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Abstract

For production of biopharmaceuticals in suspension cell culture, seed trains are

required to increase cell number from cell thawing up to production scale. Because

cultivation conditions during the seed train have a significant impact on cell

performance in production scale, seed train design, monitoring, and development of

optimization strategies is important. This can be facilitated by model‐assisted
prediction methods, whereby the performance depends on the prediction accuracy,

which can be improved by inclusion of prior process knowledge, especially when only

few high‐quality data is available, and description of inference uncertainty, providing,

apart from a “best fit”‐prediction, information about the probable deviation in form of

a prediction interval. This contribution illustrates the application of Bayesian

parameter estimation and Bayesian updating for seed train prediction to an industrial

Chinese hamster ovarian cell culture process, coppled with a mechanistic model. It is

shown in which way prior knowledge as well as input uncertainty (e.g., concerning

measurements) can be included and be propagated to predictive uncertainty. The

impact of available information on prediction accuracy was investigated. It has been

shown that through integration of new data by the Bayesian updating method,

process variability (i.e., batch‐to‐batch) could be considered. The implementation was

realized using a Markov chain Monte Carlo method.
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1 | INTRODUCTION

In bioprocessing, mathematical modeling, statistical data analysis,

and IT‐supported tools have become important instruments within

the framework of process design, optimization, and control. They are

also part of the process analytical technology (PAT) regulatory

initiative for building in quality to pharmaceutical manufacturing,

defined by the United States Food and Drug Administration. PAT

methods are playing an important role, for example, in cell culture

upstream processes for the production of biopharmaceuticals

(Glassey et al., 2011). While optimization of the production scale

has been in the focus for a long time, it turned out, that the cost‐ and
time‐intensive cell proliferation process (the so‐called seed train) also

has an impact on the success rate in production (Brunner, Fricke,

Kroll, & Herwig, 2017). There are various factors that influence the

seed train (Le et al., 2012). Examples are selection of vessel and filling

volumes of the seed train scales, differences in bioprocess engineer-

ing parameters between scales, inoculation cell densities, ratio of

fresh medium to passaged medium, substrate and metabolite

concentrations, point in time for cell passaging and corresponding

viable cell density, apparent growth rate, and viability.

To maintain cell growth and product formation attributes within

the seed train, monitoring and optimization strategies are required

(Frahm, 2014). Temporal or longer lasting changes in cell behavior

can occur, so that the seed train protocol has to be adapted. Also, for

new cell lines or new products or the transfer of the process to

another production plant, seed train protocols also have to be

developed or adapted, keeping in mind the reduction of time and

costs during development of those protocols. Another application is

to support the selection of the optimal clone for a new process and

the development of a suitable seed train protocol.

Model building of dynamic bioprocesses such as cell culture seed

trains faces a lot of challenges due to different factors, like limited

amount of high‐quality experimental data (measurement uncertainty,

offline data and large time steps between measurements, etc.), process

nonlinearity and the necessity of various model parameters characteriz-

ing the bioprocess. As already described in Liu and Gunawan (2017),

these factors lead to significant uncertainty in the process model.

Furthermore, prediction performance depends on the accuracy of the

model, the variability of the biological process, and identifiability of model

parameters. Nonidentifiability arises if many different combinations of

model parameters can explain the experimental data equally well. The

reasons could be that the model contains too many parameters

(overparameterization) leading to the problem that noise or random

variations in the training data is interpreted and learned as concepts.

Consequently, these concepts do not apply to new data, which impede

the models' ability to generalize to new data. Different approaches

addressing this problem can be found in literature (Ashyraliyev,

Fomekong‐Nanfack, Kaandorp, & Blom, 2009; Liu & Gunawan, 2017;

Sin, Gernaey, & Lantz, 2009).

Often, estimation methods identifying only one set of model

parameters based on the available dataset, like the Nelder–Mead

simplex algorithm (Press, 1996), are applied. This type of

optimization algorithm is a “best fit” estimator, a point estimator,

meaning that only one value for each model parameter is identified,

leading to one predicted value of the quantity of interest at each time

step. No information about the output uncertainty is given this way,

and most of these types of optimization algorithms could get stuck in

a local minimum. Nevertheless, these methods have turned out to be

useful tools, sometimes resulting in fast solutions and they are

already implemented in functions (e.g., in Matlab or R), which are

easy to apply. They can be combined with statistical methods like

Monte Carlo (MC) simulation, sensitivity, uncertainty, and/or

identifiability analysis, in order simulate output uncertainty and to

gain more information of the process (Hines, 2015; Price, Nordblad,

Woodley, & Huusom, 2013; Raue et al., 2009; Sin et al., 2009).

However, in many cases, there are only few data available for

model building and parameter estimation (e.g., when planing a new

production), but frequently there is some knowledge about the

organism or process from literature or expert knowledge. It is

desirable to quantify this information and include it in the model

building process. Within a Bayesian context, this kind of knowledge is

expressed by probability statements and it is combined with the

available data, leading to a whole set of probable model parameter

values for each model parameter. This procedure is also called

Bayesian parameter estimation and the numerical implementation

can be performed through a Markov chain Monte Carlo (MCMC)

procedure. There are many ways of numerically implementing this

method and some examples in the field of biochemical engineering

can be found in Galagali and Marzouk (2015); Liu and Gunawan

(2017); Vrugt (2016); and Xing, Bishop, Leister, and Li (2010).

Another similar technique to simulate process dynamics under

uncertainty are Gaussian processes, but they were not subject to

investigation in this work.

In this work, a Bayesian approach, facing the above‐mentioned

challenges in model building and parameter estimation dealing with

uncertainties and eventually lack of data, is applied to seed train

prediction of an industrial Chinese hamster ovarian (CHO) cell culture

process. It is shown in which way sources of uncertainty as well as

prior knowledge (from experts or literature) can be considered leading

to predictions including inference uncertainty. Bayesian parameter

estimation also provides a framework for detection of nonidentifiabi-

lites but as this is not the focus of this work, we refer to Raue, Kreutz,

Theis, and Timmer (2013). Numerical implementation of the Bayesian

approach was carried out via an MCMC procedure using an adaptive

single component metropolis algorithm.

A mechanistic model, similar to Frahm (2014) and Kern, Platas‐
Barradas, Pörtner, and Frahm (2016) is applied for this approach.

These types of models have gained renewed attention because they

can be considered as a structured representation of the available

process knowledge (Glassey et al., 2011; Kroll, Hofer, Stelzer, &

Herwig, 2017; Möller & Pörtner, 2017; Sanderson, Phillips, & Barford,

1996). They have been used for development of predictive control

strategies, for example, to ensure high batch‐to‐batch reproducibility

in animal suspension cell cultures (Aehle et al., 2012) and for the

design of cell culture fed‐batch control (Frahm et al., 2002).
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The industrial CHO cell culture process is used to illustrate in

which way inference uncertainty can be derived and with which

accuracy individual seed train scales and the whole seed train can be

predicted, depending on the available information.

2 | MATERIALS AND METHODS

2.1 | Investigated suspension cell culture process

In this contribution, the subject of investigation is an industrial CHO cell

culture process containing a seed train comprising five shake flask

scales and three bioreactor scales as well as the production scale,

whereby the focus lies on the the bioreactor part of the seed train,

which is composed of bioreactor 1 (N‐3, 40 L), bioreactor 2 (N‐2, 320 L)

and bioreactor 3 (N‐1, 2,160 L). From experimental data (offline

measurements), taken once a day, time profiles for viable cell density

Xv , viability Via, concentrations of glucose cGlc, glutamine cGln, lactate

cLac, and ammonia cAmm have been used. In this work, data from 20

cultivations from six campaigns with cultivation times between 72 and

96 hours per scale (meaning 4–5 measurement time points per scale)

were divided into 10 seed trains for training and 10 seed trains for

testing, choosing randomly one or two cultivations for training and one

or two for testing per campaign. Additional datasets have been

generated for modeling purposes. Therefore, 12 cultivations in four

flask scales (three cultivations each) having filling volumes of 40, 70,

300, and 1,500ml were provided. They cover cultivation time spans of

264 hr (11 days) each, meaning that the stationary and death phases

were also included. All datasets are labeled and listed in Table 1 to

assign them correctly in this work.

2.2 | Cultivation conditions and analytics

Cell cultivation was carried out using a CHO cell line for the production

of a therapeutic recombinant protein (cell line and product are not

further specified due to confidential reasons). Process conditions, which

were the same for all investigated seed train cultivations, are listed in

Table 1. Samples were taken once a day. Viable cell concentration and

viability were measured using the Vi‐CELL cell viability analyzer from

Beckman Coulter. Glucose, glutamine, lactate, and ammonia were

determined by a Nova Bioprofile 100+ Analyzer.

2.3 | Data cleansing/preparation

Data cleansing and preparation was performed by handling

missing data. Within the parameter estimation process initial

concentration values are required for solving the ordinary

differential equation system (the model), but in some cultivation

datasets, there are one or two missing initial concentrations.

Concerning datasets of 20 seed trains, with three bioreactor scales

and six state variables each, 16% of the initial concentrations are

missing in total (viable cell concentration 0%, viability 0%, glucose

0%, glutamine 23%, lactate 72%, and ammonia 0%). If initial

concentrations are missing at the beginning of bioreactor scale 1,

the relevant quantity is replaced by the mean of initial concentra-

tion values of training datasets. This decision is based on the fact

that the same cultivation conditions are intended for each

cultivation. If initial concentrations of bioreactor scale 2 or 3 are

missing, then they are calculated based on the concentrations at

the end of the previous scales and the volumes of the previous and

the current scale.

TABLE 1 List of available data, some used for training, and other for testing, containing the following abbreviations: Systems (SF, shake flask;
BR, bioreactor; ST, seed train), initial filling volumes (Volume) and cultivation labels (Label). Since process data from 6 campaigns were

considered, they were labeled by C1 (campaign 1) to C6 (campaign 6)

System Volume (L) Cultivation labels Controlled process parameters Usage

Training data from development

SF 0.04 SF1.1, SF1.2, SF1.3 Temperature, CO2, humidity, seeding VCD Training

SF 0.07 SF2.1, SF2.2, SF2.3 Training

SF 0.3 SF3.1, SF3.2, SF3.3 Training

SF 1.5 SF4.1, SF4.2, SF4.3 Training

Training and test data from the process (from 6 campaigns)

BR 40 R1.1,… , R1.10 (10 sets) Temperature, pH, DO (disolved oxygen)

total gas flow stirrer speed, seeding/

transfer VCD, pressure

Training

BR 40 R1.11,… , R1.20 (10 sets) Testing

BR 320 R2.1,… , R2.10 (10 sets) Training

BR 320 R2.11,… , R2.20 (10 sets) Testing

BR 2160 R3.1,… , R3.10 (10 sets) Training

BR 2160 R3.11,… , R3.20 (10 sets) Testing

Cultivations ending on … belong to campaign (C.):

.1, 0.2, 0.11, 0.12 (C1), 0.3, 0.4, 0.13, 0.14 (C2), 0.5, 0.6, 0.15, 0.16 (C3), 0.7, 0.8, 0.17, 0.18 (C4), 0.9, 0.19 (C5), 0.10, 0.20 (C6)

Seed trains (comprising BR1 [40 L], BR2 [320 L], and BR3 [2,160 L]):

ST1, ST2 (C1), ST3, ST4 (C2), ST5, ST6 (C3), ST7, ST8 (C4), ST9 (C5), ST10 (C6) Training

ST11, ST12 (C1), ST13, ST14 (C2), ST15, ST16 (C3), ST17, ST18 (C4), ST19 (C5), ST20 (C6) Testing

(In brackets the campaigns the seed trains belong to)
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2.4 | Cell culture model

The applied kinetic model is based on modifications of previous model

variations published in Frahm et al. (2002) and Kern et al., 2016.

Differential algebraic equations (Equation 1), containing six mostly

Monod‐type algebraic equations (description of growth rate, death rate,

substrate uptake, and metabolite production kinetics) and 17 model

parameters are describing cell culture dynamics of total and viable cell

density, Xt and Xv , as well as concentrations of glucose cGlc, glutamine

cGln, lactate cLac, and ammonia cAmm. All these variables and model

parameters are listed in Table 2 including unit and description. Volume

changes because of sampling were considered by the sampling flow rate

FSample (describing the sample volume expressed as an effluent flow rate

[with negative values] during the sampling period of time). The titer

dynamics are not considered in this example as it was measured only in

production scale, but not during the seed train.

dX
dt

Xv

dX
dt

Xv K X X

dc
dt

X q
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dt

X q
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dt

X q
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dt
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The specific growth rate includes a term for lag phase description where

tLag stands for the duration of the lag phase. a 0, 1Lag ∈ [ ] describes by

which percentage growth rate is decreased in the beginning of the lag

phase and for t tLag> . The specific death rate contains constant

minimum and maximum death rates as well as dependencies on glucose

and glutamine concentration (similar to Frahm, 2014). Substrate uptake

rates are expressed similar to substrate uptake rates presented in

Frahm (2014) and Kern et al. (2016), describing a high glucose uptake at

high glucose concentrations and low glucose uptake at low glucose

concentrations and analogously for glutamine. Also metabolic produc-

tion rates are expressed similar to substrate uptake rates presented in

Frahm (2014) but with additional terms for metabolite uptake, followed

by renewed production (in case of ammonia) at the end of the death

phase, with

c c q

q q

c c K
c c K

K k

if : 0

else: constant

if : 0

else if and 0.001 : 1

else: constant
d

Glc Lac Lac,uptake
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Gln Amm Amm
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( ≤ ) (( − ) > ) =
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The ode23 function of MATLAB version 2017b (Matlab, 2017)

was used for numerical computation.

TABLE 2 Modeled variables and model parameters included in the
underlying model (symbols, units, and descriptions)

Variable/

parameter Unit Description

Xt cell/L Total cell density

Xv cell/L Viable cell density

cGlc mmol/L Glucose concentration

cGln mmol/L Glutamine concentration

cLac mmol/L Lactate concentration

cAmm mmol/L Ammonia concentration

V L Volume

maxμ hr−1 Maximum cell‐specific growth

rate

KS,Glc mmol/L Monod kinetic constant for

glucose

KS,Gln mmol/L Monod kinetic constant for

glutamine

aLag – Correction factor for lag phase

tLag hr Duration of la phase

d,minμ hr−1 Minimum cell‐specific death rate

d,maxμ hr−1 Maximum cell‐specific death rate

KLys hr−1 Cell lysis constant

qGlc,max mmol·cell−1·hr−1 Maximum cell‐specific glucose

uptake rate

kGlc mmol/L Monod kinetic constant for

glucose uptake

qGln,max mmol·cell−1·hr−1 Maximum cell‐specific
glutamine uptake rate

kGln mmol/L Monod kinetic constant for

glutamine uptake

YLac Glc∕ mmol/mmol Kinetic production constant

for lactate

qLac,uptake,max mmol·cell−1·hr−1 Cell‐specific maximum lactate

uptake rate

YAmm Gln∕ mmol/mmol Kinetic production constant

for ammonia

qAmm uptake max, , mmol·cell−1·hr−1 Cell‐specific maximum

ammonia uptake rate

kAmm – Correction factor for ammonia

uptake
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2.5 | Bayesian parameter estimation and inference

The goal of Bayesian parameter estimation is to compute a maximum

a posteriori point (MAP) estimate of each unknown model parameter

(e.g., maximum growth rate maxμ ) as well as the corresponding

probability distribution (posterior distribution), describing how

probable it is that certain parameter values are adopted, based on

the measured data and prior knowledge. These estimates and

distributions can then be used for prediction of new observations

(e.g., viable cell density Xv ; Gelman et al., 2013, chap. 1). Bayesian

parameter estimation and prediction can be divided into the

following main tasks, which will be explained afterward:

• Step 1: Quantification of prior knowledge including uncertainties

• Step 2: Bayesian parameter estimation/determination of posterior

distributions

• Step 3: Prediction including credible intervals

• Step 4: Bayesian updating (if desired and additional data is

available)

2.5.1 | Quantification of prior knowledge

In a first step, quantification of prior knowledge including uncertain-

ties through probability distributions is required. These probability

distributions are called prior distributions. There are different types of

prior distributions which can be chosen, according to the available

prior information. In the present work, there are mainly two sources

of uncertainties considered, the uncertainty in model parameters and

the uncertainty in initial concentration values, resulting from

measurement deviations (see Figure 1). A gamma distribution was

chosen to describe the existing prior knowledge including the above‐
mentioned uncertainties. This assumption is based on the fact that

the considered random variables can only adopt positive values, and,

furthermore, the gamma distribution is well suited for representing

the realistic range based on the available priori knowledge. It is

defined by the parameters α (shape) and λ (rate). The expected value

and variance are calculated by E Y Y, Var 2
α

λ

α

λ
( ) = ( ) = . For estimat-

ing expected value and variance, the two equations can be solved

for α and λ (method of moments) and consequently, measures of

location and variation of the distribution can be computed by

E Y
Y

Y
E YVar

and
Var

.
2

α λ=
( )

( )
=

( )

( )
(2)

More details on different types of prior distributions are given in the

Supporting Information Material.

2.5.2 | Bayesian parameter estimation/
determination of posterior distributions

In a second step, Bayesian parameter estimation using prior probabilities

and experimental data has to be performed, obtaining posterior

parameter distributions. The key element is the Bayes theorem, which

is a theorem for the computation of conditional probabilities. Since in

practice the applied mathematical models are complex and high

dimensional, the calculation of the posteriori parameter distributions

turns out to be a nontrivial tasks. But numerical solutions can be

computed by application of MCMC methods. The concept of MCMC

F IGURE 1 Propagation of uncertainty. Uncertainty in model parameters and uncertainty resulting from measurement deviations are
considered and a Bayesian approach, having the Bayes theorem as a key element, was applied to propagate these uncertainties, to estimate

model parameters, and to include the information of uncertainty in the prediction of the interesting quantities in form of prediction intervals
forming a prediction band [Color figure can be viewed at wileyonlinelibrary.com]
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simulation is to create a random process whose stationary distribution

is the specified target distribution and to run the simulation long enough

that the distribution of the current draws is close enough to this

stationary distribution (Gelman et al., 2013, chap. 11). Different types of

algorithms realizing this principle exist, whereby the single component

Metropolis‐Hastings algorithm was applied in this work

(Gilks et al., 1998), which has the posterior samples of the model

parameters as its output, which represent the posterior distributions of

the model parameters to be estimated. The sample size should be

chosen large enough so that the Markov Chain (MC) standard error is

less than 5% (more details on convergence diagnostics are given in the

Supporting Information Material).

2.5.3 | Prediction including credible intervals

In a third step, predictions based on the obtained posterior parameter

distributions can be performed, using MC simulations. As a result the

posterior predictive distributions of the variables included in the model

(or even of functions built with these variables) are obtained. In the

case of a dynamic process model over time, a posterior prediction

distribution is obtained for each variable at each point in time within

the defined time span. Credible intervals (also called prediction intervals

or prognostic intervals) of nonobserved values can be computed using

the posterior predictive distributions. A credible interval can be

described as a coverage interval that contains the set of true values

of a quantity with a given probability, based on available information.

For example, they can be computed using quantiles of the posterior

predictive distributions at different points in time, leading to

prediction bands over the considered time span (see Figure 1).

2.5.4 | Bayesian updating

As a fourth step, (if additional data is provided), Bayesian updating can

be executed, which is an important characteristic of Bayesian

statistics. It is the ability to learn from new data through adding

information to the present knowledge and thus, to update the

current state of information.

This is realized by repetition of Steps 2 and 3 using the current

posterior distributions as new prior distributions and executing

MCMC simulation to obtain new posterior parameter distributions.

Simply spoken Bayesian updating is performed by “taking the posterior

from today as prior from tomorrow.” This is described in literature by

terms like Bayesian updating, Bayesian learning, or the sequential

nature of Bayes (Luce, Anthony, & Dennis, 2003; O’Hagan, 2008).

More detailed information, such as formulas and implementation

of the adaptive single based Metropolis‐Hastings algorithm, is

provided as Supporting Information Material.

2.6 | Evaluation

To evaluate the prediction performance regarding accuracy and

precision, three criteria are presented in this work. The first criterion

quantifies the amount of predictive uncertainty, based on the

available information and is expressed in this work by the relative

half bandwidth of the prediction interval at a specified point in time.

Supposing that ypred is the posterior predictive sample and q0.975 its

97.5% quantile and q0.025 its 0.25% quantile, then:

q q
y

Half bandwidth
1

2
100.0.975 0.025

pred
=

−

¯
· (3)

Simply spoken, this measure describes how well the prediction can

be bounded (precision) or how much deviation from the predicted

value is expected, based on the available information. This score is

computed before test data are used for evaluation and can adopt

values between 0 and 100, where a low value is desired because it

stands for a high prediction precision. The other two criteria, within

band score and relative error describe how good the prediction

performed, thus describing the prediction accuracy. They are

measures for evaluation of the prediction after adding the test data.

Accuracy score 1, within band score: Percentage of subsequently

added test data falling within prediction band in relation to the total

number k of test data. Values between 0 and 100 can be adopted,

where a high value stands for a high prediction accuracy.

Within band score 1
No. of predicted values out of band

k

100.

= ⎛
⎝

− ⎞
⎠
·

(4)

Accuracy score 2, the relative error: The relative deviation between

predicted values (values with maximum posterior probability for

model parameters (MAP estimate)) and subsequently added test data

is described by the relative error in % with values between 0 and

100, where a low value stands for a high accuracy.

k

y y

y
Rel. error

1
100,

i

k
i i

i1

,exp ,pred

,exp
∑= ·

( − )
·

=

(5)

with k number of measurements.

All criteria can be computed for one or more quantities.

Furthermore, the coefficient of variation is used for the quantifica-

tion of uncertainty. The coefficient of variation of a sample y is

calculated by

cv
y

y
var

mean
100.=

( )

( )
· (6)

3 | RESULTS AND DISCUSSION

This section shows how an industrial cell culture seed train, that is

described by a mechanistic model, is predicted (simulated) using

Bayesian parameter estimation. The prediction is complemented by

corresponding prediction intervals describing the expected deviation

from the predicted values based on the available information.

Furthermore, the performance of the predictions will be analyzed

concerning prediction precision and accuracy. Moreover, it is investi-

gated, how taking additional data into account improves the prediction.
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First, it is demonstrated in Section 3.1 how prior knowledge was

quantified in form of probability distributions. Afterwards, Bayesian

parameter estimation by determination of posterior distributions for

the model parameters as well as a Bayesian updating step is

explained and illustrated (see Section 3.2).

Thereafter, the model parameter distributions were used for

prediction and the prediction performance based on available

information/knowledge was evaluated using test data. First, these

investigation were realized for single bioreactor scales (see Section

3.3). Afterwards the whole seed train comprising the mentioned

three consecutive bioreactor scales (before production) was pre-

dicted based on available information. The corresponding results are

presented and discussed in Section 3.4.

3.1 | Prior knowledge

For all quantities, which are assumed as random variables (meaning

that they were considered including uncertainties), a prior probability

distribution, expressing the prior knowledge about the possible

model parameter values, had to be defined. In which way prior

knowledge (based on literature/expert knowledge/historical or

training data analysis; before parameter estimation) of model

parameters as well as prior information about starting concentration

values were quantified is described below.

3.1.1 | Prior knowledge of model parameters

To characterize the prior distributions of model parameters, means

and coefficients of variation, representing the uncertainty, were

defined using information from literature (Kern et al. 2016),

information from analysis of training data and information from

expert knowledge (from industry concerning the investigated process

and from academia relying on experiences with cultivation of similar

cell lines). Training data of four flask scale cultivations, one from 40

(SF 1.1), 70 (SF 2.1), 300 (SF 3.1), and 1,500ml (SF 4.1) (labels

according to Table 1), respectively were analyzed using offline

measurements of viable cell density Xv and viability as well as

concentrations of glucose cGlc, glutamine cGln, lactate cLac, and

ammonia cAmm. Measurements were taken once a day (except on

weekends) at cultivation days 0, 1, 2, 3, 6, 7, 8, 9, 10, 11. This

time period covered lag phase, exponential phase, stationary phase,

and death phase.

Furthermore, the 17 model parameters were divided into model

parameters with fixed values and model parameters to be estimated

(“free” parameters) according to the identifiability of model para-

meters based on the available data. This was carried out because in

some cases the available data is not sufficient for identifying every

model parameter unambiguously concerning the applied discrepancy

function (which is optimized during parameter estimation). Never-

theless, some parameters can be estimated combining training data

and expert knowledge. Thus, considering the equation for growth

rate μ both parameters describing lag phase, the correction factor

aLag and the duration of lag phase tLag, were kept as fixed parameter

values, while maxμ , KS,Glc, and KS,Gln were set as “free” parameters.

Concerning death rate, the minimum death rate d,minμ were kept fix,

while the maximum death rate d,maxμ were kept “free”. Moreover the

cell lysis constant KLys were kept fix, based on Kern et al. (2016).

Concerning production and uptake of lactate and ammonia the

parameters qLac uptake, and qAmm uptake, were kept fix because they

describe lactate and ammonia uptake at the end of the death rate,

which is not relevant during the process. Because they would

increase the complexity of parameter estimation, we decided to

estimate them once from training data and keep them fix later on

whereas kAmm was set “free” as well as kinetic production constants

YLac Glc∕ and YAmm Gln∕ .

In a next step these quantities were used to adopt a gamma

distribution for each free model parameter following the methods

explained in Section 2.5, meaning that the distribution were

calculated according to Equation (2). This form of probability

distribution was chosen because of the range of the model

parameters (only positive values) and the flexibility of the gamma

distribution (more information on gamma distributions can be found

in the Supporting Information Material). The assumed means and

coefficients of variation, expressing the amount of uncertainty, are

listed in Table 3A.

3.1.2 | Prior knowledge of starting concentrations

The starting concentration values (of the modeled time courses,

e.g., initial viable cell density Xv,0, glucose concentration c ,Glc,0 …) are

also set as random variables because it is assumed that the

measurement errors have a significant impact on prediction

performance. The prior distributions of the measurement error were

derived from trend chart data of Vi‐Cell in case of viable cell density

(sample size N = 236, gathered from two instruments) and Nova

BioProfile 100+ analyzers for glucose, glutamine, lactate, and

ammonia concentrations (sample size N = 1,065, gathered from

three instruments) using resampling techniques (bootstrapping).

The corresponding means and standard deviations of coefficients of

variation are listed in Table 3B.

In case of viable cell density Xv , the coefficient of variation (cv)

from Table 3B was composed of a cv due to uncertainty caused by

practical reasons and by a Poisson distributed cv because of

uncertainty in cell count data (under the assumption of independent

Poisson random variables). Thus, cv cv cvtotal pract pois= + , where

cv
Npois

1
= depends on the number of cells in the sample

volume (here 0.001ml) and cvpract is computed from

cv cv cv 0.047 100 1.5pract total pois
1

1000
= − = ( − ) ⋅ = .

3.2 | Bayesian parameter estimation/
determination of posterior distributions and Bayesian
updating

After quantification of prior knowledge, Bayesian parameter estima-

tion using the MCMC method described in Section 2.5 was

performed, based on the remaining eight datasets from shake flask
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cultivations (SF1.2, SF1.3, SF2.2, SF2.3, SF3.2, SF3.3, SF4.2, and

SF4.3; labels according to Table 1), for each dataset individually.

The starting parameter values were also sampled randomly from

these prior distributions.

Every MCMC run results in posterior samples representing

the posterior parameter distributions of each free model

parameter and then the quantities mean, variance and coefficient of

variation (cv) were computed for each posterior sample. For

each of these quantities the mean was computed to derive

one distribution representing all shake flask datasets. The resulting

mean and cv for every free parameter are listed in Table 3A.

The corresponding distributions are illustrated in Figure 2,

where the prior distributions “prior 1” are shown in light

gray dashed lines and the posterior distributions “posterior 1”

from shake flask data are shown in gray dotted lines. (The

values on the y‐axis depend on the parameter values on the

x‐axis and have to fulfill that the integral of a density function

integrates to one.)

As soon as new cultivation data are collected, a Bayesian update

can be performed using the old posterior “posterior 1” as new prior

“prior 2,” running a new MCMC run using the new dataset. As an

example, cultivation data R1.3 from the smallest bioreactor seed

train scale (40 L) was used for this update step, getting a new

posterior “posterior 2” (see dark gray solid lines in Figure 2). All three

mentioned distributions are shown exemplarily for nine model

parameters in Figure 2.

It can be seen that the steps from prior 1 to posterior 1 and from

prior 2 (= posterior 1) to posterior 2 lead to more narrow

distributions → less uncertainty, more precision) in case of the

maximum growth rate maxμ . In case of the other parameters

K K k k q q Y, , , , , ,S S,Glc ,Gln Glc Gln Glc,max Gln,max Lac            , and the mean moved

slightly to the left (smaller values) without significant changes in the

variance. This can also be conducted from Table 3 by comparing prior

and posterior coefficients of variation. For most parameters, the

coefficient of variation changed only slightly except for the

parameter concerning maximum cell growth, maxμ , and the parameter

describing the maximum uptake rate of glutamine qGln max, .

It should be mentioned that stronger deviations between

prior and posterior means could have been obtained if the

data used for Bayesian parameter estimation would have clearly

indicated this deviation. But it turned out that the information

contained in the prior distributions mostly coincided with the

information coming along with the additional data. This is not

surprisingly, since a lot of information (prior knowledge from

literature and experiences regarding similar cell lines as well as

training data from the four shake flask cultivation scales) were

already available.

In each MCMC run, convergence diagnostic was applied using

visual methods such as history plots and autocorrelation plots.

Furthermore, the MC error was controlled and an MC error less than

5% was satisfied in each run, which indicates convergence. This

procedure was applied during every parameter estimation (update

step) via MCMC.

3.3 | Prediction of a single seed train bioreactor
scale based on available information

Following the above presented procedure, a comprehensive

study concerning prediction accuracy and prediction precision

based on available information from cultivation training data is

presented.

For the prediction of one cultivation scale at a time (reactor

scale 1 (N‐3) = 40 L, 2 (N‐2) = 320 L, or 3 (N‐1) = 2,160 L), the initial

concentrations of a scale are known and the following two sources of

TABLE 3 A) Prior knowledge of model parameters expressed by
prior means and coefficients of variation (cv) in % as well as posterior
knowledge expressed by posterior means (based on eight specific
experiments performed for modeling; after parameter estimation)

and posterior coefficients of variation (cv) in %. Prior distributions
were also used for sampling starting values of model parameters.
B, Prior knowledge concerning measurement errors of initial

concentrations expressed by mean and standard deviation (sd) of
coefficient of variation

A) Model parameters

Prior Posterior

Parameter Unit Mean cv (%) Mean cv (%)

maxμ hr−1 .028 20 .029 9

KS,Glc mmol/L .03 30 .025 32.2

KS,Gln mmol/L .03 30 .025 32.8

aLag – .01 30 – 0

tLag hr 24 30 – 0

d,minμ hr−1 .0005 – 0

d,maxμ hr−1 .005 50 .003 63.9

KLys hr−1 .001 – 0

qGlc max, mmol·cell−1·hr−1 1.8 × 10−10 30 1.5 × 10−10 30.4

kGlc mmol/L 10 30 8.2 32

qGln,max mmol·cell−1·hr−1 .8 × 10−10 30 .6 × 10−10 20.7

kGln mmol/L 2.5 30 2.4 27

YLac Glc∕ mmol/mmol .3 30 .2 28.6

qLac,uptake mmol·cell−1·hr−1 1.2 × 10−11 30 – 0

YAmm Gln∕ mmol/mmol .7 30 .5 29.4

qAmm,uptake mmol·cell−1·hr−1 4 × 10−12 30 – 0

kAmm – .5 30 .4 32.2

B) Measurement error of initial concentrations

Prior

Variable Unit Mean of cv Mean of cv (%) SD of cv

Xv cells/L .047 4.7 .002

cGlc mmol/L .097 9.7 .004

cGln mmol/L .084 8.4 .003

cLac mmol/L .079 7.9 .005

cAmm mmol/L .068 6.8 .004
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uncertainty and their propagation on the predictions are considered:

uncertainty of model parameters and uncertainty of measurements.

At first, an example is presented in Subsection 3.3.1, where

prediction results based on the information from shake flask data are

compared with the prediction results, where also information from

another reactor scale training dataset from the same campaign was

considered.

Thereafter, the investigation results of prediction perfor-

mance for a single seed train bioreactor, depending on the

available information, evaluated for 10 seed train cultivations are

F IGURE 2 Probability distributions describing knowledge about possible values of nine selected model parameters (17 model parameters in

total, 6 fixed and 11 to be identified) before and after two updating steps. Prior 1: Based on literature, expert knowledge and previous data
analysis, before parameter estimation. Posterior 1 (=Prior 2): Knowledge based on additional specific experiments performed for modeling in shake
flasks, after (posterior to) parameter estimation. Posterior 2: Knowledge based on additional data from smallest bioreactor seed train scale (40 L)
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presented. The labels of the cultivation data used for training and

testing correspond to the labels listed in Table 1.

It should be mentioned that evaluation scores, half bandwidth,

within band score and rel. error, were first calculated comparing

one test dataset at a time (e.g., concerning viable cell density often

only four measurements were compared with the predictions

at the same points in time, meaning if one measurement falls

outside the prediction band, the within band score is reduced

to 75%). Afterwards, the average over 10 cultivations was

calculated.

3.3.1 | Example: Prediction based on shake flask
data versus prediction based on shake flask data and
one bioreactor scale

As an example, Figure 3 shows the predicted temporal courses

(solid lines) as well as the corresponding 90% prediction bands

(dashed lines) for all six observed state variables (viable and total

cell concentration, Xv and Xt, concentration of glucose cGlc,

glutamine cGln, lactate cLac, and ammonia cAmm,) for the smallest

seed train bioreactor scale (R1.13, 40 L). The six diagrams of

Figure 3 (above) show the prediction, only based on shake flask

F IGURE 3 Predicted time courses of six state variables, viable and total cell concentration Xv and Xt , concentration of glucose cGlc,
glutamine cGln, lactate cLac, and ammonia cAmm as well as performance measures of prediction, for the smallest seed train bioreactor scale (40 L

filling volume). As measures of accuracy the within band score (percentage of test data falling within prediction band) and the rel. error (the

relative deviation between predicted values and subsequently added test data) are presented. The amount of uncertainty (only presented by
numbers on the right) is expressed by the relative half bandwidth, that is, half width of prediction interval of viable cell density at the last
time point of each scale, describing how many deviation from the predicted value is expected. The prediction was performed given data from
shake flask scales (six diagrams above) and from data of another cultivation from the same campaign in the same bioreactor scale (six

diagrams below)
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scale data (SF1.1‐SF4.3). This means that the posterior 1

distributions of the model parameters (compare with Figure 2)

were used for prediction. The six diagrams in Figure 3 (below)

show the prediction based on the updated information, based on

shake flask data and another cultivation from the same campaign

in the same bioreactor scale (here R1.3, 40 L). This means that the

posterior 2 distributions (compare with Figure 2) were used for

prediction. In both cases the starting concentration values were

varied according to the coefficients of variation, presented in

Table 3.

It can be seen comparing the six diagrams above and below in

Figure 3, that especially for viable cell density Xv as well as for

total cell density Xt the amount of uncertainty, represented by the

width of the prediction band, is reduced significantly meaning that

the precision is increased. At the last point in time (hour 92 on

the x‐axis) the relative half bandwidth (compare with Section 2.6)

was reduced from 45% to 28% for Xv . It should be noted that only

one additional dataset containing five measurements per quantity

were considered here. In terms of prediction accuracy both

predictions are showing high scores, in both scenarios at least

90% of the test data are falling within the 90%‐prediction band

and the relative deviation between predicted and experimental

data is 6%.

3.3.2 | Prediction performance of a single
bioreactor scale

The impact of available information on prediction performance

of three single bioreactor scales (N‐3 : 40 L, N‐2 : 320 L, and N‐1 :

2,160 L) was investigated for 10 seed trains comprising these

bioreactor scales. The labels used in this section are listed in Table 1.

Prediction of a single bioreactor based on information from shake

flask data, which was expressed by the corresponding model

parameter distributions (compare with posterior 1 in Figure 2), lead

to the results presented in the first column (SF) of Table 4, whereby

the entries correspond to the averaged values, determined from

investigation of datasets R1.11,… , R1.20 (reactor scale 1, 40 L),

R2.11,… , R2.20 (reactor scale 2, 320 L) and R3.11,… , R3.20 (reactor

scale 3, 2,160 L).

To investigate the impact of information from bioreactor scales of

other seed trains, 10 seed trains ST1,…, ST10 were used as training

data and seed trains ST11,… , ST20 as test data, whereby only one

out of 10 seed train bioreactor scales was considered at a time

(e.g., information from bioreactor R1.1 [40 L] of ST1 was used for

prediction of bioreactor scale R1.11 [40 L] of ST11, then information

from R2.1 [320 L] of ST1 was used for prediction of R1.11 [40 L] of

ST11 etc.). This way, every combination of training and test data

concerning scales was performed and investigated 10 times. The

corresponding averaged results concerning precision and accuracy of

prediction are shown in the columns 2–4 (BR1, BR2, and BR3) of

Table 4.

It should be noted that no scale up parameters were considered

within the underlying model, although differences in cell growth at

different bioreactor scales were not excluded. In addition, process

variability due to biological variability (“batch‐to‐batch variability”)

was expected. But such differences or variabilities would be

expressed by corresponding changes in model parameter distribu-

tions (e.g., by the increase or decrease of the average maximum

growth rate), as soon as respective data would be included for

updating parameter distributions. These aspects will be discussed

later on based on the presented findings.

Several aspects concerning propagation of uncertainty as well as

prediction accuracy become apparent from the results presented in

Table 4. Prediction of single bioreactor scales, only based on shake

flask scale data was possible showing relative errors not exceeding

15% (for Xv) and 10% (in total), concerning predictions based on the

Bayes estimator (MAP estimator, see Section 2.5). At least 88% (in

case of Xv) and 91% (in total) of the test data are falling within the

90% prediction band. Nevertheless, predictions include between 34%

and 44% of uncertainty (represented by the relative half bandwidth).

The inclusion of information from one bioreactor scale of another

seed train bioreactor of the same campaign led to a reduction of

predictive uncertainty (=increased precision) to 22–29% relative half

bandwidth.

In terms of prediction accuracy, what stands out most is that

predicting a bioreactor scale 1, a significantly higher accuracy was

reached if another bioreactor scale 1 dataset was used for training

TABLE 4 Results of predictions of single bioreactor scales
concerning precision and accuracy

Training scale used for updating

Predicted
scale SF BR 1 BR 2 BR 3

Previous
scale

Half bandwidth (%)

BR 1 44 26 29 29 –

BR 2 35 22 23 23 21

BR 3 34 21 23 22 23

Within band score for Xv (in total; %)

BR 1 92 (94) 94 (92) 78 (87) 87 (89) –

BR 2 100 (92) 95 (88) 91 (90) 95 (89) 100 (90)

BR 3 88 (91) 66 (79) 78 (83) 83 (85) 88 (93)

Rel. error for Xv (in total; %)

BR 1 15 (10) 7 (8) 14 (10) 13 (10) –

BR 2 7 (9) 5 (8) 7 (8) 6 (8) 5 (8)

BR 3 8 (9) 11 (10) 9 (9) 8 (9) 9 (8)

Note: As a measure for precision the relative half bandwidth for viable cell

density before transfer was computed (low percentage, less uncertainty

and therefore high precision) and as measures of accuracy the within

band score and the rel. error were computed and presented in %, both for

Xv and in total, meaning averaged over all six variables (viable and total

cell concentration Xv and Xt, concentration of glucose cGlc, glutamine cGln,

lactate cLac, and ammonia cAmm). The following scales were used for

training: Shake flasks (SF), shake flasks and another bioreactor scale (BR

1, BR 2 or BR 3), the previous bioreactor scale of the same cultivation

(Previous scale).
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(see row 7 [BR 1] in Table 4). This indicates that there are sometimes

small effects when cells are passaged from shaken conditions to

stirred conditions (here this happens between shake flak scales and

bioreactor scale 1). Prediction of a bioreactor scale 2 instead shows a

high accuracy (rel. error: 5–8%, within band score 88–95%)

independently of which bioreactor scale was used for training or

even if information from shake flaks scales was used. Prediction of a

bioreactors scale 3 turned out to perform best if another bioreactor

scale 3 or even shake flask scales were used for training but also

good results were reached if another bioreactor scale 2 was

considered. A brief posterior analysis (after analyzing prediction

performance) revealed a lower cell growth on average in reactor

scale 1 compared with reactor scale 3, which was expressed by

corresponding probability distributions.

This predictive performance has been further improved by using

the information from the previous scale of the running cultivation to

update the posterior distributions of model parameters one more

time (see Table 4, last column). Predicting bioreactor scale 2, 100%

(in case of Xv) and 90% (in total) of the test data are falling within the

90% prediction band which was reduced to 21% relative half

bandwidth and the relative error states 5% (for Xv) and 8% in total.

Predicting bioreactor scale 3, 88% (in case of Xv) and 93% (in total) of

the test data are falling within the 90% prediction band which was

reduced to 23% relative half bandwidth and the relative error states

9% (for Xv) and 8% in total. These results reveal that batch‐to‐batch
variability can be considered by adaption of model parameter

distributions through Bayesian updating. It hast to be mentioned

that for each Bayesian update, only 4–5 measurements per quantity

of a training dataset were used as additional information. It is

expected that by adding more process data describing similar cell

growth, the amount of predictive uncertainty decreases further. On

the other hand, less measurement uncertainty would also lead to less

uncertainty in the models outcome, because input uncertainty is

propagated to uncertainty in the outcomes.

3.4 | Prediction of seed trains

In the previous sections it has been shown how single bioreactors

could be predicted and how these predictions could be updated

integrating information from additional data via Bayesian updating.

Now, the complete bioreactor part of the seed train, comprising

three consecutive bioreactor scales (40, 320, and 2,160 L) before the

production bioreactor, is predicted. It should be noted, that in

addition to the already considered sources of uncertainty (in model

parameters and initial concentrations) uncertainty in the passaging

process, which can be caused by different reasons like unknown

volume when flushing the sampling valve or deviation of actual

substrate concentration in the medium from the intended value (e.g.,

in case of glutamine in media), must be considered for the prediction

of more than one seed train scale. This uncertainty was estimated

evaluating the passaging processes of four seed trains (used as

training data). In a first step, an exemplary seed train prediction, only

based on small shake flask scale data will be illustrated. Afterwards,

prediction performance is evaluated, taking further data from

bioreactor scales into account.

3.4.1 | Seed train prediction based on shake flask
data—Example and performance

A seed train prediction, only based on small scale shake flask data

and considering the above‐mentioned sources of uncertainty is

illustrated as an example in Figure 4 (top left). Predictive time

profiles, based on initial concentrations at reactor scale 1 and

parameter distributions derived from small scale data, are illustrated

as solid lines and 90% prediction bands composed of 90% prediction

intervals at each considered point in time are illustrated by dashed

lines. After seed train prediction (of ST13) the corresponding

experimental data (test data) were considered for evaluation of the

prediction concerning accuracy. It has to be mentioned that as points

in time for cell passaging the experimentally realized points in time

for passaging were applied, due to the comparability. In practice the

point in time for cell passaging is often performed according to a

specified strategy, for example, based on a minimum transfer cell

density.

This seed train prediction leads to high accuracy (100% of the

test data fall within the prediction band and the relative deviation

between experimental data and predicted values yields 11%), but a

low precision (the relative half bandwidth yields 65%). Considering

the results of the prediction of single bioreactor scales, this results

for seed train prediction can be improved as described below, where

information from another seed train cultivation and as soon as

available information from the previous scale of the running

cultivation is used for the future predictions (see Subsection 3.4.2).

3.4.2 | Optimized seed train prediction through
Bayesian updating

While in the last subsection prediction performance of seed train

prediction based on the information from shake flask data was

presented, here it was investigated how prediction performance

changes, when new data (of the current cultivation) are collected and

used to update model parameter distributions. By this, prediction for

seed trains composed of three large bioreactor scales was performed

stepwise:

I) Time profiles for reactor scale 1 (40 L), 2 (320 L), and 3 (2,160 L)

were predicted based on the initial concentrations of reactor scale 1

and parameter distributions of a training dataset (data from reactor

scales 1, 2, and 3 of another seed train of the same campaign). II)

After running reactor scale 1, time profiles for reactor scale 2 and 3

were updated using the initial concentrations of reactor scale 2 and

updated posterior parameter distributions using information from

the previous (reactor) scale 1. III) After running reactor scale 2, time

profiles for bioreactor scale 3 were updated, using the initial

concentrations of reactor scale 3 and updated posterior distributions

of the previous reactor scale 2.
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The optimized prediction of an exemplary seed train is also

illustrated in Figure 4. Time profiles for all six state variables, viable

and total cell concentration, Xv and Xt, concentration of glucose cGlc,

glutamine cGln, lactate cLac, and ammonia cAmm, were predicted at the

beginning of the seed train (top right), after collecting data from scale

1 (bottom left), and after collecting data from scale 2 (bottom right).

Here again, predictive time profiles are shown by solid lines, and 90%

prediction bands are illustrated by dashed lines. The corresponding

precision and accuracy values are shown in Table 5, row 3 (ST13).

It can be seen that the prediction uncertainty for the remaining

“future” time span is reduced (from 42% to 24% half bandwidth, see

Table 5, row 3) after each update step indicated by narrow prediction

bands (in the Figure, the “past” is shown in light gray, the “future” in the

dark gray). Also notable is the fact that the high accuracy (within band

score 96% in total [i.e., concerning all six variables] and 92% for Xv [i.e.,

concerning only viable cell density]) and rel. error of 10% in total and

7% for Xv , achieved for the prediction of bioreactor scale 1, 2, and 3 has

been further improved by updating after cultivation of each scale.

After two updating steps the within band score yielded 100% for

Xv and 96% in total and the rel. error yielded 1% for Xv and 5% in

total (see also Table 5, ST 3).

Following the same procedure, 10 seed trains (from six different

campaigns) were predicted, each based on one seed train used as

training data (e.g., ST11 was predicted based on information

F IGURE 4 Prediction of an exemplary seed train, that is, three consecutive bioreactor scales of 40, 320, and 2,160 L for the six state
variables, viable and total cell concentration Xv and Xt, concentration of glucose cGlc, glutamine cGln, lactate cLac, and ammonia cAmm, for four

scenarios: Only based on initial concentrations at reactor scale 1 (40 L) and posterior parameter distributions from shake flask scales (top left);

based on initial concentrations at reactor scale 1 and posterior parameter distributions from another seed train (top right); based on initial
concentrations at reactor scale 2 or 3 and including parameter distributions from the previous reactor scale (bottom left, bottom right)
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from ST1 and so on) and updated as soon as data from one scale of

the current cultivation were available. The corresponding results

concerning prediction performance are presented in Table 5.

Application of Bayesian updating led to significant narrowing of the

prediction, meaning a reduction of uncertainty, while reaching or

maintaining a high prediction accuracy. The amount of uncertainty

concerning relative half bandwidth was reduced from 41% to 31% on

average after a Bayesian update step using process data of the

previous scale 1 for prediction of scale 2 (see last row “Mean” of

Table 5). This uncertainty was further reduced to 21% on average

after a Bayesian update step using process data of the previous

scale 2. This improvement of precision was achieved without a loss of

accuracy, because at least 90% (for Xv) and 87% (in total) of the test

data were falling within the prediction band, while the rel. error has

been even decreased from 13% to 8% (for Xv) and from 15% to 9% (in

total) on average over 10 seed trains.

Nevertheless, the results show that not all seed trains could be

predicted well only based on the information (updated parameter

distribution) from another randomly sampled seed train as this is

the case for seed train 17 (ST17) which was predicted based on

information of ST7 (see row 4, ST17, first column of within band

score and first column of relative error in Table 5). This can occur

due to batch‐to‐batch variability. A brief posterior analysis (after

investigation of prediction performance) revealed that variabilities

between the cultivations (batches [here between ST7 and ST17]) are

sometimes bigger than the already mentioned variability between

reactor scale 1 and the other scales (compare with Section 3.3.2).

When this occurred this was taken into account by a Bayesian

updating step using data from the ongoing seed train. The presented

results show that this way, an improvement of prediction

performance was achieved. Considering for example seed trains

ST17 and ST18, the rel. error concerning all six variables was reduced

from 22% to 12% and from 20% to 10% respectively, after two

updating steps.

It should be noticed that in this contribution only few datasets

were used for the Bayesian updating steps, because it was intended

to illustrate every step and to show the corresponding changes to

visualize the impact of the available information. Often, there are

more datasets available in practice, which could be used for further

updating steps, leading possibly to less predictive uncertainty in

case of consistent cultivations. Apart from that, the knowledge

about predictive uncertainty (which reflects the propagated

uncertainty due to input uncertainties) is highly relevant, even

though it is not as small as desired. It can help to find out where the

process could fail or be improved (e.g., uncertainty would decrease

if less uncertainty in measurements or variability in the passaging

process could be assured). Using Bayesian parameter estimation

and Bayesian updating as presented in this work it could

furthermore be investigated, to which amount predictive uncer-

tainty would decrease if input uncertainty would be decreased to a

certain amount.

4 | CONCLUSION

In this contribution, the application of a Bayesian approach for

parameter estimation and prediction of an industrial cell culture

seed train, enabling the integration of prior knowledge and the

consideration of uncertainty, is presented. Subject of investigations is

the bioreactor part of an industrial CHO cell culture seed train

TABLE 5 Prediction performance of 10 optimized seed train predictions, (three consecutive bioreactor scales of 40 [R1], 320 [R2], and
2,160 L [R3]), based on one seed train for training each

Seed train

Within band score (%) for Xv (in total) (high

values desired)

Rel. error (%) for Xv (in total) (low values

desired)

Half bandwidth (%) for Xv (low values

desired)

I) R1‐R3 II) R2‐R3 III) R3 I) R1‐R3 II) R2‐R3 III) R3 I) R1‐R3 II) R2‐R3 III) R3

ST 11 85 (91) 100 (92) 75 (75) 15 (14) 4 (10) 10 (9) 42 31 21

ST 12 100 (87) 100 (88) 100 (83) 5 (13) 11 (15) 8 (12) 41 31 20

ST 13 92 (96) 100 (98) 100 (96) 7 (10) 8 (9) 1 (5) 42 32 24

ST 14 77 (82) 63 (79) 75 (79) 17 (18) 13 (14) 13 (10) 39 29 23

ST 15 100 (90) 100 (94) 100 (100) 8 (15) 2 (11) 3 (5) 42 31 24

ST 16 100 (94) 100 (92) 100 (95.8) 6 (10) 9 (11) 4 (7) 39 32 25

ST 17 69 (86) 75 (79) 75 (83) 33 (22) 17 (17) 17 (12) 44 31 23

ST 18 85 (78) 100 (90) 100 (83) 14 (20) 10 (14) 10 (10) 43 31 23

ST 19 100 (96) 100 (87) 100 (87) 19 (16) 9 (14) 3 (11) 40 30 20

ST 20 100 (100) 100 (94) 75 (83) 7 (10) 6 (9) 8 (8) 38 28 21

Mean 91 (90) 94 (89) 90 (87) 13 (15) 9 (12) 8 (9) 41 31 21

Note: Within band score and rel. error only for Xv and in total (viable and total cell concentration Xv, Xt, concentration of glucose cGlc, glutamine cGln,

lactate cLac, and ammonia cAmm); relative half bandwidth of prediction interval at last point in time for Xv.

I) Predictions based on initial concentrations at R1 and on posterior parameter distributions from another R1 cultivation of the same campaign.

II) Prediction after running R1 and update using initial concentrations of R2 and posterior parameter distributions of R1 for prediction of R2.

III) Prediction after running R2 and update using initial concentrations of R3 and posterior parameter distributions from previous scales.
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comprising three consecutive bioreactor scales (40, 320, and 2,160 L

filling volume) under consideration of shake flask experiments under

equal cultivation conditions.

It has been shown that Bayesian parameter estimation,

performed using MCMC simulations, in combination with a mechan-

istic model, describing the time profiles of viable and total cell density

as well as concentrations of glucose, glutamine, lactate, and ammonia,

is a suitable statistical method for seed train prediction. It provides

the capability of propagating information content (including input

uncertainty) provided by prior knowledge and experimental data to

prediction uncertainty, expressed by predictions intervals. This way,

process relevant decisions can be made based on probabilities of

certain events. It should be noted that the same mechanistic model

was applied for all scales, from shake flask scales to large bioreactor

scales (up to 2,160 L filling volume). It became apparent that despite

batch‐to‐batch variability (e.g., due to biological variability) a high

predictive accuracy can be reached, by taking data of the running

seed train cultivation into account performing Bayesian updating.

This approach provides various practical advantages concerning

applications within the field of bioprocessing. One potential

advantage is the capability of the design of robust and optimal seed

train protocols, saving experimental work by using prior knowledge

(which is currently subject of investigation). Besides, the transfer

from one plant to a similar plant can be supported. Furthermore,

prediction of running processes can be used for feed‐forward control

strategies (e.g., prediction of points in time for cell passaging that

can be based on viable cell density) or for the development of soft

sensors (predicting variables which are difficult to measure).

NOMENCLATURE

α shape parameter of gamma distribution

λ rate parameter of gamma distribution

μ cell‐specific growth rate [hr−1]

dμ cell‐specific death rate [hr−1]

d,minμ minimum cell‐specific growth rate [hr−1]

d,maxμ maximum cell‐specific growth rate [hr−1]

σ standard deviation

aLag correction factor for lag phase

cAmm ammonia concentration [mmol/L]

cGlc glucose concentration [mmol/L]

cGln glutamine concentration [mmol/L]

cLac lactate concentration [mmol/L]

cv coefficient of variation

FGlc glucose feeding rate [L/hr]

FGln glutamine feeding rate [L/hr]

FSample sampling rate [L/hr]

kAmm correction factor for ammonia uptake [–]

kGlc monod kinetic constant for glucose uptake [mmol/L]

kGln monod kinetic constant for glutamine uptake [mmol/L]

KLys cell lysis constant [hr−1]

KS,Glc monod kinetic constant for glucose [mmol/L]

KS,Gln monod kinetic constant for glutamine [mmol/L]

PAT process analytical technology

qAmm cell‐specific ammonia production rate [mmol·L−1·hr−1]

qAmm,uptake cell‐specific ammonia uptake rate [mmol·L−1·hr−1]

qLac cell‐specific lactate production rate [mmol·L−1·hr−1]

qGlc cell‐specific glucose uptake rate [mmol·L−1·hr−1]

qGlc,max maximum cell‐specific glucose uptake rate

[mmol·L−1·hr−1]

qGln cell‐specific glutamine uptake rate [mmol·L−1·hr−1]

qGln,max maximum cell‐specific glutamine uptake rate

[mmol·L−1·hr−1]

qLac,max cell‐specific lactate production rate [mmol·L−1·hr−1]

qLac,uptake cell‐specific lactate uptake rate [mmol·L−1·hr−1]

t time [hr]

tLag duration of lag phase [hr]

Xt total cell density [cells/L]

Xv viable cell density [cells/L]

y concentration values in general (data)

y0 initial concentration values

YAmm Gln∕ kinetic production constant (stoichiometric ratio of

ammonia production and glutamine uptake) [–]

YLac Glc∕ kinetic production constant (stoichiometric ratio of

lactate production and glucose uptake) [–]
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