may, on each side of the surface, enter the

singular surface or leave it. In the case where the optimal paths

on the two sides of the surface leave the singular surface (di-

vergent paths), the surface is called a "dispersal surface" (DS).

In the opposite case, where the optimal paths on the two sides

of the surface enter it (convergent paths), the surface is

calIed a "universal surface" (US). A dispersal surface is thus

the locus of points on which two paths, one from each class (dif-

ferent optimal strategy), meet. Obviously, the Value at the meet-

ing point is the same for both paths. The dispersal surface may

be detected in the analysis by an integration of the retrogres-

sive path equations and by determining the geometrical locus

along which these optimal paths intersect. This is not the case

for a universal surface, since universal surfaces involve no

retrograde path leading to them. The optimal paths which lead to

the universal surface were named "tributaries" by Isaacs. The

technique for determining the equations of the tributaries is

somewhat different from the technique of finding the retrograde

paths as will be demonstrated later on in this report. It should

be noted that the universal surface is within itself an optimal

path, whereas, in general, the dispersal surface is not an op-

timal path. For this reason one may consider a $-universal

curve which results from a discontinuity in $ across the sur-

face while ~ is continuous on both sides of the surface. Inver-

sely one may deal with a ~-universal surface, where only ~ is

discontinuous across the surface. Such surfaces are one-control-

- 13 -
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a1 a2 a3

81 82 83 = 0

Y1 Y2 Y3

variable-universal surfaces.

For a problem involving a one-control-variable-universal

surface (~ for example), a terminal payoff, and a kinematic

equation of the type

x. = a.4) + 8.,
J J J

j = 1,2,...,n (10)

where a. and 8. are linearly independent smooth functions of
J J

the conditions on the universal surface must be, see Theorem

..-
x,

7.4.1 of Isaacs (1965):

wx.
J

n
= 1: 8.J
j=1

wx.
J

wx.
J

= 0 (11)

where

y.
J

n
= 1: ( 8.. 1 '1-

'1-=

3a.
-.iL

3x.
'1-

a.
'1-

(12 )

For the case of n = 3, which happens to suit our problem,

equation (11) is reduced to the following determinant,

(13)

where it has been assumed that not all the partial derivatives

of the Value are identically zero and, as previously stated, the

a. and the 8. are linearly independent. Equation (13) will be
J J

found to be useful in the detection and in the determination of

the type of the various universal surfaces.appearing in the
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solution.

It is hoped that with this short summary even the reader

previously unfamiliar with the theory of differential games will

be able to follow the subsequent analysis and gain a bett er

understanding of this technique in course of reading this report.
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3 - SIMPLE MODEL OF SHIP MANEUVERING

The two basic controls in ship maneuvering are the rudder

angle and the engine setting. In most ships the maximum rudder

angle is limited to 35 degrees to port and to starboard and can

be varied at a rate of at least 2 degrees per second. Four speed

commands are usually available: Full Ahead, Half Ahead, Stop and

Full Astern. The speed change is normally effected by changing

the rate of fuel supplied to the engine. However, a change of

rudder angle (for example ln order to initiate a turning maneu-

ver) also leads indirectly to a change of speed even at constant

engine setting. The speed reduction associated with a given

rudder angle (and hence a given radius of turn) depends on the

type of propulsion machinery and control.For instance, diesel

englnes operate essentially at constant torque, whereas turbines

operate at constant power, so that the loss of speed suffered in

a turn is generally larger for diesel engine ships than for tur-

bine driven ships, see Mandel (1967, Fig. 84).

The most common maneuver performed by ships to avoid a

collision in the open sea is a turning maneuver. Accelerating

is not practical for ships sailing at full speed ahead since

the power reserve is rather small. Stopping and braking maneu-

vers may be found to be practical only at harbor speeds since at

full speed collision usually may be avoided more readily by

turning than by stopping. Only seldom would ship masters combine

a rudder maneuver with a simultaneous engine maneuver since they

could produce opposite effects and partially cancel each other.

Normally, any two different maneuvers would be executed one at

- 16 -



a time.

A turning maneuver is typically executed by moving the

rudder quickly to a new setting and holding it there. The result-

ing trajectory of the ship is a spiral shaped curve beginning

with the initial straight course and ending in a steady turn of

constant radius. The final turning radius, speed and drift angle

will be, for a given ship, known functions of the rudder angle

usually determined as part of the standard maneuvering trials.

For example, an actual turning circle maneuver (at 15 kn approach

speed and 350 rudder angle) of a Mariner class ship has been com-

puter-simulated by Oltmann (1974) using an elaborate nonlinear

mathematical model. The results are reproduced in Fig. 2a(trajec-

tory) and Fig. 2b(speed loss). It is seen that the part of the

trajectory relevant for collision avoidance can be closely ap-

proximated by a straight line segment of 200 m length from point

Po (zero time) to point P1 (26 sec) and a semicircle of 425 m

radius from point P1 to point P3 (235 sec). If the speed loss is

approximated by a step function (see Fig. 2) so chosen that the

arrival time at P3 is identical to that in the actual maneuver,

then it is easily seen that the maximum error occurs nearly at

point P2 and amounts to a phase lag of about 54 m or one third

ship length.

It will be seen later that the optimal maneuvers predicted

by the theory of differential games are generally extreme maneu-

vers in the sense that the optimal path lS a circular arc of

constant minimum radius and extreme engine setting available to

the ship. It is fortunate that the actual trajectory of a realis-

tic ship maneuver also exhibits these properties, if only we

decompose the trajectory into two phases and account for inertial
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effects by introducing an appropriately reduced constant speed

for the second phase.

In order to investigate the effect of a change in englne

setting on ship speed, the following approximate relation may

be used

m(1 + AX) Ü = Th - k u2 (14 )

where m is the mass of the ship, A the longitudinal added massx

coefficient, u and u are the longitudinal velocity and accelera-

tion respectively, Th is the net thrust (after accounting for

the thrust deduction effect), and k is a constant depending on

hull form. For a steady straight course the choice of thrust Th

determines the value of the advance speed u = ITh/k~ A change in

the engine setting alters the thrust almost instantaneously

which in return gives rise to a longitudinal acceleration or

deceleration of the ship asymptotically leading to a new steady

speed. Berlekom and Goddard (1972) have proposed the following

generalization of the above equation in order to include the

effect of nonzero rudder and drift angle on speed in a turn:

(15)

where 0 is the rudder angle, ß the drift angle, v the transverse

velocity and k1, k2, k3 are given coefficients depending on hull

form

In short, the simple model of ship maneuvering used in this

report implies that only two controls are available (rudder and

engine setting), that the trajectory consists of a straight li ne

- 18 -
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and a circular are, each with a constant speed. These simplifi-

cations, which lead to closed form solutions of our problem, are

not really as restrictive as might seem at first sight. Never-

theless, further generalizations are feasible - presumably at

the cost of closed form solutions - if considered necessary at

a future stage.
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4 - KINEMATICS OF ENCOUNTERS

4.1 - Two Shi s in Stead Turns

Consider the situation depicted ln Figure 1 where two ships

with centres of gravity at 0 and Aare executing constant radius

turning maneuvers. Let V denote the velocity of own ship and V
o a

the velocity of another ship (the "threat"). Ship 0 is turning

about point D with a turning radius Rand an associated drifto

angle ß measured clockwise from the vector V to the direction
o 0

of the keel. Similarly, ship A is turning about point E with

turning radius Ra and drift angle ßa. The instantaneous range

between the two ships is denoted by rand the relative bearing

angle by a. The latter is measured clockwise from the direction

of keel of ship 0 as shown in Figure 3. The relative course

angle e is also measured clockwise from the velocity of ship 0

to the velocity of ship A. (Note that this will differ from the

difference of the indicated headingangles by an amount ß - ß ).o a

The kinematies of encounters in which only one ship is turning,

or none, may be obtained as a special case of the general situ-

ation treated here by taking the appropriate drift angle to be

zero and the turning radius to be infinite.

Let us choose a Cartesian coordinate system attached to

ship 0 and consider the changes in range, bearing and relative

course angle as observed by ship 0 during the course of the ma-

neuver. The angular velocity of ship 0 about point D is Vo/Ro'

Denoting the distance AD by d, the linear velocity of ship A

in the direction normal to AD becomes - V d /R . This velocityo 0

may be decomposed into two components, a linear velocity in the
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direction of 1':

v do R sinCa + ß - 3TI/2)
o 0-- = v cosCa + ß )

o 0 06 )
Ro d

and an angular velocity in the direction of a:

vo {1' + Ro cosCa + ßo - 3TI/2)}
_

vo
+
v
o

sinCa + ß )
o 07 )

Ro l' Ro l'

In addition to the above velocities induced at A due to the
- -

turning of ship 0, there are the corresponding components of

velocity due to the true motion of ship A, a linear velocity in

the direction of 1':

v cosCa + ß - 8)a 0

and an angular velocity in the direction of a:

Va

l'
sinCa + ß - 8)o

We may now write the following relations for the rate of

change of range and bearing as observed by ship 0:

l' = -v cosCa + ß ) + V cosCa + ß - 8) (18)
o 0 a 0

V V V
. 0 o. a .a = -- + - sln(a + ß ) - - slnCa + ß - 8) (9)

R 0 0
01'1'

where again the dot denotes differentiation with respect to time.

The above system of equations is incomplete unless we add a sim-

ilar relation for the rate of change of the relative course

- 21 -
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angle 8. For this we note that a right turn of ship 0 tends to

decrease 8, whereas a right turn of ship A tends to increase 8.

Hence we may write

8 =

Va vo (20)
R Ra 0

It is important to note that the radii Rand R ln (19) ando a

(20) are defined to be positive for a right turn and negative

for a left turn.

4.2 - Perfect Collision Course

Two ships moving with constant speeds on straight lines

(that is ß = 0, R = 00) are said to be on a perfect co11i-
o,a o,a

sion course if the bearing angle remains constant (ä = 0) while

the range p is decreasing. For this situation equation (19)

yields the relation

sin(CI - 8)
=

vo
CI ~ 0 or 11 (21)

sinCl V
a

Incidentally, this shows that contrary to the current practice

of taking repeated observations of the bearing angle CI and/or

range P, a single observation would suffice to detect instan-

taneously a perfect collision course if the two ships involved

had a way of mutually communicating their speeds and courses.

In any case, for every 8 there exists a unique value of relative

bearing angle CI corresponding to a perfect collision course. Itc

lS given by one of the two solutions of
--

CI
C = arc cot {cot 8 -

Va

V
o cosec 8 }

, CI ~ 0 or 11 (22)
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This equation is not unlque since both a and a + ITare admis-
c c

sible solutions. In order to determine the desired solution we

.re ca 11 that for a perfect collision course in addition to a
= 0

it is also necessary to have ; < 0, that is from (18)

V cosao c v cos(a - S) > 0a c (23)

Combining (21) and (23) yields

sin(a - S) cota
c c cos(a - S) > 0

c (24)

which can be simplified to

slna sinS < 0c (25)

Hence equations (22) and (25) determine uniquely the bearing

angle ac for a perfect collision course, except when ac = 0 or IT.

For these particular values the original equation (23) should be

used for testing whether a true collision risk exists.

In pas sing it may be noted that if V < V , then there are
a 0

two values of S corresponding to each value of a . The latter
c

are all contained in the sector

Ja
Ic

V
:::arc sin(~)

V
o

4.3 - Closest Approach

Returning now to the general case of a varying with time,

it would be useful to know in advance the value of range rand
m

- 23 -
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bearing angle a at the point of closest approach (CPA) under
m

the assumption that both ships maintain speed and course, that

is ßo,a = 0, Ro,a = 00. The bearing angle is readily found from

equation (18) since at the closest approach clearly p = 0 and

am = arc tan {

vo cosecS - cotS }
Va

(26)

The singular cases S = 0 or TI can be treated separately:

If a = 0 or TIthen a is also 0 or TI, otherwise a is TI/2 orm m

3TI/2.

Inorderto find the minimum range we note that a solution

to the system of equations (18) and (19) can be given in para-

metric form as

r(a) = r1
V sinao

Va sin(a1 - S)

Va sin(a - S)
(27)

where r1, a1 denote the range and bearing from any single ob-

servation. Substituting (26) into (27), the minimum range rm,

also called the predicted passing distance, becomes

rm
Vo sina1- Va sin(a1- 8)

V 2 + V 2 - 2 V V cos8o a a 0

(28)

where the denominator is just the speed of ship A relative to o.

The predicted passing distance is, of course, a very useful

criterion for evaluating any collision threat. An alternative

but equivalent formula based on a pair of observations of range

and bearing (r1, a1) and (r2, a2) was derived by Kwik (1973):
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[0
sina

:a]8 = a - arctan
cosa +0

sgn(a - 8) = sgn(V sina 1:'a)
0

1:' =m

1:'11:'2sin(a1 - a2)

1:'12 + 1:'22 - 2 1:'11:'2cos(a1 - a2)

(29)

Various alternative expressions can be derived using rates of

change of range and/or bearing, for instance

1:'m = .2'
+ 1:'

= (30)

The present analysis shows that a single observation of

range and bearing would suffice to establish the predicted pass-

ing distance if there were exchange of information between the

ships concerning speed and course. In the absence of such com-

munication, however, the relative course angle 8 and the speed

of the other ship V can still be determined from continued ob-
a

servations of range rand bearing a by own ship 0, for example

using the relations:

(31)

(32)

The most efficient way of calculating these quantities in

practicewould depend on the system of information acquisition

and processing available on board.
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V
0

V Va cos8x = y - +
R

0
0

V
0 V sin8y = x +

R
a

0

5 - ANALYSIS AND RESULTS

5.1 - General Considerations

The polar form of the kinematic equations, given ln the

previous section, was found to be useful in deriving some prac-

tical relations between the bearing, the relative course angle

and the speeds of the ships for determining the perfect collision

course or the predicted passing distance. However, for the ana-

lysis in this section it was found to be more convenient to use

Cartesian representation rather than polar. Let a two-dimen-

sional Cartesian coordinate system be defined such that the

x-axis is in the direction of V and the y-axis is normal too

V toward starboard in conformity with nautical practice. The
o

origin of the coordinate system is chosen to coincide with the

center of gravity of ship O. We may then make the following

transformation

x = r cosCa + S), y = r sinCa + S )
o 0

(33)

Substituting the above into equations (18) and (19) yields

(34)

(35)

.

8 =

Va Vo (36)
R Ra 0

which are identical with the reduced-space kinematic equations

- 26 -



v
0 y ~-Vo Va cos8x = +

R 1
0

V

Y = _-2. x ~1+ V sin8
R a
0

. Va V
0

8 = ~1- ~1
R Ra 0

in the two-car game of Isaacs (1965, p. 238).

The kinematic equations in the above form do not contain

variable control functions. For this purpose let us assume that

RO and Ra denote the minimum turning radii of the ship 0 and A

respectively. Each ship maneuvers by choosing a turning radius

which is larger or utmost equal to its minimum turning radius.

Let the chosen radii be denoted by Ro/~l and Ra/~l' where both

~1 and ~1 in absolute value are smaller or equal to unity. Thus

~1 and ~1 represent the control variables by which the ships

maneuver. According to our notations, positive values of ~1 or

~1 mean right turns, while negative values me an left turns.

In order to indicate the dependence of the kinematic

equations on the control variables for turning, equations (34)

to (36) are rewritten as

(37)

(38)

(39)

Note that a zero value for ~1 or ~1 means that the ship is on a

straight course (R ~ 00).

A second control available to the ship is the engine

setting or thrust. Let Tho now be the maximum thrust the engine

can produce and let -1 ~ ~2 ~ 1 be the thrust control variable

for ship O. Then equation (14) can be rewritten as

(40)
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Similarly, for ship A

(41)

where -1 ~ ~2 ~ 1 is the thrust control variable of ship A. For

the sake of simplicity, it is assumed that equations (40) and

(41) hold also for turning maneuvers with

u = V cosßa a a
(42)

In fact u and V may be interchanged without much error, Slnce

the drift angle in the maximum turn is rather small for most

ships, for instance ß ~ 100 for the standard ship Mariner in the

turn shown in Fig. 2 and 3. It is clear that it is also possible

to use equation (15) instead of (14), but it will be shown later

that our critical maneuvers are not sensitive to the choice of

a model equation for longitudinal acceleration.

Our problem is formulated in such a way that each ship has

two control variables at its disposal: the amount of rudder de-

flection (turning radius) and the engine setting (thrust level).

Following Kenan (1972) and Webster (1974), we may now consider

three distinct types of critical maneuvers as already indicated

in the Introduction: 1) Best maneuver of one ship while the

other ship is indifferent 2) Best collaborative maneuver of both

ships 3) Best maneuver of one ship combined with the worst

(i.e. most conflicting) maneuver of the other ship. Each of

these possibilities will be treated in detail with the intention

of obtaining optimal maneuvering rules for overcoming the risk

of collision.
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5.2 - One-Ship Maneuvers

In the case where only one ship maneuvers, say ship 0, we

set ~1 = 0 and ~2

(39)and (41). The

= a constant such that Ü = 0 in equationsa

problem then degenerates to a one-player-game

with two controls ~1 and ~2' The governing equations are (37) to

(40) with ~1 set equal to zero in (39). We are dealing here with

what Isaacs (1965) calls a "game of kind" in which the pay-off

function has only two distinct values corresponding to the alter-

native events of collision avoidance and occurrence. We assign

to pay-off the value +1 in case of collsion avoidance and -1 in

case of collision occurrence. The maneuvering ship strives to

maximize the pay-off. We now have to ask for a precise definition

of collision occurrence. For the present prupose it would suffice

to define "collsions" as the occurrence of a range (measured be-

tween the centers of gravity of the two ships) less than some

given distance L . Since in the following analysis L is anm m

arbitrary parameter, we can simulate different problems just by

the choice of L . When applying the analysis to a burdened ship
m

in the far-field situation, we would choose L equal to some
m

critical range (say one or two miles) below which the encounter

would have to be regarded as potentially dangerous in view of

all relevant factors such as traffic density, ship maneuverabi-

lity, nautical instrumentation, crew training, sea state,

visibility, maneuvering space etc. On the other hand, when

applying the analysis to the last-minute-maneuver of a privi-

leged ship in the near-field situation, we would choose L equalm

to about one ship length, roughly corresponding to an actual

physical collision of the two ships. Of course, safety margins

may be applied to L in either case to compensate for instru-m
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ment and human errors. In any case, the question we are trying

to answer is the following: At what minimum range must a ship

(burdened or privileged) initiate a critical maneuver and at

what stage (bearing change) must the maneuver be terminated so

as to just achieve the desired miss distance L ?m

In the present situation we have four "state variables",

i.e. x,y,8 and Uo (or Vo) and two control variables ~1 and ~2'

The main equation (ME1) of differential games (3) then reads

maX(~1'~2)[WX(:OY~1 -Vo+Vacos8) +

o

-v
w ( ...2.x~

1+V sin8)y
R a
o

(~2Tho-ko V~)

m (1+1. )
o xo

]
= 0 (43)

The solution of this equation implies

(45)

where ~1 and ~2 denote the optimal controls. The above equations

demonstrate that the optimal strategy requires choosing extreme

values of the control variables in accordance with the bang-bang

principle ln control theory. In other words, the optimal maneu-

ver requires the commands: Full Rudder to port or starboard

and Full Ahead or Full Astern as engine setting.

Following our notation, .we shall define the "terminal sur-

face" as a circle of radius Labout the center of gravity ofm

ship O. In order to determine the "useable part" of this surface,

we write, in accordance with equations (7), (37) and (38),

- 30 -
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V Vacos 82
sin 81 :t

0
=

Vr

V
a sin82

cos 81 = :t

Vr

where V is the relative velocity glven byr

.

xx + yy = xCV cos8 - V) + yV sin8(0a 0 a
(46 )

where the equality condition in (46) holds at the "boundary of

the useable part" (BUP). Further, let the parametric form of the

terminal surface be given by

8 = (47)

where 81,82 and 83 are parameters defined on the terminal sur-

face. Substituting (47) into (46) yields a relation between 81

and 82 valid on the boundary of the useable part, see Isaacs

(1965, p. 240):

(48)

V2 = V2 + V2 - 2 V V cos 8
2r 0 . a 0 a

(49)

Equation (48) shows that the boundary of the useable part con-

sists of two diametrically opposite points on the circle of

radius L . The initial conditions given in (8), (9) and (47)m

together with the kinematic equations imply the following

condition on the useable part:

wx = cos s 1 '
wy = sins1, (50)
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since ln our solution the terminal pay-off does not depend on

the parameters s.

Substituting (50) into (44) and (45) shows, to our disgrace,

that the values of ~1 and ~2 cannot be determined since both

arguments of the signum functions are identically zero. A way to

overcome this difficulty is to investigate the behavior of the

arguments in the immediate neighborhood of the useable part.

This may be done by taking the retrogressive time derivatives

of the arguments in (44) and (45):

~1 = sgn { V (-xW -xW +yW +yW -W
e
)

}o y y x x
(51)

o

q,2 = sgn (Wv )
o

(52)

From (37) to (40) we obtain the retrograde path equations

V
o 0-
x = --y q, + V

RiO
o

V cose
a

(53)

oy =

Vo --xq,
R 1
o

V sine
a

(54)

o

e =

Vo
~1 (55)

Ro

(56)
m (l+A )o xo

To complete the set of retrograde path equations we use (6) to

yield

o V
W = - ~~ Wx R 1 Y

o

(57)
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v, 0 -w = -q, wy R
1 x

o

,

W~
= Va (wVcose

- Wxsine)

(58)

(59)

o ~1
w = - (-xW +yW -W ) - W - WV

R Y xe x Vo 0
o

2k V
o 0

(60)
m O+A )

o xO

Substituting (53) to (60) into (51) and (52), and recalling

that these functions are evaluated on the useable part where

(47), (48) and (50) hold, we get

~1 = sgn(-W ),y q,2 = sgn(-W )
x

(61)

Combining (48) and (50) and substituting the resulting values of

Wand W into (61) finally yields
x y

- -~ - - - --- -

q,1 = sgn (-sin81)

= sgn {+ (Vo- VaCOS82)}

<I>2 = sgn (- cos81 )

= sgn ('I' sin82) (62)

which are the desired express ions for the optimal control

variables.

The upper and lower signs in equation (62) have the follow-

ing meaning. Equation (47) defines a cylindrical surface of

radius Lm and an axis of symmetry inthe_direction of 82 normal

to the x and y-axes. This cylinder is in fact the terminal sur-

face. The parameter 81 denotes a terminal bearing angle measured

clockwise from the positive x-axis in the plane 82 = const.

Equation (48) defines the boundary of the useable part as two
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curves which are wrapped around the cylinder. If Vo > Va one

part of the BUP will lie in the half space y > 0 (righthand

side of x) and may be called the righthand BUP. The other part

lies in y < 0 and may be called the lefthand BUP. On the other

hand, if Vo < Va then the two parts of the BUP do not stay on

their respective sides of the x-axis, but spiral around the

cylinder. To avoid confusion between left and right in case

V < V we shall then speak of upper (lower) BUP when referring
o a

to solutions corresponding to the upper (lower) signs in equation

(48). This is further illustrated in Fig. 4 which can be also

interpreted as showing the relation between relative bearing 81

and relative course angle 82 at the closest point of approach

with speed ratio n = V Iv as parameter. The upper and lowera 0

signs in equation (62) as well as in all following equations may

now be explained as always corresponding to the upper BUP and

lower BUP respectively.

In order to proceed further, it will be convenient to

distinguish the cases V > V and V < V and deal with themo a 0 a

individually.
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5.2.1 - Case I (V > V )
o a

We consider first the case that own ship, i.e. the one

aiming to avoid the cOllision, is faster than the other ship

involved in the encounter. Assuming V > V , equation (62)o a

yields

CP1 = + 1

CP2 = + 1 if 0 < 82 < TI

:t 1 if TI < 82 < 2TI (63)

where the upper and lower signs apply to the righthand and left-

hand BUP respectively.

Equation (63) in conjunction with (62) implies that if at

CPA the target A is toward port (starboard) the optimal strategy

of 0 is to turn right (left), and if at CPA the target A is for-

ward (aft) of abeam the optimal strategy of 0 is to apply back-

ward (forward) thrust. It is satisfying to note that the rather

formal theory of Differential Games has provided us with a ma-

neuvering rule in conformity with the simple intuitive argument

that we should always turn away from the target, and decrease

speed when trying to pass behind, but increase speed when trying

to pass in front of the target. This rule will be useful specially

for vehicles capable of achieving a considerable acceleration or

deceleration by changing the thrust or power. Such a vehicle, for

instance, is the automobile with its accelerator and brake pedals.

Ships (and aircraft) however can, in general, generate only

- 35 -



small accelerations by changing the thrust level. With a ship

sailing at service speed, the power reserve is, very limited so

that an increase of speed is almost totally impractical. It lS

therefore assumed in the following that the critical maneuver is

executed only by a rudder command and that the speed of the ship

remains constant from the moment it enters the turn. In principle

it is possible to take into account a thrust change using (56)

and (63) as the model equations for ship speed, but it is be-

lieved that the results will not differ significantly from those

obtained for constant speed turns. Moreover, the variable speed

generalization may cost us the delight of obtaining a closed

form solution to the problem.

Under the assumption of constant turning speed the retro-

grade path equations (53) to (55) together with the initial

conditions (47) can be integrated to give (see Appendix A);

v V V0- - 0- 0-x = LmCOs(;-<P1T+81) +Ro<P1sin(;-<P1T) -VaTCOS(;-<P1T+82)

o 0 0

Y = LmSin(:O ~1T(81) +Ro~1{1-COS(:0 <P1T)
}

o 0

(64)

V
Va T s in

(R

0

~
1

T+ 8
2

)

o

(65)

(66)

Substitution of (48), which holds on the BUP, into (64) and (65)

finally yields after elimination of 82 using (66);

(67)
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(68)

where we have introduced the following nondimensional quantities

11 =
Va

T =,

V
o

T, l = x =
x y = .L

Ro

(69)
Vo Ro

and
V
r _

{
1 + 112- (70)

--"- -- -- -

Equations (64) to (66) are in fact the equations of the optimal

paths wh ich meet the terminal surface at the BUP. The optimal

paths leading to the righthand BUP form the right barrier, while

the optimal paths leading to the lefthand BUP form the left

barrier. Equations (67) and (68) are the desired equations for

intersections of the two barriers with planes e = const. The

upper and lower signs correspond to the intersections of the

right and left barrier respectively. Equation (63) implies a left

turn (~1 = -1) on the right barrier and a right turn (~1 = +1) on

the left barrier.

To understand this maneuvering rule let us consider the

situation depicted in Fig. 5. We are seeking the critical ma-

neuver of own ship 0 so as to avoid collision with another ship

A moving at a relative course angle e. As defined above, colli-

s~on avoidance means that the minimum passing distance be larger

than L . The righthand and lefthand BUP areindicated by points Em

and D respectively, found by setting T = 0 in (67) and (68). The

right barrier is the curve emerging from E, while the left

barrier is the curve emerging from D. The two barriers meet at

the point F. The region enclosed by the two barriers along with
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arc DE (the useable part of the terminal surface) may be ca lIed

the "danger zone". The strategy of ship 0 is to avoid, by timely

action, the penetration of ship A into the danger zone. The semi-

infinite band bounded by the two tangents drawn from E and D

along with the arc DE may be called the "alert zone". A risk of

collision exists only if ship A is observed inside the alert

zone. It should be noted that the two tangents drawn at the BUP

are parallel to the relative velocity vector V .r

As noted in Section 3, there is a certain time lag tl be-

tween the moment a rudder command is given on the bridge and

the moment the ship beg ins to turn. During this time the ship A

will appear to move a distance

AA
1 = V r tl (71)

toward ship 0 in the direction of the relative velocity vector

V as shown in Fig. 5. This may be anticipated by displaying
r

ship A on the radar screen of ship 0 as the vector AA1 rather

than as a discrete point A.

The anti-collision maneuvering rules are now as folIows.

Observe the motion of point A1, if in the alert zone, until it

meets one of the barriers. If A1 hits the right barrier, then

turn left and vice-versa, as indicated by the marks Cf) and

GV on the barriers. For instance, if A1 hits the barrier at

point G, the command should be "full rudder to starboard". By

giving the rudder command at the moment A1 hits the barrier, it

is ensured that the actual turning maneuver will start when

point A, which represents the center of gravity of ship A, first

hits the barrier. (The speed reduction in the turn can also be
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approximately taken into account if the barriers are calculated

using for the own ship instead of the approach speed Vo a re-

duced speed appropriate to the rudder angle to be applied).

Now the question arises when such a maneuver should be

terminated. The answer is simple; the turn should be executed

until point A touches the circle of radius L drawn about o.
m

This denotes the point of closest approach (CPA). At this in-

stant the turn may be terminated. After waiting until a safe

distance has been reached the original course may be resumed.

The equations of the barrier are given in a parametric

form in terms of the nondimensional time T, which means that to

each point on the barrier there corresponds a certain value of

T. The physical interpretation is that T is the time taken to

reach the UP of the terminal surface along an optimal path.

Hence T is the time of execution of the critical maneuver until

the CPA is reached. Ship 0, originally at a relative course

angle e with respect to ship A, should execute the turn until

the relative course angle is as given by equation (66)

which amounts to increasing e by -~lT. Thus the barriers uniquely

define the type of critical maneuver needed to avoid collision

as weIl as the instants at which the maneuver must be started

and terminated.

In a restricted or crowded sea a ship is, in general, not

in a position to turn to port or starboard at will. This may

also be the case when the mariner is following the popular Right

Turn Rule preferred also by international regulations. Gur ma-
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by the barrier DHR, the tangent EHR and the are DE. Ship 0

should exeeute a right turn at the instant Al is first observed

on the barrier DHR, Similarly, the danger zone for the ease

neuvering rules ean easily be modified to allow for such restrie-

tions, Let the left barrier in Fig. 5 be eontinued beyond F

until it interseets the tangent drawn from E at the point HR,

Similarly, the right barrier is eontinued up to its interseetion

at HL with the tangent drawn from D. The danger zone for the

ease where only right turns are allowed is the region enelosed

where only left turns are allowed is the region enelosed by the

barrier EHL, the tangent DHL and the are DE. Ship 0 then exe-

eutes a left turn when Al is first observed on the barrier EHL.

A partieular solution of (67) and (68) yields the barrier

when the threat ship A is stationary. It simply eonsists of two

eireular ares of radii Z + 1 eentered at y = Il for arbitrary

angles 8.

The danger and alert zones as weIl as the maneuvering rules

are presented graphieally ln Fig. 6 to 10 for n = 1//r = 0,707,

Z = 2 and seleeted values of 8.
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5.2.2 - Case 11 (V < V )
o a

We now consider the case that own ship 0, i.e. the one

aiming to avoid the collision, is slower than the other ship A

involved in the encounter. Here equation (62) yields

$1 = ! 1 if 0 < 82 < S

+ 1 if S < 82 < (2IT-S)

! 1 if (2IT-S) < 82 < 2IT (72)

where

cosS = (73 )

Also, as in the previous case

$2 = :;: 1 if

! 1 if IT < (74)

-

This last equation implies that the optimal maneuver involves ln-

creasing speed if the terminal bearing is abaft of abeam and de-

creasing speed if the terminal bearing is afore of abeam, see

also Fig. 4. At 82 = Sand 82 = (2IT-S)one may expect to encounter

singular surfaces. Let us consider first the upper barrier, i.e.

the upper sign in (72), which implies by virtue of (55) that there

is an abrupt decrease in the value of e at 82 = Sand an abrupt

increase at 82 = (2IT-S). This means that at 82 = S the optimal

paths are divergent and we have a dispersal curve, whereas at

82 = (2IT-S) the optimal paths are convergent and we have a uni-

versal curve. On the lower barrier (lower sign) the opposite is

true, i.e. a universal curve at 82 = Sand a dispersal
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0 V sine 0y - - x -

R a
Ro0

V
0 V cose-v 0x - y

R
a 0

0

V
e

0 0 0- -
R0

curve at 82 = (2IT-5).
- - - - - - --- --
The calculation, or more correctly the detection, of the

dispersal curve is straightforward. The intersection of the

dispersal curve with the plane e = const yields a point on the

barrier at which there is an abrupt change in the value of ~1'

In order to determine this point we must plot the optimal paths

given by (67) and (68) twice for each barrier, i.e. for ~1 = Il.

The intersection of these two curves determines the point on the

barrier which divides it into two sub-barriers with different

strategies.

The calculation of the universal curve is more complicated.

We must first identify the kind of universal curve we have to

deal with. For this we return to the conditions prevailing on a

universal curve as given by (13). Using equations (10), (12) and

(53) to (55) we derive the following table

Table 1

Inserting the above coefficients into (13) yields e =+5. Equation

(66) then implies that on this universal curve ~lU = O. The

physical meaning is that the ship sails along on a straight
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0
-V siney = a

0
V V cosex = -
0 a

0
e = 0 (75)

x = -L

Y = :tTU/Tl2-1'

e = + arccos (1:.)
Tl

where
V

TU
0

tu=

R
0

course without turning. Putting ~1U = 0 ln the path equations

(53) to (55) yields

Integration of the above differential equations with the proper

initial conditions, x = -L, Y = 0, e = +8, yields in nondimen-

sional form

(76)

(77)

Here tu denotes the physical travelling time along the univer-

sal curve from any particular point up to the intersection with

the terminal surface.

Our next step will be to determine the equations of the

tributariesof this universal curve (~1U = 0). The governing equa-

tions of the tributaries are again the kinematic equations (53)

to (55). However, the initial conditions for the tributaries

differ from (~7) to (~9) since the tributaries do not intersect

the terminal surface. What they do intersect is the universal

curve. Hence the proper initial conditions are given by (75) and

(76). One can now proceed with the integration of the kinematic

equations and show (see Appendix B) that intersections of the
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tributaries with planes e = const form the straight lines given
-- --

by

XCOSce!S)+ysince!S)+z+~l {ce!S)-sinCe!S)} = 0 (78)

The danger and alert zones along with the appropriate ma-

neuvering rules are shown in Fig. 11 to 17 for ~ = J:f, Z = 2

and selected values of e. In order to understand these rules,

which at first glance seem to be more complicated than those for

~ < 1, consider the situation depicted in Fig. 15 for e = 900.

The coordinate origin is attached to own ship at 0, which lS

moving with velocity V in the direction of the x-axis. A threato

ship A moving with velocity V at relative course angle e =
900

a

is observed within the alert zone bounded by the are CD and the

tangents at C and D. For a preselected minimum passing distance

L the barrier is shown in Fig. 15. It consists of five distinctm

parts. Appearance of A on the part CE of the barrier calls for a

left turn, whereas appearance of A on parts EF or HD calls for a

right turn. The switching-strategy-point E is in fact the point

where the dispersal curve meets the plane e = const. The three

segments of the barrier marked GD or QD, for left and right

turns respectively, are intersections of this plane with optimal

paths which terminate on the BUP tangent to the terminal surface.

These paths are given in a parametrie form in terms of the retro-

grade nondimensional time T which uniquely determines a point

on the optimal path. The maneuvering rules for these three seg-

ments of the barrier are identical to those discussed in the

previous section. When the point Al hits the barrier, start a

turn as marked and continue until point A reaches the basic

circle of radius L . At this instant ship 0 may terminate them
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turn. The change in relative course angle resulting from a crit-

ical maneuver starting at a point corresponding to T on the

barrier is exactly !T.

It now remains to explain the symbol ~marked on the segment

FGH of the barrier in Fig. 15. The straight lines FG and GH are

intersections of the tributaries of the ~-universal curves with

plane e =const. The equation of these lines is given by (78). The

- - --- -
tributaries terminate on the universal curve, which in the pre-

sent problem is simply given by e = +~ When the threat ship A

hits a segment of the barrier like FG, which is a tributary and

optimal path, a two-step maneuver is required to avoid collision.

This is indicated by the mark \l;) or I..!!J in the diagrams. It

means that ship 0 should execute a turn in the direction shown

until the relative course angle e equals +S,then terminate the

turn and proceed along a straight course (which is not neces-

sarily the original course) until the point A reaches the lowest

point of the basic circle about 0, i.e. the point x = -Lm,

y = O. After awaiting a safe separation ship 0 may resume origi-

nal course. This two-step strategy is better understood if we

recall that the universal curve is given by ~lU = 0 (straight

course) and that it emerges from the lowest point of the terminal

surface.

A special case ~s the situation for e = S as depicted in

Fig 13. Here the barrier consists only of an @ type segment.

5.2.3 - Case 111 (V = V )o a

We now briefly consider the special case where ships 0 and A

have equal velocities. The limiting solutions for ~ = 1 as ob-

tained from Case I (~ < 1) and Case 11 (~ > 1) are identical.
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However, they are found to be indeterminate for e = ~1T, that is

to say s2 = O. The reason is that the boundary of the useable

part cannot be defined when the two ships are moving with equal

speeds on the same course angle. The indeterminacy can, however,

be removed by rewriting (67) and (6S) as

e+~1T
x = tlcos( ) + ~1sin(~1T)-TcoSe

2

e+~1T
y = tlsin( ) + ~1 {1-cos(~1T)} - Tsine

2

(79)

(SO)

These equations are valid for all e i O. It is clear that for

e = 0 a barrier does not exist since the range remains constant

as long as the two ships maintain their common speed and course

angle. In other words, the barrier degenerates into the terminal

circle x2 + y2
= l2 itself and any starting condition is itself

the optimal final condition.

Note, however that with n = 1 and s2 = 0 any value of s1

satisfies equation (4S). Therefore, in addition to the optimal

paths given by (79) and (SO) we must calculate a third family of

paths obtained simply from (64) to (66) by putting s2 = 0 and

using 0 ~ s1 ~ 2~ as the parameter instead of T for calculating

intersections with planes e = const.
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5.3 - Collaborative Two-ShiD Maneuvers

We now proceed to analyse the situation where both ships

involved in the encounter maneuver in collaboration with the aim

of avoiding a collision. Mathematically this means that in gen-

eral besides ~1 also
*1

will be nonzero. However, for the sake

of simplicity we shall allow only rudder angle control, assuming

~2 and
*2

are constants such that Üo = üa = O.

The operator D defined in (3) now takes the form "maxmax".

Under assumption of constant turning speed we have three state

variables x,y,e and two control variables ~1 and
*1'

The maln

equation (3) then yields the following relation for the Value:

V
+W (--2.x~ l+V sine)y

R
a

o

V
+We(~*l -

Ra

V

R

0
~1)] = 0

o

(81)

The solution of (81) implies

~1 = sgn(y Wx - x Wy - We) (82)

*1 = sgn(We) (83)

The initial conditions at the BUP do not depend on the maneuvers

of ship A and are therefore identical with those given in (47)

to (50). It follows that the arguments of the signum functions

ln (82) and (83) are identically zero on the BUP. Hence, in

order to evaluate these functions we resort to differentiation

with respect to the retrograde time and obtain
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o 0 0 0 0

<P1 = sgn(y W + y W - x W - x W - We) (84)
x x y y

_ 0

~1 = sgn(We) (85)

The retrograde path equations for x and y are given by (53) and

(54). However, the path equation for e has to be modified to

read

o

e =

Vo
<P1

V
a (86)

R
o

R
a

The expressions for the retrogressive time derivatives of the

Value function (6) are identical with (57) to (59). By repeating

the analysis of Section 5.2 we find that the optimal control

variable <P1 is given by (61). In order to evaluate the optimal

control variable ~1' we substitute (59) into (85) and get

(87)

which holds on the BUP. SUbstituting (50) and (48) into (87)

yields the final expression

(88)

As before, <P1 is given by (62) which we repeat for ready com-

parison

(89)

In order to proceed further with the solution it is aga in con-
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venient to treat separately the cases V > V and V < V .o a 0 a

In this case equations (88) and (89) yield

~1 = + 1 (90)

~1 = ~ 1 if 0 < 82 < Q

+ 1 if Q < 82 < (2IT-Q)

~ 1 if (2IT-Q) < 82 < 2IT (91)

where Q is given by

(92)

According to our notation the upper sign in equations (90) and

(91) applies to points on the right barrier (ending at the right-

hand BUP) and the lower sign to points on the left barrier (end-

ing at the lefthand BUP). Thus we see that the value of ~1 lS con-

stantoneach barrier whereas ~1 changes sign twice within the

cycle 0 < 82 < 2IT. Far reasons of symmetry we may limit our dis-

cussion to the half-interval 0 < 82 < ITwhile the other half

IT< 82 < 2IT is obtained by taking the mirror image with respect

to the x-axis. In all we find two singular points at 82 = ~Q (on

each barrier) where we may expect to encounter singular surfaces.

The question is: what kind of singular surface?

On substituting (90) and (91) into (86) it is found that as
o

82 passes through Q in the positive sense, the value of e suffers

an abrupt increase on the right barrier and an abrupt decrease on
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x. a ß y
1-

Vo V2
0 ~1x V sin8 a cos8y - - + - -

R a R0 a

V V2
0 0

~1Y V V cos8 a sin8x - - + -
R 0 a R
0 a

V V
8 a

-
0

~1 0- -
R Ra 0

the left barrier. This means that the righthand BUP at 82 = Q

lies on a ~-universal curve whereas the lefthand BUP at 82 = Q

lies on a dispersal curve, and vice versa at 82 = -Q.

Our next step should be to find the type of the ~-universal

curve and the conditions prevailing along it. Since we have here

three state variables, these conditions are given by the solution

of (13). Before evaluating the determinant in (13) we summarise

the values of the coefficients a,ß and y as obtained from the

substitution of (37) to (39) into (10), where ~ is replaced by

~, and in (12):

Table 2

Solving (13) with the above coefficients yields ~lU = 0 on the

universal curve (see Appendix C). It should be noted that in

general the optimal control variable is nonzero on the universal

curve and its value has to determined from the proper equations.

Inorderto determine the optimal path we integrate the

retrograde path equations (53), (54) and (86) to obtain the

following nondimensional equations (see Appendix D):
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x = :!: };2 { -Sin(<P1T)+nsin(6+t~lT)}+ <Plsin(<P1T)

- Aiiil{ sin(6+x-iiilT) - Sin6} (93)

y = :!:};2 {COS(<P1T)-nCOS(6+X-iiilT)}+<P1{1-COS(<P1T)}

+ A~l {cOS(6+X-iiilT) - COS6} (94)

- n-6 = 82 + (<Pi - I 1JIl) T (95)

where in addition to (69) and (70) we have introduced the abbre-

viations

Ra Vr

{ [ ]}
1/2

A -
R '

w2 = ;- = 1+n2-2ncos 6-(<Pl-X-iiil)T

o 0 (96)

The upper and lower signs in (93) and (94) denote the right and

left barrier respectively. Moreover, on each barrier <Pi and 1JIl

have different values as given by (90) and (91).

For detecting the point of switching strategy on the left

barrier we have to find intersection of the dispersal curve with

the plane 6 = const. This can be done as follows: Since the dis-

persal curve intersects the left barrier, we set ~1 = +1 in (93)

and (94) in accordance with (90). Furthermorewe take for the

left barrier only the lower sign in (93) and (94), namely the

minus sign. In the resulting equations we put first $1 = +1 and

then iiil = -1. For 6 = const we plot the two curves (*1 =
:!:1).

Their point of intersection is intersection of the dispersal

curve with plane 6 = const or the point of switching strategy.
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For e < Q the left barrier emerging from the lefthand BUP has

~1 = -1 which changes to $1 = +1 at the point of switching

strategy. For e > Q the opposite is true, i.e. the left barrier

emerges from the lefthand BUP with ~1 = +1 which changes to

wl= -1 at the switching point.

To complete the construction of the barriers it is neces-

sary to calculate intersections of the tributaries with planes

e = const. These expressions have been derived in Appendix E

and are given by:

(98)

where T is the nondimensional retrogressive time required to

reach the w-universal curve from a point on its tributaries.
-- --~
A few numerical examples of the barriers, the danger zones

and the appropriate maneuvering rules for the case of collabo-

rative two-ship maneuvers are plotted in Fig. 18 to 25 for

n = lllT, Z = 2, A = 112 and selected values of e. A second set

of examples is shown in Fig. 26 to 33 with A changed to 1,

which however does not seem to alter the danger zone very much.

In these figures the left barrier often consists of two segments
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1)11 = + 1 (99)

<P1 = :t 1 if 0 < 82 < 5

+ 1 if 5 < 82 < (211-5)

:t 1 if (211-5) < 82 < 211 (100)

of different 1)1-strategies marked by ([)
a and 0 a in addition to

the uniform <p-strategy 00, The symbols ([) and 0 have their

usual meaning while the indices a and 0 refer to ship A and 0

respectively. The right barrier also sometimes consists of two

segments of different 1)1-strategies marked by 0 a and
i!!J a or ([)

a

and \!:Ja ln addition to the uniform <p-strategy ([)
o'

The symbols

\.f) and i!!J occur on intersections of the tributarieswith

planes e= const. These curves are given by (97) and (98) in terms

of the parameter T. Hence to each point on these curves there

corresponds a unique value of T. If ship A hits such a segment

of the barrier the appropriate maneuvering rules are as folIows:

Ship 0 executes a left turn until the desired minimum passing

distance l has been reached. Ship A executes a left turn, if

barrier is marked \!:Ja'or a right turn, if barrier is marked

~a' until the relative course angle e has changed by the amount

- Tl -
(1)11 I

- <P1) T which may be positive or negative. A this point

ship A switches to 1)11= 0 which means that it terminates the

turn and moves along a straight course until the desired mlnl-

mum passing distance l is reached. This is the end of the collab-

orative critical maneuver.

5.3.2 - Case 11 (V < V )
o a

In this case equations (88) and (89) yield
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x. a ß y
1-

V V2
0

V sin6 0y - - x -
R a

Ro0

V
0 V cos6-V 0x - y

R a 0
0

V V
6

0 a
1)Jl 0- - -

Ro Ra

with S as defined in (73). Again, for reasons of symmetry we need

consider only the half-interval 0 < 82 < ~. Here we have a sin-

gular point on the BUP at 82 = S. From the retrograde path equa-

tion (86) we find that the singular point on the upper barrier

lies on a dispersal curve, whereas the singular point on the

lower barrier lies on a ~-universal curve. The opposite holds for

82=-S.Inorder to determine the type of the ~-universal curve we

use equations (10), (12), (37) to (39) to solve for the deter-

minant (13). The following table contains the values of the

coefficients used:

Table 3

The solution of (13) with the above coefficients renders ~lU = 0

on the ~-universal curve (see Appendix F).

The optimal paths for the case n > 1 are also given by (93)

to (96), the difference from the case n < 1 lying in the values

of ~1 and ~1 to be used. However, the equations of the tribu-

taries for the case n> 1 cannot be determined from (97) and (98)

since the universal curve is of a different type. For n < 1 we

had a 1)J-universal curve, whereas for n > 1 we have a ~-universal
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curve. The proper equations for the tributaries are derived in

Appendix G; their intersections with planes e = const are given

by

x =
{

(101)

(102)

The critical maneuvers in the present case n > 1 are similar

to those given previously for the case n < 1, except that the

roles of ship 0 and ship Aare reversed. Ship A now excutes a

right turn on the lower barrier and a left turn on the upper

barrier. The strategy of ship 0 on either barrier may be dis-

continuous due to the presence of a dispersal curve. On either

barrier the optimal strategy of ship 0 may comprise two steps:

a partial turn until the relative course angle e has increased by

the amount (~1 t - ~l)T and then continuing tangentially along a

straight course until ship A is observed at the lowest point of

the basic circle, that is x = l , Y = O. Such maneuvers, marked

as \!V 0 or
\.!:J 0'

are required whenever ship A hits a segment of the

barrier which is composed from the tributaries. It should be

noted that it is always the slower ship which has to change its

strategy at singular points according to the appearance of the

singular surfaces.
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Some numerical examples of critical collaborative two-ship

maneuvers from the point of view of the slower ship (~ > 1) are

presented for selected values of e in Fig. 34 to 40 for ~ = ~,

L = 2, A = 1/2 and in Fig. 41 to 48 for ~ = ~, L = 2, A = 1.

5.3.3 - Case 111 (Vo = Va)

Finally, we note that in the special case ~ = 1 the solu-

tions obtained from the above Case I (~ < 1) and Case 11 (~ > 1)

coincide except at

(103)

where the optimal path equations (93) and (94) become indeter-

minate. This indeterminacy can be removed by taking the limit

of (93) and (94) which yields for ~ = 1,

-

,-

(104)

Ci05)

- ---- ---------- -- - - --

These equations are valid for all e ~ 0, with the optimal controls

~1 = +1, ~1 = +1. For e = 0 a danger zone does not exist, for the

barrier degenerates into the terminal circle x2 + y2 = l. An addi-

tional barrier is obtained from the terminal condition 82 = 0 as

mentioned at the end of Section 5.2.3.
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5.4 - Conflictin Two-Shi Maneuvers

We shall now consider the case of conflicting two-ship ma-

neuvers assuming that ship 0 follows the strategy best suited to

avoid collision whereas ship A follows the strategy best suited

to cause collision. This is what Kenan (1972) and Webster (1974)

have investigated as the "best" maneuver of ship 0 combined with

the "worst" maneuver of ship A. Such an extreme situation can

sometimes arise in practice due to lack of communication between

ships, due to a blunder on the part of one of the ships, or as

a side effect of a collision avoidance maneuver with respect to

a third ship. It is, of course, more likely to occur in warfare,

whenever one ship is trying to attack another. Isaacs' (1965)

book deals mainly with such pursuit problems. In his terminology

we might call ship 0 the evader and ship A the pursuer.

The solution for the pursuit problem is similar to that of

the collaboration problem of Section 5.3 in the sense that the

governing equations (the retrograde path equations and the ini-

tial conditions) are identical. What is different is the operator

D in equation (3). Recalling the definition of the pay-off func-

tion, we obtain the main equation

[

V V
maxmin(<!> l

,1jJ

l
) W (~Y<!> l-V +V cos6)+W (--2X<!> l+V sin6)

xR 0 a Y R a
o 0

(106)

The analysis then follows closely the analysis of Section 5.3

from (82) to (89) except for the appearance of a minus sign on

the right-hand side of equations (83), (85), (87) and (88). The

final expressions for optimal strategies are now
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<Pl = sgn{ :j:(Vo - VaCOS82)} (107)

1jJl = Sgn{ :t(Va - VOCOS82)} (108)

As before, we now distinguish two cases depending upon the

relative speeds of the evader and the pursuer.

5.4.1 - Case I (V > V )
o a

In case the evader is faster than the pursuer equations

(107) and (108) imply

<P = + 1 (109 )
1

iii
1 = + 1 if 0 < 82 < Q

:t 1 if Q < 82 < (2IT-Q)

+ 1 if (2IT-Q)< 82 < 2IT (110)

where Q is defined by (92).

Again we consider only the half-interval 0 < 82 < IT and

investigate the singular points 82 = Q on the left and right
o

barriers. As 82 increases through Q, the value of e as given by

(86) increases abruptlyon the left barrier and decreases ab-

ruptly on the right barrier. Hence, we have a 1jJ-universal curve

on the left barrier and a dispersal curve on the right barrier.
--- ------

The opposite is true at the points 82 = -Q. The value of ~1 re-

mains constant on each barrier; it is -1 on the right and +1 on

the left barrier. Following the analysis of Appendix C, which is

also valid for the pursuit problem, we find that on the 1jJ-universal

curve iiilU = O. The general tributaries of the universal curve and

their intersections with planes e = const are derived in Appendix Eand
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summarized in (97) and (98). The integration of the retrograde

path equations with the proper initial conditions has been

carried out in Appendix D resulting in (93) to (95). In all these

expressions the values of ~1 and ~1 dictated by (109) and (110)

must be substituted, and the signs of l,Q reversed in (97-98).

The critical maneuvers of the pursuit problem are similar

to those of the collaboration problem in so far as separate in-

structions are indicated for each ship on every segment of the

barrier. We recall that the maneuver marked for ship A is the

optimal maneuver for causing a collision with ship O. From a

practical point of view, we are interested mainly in the extent

of the danger zone and in the optimal strategy of the evader

(ship 0), but not so much in the strategy of the pursuer (ship A).

Typical barriers for the case of conflicting two-ship ma-

neuvers are shown in Fig. 49 to 56 for n = 1//f, l = 2, A = 1

and selected values of e. The maneuvering rules for the evader

(ship 0) are simple: turn right on the left barrier and turn

left on the right barrier. The strategy for the pursuer (ship A),

however, is beset with the discontinuities introduced by the

dispersal and the universal curves as shown in Fig. 54 for

example.

In the pursuit problem there is no guarantee that the two

barriers will intersect. In other words, the evader may not

always be able to avoid collision irrespective of the action of

the pursuer. It depends on the relative speeds and turning radii

of the two ships. However, for n < 1 and A = 1 the two barriers

do intersect as depicted in Fig. 49 to 56, so that a correct

timely maneuver of the faster ship 0 can avoid collision.

- 59 -

-- --



1)11 = :!: 1 (111)

<f>1 = :!: 1 if 0 < 82 < S

+ 1 if S < 82 < (21T-S)

:!: 1 if (21T-S) < 82 < 21T 012 )

5.4.2 - Case 11 (V < V )
o a

Finally, we investigate the critical evasive maneuvers of a

slower ship required to avoid collision with a faster pursuer.

Equations (107) and (108) now imply

where S is defined by (73). It can be shown that at 82 = S we

have a dispersal curve on the upper barrier and a <f>-universal

curve on the lower barrier. The analysis of Appendix f may be

repeated to show that here on the <f>-universal curve we have

<f>lU = O. The equations of intersections of the tributaries of

the <f>-universalcurve with planes e = const are given by (101)

and (102) after substituting from (111) and (112) for ~1 and 1)11'

Similarly, the optimal paths are given by (93) and (94).

Having derived the equations of the optimal paths and of

the tributaries, the two barriers emerging from the HUP may be

constructed. When the pursuer is faster than the evader, in most

cases the two barriers in a coordinate system attached to the

evader will not intersect. In other words, the pursuer can cap-

ture the evader. This may be of some interest in warfare, but

need not be pursued any further in the present context.

Cockayne (1967) has shown for the special case of a point

pursuer A and a point evader 0 that the pursuer can capture the

evader from any initial state if and only if
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11 > 1 and (113)

The generalization for finite pursuers and evaders, i.e. for a

nonzero miss distance l, is formulated but not completely solved

in the two-car game of Isaacs (1965). It is intended to take up

this question in a subsequent report.
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6 - DISCUSSION AND CONCLUSIONS

Collsion between surfaee vessels oeeurs ultimately due to a

failure of the so-ealled last minute maneuver at short range. In

an attempt to propose a method for eollision avoidanee it is

therefore neeessary to study the eritieal evasive maneuvers for

various geometries and kinematies of ship eneounters. The method

used here for the determination of optimal maneuvers is based on

the applieation of differential game theory. The problem is for-

mulated as agame of kind with a terminal pay-off funetion

assuming one of two distinet values eorresponding to the eases

where eollision does or does not oeeur. There is no time limi-

tation on the duration of the game and the game is said to ter-

minate whenever the passing distanee is smaller than a preseribed

value.

The mathematieal model used in this report deseribes the

relative motion of two ships. The simple model of ship maneu-

vering takes into aeeount non-linear effeets ineluding speed loss

in a turn by approximating the true trajeetory of the ship in a

hard turn by a straight line and a eireular are eaeh with differ-

ent eonstant speed. Three different possibilities for a two-ship

eneounter were eonsidered, namely (a) one-ship maneuvers while

other ship is indifferent (b) eollaborative two-ship maneuver

and (e) eonflieting two-ship maneuver which resembles the pursuit

and evasion problem. The type of the optimal maneuver is also

determined by the speed-ratio of the ships and for this reason

the cases where the speed of own ship is larger, equal or smaller

than the speed of the threatening ship were considered separately.
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The navigational instructions of a critical maneuver are

given in terms of two intersecting barriers which enclose the

danger zone. The strategy of own ship is to prevent the threaten-

ing one from entering the danger zone. The type of the optimal

maneuver is determined by the point at which the threatening ship

is first observed at the barriers. The advantage of this graphical

representation is that it could be easily plotted on the radar

display knowing the heading of the other ship. The plotting of the

barriers will show if there is a danger of collision, i.e. if the

other ship is observed within the alert zone. In case the other

ship is threatening, it may be allowed to approach own ship until

reaching a point on the barrier. At this instant the evasive ma-

neuver should start and be terminated when the range between the

ships equals the mlSS distance. For use in a crowded sea it is

also possible to plot different barriers for each ship which may

threaten own ship and determine against which ship avoidance

action should be taken first. It should be noted that the closer

vessel is not always the most threatening as far as collision

risk is concerned. It may happen that an evasive maneuver against

one ship may lead to a collision situation with another ship. For

this reason it is recommended to use continuous plotting or dis-

playing of barriers to determine the several-step optimal maneu-

ver which avoids collision in crowded sea. It should also be noted

that the minimum passing distance is a choice of the ship's master.

Since the barriers are presented in a dimensionless form it is

also possible to determine the long-range maneuver which yields a

desired passing distance.

One of the more important conclusions of this work is that

it is impossible to give a simple recipe for critical maneuvers
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(frequently attempted in the literature) and each encounter

situation has to be treated separately. Another result of the

analysis is that the optimal maneuver is not always a one-step or

a hard maneuver. This happens for example in the case of the

appearance of universal surface which calls for a two-step maneu-

ver part of which consists of a straight course. In addition it

should be mentioned that the optimal maneuvers are not always

uniquely defined, and two equivalent optimal maneuvers may exist

as in the case of the appearance of a dispersal surface.

An attempt to relate optimal evasive maneuvers to ship ma-

neuverability is also given in Kenan's (1972) work. The method

used is a computer-simulation technique and the results are

restricted in the sense that they are valid only for MARINER class

ship. The critical range is defined by Kenan as the minimum dis-

tance for a given bearing angle, at which an optimal maneuver may

still avoid collision. Kenan claims that the critical range is

uniquely determined by the bearing angle a and by the speed ratio n.

For identical values of a and ~ the largest critical range is

supposed to occur when both ships are on a perfect collision

course. Kenan also presents plots displaying the critical ranges

versus the bearing angle for some selected geometries of two-ship

encounters.

The relative course angle for two ships on a perfect colli-

sion course ec is related to the bearing angle a by Equation (21)

which may be rewritten as

nsin (a - e )
c = sina (114)

A plot of the critical range p (normalized by R ) versus the
c 0
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relative course angle e, is given in Figure 57 for two bearing

angles, namely a = 2700 and a = 3150 corresponding to speed

ratios n = If and n = ~If respectively. The magnitude of the

various critical ranges were measured from the corresponding plots

of the barriers as given in Figures 6 to 17. For the two en-

counters depicted in Figure 57, the value of the perfect-colli-

sion-course angle, as computed from Equation (114), is e = 450.c

It is clearly seen from this Figure that, generally, the critical

range for a given bearing angle does not attain its maximum value

where both ships are on a perfect collision course. This important

conclusion may ralse some questions as to the validity and the

usefulness of Kenan's graphical presentation of his results. It

is therefore believed that instead of a single critical-range

versus bearing-angle plot, it is preferable to present the results

for different relative course angles as depicted in Figures 6 to

56.

A further generalization of Kenan's analysis is given in

Webster (1974) who studied critical maneuvers of large super-tank-

ers, again using a computer simulation technique. The numerical

values of the non-linear hydrodynamic coefficients used ln

Webster's analysis were those given by Berlekom and Goddard (1972).

The numerical results of the critical maneuvers are also presented

in a way similar to Kenan's, i.e. as a display of the critical

range versus the bearing angle. Based on these curves Webster con-

cluded that "the optimum command is not always the maximum

command". That is to say that critical maneuvers are not always

obtained by a maximum rudder deflection. This conclusion seems

to violate the well known bang-bang principle of mechnical con-

trol systems and also contradicts the result presented in this
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the same manner for the two-ship maneuver cases.

A study of optimal evasive maneuvers based on the applica-

tion of optimal control theory is given in Merz (1973). The

report, namely that critical maneuvers are hard maneuvers. It is

believed that the reason for this disagreement is inherent in

Webster's basic assumption that the critical maneuver consists of

only one rudder command which is overlooking the possibility of a

multi-step optimal maneuver. In fact the theory of differential

games implies that in certain cases a critical maneuver may be a

two-step maneuver part of which is a hard turn and the rest lS

"straight ahead". It is important to note that it is always the

slower ship which is obliged to execute the two-step maneuver.

The effect of combining a rudder command with an engine

setting command has been considered only in the case of one-ship

maneuver. As discussed in the text such a combined maneuver is

not usually executed at service speed. It is satisfying to note

however, that a rather formal theory of differential games has

provided us with a maneuvering rule in conformity with the simple

intuitive argument that speed should be decreased when trying to

pass behind other ship and should be increased when trying to

pass in front of other ship, see Jones (1971). Critical maneuvers

which combine rudder and engine commands may be also analysed in

problem is formulated as agame of degree with the miss distance

separating the two ships at closest approach taken as the payoff

function to be minimized. Merz's mathematical model for the

relative motion of the two-ships, represents both ships as dis-

tinct points hence ignoring the ship dimensions. Numerical re-

sults are given only for encounters of two identical ships (same

speed and turning radius). It is demonstrated in Merz's analysis
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that the optimal maneuver is not always unique, a result which

has been also found here on dispersal surfaces.

The present analysis could be refined by considering a more

elaborate non-linear model for single-ship maneuverability.

However, it is expected that the present simplified model which

partially accounts for non-linear effects does exhibit the main

features of the solution and the gain in accuracy acquired when

using a more complicated model would be negligible in comparison

with the additional amount of computational work required.
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APPENDIX A

Barrier for the Case of One-ShiD Maneuvers

Differentiate the retrograde path equations for the present

case as given by (53) to (55) and obtain

X + C
2
X = ZC V s inSa

00 2
Y + C y = cV - Zc V cosSo a

o
S = C (A1)

where

C =

Vo (AZ)
Ro

The solution of the above differential equations is given by

x = A1sincT + AZcOSCT

y = A3sincT + A4cOSCT +

S=CT+A5

V TCOSSa
Vo

C
V TsinSa

(A3)

- -- ---- --------

As we have the constraints A3 = AZ' A4 = -A1 from (53) or (54),

this leaves three unknown coefficients A1, AZ' A5 to be determined

from initial conditions (47) at T = 0, leading to

V
x = L COS(CT + S1

) + ~ sincT - V TCOSSm C a

V
y = L sin(cT + S1

) + ~ (1-COSCT) - V TsinSm C a

S = CT + S 2
(A4)

Inserting the value of C from (A2) into (A4) finally yields the

equations (64) to (66).
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APPENDIX B

Tributaries for the Case of One-ShiD Maneuvers

The tributaries for the case of one-ship maneuvers with

~ > 1 may be considered to be a two-parametric family of curves.

The two parameters are chosen to be the nondimensional retro-

gressive times T (from the point of intersection with the uni ver-

sal curve up to a point on the tributary) and TU (measured along

the universal curve from the terminal surface up to the inter-

section with a particular member of the family of tributaries).

Hence we may seek parametric equations of the type x(T,TU)'

y(T,TU) and SeT), where following (75) and (76)

X(O,TU)

y(O,TU)

8(0)

= -Z,

= :!:TU/~2 - 1',

= +5, (Bl)

----- - --- --~--- - ----

The kinematic equations of the tributaries are identical to

those given in (53) to (55). Their solution has been found in

(A3) which we repeat here in nondimensional form

x(T,TU) = Ä1sin(~lT) + Ä2cos(~lT) - ~Tcos8

y(T,TU) = Ä2sin(~lT) - Ä1cos(~lT) + 1/~1 - ~TsinS

8(T) = ~lT + A5 (B2)

Determination of the unknown coefficients Al' A2 and A5 to

satisfy the initial conditions (Bl) yields
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X(T,TU)

y(T,TU)

= -lcOS($1T)

= -lsin($1T)

+ (1/$1fTU/1l2-1')sin($1T)

- (1/$1fTUR"=1)cos($1T)

- llTcosS

+ 1/$1 - llTsinS

(B3)

These are the parametric equations of the surface formed by the

tributaries. We can find the curves of intersection of this sur-

face with individual planes S = const by substituting for T from

the S-equation into the x- and y-equations:

x(S,TU)

y(S,TU)

= -lcos(S!S)+($1+TU/1l2-1')sin(S!S)-1l$1(S!S)cosS

= -lsin(S!S)-($1+Tu/1l2_1')cos(S!S)

+$1-1l$1(S!S)sinS (B4)

---

Here we have made use of ~1 = !1 in order to simplify the ex-

pressions. Now multiply the first equation in (B4) by cos(S!S),

the second by sin(S!S), and add to obtain

(BS)

Upon substitution of (73) the above equation is seen to be

identical with (78).
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APPENDIX C

~-Universal Curve for Collaborative Two-Ship Maneuvers (Vo > V )
a

The solution of (13) with the coefficients from Table 2 is

V
RO ~1(ycos8 - xsin8) - Vocos8 + Va = 0
o

(C1)

This equation ln itself provides little information about the

type of the universal curve. Hence, we follow Isaacs (1965,p.24)

and differentiate (C1) with respect to the retrogressive time

to get

Vo
~1 (YCOS6-XSin8)+e{Vosin6-:0 ~1 (ysin6+xcos6)

}
= 0

oRo (C2)

000

SUbstituting the values of x,y and 6 from (53), (54) and (86)

into (C2) we get

V
a
~1U {Vosin6 - :0 ~1(xcos6 + YSin6)} = 0

o

(C3)
Ra

The only admissible solution of (C3) is ~1U = 0 since letting

the braces in (C3) be equal to zero yields together with (53),

(54) and (C1)

o 0
x = y = 0 (C4)

which cannot hold along the universal curve.
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APPENDIX D

Barrier for Collaborative Two-ShiD Maneuvers

The retrograde path equations (53), (54) and (86) may be

rewritten in a way similar to (A1) as

X + 02X = V (20 - b) sin8a
.. 2Y + 0 Y = 0 V - V (20 - b) cos8o a
.

8 =o-b

with
Va _ Vo

b = - 1/11' 0 = - <P1
R Ra 0

The solution of (D1) is given by

V
. a .

8x = A1slnoT + A2coSCT + ~ Sln

. Vo Vay = A3slncT + A4coSCT + - - - cos8
C b

e=(c-bh+A5

(D1)

(D2)

(D3)

--- -- ------ -- --

with the constraints A3 = A2, A4 = -A1 from (53) or (54), This

leaves three unknown coefficients to be determined from initial

conditions (47) leading to

x =

y =

e =

LmCOS(S1+CT)+ROsin(CT)/~1 -Ra {sin(s2+CT)-sine} /~1

Lmsin(s1 +CT)+Ro {
1-COS(CT)

} /~1 +Ra {
cos(s2+CT)-cose

} /~1
Va -

8 + (c - - 1/1
) T2 R 1

a
(D4)

The 8-equation can now be solved for 82 and the value substi-

tuted in the x- and y-equations. Finally, substitution of 81

from (48) yields the equations (93) to (95).
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APPENDIX E

Tributaries for Collaborative Two-Ship Maneuvers (V > V )o a

Following the treatment of Appendix B, we may consider the

tributaries as a two-parametric family of curves x(T,TU)' y(T,TU)

and 6(T,TU) where the parameters T and TU denote the nondimen-

sional retrogressive time measured along the tributaries and the

universal curve respectively.

On the universal curve we have wiU = O. Therefore the retro-

grade path equations of the w-universal curve are

X(O,T U)=-CY+V -Vcos6o a
y (0 ,TU) = cx - Vasin6

o
6(0,TU) = c (Ei)

with c defined in (A2). Here the first two equations are identi-

cal with (53) and (54), while the third is derived from (86) by

substituting $lU = O. The initial conditions on the BUP are

found from (47) and (48) to be

-( nlsinQx 0 0) = lcoss = = nl, 1 w
_ l 2
y(O,O) = lsinsi = ! -- (l-ncosQ) = ! l/1-n2

w2
6(0,0) = !Q = ! arccosn (E2)

with Q defined in (92). The general solution of (Ei) is given by

(A3). If the unknown coefficients are determined to satisfy the

conditions (E2) the result is
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Ä1 =

A2 =

AS =

xCO,TU) = Cl-~TU)cosC~lTU!Q)+sinC~lTU)/~l

yCO,TU) = Cl-~TU)sinC~lTU!Q)+ {l-COSC~lTU) } /~1

8CO,TU) = <1>lTU! Q CE3)

The above set of equations form the parametrie representation of

the ~-universal curve. They also serve as initial conditions

Cat T =
0) for the determination of the tributaries. The retro-

grade path equations of the tributaries are identical to those

of the optimal paths given in CD1). The general solution of CD1)

is repeated here in nondimensional form

yCT,TU) =

8CT,TU) =

Ä1sinC~lT)+Ä2COSC~lT)+CAsin8)/~1

Ä2sinC~lT)-ÄlcosC~lT)+1/~1-CAcos8)/~1

- ~-
AS + C<1>l--~l)T

A
CE4)

where the unknown coefficients Al' Ä2,ASare to be determined so

as to satisfy the initial conditions CE3). The result is

C~TU-l)sinC$lTU!Q)+cosC~lTU)/~l-CA/~l)cOSC~lTU!Q)

Cl-~Tu)COSC$lTU!Q)+sinC~lTU)/$l-(A/~l)sin(~lTU!Q)

<1>lTU! Q CES)

Substitution of CES) into CE4) yields Cmaking use of ~1 = !1)

XCT,TU) = Cl-~TU)cosC~lT+~lTU!Q)-A~l {sinC~lT+$lTU!Q)-sin8}

+$lsinC~lT+$lTu)

yCT,TU) = Cl-~Tu)sinC~lT+$lTU!Q)+A~l {cosC~lT+$lTU!Q)-COS8}

+~1 {l-cosC~lT+~lTU) } CE6)
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and

(E7)

In order to obtain the desired equations for intersections of the

tributaries with planes e = const, we solve (E7) for TU and sub-

stituteinto (E6). The result is the one-parametric family of

curves given by (97) and (98), the single parameter being T,

since e is here considered to be a constant.
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APPENDIX F

~-Universal Curve for Collaborative Two-Ship Maneuvers (V < V )
o a

The solution of (13) with the coefficients from Table 3 is

V
a

Vo + vacosS = 0 (F1)
Ra

Differentiation with respect to the retrogressive time yields

(F2)

Substitution of (54) and (86) into (F2) leads to

(F3)

The factor in braces cannot be zero, since

R sinSa
(F4)

does not satisfy the initial conditions on the BUP. Hence, the

only acceptable solution of (F3) is $lU = o.
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APPENDIX G

Tributaries for Collaborative Two-Ship Maneuvers (V < V )o a

The equations of the tributaries are again assumed to be of

the two-parametric form x(T,TU)' y(T,TU) and 8(T,TU)' where the

parameters T and TU are as defined in Appendix E.

On the ~-universal curve we have ~1U = o. The retrograde

path equations of such a curve are found from (53), (54) and

(86) to be

HO,TU) =

y(O,TU)

o

8 (0 , ~u)

V
o
- V cos8a

(G1)

On the BUP we have 82 = +S. Hence, (48) implies that 81 = TI.

The initial conditions (47) on the BUP yield

x<O,O) = -Z, y(O,O) = 0, 8(0,0) = +S (G2)

The solution of the differential equations (G1) with due con-

sideration of the initial conditions (G2) becomes

- --------

x(O,TU) = -Z+TU+A { :!:sinS - sin(~~1TU:!:S) } /~1

y(O,TU) = A {COSS - cos(f ~1TU:!:S)}/~1

(G3)

The general solution for the optimal path equations ln case of
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(GS)

y(T,TU) = (TU-l)sin(~1T)+ {1-COS(~1T) } 1~1+0JiP1){ COS(~1T'FS)-cosa}

(G6)

eients occurring there are now to be determined so as to satisfy

the initial conditions (G3) for the tributaries.

The result is found to be

A1 = 1/~1 - o./;P1) cos S

A2 = -Z + TU :1: o./;P1)sin S

11 -
AS = fS - A ~1TU

(G4)

Substitution of (G4) into (E4) yields

X(T,TU) = (Tu-l)cos(~1T)+sin(~1T)/~1+o./;P1)
{ sina-sin(~1T+S)}

two-ship maneuvers is given in (E4). The three unknown coeffi-

(G7)

In order to derive the desired equations for the intersections of

the tributaries with planes a = const, we solve (G7) for TU and

substitute into (GS) and (G6). The resulting express ions after

making use of ~1 = :1:1, ;P1 = :1:1 are given in (101) and (102).
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r~g. 6 Calcu ated barriers for one-ship maneuvers (Va> a):
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Fig. 8

e = 900

y

Calculated barriers for one-ship maneuvers (V > v ):o a

Case T) = 1/12', l = 2, e = 900
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Fig. 9
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Calculated barriers for one-ship maneuvers (v > v ):o a

Case TI = 1/1r, l = 2, e = 1350
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Calculated barriers for one-ship maneuvers (V > V ):o a

Case n = 1/~, l = 2, e = 1800
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Calculated barriers for one-ship maneuvers (V < V ):o a

Case n = Ir z = 2 8 = 00
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Fig. 12 Calculated barriers for one-ship maneuvers (V < V ):
°
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Case D = /2, Z = 2, e = 30°
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Fig. 13 Calculated barriers for one-ship maneuvers (V < V ):o a

Case 11 = 12', ~ = 2, e = 450
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Fig. 14 Calculated barriers for one-ship maneuvers (Vo < Va):

Case ~ = /f, Z = 2, e = 600
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Fig. 15 Calculated barriers for one-ship maneuvers (V < V ):
o a

Case ~ = /2, L = 2, e = 900
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Ca leu la ted barriers for one-ship maneuvers (V < v ):
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Fig. 18 Calculated barriers for collaborative two-ship

maneuvers (v >V,R >R):
o a 0 a

Case ~ = i/Ir, Z = 2, \ = 1/2, e = 00
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L = 2, A = 1/2,
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maneuvers (V > V , R > R ):
o a 0 a

Case T1 = 1//2, l = 2, A = 1/2
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Fig. 22 Calculated barriers for collaborative two-ship

maneuvers (V > V , R > R ):
o a 0 a

Case n = 1/1f, L = 2, A = 1/2, 8 = 900

- 102 -
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maneuvers (v > v , R >
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Case T) = 1/12', Z = 2,
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v , R > R ):a 0 a
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o a 0

Case ~ = 1/1r, Z = 2,
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maneuvers (V >
o

1/,12',

V , R = R ):
a 0 a

Case Tl = l = 2, A = 1,
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Fig. 27 Calculated barriers for collaborative two-ship

maneuvers (V > v , R = R ):o a 0 a

Case ~ = i/Ir, l = 2, A = 1, e = 300
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Fig. 28 Calculated barriers for collaborative two-ship

maneuvers (V > V R = R ):
o a' 0 a

Case n = 1//2, Z = 2, A = 1, a = 450
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Fig. 29 Calculated barriers for collaborative two-ship

maneuvers (v > V R = R ):
o a' 0 a

Case ~ = 1/,~, L = 2, A = 1, e = 600
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Fig. 30 Calculated barriers for collaborative two-ship

maneuvers (V >
o

1/12', A = 1,

= R ):a

Case 11 = Z = 2,
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Fig. 31 Calculated barriers for collaborative two-ship

maneuvers

Case T) =

(V >
o

1/12',
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Fig. 32 Calculated barriers for collaborative two-ship
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o

1/12',
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maneuvers
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Fig. 33 Calculated barriers for collaborative two-ship

maneuvers (V > V , Ro = R );o a a

Case n = 1//r, l = 2, A = 1, e = 1800
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Fig. 34 Calculated barriers for collaborative two-ship

maneuvers (V < V , R > R ):o a 0 a

Case ~ = /f, Z = 2, A = 1/2, e = 00
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Fig. 35 Calculated barriers for collaborative two-ship

maneuvers (V < V , R > Ra
):

o a 0

Case ~ = /2, Z = 2, A = 1/2, e = 300

- 115 -



y

2.

-2. o 2.

x

A

@
o

Fig. 36 Calculated barriers for collaborative two-ship

maneuvers (V < v , R > R ):o a 0 a

Case D = /f, l = 2, A = 1/2, e = 600
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maneuvers (V < v , R > R ):o a 0 a

Case ~ = /f, ~ = 2, A = 1/2, e = 900
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Fig. 38 Calculated barriers for collaborative two-ship

maneuvers (V < V ,R > R ):o a 0 a

Case n =~, t = 2, A = 1/2, e = 1200
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Fig. 39 Calculated barriers for collaborative two-ship

maneuvers (V < v , R > R ):
o a 0 a

Case n =~, L = 2, A = 1/2, e = 1500
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Fig. 40 Calculated barriers for collaborative two-ship

maneuvers (V < v , R > R ):o a 0 a

Case n = If, Z = 2, A = 1/2, 8 = 1800
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Fig. 43 Calculated barriers for collaborative two-ship

maneuvers (V < V , R = R ):
o a 0 a

Case n =~, Z = 2, A = 1, 8 = 450
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Fig. 47 Calculated barriers for collaborative two-ship

maneuvers (V <V R =R):
o a' 0 a

Case ~ = If, l = 2, A = 1, e = 1500
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Fig. 48 Calculated barriers for collaborative two-ship

maneuvers (V < V R = R ):
o a' 0 a

Case 11 = 12", l = 2, A = 1, e = 1800
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maneuvers (v >v R =R):
o a' 0 a

Case n = 1//f, Z = 2, A = 1, e = 450
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Fig. 50 Calculated barriers for conflicting two-ship

maneuvers (V > V , R = R ):
o a 0 a

Case ~ = 1/1r, Z = 2, A = 1, e = 300
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maneuvers (V > V , R = R );
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maneuvers = R ):a

Case 11 = 1/12', t = 2, A = 1, e = 1200
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maneuvers (v >v R =R):
o a' 0 a

Case n = 1/~, l = 2, A = 1, e = 1500
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Fig. 56 Calculated barriers for conflicting two-ship

maneuvers (V >V,R =R):
o a 0 a

Case ~ = 1/1f, Z = 2, A = 1, 8 = 1800
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