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Predicting the inhibition efficiencies of magnesium dissolution
modulators using sparse machine learning models
Elisabeth J. Schiessler 1, Tim Würger 2,3, Sviatlana V. Lamaka2, Robert H. Meißner 2,3, Christian J. Cyron1,4,
Mikhail L. Zheludkevich2,5, Christian Feiler 2✉ and Roland C. Aydin1✉

The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic
identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools.
Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most
relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of
variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—
help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we
demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point
out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition
efficiencies.
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INTRODUCTION
Magnesium (Mg) is among the most abundant elements on our
planet1 and exhibits a high potential to revolutionize light metal
engineering in a large number of application fields. Key to
unlocking the full potential of Mg is to control the surface
reactivity characteristics of the material due to the relatively high
electrochemical reactivity of Mg, where each application field
imposes unique challenges. Corrosion needs to be prevented in
transport applications2–4 (e.g., aeronautics and automotive) to
ensure the integrity of the material. Medical applications (e.g.,
temporary, biodegradable bone implants)5,6 require a degradation
rate tailored to a patient-specific injury to support recovery.
Batteries with a Mg anode7,8 need a steady dissolution rate to
keep the output voltage constant. Fortunately, small organic
molecules exhibit great potential to control corrosion in these
highly versatile application areas—due to their almost unlimited
chemical space. Each service environment fundamentally changes
the boundary conditions to achieve the above mentioned goals,
as the small organic molecules are usually incorporated in a
complex coating system for transport applications, whereas they
become a solute component of the electrolyte for Mg-air batteries.
Despite impressive progress in the screening of potential

additives by efficient high throughput techniques9–12, experi-
mental approaches alone cannot possibly explore more than a
tiny fraction of the vast space of compounds with potentially
useful properties. However, data-driven computational meth-
ods13–21 can explore large areas of chemical space orders of
magnitude faster, and can thus be exploited to preselect
promising chemicals prior to deep experimental testing. Con-
comitantly, computational techniques22–27 can be utilized to
unravel the underlying chemical mechanisms of corrosion and
its inhibition, which in turn provide additional input features for

predictive quantitative structure-property relationship (QSPR)
models.
Naturally, data-driven methods cannot make reliable predic-

tions for molecules outside the domain of their respective training
data (e.g., for compounds that exhibit functional groups or
elemental species not present in the training set). Hence, the
dataset employed for training has to reflect the complexity of the
relevant chemical environment, and should ideally be a large,
reliable, as well as chemically diverse and balanced database to
enable accurate and robust predictions for a broad range of
materials. However, the versatility of the vast chemical space of
interest is associated with a wide range of different functional
moieties and molecular features, and renders it challenging to
identify meaningful input features to develop predictive models
with a wide applicability. Cheminformatics software packages like
alvaDesc28 and RDKit29 provide a large variety of molecular
descriptors ranging from structural and topological features to
more complex input features like molecular signatures30 and
molecular fingerprints. Furthermore, advances in computing
power and simulation algorithms over the last decades enabled
multiscale simulations (density functional theory calculations,
molecular dynamics simulations, and finite element model-
ing)25,26,31–37, thus providing even more potentially useful
molecular descriptors for the training of data-driven models18,38.
Additional sets of molecular descriptors might be based on
properties of the used material as well as information on the
service environment.
The quality of predictive models substantially depends on the

selected molecular descriptors, as input features with low
relevance to the target property will degrade the model. Especially
the correlation (or its absence) of descriptors derived from
computer simulation with the experimental performance of
corrosion inhibiting agents is controversially discussed15,39–41.
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However, it was demonstrated that they can be highly relevant in
models that combine them with input features derived from
the molecular structure18. Statistical methods such as analysis
of variance (ANOVA) are well established, computationally
cheap tools for the identification of relevant features and
parameters42–45, but may struggle to capture intricate dependen-
cies between variables. This problem can be overcome by
machine learning techniques for sparse feature selection14,46–49.
In this paper, we propose and compare two different sparse

feature selection strategies: statistical analysis using ANOVA
f-tests42–45 and recursive feature elimination based on random
forests47,49–52, using training data for the Mg alloy ZE41. The
training data relate results of density functional theory (DFT)
calculations and molecular descriptors generated by the alvaDesc
cheminformatics software package to known corrosion inhibition
efficiencies of chemical compounds. We demonstrate how our
feature selection strategies can be combined with deep learning
into a sparse, predictive QSPR (quantitative structure-property
relationship) framework. Moreover, we demonstrate how in
this context autoencoders53,54 can be used for contour maps
and anomaly detection.

RESULTS AND DISCUSSION
The software package alvaDesc was utilized to generate a set of
5290 potential input features for our model. The obtained values
were divided into different subcategories, ranging from counts of
simple structural features of molecules to arcane descriptors
derived from chemical graph theory. After removing all molecular
descriptors that exhibited constant values or were essentially zero,
1254 descriptors remained and were augmented by six molecular
descriptors derived from DFT calculations (cf. “Methods” section).
In the resulting set of 1260 molecular descriptors (features), we
searched for those input features with the greatest impact on the
corrosion inhibition responses of 60 small organic molecules on
ZE41 (target). A list of the considered molecules can be found in
Supplementary Table 7, along with their SMILES strings and

experimentally determined inhibition efficiencies. We only used
data of dissolution modulators from our experimental database55

with a molecular weight of less than 250 Da that were employed
at a concentration of 0.05 M.
For sparse feature selection, we applied two different

approaches: The first one was based on individual feature
selection via an f-test based analysis of variance (ANOVA) to
analyse the individual importance of the different molecular
descriptors. The second one was a grouped feature selection
approach utilizing recursive feature elimination with random
forests as the underlying regressor to analyse the importance of n-
tuples of molecular descriptors. For a detailed description of the
applied methods, cf. “Methods” section. We chose to look for the
top 3, 5, and 63 (equivalent to 5%) most relevant features
respectively, and repeated each approach multiple times to
overcome any bias induced by specific random seeds. To evaluate
and compare the selection methods, as well as the predictive
power of the selected features, we trained several deep learning
models using the identified molecular descriptors as respective
sole inputs. As an additional baseline for comparison we used
models trained on randomly selected features, as well as a model
trained on the full dataset.
All analyses and trainings were performed with a reduced

dataset, where a randomly chosen 10% of samples (i.e., six
samples, cf. Table 3) were withheld and subsequently served as a
representative example of completely unknown validation
data. Furthermore, a full 10-fold cross validation was performed
on all deep learning models. An overview of the workflow is
depicted in Fig. 1.

Individual feature selection
First, we utilized an f-test based ANOVA algorithm to rank each
molecular descriptor according to its individual significance for
predicting the inhibition efficiencies of ZE41 via its f-score.
Features may be deemed significant if their score is ≫1.

Fig. 1 Workflow overview. Our overarching objective is the prediction of the magnesium corrosion inhibition efficiency of different
molecular dissolution modulators. To this end, first relevant molecular features are selected either by (approach I) analysis of variance (ANOVA)
or by (approach II) recursive feature elimination based on random forests (RFE), a type of machine learning. The best-performing feature set
defines the input for a deep learning model. This model allows the desired predictions of quantitative structure-property relationships (QSPR)
for the efficiency of magnesium dissolution modulators, in our study specifically for the magnesium alloy ZE41.
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One can define the n top scoring molecular descriptors by simply
ranking them via their f-score.
In our study we observed f-scores in the range from 0 to 21.92,

with the vast majority of features (≈92%) scoring below 5, cf. Fig.
2a. Selecting the top 3, 5, or 63 (i.e., 5%) features translates to f-
score thresholds of 19.7, 16.1, and 6.3, respectively (corresponding
to p-value thresholds of 0.00004, 0.00019, and 0.0155 respec-
tively). The top five identified descriptors are CATS2D_03_AP,
CATS3D_03_AP, CATS3D_02_AP, LUMO/eV, and P_VSA_MR_5 (in
descending order of relevance), for the set of top 63 descriptors cf.
Supplementary Table 2.
In particular, one of the included DFT-derived input features, the

lowest unoccupied molecular orbital energy levels (LUMO), was
identified as one the most relevant descriptors. Three of the five
most relevant input features belong to the class of CATS
descriptors56,57, which are linked to properties of potential
pharmacophores and are related to the discovery of novel drugs,
since they indicate whether a ligand is likely to bind to a receptor
site of a biological macromolecule58. They also seem to encode
structural information on functional moieties that are capable of
forming coordinative bonds with ions of interest, rendering them
highly relevant for the development of our model, as the
inhibition efficiency of the small organic molecules is strongly
dependent on their capability to form complexes with Mg2+ and
Fe2+/3+. The P_VSA class is comprised of 2D descriptors that
reflect the sum of atomic contributions to the van-der-Waals
surface area59. The P_VSA descriptor identified by the ANOVA
approach is related to the polarizability of the chemicals in our
data set.

Grouped feature selection
As the interplay and correlations between parameters can have a
significant impact on the quality of the prediction, it may not be
sufficient to merely select the individually most predictive features
and use them as the combined input for a predictive model47.
Therefore, we additionally identified the 3-tuples, 5-tuples and 63-
tuples of grouped most relevant features via recursive feature
elimination (RFE) using random forests. We performed 100 runs of
RFE with varying random seeds, where a random forest consisting
of 100 trees was trained in each run. Subsequently, the n-tuples
that won most often were selected to be the most relevant
grouped features with LUMO, P_VSA_MR_5, Mor04m (selected in
83/100 runs) for the 3-tuples and LUMO, P_VSA_MR_5, Mor04m,
E1p, Mor22s (selected in 21/100 runs) for the 5-tuples. It is
noteworthy, that the energy level of the lowest unoccupied
molecular orbital (LUMO) of the compounds in the training set,

which was derived from DFT calculations, was again among the
most relevant features, along with P_VSA_MR_5. Furthermore,
different descriptors belonging to the class of 3D-MoRSE
(Molecular Representation of Structures based on Electron
diffraction) were selected60,61. These are abbreviated as “Mor”
and are a mathematical representation of XRD patterns where the
obtained signals can be weighted by previously discussed
schemes. E1p belongs to the class of WHIM descriptors which
are 3-dimensional descriptors that collect information about size,
shape, symmetry, and atom distribution of the molecule. E1p is
related to the atoms distribution and density around the origin
and along the first principal component axis. The index p indicates
that the selected descriptor is calculated by weighting the atoms
with their polarizability value.
In case of the 63-tuple, no group was found to be inherently

most relevant. We therefore artificially constructed the most
relevant group by a frequency analysis of all features that were
included at least once in any of the RFE runs. Among these 504
features, interestingly only the ones in the top 5-tuple occurred in
every single run. 135 features (≈27%) were identified just once,
and 302 (≈60%) were found to be in at most 5 supports. The top
63 features were included in at least 30% of all runs, cf. Fig. 2b, for
the full list cf. Supplementary Table 3.
This underlines that molecular descriptors derived from

quantum mechanical calculations can be highly relevant input
features for models that predict the corrosion inhibition efficiency
of small organic molecules for Mg alloys. This is in good
agreement with our findings for commercially pure Mg containing
220 ppm iron impurities (CPMg220), where the frontier orbital
energy gaps exhibited moderate correlation with the correspond-
ing inhibition efficiencies18, and could be utilized to obtain a
robust predictive model in combination with structural input
features. The results of others39–41 suggest that his type of
descriptor should be taken with care because its relevance may be
compromised if not combined with structural input features. Yet,
as demonstrated also by our above results, if properly used, it can
be a highly powerful feature for the prediction of corrosion
inhibition efficiency.
To counter potential bias from the choice of the validation set

when selecting the most relevant input features, we performed a
5-fold cross validation, i.e., selecting a different validation set and
repeating the whole feature selection process using RFE described
above independently five times. Due to computational limitations,
we performed this cross-validation only on the grouped 5-tuple of
features, as results obtained from subsequent deep learning
models suggest an optimal trade-off between a low number of
input features and a low computational cost on the one hand and

Fig. 2 Feature distributions. a Distribution of f-scores as calculated by ANOVA. The top 63 features reach a score of 6.3 or higher, with only 11
features scoring 10 or above. b The recursive feature elimination (RFE) identifies a total of 504 features over a series of 100 runs with random
initialization as potential candidates for a top 63-tuple. Selecting among them those identified in at least 30% of the runs (frequency analysis)
can be used to define the most relevant 63 features.
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a high predictive accuracy on the other hand. The initially
identified top performing 5-tuple of molecular descriptors was
confirmed by this cross-validation, along with two other 5-tuples,
all three of which agreeing on four out of five descriptors. The first
of the three identified sets consists of LUMO, P_VSA_MR_5,
Mor04m, E1p, HOMO, the second one of LUMO, P_VSA_MR_5,
Mor04m, E1p, Mor22s and the third one of LUMO, P_VSA_MR_5,
Mor04m, E1p, CATS3D_02_AP.

Predictive models using deep learning techniques
From the ranked list of individually most relevant features
(selected by ANOVA), we used the top 3, 5, and 63 molecular
descriptors to train three deep learning models, from here on
called M3a (tiny model), M5a (small model), M63a (medium
model). We performed a complete 10-fold cross validation, i.e., we
split the dataset into ten equal parts (folds) and subsequently
withheld one fold as a test set, while the rest of the data served as
training set. On each fold, every model was trained 100 times with
varying random seeds to obtain results largely independent on
specific random initializations. Subsequently, we repeated the
same procedure with the top 3, 5, and 63 most relevant molecular
descriptors obtained by grouped feature selection via RFE as input
for the three neural network models M3b (tiny model), M5b (small
model), and M63b (medium model).
Finally, we selected 3, 5, and 63 random molecular descriptors

to train three neural network models M3c (tiny model), M5c (small
model), M63c (medium model) as a reference base line to assess
the quality of the aforementioned models M3a, M3b, M5a, M5b,
M63a, and M63b. The input features for these models were re-
drawn from the set of 1260 available features in each of the 100
training runs.
As an additional baseline we trained a deep neural network

M1260 (large model) which uses all available molecular descrip-
tors as its input. This model can be considered the joint limit case
of the above three feature selection methods ANOVA, RFE, and
random in case that the number of selected features is increased
to its maximal value of 1260.
In Table 1 we report for all the above neural network models

median values (across the ten folds) of four key statistical
measures of their predictive capabilities, that is, of the root mean
squared error RMSE (given in percentage points), the coefficient of
determination R2, Pearson’s correlation coefficient r, and the
p-value. In Table 1 we observe several consistent trends. First, all
statistical measures of predictive capability noticeably improve
when the number of input features is increased from 3 to 5 to 63
for all the three feature selection methods (ANOVA, RFE, or
random). Second, the two sparse feature selection procedures
(ANOVA and RFE) consistently outperform in all measures a simple
random feature selection, which underlines their practical value.
Third, the two sparse feature selection procedures (ANOVA and

RFE) exhibit a similar performance, with RFE slightly outperform-
ing ANOVA with respect to RMSE, which can in many respects be
considered the most relevant one of the four statistical measures.
This underlines that grouped features selection has indeed—as
one would also expect—advantages over individual features
selection, though at least in the framework used herein only to a
limited extent. A fourth important observation is the decline of
performance when increasing the number of input features to
1260. This can be understood from the fact that such unspecific
input dilutes the relevant information harbored by the input in a
way that makes systematic learning of QSPR more difficult. Quite
interestingly, for the two sparse features selection methods
(ANOVA and RFE)—unlike for the random feature selection—the
performance already stagnates when increasing the number of
input features from 5 to 63, indicating that they can help to
identify a very small group of features that carries nearly the
whole information relevant for predictions.
It is noteworthy that even when using a sparse feature selection

method, the error of the predictions based on the selected
features still remains substantial. While fully overcoming this
problem would go beyond the scope of this paper, we further
investigated into the reasons of this problem. Analysing our data
we found that the performance of predictions based on sparse
feature selection is substantially adversely affected by only a few
outliers. To illustrate this, we consider more closely compound no.
13, 3,5-Dinitrobenzoic acid. Unlike all the other 59 molecules in
our data base, it contains an NO2 functional group. This important
chemical difference is supposedly the reason why the information
carried by the other compounds cannot help a neural network to
make accurate predictions also for 3,5-Dinitrobenzoic acid, which
indeed results in a very large error for any of the above introduced
predictive neural networks. Naturally, such a large error affects the
otherwise very good performance of predictions based on sparse
feature selection methods much more adversely than the
generally much less accurate predictions based on randomly
selected features. To demonstrate this, we show in Table 2 the
results for one specific fold where we manually removed from the
validation set 3,5-Dinitrobenzoic acid. Evidently, this substantially
improves the predictions in particular made on the basis of
grouped feature selection, while the quality of predictions based
on of tiny or small sets of randomly selected features remains
rather limited. Detailed information about the fold, validation and
neural network predictions underlying to Table 2 are presented in
Supplementary Tables 5 and 6. We performed Pearson correlation
tests for all different models presented in Table 2 and observed in
particular for neural networks receiving input features obtained
from grouped feature selection a positive correlation coefficient of
0.97 and significant p-values below 0.01. Figure 3 illustrates the
performance of the deep neural networks M5b and M1260 for the
(reduced) validation set discussed in Table 2.

Table 1. Median statistics over the full 10-fold cross validation.

No. of features 3 5 63 1260

Model type Tiny model Small model Medium model Large model

Selection method a b c a b c a b c

RMSE/pp 66 56 66 57 50 66 50 50 56 63

R2 0.40 0.51 0.30 0.68 0.66 0.41 0.60 0.62 0.50 0.35

Pearson’s r 0.61 0.71 0.54 0.82 0.81 0.64 0.77 0.79 0.70 0.59

p-value 0.23 0.13 0.27 0.05 0.06 0.17 0.08 0.06 0.12 0.22

Median values of root mean squared errors (RMSE), coefficients of determination (R2), correlation coefficients (Pearson’s r) and p-values of the full 10-fold cross
validation for all trained models by model type and feature selection method (a: ANOVA, b: RFE, c: random selection).
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Comparing the median performance over all cross validation
folds with that on the representative validation set showcases the
potential of predictive modeling when combined with appropriate
outlier detection methods. As pointed out above, a few outliers
can have a drastic impact on the quality of the predictive models.
In particular, one of the ten cross validation folds contains outliers
that consistently yielded very poor results across all models and
metrics. For this reason we elected to present median rather than
mean values across all statistics, for the corresponding mean
values table cf. Supplementary Table 4. Besides outlier detection,
repeating the feature selection process for each model and each
fold can also increase performance.

Autoencoders
So-called autoencoders are a type of neural network that is not
used for predictions but rather to learn a lower-dimensional
representation (code) of the input data, from which the original
input can be reconstructed as accurately as possible (cf. “Methods”
section). Herein we applied an autoencoder with a code of
dimension 2 to the 5-tuple of features determined by grouped
feature selection. The resulting two-dimensional representation of
the 60 chemical compounds studied herein is plotted in Fig. 4a.
Subsequently, we used the decoder part of the autoencoder to
generate a contour map of predicted inhibition efficiencies across
the whole two-dimensional reduced feature space, Fig. 4b to
make anomalies even easier to spot with the naked eye. It is
immediately noticeable as a prominent anomaly in the plot of the

reduced (two-dimensional) feature space that there are two
samples with a highly negative inhibition efficiency within a
cluster of samples with a (moderately) positive inhibition
efficiency. The first one is 4-hydroxybenzoic acid with an inhibition
efficiency of −170% whose parent system salicylic acid causes a
considerably higher inhibition efficiency of 37% despite very
similar molecular features. Addition of another hydroxyl group in
3,4-dihydroxybenzoic acid (the second outlier) leads to a further
increase of the Mg2+ binding ability resulting in an inhibition
efficiency of −270%. The behavior of the latter can be attributed
to the significantly higher stability constant of the corresponding
complex of 3,4-dihydroxybenzoic acid with Mg (logK(Mg2+) =
9.84) in comparison to that of salicylic acid (logK(Mg2+) = 4.7)62,63.
We assume that a similar effect is the reason for the unique
behavior of 4-hydroxybenzoic acid although there is no stability
constant available in the literature to support this claim.
Additionally, the corresponding ligands do not only shift
dissolution equilibria, but they also compete with OH− for binding
Mg2+ thus preventing the formation of a semi-protective Mg(OH)2
layer on the substrate. Consequently, 4-hydroxybenzoic acid and
3,4-dihydroxybenzoic acid are currently investigated concerning
their potential as effective additives for Mg-air battery electrolytes.
In summary, we have pointed out above how sparse feature

selection methods can help to identify those molecular descrip-
tors that carry the most valuable information for predictions of
the corrosion inhibition efficiency of organic molecules on the
degradation of magnesium alloys. Our results clearly demonstrate
that in addition to classical structural descriptors also those
directly derived from DFT calculations can be highly relevant for
data-driven predictions. Interestingly, our methods of spare
feature selection reveal that the Chemically Advanced Template
Search (CATS) descriptors form a particularly valuable basis for
predictions. These are generally known to bear great potential for
e.g., the AI-driven discovery of drugs64. Our results suggest that
the pharmacophore properties encoded therein can also help to
describe the capacity of small organic molecules to form
complexes with metal ions like Mg2+ and Fe2+/3+. This appears
natural since atoms that may act as hydrogen bond acceptors
(e.g., a nitrogen atom with a lone pair) may also act as donor for
the formation of a coordinative bond in another context. In some
cases an intuitive understanding of the relevance of descriptors
selected above may be difficult. Yet, it is striking that the DFT-
derived descriptor LUMO seems to play a significant role. This
claim is corroborated by the outcome of both the individual and
grouped feature selection. Our above analyses were not biased in
any way by any expectation of specific features becoming
dominant. Yet, LUMO was selected approximately 240 times more
often by our smart feature selection algorithms than expected
from random probability (cf. Supplementary Notes) which is a
strong hint at a possible causal relationship between LUMO and

Fig. 3 Model performance. Predicted vs. true target values for the
validation sets as obtained by M5b and M1260. Linear regressions
are depicted as accordingly colored lines. 3,5-Dinitrobenzoic acid
was excluded as it contains features that are outside of the domain
of the trained model.

Table 2. Statistics on the representative validation set.

No. of features 3 5 63 1260

Model Type Tiny model Small model Medium model Large model

Selection method a b c a b c a b c

RMSE/pp 50 24 66 51 26 60 49 23 40 38

R2 0.56 0.94 0.53 0.54 0.94 0.95 0.58 0.94 0.94 0.95

Pearson’s r 0.75 0.97 0.73 0.73 0.97 0.97 0.76 0.97 0.76 0.97

p-value 0.14 0.01 0.16 0.16 0.01 0.01 0.14 0.01 0.08 0.01

Root mean squared errors (RMSE), coefficients of determination (R2), correlation coefficients (Pearson’s r) and p-values of the representative validation set
predictions for all trained models by model type and feature selection method (a: ANOVA, b: RFE, c: random selection). 3,5- Dinitrobenzoic acid (compound No.
13) was omitted for calculation of the statistical values as its molecular features are in parts substantially outside of the domain covered by the training data.
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the corrosion inhibition efficiency. Using the example of a specific
fold within our 10-fold cross validation, we pointed out that the
elimination or proper treatment of outliers can be expected to
play a key role in further improving the accuracy of feature-based
predictions of the corrosion inhibition efficiency. We showcased
the ability of autoencoders to detect potential anomalies within
datasets, which can be especially useful when working with small
datasets. Note that the affected samples were included in all
analyses and training steps as is. Yet, as apparent from the
discussion above, it is very likely that the development of methods
for a special treatment or at least detection of outliers could be an
important step to improve data-driven predictions of corrosion
inhibition efficiencies substantially, which opens up a promising
avenue of future research.

METHODS
Molecular descriptor generation
To define molecular descriptors, we first determined the structures of the
60 chemical compounds of interest using the quantum chemical software
package Turbomole 7.4.65 at the TPSSh/def2SVP66,67 level of density
functional theory. Six of the molecular descriptors considered herein are
directly derived from the output of the performed DFT calculations. These
are the frontier orbital energies (HOMO, LUMO) as well as the frontier
orbital energy gap (ΔEHL), the calculated heat capacities (Cp, Cv) and the
chemical potential (μ) calculated at 293 K. The thermodynamic properties
were derived from the calculated vibrational frequencies using the
Turbomole module freeh with default parameters for the calculations.
The Cartesian coordinates resulting from our DFT calculations are
subsequently used as input for the cheminformatics software package
alvaDesc 1.028 to generate roughly 5000 molecular descriptors related to
structural features. After omitting molecular descriptors with constant
values and/or those that are close to zero, we used the remaining 1254
descriptors in combination with the above mentioned six DFT descriptors
as input features for our sparse feature selection method.

Dataset preprocessing
We randomly selected 10% of the available data (i.e., six samples) using
scikit-learn’s train-test-split68 that are withheld from all further
preprocessing, analysis, and training. These samples serve as an unknown
validation set, and are used to validate the predictive abilities of the
trained models. A representative validation set is illustrated in cf. Table 3.
The index is used for numbering of the 60 chemical compounds of interest.
We applied linear min-max scaling to all descriptors to map their values on
the interval [−1, 1]. The target variable (corrosion inhibition efficiency) was
mapped on the interval [0, 1].

Data analysis—individual features
To identify the most relevant molecular descriptors for predicting
inhibition efficiency, we considered two approaches. The first was to
regard each feature individually, and determine its influence on predicting

the target variable, i.e. to look for the individually most relevant features.
We did so by means of f-test based analysis of variance (ANOVA)42–45. An f-
test (or F-test) is a test to see whether two independent, identically
distributed variables X1 and X2 have the same variance. The f-score is given
by f ¼ σ2X1=σ

2
X2 ; with σ2Xi denoting the variance of Xi. The null hypothesis

may then be rejected if f is either below or above a chosen threshold α.
F-test based ANOVA calculates an f-score for every molecular descriptor

compared to the target variable (corrosion inhibition efficiency). This score
provides a statistic (with an F(1, k−2)-distribution, where k is the number of
samples) for each descriptor for testing the hypothesis whether its
distribution is the same one as the one of the target variable. The higher
the f-score, the higher the presumed relevance of a descriptor. Herein, we
used the top 3, 5, and 63 (i.e., 5%) descriptors as input for a subsequent
deep learning framework.

Data analysis—grouped features
Those descriptors that individually hold the most amount of information
need not necessarily work best together as a group when used as the
input for a deep learning model. Thus we also identified n-tuples of
features that are most relevant as a group via recursive feature elimination
(RFE)47. RFE repeatedly fits a chosen regression model, and then discards a
fraction of features found to be least relevant for decision making. This
process is repeated until only the desired n descriptors remain. As the
underlying regression model, we choose random forests49–51. A random
forest is a so-called ensemble learning method, i.e., a collection of
individual predictors, over which an average is calculated. This reduces
overfitting and increases generalizability of the model, which is especially
relevant when the training set is of limited size. The random forest consists
of a number of decision trees, each of which only has access to a
(randomly chosen) subset of all features for making the best possible
prediction. The RFE algorithm is run 100 times with varying random seeds
to counter statistical artifacts. Depending on the chosen n, one or more n-
tuples of features may be selected by this process more often than other
combinations. If this was the case, we picked the n-tuple selected most
often. However, the larger n gets, the less likely this becomes. Thus, if this
was not the case, we artificially composed the best n-tuple based on the
frequency distribution of all descriptors included in any of the tuples
selected at least once as most relevant n-tuple.

Table 3. Representative validation set.

Index Compound description Inhibition efficiency ZE41/%

0 3-Amino-1,2,4-triazole −157

5 4-Methylsalicylic acid 39

13 3,5-Dinitrosalicylic acid 38

36 Maleic acid 12

45 p-Toluic acid −6

54 Salicylhydrocamic acid −17

Set aside representative validation set (randomly selected).

Fig. 4 Using autoencoders for outlier detection and contour maps. a Input features reduced to a two-dimensional code. b The decoder part
in combination with an appropriate predictive model (such as a deep neural network) can be used to generate contour maps across the space
spanned by the dimensions of the two-dimensional code.
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Deep learning models
We evaluated the predictive value of the features identified either by f-test-
based ANOVA or RFE by using them as input features for a deep neural
network that was trained to predict the corrosion inhibition efficiency. The
predictive quality of this network was then evaluated on the representative
validation set withheld in the very beginning from the data (see above).
Thereby we used four different types of deep neural networks: tiny models
(three input features), small models (five input features), medium models
(63 input features) and large models (containing the full set of 1260
available input features). Each of these models (deep neural networks) was
composed by three hidden layers with a relu activation function (cf. Fig.
5). They were trained for 25 epochs using an Adam optimizer and the
mean squared error (MSE) of the scaled target values as the loss function.
Since the dataset was very small (only 54 training samples after
withholding six samples for the representative validation set) the input
data was first passed through a Gaussian noise layer with μ= 0 and σ= 0.1
for each model. This layer added some Gaussian random noise in each
epoch, which effectively served as a data augmentation technique and
helped to improve generalization of the model and to reduce overfitting.
The Gaussian noise layer was deactivated when predictions were made for
the (previously unseen) validation data. The hyperparameters varied
depending on the number of input parameters (model sizes) were the
number of units in each hidden layer, as well as the learning rate for the
Adam optimizer. For details the reader is referred to the supplementary
material.

Autoencoders
Recently, autoencoders have attracted substantial attention in dimension-
ality reduction in the context of deep learning69–71. Autoencoders are
however not used for predictions. Rather their objective is to generate an
approximation of the input data as close as possible to themselves after
compressing them through a bottleneck. Autoencoders consist of three
parts: an encoder that learns how to distill the most relevant information
from the input; the code, i.e., the condensed information gained from the
input; and lastly the decoder, which learns how to re-construct the input
data as accurately as possible from the code (cf. Fig. 6).

As one has substantial freedom in choosing the dimension of the code,
one case use autoencoders to reduce, e.g., the 1260 input features in our
problem to e.g., 2–5 key variables. Of course, the lower the dimension of
the code, i.e., the greater the compression of the input data, the greater
the reconstruction error typically becomes. Note that while autoencoders
are quite a powerful tool for dimensionality reduction, they are not a
feature selection method in the classical sense71. Rather they are similar to
principal component analysis (PCA) which can also be used for
dimensionality reduction. Neither the code produced by the autoencoder
nor the principal components found by PCA have a direct physical
correspondence to any of the input features. Instead, PCA constructs a
linear projection of the input data onto a basis of the closest lower rank
representation of the original data space. In general, a unique inversion of
this process does not exist. Similarly, autoencoders typically learn a highly
nonlinear mapping which approximates a bijection between the original
and the latent data dimensions up to the reconstruction error72. The great
advantage of autoencoders compared to PCA is that the decoder part can
thus be used for predictions on generic data reconstructed from the latent
space. We trained an autoencoder with a code of dimension 2, which was
suitable to plot a two-dimensional representation of the chosen number of
input features (for hyperparameters cf. Supplementary Table 1). Moreover,
its decoder was able to map any point in this two-dimensional reduced
feature space to a predicted corrosion inhibition efficiency of ZE41 (cf. Fig.
4). Note that besides providing a low-dimensional representation of the
input data, autoencoders can also be used to reduce noise within a
dataset, or to detect potential anomalies in the data70.

DATA AVAILABILITY
The data used for this study is available at https://doi.org/10.5281/zenodo.5564824.

CODE AVAILABILITY
The code used for this study is available at https://doi.org/10.5281/zenodo.5564824.

Received: 1 June 2021; Accepted: 21 October 2021;

REFERENCES
1. Anderson, D. L. Chemical composition of the Mantle. J. Geophys. Res. 88 Suppl,

41–52 (1983).
2. Taub, A. I. & Luo, A. A. Advanced lightweight materials and manufacturing pro-

cesses for automotive applications. MRS Bull. 40, 1045–1053 (2015).
3. Joost, W. J. & Krajewski, P. E. Towards magnesium alloys for high-volume auto-

motive applications. Scr. Mater. 128, 107–112 (2017).
4. Dziubińska, A., Gontarz, A., Dziubiński, M. & Barszcz, M. The forming of magne-

sium alloy forgings for aircraft and automotive applications. Adv. Sci. Tech. 10,
158–168 (2016).

5. Luthringer, B. J. C., Feyerabend, F. & Willumeit-Römer, R. Magnesium-based
implants: a mini-review. Magnes. Res. 27, 142–54 (2014).

6. Brar, H. S., Platt, M. O., Sarntinoranont, M., Martin, P. I. & Manuel, M. V. Magnesium
as a biodegradable and bioabsorbable material for medical implants. Jom 61,
31–34 (2009).

7. Deng, M. et al. Ca/In micro alloying as a novel strategy to simultaneously enhance
power and energy density of primary Mg-air batteries from anode aspect. J.
Power Sources 472, 228528 (2020).

8. Zhang, T., Tao, Z. & Chen, J. Magnesium-air batteries: from principle to applica-
tion. Mater. Horiz. 1, 196–206 (2014).

Fig. 5 Example architecture for deep learning models. General
architecture of a deep learning model used for predicting corrosion
inhibition efficiencies of chemical compounds (output) from
molecular features (input).

Fig. 6 Example architecture for autoencoders. Schematic illustra-
tion of an autoencoder. Each bar represents a dense layer, bars of
same size indicate same number of neurons in the respective layers.

E.J. Schiessler et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)   193 

https://doi.org/10.5281/zenodo.5564824
https://doi.org/10.5281/zenodo.5564824


9. Meeusen, M. et al. A complementary electrochemical approach for time-resolved
evaluation of corrosion inhibitor performance. J. Electrochem. Soc. 166,
C3220–C3232 (2019).

10. Muster, T. H. et al. A rapid screening multi-electrode method for the evaluation of
corrosion inhibitors. Electrochim. Acta 54, 3402–3411 (2009).

11. White, P. A. et al. A new high-throughput method for corrosion testing. Corros.
Sci. 58, 327–331 (2012).

12. White, P. A. et al. Towards materials discovery: assays for screening and study of
chemical interactions of novel corrosion inhibitors in solution and coatings. N. J.
Chem. 44, 7647–7658 (2020).

13. Chen, F. F. et al. Correlation between molecular features and electrochemical
properties using an artificial neural network. Mater. Des. 112, 410–418 (2016).

14. Meftahi, N. et al. Machine learning property prediction for organic photovoltaic
devices. npj Comput. Mater. 6, 1–8 (2020).

15. Winkler, D. A. et al. Towards chromate-free corrosion inhibitors: structure-
property models for organic alternatives. Green. Chem. 16, 3349–3357 (2014).

16. Le, T. C. & Winkler, D. A. Discovery and optimization of materials using evolu-
tionary approaches. Chem. Rev. 116, 6107–6132 (2016).

17. Galvão, T. L., Novell-Leruth, G., Kuznetsova, A., Tedim, J. & Gomes, J. R. Elucidating
structure–property relationships in aluminum alloy corrosion inhibitors by
machine learning. J. Phys. Chem. C 124, 5624–5635 (2020).

18. Feiler, C. et al. In silico screening of modulators of magnesium dissolution. Corros.
Sci. 163, 108245 (2020).

19. Würger, T. et al. Data science based Mg corrosion engineering. Front. Mater. 6, 53
(2019).

20. Würger, T. et al. Exploring structure–property relationships in magnesium dis-
solution modulators. npj Mater. Degrad. 5, 2 (2021).

21. Zeller-Plumhoff, B. et al. Exploring key ionic interactions for magnesium degra-
dation insimulated body fluid—a data-driven approach. Corros. Sci. 182, 109272
(2021).

22. Yuwono, J. A., Taylor, C. D., Frankel, G. S., Birbilis, N. & Fajardo, S. Understanding
the enhanced rates of hydrogen evolution on dissolving magnesium. Electro-
chem. Commun. 104, 106482 (2019).

23. Milošev, I. et al. Editors’ choice—The effect of anchor group and alkyl backbone
chain on performance of organic compounds as corrosion inhibitors for alumi-
num investigated using an integrative experimental-modeling approach. J.
Electrochem. Soc. 167, 061509 (2020).

24. Würger, T., Feiler, C., Vonbun-Feldbauer, G. B., Zheludkevich, M. L. & Meißner, R. H.
A first-principles analysis of the charge transfer in magnesium corrosion. Sci. Rep.
10, 15006 (2020).

25. Feiler, C., Mei, D., Luthringer-Feyerabend, B., Lamaka, S. & Zheludkevich, M.
Rational design of effective Mg degradation modulators. Corrosion 77, 204–208
(2021).

26. Poberžnik, M. et al. DFT study of n-alkyl carboxylic acids on oxidized aluminum
surfaces: from standalone molecules to self-assembled-monolayers. Appl. Surf. Sci.
525, 146156 (2020).

27. Fockaert, L. et al. ATR-FTIR in Kretschmann configuration integrated with elec-
trochemical cell as in situ interfacial sensitive tool to study corrosion inhibitors for
magnesium substrates. Electrochim. Acta 345, 136166 (2020).

28. Mauri, A. Methods in Pharmacology and Toxicology, 801–820 (Humana Press Inc.,
2020).

29. Landrum, G. et al. Rdkit: open-source cheminformatics. https://www.rdkit.org/
(2016).

30. Mikulskis, P., Alexander, M. R. & Winkler, D. A. Toward interpretable machine
learning models for materials discovery. Adv. Intell. Syst. 1, 1900045 (2019).

31. Pérez-Sánchez, G., Galvão, T. L., Tedim, J. & Gomes, J. R. A molecular dynamics
framework to explore the structure and dynamics of layered double hydroxides.
Appl. Clay Sci. 163, 164–177 (2018).

32. Klink, S., Höche, D., La Mantia, F. & Schuhmann, W. FEM modelling of a coaxial
three-electrode test cell for electrochemical impedance spectroscopy in lithium
ion batteries. J. Power Sources 240, 273–280 (2013).

33. Hammerich, M. et al. Heterodiazocines: synthesis and photochromic properties,
trans to cis switching within the bio-optical window. J. Am. Chem. Soc. 138,
13111–13114 (2016).

34. Ma, R., Huang, D., Zhang, T. & Luo, T. Determining influential descriptors for
polymer chain conformation based on empirical force-fields and molecular
dynamics simulations. Chem. Phys. Lett. 704, 49–54 (2018).

35. Ash, J. & Fourches, D. Characterizing the chemical space of ERK2 kinase inhibitors
using descriptors computed from molecular dynamics trajectories. J. Chem. Inf.
Model. 57, 1286–1299 (2017).

36. Pereira, F. & Aires-de Sousa, J. Machine learning for the prediction of molecular
dipole moments obtained by density functional theory. J. Cheminform. 10, 43
(2018).

37. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory
in surface chemistry and catalysis. Proc. Natl Acad. Sci. 108, 937–943 (2011).

38. Richert, C. & Huber, N. A review of experimentally informed micromechanical
modeling of nanoporous metals: from structural descriptors to predictive
structure–property relationships. Materials 13, 3307 (2020).

39. Morales-Gil, P., Walczak, M. S., Cottis, R. A., Romero, J. M. & Lindsay, R. Corrosion
inhibitor binding in an acidic medium: interaction of 2-mercaptobenizmidazole
with carbon-steel in hydrochloric acid. Corros. Sci. 85, 109–114 (2014).

40. Winkler, D. A. et al. Using high throughput experimental data and in silico models
to discover alternatives to toxic chromate corrosion inhibitors. Corros. Sci. 106,
229–235 (2016).

41. Kokalj, A. et al. Simplistic correlations between molecular electronic prop-
erties and inhibition efficiencies: Do they really exist? Corros. Sci. 179, 108856
(2021).

42. Johnson, K. J. & Synovec, R. E. Pattern recognition of jet fuels: comprehensive
GC × GC with anova-based feature selection and principal component analysis.
Chemom. Intell. Lab. 60, 225–237 (2002).

43. Burgard, D. R. Chemometrics: Chemical and Sensory Data (CRC Press, 2018).
44. Kim, T. K. Understanding one-way anova using conceptual figures. Korean J.

Anesthesiol. 70, 22–26 (2017).
45. Bijma, F., Jonker, M., van der Vaart, A. & Erné, R. An Introduction to Mathematical

Statistics (Amsterdam University Press, 2017).
46. Chandrashekar, G. & Sahin, F. A survey on feature selection methods. Comput.

Electr. Eng. 40, 16–28 (2014).
47. Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classifi-

cation using support vector machines. Mach. Learn. 46, 389–422 (2002).
48. Solorio-Fernández, S., Carrasco-Ochoa, J. A. & Martínez-Trinidad, J. F. A review of

unsupervised feature selection methods. Artif. Intell. Rev. 53, 907–948 (2020).
49. Ho, T. K. Random decision forests. In Proceedings of 3rd International Conference

on Document Analysis and Recognition, vol. 1, 278–282 (IEEE, 1995).
50. Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random for-

ests. Pattern Recogn. Lett. 31, 2225–2236 (2010).
51. Chavent, M., Genuer, R. & Saracco, J. Combining clustering of variables and

feature selection using random forests. Commun. Stat. Simul. Comput. 50,
426–445 (2021).

52. Eklund, M., Norinder, U., Boyer, S. & Carlsson, L. Choosing feature selection and
learning algorithms in qsar. J. Chem. Inf. Model. 54, 837–843 (2014).

53. Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J. & Chen, H. Application of gen-
erative autoencoder in de novo molecular design. Mol. Inform. 37, 1700123 (2018).

54. Samanta, S., O’Hagan, S., Swainston, N., Roberts, T. J. & Kell, D. B. Vae-sim: a novel
molecular similarity measure based on a variational autoencoder. Molecules 25,
3446 (2020).

55. Lamaka, S. V. et al. Comprehensive screening of Mg corrosion inhibitors. Corros.
Sci. 128, 224–240 (2017).

56. Schneider, G., Neidhart, W., Giller, T. & Schmid, G. ’Scaffold-Hopping’ by topolo-
gical pharmacophore search: a contribution to virtual screening. Angew. Chem.
Int. Ed. 38, 2894–2896 (1999).

57. Fechner, U., Franke, L., Renner, S., Schneider, P. & Schneider, G. Comparison of
correlation vector methods for ligand-based similarity searching. J. Comput. Aid.
Mol. Des. 17, 687–698 (2003).

58. Grisoni, F., Merk, D., Byrne, R. & Schneider, G. Scaffold-hopping from synthetic
drugs by holistic molecular representation. Sci. Rep. 8, 1–12 (2018).

59. Labute, P. A widely applicable set of descriptors. J. Mol. Graph. Model. 18,
464–477 (2000).

60. Devinyak, O., Havrylyuk, D. & Lesyk, R. 3D-MoRSE descriptors explained. J. Mol.
Graph. Model. 54, 194–203 (2014).

61. Schuur, J. H., Selzer, P. & Gasteiger, J. The coding of the three-dimensional
structure of molecules by molecular transforms and its application to structure-
spectra correlations and studies of biological activity. J. Chem. Inf. Comp. Sci. 36,
334–344 (1996).

62. Dean, J. A. Lange’s Chemistry Handbook. (University of Tennessee, McGrawHill, Inc,
1999).

63. Smith, R. & Martell, A. Critical Stability Constants, Vol. 3. Other Organic Ligands, vol.
365 (Plenum Press, 1977).

64. David, L., Thakkar, A., Mercado, R. & Engkvist, O. Molecular representations in AI-
driven drug discovery: a review and practical guide. J. Cheminform. 12, 1–22 (2020).

65. TURBOMOLE. V7.4. A Development of University of Karlsruhe and For-
schungszentrum Karlsruhe GmbH, 1989–2019 since 2007 (TURBOMOLE GmbH,
2019).

66. Staroverov, V. N., Scuseria, G. E., Tao, J. & Perdew, J. P. Comparative assessment of
a new nonempirical density functional: molecules and hydrogen-bonded com-
plexes. J. Chem. Phys. 119, 12129–12137 (2003).

67. Eichkorn, K., Weigend, F., Treutler, O. & Ahlrichs, R. Auxiliary basis sets for main
row atoms and transition metals and their use to approximate coulomb poten-
tials. Theor. Chem. Acc. 97, 119–124 (1997).

68. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011).

E.J. Schiessler et al.

8

npj Computational Materials (2021)   193 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://www.rdkit.org/


69. Wang, Y., Yao, H. & Zhao, S. Auto-encoder based dimensionality reduction.
Neurocomputing 184, 232–242 (2016).

70. Sakurada, M. & Yairi, T. Anomaly detection using autoencoders with nonlinear
dimensionality reduction. Proceedings of the MLSDA 2014 2nd Workshop on
Machine Learning for Sensory Data Analysis 4–11 (ACM, 2014).

71. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
72. Almotiri, J., Elleithy, K. & Elleithy, A. Comparison of autoencoder and principal

component analysis followed by neural network for e-learning using handwritten
recognition. 2017 IEEE Long Island Systems, Applications and Technology Con-
ference (LISAT) 1–5 (IEEE, 2017).

ACKNOWLEDGEMENTS
Funding by the Helmholtz Association is gratefully acknowledged. T.W. and C.F.
gratefully acknowledge funding by the Deutscher Akademischer Austauschdienst
(DAAD, German Academic Exchange Service) via Projektnummer 57511455. R.M.
gratefully acknowledges funding by the Deutsche Forschungsgemeinschaft (D.F.G.,
German Research Foundation) via Projektnummer 192346071-SFB 986 and
Projektnummer 390794421-GRK 2462.

AUTHOR CONTRIBUTIONS
E.J.S., T.W., S.V.L., R.H.M., C.J.C., M.L.Z., C.F., and R.C.A. contributed to the conception
and design of the study. C.F. generated the molecular descriptor database. E.J.S. did
the theoretical analyses and wrote the supporting code. E.J.S., T.W., R.C.A., and
C.F. evaluated the quality of the presented models. E.J.S. and T.W. created the figures.
E.J.S. and C.F. wrote the first draft of the manuscript. All authors contributed to the
manuscript revision, read, and approved the submitted version.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-021-00658-7.

Correspondence and requests for materials should be addressed to Christian Feiler
or Roland C. Aydin.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

E.J. Schiessler et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)   193 

https://doi.org/10.1038/s41524-021-00658-7
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
	Introduction
	Results and discussion
	Individual feature selection
	Grouped feature selection
	Predictive models using deep learning techniques
	Autoencoders

	Methods
	Molecular descriptor generation
	Dataset preprocessing
	Data analysis—individual features
	Data analysis—grouped features
	Deep learning models
	Autoencoders

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




