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Abstract

In nonlinear dynamical systems the determination of stable and unstable periodic orbits as part of phase space prediction is prob-
lematic in particular if perturbed by noise. Fourier spectra of the time series or its autocorrelation function have shown to be of
little use if the dynamic process is not strictly wide-sense stationary or if it is nonlinear. To locate unstable periodic orbits of a
chaotic attractor in phase space the least stable eigenvalue can be determined by approximating locally the trajectory via linearisa-
tion. This approximation can be achieved by employing a Gaussian kernel estimator and minimising the summed up distances of
the measured time series i.e. its estimated trajectory (e.g. via Levenberg-Marquardt). Noise poses a significant problem here. The
application of the Wiener-Khinchin theorem to the time series in combination with recurrence plots, i.e. the Fourier transform of
the recurrence times or rates, has been shown capable of detecting higher order dynamics (period-2 or period-3 orbits), which can
fail using classical Fourier-based methods. However little is known about its parameter sensitivity, e.g. with respect to the time
delay, the embedding dimension or perturbations.

Here we provide preliminary results on the application of the recurrence time spectrum by analysing the Hénon and the Rössler
attractor. Results indicate that the combination of recurrence time spectra with a nonlinearly filtered plot of return times is able to
estimate the unstable periodic orbits. Owing to the use of recurrence plot based measures the analysis is more robust against noise
than the conventional Fourier transform.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

The detection of periodicity and associated limit cycles is one key element in describing a structure’s dynamic
behaviour for reasons of stability and control [1,2]. Often a look at the power spectrum (or other Fourier transform-
based applications) is sufficient. However, in nonlinear systems, a classical Fourier analysis does often not provide all
information as clearly as required, in particular if the data are noisy and if only short time series are available [3]. Real
life nonlinear system behaviour is often related to instabilities which are, however, manifold and can be encountered in
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many technical applications as well as in nature including electrical and in mechanical systems (pulsed lasers [1]), in
electronic meta-materials [4], thin, elastic structures [5,6], friction-induced vibrations [7–9]), or in biology, chemistry
or geology (e.g. population dynamics of predator-prey relationships [10], stirred tank reactors [11]). In practical
applications, random additive and/or multiplicative noise (higher dimensional dynamics) can couple to the dynamics
and may change its time evolution [12–14].

For proof of concepts studies simplified analytical benchmark systems in form of nonlinear algebraic equations
(e.g. Logistic map, Hénon map) or nonlinear differential equations (e.g. Rössler or Lorentz system) are commonly
employed of [2]. Unique mathematical measures or invariants are sought which describe the complex dynamics. An
important type of invariant subset is that of an unstable periodic orbit (UPO). However, its quantification is inherently
difficult.

Dominant UPOs can be used to represent the skeleton of an attracting invariant set the chaotic attractor[15,16].
This skeleton could then be used, as suggested by Gilmore and LeFranc in 2002 [16] to calculate other invariant
measures such as linking numbers or rotation rates and combined with other classical invariants (dimension estimates,
Lyapunov exponents) to generate a template as blue print of the dynamics.

Pierson and Moss used a periodically forced Van der Pol oscillator and a bistable, first order time delay system with
noise [15] to determine the presence of UPOs. However, only statistical estimators were used to determine whether
UPOs are actually present, neither the locations, nor the frequencies, nor the recurrence times of the UPOs were
provided [15]. Schmelcher and Diakonos [17] used Voronoi diagrams to detect UPOs in low-dimensional chaotic
systems, however, without considering noise, an essential requirement for the analysis of real-life data [1,14,15].
Relatively novel is the approach to quantify invariant sets based on the analysis of recurrent states in dynamical
systems by using recurrence plots (RP) [18] and their quantification measures [19].

In 2007 Zbilut and Marwan have shown using the Wiener-Khinchin theorem that the power spectrum of recurrent
lines in a RP (recurrence rate spectrum) is equivalent to the classical power spectrum but better suited to detect higher
order harmonics of nonlinear dynamical systems [3]. Complementary to this study we test whether the recurrence
rate spectra and recurrent times probabilities can be used to retrieve information about unstable periodic orbits of the
noisy Hénon or Rössler system.

2. Models and Methods

Models. The Hénon map and the Rössler attractor [2] are employed here. The Hénon attractor is calculated using

(a) Xi+1 = 1 − aX2
i + Yi, and (b) Yi+1 = bXi (1)

with initial values of X0 = 0.2, Y0 = 0.2, and b = 0.3. Two vectors (X,Y) of length n = 5, 000 are generated (sampling
frequency of one cycle per iteration). The first 2,000 samples are discarded as they could represent transient states
[20]. The parameter a is used to control the system to obtain either period−1 (a = 0.9), period−2 (a = 1.0), period−4
(a = 1.035), or chaotic (a = 1.4) dynamics.

The Rössler system [2] is calculated using

(a)
dx1

dt
= −x2 − x3 , (b)

dx2

dt
= x1 + αx2 and, (c)

dx3

dt
= β + x3(x1 − γ). (2)

with the parameters α = 0.2, β = 0.2 and either γ = 2.5 (period−1), γ = 3.3 (period−2), γ = 4.0 (period−4), or
γ = 7.5 (chaotic regime) [2]. As initial values [x1(0), x2(0), x3(0)] = [14.5, 0, 0.1] are taken; the oscillation frequency
is about 1

2π [21]. The Rössler system of ordinary differential equations (ODEs) is solved for 10 s (time steps of 1E-2
s resolution) using Matlab’s ode45 by setting the relative and absolute tolerance to 1E-5. The first 75, 000 samples
are cut off to remove transients and the following16,000 samples are sampled down to 25 Hz. Each time series is
normalised with the maximum absolute amplitude found within the four different dynamic regimes of the Rössler
system and multiplied by 0.762, the maximum amplitude found in the Yi component of the Hénon attractor.

As surrogate model for real-life data an observable X̃n which is contaminated with additive, uniformly white noise
(wn ∈ [0, 1]) is generated (cf. [13,14]). The noise level (power of 0 dB relative to 1 W) is weighted with p

X̃ = X + p · wn ◦ 1 (3)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.046&domain=pdf
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For proof of concepts studies simplified analytical benchmark systems in form of nonlinear algebraic equations
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difficult.
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UPOs are actually present, neither the locations, nor the frequencies, nor the recurrence times of the UPOs were
provided [15]. Schmelcher and Diakonos [17] used Voronoi diagrams to detect UPOs in low-dimensional chaotic
systems, however, without considering noise, an essential requirement for the analysis of real-life data [1,14,15].
Relatively novel is the approach to quantify invariant sets based on the analysis of recurrent states in dynamical
systems by using recurrence plots (RP) [18] and their quantification measures [19].

In 2007 Zbilut and Marwan have shown using the Wiener-Khinchin theorem that the power spectrum of recurrent
lines in a RP (recurrence rate spectrum) is equivalent to the classical power spectrum but better suited to detect higher
order harmonics of nonlinear dynamical systems [3]. Complementary to this study we test whether the recurrence
rate spectra and recurrent times probabilities can be used to retrieve information about unstable periodic orbits of the
noisy Hénon or Rössler system.
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(a) Xi+1 = 1 − aX2
i + Yi, and (b) Yi+1 = bXi (1)

with initial values of X0 = 0.2, Y0 = 0.2, and b = 0.3. Two vectors (X,Y) of length n = 5, 000 are generated (sampling
frequency of one cycle per iteration). The first 2,000 samples are discarded as they could represent transient states
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The Rössler system [2] is calculated using

(a)
dx1

dt
= −x2 − x3 , (b)

dx2

dt
= x1 + αx2 and, (c)

dx3

dt
= β + x3(x1 − γ). (2)

with the parameters α = 0.2, β = 0.2 and either γ = 2.5 (period−1), γ = 3.3 (period−2), γ = 4.0 (period−4), or
γ = 7.5 (chaotic regime) [2]. As initial values [x1(0), x2(0), x3(0)] = [14.5, 0, 0.1] are taken; the oscillation frequency
is about 1

2π [21]. The Rössler system of ordinary differential equations (ODEs) is solved for 10 s (time steps of 1E-2
s resolution) using Matlab’s ode45 by setting the relative and absolute tolerance to 1E-5. The first 75, 000 samples
are cut off to remove transients and the following16,000 samples are sampled down to 25 Hz. Each time series is
normalised with the maximum absolute amplitude found within the four different dynamic regimes of the Rössler
system and multiplied by 0.762, the maximum amplitude found in the Yi component of the Hénon attractor.

As surrogate model for real-life data an observable X̃n which is contaminated with additive, uniformly white noise
(wn ∈ [0, 1]) is generated (cf. [13,14]). The noise level (power of 0 dB relative to 1 W) is weighted with p

X̃ = X + p · wn ◦ 1 (3)
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so that in the Welch power spectrum estimate of the period−4 regime all subharmonics would lie within the noise
floor (p = 0%, p = 1% and p = 10% or 25% for the Hénon map and the Rössler system). In equation 3, ◦ represents
the Hadarmard product; 1 is a vector which contains only ones.

Methods. To visualise the effect of noise on (un)stable periodic orbits, the trajectory in phase space is plotted and
data is described using histograms. From the original data of the Hénon map 2D histograms (55 bins) are generated.
For the Rössler attractor the minimum and maximum phase space diameter in each direction are segmented into
60 × 60 × 60 cubic neighbourhoods to determine the relative frequency of occurrence of a trajectory meeting these
areas/volumes. The seven largest relative frequencies were identified and their centre coordinates were mapped back
onto the original attractor. This statistical approach delivers relative frequencies and showcases the effect of noise on
unstable periodic orbits (cf. Supplementary Information, SI).

However, in real life situations, usually single measurements are obtained and it is sought to reconstruct the phase
spacing using reconstruction techniques. Therefore, a single component is chosen as observable X̃; Welch’s power
spectral densities with and without noise (n = 4, 000 samples) are estimated [3] (window size 2,048 samples, overlap
of 50%, 2, 047 FFT lines). Delay vectors X̃ are generated by determining a (i) time delay τ and (ii) an embedding
dimension m which are calculated using the averaged cross-mutual information and the false nearest neighbour algo-
rithm [1,2]. With these embedding parameters a recurrence matrix can be setup,

R(i, j) = Θ(ε − ||X̃(i) − X̃( j)||) ∈ {0, 1}, for ∀i, j = 1...N (4)

Here, R(i, j) stands for one single element in the recurrence matrix, Θ describes the Heavyside function andX̃(i) =
Xi represents a component of the delay-embedded state space vector, with X̃( j) = Xj = X̃(i + τ) being delay vectors
with ε as arbitrary threshold value. The neighbourhood size ε is chosen as a fraction of the maximum phase space
diameter (D) [19].

The Hénon system without noise with period−1, the period−2, the period−4 and chaotic dynamics was embedded
in a phase space of dimension m = 2, 2, 2, 2 and a delay of τ = 1, 1, 1, 6 (with noise m = 7, 7, 7, 7, τ = 1, 1, 1, 8).

For the noise-free case we chose ε to be 1.5% and 25% if noise was considered. For the period−1, period−2,
period−4 and chaotic dynamics of the noise-free Rössler system we estimated m = 2, 2, 2, 3 and τ = 136, 152, 136, 152
(ε = 7.5%); with noise the embedding parameters changed to m = 7, 7, 7, 7 and τ = 136, 144, 144, 152 (ε = 50%).
For the calculation of the recurrence rate we used moving windows of length l = 4 and l = 300 for the Hénon and the
Rössler system, respectively.

For correctly embedded dynamics, a recurrence plot displays patterns of diagonals with rather few vertical or
horizontal line structures [19]. Diagonal lines correspond to recurrent dynamical states, whereas vertical lines indicate
trapped dynamics. In case the maximum norm ||·||∞ is used as distance function, the recurrence plot matrix is quadratic.
From line structures in the RP, histograms and quantification measures are estimated. Here we use the recurrence rate
(RR: density of recurrent states in a recurrence plot ∝ probability that a certain dynamic state repeats itself) and the
mean recurrence time (RT: mean time between recurrent states) which are calculated as

(a) RR =
1

N2

N∑
i, j

R(i, j), and (b) RT = f rac
N∑

k=1

kp(k)
N∑

k=1

p(k), (5)

with N being the length of the trajectory, p(k) being the mean of the vertical lines of length k [22]. To generate RT
the observation vector is divided into shorter segments of length L for which each ML is calculated. Here L = N is
chosen so that the period can be exactly determined and a bar diagram can be generated. Using the neighbourhood
criterion, close-by trajectories are captured as recurrent states and rather the probability of capturing a certain state is
estimated via its relative frequency.

The signal’s power is calculated using a FFT according to [3] considering the average squared distances and linking
them over the auto-covariance function to the power spectral density (details [3] & SI). The contamination with noise
is however only a first test on performance of the recurrence plot based measures compared to the classical power
spectra; in a realistic situation the observable might noisy and filtering is required. Therefore we use the nonlinear
filter filtering algorithm ghkss [1] which is based on projecting the dynamics on a low dimensional manifold which
houses the attracting set and thereby correcting the coordinates by retracting the measurement points onto the true
trajectory, cf. [23].
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3. Results

In case of the Hënon map a contamination with 1% noise makes it already very difficult to localise the first three
dominant UPOs and their coordinates, and becomes impossible for noise levels greater than 5% (see SI Fig. 1 & 2).
However, using recurrence plot based measures show encouraging results up to the maximum noise level of 10%: in
the RR spectrum the dominant frequencies are still visible and the probabilities of the RT of ’true’ UPOs remain the
highest.

1

Fig. 1. Frequency of occurrence relative to the maximum value of the Rössler attractor within the (a-c) period−1 regime (γ = 2.5) and the (d-f)
chaotic regime (γ = 7.5); (a, d) 0%, (b, e) 1%, and (c, f) 25% noise are added; dominant periodic orbits, if identified, are marked and numbered

Figure 1 shows the histograms of the period−1 and the chaotic dynamics of the Rössler system with 0%, 1% and
25% noise. The periodic orbit (period−1 regime, upper row) is easily identified in the noise-free case, but already with
1% noise, the trajectory becomes blurry and the calculation of relative frequencies (similar to box counting) does not
help much anymore. A similar picture is given for the chaotic dynamics (lower row of subfigures); in the noise-free
case only the first two dominant unstable periodic orbits can be distinguished, as soon as noise is added, it becomes
visibly hard to extract information by merely using relative frequencies.

Fig. 2 depicts the time series, Welch’s power spectrum estimate, the recurrence spectrum and the probability of re-
currence times for period−1, period−2, period−4 and chaotic dynamics of the noise-free and 25% noise-contaminated
Rössler system. The spectra (a2 - d2) are significantly lifted up due to noise which adds energy to the system, making
it hard to see the subharmonics in the Welch spectrum, which is not the case for the recurrence spectrum (a3 - d3).

In Fig. (a4 - d4) the probability of recurrence times are depicted: the noise free case clearly shows the dominant
UPO having the largest probability, however if the time trace is contaminated with 25% no UPOs are distinguishable
anymore. The reason for that lies in the ε which was kept constant at about 0.25% of D: contrary to the Hénon map,
the trajectories move very close to each other and diverge rendering an adaptive neighbourhood more suitable (e.g.
fixed amount of neighbours [19]).

However, for the chaotic case the dominant unstable periodic orbit is still picked up with a return time of 5.25 s
whereas the second unstable periodic orbit returns at about 10.04 s (Fig. 2(d4)); both of these frequencies are also
visible in the recurrence spectrum below a newly emerging major peak of at about 20 Hz but less clearly visible in its
associated Welch spectrum ((b4 and c4).

Contamination with noise does not necessary allow us to reliably identify more than two unstable periodic orbits
as shown for the map and the continuous system. It is therefore suggested here to nonlinearly filter the signal ([1,14,
23]) to see whether after filtering some of the old properties of the recurrence rate spectrum or the recurrence time
probability can be recovered. The Rössler attractor with 25% noise has been chosen as a worst case scenario, with
results being depicted in Fig. 3. The dynamics were embedded within a phase space of dimension m = 7, delay
τ = 30, and projected onto an attractor of dimension q = 3 within five iterations.

Fig. 3 depicts four different plots with the (a) time trace, (b) the Welch spectrum, (c) the recurrence spectrum,
and(d1-d3) the recurrence time plots.
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spacing using reconstruction techniques. Therefore, a single component is chosen as observable X̃; Welch’s power
spectral densities with and without noise (n = 4, 000 samples) are estimated [3] (window size 2,048 samples, overlap
of 50%, 2, 047 FFT lines). Delay vectors X̃ are generated by determining a (i) time delay τ and (ii) an embedding
dimension m which are calculated using the averaged cross-mutual information and the false nearest neighbour algo-
rithm [1,2]. With these embedding parameters a recurrence matrix can be setup,

R(i, j) = Θ(ε − ||X̃(i) − X̃( j)||) ∈ {0, 1}, for ∀i, j = 1...N (4)

Here, R(i, j) stands for one single element in the recurrence matrix, Θ describes the Heavyside function andX̃(i) =
Xi represents a component of the delay-embedded state space vector, with X̃( j) = Xj = X̃(i + τ) being delay vectors
with ε as arbitrary threshold value. The neighbourhood size ε is chosen as a fraction of the maximum phase space
diameter (D) [19].

The Hénon system without noise with period−1, the period−2, the period−4 and chaotic dynamics was embedded
in a phase space of dimension m = 2, 2, 2, 2 and a delay of τ = 1, 1, 1, 6 (with noise m = 7, 7, 7, 7, τ = 1, 1, 1, 8).

For the noise-free case we chose ε to be 1.5% and 25% if noise was considered. For the period−1, period−2,
period−4 and chaotic dynamics of the noise-free Rössler system we estimated m = 2, 2, 2, 3 and τ = 136, 152, 136, 152
(ε = 7.5%); with noise the embedding parameters changed to m = 7, 7, 7, 7 and τ = 136, 144, 144, 152 (ε = 50%).
For the calculation of the recurrence rate we used moving windows of length l = 4 and l = 300 for the Hénon and the
Rössler system, respectively.

For correctly embedded dynamics, a recurrence plot displays patterns of diagonals with rather few vertical or
horizontal line structures [19]. Diagonal lines correspond to recurrent dynamical states, whereas vertical lines indicate
trapped dynamics. In case the maximum norm ||·||∞ is used as distance function, the recurrence plot matrix is quadratic.
From line structures in the RP, histograms and quantification measures are estimated. Here we use the recurrence rate
(RR: density of recurrent states in a recurrence plot ∝ probability that a certain dynamic state repeats itself) and the
mean recurrence time (RT: mean time between recurrent states) which are calculated as

(a) RR =
1

N2

N∑
i, j

R(i, j), and (b) RT = f rac
N∑

k=1

kp(k)
N∑

k=1

p(k), (5)

with N being the length of the trajectory, p(k) being the mean of the vertical lines of length k [22]. To generate RT
the observation vector is divided into shorter segments of length L for which each ML is calculated. Here L = N is
chosen so that the period can be exactly determined and a bar diagram can be generated. Using the neighbourhood
criterion, close-by trajectories are captured as recurrent states and rather the probability of capturing a certain state is
estimated via its relative frequency.

The signal’s power is calculated using a FFT according to [3] considering the average squared distances and linking
them over the auto-covariance function to the power spectral density (details [3] & SI). The contamination with noise
is however only a first test on performance of the recurrence plot based measures compared to the classical power
spectra; in a realistic situation the observable might noisy and filtering is required. Therefore we use the nonlinear
filter filtering algorithm ghkss [1] which is based on projecting the dynamics on a low dimensional manifold which
houses the attracting set and thereby correcting the coordinates by retracting the measurement points onto the true
trajectory, cf. [23].
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3. Results

In case of the Hënon map a contamination with 1% noise makes it already very difficult to localise the first three
dominant UPOs and their coordinates, and becomes impossible for noise levels greater than 5% (see SI Fig. 1 & 2).
However, using recurrence plot based measures show encouraging results up to the maximum noise level of 10%: in
the RR spectrum the dominant frequencies are still visible and the probabilities of the RT of ’true’ UPOs remain the
highest.

1

Fig. 1. Frequency of occurrence relative to the maximum value of the Rössler attractor within the (a-c) period−1 regime (γ = 2.5) and the (d-f)
chaotic regime (γ = 7.5); (a, d) 0%, (b, e) 1%, and (c, f) 25% noise are added; dominant periodic orbits, if identified, are marked and numbered

Figure 1 shows the histograms of the period−1 and the chaotic dynamics of the Rössler system with 0%, 1% and
25% noise. The periodic orbit (period−1 regime, upper row) is easily identified in the noise-free case, but already with
1% noise, the trajectory becomes blurry and the calculation of relative frequencies (similar to box counting) does not
help much anymore. A similar picture is given for the chaotic dynamics (lower row of subfigures); in the noise-free
case only the first two dominant unstable periodic orbits can be distinguished, as soon as noise is added, it becomes
visibly hard to extract information by merely using relative frequencies.

Fig. 2 depicts the time series, Welch’s power spectrum estimate, the recurrence spectrum and the probability of re-
currence times for period−1, period−2, period−4 and chaotic dynamics of the noise-free and 25% noise-contaminated
Rössler system. The spectra (a2 - d2) are significantly lifted up due to noise which adds energy to the system, making
it hard to see the subharmonics in the Welch spectrum, which is not the case for the recurrence spectrum (a3 - d3).

In Fig. (a4 - d4) the probability of recurrence times are depicted: the noise free case clearly shows the dominant
UPO having the largest probability, however if the time trace is contaminated with 25% no UPOs are distinguishable
anymore. The reason for that lies in the ε which was kept constant at about 0.25% of D: contrary to the Hénon map,
the trajectories move very close to each other and diverge rendering an adaptive neighbourhood more suitable (e.g.
fixed amount of neighbours [19]).

However, for the chaotic case the dominant unstable periodic orbit is still picked up with a return time of 5.25 s
whereas the second unstable periodic orbit returns at about 10.04 s (Fig. 2(d4)); both of these frequencies are also
visible in the recurrence spectrum below a newly emerging major peak of at about 20 Hz but less clearly visible in its
associated Welch spectrum ((b4 and c4).

Contamination with noise does not necessary allow us to reliably identify more than two unstable periodic orbits
as shown for the map and the continuous system. It is therefore suggested here to nonlinearly filter the signal ([1,14,
23]) to see whether after filtering some of the old properties of the recurrence rate spectrum or the recurrence time
probability can be recovered. The Rössler attractor with 25% noise has been chosen as a worst case scenario, with
results being depicted in Fig. 3. The dynamics were embedded within a phase space of dimension m = 7, delay
τ = 30, and projected onto an attractor of dimension q = 3 within five iterations.

Fig. 3 depicts four different plots with the (a) time trace, (b) the Welch spectrum, (c) the recurrence spectrum,
and(d1-d3) the recurrence time plots.
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1

Fig. 2. The Rössler attractor with and without noise in the (a) period-1, (b) period-2, (c) period-4, and the (d) chaotic regime; the first column (1)
provides the time series, the second column (2) gives its Welch power spectral density estimate, (3) shows the recurrence rate spectrum and the
fourth column (c) shows the recurrence time probabilities.

1

Fig. 3. (a) Time trace, (b) the Welch spectrum, (c) recurrence spectrum, and (d1 - d3) recurrence time plots for Rössler attractor with and without
noise and filtered in the chaotic regime; vertical lines in d indicate correspondence with the unstable periodic orbits detected with 0% noise.

After filtering (a) only small residuals are distinguishable which is also indicated by the high frequency noise
reduction in the Welch spectrum (b)).

The recurrence spectrum looks rather unchanged. However, comparing the plots of the recurrence time probabilities
indicates that filtering allows recovering all of the higher order periods while with noise only up to three unstable
periodic orbits (dashed vertical lines) show up. However, a spurious period appears ( indicated by arrow) and which
is attributed to residual noise.

4. Conclusions

Analysing the Hénon map and the Rössler system highlights the potential of using RP based measures to identify
(un-)stable periodic orbits in the presence of noise; by using simply channel noise (additive, uncorrelated noise) the
attractor remains preserved. While the classical Welch power spectral estimate or simply counting relative frequencies
(box counting) becomes difficult to interpret for short and noisy time series the recurrence rate spectra remain finer
resolved and highlight all harmonics. The recurrence time probability plot gives both the recurrence times and the
probabilities that the dynamics return to the same trajectory. For the noise free Hénon map, all periodic orbits are
identified, whereas some small deviations of less than 2% occur for the Rössler system. Filtering the time series
using a nonlinear projective filter recovers most of the features of the recurrence time probability plots which, in
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noise and filtered in the chaotic regime; vertical lines in d indicate correspondence with the unstable periodic orbits detected with 0% noise.

After filtering (a) only small residuals are distinguishable which is also indicated by the high frequency noise
reduction in the Welch spectrum (b)).

The recurrence spectrum looks rather unchanged. However, comparing the plots of the recurrence time probabilities
indicates that filtering allows recovering all of the higher order periods while with noise only up to three unstable
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Analysing the Hénon map and the Rössler system highlights the potential of using RP based measures to identify
(un-)stable periodic orbits in the presence of noise; by using simply channel noise (additive, uncorrelated noise) the
attractor remains preserved. While the classical Welch power spectral estimate or simply counting relative frequencies
(box counting) becomes difficult to interpret for short and noisy time series the recurrence rate spectra remain finer
resolved and highlight all harmonics. The recurrence time probability plot gives both the recurrence times and the
probabilities that the dynamics return to the same trajectory. For the noise free Hénon map, all periodic orbits are
identified, whereas some small deviations of less than 2% occur for the Rössler system. Filtering the time series
using a nonlinear projective filter recovers most of the features of the recurrence time probability plots which, in
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combination with recurrence rate spectra, facilities the identification of the most important unstable periodic orbits.
Whether the method suggested here also provides sensible results in the case of the analysis of experimental data
or whether it can be used in connection with dynamical systems which are intrinsically noisy, i.e. which include
simultaneously higher and lower dimensional processes (random dynamical systems), or which are influenced by
dynamic noise or coupled multiplicatively to noise (and which can produce fake UPOs [13]), needs to be studied in
more detail in the future.
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