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1 Introduction

With the expected development of new mobile multimedia services in the com-
ing years, radio systems will have to meet demands for much higher data rates
than today. Those variable and high data rates (20 Mbps and more) will be re-
guested at all different levels of mobility, even at high vehicular speEuste-

fore future radio systems will have to offer data services at a high degree of
flexibility, where additionally high adaptivity to the actual transmissidnasi

tion is necessary. To meet this demand for higher data rates, new technologies
need to be implemented.

In general, the design of communication systems depend strongly on the
properties of the radio channel. Broad-band radio propagation is characterized
by a multitude of propagation paths (“multi-path”) which lead to a frequency
selective behavior of the radio channel. In high data rate applications this leads
to strong Inter-Symbol Interference (ISI), which requires a high equadizati
complexity at the receiver. Multicarrier techniques have been proposedIto dea
with the frequency selectivity while still keeping the implementaticasfble.

In these techniques, a high rate source data stream is distributed onto enultipl
parallel low rate substreams which are modulated individually and transmit
ted simultaneously. I®rthogonal Frequency Division MultiplexingdFDM),

those substreams are chosen to be orthogonal subcarriers. Due to this, OFDM is
an effective transmission technique to deal with the frequency setgatnth

low complexity.

An interesting new technology proposes to use multiple transmit and receive
antennas simultaneously, denotedvadtiple Input Multiple Output{MIMO,
figure 1.1), which will be used in combination with OFDM in this thesis.
The multiple antennas will transmit simultaneously and in the same radio fre-
guency. Even though conventionally this would result in degraded performance
due to interference, suitable MIMO techniques exist so that this simultane-
ous transmission can be used to increase the resulting data rate sigmificantl
[Fos96, RC98, TSC98, Ala98]. With this MIMO techniques, the radio channel
can have a much higher capacity, enabling very high data rates.

However, this improved channel capacity depends strongly on the proper-
ties of the radio channel: If there are a lot of different radio propagation paths
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Figure 1.1: Multiple users using MIMO radio communication

through reflection and rich scattering, the capacity is indeed increagaifl-si
cantly. In contrast to this, a radio channel with only few propagation paths wil
offer almost no improvement compared to a single antenna system.

Simulations of communication systems are of crucial importance to evaluate
the design and implementation of new systems. In such simulations the rele-
vant radio channel properties need to be modeled realistically and an adequate
statistical model for the essential properties of this channel need to be found.
Unfortunately, simple multi-antenna radio channel models will predict the in-
creased MIMO capacity to be available in all circumstances, whidhregult
in too optimistic simulation results.

In this thesis, a new multi-antenna radio channel model will be developed
that characterizes the relevant properties of the channel but is stlif eastr
figurable. The relevant parameters of a MIMO radio channel model are ex-
plained and lead to the newly introduced MIMO-WSSUS (Wide Sense Sta-
tionary Uncorrelated Scattering) radio channel model. This approach promises
to represent the MIMO-related channel properties realistically enoughaso
MIMO techniques can now be evaluated by simulations which give realistic
performance results.

Subsequently, this thesis introduces several basic MIMO techniques:

e Receiver Diversityvhere multiple receiving antennas for combining sev-
eral independent copies of the received signal are used.



e Transmit Diversityto send one data stream in precoded form over multi-
ple transmit antennas simultaneously, which will be re-assembled in the
receiver.

e Spatial Multiplexingto transmit multiple data streams in parallel, which
can be distinguished in the receiver as long as the radio channel has rich
enough scattering.

These techniques are evaluated by simulations in the context of high data rates
and different radio channel conditions. Simulations are carried out both in a
simple radio channel model and the newly proposed MIMO-WSSUS model.

Additionally, a linear precoding technique with variable amount of feedback
from [Tau05] is explained and improved. This technique calculates a matrix
factorization of the optimum precoding matrix into unitary product matrices,
some or all of which can be used for the approximation of the optimum precod-
ing matrix. All or only a subset of the factorization matrices can be fed back
the transmitter to reduce the required feedback data rate. This enablds-a tra
off between the amount of feedback information and system performance. In
this thesis, an improvement to the matrix parameterization is intrajudach
shows a performance gain over the original parameterization.

For all techniques, the performance will be evaluated and the dependency
on the radio channel model and its chosen parameters will be shown. It is ex-
pected that in a rich scattering channel even the simple Spatial Mulhgle
techniques with linear receiver will strongly increase the availabla date
when increasing the number of transmit and receive antennas. However, in a
more unfriendly radio channel with little scattering as modeled with the new
MIMO-WSSUS model, itis expected that Spatial Multiplexing techniques per-
form not as good anymore.

It can be concluded that MIMO performance simulations must use a MIMO
radio channel model which adequately describes the radio channel conditions
even with little scattering. Otherwise unrealistically optinugberformance
results will occur. The introduced MIMO-WSSUS radio channel model is a
simple approach that represents these statistical properties accerabelgh
and is still easily configurable.

The thesis is divided as follows:

The general properties of radio channels are introduced in chapter 2 for
single-antenna communication.

Chapter 3 explains the OFDM transmission technique as an effective way of
broad-band communication.
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In chapter 4, a new multi-antenna radio channel model is being developed
in logic continuation to the single-antenna radio channel WSSUS model, but
with adequately representing the important multi-antenna correlation. This in-
troduces the new MIMO-WSSUS radio channel model.

Several basic MIMO techniques will be introduced in chapters 5 through 7.
Each of the described MIMO techniques are evaluated both in simple MIMO
radio channels and in the MIMO-WSSUS model, and in some cases this gives
different results than what has been expected by previously proposed channel
models.

To demonstrate the important influence of the MIMO radio channel model,
eventually chapter 8 repeats some system evaluations but with differ&f®MI
radio channel models as taken from literature. This will underline the impor-
tance of the radio channel model developed in this thesis and the required at-
tention for the channel model when system performance is evaluated with sim-
ulations.

The thesis is finished by the conclusion and appendix.



2 Radio Channel Model

2.1 Introduction

The fundamental limitations of wireless data transmission are given by the
properties of the radio channel. The first step in understanding the relevant
performance parameters in every study is to characterize the radio thadne
find suitable models for those effects that will actually appear in reality

For a single radio communication link, three effects are most relevant for the
digital communication and are considered in the following section:

e Path loss
e Shadowing
e Multi-path propagation

From the point of view of a mobile receiver, all these effects will influence the

received signal after transmission through the channel. Eventually it will not
be necessary to model each effect correctly individually, but insteadtieim

the effect of the whole radio channel on the transmitted input signal. For this
reason, the radio channel is modeled asn@ar Time-Invariant (LTI) system

In multi-antenna (MIMO) radio communication, in addition tthependency
or correlation properties between the multiple available radio channels are ex-
tremely relevant to the performance of a communication system, whiclavill
discussed in chapter 4.

For any kind of proposed transmission system it is vital to demonstrate the
actual benefit of one approach versus others. In order to show this comparison
under controllable conditions, it is necessary to use a statistical radio ¢dhanne
model in which the algorithms and systems can be evaluated. The following
section describes the relevant effects of the radio channel and the ingpigcat
on radio channel models.
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Figure 2.1: Path loss as a function of distadce

2.2 Path Loss

The signal power of a received radio signal decreases with increasingagista
d between transmitter and receiver (figure 2.1). In free-space propagdduson,
received powelP(d) at distancel decreases according to

PthﬂchAQ

wherePF, is the transmitted powet;y,, andG,., is the antenna gain of the trans-
mit and receive antenna, respectively, and the wave length of the transmis-
sion wave.

It is obvious from (2.1) that the received power decays within free space
propagation conditions. If the free space condition is not met and instead ob-
jects are placed in between the transmitter and receiver, the powoagr ol be
even stronger, leading to a decay accordingt® with the path loss exponent
a > 2.

The received signal power in free space propagation can be calculated de-
terministically. However, in realistic propagation conditions it is possible
to take into account all different objects that exists in the propagation region.
Instead, some approximations from extensive measurements will be used to
model the path loss as a function of distance. Examples of path loss approxi-
mations can be found in [OOKF68, Hat80, WB88, 1YTU84].

In this work, the decay of the received power is approximated by the model
of a deterministic function that decreases with the distahc&wo different
path gain models will be considered: Single-slope exponential decay, and dual-
slope exponential decay.

(2.1)



2.2 Path Loss
log P,(d)
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Figure 2.2: Single-slope radio channel modél({) plotted in logarithmic
scale)

2.2.1 Single-slope path loss model

The first path gain model in this work is assumed to follow a single slope ex-
ponential decay (figure 2.2), so that the received power after pathyaih at
a distancel from the transmitting antenna is approximated by
d —
P,(d) = Py (d—) 2.2)
0

whereF, is the reference received power at some reference distaneada
is thepath loss exponerand the equation can also be giveniid, as follows:

Py(d)ap) = Pojap) — - 1010%(6%) (2.3)

Common choices for the path loss exponeiatre in the range. . . 4. In this
work, a value otx = 3.0 [SCRO5] is being used.

The constant#’, andd, are a simplification from (2.1) that take into account
the transmit power, both antenna gains, and the additional constants. This sim-
plification is especially useful because in this work, only relative poexsls
are of importance instead of absolute ones.

2.2.2 Dual-slope path loss model

As an alternative radio propagation modeldaal-slopeexponential decay
could be considered as well (figure 2.3). The received power after path gain
P,(d) at a distance from the transmitting antenna is then approximated by

R (%) o ford < D,

O R () (4) " oras 24
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Figure 2.3: Dual-slope radio channel model{) plotted in logarithmic scale)

The dual-slope model has two different path loss exponents, where the expo-
nent of the smaller distances is chosen smaller than the exponeatof the
larger distances. This model should take into account the change in propagation
conditions of dense urban areas, where there is a different path loss between the
base station and the first row of buildings compared to the second and further
row of buildings.

The threshold distanck; is defined in terms of the cell radidsof a cellular
system as

whered,; denotes theelative threshold distancd?ossible values for the relative
threshold distance in the following afe= 1, 1.2, 1.5, or 2, i.e. the threshold
distance is on the order of the cell radius or slightly larger.

One common choice for the path loss exponents,is= 2,as = 4. For
the relative threshold distance a valje= 1.2 would result for a particular
cell radiusR = 250m and a threshold distande, = 300m, resulting in the
abovementioned relative threshold distance [WDMO5].

The constant$’, andd, do not need to be fixed here because only3he
expressions are of interest below and these constants will cancel out anyway.

2.3 Shadowing

The path-loss at a particular location depends not only deterministically on the
distance to the base station, but also randomly on particular terraindeatuch

as obstructions in the radio channel propagation, or additional reflections from
neighboring buildings, or diffraction from vegetation, see figure 2.4. These in-
fluences are calleshadowindRap01]. Although each of these effects are well
known, in general it is not possible to calculate the resulting received power
actly because of the large number of input parameters. Therefore in radio com-
munications the effect of shadowing is commonly summarized by a stochastic
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Figure 2.4: Obstructed and reflected radio propagation: Shadowing

model as an additionahndom variableX, with log-normaldistribution. The
received power including path gain and shadowifi@!) is then

P,(d) = P,(d) - X, (2.6)

whereP,(d) is the path gain from (2.2) or (2.4).

On a linear scale, the shadowing is a multiplicative random varigpleith
log-normal distribution. A random variable with log-normal probability dis-
tribution is one whose logarithm is normally ABssSIAN) distributed, and the
probability density function (figure 2.5) is

nr — u)?
fx. (x;p,0) = L exp (—u> (2.7)

To\ 2T 202

for > 0, wherey ando are the mean and standard deviation of the vari-
able’s logarithmin z. The expectation is(X) = e*t°/2 and the variance

is var(X) = (e — 1)e**+°°. This distribution is suitable for this problem
because it models the multiplicative product of many small independent fac-
tors, which model the multiplicative changes to the path loss by many different
objects involved in the propagation path.
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Figure 2.5: Log-normal Probability Density Function, linear scale

If the path loss is described on a logarithmic scalel(it), then the shadow-
ing X,4p) is modeled by an additive random variable witAussIAN distri-
bution, standard deviationand zero mean. The received power after path gain
in dB (2.3) and shadowing is then given by:

d
Py(d)ap = Poap) — @ - 1010g(d—0) + X, (4B (2.8)
Since the shadowing has a normal distribution/f®, so has the received
power P,(d) = P;(d). The probability that the received power will exceed a
particular level: is obtained from th&)-function' as:

— P
Prob[P(d) > 2] = Q <x—@) (2.9)
o
Typical values of the standard deviatierfor the lognormal distribution of
the shadowing are around 7-9 dB for a transmission at 1-3 GHz and outdoor en-
vironments and 1-16 dB for indoor applications [Rap01]. Values bétween
1-6 dB and 1-4 dB are reported from indoor measurements at 2 GHz [PL95].

2.4 Multi-Path Propagation

The third — and for digital communication most significant — effect of the radio
channel on the transmitted signal is the reception of a superposition of multiple

1The Q-Function is defined as a normalized form of the cumulative)§sIAN probability density function,
Q) = Sz fg ™ 2dt = § [1 - erf(2)]

10



2.4 Multi-Path Propagation
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Figure 2.6: Superposition of multiple radio propagation paths: Multi-Path
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propagation paths (figure 2.6). These effects are modeled by describing the
radio channel as a LTI system, which is fully characterized by itsrtipmilse
responseh(r) or thetransfer functionH(f). The path gain and shadowing
from before will be multiplied to calculate the actual channel impulse response

hy(T,d) = Py(d) - h(T) (2.10)

For brevity, the factoP;(d) will be neglected in the rest of this section and only
h(7) will be considered.

2.4.1 Multiple reflectors

The most important property of the radio channel is the propagation over mul-
tiple paths, which are all attenuated and delayed differently (figure 2.7h Eac

of theseK paths (figure 2.7) has different delay, phase shift;, and attenua-

tion o, > 0. For a single-antenna system, this results in the following channel
impulse response:

K
h(T) =) 6(r — mi) e’ (2.11)
k=1

The Fourier transform of the channel impulse response is callechénanel
transfer functionH(f). It is calculated fromh(7) by the Fourier transform
which is

o0

H(f) = / h(r)-e > dr (2.12)

The channel transfer function for a multi-path radio channel shows a character-
istic behavior which is callettequency selectivity

This model (2.11) describes well the situation of a large number of propaga-
tion paths that have an attenuation of approximately the same order of magni-
tude. This corresponds to the physical situation where no direct line-of-sight
propagation path exists (figure 2.4), which is also callatba line-of-sight
(NLOS) radio channel. The opposite case would be the existencérd-af-
sight(LOS) propagation path, but this case is not considered in this thesis.

2.5 Statistical channel model

From the mobile receiver point of view, all these effects will influence the re
ceived signal after transmission through the channel. It is therefore no longer

12



2.5 Statistical channel model

RXx

Figure 2.7: Single-Antenna (SISO) radio channel model with multiple paths:
Delaysr;, Phase$,

necessary to model each effect individually, but instead the effect of hiodew
radio channel on the transmitted input signal needs to be modeled in terms of
the impulse respons€g7).

In the rest of this work, a statistical channel model needs be used of which
many realizations can be computer-generated to evaluate the system perfor
mance under many different channel situations. For this reason, the equivalent
base-band impulse response of the radio channel is considered. Also, for a
communication system with bandwidtii and sampling tim&” = 1/ only
the discrete-time impulse response of the channel is of interest.

2.5.1 Broad-band and Narrow-band radio channel

A communication system will communicate over a radio channel at a symbol
clock with symbol duratiory” and an occupied system bandwidth = 1/7T'.

A radio channel’s impulse responkér) can have its delay times spread over a
time interval that is either large or small compared to the symbol duration. An
important characterization of the channel impulse response is this timeahterv
in which most of the delayed propagation paths are located.

13
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This time interval is denoted asaximum del&/ .. and is defined to be
the interval of all impulse response contributions whose magnitude has not yet
decreased to a level lower than e-g80d B compared to the maximum magni-
tude.

Equivalently, in the frequency domain tieeherence bandwidth/; is de-
fined as the bandwidth in which the channel “does not change too much”, and
the coherence bandwidth is proportioht@ the inverse of the maximum delay
asWe ~ 1/Tax-

Depending on the relation between symbol duration and maximum delay of
the radio channel, the complete communication system is said to be

e Narrow-band ifl" > 7., andW < W, or

e Broad-band ifl’ < 7, andW > We.

HH)P

W

Figure 2.8: Transfer function of broad-band (solid) and narrow-band (dashed)
communication system in bandwidti

The channel transfer functions in the relevant bandwidth of a broad-band
and a narrow-band communication system can be distinguished very easily,
figure 2.8: In a broad-band system, the transfer function is varying (figure 2.8,
solid), whereas in a narrow-band system it is approximately constant (figure
2.8, dashed). For a narrow-band communication system, the channel transfer
function can therefore be approximated by one complex-valued corggant

H(f) ~ HO if T > Tmax (213)

2Also calledmaximum excess delay
3The exact relation depends, among others, on the actuas stiapr). For an exponentially decreasing impulse
responselVe = 3v/31n(10) /(7 7max) (from [Gal06])

14



2.5 Statistical channel model

In a narrow-band communication system, the influence of the channel is fully
described by this simple complex-valued numbgrwhich is calledchannel
transfer factor

2.5.2 Narrow-band statistical models

For the narrow-band communication system, the channel transfer fdgtisr
modeled as a random variable with certain probability distributions.

Complex Gaussian distribution

In a NLOS situation the real part and the imaginary partfgfare the sum
of a large number of small independent real random variables each. Due to
the central limit theorem, it follows that both the real and imaginary part of
H, can be modeled as an independent zero-meansGIAN random variable
with varianceo /2, denoted asV/ (0, 02/2) each. The channel factdf, is then
a circularly symmetrit complex Gaussian random variable with varianée
denoted bYC A (0, 02).

o? is also the power of that channel transfer factor. Its magnitufig
has R\YLEIGH distribution and its phasearg H, has uniform distribution in
[0, 27].

Rayleigh distribution

The Rayleigh distribution has the probability density function (PDF)

2r 2
pRayleigh(T) = ; exXp <__2> (214)

o

with meano /7 /2 and variance€1 — 7 /4)c?, whereo? is the power of the un-
derlying complex Gaussian and/2 the variance of its real part and imaginary
part, respectiveRy

4 is circularly symmetric i’ 2 has the same distribution effor any 6 [TV05].

5The operatonrg r - ¢/? is defined as the argumentof the complex number.

6Note: In some textbooks [Pro00] the variance of the real amaginary part is defined as’, but here it is
defined asr? /2 [TVO5).

15
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2.5.3 Time-invariant WSSUS model

Each of the propagation paths in multi-path propagation is characterized by a
slightly different propagation delay. Hence, the impulse response of the su-
perposition of all paths has a certailaximum delayn time direction. Ad-
ditionally, due to different propagation distances and potentially different re
flections, all paths have experienced a different phase shift and potentially a
different attenuation. And finally, in multi-antenna (MIMO) communication,
each propagation path has a different angle of arrival/departure at the-recei
ing/transmitting antenna array.

All these effects are modeled byWdSSUShannel model (Wide-Sense Sta-
tionary Uncorrelated Scattering) [Bel63]. This WSSUS model in the single-
antenna case is described in the following.

For the usual single-antenna WSSUS channel model (Single-Input Single-
Output, SISO), a number giropagation pathgs are considered (figure 2.7),
and for each path the delay, the phase shift,, and the attenuatiom, > 0 are
chosen randomly from some given distribution (e.g. exponential delays, uni-
form phases, Rayleigh attenuations). For a single-antenna system, this results
in the channel impulse response

K
h(t) = Z 5(1 — ) e’ . (2.15)
k=1

If the number of pathds is large enough (e.gk > 30), then the amplitude

can even be modeled as fixed.(= 1 Vk), since the sum over a large number
of paths with random phases is a good approximation for a complex-valued
Gaussian random variable (with Rayleigh fading amplitude). For the sake of
brevity, o, = 1 will be assumed in the rest of this work.

As an additional impairment imobiledata communication, the radio chan-
nel in reality changes over time. This is caused by movements of the trans-
mitter, the receiver, or the reflecting objects. However, these ratbmnel
variations are not considered in this thesis. Instead, tmig-invariantradio
channels will be considered in the following.

16



3 OFDM Transmission
Technique

3.1 OFDM System Model

The principle of multicarrier modulation is to map a serial high rate source
stream onto multiple parallel low rate substreams and to modulate each sub-
stream on another subcarrier. Since the symbol rate on each subcarrier is much
less than the serial source symbol rate, the effects of delay spread sigttyfic
decrease, reducing the complexity of the equalizer a lot. N h&ubcarriers are
chosen such that each subchannel ideally appears frequency-nonselective. The
data symbol rate per subcarrier is reduced by a factd¥.aind with that, the
Inter-Symbol Interference (ISI) is reduced. The ISI can even be avoidefytotal

by using a guard time as described below.
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Figure 3.1: Bandwidth divided into multiple subcarriers

A common realization of multicarrier communications is conventional fre-
guency division multiplexing where the subbands are completely separated in
the frequency domain. However, due to finite steepness of the filter rollodfs, t
subchannel spacing has to be greater than the Nyquist bandwidth to avoid inter-
subchannel interference (ICl). This inefficient use of the available specaom c
be overcome by permitting spectral overlap between adjacent subchamels. |
that case, ICl can be avoided by guaranteeing orthogonality between the sig-
nals on the subcarriers. With rectangular pulse shaping, orthogonality between
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3 OFDM Transmission Technique

the signals is obtained by choosing a subcarrier spacing equal to the inverse
symbol duration per subcarriéi. This technique is referred to &thogonal
Frequency Division MultiplexingOFDM). [WE71, Cim85]

One of the main design goals for a multicarrier transmission scheme based
on OFDM in a mobile radio channel is that the channel can be considered as
time-invariant during one OFDM symbol and that the fading per subcarrier can
be considered as flat. Thus, the OFDM symbol duration should be smaller than
the coherence tim@At),. of the channel and the subcarrier spacing should be
smaller than the coherence bandwiditfa: of the channel. By fulfilling these
conditions, the realization of low-complex receivers is possible.

OFDM
" S N TitAll
Sk s?glal- : patrsllel addd d|?(|)tal ()
— = IFFT [— : guar |
parallel E : serial interval analog
converte L converte converte
multipath
channel
h(r,t)
inverse OFDM él 2(t)
r
Ry parallel-< serial- remove analog-
to- - to- guard to-
serial <: FFT : parallel interval digital y(t)
converter- converte converte

Figure 3.2: Multi-Carrier transmission with OFDM

System structure

In the following, the basic setup of an OFDM system is described, see Figure
3.2. The multicarrier modulator maps a sequefig®f N, serial source sym-
bols of ratel /T onto NV, parallel substreams, wheteis the time index. The
symbol rate per substream7 reduces to

1 1

T~ NT (3.1)

According to OFDM, theV,. substreams are modulated on subcarriers with
a spacing of

1
Ty
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3.1 OFDM System Model

to achieve orthogonality between the signals on Ahesubcarriers, presum-
ing a rectangular pulse shaping. TNein parallel modulated source symbols
Sk, k=0,...,N.—1are referred to as an OFDM symbol of duratifin

3.1.1 Transmission Signal

A key advantage of using OFDM is that the multicarrier modulation can be im-
plemented in the discrete domain by using an Inverse Discrete Fouries-Tra
form (IDFT), or a computationally much more efficient IFFT [WE71]. The
sequence of transmission sampi€s) is calculated by taking the IDFT of the
sequences; as

1
vV Ne

No—1
z(v) = Z Spe?™vINe =0, N, — 1 (3.3)
k=0

and the transmission symbol rateNs/T,. The block diagram of an multi-
carrier modulator based on an IFFT and the respective demodulator employing
inverse OFDM based on a FFT is illustrated in Figure 3.2.

When the number of subcarriers increases, the OFDM symbol duration
becomes large compared to the duration of the channel impulse respnse
and the amount of ISI reduces. However, to completely avoid the effect of ISI
and, thus, to maintain the orthogonality between the signals ovilseibcar-
riers and avoid ICI, guard intervalof duration

Ty > Tmax (3.4)
has to be inserted between adjacent OFDM symbols [Pro00]. The guard in-
terval is a cyclic prefix added to each OFDM symbol which is obtained by
extending the duration of an OFDM symbol to

T =T, +T, (3.5)

The discrete length of the guard interval has to be

TWL(I.Z'NC
L,z | Pt (3.6)

samples to prevent ISI.
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3 OFDM Transmission Technique

Time-continuous signal

For the actual transmission, the sampled sequefeg v = —L,,...,N.—1

Is passed through a digital-to-analog converter to get the continuous-time signal
x(t). This signal is then transmitted through the channel. The continuous-
time output signal of the channel is obtained from convolution(of with the
channel impulse response and addition of a noise sigingl

y(t) = / 2t — PYh(r )T + (1) (3.7)

The output of the receiver’s analog-to-digital converter is a sequgnce
which is the received signal sampled at ratg'T. Since ISl is only presentin
the firstL, samples of the received sequence, thgssamples are removed be-
fore demodulation. The ISI-free part ¢fv) is demodulated by inverse OFDM
using a DFT or FFT. The output of the FFT is the sequaRceonsisting ofV.,.
complex-valued symbols

1
VNe

Since ICI does not exist due to the assumption of a stationary channel, and
ISI can be avoided due to the guard interval, each subchannel can be considered
separately. When, furthermore, assuming that the fading on each subchannel
is flat and 1Sl is removed, a received symhkigl at the output of the FFT is
obtained from the frequency domain representation according to

R, =Hp,S.+%2,, k=0,....N.—1 (3.9)

Ry =

N.—1
Z y(u)e_j%k”/NC, k=0,....,N.—1 (3.8)
v=0

whereH,, is the channel transfer factor of tih¢h subcarrier and;. represents

the AWGN of thekth subcarrier. The flat fading factéf; is the sample of the
channel transfer functiof (k, i) at thekth subcarrier, where the time index

has been dropped for notational convenience due to the stationarity assumption
of the channel. With this equation, the OFDM transmission system can be
viewed as a discrete-time and discrete-frequency transmission systera

set of N, parallel Gaussian channels with different complex-valued attenuation.

Matrix-Vector Notation

In some cases, a matrix-vector description of the OFDM system is moeslsuit
for the calculations to follow. In a matrix-vector notation, the sequefcef
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3.1 OFDM System Model

source symbols transmitted in one OFDM symbol is represented by the vector

s =(S0,51,...,Sn,1)" (3.10)
The respective receiver sequeriée k£ =0,..., N. — 1is given by the vector
r=(Ro,Ri,...,Ry._1)" (3.11)

The received vector r is obtained from
r=H- -s+=z (3.12)

see also figure 3.3. ThE. x N, channel matrix

Hy 0 ... 0
0 H 0

H=| . " (3.13)
0 0 --- Hy_;

c

Is a diagonal matrix due to the absence of ICI. The diagonal componehkis of
are the complex-valued flat fading coefficieis. The vector

z = (Z():Zla"'nZNc—l)T (314)

represents the additive white Gaussian noise omMhsubcarriers.

Zy

R S
Sk serial- diagonal parallel- Ry,

to : channe w to-

parallel | matrix| : serial

converte H ’#/ converte

ZN.-1

Figure 3.3: Simplified OFDM transmission

Advantages of OFDM

With these assumptions, the necessary equalization on the receiver side ca
simply be realized by one complex-valued multiplication per subcarrier. This
Is a significant simplification because otherwise, the equalizer need<tmtak
account all intersymbol-interference over the whole lenyhof the channel

21



3 OFDM Transmission Technique

impulse response. The algorithmic complexity of such an equalizer grows with
O(Ng’) [Pro00] due the necessary convolution operation, which is too large in
most broad-band systems. But OFDM is an effective technique to avoid such
complexities.

In addition to the simplified equalization process, the structure of an OFDM
system also provides the flexibility to apply numerous different schemes for
adaptive modulation. [RGGO01, GBRO1] This is especially important since fu-
ture radio systems will require much higher flexibility in the air interféme
each user and also for multiple access schemes. [CGR02, RGO05]

3.2 Channel Capacity

The capacity of an individual AWGN channel was given by Shannon in his
ground-breaking 1948 paper [Sha48]. He showed that there is a maximum
data rate, called thehannel capacityfor which one can communicate with as
small an error probability as desired, given sufficiently intelligent codingef
information.

This capacity of a continuous-time AWGN channel (normalized by the chan-
nel bandwidth) is

|H?

C = log, (1 + P ) bits/s/Hz (3.15)

0

where P is the transmit powerH is the channel transfer factor, ard, the
noise power density in the bandwidth of intefedthe logarithm is taken to the
basis2 in order to obtain the capacity hits per second per Hertz.

The right-side expression in the logarithm of (3.15) is frequently summarized
as the Signal-to-Noise ratio at the receiv8V R = P|H|*/N,. Figure 3.4
shows the capacity as a function of t&BIR given indB.

This capacity of the AWGN channel gives apper boundo actual data rates
that can be achieved with non-ideal channel coding and practical modulation
schemes. In contrast to this, thetual data rate is described by a different
measure, the bandwidth efficiency.

1In [Sha48] and when considering a channel with concretewftid, the capacity is given d§ log, 1+ P%N
0

bits/s, i. e. proportional to the channel bandwidth. Howgeliere and in the rest of this thesis the capacity is
always normalized by the channel bandwidth, as the coratides in this thesis are independent of the actual
bandwidth. For the sake of brevity the capacity will be usedarmalized form with the unit [bits/s/Hz],
similar to [Tel99, TV05] and many other literature.
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3.2 Channel Capacity
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Figure 3.4: Capacity (3.15) of a continuous-time AWGN channel

3.2.1 Bandwidth Efficiency

Any concrete communication system needs to choose a specific modulation
scheme and channel coding rate (see next section). This choice sets a specific
data rate that is transmitted over the channel. Depending on the SNR and radio
channel conditions, the resulting bit error rate of that communication system
Is sufficient for normal usage. This data rate, normalized by the system band-
width, will be called thebandwidth efficiencyr (also known aspectral effi-
ciencyor spectrum efficiengy The bandwidth efficiency specifies the amount

of information that can be transmitted over the given bandwidth in a specific
communication system, measured in bits per second per Hertz.

In this work, the bandwidth efficiency of a combination of modulation and
coding that can be communicated with a bit error rate less than a threshold
of, say,1074, is used as a comparison criterion of different transmission tech-
niques.

By definition, the bandwidth efficiency will always be lesser than or equal to
the channel capacity. Hence, this quantity describes “how close to the gdpacit
an actual system is being realized. For this reason, the bandwidth efficiency
and (as its upper bound) the corresponding channel capacity will be used as
a comparison criterion for the performance of the systems in the rest of this
thesis.
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Figure 3.5: OFDM system with channel coding and modulation

3.2.2 OFDM Capacity

In the frequency selective radio channel of an OFDM system, the capanity ca
be calculated by recognizing each subcarrier as one of many parallel AWGN
channels. With an arbitrary transmit power allocation, the bandwidthesfitg

of an OFDM system is the sum of the bandwidth efficiencies of all subcarriers,
given by

Eorpy = 210 g, <1+ |N i > bits/s/Hz, (3.16)

where theP, and H;, are the transmit powers and channel transfer factors on
each subcarriek, respectively. The resulting bandwidth efficienEyrp,
depends not only on the statistics of the noise, but now additionally on the
statistics of the channel transfer factofg,|> and also on the chosen transmit
power allocationP,. The efficiencyEorpy IS maximized by optimizing the
transmit power allocations, explained in section 3.3.3 below. This optimized
Eorpr 1s the capacity of the OFDM channel.

3.3 Modulation

The above OFDM system of figure 3.2 just assumed that the sourdg titse
modulated on complex modulation symbglsaccording to some modulation
scheme. In a realistic OFDM system, the source hjtsvill be coded by a
channel code&vith an additional bit interleaving before the modulation as shown
in figure 3.5.

In this thesis, both modulation and channel coding is not investigated in de-
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Figure 3.6: Bit Error Rate of uncoded OFDM and three modulation schemes,
Rayleigh Fading channel, simulation parameters of table 3.2

tail. Several modulation schemes are explained in the next sections.ms ter
of channel coding, a well-known convolutional code with Viterbi decoding is
being used as explained in section 3.3.2 below.

3.3.1 Fixed Modulation

In general, a modulation scheme is a mapping/bits to one complex value
out of a modulation alphabgt’;, Cs, ..., Cyu }, where the modulation alpha-
bet ha2 elements. The modulation scheme is the most relevant system com-
ponent to decide upon the number of bits that are transmitted per OFDM sym-
bol. The resulting bandwidth efficiency of a modulation scheme is directly
given by the number of bits per symbdl,= M bits/s/Hz.

As a first approach, all subcarriers will utilize the same modulation scheme
This single modulation scheme is called #aEHY mode The PHY mode can
be chosen independently of the current radio channel situation, in which case
it would have to be chosen according to the expected worst case of the radio
channel. This usually means a very bad performance on average. Instead, the
PHY mode is chosen according to some criterion that depends on the current
radio channel. Under the titlenk Adaptationmany different techniques have
been proposed to choose one single PHY mode and modulation scheme for all
subcarriers together, see [LamO04].
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3 OFDM Transmission Technique

One straightforward modulation scheme is the Quadrature Amplitude Modu-
lation (QAM) where the symbols are placed on a regular rectangular grid in the
constellation diagram [Pro00]. This scheme is denoted as e.g. QPSK (4-QAM),
16-QAM, or 64-QAM, where the number refers to the alphabetzizand M/
bits are mapped to each symbol. The resulting bandwidth efficiency is then
E = M bits/s/Hz.

When using such a QAM modulation scheme, an uncoded bit error rate
(BER) as shown in figure 3.6 can be achieved in a fading channel (Broad-band
Rayleigh fading channel, see section 2.5.1). In this case the BER is limited
by the probability that a few of the subcarriers are in a deep fading situation
(figure 3.1). This fading probability leads to a characteristior floor in un-
coded OFDM transmission, as can be observed in figure 3.6 for all modulation
schemes shown.

In practical systems, the circumvention for this is to apgiannel coding
described in the next section.

3.3.2 Channel Coding

Channel coding is a practical means to provimi®vard error correction Extra

bits are added to the input bit stream so to add redundancy to the transmitted bit
sequence. This will make the transmission of data more robust to disturbances
encountered in the radio channel.

Many different channel codes exist. In this work simply a convolutional
code [Pro00] will be considered with memory length 6 as used in the WLAN
standards IEEE 802.11a and HiperLAN/2. The generator polynomial in octal
notation is171 133 and puncturing is used when code rates larger tharare
needed.

When applying channel coding, the bit error curves in OFDM will improve
significantly as shown in figure 3.7. To achieve a given bandwidth efficiency
E, various combinations of modulation scheme (bits per symbol) and code rate
can be considered. In general, it is not known in advance which combination
of modulation and rate (the so-call&HY modg will give optimal results.

In the above figure only the best PHY mode for this radio channel model is
shown. The chosen PHY mode combinations in the single-antenna system are
summarized in table 3.1.

In order to compare the bandwidth efficiency of these transmission schemes
with the channel capacity (3.15), a threshold on the BER curves is considered
as “close enough to error-free”. In particular, the intersection point of &ie B
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Figure 3.7: Bit error rate of OFDM with channel coding in Rayleigh Fading
channel; PHY modes from table 3.1

Modulation Code Rate
QPSK 1/2
16-QAM 1/2
64-QAM 1/2
64-QAM 2/3
256-QAM 3/4
1024-QAM 4/5

0o WNR|O™

Table 3.1: Chosen modulation scheme and code rate (PHY Mode) for each
bandwidth efficiency®
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3 OFDM Transmission Technique

curve with10~* is considered almost error-free, and the bandwidth efficiency at
that SNR is plotted in figure 3.8. The channel capacity of an AWGN channel
according to Shannon’s formula (3.15) is shown as a comparison as well.

— — — 1x1 Capacity ’
|| —8—1x1OFDM | 7

Bandwidth Efficiency [bits/s/Hz]
N

0 5 10 15 20 25 30
SNR [dB]

Figure 3.8: Bandwidth Efficiency of PHY modes from table 3.1 at BER=
in Rayleigh Fading channel (coded); AWGN capacity

One can observe in figure 3.8 that all simulated bandwidth efficiencie$yclear
achieve less data rate than the predicted upper bound of the capacity. Hence,
the interesting question isow close to the capacity can each actual system
perform? In the following, each investigated transmission technique will be
compared with this AWGN capacity.

Up to now all subcarriers were modulated with the same modulation schemes.
The OFDM transmission technique would alternatively offer the possibility to
modulate each subcarrier with a different individual modulation scheme. This
is explained in the next section.

3.3.3 Adaptive Modulation

In the OFDM technique, the multicarrier approach offers the advantageous
degree of flexibility as different modulation schemes can be used on differ-

2The capacity of a Rayleigh Fading channel (which is used RBimulations) is not identical to the one of
the AWGN channel. However, in the SNR region of interest thieidince is rather small (less than 1 bit/s/Hz
[TV05]) and for this reason the AWGN capacity is still used @mmparison here and in the rest of this thesis.
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3.3 Modulation

ent subcarriers. With a frequency-selective radio channel, the individual sub-
carriers encounter different transfer factdfs and thus offer different indi-
vidual channel capacities. Selecting the modulation scheme for each subcar-
rier with respect to the current transfer factor is calfedhptive Modulation
[Gru00, Lam04, Gie06, Gal06]

Water Pouring

The capacity' is defined as the maximum bandwidth efficiedGyyp,, (3.16)
that can be transmitted over the channel, optimized over all possibleritans
symbols. In the OFDM system, this can be varied according to the different
transmit power allocations), over the different subcarriers. Hence, the maxi-
mum efficiency must be calculated by solving the optimization problem for the
transmit powers?, subject to a fixed overall transmit powai.P.

This is an optimization problem with the objective

Ne—1 |2
log (1 il 17
C = maX Z og( + N > (3.17)
subject to
N.—1
Y PB.=N.>P (3.18)
k=0

The solution is calculated by introducing a Lagrange multipliend consid-
ering the objective function

Ne—1

F(B, Py, ..., Py.1) = Zlog<1+ ’“‘Hk> 52& (3.19)

The solution, i. e. the optimum power allocatioRs, must satisfy the Kuhn-
Tucker conditions

of =0 forP.,>0
A 3.20
0P, {g 0 forP,.=0 ( )
These conditions are fulfilled by the power allocation
A 1 Ny
P.=max (0,—- — —— 3.21
’ ( E \HkP) (821
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Figure 3.9: Water pouring solution

where the constart is chosen to satisfy the power constraint

N1
‘ 1 No ) _

max (0= — —° ) = NP 3.22
zk: ( B [Hl? (5.22)

Figure 3.9 explains this result. The valulg/|H;|?, i. e. the inverse SNRs
of the subcarriers, can be viewed as the bottom of a vesséY, #f units of
water are filled in this vessel, the depth of the water at sub-cakrisrthe
power allocated to this particular subcarrier, dnd@ is the overall height of
the surface. Hence, this optimal solution is calledwlager pouringor water
filling solution. [Pro00, TVO05]

With this solution, some subcarriers might actually have a valyé H,|?
above the water level. In these subcarriers, the radio channel is too beaayfor
communication and no power at all is allocated to them. Instead, thisgyrat
rather allocates more power to the stronger subcarriers in order to ta&e-adv
tage of the better channel conditions.

Power Loading

An OFDM system withfixedmodulation schemes can use the power allocation
of (3.21) to adapt the transmit power to the channel conditions. This adaptation
strategy is callegower loadingand its particular advantage is that no signaling
of the allocated powers has to be done.

However, the different capacities of each subcarrier are not at all éxgloi
as long as the modulation scheme and data rate are chosen identical for all
subcarriers. For this reason, as was shown in [Gie06], adapting only the power
allocations will degrade the performance of the overall OFDM system.
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gts éHH | ﬁ

Figure 3.10: Different bit allocations on each subcarrier by Adaptive Modula-
tion
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Instead, any adaptive modulation in OFDM must adapt the data rates as well.
This is described in the next section.

Bit and power loading

In contrast to allocating only different power levels, the modulation sckeme
should be adapted on a per-subcarrier basis as well [Gie06]. For each subcar-
rier, the optimum power allocation is calculated from (3.21). In a secomq ste
for each subcarrier the modulation scheme for each subcarrier is chosen as a
function of the receiver SNR®,| Hy|?/Ny. This process is callebit loading,

Various algorithms for bit loading have been proposed, e. g. [HH87, FH96,
GBRO1, Gru00, Gie06]. One principal problem here is that modulation schemes
exist only for some discrete data rates, but the solution of the capacities are
continuous values. Each different loading algorithm has different approaches
to deal with the impreciseness that arises from this discrete values.

In general, all loading algorithms achieve a comparable performance.

Bit Loading

Although the optimum solution is obtained by modifying both the power lev-
els and the modulation schemes, practical systems might require a fixed power
level on each subcarrier. For these cases, changing the modulation schemes
only is a viable solution. As was shown in [Gie06], in the usual case the per-
formance with bit loading only but no power loading is not too different from
loading both.
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Figure 3.11: Bandwidth Efficiency (at BER& ?) in Rayleigh Fading channel
(coded); AWGN capacity

Performance

The actual BER performance with subcarrier-specific bit loading is improved
compared to the uniform modulation scheme. In both cases only the system
with channel coding is interesting. The resulting bandwidth efficiencies are
shown in figure 3.11. Again, the different available PHY modes are taken from
table 3.1 and the AWGN capacitis shown as a comparison.

It can be concluded that bit loading is an efficient strategy for OFDM in
frequency selective radio channels. However, in systems with iatexteand
coded transmission, the additional gain by subcarrier-specific modulation turns
out to be rather small. For that reason it can be concluded that a uniform PHY
mode combined with a strong channel code is more efficient in a single-user
transmission system.

3.4 Simulation Parameters

The OFDM simulations in this thesis are being conducted with the parameters
as shown in table 3.2. The transmission system will be simulated in time do-

3Again, even though the capacity of a Rayleigh Fading chaisrdifferent from the one of the AWGN channel,
this difference is small enough to be neglected here, sdaregon at figure 3.8.
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3.4 Simulation Parameters

OFDM Transmission

Number of subcarriers N, = 64

System bandwidth W = 20 MHz

Subcarrier spacing Wy, =W/N,.=312.5 kHz
Useful symbol length T, =1/Ws=3.2us
Guard interval length T, =0.8 us

Total symbol length T! =4 pus

Channel coding
Generator polynomials of = 1/2 code| [131]s,[177]s

Memory length 6

Puncturing, Modulation see table 3.1

Radio channel model

Delay power spectral density negative exponential
Maximum excess delay<30 dB) Tmax = 0.8 uS
Doppler frequency 0 (no time-variance)

Table 3.2: OFDM parameters

main, so that the radio channel influence is calculated by the convolution of the
OFDM time signal with the channel’s impulse response. The physical param-
eters of this system are chosen to match those of the WLAN standards IEEE
802.11a and HiperLAN/2, as those are intended for high data rate communica-
tion already.
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4 Multi-Antenna Radio Channel
Models

4.1 Introduction

In multi-antenna (MIMO) communications, the decisive difference to single-
antenna communications is the availability of multiple radio channels. Batwee
each available transmit and receive antenna (figure 4.1) there is awliffadso

channel impulse response. Each of these impulse responses can be modeled ac-
cording to (2.15) individually, but the interesting question now is: In which way

are the impulse responses related or correlated to each other? In other words
what is an adequate MIMO radio channel model that captures all performance-
relevant relations between the different channels, yet is simple enough to be
understandable?

Figure 4.1: Multi-path propagation and multiple antennas

It is an open question how the effects of the MIMO radio channel (figures
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4 Multi-Antenna Radio Channel Models

4.1, 4.2) can adequately be modeled in a baseband simulation system [DMO3,
GCO02, TV05].

There are very simple MIMO channel models available, the “i.i.d. Gaussian”
being the most prominent. But, as information theory has shown [DMO05], this
is already the upper bound for performance measures such as the capacity of
the channel, and many realistic channel conditions will exhibit much worse
performance for communication. Some of the MIMO techniques described
in later chapters will show radically different performance depending on the
radio channel model used. In those cases, performance simulations are much
too optimistic and meaningless as long as their radio channel model does not
represent the reality in the most performance-relevant aspects.

This section will describe the simple channel models and the newly pro-
posed modeling approach of this thesis. The new multi-antenna radio channel
model will be developed that characterizes the relevant properties of the chan-
nel but is still easily configurable. The relevant parameters of a MIMO radio
channel model are explained and lead to the newly introduced MIMO-WSSUS
(Wide Sense Stationary Uncorrelated Scattering) radio channel model. This ap-
proach promises to represent the MIMO-related channel propertiesicedilyst
enough, so that MIMO techniques can now be evaluated by simulations which
give realistic performance results.

Figure 4.2: MIMO channel representation

4.2 MIMO Channel Representation

As shown in figure 4.2, the multi-antenna (MIMO) radio channel is described as
follows: Let Ny be the number of transmit antennag; the number of receive
antennas. The impulse response of antent@m is denoted a%,,,,(7). The
transfer function from antennato m is denoted a$f,,,,,(f).
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4.2 MIMO Channel Representation

All m-n transfer functions together can be written as a matrix-valued transfer
function H( f) as follows

Hu(f) - Hin(f)
H(f)= (4.1)
Hy(f) -+ Hun(f)

In an OFDM system, this frequency selective transfer function is turned
into a set of parallel flat fading subcarriers, each of which is describehby
complex-valued constart,,,,,(p) per subcarriep,

Hypn(p) = Hypn(f) (4.2)

In the following, only one single subcarrier will be considered. For the sake of
brevity the subcarrier indexwill be dropped from the notation.

All MIMO radio channels on this subcarrier can now be described by the
complex-valuedMIMO channel matrix

Hy -+ Hiy
H = | (4.3)
Hy -+ Hyn

To explain the benefit of this matrix notation, consider one subcarrier of an
OFDM communication system in this time-invariant channel. Let the transmi
ted symbols at transmit antennashrough Ny on this subcarrier be given as
s1...Sn,. Letthe received symbols at receive antenh#isrough Ny on this
subcarrier be given as ... ry,.

Due to the superposition of all transmitted signals on each receive antenna,
the received symbol at antennais

Nt
T = Z H,.. - sy, + zm (4.4)
n=1
wherez,, is some additive noise at receive antennaWith s = (sy,..., sy,)"
andr = (r,...,ry,)", the vector ofall received symbols can be written in
vector-matrix notation as
r=H- -s+z (4.5)

For an OFDM communication system, the question of MIMO channel mod-
eling is summarized by the question how to model the channel mafrix
(4.5). The easiest model is to assume each entry of the channel matrix to be an
independent identically distributed random variable, which is described in the
next section.
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4.3 1.1.d. Gaussian Radio Channel Model

The easiest radio channel model for MIMO-OFDM applications is to assume

uncorrelated subcarriers, and on each subcarrier the vector of recgmbdls

IS given by .
VNr

The matrix H is constructed fromVy - N independent and identically dis-

tributed (i.i.d.) complex Gaussian random variables with unit variarige= 1.

The normalization factot /\/Nr is introduced to account for the fixed total

transmit power constraint: When more transmit antennas are added, the trans-

mit power at each single antenna is reduced by N7 so that the sum transmit

power of the full antenna array is constant. In this model, for simplicity the

transmit power constraint is expressed by this additional factor serthand

|5,,|? can be chosen independently from the actual number of transmit antennas.

r= Hs+ z. (4.6)

Figure 4.3: MIMO radio channel with a lot of scattering as assumed in the
I.i.d. Gaussian channel model

From information theory [DMO05], a MIMO channel with this statistical be-
havior was shown to havaaximum capacityThis represents a physical situ-
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4.3 l.i.d. Gaussian Radio Channel Model

ation where the propagation at each antenna array proceeds by a huge number
of scattering propagation paths, visualized in figure 4.3. This large number of
scattering paths will result in independent radio channels for each pair of trans
mit and receive antennas, hence the matrix coefficient will be uncorrelated.

However, in reality the coefficients of the mat# are not independent but
instead have non-negligible correlation. The assumption of the existence of
a huge number of scattering paths does not hold in reality most of the time,
and this results in a significant correlation between the radio channels and in
turn the matrix coefficients. This also results generally in lower MIbHpac-
ity. Therefore some extensions of the radio channel model are needed which
describe the physical situation more precisely.

In any case this i.i.d. Gaussian channel model will always be the model with
optimum capacity, which means it can be used as a reference case with opti-
mum performance for any communication technique.

In order to characterize the different radio channel models more easilg, som
measures for predicting the expected MIMO performance need to be found.
The actual MIMO techniques will use thH matrix directly for their algo-
rithms and no additional specific knowledge about the radio channel. Hence,
characterizations of the stochastic and algebraic properties of this raadrix
needed for the MIMO techniques. Those are being investigated in the follow-
ing sections.

A stochastic measure of thEH properties is the pair-wise correlation be-
tween all entries of the channel matrix. However, in some channel models this
correlation will unexpectedly show no relation to the resulting MIMO perfor-
mance at all. Nevertheless the correlation and its behavior will be diestt fisis
each radio channel model. This is followed by the algebraic characterizdtion
the H matrix through its singular value decomposition, which will turn out to
be a useful measure for all radio channel models.

4.3.1 Correlation

The correlation of all entries aff is a first measure to characterize the statis-
tical properties of the MIMO channel matrix, even though its result will be of
limited value.

In the i.i.d. Gaussian model, the matrix entries are assumed to consist of
independent random variables. In this case the covariance (and due to this also
the correlation coefficient) between each pair of matrix entries wiltdre by
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definition:
2 ifij =kt
COU{HZ'j,Hk,g} — {OH ! L

4.7
0 else (4.7)

This result is a first hint with which one can expect a good performance for
each MIMO technique that assumes a “high independence”, i.e. zero correlation
between the different radio channels of the MIMO antenna arrays.

However, some radio channel models with non-zero correlation between the
antenna elements have the interesting property that this correlation ida fixe
value, independent of the actual MIMO technique’s performance (see section
4.4.5). For this reason, another evaluation criterion has to be considered, and
the chosen criterion is the behavior of the singular value decomposition of the
H matrix. This is described in the next section.

4.3.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) of any matfik € CV#»7 is de-
fined as
H=U"xVv (4.8)

wherd U e CV#Nr andV e CVNr are unitary matrices, amd € RV#N js
a rectangular matrix with non-negative real numbers on the diagonal and zeros
elsewhere. The values on the diagonabbf= diag(oy, 09, ...,0x) are called
singular valuesand are sorted by value; > 0o > .. .0

This implies that the squared singular valuésare the Eigenvalues of the

matrix H H" and also ofHH” H. There are at mosk’ = min(Ng, Ny) sin-
gular values. The number of non-zero singular values K is the rank of the
matrix H.

Singular Values in Gaussian Channel Model

If the channel matrixH consists of random variables, the singular values of
that matrix will be random variables as well. To investigate the pragsedf
the singular values it is desirable to find out their PDF or joint distribution.

The joint distribution of the singular values @&f with i.i.d Gaussians has
been solved before [Ede88], but is a complicated expression. In this work, the
resulting PDF is simply shown graphically as obtained by numerical experi-
ments: A large sample of random channel matrices was used to calculate a

1By U the Hermitian ofU is denoted, i.e. the transposed and complex conjugatexmatri
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4.4 MIMO-WSSUS Radio Channel Model

histogram of the respective random variables, which is a good enough approx-
imation of the actual PDF.

The resulting PDF for all four singular values of a 4x4 MIMO channel matrix
is shown in figure 4.4. It can be seen that each of the four expected singular
values have a bell-shaped distribution around some mean value. This mean
value and the whole bell shape is decreasing for the smaller singular values.

Mean o = 0.8522

P(o,)

25 3

Figure 4.4: PDF of the four singular values of an i.i.d. Gausdiin a 4x4
channel

The important result is that all four singular values and even the smallest
are non-zero with very high probability. This means MIMO techniques which
assume the existence of many non-zero singular values can be expected to show
very good performance in this channel model. And indeed, the spatial multi-
plexing techniques explained below will demonstrate a very good performance
in such radio channels.

But such radio channels cannot be expected to appear in reality in all cases.
Instead, a different channel model has to be considered that models the chang-
ing radio channel properties in a better way than the Gaussian model. This is
explained in the next section.

4.4 MIMO-WSSUS Radio Channel Model

Multi-antenna radio channels are characterized by the spatial relatiohs of t
different propagation regions or paths, and a channel model should capture this
relations that exist in space. Fortunately, the Wide Sense Stationary Uncor-
related Scattering (WSSUS) channel model for time-variant frequenegtse

Iive single antenna channels [Bel63, Pat02] from section 2.4 already included
the spatial propagation path characteristics in its modeling approach. This ca
readily be extended to MIMO situations in a straightforward way.
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ST

eccrrrreertt

Figure 4.5: MIMO radio channel with a small number of scatterers (hete
3) as assumed in the MIMO-WSSUS channel model
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4.4 MIMO-WSSUS Radio Channel Model

In the multi-antenna case, it is necessary to rethink the different ped@a
agation properties of all the simulated WSSUS paths. The WSSUS model only
assumes the fact that “much scattering is taking place all over the wdudil r
channel” (figure 4.3), but for MIMO it is necessary to model this scattering in
a slightly more detailed way. Namely, the scattering reflection thiztroenes
theangle of arrival(and departure) has to be modeled.

Measurements have shown [DMO03] that the number of these “scattereryclosel
located to the antennad’is surprisingly small and in the range bf= 5,6, 7.
Therefore this number dfansmit scattererd.; andreceive scatterers r are
introduced as two new parameters in the MIMO-WSSUS model, visualized in
figure 4.5. For the propagation between one transmit scatter and one receive
scattererK propagation paths are assumed, so that the total number of paths
now is K - Ly - L. Similar to the single-antenna WSSUS model, each prop-
agation path is characterized by a set of parameters as describednaxthe
section.

4.4.1 Scatterers

For each of these scatterers, the Angle of Arrival (AoA) of the arrivingenatv
the receiver is denoted hy. As explained below (section 4.4.3), this parameter
can either be chosen as a uniformly distributed random variable, or it cam be se
to the fixed Fourier angles to simplify the correlation analysis.

Similarly, the Angle of Departure (AoD) at the transmitter is denoted by
For each pair of scattereisand j, the K different propagation paths linking
these two scatterers have a random dejayand phasé,;;. which are num-
bered by the three-fold index j, andk. These parameters are shown in figure
4.6.

Additionally the actual geometry of the antenna arrays at the transmitter and
receiver need to be known (e.g. uniform linear with spacifg). Depending
on this geometry of the antenna arrays, one can calculate different phase shifts
for each antenna as a function @f and; by determining the phase shift
om(Br) of path k at antennan as a function ofy, at the receiver and as a
function of 3, at the transmitter.

4.4.2 Antenna Array geometries

The phase shiftg),,(¢)) on each antenna as a function of the angle of ar-
rival/departure is calculated from the geometry of the antenna array [OKBS
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7111, (9111

- ~

RXx

Figure 4.6: Parameters of MIMO-WSSUS radio channel model: AgAAoD
B;, Delaysr;;i,, Phase shifts; ;.

In this thesis, aJniform Linear Arraywith antenna spacing = \/2 and ran-

dom orientation is assumed, as shown in figure 4.7. The radiation pattern of
each single antenna is assumed to be omnidirectional in the horizontal plane,
which could be implemented in reality by e.g. a vertically oriented dipole a

tenna.

Figure 4.7: Uniform linear antenna array with impinging wave and wave fronts

This results in the following phase shifts at antenna element numider
an incoming angle> and wave length:

Om (V) = mQTﬂd sin(y) = mm sin(v) (4.9)
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4.4.3 Random Angles vs. Fourier Angles

An antenna array can distinguish between only a limited number of directions
from which an impinging wave is arriving. This limit also describes the gran-
ularity by which different angles can be resolved i.e. distinguished, or can not
be resolved any longer. An array witki antennas can only resolve up A6
different angles or directions. The maximum number of resolvable directions
can be seen by theeam forming patterof the antenna array.

Beam Forming Pattern

The beam forming pattern of a Uniform Linear Array (ULA) with four antennas
is shown in figure 4.8. This pattern is always symmetric with respect to the
array line so that each beam occurs both to the front and the back of the array.

B0 1

150/

210\ /[ - L\ /330

Figure 4.8: Beam forming pattern &f = 4 Uniform Linear Array with ele-
ment spacing\/2

In any case, with four antennas only four directions can be resolved, denoted
asf, ..., 33 infigure 4.8. If arriving propagation paths occur from more than
those four directions, the received signal vector will contain the energy from
the non-resolved signal components spread out over the resolvable beams.
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This “angular sampling” is the same situation as the time sampling when
trying to resolve multipath components in time. The multiple paths can only
be resolved up to the sampling time, but not finer than that. This very same
sampling theorem applies for the angles here as well.

Fourier Angles

The N angle directions of the ULA beams are given by
sin(G,) = % for any integep with —N < 2p < N (4.10)

These angles are also the coefficients of a Fourier series, and for this tleason
directions of the beam forming pattern are also cafledrier directions

Figure 4.9 demonstrates those discrete angles for the Ease 4. The
Fourier angles are those radian measures whose sine (the projection on the
y-axis) is an integer multiple df/N, which is2/4 = 1/2 in the example of
figure 4.9. Hence, the four Fourier angles are those with a sine valué
0,1/2, andl.

sin 6(]7) |

|O DO = —

D=

Figure 4.9: The four Fourier angles for = 4 andp = {—1,0, 1,2}

Inserting this set of Fourier angles into the phase shift expression (4.9) gives
the following set of phase shifts

O (B) = mmsin(B) = mp for any integep with —N < 2p < N

N (4.11)

The proposed MIMO-WSSUS model assumes the path apgles. as uni-
form random variables, which is how the physical propagation properties can

be represented. However, for the correlation analysis of the resiHingatrix,
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4.4 MIMO-WSSUS Radio Channel Model

it is useful to choose the path angleésas the fixed Fourier directions instead.
This will be picked up in the correlation and singular value discussion below,
but the model itself assumes random path angles instead.

4.4.4 Wide-band MIMO channel impulse response

The wide-band MIMO channel impulse response from antenioeantennan
is then given by

Lr Ly

K
B (T) = Z eI om (W) Z eIn(5;) Z 5(T — Tijr) e] ijk (4.12)
k=1

i=1 j=1

It is important to emphasize that no further assumption about the actual prop-
agation geometry is made, except for the known angles. There is no further
assumption about the distances, or about the space in between the transmit
scatterers and receive scatterers. These parts of the radio chansil ase
sumed to be unknown, similar to the original assumptions of WSSUS, where
only the facts of wide-sense stationarity of the impulse response (“WSS”) and
of uncorrelated scattering (“US”) is assumed but nothing more.

The sums over the different scatterers in equation (4.12) can also benwritte
as a vector-matrix equation

honn(T) = - O(7) - By, (4.13)

where thesteering vectorsvith all the phase shifts at the receive antemna
and transmit antennd, are defined as

67%(%)

Y, = : : (4.14)
ej(bn(wLT)

B, = (ejdm(ﬁl) ejdm(b’LR)) , (4.15)

Thescatterer linking matriX9 describes the sum of propagation paths from
one transmit scattergrto one receive scatterer Its entries for one pair of
scatterers are

K
@Z’j(T) = Z(S(T — Tijk)ejeijk . (416)
k=1
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Now, writing the propagation path sums for all scatterer pairs into onexnatr
gives the following full scatterer linking matrix

pey (7 — Taap) el bt O(7 = Tig) et
O(r) =
b1 O(7 — Trgap) P b1 07 — Togrpk)e!init
(4.17)
The steering vector8,, andw,, for all transmit and receive antennas can be

written into one matrix each, which will result in the matrix-valued lolioand
MIMO impulse response

H(r)= v - O(r) - P : (4.18)

LV . \/-/ LY .
Receiver Steering geatierer Linking Transmitter Steering

This is the matrix-valued MIMO impulse response which can be used to simu-
late a wide-band transmission system in time domain.

Wide-band MIMO channel transfer function

Alternatively, the impulse response can be transformed into frequency domain
to obtain the matrix-valued MIMO transfer functidd (f). This is achieved
by calculating the Fourier transforms of the entries (4.16) of the scatter linking

matrix as
K

®;(f) = Y el tun2rimn) (4.19)
k=1
Inserting this into (4.18) gives the matrix-valued MIMO transfer funct#d(f)
for simulations in the frequency domain

Hf)= % - ©o(Ff) - & . (420

Receiver Steering geatterer Linking Transmitter Steering

Fourier directions

If the Angles of Departure or Arrival (AoD, AoAjy; are chosen from the fixed
Fourier directions, the phase shifts due to the antenna array are no longer ran-
dom variables and even the steering vectors and matrices are no longer random.
Inserting the phase shifts for the Fourier angles (4.11) into the steering vector
(4.15) gives

Bm — (6—j27rmO/LR o 6—j27rm(LR—1)/LR) (421)
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and the full steering matrix

o—3270:0/ L . p—3270(Lr—1)/Lx

P — _ (4.22)
=32t (Ne=1)0/Lr  g=j2r(Np=1)(La-1)/Lr

For L = Np this result is identical to the inverse Discrete Fourier Transform
(DFT) matrix. As the DFT matrix is a unitary matrix, this means the stiafl
properties of the scatterer linking mat® will be preserved after multiplica-
tion with the steering matrices in the Fourier direction case.

4.4.5 Correlation

In order to get insight into the statistical properties of the resulting MIMO-
WSSUS radio channel matrices, the correlation coefficients betweeraits«
entries will be investigated. First, the fixed path angles from the Fodinec-

tions will be considered, where a nice relation between correlation andingsul
MIMO performance exists. Second, the random path angles will be considered,
where unexpectedly no relation to the resulting MIMO performance is found
at all. Nevertheless the correlation and its behavior will be discussed.isThis
followed by the algebraic characterization of thE matrix through its singu-

lar value decomposition in the next section, which will turn out to be a useful
measure for all radio channel models.

Fourier directions

As there are only up td/; and N Fourier directions on each side, the number
of scatterers with Fourier directions is limited By < Nr andLip < Ng.
In this case, the scatterer linking matrix will contain nonzero entrie®upe
number of scatterers, and zeros for the.€Bhe steering matrices on each side
are simply an inverse DFT matrix, and the statistical properties atfimeatrix
is determined from the scatter linking matfx

For the maximum number of Fourier direction scatteteys= Np, Lr =
Np this results in a scatter linking matrix withi x Np Gaussian entries,
multiplied by the unitary steering matrices. The resultidgs then Gaussian
I.i.d. as well and this is identical to an i.i.d. Gaussian radio channel mode

2In [TV05], this matrix configuration is given for the angulapresentation of the channel, which is denoted
H®, sec. 7.3.4.
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For smaller number of scatterekts < Nr, Ly < Ng, there will be a non-
zero correlation between at least some of the matrix elements. Anpbxarin
this is visualized by the grey-scale image in figure 4.10 and following. First,
the 4x4 system witll.; = Ly = 2 instead of4 Fourier directions is shown:

The larger boxes are arranged like the full matrix entries. Each 4x4 square
visualizes the correlation of one matrix entry (the black-most square) to all
other matrix entries, calculated by the Monte-Carlo method. The correlaition
the matrix entry with itself is always one. All other correlations arakanthan
that and visualized by different shades of grey, up to zero correlation which
is visualized by white. The entries which are “further away” obviously have
smaller correlation, visualized by a white or light grey entry. The neighboring
entries have the highest correlation coefficient, visualized by a dark gngy ent

The resulting correlation pattern corresponds t@aer-samplingof the Lz
random variables in the scatterer linking matrix into the received s\gwoOr
of size N > Lp.

The actual values of the correlation coefficients can be calculated aadiytic
for each combination oNy, Ni, L1, L and each pair oH matrix entries. In
all cases the covariance expression between the matrix elementss ¢altive
variance of some of the Gaussian random variables, multiplied with powers of
the coefficients from the DFT matrix.

i

Figure 4.10: Correlation coefficients between matrix elements, Fouriec-dir
tions, L = 2 scatterers, 4x4 ULA. Mean correlatioms7
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In figure 4.10 which visualizes the correlation with= 2 scatterers one can
observe the high correlation of neighboring matrix entries, but no correlation to
the “far end” of the matrix. When more scatterers are available Wwith 3 in
figure 4.11, the pattern changes and the mean correlation coefficient (as denoted
in the figure caption and also in table 4.1) reduces.

_ mlm——

i

Figure 4.11: Correlation coefficients between matrix elements, Fouriec-dir
tions, L = 3 scatterers, 4x4 ULA. Mean correlatior2b

With L = 4 scatterers in the Fourier direction case, the resulihgntries
are completely independent again, which results in the rather boring pattern of
figure 4.12.

In order to give one single classification number, thean correlation co-
efficientis also calculated. This is basically the mean of all numbers in figure
e.g. 4.10. This mean will always be non-zero because by taking the mean be-
tween all pairs, the covariance of each random variable with itsdlfal&o
be taken into account, which is simply the variance (which B/ definition
here). Hence, in the 2x2 case with 2 Fourier directions the covariancedretwe
each of the four different channel matrix entries is zero, but out of the 16 dif-
ferent covariances 4 will unity because they are the variances ifdafinean
correlation coefficient in this case4g16 = 0.25.

The mean correlation coefficient for several antenna configurations and scat-
terer numbers is shown in table 4.1.
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i 1 I N
- mm
= E m
N N I N

j

Figure 4.12: Correlation coefficients between matrix elements, Fouriec-dir
tions, L = 4 scatterers, 4x4 ULA. Mean correlatior)7

Antennas ScattererdVean correlation

2X2 1
0.25

1
2
4x4 1 1
2
3

0.37
0.25
4 0.07

Table 4.1: Mean correlation coefficient, Fourier directions
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Random directions

With random paths angles;, ¢;, the correlation shows an unexpected and in-
teresting property: The correlations between Hieentries turn out to be inde-
pendent of the number of scatterers! This means even though the correlation
can be calculated, it is not a useful measure for predicting the MIMO perfor-
mance. Instead, the algebraic characterization of the channel matrix by the
singular value decomposition has to be used for predicting the MIMO perfor-
mance, which will be considered in the next section.

The reason for the fixed correlation is as follows: Each covariance expres-
sion can be factored into the product of independent expectations. Due to the
independence of the scatterer linking mat@xand the random path angles,
the covariance will always end up as the product of the variance of one Gaus-
sian random variable, multiplied with the mean value of the phase shift random
variable.

This is shown as an example with a 3x1 system and one scatterer:

6—j770 sin 1 Xl
H = | e-imlsing (Xl) (1) _ X - e—Jmsin (423)
e—jWQSinﬂl Xl . 6—j7725in51

In contrast to the MIMO-WSSUS definition, the entries of the scatter linking
matrix (here: onlyX,) are here assumed to be Gaussian random variables, with
zero mean and varianeé,. In the MIMO-WSSUS definition (4.16), these were
a sum of random phase rotations, but that in turn is rather an approximation for
a Gaussian random variable. That approximation is valid as long as the sum is
large, which was assumed to be the case. In any case for this analyssahaus
random variables are used for simplicity.

The covariance of, say, the first two entries of (4.23), and H1, IS

COU{HH, Hgl} = E{[HH — H_H] [Hgl — H_Ql]*} (424)

Both matrix entries have zero mean. For, this follows from the definition of
X;. For Hy; due to the independence &f and(; this follows also from the
definition of X;. The covariance simplifies to

CO’U{HH, H21} = E{[Hll][Hgl]*} = E{Xl . Xf . 6j7rsin[31} (425)
Due to the independence &f, and the random phase shift angle this is

COU{HH, HQl} = 0'1211 : E{ejﬂsmﬂl} (426)
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As a result, the covariance is just thg variance multiplied by the expected
value of the random phase shift. In appendix A.1, the PDF and the expected
value for the random phase shift is derived; the result is

E{ef"msmhy — Jy(nn) (4.27)

whereJy(-) is the Bessel function of the first kind of order zero.

If the channel matrixH is calculated from a larger sum of scatters and not
only one as in this example, due to the linearity of the expectation in (4.25) and
the independence of multipl&; and multiple random phases, the expression
will turn out as a sum of multiple results of form (4.27). Eventually, even with
a larger sum of scatterer paths, the resulting covariance betweersafitfie
is still one of the fixed valuegy(n) of (4.27), independent of the number of

paths.

0.304 | 0.0926 0.0926 | 0.304

F

0.304 0.0926 0.0926 | 0.304

0.304 0.304

i

w

Figure 4.13: Correlation coefficients between matrix elements, Random direc
tions, 2x2 ULA. Mean correlation 0.4253

This is shown for a 2x2 system in figure 4.13, a 3x3 system in figure 4.14,
and a 4x4 system in figure 4.15, all calculated from (4.27).

However, even though the correlation in the resultigs independent of
the number of paths, the performance of MIMO techniques is not. For this
reason, another evaluation criterion has to be considered. As explained in the
previous section, the more interesting evaluation criterion is the behavior of the
singular value decomposition of thid matrix. This is described in the next
section.

4.4.6 Singular Values

Similar to the evaluation of th&f matrix in the Gaussian model (section 4.3.2),
the singular values of the channel matrix are evaluated in the MIMO-WSSUS
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Figure 4.14: Correlation coefficients between matrix elements, Random direc
tions, 3x3 ULA. Mean correlation 0.2678
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Figure 4.15: Correlation coefficients between matrix elements, Random direc
tions, 4x4 ULA. Mean correlation 0.1948

55



4 Mu[fi-Anfnnn:) Dadin rhannal MnAdale

5 | Mean o = 0.85
’_-I: 7/. . //' \\ O-l
X . \ - oy N
o . .
x / N . N %
. - i > e o
0 0.5 1 1.5 2 313
R 0'4
o Mean0=0.74
ﬂl T
B& 7 \\
E_’ //, \\
0 0.5 1 1.5 2 2.5 3
N Mean ¢ = 0.61
— - T~
- e ~
X s/ ~
3 / \\
o s - - _
0 0.5 1 1.5 2 2.5 3

1
=
[0}
QD
>
Q

1
o
~
N

P(ok) L

Figure 4.16: PDF of the singular values in a 4x4 MIMO-WSSUS model with
Fourier directions and different numbers of scatterers

model as well. First the singular values in MIMO-WSSUS with fixed Faurie
directions are evaluated, then the singular values with random directions.

The PDF of the singular values of the 4x4 matkk of the MIMO-WSSUS
model with Fourier directions are shown in figure 4.16, calculated by the Monte-
Carlo method. In case of all four Fourier directions (top plot), the PDF are
identical to the Gaussian case by definition. In case of less than four Fourier
directions, the PDF changes: The smallest singular values will now disappear
as they are zero, and the larger singular values have a broader PDF so that they
are of smaller value with higher probability than before.

This behavior of the singular values nicely demonstrates how MIMO tech-
niques using multiple singular values will degrade their performance if a lower
number of scatterers is present in the radio channel.

The MIMO-WSSUS model with random directions shows exactly the same
behavior, see figure 4.17, except that the number of scatterers can now go up to
infinity instead of the fixed number of Fourier directions.
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Figure 4.17: PDF of the singular values in a 4x4 MIMO-WSSUS model with
random directions and different numbers of scatterers
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Figure 4.18: Mean singular value in a 4x4 MIMO-WSSUW§ as a function
of the number of scatterers (logarithmic scale) with Fourier and
Random directions

With random directions, the limiting case of an infinite number of scatterers
is the i.i.d. Gaussian model by definition, which is why the SVD PDF of the
Gaussian matrix is shown at the top of figure 4.17. When a finite number of
scatterers exists, the PDF of the smaller singular values shiftsdevzaro or
disappears completely, but in a smoother transition as compared to the Fourier
direction picture.

To summarize, thenean value of all singular values shown in figure 4.18
over the number of MIMO-WSSUS scatterers. The i.i.d. Gaussian model shows
the largest mean value, which confirms this model to be the optimum radio
channel situation. The MIMO-WSSUS model with Fourier directions nicely
shows the increasing mean singular value with increasing number of Fourier
directions, up to the size of the matrix at which the mean value of the Gaus-
sian model is met. The MIMO-WSSUS model with random directions shows
the same trend, except that the upper limit of the Gaussian model will be met
asymptotically at an infinite number of scatterers. With a finite number of sca
terers the mean singular value is less than the Gaussian upper limit, but in-
creases monotonically with increasing scatterers.
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4.5 Other MIMO Channel Models

4.5 Other MIMO Channel Models

In the previous section, a MIMO-WSSUS radio channel model was introduced.
This model will be compared with some other radio channel models in terms
of the BER performance of actual MIMO techniques in chapter 8, after the

MIMO techniques have been introduced. Those models are briefly described
in the following.

In [DM03, DMO05], a different channel model is derived on the basis of maxi-
mizing the entropy that is represented by the model. The resulting construction
of the channel matri# is very similar to the one introduced in the MIMO-
WSSUS model, see section 8.3.

In [GC02, GCO04], another MIMO channel model is proposed based on an
exact geometrical description of the area used for transmission. The MIMO
channel matrixd will be calculated through ray-tracing simulations inside a
two-dimensional plane. This construction of the channel matrix is very dif-
ferent from the one presented here, but the resulting system performance can
still be characterized by only one parameter, similar to the MIMO-WS&p-
proach. This will be shown in section 8.4.

Other MIMO radio channel models are being proposed and used in [RC98,
GBGPO02], but those were not considered in this thesis.

One interesting relation to another well-explained proposal should be noted:
In [TVO5] an angular domain approach to MIMO channel modeling is intro-
duced. The significant influence of “close scatterers” in this thesis is modeled a
a transformation from physical to angular domain in [TVO5]. A high-capacity
MIMO channel would be characterized by a dense angular domain channel ma-
trix instead of a sparse one in that model. Hence, the MIMO-WSSUS steering
and scatter linking matrices can be viewed as transformation and angular do-
main channel matrices, respectively, where the MIMO-WSSUS pathsagte
chosen as Fourier directions. In effect, the resulting constructidd of very
similar to the one in this thesis. The performance characterization through the
number of close scatterers is similarly available by the number of nonzero ele
ments in the angular domain channel matrix. Thus, the comparison of chapter
8 is valid for that channel model as well, but the model will not be considered
any further in this thesis.
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4 Multi-Antenna Radio Channel Models

4.6 Channel Normalization

For some applications it is useful to normalize the channel. This is done to
reduce the random effects that influence the performance. For example, the
average poweof a realization off () can be normalized to a certain constant
(figure 4.19), so that the performance depends only on the frequency selectivity
but not on the fluctuation of the total power.

[H(f)? [dB]

10 Vil

-15 V! -15 Ve

20 30 10 20 30

Figure 4.19: Three channel transfer functions and their average power without
(left) and with (right) normalization

A time-invariant radio channel model is usually being normalizedre-
guencywith a normalization factoty so that the integral over the transfer func-
tion H'(f) = vH(f) of bandwidthi¥ is unity:

i [oHEDRaE =1 (4.28)
w

This way, the fluctuations of the average power is eliminated and only the ef-
fects of the frequency selective fading is being investigated. This isliahd

only if the investigated techniques should combat the frequency selectiuty, a
other techniques for compensating the changing average power are proposed
and investigated separately.

This normalization does not make sense anymore for a time-variant radio
channel model, because in that case the fluctuations of the average power is a
fundamental outcome of the time variant model and techniques for its compen-
sation must be included in the system model. Thus this discussion is restricted
to the time-invariant case.
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4.7 Conclusion

In MIMO, there is an additional degree of freedom. One not only has to
choose whether to normalize in frequency or in time, but alsspace In
MIMO simulations one is interested in the fading between the different MIMO
subchannels, i.e. the variations of the channel between the different antennas.
Our main interest is not the fast fading of the overall channel, i.e. thatiani
in time from sample to sample that is common for all MIMO subchannels. A
straightforward extension of the above normalization in frequency would be to
normalizein space

o [IERE =1 (4.29)
w

The matrix norm|| H || can be chosen as e.g. thedBENIUSnorm, || H||% =
>3 | Huml?, but other matrix norms can be used as well. The actual choice
has no noticeable impact on the resulting simulated radio channels.

In the rest of this thesis, such normalized channels will be considered ac-
cording to (4.29) unless otherwise noted.

4.7 Conclusion

The behavior and performance of a MIMO communication system needs to
be confirmed by quantitative simulation results. It is important to use a radio
channel model in these simulations that will capture as much realistiancirc
stances as possible, but without distracting from the relevant results loygffe
too many parameters.

The characterization of MIMO radio channels was shown by construction
of the channel matri¥{ and also by two derived measures, the pair-wise cor-
relation of theH elements, and by the singular valueskf In some cases,
the correlation between the matrix elements turned out to have no relation t
the relevant MIMO parameters, which means this measure is not useful as a
prediction of the MIMO performance. In contrast to this, the algebraic char-
acterization of thelHd matrix by its singular values were shown to be a useful
measure for all radio channel models.

In simulations of communication systems the relevant radio channel prop-
erties need to be described realistically and an adequate sthtnstidal for
the essential properties of this channel need to be found. Unfortunately, simple
multi-antenna radio channel models will predict the increased MIMO capacity
to be available in all circumstances, which gives much too optimishalsition
results.

61



4 Multi-Antenna Radio Channel Models

A new MIMO-WSSUS radio channel model was introduced. This model
promises to represent the MIMO-related channel properties realigiredugh,
so that MIMO techniques can now be evaluated by simulations which give real-
istic performance results. It enables the simulation of different MIMEDR®I
systems withonly two additional parametershe number of transmit and re-
ceive scatterers. The relevance of this parameter will also beegenifichapter
8 by comparing different radio channel model approaches, leading to the same
MIMO-OFDM system performance results.

One additional benefit of the MIMO-WSSUS channel modeling approach is
that the statistics of the WSSUS approach are clearly preserved fairagig
radio channel in the model. The radio link between any transmit-receive an-
tenna pair viewed in isolation will clearly be modeled according to the WSSU
channel impulse response. This serves as a strong indication that the frequency
selectivity statistics will still be modeled in accordance with tbeventional
single-antenna broad-band research.

As a conclusion, the MIMO-WSSUS radio channel model and its compari-
son with the i.i.d. Gaussian model will be used for the rest of this work.
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5 MIMO Techniques

Transmission techniques for multiple transmit and receive antennas (MIMO
techniques) are able to increase the link reliability and data rate. Therha
explains the basic MIMO techniques in conjuction with broad-band OFDM
transmission, so that these techniques can be evaluated both in a simple radio
channel model and the newly proposed MIMO-WSSUS model. This thesis
considers MIMO techniques only in the context of a single user, figure 5.1.

f:‘\i-/\\q‘
((‘l(((((((l\\(\(\( F\\

Figure 5.1: Single-user MIMO communication

5.1 MIMO-OFDM Structure

As mentioned earlier, most MIMO techniques have been proposed for a flat-
fading radio channel. This assumption is unrealistic for future high data rate
systems. High data rate demands will require using a bandwidth that is much
greater than the coherence bandwidth of the radio channel. But by using OFDM,
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5 MIMO Techniques

each subcarrier can be seen as such a flat-fading channel, where any of the pro-
posed MIMO techniques can be applied directly. This would lead to a system
structure as shown in figure 5.2. This MIMO-OFDM system usgstrans-
mission antennasyy receiver antennas, and. subcarriers as described in the
previous section.
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Figure 5.2: Subcarrier-specific MIMO in OFDM

In figure 5.2, the MIMO transmission system is presented as the following

parts:
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The input to the MIMO modulation is the sequencexadulation sym-
bols { B}, which may have been modulated just as in a normal SISO
system.

The output of the parallel per-subcarrdMiMO modulation in turn, is a
set of MIMO transmission vector®ne for each subcarrier.

For OFDM processing, the IFFT is calculated for each antenna sepa-
rately. Hence, all vector components that belong to the first antenna are
processed by the first antenna’s IFFT, all components belonging to the
second are processed by the second IFFT, and so on. In the figure this is
suggested by the re-ordering arrows.

On the receiver side, the output of the OFDM processing's FFT is re-
ordered into a set dfIIMO receive vectorsone for each subcarrier.

The parallel per-subcarriéIMO demodulatiowill eventually calculate
a sequence of receive symbols which are passed on to demodulation, just
as in a normal SISO system.



5.1 MIMO-OFDM Structure

The task of the “MIMO modulation” block, in general, is to modulate the se-
guence of complex input symbols into some “modulation” or “encoding scheme”
that is suited to the MIMO transmission situation. The MIMO modulation can
be either

e linear, or

e non-linear, but in this thesis, only linear MIMO modulation schemes are
considered.

Additionally, potential MIMO modulation strategies are distinguished by the
amount of required channel knowledge at the transmitter. The MIMO modula-
tion can require

e full channel knowledge, i. e H completely known but with a certain
SNRH, or

e partially known, e.g. only the magnitude &f might be known but not
its phase, or

e no channel knowledge at the transmitter.
Examples for MIMO modulation strategies are:

e For an antenna selection technique (section 6.1.1), this means transmit-
ting the input symbol on one antenna whereas the other antennas are kept
silent.

e For a Space-Time Coding technique (section 6.2.1), this means mapping
the input symbols on the codewords of the space-time code.

e For an SVD/Eigenbeamforming technique (section 7.1.1), this means
multiplying the input symbols with the singular vectors of the radio chan-
nel.

e For a Space-Time layered architecture (e.g. BLAST, section 7.2), this
means applying the layer-specific processing (e.g. channel coding) to
each antenna layer.

More specifically, there is one MIMO modulator block per subcarrier, result-
ing in N, MIMO modulator blocks. The sequenéd,.}, wherek is the time
index, holds the complex information symbols chosen from some constellation
(e.g. QPSK). The bit stream that modulated these information symbols may
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5 MIMO Techniques

possibly have been processed by an outer channel code and interleaver (not
shown), but as this is not directly MIMO-related, it will not be taken inte a
count here. The serial-to-parallel converter routes the consecutive symbols of
the input sequence into the subcarrier-specific processing chains.

Thus, the MIMO modulator at theth subcarrier processes an input se-
quence{By(n)} of complex scalars into an output vector sequefiegn)}
of dimensionNy x 1 each, wheré is the time index (possibly but not neces-
sarily different fromk). Each component of those vectors is then modulated
on a different antenna but on the santb subcarrier. For a given time index
¢, the time subscript is dropped and the output vectors of all MIMO modula-
torss(n), n =0,..., N, — 1 are written into one long vectaer of dimension
Npr-N.x1as

s = (s(0)F,s()",...,s(N,. — DH)T (5.1)

This vector is then OFDM modulated, i.e. each part corresponding to one an-
tenna is IFFT processed, guard interval is added, D/A conversion is performed,
and the signal is transmitted. It can easily be seen that several péatie of
OFDM processing need to exist for each antenna separately. In parttbigar,
appliesto the IFFT/FFT and each processing step in between (not showga in Fi
ure 5.2): Guard Interval introduction, D/A conversion, transmission cirguitr
receiver circuitry, A/D conversion, and Guard Interval removal.

If this OFDM part of the system is designed according to the criteria men-
tioned in the previous section, then no ICI or ISl is present. Therefore on each
subcarrier the channel transfer function for the transmission from antenna to
another is again only one complex coefficient. [&}(n) denote this flat fad-
ing coefficient of the channel transfer function from antenna antenna on
subcarriem. The matrixH (n) then holds allV; x Ny channel coefficients on
thenth subcarrier as

Hll(n) Ce HlNT(n)
H(n)=| s (5.2)
HNRl(n) RN HNRNT(n)

The vector of received symbols on subcarrieran be calculated as
r(n) = H(n)s(n) + n(n) (5.3)

wheren(n) is the noise vector containing the AWGN samples for each receiver
antenna, and both(n) andr(n) are of dimensiorVy x 1.

The basic assumption for this straightforward combination of MIMO in OFDM
is that there is negligible correlation between neighboring subcarriers. This is
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5.1 MIMO-OFDM Structure

valid if there is sufficient interleaving among subcarriers, or if FDMA tul

user access is used so that each individual user is assigned a subset of subcar-
riers, where this subset can be chosen such that sufficiently spaced sriscarri
are assigned for each user.

Alternatively, the MIMO modulation can be designed in frequency direc-
tion to exploit the available correlation in frequency. Example approaches for
this are Space-Frequency Coding [BBP03]. However, this work only considers
subcarrier-specific MIMO modulation in the following.

The MIMO-OFDM structure of figure 5.2 enables an efficient implementa-
tion of MIMO techniques in a broad-band radio channel [Ran08]. The intersymbol-
interference which is introduced in the broad-band channel will be equalized
by the frequency domain equalization of the OFDM technique. This simpli-
fied equalization is an important point because otherwise, the equalizer needs
to take into account the whole lengt¥j, of the channel impulse response for
all MIMO radio channels in parallel. The algorithmic complexity of such an
equalizer grows withD(Ng’) [Pro00] due the necessary convolution operation,
which is too large in most broad-band systems. But OFDM is an effectihe tec
nique to avoid such complexities, and in combination with MIMO even a large
number of parallel radio channels can be processed with moderate implemen-
tation complexity.
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6 Diversity

Diversity is the reception of one transmitted signal in several independentl
disturbed versions.

Under certain assumptions, different MIMO radio channels in a MIMO com-
munication system will be changing independently from each other. Therefore
these different MIMO channel can be considered as statistically independent
and identically distributed random variables, and diversity techniquedean
used to combat fading on these radio propagation paths.

It is known [ZTO03] that if the fading is pairwise independent between anten-
nas, an antenna array witfi antennas can obtain a maximuliversity gainof
N. This diversity gain is defined by observing that the average error probability
can be made to decay like¢ SN RY at high SNR, in contrast to th&/N R~ for
the single antenna fading channel.

In the following analysis, the SNR distribution, the mean SNR, the analyti-
cally calculated BER and the simulated BER rates will be evaluatedier ¢o
verify this prediction for various diversity techniques. This evaluation is done
in the i.i.d. Gaussian channel model first, and the additional degradation in a
MIMO-WSSUS channel model is considered as a second step.

6.1 Receive Diversity

e

Figure 6.1: Receive diversity: Single transmit antenna, multiple recanten-
nas

The easiest implementation of spatial diversityeiseive diversitywhere the
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6 Diversity

transmitter is using one antenna just as in conventional systems but thereceiv
is using multiple antennas (figure 6.1 and 6.2). This configuration is sometimes
also calledSIMO (Single-Input Multiple-Output)

Figure 6.2: Communication link with antenna diversity on one end

6.1.1 Selection diversity

The easiest diversity technique is to select the best available versithre of
received signal and ignore the rest. This is commonly knowsetection di-
versityand has been used for decades already [Pro00].

In a MIMO system, antenna selection can be employed both at the receiver
or the transmitter. At the receiver, the signal from only one antenna is sé)ect
and the receive signals of all other antennas on that subcarrier at this éme ar
ignored. At the transmitter, the transmission signal is sent over one specific
antenna, and all other antennas are inactive on this particular subcarheyr at t
time.

This selection can be done both at the receiver and transmitter, depending on
the actual antenna configuration. For a transmitter-side antenna selection, the
channel information about all magnitudes|id? || would have to be available
at the transmitter, which is rather uncommon but possible. For receder-si
antenna selection, that information would have to be available at the receive
which is the case for almost any transmission system anyway. In aaytbas
analysis depends only on the number of available diversity branches, regardless
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6.1 Receive Diversity

of where the selection from those diversity branches is made. Hence, the rest
of this section consider& diversity branches to choose from.

PDF of selection diversity

In order to calculate the gain of selection diversity analyticallgt tine proba-
bility distribution of the resulting SNR is considered.

The error probability is always a function of the SNRH |>/N,. In a SISO
random channel model with Rayleigh fading where the real and imaginary com-
ponent are Gaussian, the SNRH |2 is a random variable of Chi-square distri-
bution with 2 degrees of freedom. With the variance of each component chosen
asc? = 0.5, the PDF of one channel is as simple as

fsnrsiso(x) =e ", x>0 (6.1)

and has meah.

In selection diversity, one out of many such Rayleigh fading channels is se-
lected, which means the resulting SNR is thaximunout of a set of random
variables. By the help abrder statistic§Pap84] the distribution of the maxi-
mum of V i.i.d. random variables is calculated from the individual distribution
F and densityf, which results in

fuaxn () = N(F(@))V 1 f(2). (6.2)

Inserting the above Rayleigh channels (6.1) gives the following PDF for the
resulting SNR after selection diversity

fonrsa(z) = N1 —e )N te™ >0 (6.3)

which is shown in figure 6.3 for a few values &f.
The mean of this distribution is

N-1 /n g s
MSNR,sel = NZ ( L )(—1)k/$6(k1)$d£€
0

/N -1 1
:NZ( " )(—1)k(k+1)2. (6.4)

The first few values of this are shown in figure 6.4 for this technique and for the
one in the next section. Clearly, the mean SNR increases with more tversi
branches, but lesser than linearly and hence not optimal.
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Figure 6.3: PDF of 7]* in Rayleigh fading, without and with selection diver-
sity of degreeV = {2,4,8} (o = 1)
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6.1 Receive Diversity

Analytical BER

However, the mean SNR is not the interesting criterion of evaluating tiierpe
mance. Instead, the BER which depends on the full probability distribution is
the interesting criterion. For that reason, a concrete modulation schemelis use
as an example in the following. For BPSK modulation with constellation sym-
bols {+a, —a} the bit error rate can be calculated explicitly. The error prob-
ability, conditioned on a known channgl|? after selection combining (6.3),

is
Q(v2|h?p) (6.5)

wherep = SNR = a%/N, is the average received signal to noise ratio per
symbol, and|h|?p is the received SNR for the whole channel after selection
combining. Now this expression is averaged over the distributiojh|éfto
obtain the actual error probability. Again, independent Rayleigh fading with
unit variance is assumed on each diversity branch. The corresponding PDF for
|h|> was given in (6.3). Inserting this in (6.5) results in

N
1 N p
esel — = 1_§ _1n71
Pt 2[ (n>( ) n+p

n=1

(6.6)

[TVO5]. This analytically calculated BER is shown in figure 6.5 together with
simulation results which are consistent with the analytical ones.
To evaluate the asymptotic behavior at high SNR, a Taylor series expansion

of the expressioR/p/(n + p) is calculated inl /p at1/p — 0, as given by

D nl 3n?1 3-5n°1 3-5-Tn*1
—1——=+ S — + ——... atl/p—0.
Vit p 25 2 2 23 8 i /P

(6.7)
When inserting this into (6.6), it turns out all terms up to thigh term will
cancel out due to the to the binomial series and the fa¢tan the nominator
of each Taylor term. Only thé/th term gives a nonzero contribution to the
resultingp., which means

1
SNRN -
It can be concluded that selection diversity provides a diversity iyain

(6.8)

Pe,sel ™~

Simulated BER

This analytically calculated BER of uncoded BPSK can also be observed in
actual simulations, see figure 6.6 (right plot). However, even this uncoded BER
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Figure 6.5: Analytically calculated BER of uncoded BPSK with selection di-
versity, N = {1,2,4,8} (markers: simulated values)

Is not the final criterion of performance evaluation — the BER with channel
coding is. Hence, figure 6.6 (left plot) shows the BER from simulations of a
coded system. One can observe a significant performance increase due to the
diversity. Each additional receive antenna gives an additional diversithgira

and improves the uncoded and coded Bit Error Rate.

In an uncoded system, the achieved performance gain is very large because in
the SISO system the BER is dominated by deep fades. Diversity is one means to
combat this fading. Channel coding is another means, and extending channel
coding by diversity will show smaller performance improvements. Howeve
even in a coded system a noticeable increase of 3dB for the first and roughly
1dB for each additional diversity branch can be observed.

Finally, the achievable maximum bandwidth efficiency at a target BER is
compared with the original channel capacity of a SISO channel, which was
discussed in section 3.3.2. Figure 6.7 shows the capacity of a single-antenna
Rayleigh fading channel and some achievable simulation results from figure
3.8. Additionally, the improved data rate through diversity is shown as well,
which confirms nicely the performance gain through diversity.

However, this comparison neglects the fact that the theoretical caphaty
channel with diversity is much higher than the single-antenna capacity, véhich i
the shown capacity. Nevertheless, it can be observed that the BER parb@ama
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Figure 6.6: BER performance of antenna selection, coded and uncoded com-
parison,F = 2 bits/sec/Hz. (Left: 16QAM with code rate= 1/2,
Right: QPSK uncoded; Gaussian channel)
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Is significantly improved through the use of diversity, even with the simpte b
suboptimal selection diversity technique.

6.1.2 Maximum Ratio Combining

In the previous section, only one out of many available diversity branches was
being used as the actual received signal. This approach can obviously be im-
proved by using not only one diversity branch but instead ualihigranches by

a suitablecombiningtechnique.

Maximizing the Signal-to-Noise Ratio

A combining technique is a function that maps all diversity branchémck

to the one single desired signal Such a function is chosen according to a
particular criterion. One common criterion is to maximize the resultigg&-
to-Noise Ratio. A combining technique that achieves this criterion is called
Maximum Ratio CombininMRC), also known asnatched filteror coherent
combining

N
§=) him (6.9)
=1

In order to evaluate the performance gain of MRC, the probability density
of the SNR after MRC combining is considered. The PDF without diversity
wase ¥ with meanl (6.1). With MRC diversity, the SNR is the sum iV
independent real-valued Gaussian random variables. Hence, its distrilzution
Chi-square witl2 N instead of2 degrees of freedom, which is

fon(z) = ﬁ:ﬁN_le_x, x>0, (6.10)
which is shown for the first values a¥ in figure 6.8. The mean of (6.10)
is simply N. Figure 6.4 nicely shows the performance advantage of MRC
diversity compared to selection diversity, even when only paying regpect
the mean SNR. The same result can be seen from comparing picture 6.8 to 6.3,
which demonstrates the improved SNR by MRC.

Analytical BER

Again, the mean SNR is not the most interesting evaluation criterion, but the
BER is. Therefore, a concrete modulation scheme is used to calculate the re-
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Figure 6.8: PDF of H|* without diversity, selection diversity of degree 2, and
with MRC diversity of degred2, 4,8} (o0 = 1)

sulting BER analytically. The error probability of BPSK with constellation
symbols{+a, —a}, conditioned on the known channel realizattofir V05], is

Q(V2|[h[*SNR) (6.11)

whereSN R = a?/N, is the average received signal to noise ratio per symbol,
and||h|>?SN R is the received SNR for the whole chanhelalmost similar to
(6.5). This expression is averaged over the distributiofifdf? to obtain the
actual error probability.

The channel norm is distributed as Chi-square withdegrees of freedom,
(6.10). With this density function, the resulting error probability of (6.11) can
be computed analytically:

_ 1|, _ [ SNR Ni 2n 1
Peanre =5 I+ SNR“=\n ) 4"(1+ SNR)"

n=

(6.12)

[TVO5]. This bit error probability is shown in picture 6.9 for somé = Ny
together with simulation results which are consistent with the analygsalts.
Additionally, this figure shows the curves for selection diversity from figuse 6.
One can easily observe the better performance of MRC diversity.

Even more insight can be obtained from its approximation at large SNR us-
ing the Taylor series (6.7). In this case the linear term of the Taylor series
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Figure 6.9: Analytically calculated BER of uncoded BPSK with MRC diver-
sity (markers: simulated values) and selection diversify, =
{1,2,4,8}

sufficient and this will result in a bit error probability at high SNR given by

2N —1 1
pe,mrc ~ ( N )m . (613)

This result shows that at high SNR, the error probability decreases witkitthe
power of the SNR instead of the first power. Hence, MRC obtaidversity
gainof NV, just as selection diversity does. In BER plots, this gain is visible as
a faster decay of the error rate curves.

The previous technique, selection diversity, was shown to obtain a diversity
gain of N as well. This can be seen by comparing the decent rate of both
techniques in figure 6.9: Both techniques exhibit the same steepness, and MRC
is only shifted to the left. This confirms as well that both techniques obtain the
same diversity gain, although MRC additionally provides a performance gain
on top of that.

Simulated MRC BER

The bit error rate of a MIMO transmission using MRC combining is shown
in figure 6.10. Each additional receive antenna gives an additional diversity
branch and improves the uncoded and coded Bit Error Rate.
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Figure 6.10: BER performance of Maximum Ratio Combining at the receiver,
coded and uncoded comparisan,= 2 bits/sec/Hz. Ny = 1,
Nr ={1,2,4,8} Rx antennas. Left: 16QAM with code rate=
1/2, Right: QPSK uncoded)

In theory this technique can be used not only for exploiting diversity but
additionally in the context of spatial multiplexing for transmitting multipleadat
streams in parallel. However, in practice this is only usable if therelue to
inter-stream interference is small compared to the noise. In other wibids,
would only be used at very high noise levels and low SNR, which is not the
region of interest here. This section only considers the diversity benefits of
MRC combining in the receiver.

Finally, the achievable maximum bandwidth efficiency at a target BER is
compared with the original channel capacity of a SISO channel, which was dis-
cussed in section 3.3.2. Figure 6.11 shows the SISO capacity of a Rayleigh fad-
ing channel together with the improved data rate that can be achieved through
MRC diversity.

6.1.3 Equal Gain Combining

As a simplification of MRC in terms of the computational complexigual
Gain Combining EG) is a technique that corrects only the phase rotatidn of
but leaves the magnitude unchanged.

]
§=> 5o (6.14)

The simulated performance of Equal Gain combining in shown in figure 6.12
and 6.13, where the other diversity techniques are shown as well. Each addi-
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Figure 6.11: Bandwidth Efficiency of MRC Receive Diversity (coded)

tional diversity branch in EG increases the performance almost as mucthas wi
MRC combining.

The degradation compared to MRC combining is surprisingly small. Es-
pecially at low antenna numbers, there is almost no degradation compared to
MRC combining. Even at higher antenna numbers the difference is small. The
same comparison can be seen in the final bandwidth efficiency comparison of
figure 6.14. It can be concluded that an equalization (6.14) is a useful simplifi-
cation for the implementation complexity in the receiver hardware.

Comparison of Diversity Combining

SNR increase SNR increase SNR increase
diversity=2  diversity=4  diversity=8

Selection Div. Coded 3.3 dB 5.2dB 6.5dB
EG Coded 3.9dB 7.4 dB 10.5dB
MRC Coded 4.0dB 7.7 dB 11.1dB

Table 6.1: Resulting SNR increase at BBR=* compared to the SISO perfor-
mance

As a comparison, some BER curves of the three considered diversity schemes
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Figure 6.12: BER performance of different receive diversity schemes, uncoded
QPSK, bandwidth efficiency’ = 2 bits/sec/Hz.
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Figure 6.13: BER performance of different receive diversity schemes, coded
(16QAM with » = 1/2 code), bandwidth efficiencyy = 2
bits/sec/Hz.
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Figure 6.14: Bandwidth Efficiency of MRC and EG combining (coded, Gaus-
sian channel)

are shown in figure 6.12 and 6.13, showing the performance at the same band-
width efficiency. The performance gain in numbers is summarized in table 6.1.

Both the uncoded and coded simulations confirm any of the diversity tech-
niques to be a good way of combating fading. Selection diversity is the easiest
technique, but can provide only significantly less gain compared to MRC and
EG. MRC diversity shows the best performance, which is being expected due to
its construction criterion. Nevertheless the simpler EG diversity stabmest
as much gain both in the uncoded and coded simulations.

The achievable bandwidth efficiency of the three diversity techniques is shown
in figure 6.14, which confirms the observed improvement also for other band-
width efficiencies in the i.i.d. Gaussian channel model.

In figure 6.15, the same improvement can be observed even in the MIMO-
WSSUS channel model withy, = Ly = 6 scatterers, even though the absolute
bandwidth efficiency is slightly degraded compared to the i.i.d. Gaussian per-
formance. Nevertheless, the performance increase by using receivsitgiver
holds in both radio channel models alike.

Coherently combining schemes such as MRC and EG are significantly more
efficient than simple selection diversity in both Gaussian and MIMOSWS
radio channels. It can be concluded that a large diversity gain is reddyed
coherently combining the different diversity branches. On the other hand, the
EG simplification of neglecting the amplitude weighting does not degrade the
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Figure 6.15: Bandwidth Efficiency of MRC and EG combining (coded, MIMO-
WSSUS channel)

performance significantly. Hence, the additional weighting of the branches in
MRC does not show a significant additional gain and can be skipped in order
to decrease the computational complexity.

83



6 Diversity

6.2 Transmit Diversity

As an alternative implementation of spatial diversity when it would biecdit

to place multiple antennas at the receimamsmit diversitycan be used as well.

In this case, the receiver is using one antenna just as in conventional systems
but the transmitter is using multiple antennas (figure 6.16). This configuration
is sometimes also calledISO (Multiple-Input Single-Output)

Figure 6.16: Transmit diversity: Multiple transmitter antennas, singlevece
antenna

6.2.1 Space-Time Block Codes: Alamouti Scheme

A MIMO technique where a block of modulation symbéIB (%)} are encoded
to a block of transmission symbo{$'(k)} is called aSpace-Time Block Code
A prominent example of this is th&lamouti SchempAla98] which is a two-
branch transmit diversity scheme.

For the Alamouti Scheme, a block of two modulation symHd#§1), B(2)}
Is considered in a system with two transmit and one receive antéfina; 2,
Nr = 1. The two modulation symbols are transmitted over the time duration of
two time-steps, just as in a normal system without space-time coding. lowev
the symbols are not transmitted individually, but at each time-step both symbols
are transmitted simultaneously, encoded in a special way.

—B(2)*\ (B(1) Tl ‘
(B(2), B(1)} _{(B(l)*>’<3(2>>} --"H, {R@.RQ) ' —{P@). D)}
—Encoding Decoding——*

Figure 6.17: Alamouti Space-Time Block Codé; = 2, Ny = 1
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6.2 Transmit Diversity

This encoding is done as follows: At the first time-step 1, the transmit
vector for the two transmit antennas is constructed as

_ (B({)
s(1) = (3(2)) : (6.15)
At the next time-step = 2, the transmit vector is constructed as
_ (-B@y
s(2) = ( B(1y ) : (6.16)

The overall bandwidth efficiency is unchanged compared to a single antenna
system, where two modulation symbols are transmitted in two time-steps a
well. This Alamouti encoding scheme is depicted in figure 6.17.

At the receiver, the two receive symbdl&(1), R(2)} of the two time-steps
are used to recover an estimdt@ (1), D(2)} of the original modulation sym-
bols by space-time decoding. This decoding requires the knowledge of the two
channel transfer factord;, H, and these are assumed to be constant for the
two time-steps in question. The decoding is done as follows:

D(1) = H{R(1) + HyR(2)" (6.17)
= H{(B(1)Hy + B(2)Hy + N(1)) + Hy(—B(2)"Hy + B(1)"Hy + N(2))*
= (|Hi]* + |Ho) B(1) + HiN(1) + HaN(2)" . (6.18)
Si;;ml Nggse

The decoding of the other symbol follows 882) = H;R(1) — H1R(2)*. If
there were no noise, the original symbols are directly obtained, scaled by the
channel power. In a realistic system with noise, the Signal-to-noiseisate
interesting quantity.

The Signal-to-noise ratio of the decoded symbol results as

P 22 P 212
(HiN(1) + HoN(2)*) 0505 + 0507

P

— 0% (6.19)

27
On

assuming unit power in the data symii(k), 0% as the average channel power
ando? as the average noise power. TBiRis increased by a factor @fdue
to the increased diversity, compared to a single-antenna system.
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Figure 6.18: BER of Alamouti scheme and receive diversity (MRC and selec-
tion), coded and uncoded. (Left: 16QAM with code rate 1/2;
Right: QPSK uncoded; Gaussian channel)

This result shows that the Alamouti Space-Time coding scheme increases the
SNR by 3dB, which is just another way of saying that it achieves a diversity
gain of 2. Also, the result after decoding is maximume-likelihood.

The Alamouti scheme [Ala98] is a simply way of exploiting diversity in a
system with two transmit antennas. This can be generalized to mutigaeve
antennas, where the receiver uses maximum ratio combining on the receive
symbol vector, although it has been shown that this scheme is no longer optimal
[TVO5]. For multipletransmitantennas, generalizations exist as well [TJC99],
but all of them will incur a rate loss where the space-time encoded symbols
need more time-steps to be transmitted compared to the original systeoutvit
space-time code.

Performance

The bit error rate of the Alamouti scheme is shown in figure 6.18. This scheme
offers a clear improvement over the SISO system by 1.3dB through exploiting
Transmit Diversity. However, this does not quite meet the predicted 3dB of
(6.19). This difference originates from the underlying OFDM transmission,
which in turn limits the achievable BER because of the outage events due to
channel fading.

The achievable bandwidth efficiency at various SNRs is summarized in fig-
ure 6.19. Using transmit diversity with the Alamouti schemes shows an im-
provement over using no diversity at all (the “1x1” curve). This is true for both
I.i.d. Gaussian (figure 6.19) and MIMO-WSSUS radio channels (not shown
here but in figure 7.18), as the diversity techniques show comparable perfor-
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Figure 6.19: Bandwidth Efficiency (at BER& *) of receive diversity (MRC)
and transmit diversity (Alamouti), coded, Gaussian channel

mance improvements in both radio channel models alike.

Comparison of Receive and Transmit Diversity

The interesting question is how the performance of the Alamouti transmit di-
versity scheme compares to the receive diversity schemes discu$sed ber
this reason in figure 6.18 also two receive diversity schemes have betadplot

Somewhat surprisingly it turns out even a simple antenna selection scheme
offers significantly more improvement compared to Alamouti. The optimum
receive diversity scheme with Maximum Ratio Combining shows an evgerla
improvement of 4.0dB over the SISO system, where Alamouti only shows
1.3dB as explained in the previous paragraph. This is true even for all band-
width efficiencies shown in figure 6.19.

This difference between the Alamouti scheme and the other diversity schemes
Is a direct outcome of the fact that the other schemes exploit more knowledge
about the MIMO radio channel. In the Alamouti scheme, the transmitter does
not know the channel. The transmitter cannot assume any spatial structure of
the channel and is unable to direct the transmit energy into specific channel
directions, if there were any. On the other hand, the MRC scheme assumes
channel knowledge at the receiver where the combining is done, which means
the transmit energy can be collected from the specific channel directions.
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For this reason, the Alamouti scheme shows less MIMO performance im-
provement than the other MIMO schemes that require and exploit more chan-
nel knowledge, see figure 6.19. If a system design faces the question whether
to prefer multiple receive antennas over transmit antennas, this résaltyc
suggests to prefer multiple receive antennas for receive diversity.

Nevertheless, if the antenna configuration is fixed and only the transmitter
side has two antennas, the Alamouti scheme is one simple and efficient solution
to exploit diversity even though no channel knowledge at the transmitter is
required, so that the performance is improved compared to the single antenna
case.
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Transmit or receive diversity is a meansdombatfading. By this means,
multiple antennas are used to to improve the reliability for one communication
channel.

In contrast to this, multiple antennas on both transmitter and receives side
(figure 7.1) can also be used to turn the single radio link mtdtiple parallel
channeldFos96, Tel99]. This exploits an increase in the available degrees of
freedom available for communication. The MIMO channel will then be turned
into a Gaussian vector channel, where the parallel channels are multijrexed
space, hence the narBpatial MultiplexingZT03, TVO05]. A technique is said
to have a spatial multiplexing gainf the data rate of this technique scales like
rlog SN R, compared to the data rate scaling@f SN R in the single antenna
case.

Figure 7.1: Multiple transmitter antennas, multiple receiver antennas

By transmitting independent information symbols over each of these paral-
lel channels, the data rate can be increased. This is evaluated by determining
the bandwidth efficiency of this technique over the SNR. This is done in the
I.i.d. Gaussian channel model first. The behavior in a MIMO-WSSUS channel
model is considered as a second step. It is expected that in a rich sgptteri
channel even the simple Spatial Multiplexing techniques with linear receive
will strongly increase the available data rate when increasing the number of
transmit and receive antennas. However, in a more unfriendly radio chan-
nel with little scattering as modeled with the new MIMO-WSSUS model, i
Is expected that Spatial Multiplexing techniques perform not as good anymore.
This emphasizes the fact that performance simulations must use a reatigtic r
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7 Spatial Multiplexing

channel model like MIMO-WSSUS in order not to give too optimistic results,
as will be seen in the following sections.

7.1 Multiplexing with transmitter channel
knowledge

The ideal case for exploiting the available parallel spatial channels is Wien t
channel state informatio(CSI) is known perfectly at both the receiver and the
transmitter [Ran08]. For this case the current channel mé&fris known and
fixed.

The information theoretical capacity of the MIMO channel has been calcu-
lated in literature [Tel99]. It has been shown that the optimum mutual irderm
tion, hence the capacity, can be reached when the MIMO modulation consists of
a multiplication with the Singular Value Decomposition (SVD) at the trabsmi
ter side, together with adaptation of the modulation scheme according to some
bit loading scheme. For this technique the definition of SVD as explained in
section 4.3.2 is used.

7.1.1 Transformed MIMO transmission

With the Singular Value Decomposition, the following transformation will be
defined

5=Vls (7.1)
F=U"r (7.2)
:=U"2 (7.3)
The MIMO matrix channel of (4.5) and (5.3) can be rewritten as
F=35+% (7.4)

wherez has the same distribution asdue to the unitarg/ and||3||> = |s]?,
which means the energy is unchanged. This way, the original MIMO channel
Is turned into several parallel AWGN channels:

fj:O'jgj-ng, jzl,,K (75)

The maximum data rate over these parallel AWGN chanmetgpacecan
be obtained by applying the same techniques that have been described in sec-
tion 3.2.2 for parallel AWGN channels frequencyby OFDM. Namely, the
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Figure 7.2: BER performance of “naive” SVD without adaptive modulation
compared to linear ZF receiver, bandwidth efficienty = 4
bits/s/Hz. Left: Coded, Right: Uncoded.

capacity over parallel channels is the maximization of the sum of bandwidth
efficiencies of all the sub-channels (3.16). In the MIMO case the channel trans-
fer factors of OFDM are instead replaced by the squared singular vcajlm‘s

the respective spatial sub-channel. The resulting bandwidth efficiency over the
time-invariant known MIMO channel is

K
P.o? . .
EMIMOZE log <1+ ]]i[ak> bits/MIMO transmission. (7.6)
0
k=1

Ignoring this result for a moment, (7.4) could naively be used for transmis-
sion, which is a system of SVD transmission without adaptive modulation. Its
BER performance is shown in figure 7.2.

In the uncoded case (figure 7.2 right), the performance is completely un-
changed compared to spatial multiplexing with no channel knowledge at the
transmitter (Linear ZF receiver, see section 7.2.1). Changing the traemis
vector according to (7.4) does not improve the performance at all, as long as the
transmit power is not adapted to the actually available channel quality on the
different subchannels. This is because without different power allocation, the
performance is limited by the outage events due to channel fading. The outage
events due to fading are the limiting factor for the performance in SVD without
adaptive modulation.

However, in a coded system (figure 7.2 left) the behavior is not so clear
anymore. Some improvement over the ZF system can be observed, but it is not
very significant.

In any case, for SVD the channel is assumed to be known anyway and a
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7 Spatial Multiplexing

capacity-achieving bit and power allocation can be calculated. Hence, in the
following sections the technique for exploiting the actual capacity is discussed.

Capacity through Water pouring

Just as in section 3.2, the capacity (which is the maximum bandwidth effi-
ciency) is obtained by solving an optimization problem over the power alloca-
tions .. The problem formulation leads to the same solution as in the OFDM
case. Namely, water pouring and bit loading are needed to achieve the gapacit
The water pouring power allocations (3.21) are

. 1N,
Pk = Imax <0, B — J—z) (77)

where the constart is chosen to satisfy the power constraint

K
> h=P. (7.8)
k

One important difference between OFDM and MIMO-SVD is that in the for-
mer, the pre-processing matrics V (the IFFT and FFT) do not depend on
the channel realizatiokf, whereas in the latter they do depend on the specific
realization of the MIMO channel.

Expected Capacity Value

The expected capacity that can be achieved in MIMO-SVD has been evaluated
analytically by Telatar [Tel99]. The capacity of each of the spatial sub-ch&anne
(7.5) is a function of the singular values of the channel matri¥d, whose
entries are random variables. Hence, the singular values are random and thus
the capacity is a random variabkes well.

In different channel models, the statistics of the singular values arediffer
as well. Figure 4.4 and figure 4.17 show the PDFs of the singular values in
various antenna configurations in the Gaussian i.i.d. and the MIMO-WSSUS
radio channel model, respectively.

The expected value of the capacity is analyzed by obtaining the PDF of an
unordered singular valuefrom a WiSHART? distribution and then integrating

!Let H be a random matrix with entries forming a i.i.d. Gaussiatection with zero-mean, independent real
and imaginary parts. The matri% = HH" is a random non-negative definite matrix. The distributim |
of W is called the WSHART distribution, and its joint density of the ordered eigemeal is known analytically
[Ede88, Tel99].
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Figure 7.3: Theoretical Capacity of SVD-MIMO andi; = Np =
{1,2,...,6}

over the PDF of that singular value [Tel99]. The resulting expectation of the
capacity forN;y = Ny is

o0 Np—1
Covo(P)= [log(1+ PA/NG) Y Liean (2.9
0 k=0

where L;(-) is a Laguerre polynomial of ordér (seé [AS64] §22.3) andP
is the total transmit power. The resulting capacity for the first few numbers of
antennas withVy = N7 is shown in figure 7.3, where the single-antenna case
is identical to figure 3.4.

These results have been subsequently refined by others [KH05, DM05, Ran08].
With the same number of transmit and receive antennas, in the limit of a large

numbe? of antennas the capacity increasiesarly with the number of anten-
nasNr:

4
1 /1 1
C ~ NT/log(l + SNR-v)—\/— — =dv (7.10)
Vv 4
0

“The first few Laguerre polynomials afey(z) = 1, L1(z) = —x + 1, Lo(z) = $(2? — 4z + 2), Ly(z) =
F(—2® + 922 — 18z + 6), Ly(z) = 57 (z* — 1623 + 722% — 962 + 24)
3The antennas number where this asymptotical expressioasolmse to the exact capacity is surprisingly smalll

and for many cases is in the region of 5 to 10 antennas [DMO05]
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Figure 7.4: BER performance of SVD with adaptive modulation. Bandwidth
efficiency £ = 4 bits/s/Hz, Gaussian i.i.d. Channel. Left: Coded,
Right: Uncoded.

The increase in capacity and bandwidth efficiency of figure 7.3 is termed the
spatial multiplexing gainBy using Singular Value Decomposition with Water
Filling and Loading this capacity can be achieved.

7.1.2 Performance

The bit error rate of a MIMO transmission using SVD with water filling and
bit loading is shown in figure 7.4. It is clearly visible how SVD with loading
improves the performance significantly with increasing numbers of antennas
[BVRO7, BVR08, Ran08].

In comparison to the linear ZF receiver (see section 7.2.1) evdh a
2, Np = 2 system outperforms ZF systems with much higher antenna num-
bers. In the uncoded case (figure 7.4, right) it can be observed how subchannel-
specific adaptive modulation already improves the BER performance signifi-
cantly. However the full exploitation can be obtained only by the combination
of adaptive modulation and channel coding.

The bandwidth efficiency that is actually achieved in these simulationtsesul
should now be compared with the theoretical capacity of figure 7.3. The sim-
ulated results are being shown in figure 7.5, where the single points represent
the bandwidth efficiency due to one particular MIMO configuration at an SNR
required for a BER of less thali®—*.

The resulting relation between SNR and achievable bandwidth efficiency al-
ready shows the same slope as the theoretical curves, increasing much more
steeply with a higher number of antennas available. The simulation results of
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Figure 7.5: Bandwidth Efficiency (aBER = 10~%) and Capacity of SVD-
MIMO and Ny = Ny = {1, 2,4}, Gaussian channel

the MIMO-SVD scheme with water filling, bit interleaving, and channel coding
achieves bandwidth efficiencies which are more or less close to the ticabreti
capacity, although there is still a gap of 4-5 dB due to non-ideal (finite) channel
coding and discrete modulation steps.

However, the SNR of these simulation results is to be taken with dare.
this case the SNR shown is only the average SNR, but due to water filling,
the SNRs of the subset of actually used subcarriers and MIMO subchannels
is higher than this average SNR. Hence, the SNR of the simulations does not
accurately represent the SNR which would be seen by a system in reality. N
ertheless these results give a clear indication that an MIMO-SVD seheth
ideal channel knowledge can achieve a performance that is rather close to the
theoretical capacity.

Also, these results are simulated under the assumption of a perfect channel
knowledge at the transmitter. If this assumption no longer holds, the perfor-
mance degrades significantly and the MIMO technique needs to be modified
[BVRO7, BVRO08], but this was not considered in this thesis.

Performance in MIMO-WSSUS channel

The previous results of figure 7.4 showed a bandwidth efficiency that comes
nicely close to the capacity, but in a Gaussian i.i.d. radio channel. The inte

95



7 Spatial Multiplexing

20

T T
— — — Capacity 4x4 /
18} — © — 4x4 SVD /
— 8 — 4x4 MIMO-WSSUS SVD|: ,
16 F Capacity 2x2 O E
O+ 2x2 SVD , ‘ P

14}] B+ 2x2 MIMO-WSSUS SVD el T
Capacity 1x1 , 4 T
12| —©— 1x1 OFDM ° i o

Bandwidth Efficiency [bits/s/Hz]

0 5 10 15 20 25 30
SNR [dB]

Figure 7.6: Bandwidth Efficiency of SVD-MIMO in Gaussian and in MIMO-
WSSUS radio channel

esting question is how this performance looks like if the radio channel does
not offer as much statistical independence and the degrees of freedom for spa-
tial multiplexing are much more limited. Hence, the bandwidth efficiency in

a MIMO-WSSUS radio channel is the relevant criterion to judge whether this
technique can work well in a realistic system as well.

In figure 7.6, this MIMO technique is simulated in a MIMO-WSSUS radio
channel withLz = Ly = 6 scatterers. As one can observe, the performance
Is somewhat degraded compared to the Gaussian channel. Nevertheless the
slope of the bandwidth increase is still comparable to the ideal capacity, and
increasing the number of antennas still increases the achievable bandwidth effi-
ciency. Hence, SVD-MIMO were a good candidate for increasing the spectral
efficiency even in MIMO-WSSUS channels, if the required channel knowledge
in the transmitter could be obtained by efficient means.

7.2 Multiplexing without transmitter channel
knowledge: Linear MIMO Receivers

The previous technique requires the ideal channel state information (CSI) not
only at the receiver, but also at the transmitter. In a realisticegysthis is
usually not achievable. For this reason, the available spatial multiplexing ga
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for receiver CSl only is explained in the following.

Exploiting spatial multiplexing is achieved by transmitting different and in-
dependent data symbols from each transmit antenna. Hence, more than one
data stream is transmitted in parallel. This is a similar situatotné multi-
user channel, where multiple spatially separated users will transmpende
dent data streams, and a base station receiver has to separate thoseatat s
again.

Receiver structures for separating independently transmitted datanstrea
have been under research for along time already. Linear structures dgibeasi
thought of, but their performance is limited. Non-linear structures, espgciall
iterative iterative cancellation techniques (“Successive Intenige Cancella-
tion”, SIC), show huge potential, but are beyond the scope of this thesis.

In this section, linear receiver techniques for spatially multiplexgaas
are presented and their BER performance is evaluated. The performance is
simulated in both the i.i.d. Gaussian and the MIMO-WSSUS radio channel
model, as the behavior will turn out to be rather different in different radio
channel models.

7.2.1 Zero Forcing / Matrix Inversion

The straightforward way of separating all parallel original data streams i
invert the channel matrix. This way, all data streams will not interfatle @ach
other at all. This receiver ideally corrects all distortion that has beteoduced
by the channel matrix, but at the expense of enhanced noise power. The receiver
structure is calle@ero Forcing or Interference Nullingor Decorrelator.

The MIMO demodulator matrix is

Gyr=H"'. (7.11)

In other words, the MIMO demodulator is a matrix multiplication of the re-
ceived vector withH ~!, the inverse of the MIMO channel matrix. The received
signal on a single OFDM subcarrier results as

5=H '(Hs+n)=_s +H 'n. (7.12)
Signal Noise

However, this demodulation technique works only under the assumption that
the channel matri¥d is invertible, which means it has full rank and (equiva-
lently) it has no singular values close to zero. And even if there is full rduak, t
inversion of singular values close to zero will result in a large noise ificgl
tion in the estimated symbols.
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Figure 7.7: Coded BER performance of linear ZF receites: 4 bits/sec/Hz.
Left: Gaussian channel; Right: MIMO-WSSUS channel.
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Figure 7.8: Coded BER performance of linear ZF receike 12 bits/sec/Hz.
Left: Gaussian channel; Right: MIMO-WSSUS channel.

Performance

The BER performance of this spatial multiplexing with linear zero forcing re-
ceiver is shown in figure 7.7, left plot, for an i.i.d. Gaussian channel at band-
width efficiency ' = 4. Given the same bandwidth efficiency, in this channel
model using some more parallel data streams results in better performance.
This demonstrates the potential gain of spatial multiplexing.

For the same efficiency and same number of transmit antennas, increasing
the number of receive antennas will additionally improve performance due to
the diversity gain. This is no different from what the previous section showed.

Figure 7.8 shows the same comparison but for the higher bandwidth effi-
ciency of & = 12 bits/s/Hz.

In terms of increased capacity, figure 7.9 compares the achievable bandwidth
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Figure 7.9: Bandwidth Efficiency of MIMO-ZF in Gaussian channel

efficiency to the theoretical capacity of the different antenna configurations.
One can nicely see the steepness of the capacity curves reflected imthe si
lation results, although the linear ZF receiver has a large gap to the tapaci
At Ny = Ni = 2 the linear ZF receiver has 8dB gap to the optimum, at
Np = Ny = 4 the gap is more than 12 dB. Nevertheless this technique can be
used to achieve also very high bandwidth efficiencies.

However, this promising performance does not hold anymore if the channel
model is not so MIMO-friendly. The same antenna and PHY mode combina-
tions are shown in figure 7.7, right plot, for the MIMO-WSSUS channel model
with L = Ly = 6 scatterers. Diversity-onlyNy = 1) shows an unchanged
behavior compared to the Gaussian case. But all spatial multiplexing config-
urations (Vv > 2) exhibit significantly worse performance than the Gaussian
case. For the efficiency shown here one would still have to choosEthe 1
case to achieve the best performance. The corresponding capacities are shown
in figure 7.10, which demonstrates that this linear MIMO receiver will dtua
decrease the achievable efficiency once such a difficult radio channel is being
used.

Discussion

For a channel matrix with i.i.d. Gaussian random variables as entrieB[ke
of the singular values have been calculated by [Tel99]. As it turns out, even
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Figure 7.10: Bandwidth Efficiency of MIMO-ZF in MIMO-WSSUS channel

for a small dimension of the matri¥; = Np = 4 there is already a non-
negligible probability for some singular values to be very close to zero. Due
to the quantization in any realistic channel estimation device this isiause
issue, and in conclusion the Zero Forcing equalizer will not give any useful
performance in a realistic MIMO system.

This effect turns out to be performance limiting once the Gaussian channel
model is replaced by the MIMO-WSSUS one. In that case, ill-conditioned
channel matrices will occur rather often, and in this case the linear Ziveece
cannot reliably work, as is obvious in figure 7.7, right plot. For this reason,
the receiver could be used for some radio channels, but surely not as a general
solution for all different radio channels that appear in realistic systems.

7.2.2 Optimum MMSE Receiver

The optimum linear MIMO demodulator for a flat-fading channel is also opti-
mum for the MIMO-OFDM system with subcarrier specific MIMO modulation
(section 5.1), which is an obvious outcome of the orthogonality of the subcar-
riers. In this chapter, the single-user detection case is considered only.

The optimum linear equalizer (and MIMO demodulator) is one that mini-
mizes the mean square ermotin the received data symbodg i.e. it fulfills
the minimum mean square errdqMMSE) criterion. The error in the received
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signal is denoted as
e=d-b> (7.13)

and the optimization criterion is to minimize its squared magnitddee||?}.
The derivation of such an MMSE equalizer is fairly straightforward, using the
orthogonality principleE{e - d”} = 0 which says that the demodulated signal
and its residual error should not be correlated anymore. In other words, af-
ter demodulation the residual error “should contain no information” about the
actual signal anymore.

The equalized vectal is calculated with equalization matr& as

d=GHb+Gn. (7.14)

The covariance matrix of the input data symbols is defineRgs= E{bb"},
andR,,, = E{nn®} the covariance matrix of the noise samples, and noise
and data symbols are assumed to be uncorrelated:

E{ed"} =0 (7.15)
= F{[(HGH — I)b+ Gn|[GHb + Gn]"}
— (GH — I E{bb" ) H"G" + GE{nn")G"
0=GHRy,H” - RyH” + GR,),, . (7.16)

The optimum matrix-valued MIMO demodulator solution is given by
Guuse = RwH" HRyH" + R,,,) 7" (7.17)

This result is in accordance with similar results in [S®RB] and many others.
Further simplifications can be carried out by assuming the transmit symbols to
be independent and with powét so thatR;,, = PI, and the noise similarly
R,,, = 021, which gives

2

Guse = HI[HHY + %I]‘l . (7.18)

Resulting Signal-to-Interference Ratio

Using such an equalization matrix, it is now the interesting question to see
the resulting Signal-to-Interference and Noise Ratio (SINR) after exaiiain.

This SINR of a linear MMSE receiver has been calculated by Tse et al. [TH99,
TZ00, DMO5].
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Figure 7.11: Asymptotic limit of the SIR for equal receive powers (7.19) with
a = Np /N as the ratio of transmit over receive antenna numbers

Although the actual SINR of the MMSE receiver results in a rather involved
expression, the asymptotic Signal-to-Interference (SIR) itself was given
relatively simple analytical formulation by [TH99]. The surprising reshire
was that although the MMSE receiver depends on the actual channel realization
through theH multiplications, for large antenna numbeS{ — oo with
a = Nr/Np, fixed) the SIR will converge to a limit that is independent of the
channel realization.

In [TH99] a general solution for this limiting SIR was given, but an explicit
solution can be given only for the special case of equal receive powers from all
transmit antennas. In this case, the asymptotic SIR is

l—aP 1 (1-—a)2/P\> 14aP 1
IR = — | — (= — 4= 7.1
SIR = ——— 2+\/ 7 <02> t———5+; (719

n n n

wherea = N /Ny is the ratio of transmit over receive antenna numbers, and
P/c? is the average received Signal-to-Noise Ratio (SNR) at the recaive a
tenna of interest. This SIR is plotted in fig. 7.11 over the SNR for several
values ofa.

BER Performance

The BER performance of this spatial multiplexing with optimum linear receiver
is shown in figure 7.12, left plot, for an i.i.d. Gaussian channel at bandwidth ef-
ficiency £ = 4 bits/s/Hz. Similar to the ZF results in the previous section, using
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Figure 7.12: Coded BER performance of linear MMSE receivér,= 4
bits/sec/Hz. Left: Gaussian channel; Right: MIMO-WSSUS
channel.
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Figure 7.13: Coded BER performance of linear MMSE receiver,= 12
bits/sec/Hz. Left: Gaussian channel; Right: MIMO-WSSUS
channel.

some more parallel data streams results in better performance. This demon-
strates the potential gain of spatial multiplexing.

However, similar to the ZF receiver this promising performance does not
hold in the MIMO-WSSUS channel model withy = Ly = 6 scatterers, see
figure 7.12, right plot. Diversity-only/ 7 = 1) shows an unchanged behav-
ior compared to the Gaussian case. But all spatial multiplexing configurations
(Nr > 2) exhibit significantly worse performance than the Gaussian case. For
the efficiency shown here one would still have to chooseNhe= 1 case to
achieve the best performance.

For a higher bandwidth efficiencies the same comparison is made$oi 2
bits/s/Hz in figure 7.13.
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Figure 7.14: Bandwidth Efficiency of MIMO MMSE in Gaussian channel

The achievable bandwidth efficiencies are summarized in the capacity plots
of figure 7.14. It turns out the linear MMSE receiver does not perform signif-
icantly better than the ZF receiver in the SNR and data rate ranges ofsintere
The outage events due to ill-conditioned channel matrices are the performance
limiting factor in the MMSE receiver as well. For this reason, the ineze
could be used for some radio channels, but surely not as a general solution for
all different radio channels that appear in realistic systems.

7.2.3 Linear Receivers in MIMO-WSSUS radio channel

The performance of the techniques in the previous sections looked fine when
using only the i.i.d. Gaussian radio channel model. In terms of spatial degrees
of freedom, this radio channel is an ideal situation. In contrast to this|iatirea
system will have to cope with radio channels that do not offer such a high
degree of stochastic independence. Hence, all presented linear MIMO receive
are again evaluated in the MIMO-WSSUS radio channel model.

The simulated results indicate problems for Spatial Multiplexing in MIMO-
WSSUS channels, figure 7.15. The basic assumption for Spatial Multiplexing
is a large number of scatterers in the radio channel, so that the entrids of
can assumed to fade independently to begin with. However, when choosing
parameters for a MIMO-WSSUS radio channel model which seem reasonable
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Figure 7.15: Bandwidth Efficiency of MIMO MMSE in MIMO-WSSUS chan-
nel

enough (see section 4.4), the performance is already degraded beyond any us-
able values.

Hence, with the linear receivers investigated in this work, it carcde
cluded that for realistic non-Gaussian channels, using Receiver Dyvéssit
pretty much all that is possible as MIMO technique. If MIMO techniques
should be used with multiple antennas on both sides, non-linear receiver struc-
tures will be essential, but these are beyond the scope of this work.

Comparison of Spatial Multiplexing and Alamouti Diversity

An interesting question is the comparison of this simple linear spatial -multi
plexing scheme with the diversity scheme of Alamouti coding (section 6.2.1).
Both schemes assume the same amount of channel knowledge — no knowl-
edge at the transmitter but full knowledge at the receiver. Both schemes can
be used with arbitrary numbers of receive antennas to increase the gigdrsit
the system. The actual coded BER performance is shown in figures 7.16 for a
bandwidth efficiency o = 4 bits/s/Hz and various antenna configurations.

In a Gaussian radio channel (figure 7.17), for a small number of receive
antennas (one or two) the Alamouti scheme slightly outperforms linear MMSE
equalization, whereas for a larger number of receive antennas (more than two)
MMSE clearly outperforms Alamouti. This demonstrates how the Alamouti
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Figure 7.16: Coded BER of Alamouti scheme and linear MMSE spatial multi-
plexing. Bandwidth efficiencyy = 4 bits/s/Hz. Left: Gaussian
Channel; Right: MIMO-WSSUS channel.

scheme exploits a diversity order of two through the two transmit antennas, but
the MMSE system with enough receive antennas can additionally make use of
the spatial degrees of freedom through spatial multiplexing.

Figure 7.17 shows how the bandwidth efficiency of Alamouti is an improve-
ment over SISO, but only a small improvement compared to MMSE diversity

Also, the Alamouti scheme is obviously much less sensitive to the amount of
scattering that is available in the MIMO radio channel. This is demonsdtkate
the fact that the Alamouti curves in the MIMO-WSSUS channel (figure 7.16,
right pictures) show almost no degradation compared to the Gaussian chan-
nel (left pictures), whereas the MMSE performance is greatly reducdukin t
MIMO-WSSUS channel. This is confirmed for different bandwidth efficien-
cies in figure 7.18.

The disadvantage of Alamouti is observable with larger antenna numbers:
The receive antennas already provide a lot of diversity and one can observe only
a minimal increase in performance because the Alamouti system cannot exploit
the additional degrees of freedom. E.g. a 2-by-4 MMSE system improves the
performance quite substantial, compared to the Alamouti system with the same
antenna numbers.

In summary, the Alamouti scheme is a good choice for one or two receive an-
tennas in any radio channel. Additionally, the Alamouti scheme clearlysoffer
much more robust performance regardless of the MIMO radio channel condi-
tions.

However, in systems with more receive antennas and rich scattexthg r
channels, other MIMO techniques show better performance, where even linear
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ceiver, Gaussian channel
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ceiver, MIMO-WSSUS channel
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MMSE equalization strongly outperforms the Alamouti scheme. Nevertheless
one should note the MMSE advantage greatly depends on the rich scattering
radio channel and thus cannot be relied upon in general.
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7.3 Spatial Multiplexing with variable Channel
Knowledge at the Transmitter

The previous sections have introduced several approachksdar precoding
techniguesn MIMO radio channels. Some of them assumed no channel knowl-
edge at the transmitter, others assumed perfect channel knowledge. In this sec
tion, a previously proposed scheme presented in [Tau05] is described that uses
a variable amount of radio channel knowledge at the transmitter through the
factorization of a matrix and using only a subset of the factors for the channel
knowledge at the transmitter.

An improvement to this scheme is also presented that modifies its param-
eterization of the unitary matrices. The optimum precoding matrix is factor-
ized into several unitary product matrices which are parameterizedariptes
reconstruction parameters. The modification simplifies the parametenizat
technigue and improves the performance of the original algorithm.

Introduction

The technique described in this section uses linear precoding on the transmitter
side [Tau05, SSB02] which requires the feedback of channel state information
(CSI) through deedback channétom the receiver side to the transmitter side.

To reduce the amount of required feedback information, a variable amount of
CSl is used which is based on a factorization of the precoding matrix. The
optimum precoding matrix is factorized into specific unitary product matrices
by an algorithm described in [Mur62], where the unitary product matrices are
parameterized by simple reconstruction parameters. This scheme enables a
flexible trade-off between an optimum precoding matrix and the amount of
CSI signaling to the transmitter side. Neverthelessdaal knowledge of the

CSI at thereceiverside is assumed throughout this section.

The matrix parameterization technique of [Mur62] has also been used in
[ARUO1] and subsequently [MBVO02] for finding good packings in complex
Grassmannian space. The parameterization scheme has been used to compute
gradients in an efficient manner. However, the modifications describedsin thi
contribution are not expected to have any significant impact on the optimization
outcome in [ARUO1, MBVO02], although the simplification in the choice of pa-
rameters might lead to an easier implementation of the optimizationitligor

In this contribution, the algorithm of [Tau05, Mur62] is improved by a mod-
ified choice of particular parameters during the factorization algorithm. The
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7 Spatial Multiplexing

resulting performance improvement in the factorized matrix and in a coded
MIMO-OFDM system is demonstrated analytically and quantitatively.

7.3.1 Variable Channel Knowledge through Matrix
Parameterization

The considered transmission system hastransmit andVy receive antennas
andNp < Ng. In a vector-matrix notation, the system is shown in figure 7.19.

n
LU 5 - H =\¥, r =QH =R*1—>t

Precoder Radio channel Decoder/Equalizer

Figure 7.19: Per-subcarrier block diagram of transmission system

At each time step, the symbol vectoe CV* containsN; modulation sym-
bols in parallel. It is multiplied by the precoding matiixto give the baseband
transmission vectos, which is transmitted byV; antennas simultaneously.
The radio channel is described in the baseband by a multiplication with the
channel transfer matri¥l and the addition of white Gaussian noise

At the receiver side, the signals from thg; receive antennas are sampled,
giving the baseband receive vector

r=HUt+n. (7.20)

This receive vector is decoded by the MIMO equalizer. In figure 7.19, it
is shown that this equalizer is split into a multiplication with a unitary de
coder matrixQ* and a second multiplication with the equalization mafix'.
These matrices are obtained from the QR decomposition of the matrix product
H-U

QR = HU (7.21)

where @ is an unitary andR an upper triangular matrix. Additionally, the
equalization blockR ' may include non-linear techniques like successive in-
terference cancellation. The MIMO equalization obtains the estimated symbol
vectort which is then used for demodulation.

Precoding with variable Channel Knowledge

It is well known that the channel capacity is maximized if the matrix of lef
singular vectordJ from the singular value decomposition (SVD) of the radio
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7.3 Spatial Multiplexing with variable Channel Knowledge at the Transmitter

channel matrixd = VXU is used for precoding [RC98, S$B2]. How-
ever, to determine this ideal precoding matfix the full knowledge of the
channel transfer matri¥f is necessary at the transmitter, or equivalently, the
full matrix U has to be signaled back from the receiver to the transmitter with-
out any errors.

In this proposal, an approximation to the ideal precoding matrix is calculated
by the factorization of the ideal precoding matiinto unitary matriced/ .
Since the matrice#&/,,, are all unitary, any subset of tlié,, can be used for
precoding without losing the unitary property of the linear precoding. Addition-
ally, each of thdJ,, factors are fully determined by a small set of parameters,
which can be signaled back from the receiver to the transmitter witlesma
effort than the full matrix. And for a trade-off between signaling effort and pe
formance gain, only a subset of thg,, parameters can be signaled according
to different criteria as described below.

In combination, the matrix factorization is a promising technique to achieve
a flexible adaptation to the current radio channel situation and to the current
possibilities for signaling channel information back from the receiver to the
transmitter.

Similar to the previous sections, this technique is proposed to be used on
each subcarrier separately, as described in section 5.1. This leadgdi®ia s
structure as shown in figure 5.2.

7.3.2 Parameterization of Unitary Matrices
Definition of the factorization

Definition 7.1 Letp andg > p be any two numbers from the det .., n. Let
an unitarybase matrixU ,,(¢,q, 0py) € C**" be defined as follows:

1. Allits diagonal elements areexcept theth andgth elements which are
cos(¢p,), and

2. All its non-diagonal elements are zero except the element ipttheol-
umn andgth row which issin(¢,,)e’?»¢, and the element in thgth row
andgth column which is- sin(¢,,)e

These base matrices are “almost” identity matrices, except fastthandqth
row and column, so that a multiplication with such a base matrix will tasul
a complex rotation in the, ¢g-plane. Note thaU]f{](gb, o) =U,(—9¢,0).
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7 Spatial Multiplexing

As an example, one such base matrixih? is

COS(¢12) — Sin(¢12)€_j012 0
U12(¢12, 0'12) = sin(qblg)ej‘m COS(d)lg) 0 . (722)
0 0 1

For any dimensiom, there are(};) = n(n — 1)/2 different dimension pairs
and hence different base matrices, and each of these base bigfisunam-
biguously defined by the pair of real-valued parametgfso,,. In [Mur62]
some of thep,,’s are calledlongitude anglesand bounded by the parameter
range—r < ¢,, < 7 (notably those withy = n), whereas the,,’s and the
rest of they,,,’s are calledatitude anglesand bounded by the parameter range
—7/2 < 0y < /2.

Theorem 7.1 (from [Mur62]) Any unitary matrixS € C"*" can be factorized
into a product of base matrices and one diagonal matrix:

S=A H < H qu(%qa”pq)) (7.23)

p=n—1 =p+1

(note: the first product term is counting downwards) where

el 0
A = (7.24)
0 e
The firstn — 1 parameters), ..., d,_1 of the diagonal matrixA are called

latitude angles and bounded byr/2 < §, < ©/2, k =1...n — 1, whereas
the last parameted,, is called a longitude angle and bounded-by < ¢, < 7.
The parametric space is closed by the identification of the end-points of the
interval -7 < ¢,, < 7 and of the interval-r < §,, < m. The topological
character of the parametric space is that of an anchor ring or torus.

The factorization(7.23)is unambiguous on the understanding that when
is indeterminate it is set to zero.

The proof by construction can be found in [Mur62].

Approximation criteria

With this matrix factorization at hand, in [Tau05] it is proposed to caleulae
actual MIMO precoding matrix from aubsewf the base matrices in (7.23) if
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7.3 Spatial Multiplexing with variable Channel Knowledge at the Transmitter

the amount of CSI feedback signaling should be decreased. In this section, a

criterion of choosing the “most significant” base matrices of (7.23) is described.
The diagonal matriA of (7.24) can be ignored for the MIMO precoding.

To show this, the factorization (7.23) of thtermitianmatrix U” in the SVD

of the channel matrix (section 7.3.1) with= N is calculated as

1 n
U'=A ] 1] Uwn- (7.25)
p=n—1 qg=p+1

Inserting this into the equation for the received vector (7.20) gives

1 n
r= (VEA 1T 1] qu> Ut+n. (7.26)

p=n—1g=p+1

This shows that the (potentially approximated) precoding méfribnly needs

to cancel thdlJ,,, base matrices by their respective Hermitldﬂ] factors but
can ignore the diagonal matriA. The effect ofA is viewed as a variation
of the diagonalized radio channel matx which has to be estimated and
compensated for at the receiver side anyway. Therefore the diagonal iatrix
will be neglected for the MIMO precoding matrix.

In the product of unitary base matricgs,, in (7.23), the base matrices that
are most significant are those most different from an identity matrix. The dif-
ference to the identity matrix can be calculated and results in the siexpres-
siorf

|9pg]

\U pg(bpq, 0pg) — I||p = 2sin 5 (7.27)

This expression is maximized by the maximum absolute values,of

Therefore if less than the full number of base matrices should be used (say,
k < K =n(n —1)/2 instead ofK), thek base matrices with the larggst,,|
are chosen for the approximated precoding matrix.

7.3.3 Matrix Factorization Algorithm
Iteration steps

The algorithm for constructing the factorization (7.23) will be described in the
following. The basic idea of the iterative algorithm is to calculate the param
ters of a single base matrix per step. In particular, the rightmost bask wfatr

4||-|| » denotes the Frobenius norm which is the square root of theoathsquared absolute values of the matrix
elements
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(7.23) is determined in each step, and an algorithm for unambiguously obtain-
ing the resultindJ,,, matrices will be described.

In the first step this base matrix §§;,. Multiplying S by the complex
conjugate matrix will then remove this base matrix from the product due to
UU*Y = I, giving the next matrix iterat®’ as

S[U 1, (d1n, 010)]F = 8" (7.28)

The algorithm is then repeated for the r85bf the product until the parameters
for all base matrices are determined and the diagonal matrix (7.24) is the only
remainder on the right hand side of (7.28).

Now it is described how to reduce the product in (7.23) by a single matrix,
l.e. how to execute one step (7.28) and determine the nidtrjx The approach
is to choose appropriate conditions on the reduced m&trix (7.28) to obtain
suitableg,,, 0,4, S0 that the resultind/,,, will be of the desired form (7.22).

Two particular matrix elements &' are considered, namely

sy = s11¢08(P1n) — S1p8in(P1, )€ 7 (7.29)
s}, = s118in(@1,)e 77 + sy, cos(¢1y) (7.30)

which have been obtained from (7.28) by

8/11 el %k Slln
* *
cos(¢1n) 0 --- sin(gy,)e 77
S11 S1in 0 1 0
Snil Snn . Sin(¢1n)6j01n 0 e COS(¢1TL)

Murnaghan algorithm

In [Mur62] the following conditions on the two matrix elements are used for
the construction of one base matrix:

cl) s, =0

c2) —7/2 < arg(s};) < m/20rs;; =0.
These conditions are sufficient to obtain an unambiguous solutiop foo,,

sothatl/,, is of the form (7.22), and the detailed calculation steps are described
in [Mur62].
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Modified parameterization algorithm

In this contribution, the bounds for the parameter space are chosen differently,
resulting in a modified construction of the factorization. According to section
7.3.2, the diagonal matriA of latitude angle9, ..., J,_1 and one longitude
angles,, will not be used for the precoding matrix anyway. This contribution
proposes to usall anglesdy, ..., d, as longitude angles and all anglgs as
latitude angles. This is in contrast to the original proposal of [Mur62], where
the ¢,,, ¢ = n have been used as longitude angles.

In other words, this contribution proposes a tighter bound on the parameter
space of alk,, parameters as follows (“modified” parameterization):

—T)2 < ¢py < /2. (7.31)

For the construction of one base matrix, it is sufficient to use only this single
condition

c3) st, =0. (7.32)
To obtain unique solutions for the parameters so that the resiiltings of the
desired form (7.22), some case differentiations are necessary:

If s11 = 0 butsy, # 0in (7.30) with (7.32), thery,, = 7/2 is chosen. On
the other hand it;,, = 0 buts1; # 0, then¢;,, = 0. And if s1; = 51, = 0, then
o1, becomes irrelevant and is arbitrarily chosen as zero.

If s117 = 0 or sy, = 0 or both,s,, becomes irrelevant in (7.30) due to the
choice of¢y,, and its value is arbitrarily chosen as zero.

Now the case; # 0 ands;,, # 0 is discussed. Inserting (7.32) into (7.30)
gives

tan(¢1,) = _En joun (7.33)

S11
The right hand side must result in a real valued parameter due to the read-value
¢1,- By writing the fraction on the right hand side gs = a+ jb with a, b € R,
the imaginary part of (7.33) is set to zero by

/2 if a =0
n = 7.34
o1 {arctan(—b/a) elsewhere. (7.34)

Eventually, the parametefr;,, and thus the full base matri&y,,(¢1,, 01,) IS
obtained by

¢1, = arctan(a cos(oy,) — bsin(oy,)) . (7.35)
Interestingly, this modified parameterization is even easier to imghe when
compared to the description in [Mur62], but it shows better performance in the
later simulations.
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7.3.4 Approximation Error

First of all, the approximation error of the approximated precoding mairof
both parameterizations is checked. The residual error in the received symbols
gis
e=t—-t=R'Rt+Q"n)-t=R'Q"n
whereR = Q” HU, and if the noise is assumed uncorrelat&ffn’} =
o21I), the error power is

E{ec) = 2(R"R) ™. (7.36)

The mean squared error values are the diagonal elements of (7.36).

The matrix R is a direct measure for the error power in the resulting esti-
mated symbols and will be investigated further. The optimum magiwill
result if the precoding matri&/ is obtained from the Singular Value Decompo-
sition (SVD) as explained in section 7.3.1. In that case the resulting optimum
matrix (with additional null columns or rows far # m) is identical to the diag-
onal matrix of the channel matrix’ singular valuBs= 3, and the expression
RY R in (7.36) is diagonal as well. This is used as the reference case.

The relative Euclidian distance of the diagonal elements ofRhmatrices
to the idealR matrix is calculated according to

_ || diag(R) — diag(R)|»
|diag( )]l

where theliag operator denotes the vector of diagonal elements of a matrix.

The average result is shown in the bottom plots of figure 7.20, calculated
as the average over many precoding matrices for random i.i.d. Gaussian ma-
trix realizations. This serves as a comparison for the modified and the orig-
inal parameterization. In this example wifty = Np = 5 antennasf =
Np(Nr —1)/2 = 10 different base matrices exist, so with the maximum num-
ber of 10 base matrices, both parameterizations enable an ideal recoostructi
of the optimum precoding matrix and the distancé®@onverges to zero. For
a smaller number of base matrices where the precoding matrix is no longer
optimum, it can be seen that the modified parameterization shows a smaller
distance to the optimum matrix than the one described in [Mur62].

The same difference can be seen when comparing not only the diagonal val-
ues but a Frobenius norm of theatrix difference

, (7.37)

diag

dpat= ————. (7.38)
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—— Murnaghan matrix diff.
-6~ Modified matrix diff.

—X- Murnaghan diagonal diff.
-+ Modified diagonal diff.

o 1 2 3 4 5 6 7 8 9 10
Number of base matrices
Figure 7.20: Comparison of Murnaghan and modified parameterization. Top:
Frobenius norm of matrix difference (7.38) betweRnand the
optimum SVD matrix; Bottom: Relative euclidian distance (7.37)
of diagonal elements to optimum SVD diagonal

The top plots of figure 7.20 show a similar result as the previous comparison.
With the maximum number of 10 base matrices, both parameterizations enable
an ideal reconstruction of the optimum precoding matrix and there is no fur-
ther distance td?. For a smaller number of base matrices where the precoding
matrix is no longer optimum, it can be seen that the modified parameteriza-
tion shows a smaller distance to the optimum matrix than the parameimiza
described in [Mur62].

The differences between the parameterizations can be explained by the choice
of latitude and longitude angles. Murnaghan’s parameterization chooses some
®pq as longitude angles and almost @llas latitude angles. The modified pa-
rameterization chooses ail,, as latitude angles and al]. longitude angles,

I. e. the parameter bounds are distributed differently but in total the same pa
rameter space is used. Since tematrix is unused for MIMO precoding
anyway (see section 7.3.2), the modified parameterization can be saiaifto
the approximation error” partly into the unusexl matrix. A more smooth
approximation as shown in figure 7.20 is the result.

7.3.5 Performance

The linear precoding algorithm has been simulated in the framework that is
used throughout this thesis. The OFDM parameters of table 3.2 have been
used as well, and an i.i.d. Gaussian MIMO radio channel with independent
Rayleigh fading across subcarriers has been assumed. This sections describes
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the performance results in terms of the resulting Bit Error Rate (BER).

1 | T T

: i 'MIMO-ZF —— ]
3 3 0 param. --><¢--
: j 6 param., no adapt.mod. ---K-- ]
_ f % 4 param., adapt. mod. {4 ]
0.1 - 5 param., adapt. mod. -
“ h j 6 param., adapt. mod. --{3--
SVD-MIMO ---@- ]
x " T = RNy |
% 0.01 - a‘ LS = Y e -
3 ‘xb 3
T
le-04 ‘ L e i L
0 5 10 15 20 25 30
SNR [dB]

Figure 7.21: Unitary matrix precoding with variable number of base matrices
(Bandwidth efficiencyE = 4 bits/s/Hz; uncoded, 4x4 antennas,
Gaussian channel)

In an uncoded MIMO-OFDM system withi = Np = 4 antennas, the
system performance is shown in figure 7.21. The upper bound for the BER is
identical to a linear ZF equalizer as described in section 7.2.1. The lower bound
for the BER is identical to SVD transmission as described in section 7.1.

Similar to the investigated SVD system, the linear precoding does give muc
performance benefit unless combined with Adaptive Modulation. This can be
observed by the “6 param., no adapt.mod.” curve which shows almost no im-
provement compared to the “0O param.” curve. Instead, when combining the
Variable Channel State technique with Adaptive Modulatjoine performance
Is improved and eventually reaches that of SVD with Adaptive Modulation,
marked by the curve “6 param., adapt.mod.” (the factorization consists of
K = Np(Np — 1)/2 = 6 base matrices). The lower bound is identical to
an uncoded spatial multiplexing system with matrix inversion, marked by the
curve “0 param”.

It is visible how a trade-off between a larger amount of feedback information
and a better BER performance exists, since any additional base matrix that is
used will also improve the performance. In this simulation, no differenee be
tween Murnaghan and modified parameterization was observed in the average

5This is possible because a feedback channel from the redeitiee transmitter is assumed anyway.
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BER results.

1 T T T T T T E
i 3 3 3  MIMO-ZF —— ]
o | ]

BER

0.01 |

0.001 |

le-04

SNR [dB]

Figure 7.22: Unitary matrix precoding with variable number of base matrices
with adaptive Modulation and Channel coding (Bandwidth effi-
ciency E' = 4 bits/s/Hz; 4x4 antennas, Gaussian channel)

For a comparison in a MIMO-OFDM system, channel coding (convolutional
coding with polynomiall71 133) together with adaptive modulation (bit and
power loading according to [CCB95]) is considered.

The resulting system performance wityr = Ny = 4 antennas is shown
in figure 7.22. Similar to the uncoded case, an increasing number of used base
matrices will increase performance (at the expense of increased Cibbfdg.

Interestingly, in this simulation there is also a noticeable performarfee di
ference between the base matrices obtained by modified versus the ones by the
Murnaghan parameterization as can be observed in figure 7.23. In all cases wit
the approximated precoding matrix, the base matrices calculated by the mod-
ified parameterization result in a performance improvement by roughly 1dB
compared to the Murnaghan parameterization.

As for the performance in a MIMO-WSSUS radio channel, figure 7.24 clearly
shows again how the Variable Channel Knowledge technique varies the perfor-
mance between Spatial Multiplexing as lower bound and SVD as upper bound.
Hence, the best performance in MIMO-WSSUS is simply the case with full
channel information at the transmitter (here: “6 param.”). Unfortunatetize
MIMO-WSSUS channel even a minor reduction in the channel information (“5
param.”) degrades the performance very much so that this technique is as un-
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Figure 7.23: Comparison of Unitary matrix precoding with Modified and orig-
inal Murnaghan factorization.

(Coded, Adaptive Modulation,
Bandwidth efficiencyE = 4 bits/s/Hz; 4x4 antennas, Gaussian
channel)
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Figure 7.24: Unitary matrix precoding in MIMO-WSSUS channel, with adap-
tive Modulation and Channel coding (Bandwidth efficied¢y= 4
bits/s/Hz; 4x4 antennas)
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usable as Spatial Multiplexing in the MIMO-WSSUS channel. Neverthetess i
some radio channels (like Gaussian) this technique promises to reachr simila
performance but with reduced feedback requirements.

Discussion

A linear MIMO precoding technique with variable feedback information pro-
posed by [TauO5] has been investigated. The optimum precoding matrix is
factorized into unitary product matrices, some or all of which can be used
for the approximation of the optimum precoding matrix. For the case of full
feedback information and ideal reconstruction of the precoding matrix, no dif-
ference between the investigated algorithms and SVD precoding could be ob-
served, as had been expected. In the approximated case with limited feedbac
information, the matrix factorization enables a trade-off between the amount
of feedback information and the system performance. In this contribution, a
modification to the matrix parameterization of [Mur62, ARUO1, MBVO02] has
been described. The modified parameterization shows a performance gain over
the original parameterization in terms of matrix norms and also in the BER
performance of a coded MIMO system.
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Figure 7.25: Bandwidth Efficiency of MIMO techniques at BER=*, Gaus-
sian channel

7.4 Conclusion

Many different techniques have been proposed that exploit various aspects of
multiple antennas. All techniques can be combined with OFDM to form a
broad-band communication system for high data rates. The bandwidth effi-
ciency of them is summarized in figure 7.25 (Gaussian channel) and figure 7.26
(MIMO-WSSUS channel).

The OFDM transmission technique enables an efficient implementation of
MIMO techniques in a broad-band radio channel. The intersymbol-interference
will be equalized by the frequency domain equalization of the OFDM tech-
nique. This simplification is important because otherwise, the equalizer needs
to take into account the whole length of the channel impulse response for all
MIMO radio channels in parallel. The algorithmic complexity of such an equal-
izer will grow too large for broad-band systems. But OFDM is an effective
technique to avoid such complexities, and in combination with MIMO even a
large number of parallel radio channels can be processed with realistie-impl
mentation complexity.

In a rich scattering radio channel represented by the Gaussian model, even
the simple Spatial Multiplexing with simple linear receivers can strpmg
crease the available bandwidth efficiency when increasing the number of trans-
mit and receive antennas. Using ideal channel knowledge at the transmitter in
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Figure 7.26: Bandwidth Efficiency of MIMO techniques, MIMO-WSSUS
channel

SVD would still give additional performance gain, but even without this trans-
mitter knowledge the Spatial Multiplexing techniques improve the data rate.
This gives new opportunities in designing a system, where simple algorithms
can be used at the expense of additional hardware for multiple antennas. The
results of figure 7.25 confirm that a linear ZF receiver and a transmitter without
channel knowledge would be sufficient in such a radio channel.

However, in a more unfriendly radio channel with little scattering regnéed
by the MIMO-WSSUS model, the picture is rather different. The simulated
results indicate problems for any Spatial Multiplexing technique in MIMO-
WSSUS channels, figure 7.26. The assumed large number of scatterers for
Spatial Multiplexing is no longer available, and its performance is degraded
beyond any usable values in the MIMO-WSSUS radio channel. Only by using
transmitter channel knowledge it would be possible to reach usable data rates
through SVD, but only with a larger number of antennas where the effort to
obtain an accurate channel prediction at the transmitter is prohibitivalityre

Hence, with the linear receivers investigated in this work, it carcdme
cluded that for realistic non-Gaussian channels, using Receiver Dyéssit
pretty much all that is possible as MIMO technique. If MIMO techniques
should be used with multiple antennas on both sides, non-linear receiver struc-
tures will be essential, but these are beyond the scope of this work.

Additionally, it can be concluded that MIMO performance simulations must
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be aware of using a MIMO radio channel model that adequately models the
correlation between the different channel coefficients, as otherwise isareal
tically optimistic performance results will occur. The MIMO-WSSUS mdi
channel model is a simple modeling approach that enables this choice by the
single parameter of the number of scatterers. This way, the performance of the
investigated techniques could be evaluated in a realistic radio chariraslibe
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8 System Performance and
Radio Channel Models

In this work, the information-theoretical channel capacity is not the most im-
portant performance measure; instead, the Bit Error Rate (BER) of the complete
communication system is the much more important performance figure.

This section uses the BER performance of the MIMO techniques introduced
in chapter 7 as a comparison criterion of the MIMO-WSSUS radio channel
model of chapter 4 with some other channel models from literature. The com-
munication technique in question is the simple Spatial Multiplexing with linear
MMSE demodulation.

It is expected that in a rich scattering channel this simple Spatial Mext
ing technique will strongly increase the available data rate when incretsgng
number of transmit and receive antennas. Each radio channel model in the fol-
lowing sections should be able to represent this data rate gain. Howewer, in
more unfriendly radio channel with little scattering, it is expected thati&pa
Multiplexing techniques perform not as good anymore. Realistic radio chan-
nel models should be able to model this performance degradation as well. The
MIMO-WSSUS radio channel model introduced in this thesis is a simple mod-
eling approach that represents these statistical properties accerabelyh and
is still easily configurable.

8.1 Gaussian I.1.D. Radio Channel Model

The Bit Error Rate (BER) of Spatial Multiplexing from section 7.2.2 is evalu-
ated here as an example in various radio channel models.

The performance simulations of this Spatial Multiplexing technique demon-
strate that the MIMO channel model shows a noticeable impact on the perfor-
mance results. In Figure 8.1 (left plot), the i.i.d. Gaussian model froiosec
4.3 has been used.

In the i.i.d. Gaussian model, the channel transfer matfixalways has full
rank and all singular values will be nonzero (see section 4.3.2). For a larger
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number of antennas, this means the simulations will show a huge potential
for the parallel transmission of data. But this is a much more optimistic per-
formance than what could be expected in realistic radio channels. InHect, t
channel model is so optimistic that the performance increases significattily wi

an increasing number of antennas in figure 8.1, hence increasing the bandwidth
efficiency enormously — which is contrary to what has been expected.

*é i Eﬁ
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N i e b 0.1 -

BER

0.01 }

12x12 antennas -----

0.001

2x2 antennas —|—:

8x8 antennas -->¢--

20x29 antennas EI.
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SNR [dB]

15

BER

0.01 |

0.001

20x20 antennas

_|_

10x10 antennas -->¢--
8x8 antennas ---¥--
6x6 antennas -}
4x4 antennas -l

2x|2 antennas - - |

Som

5 10 15 20

SNR [dB]

Figure 8.1: Spatial Multiplexing BER. Left: Unrealistically good performance
in i.i.d. Gaussian radio channel model. Right: Realistic perfor-
mance in MIMO-WSSUS channel model, 10 scatterers. (QPSK
uncoded)

In contrast to these unrealistically optimistic results, the samelations
have been performed in the MIMO-WSSUS channel model described in section
4.4, here with 10 scatterers. The results in figure 8.1 (right plot) show a behav-
ior completely different from the Gaussian model: For a small number of anten-
nas, Spatial Multiplexing shows an acceptable performance, but as the number
of antennas grows larger than the expected rank of the channel matrix (corre-
sponding to the 10 scatterers in the MIMO-WSSUS radio channel model), the
performance is no longer acceptable and different MIMO techniques would be
required for useful communication. This is the realistic performance that is
expected from such a simple MIMO technique in radio channels with realistic
correlation among the channel matrix elements.

8.2 MIMO-WSSUS Radio Channel Model

The significant parameter of the MIMO-WSSUS model is the number of scat-
terers. The influence of this particular parameter on the overall Bit Errtr Ra
(BER) of a MIMO-OFDM system with spatial multiplexing and linear MMSE
receiver is investigated in the following.
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8.3 Maximum Entropy Radio Channel Model

The BER with various choices of the number of scatterers can be seen in
figure 8.2 and 8.5, where a larger number of scatterers leads to a better BER
performance of this example MIMO-OFDM system. (For simpliciby; =
Lr = L is chosen in these examples.) The other radio channel parameters are
of less importance for this MIMO performance difference — only this number of
scatterers is the relevant parameter to distinguish different charatiebteons.

0.1 [ N : _ ~ e AR

MaxEntropy 2 scatt.

MIMO-WSSUS 2 scatt.
MaxEntropy 4 scatt. ---K--

MIMO-WSSUS 4 scatt. {4
MaxEntropy 6 scatt. -l -

MIMO-WSSUS 6 scatt. --{-:- |

0.001 3 MaxEntropy 10 scatt. - z e :

A

0.01 |
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MIMO-WSSUS 10 scatt. ---

MaxEntropy 20 scatt. ----&--
MIMO-WSSUS 20 scatt. —/—
. li.d. Gaussi?n e
5 10 15 20

SNR [dB]

le-04

Figure 8.2: Spatial Multiplexing performance in MIMO-WSSUS and Maxi-
mum Entropy channel models (4x4 QPSK uncoded, MMSE re-
ceiver)

8.3 Maximum Entropy Radio Channel Model

In [DM03, DMO05], a different channel model is derived on the basis of maxi-
mizing the entropy that is represented by the model, see figure 8.3. Based on
the available knowledge in an MIMO-OFDM system setting wittlose scat-
terers at the receiver and at the transmitter, the resulting channel model is

expressed by
1
H = \/?Slqlrxs@sxslq)slxt (81)
where® is a matrix of i.i.d. Gaussian random variablds,is the matrix of
steering vectors to the closely located scatterers at the traasamid® at the

receiver.
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Tx Rx

b Osxs, v

Figure 8.3: Maximum Entropy channel model

The MIMO characteristics of this channel model can be changed by the same
two parameters as described in the MIMO-WSSUS model: The number of
closely located scatteresson the transmitter side and on the receiver side
of the radio link. (For the sake of brevity= s; is chosen for the rest of this
section.)

In figure 8.2, the BER of a spatial multiplexing MIMO-OFDM system is
shown. The number of scatterersn the Maximum Entropy channel model is
used as a parameter. Also, the BER of the same system but with the MIMO-
WSSUS model is calculated, and the number of WSSUS scattersnssed as
a parameter. As one can observe, the system shows the very same behavior in
both channel models, and the parameter in each model shows the same impact
on the performance of the system.

In figure 8.4, the same comparison is made for a system employing Space-
Time-Block codes (STBC) according to the Alamouti scheme, as explained in
section 6.2.1. In figure 8.5, the system of figure 8.2 now uses additional channel
coding.

In all cases, the resulting performance behaves the same in both channel
models, depending on the single parameter of number of scatterers. Nev-
ertheless the Maximum Entropy channel model has been designed with an
Information-Theoretic approach, which means the MIMO-WSSUS channel model
approach for broad-band communications was not used here. Therefore this
confirms the choice in this work to prefer the MIMO-WSSUS model when the
actual system performance of a broad-band MIMO system is the investigated
criterion.
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T T 3

MaxEntropy 2 scatt. —— 1

MIMO-WSSUS 2 scatt. -->¢-- ]
MaxEntropy 4 scatt. ---%--

| MIMO-WSSUS 4 scatt. -} 1

0.1 M ss R — MaxEntropy 20 scatt. --ll-

s ‘ MIMO-WSSUS 20 scatt. --{>- 3
li.d. Gaussian ---@ -

BER

0.01 |

0.001 F

le-04

SNR [dB]

Figure 8.4: Alamouti-coded system in MIMO-WSSUS and Maximum Entropy
radio channel model (2x2 QPSK uncoded)
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Figure 8.5: Spatial Multiplexing in MIMO-WSSUS and Maximum Entropy ra-
dio channel model (4x4 QPSIK,= 1/2 channel codingFl = 1)
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8 System Performance and Radio Channel Models

8.4 Wide-band Double-directional Radio
Channel Model (WDDCM)

In [GCO02, GCO04], yet another MIMO channel model is proposed based on an
exact geometrical description of the area used for transmission.

; 'l" /f'_l .‘.
Y ny scatterer M i
N i N,

Figure 8.6: WDDCM channel model

In this model, a number of clusters: is chosen (fig. 8.6). For each real-
ization of the channel model, each cluster is assigned randomly a place on the
two-dimensional plane of the transmission area. In each cluster, sonerscat
ers are randomly located, but close to each other. Then, the actual propagation
rays of radio transmission are calculated by the geometry from one transmit
antenna over the scatterers to the receive antenna, so that for eacldpki a
Tr, @ phase shiff,, an angle of departur@, and arrivak);. is calculated. These
values are used in equation (4.12) to calculate the channel impulse response
from antenna to antennan.

In figure 8.7, the BER of the spatial multiplexing MIMO-OFDM system
from figure 8.2 is shown. The number of clustéfg in the WDDCM channel
model is used as a parameter (solid lines). Also, the BER of the same system
but with the MIMO-WSSUS model is calculated, and the cardinality of the
set of angled. is used as a parameter (dotted lines). In this case as well, the
resulting performance behaves the same in both channel models.

However, the WDDCM channel model requires much more parameters to
be chosen, which means that the results depend on the accurately chosen pa-
rameters. From our point of view this is a distraction from the actual system
performance evaluation and should be avoided.

It can be concluded that for the BER comparison of MIMO-OFDM systems,
the actual details of the MIMO channel model are of less importance, and any
of the three radio channel models could have been used to evaluate the perfor-

130



8.4 Wide-band Double-directional Radio Channel Model (WDDCM)

0.1 3 A S - TS vis
F : S~ol T .

TS

WDDCM 2 clusters —— | \,Yf?::\,,, Vs )
MIMO-WSSUS 2 scatt. -->¢-- \‘V
MIMO-WSSUS 4 scatt. ---¥-- | R
WDDCM 4 clusters -}
MIMO-WSSUS 6 scatt. --l}-
WDDCM 10 clusters --{9-- |
0.001 . MIMO-WSSUS 10 scatt. -- z i )
3 WDDCM 20 clusters ---£A--- : :
MIMO-WSSUS 20 scatt. ----&--
WDDCM 40 clusters —57—
| li.d. Gaussign ----

0.01 ¢

BER

i i
0 5 10 15 20
SNR [dB]

le-04

Figure 8.7: Spatial Multiplexing performance in MIMO-WSSUS and WD-
DCM MIMO channel models (4x4 QPSK uncoded)

mance of the system in different MIMO environments. But for the evaluation

in an OFDM system, the MIMO-WSSUS model seems the best compromise
between simple parameter choices and meaningful performance results. This
confirms the usage of the MIMO-WSSUS radio channel model as an evalua-
tion criterion for the performance of MIMO transmission techniques instali

radio channels.
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O Conclusion

Multi-antenna (MIMO) communication is a proposed technology to increase
the capacity of wireless links. The prerequisite for evaluating the perforenanc
of MIMO techniques is a profound knowledge of the MIMO radio channel
and an adequate statistical model for the essential properties of this channel.
Several MIMO radio channel models have been discussed in this thesis, star
ing from the well-known Gaussian model with completely uncorrelated fading,
and eventually introducing a MIMO-WSSUS channel model with the correla-
tion chosen by the single parameter of the number scatterers. Using an appro-
priate radio channel model is a crucial component when evaluating candidate
technologies for future radio communication systems.

OFDM is the signal processing technique of choice to communicate with a
high data rate over broadband channels, either in single antenna or in MIMO
systems. This multicarrier technique enables a simple equalization even in
strong multi-path radio channels where an equalizer of the inter-symbol in-
terference would be prohibitively complex. But with OFDM the equalization
can be done with moderate complexity, even in MIMO systems.

Several basic MIMO techniques were presented in this work. The perfor-
mance of them depend strongly on the assumed radio channel model. In a rich
scattering radio channel represented by the Gaussian model, no correlation be
tween the radio channels occurred and even simple linear MIMO techniques
can strongly increase the available bandwidth efficiency when increasing the
number of transmit and receive antennas. This gives new opportunities in de-
signing a system, where simple algorithms can be used at the expense of addi-
tional hardware for multiple antennas.

However, in a more difficult radio channel with only little scatteringes-
resented by the MIMO-WSSUS model (figure 9.1), the picture is rather dif-
ferent. With a small number of scatterers, the correlation betweerathe r
channels becomes significant and the performance of any linear Spatial Multi-
plexing technique is degraded beyond any usable values in the MIMO-WSSUS
channel. Hence, it can be concluded that for realistic non-Gaussian channels,
using Receiver Diversity is basically all that is possible as MIMEhteque. If
MIMO techniques should be used with multiple antennas on both sides, non-
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9 Conclusion

Figure 9.1: MIMO radio channel with a small number of scatterers (hete
3) as represented by the MIMO-WSSUS channel model

linear receiver structures could be a solution to this problem, but those were not
covered in this work.

Additionally, a linear precoding technique with variable amount of feedback
was explained and improved. All or only a subset of factorization matrices of
the unitary matrix factorization can be fed back to the transmittezdace the
required feedback data rate. This enables a trade-off between the amount of
feedback information and system performance. In this thesis, an impraveme
to the matrix parameterization was presented, which shows a performaince
over the original parameterization. However, in radio channels witb §tat-
tering, this technique suffered the same performance degradation as the other
spatial multiplexing techniques and is not usable in those radio channels.

It can be concluded that MIMO performance simulations must use a MIMO
radio channel model that adequately models the channel conditions with little
scattering. Otherwise unrealistically optimistic performance resuilt occur.

This has been verified by evaluating the system performance degradation
with different MIMO radio channel models as taken from literature. All of
them enabled an adequate representation of the correlation and performance
degradation of simple MIMO techniques. The MIMO-WSSUS model is a sim-
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ple modeling approach that enables this choice by the single parameter of the
number of scatterers. This way, the performance of the investigated tecknique
could be evaluated in a realistic radio channel context. The introduced MIMO-
WSSUS radio channel model represents these statistical propertiestalycura
and is easily configurable.

OFDM can be used in MIMO systems and enables using MIMO techniques
in broadband channels. Receive diversity as a simple MIMO technique can be
used always, but other MIMO techniques do not seem to give enough perfor-
mance benefit in realistic radio channels. OFDM is a very good candidate for
future radio communication systems.
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A Derivations

This chapter derives the Probability Density Functions of the random phase
shifts and gives an analytical expression for its mean value.

A.1 PDF of random phases

A.1.1 PDFof Y =sinU

Given a uniformly distributed random varialdle~ Unif(—m, ), this section
derives the PDF of the transformed random variable sin U.

For the transformation function = sin(u) the inverse exists and Hy) =
u = arcsin(y). Its derivative isf’(y) = 1/4/1 — y?. The PDF of the trans-
formed random variable is

fr() = fulu= f(y)-1f W]

This results in the following PDF for the transformed random variahle

fr(y) = 1 for |y| < 1, O elsewhere (A.1)

/1 —y?

This PDF is plotted in figure A.1. Itis still symmetric, just like the inputdam
variableU.

A.1.2 PDF of R{exp(jrsinU)}

This transformed random variable is now used as an angle on the unit circle, re-
sulting in the complex-valued random variallle= exp(jnY) = exp(jmsinU).
The PDF ofZ can also be calculated analytically.

The polar coordinates of the result are immediately obvious: The magnitude
IS unity, the argument isY. But the interesting question is the mean value in
Cartesian coordinates. To obtain this, the PDF of the real and imaginary part
(i.e. in Cartesian coordinates) is needed.
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A Derivations

15

1

Figure A.1: PDF ofY” = sin(U) from (A.1)

For the real parifz.(z) the transformation function is = ¢g(y) = cosmy
wherey € [—1, 1]. Its derivative isy’(y) = —msiny. Its inverse has multiple
solutions in the co-domain af.

f(2) ylziarccosx for0<y<1
€Tr) =
Yo = —%arccos:z; for—1<y<0

The PDF of the transformed random variable must take into account all those
solutions of the inverse, giving

~ fy(p)

Tre@) = 1)

w\/l — (£ arccos x)? - |~ sin arccos x|

1
+

77\/1 — (£ arccos x)? - |7 sin arccos

The result for the PDF of the real part is

Fre(a) = -

(A.2)

9 1 2 .
T 1— P arccosx) -sinarccosx

This PDF is plotted in figure A.2, left picture. The function is not symmetric!
It has a nonzero mean, calculated below.
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15

flm(z)
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Figure A.2: PDF of real (left) and imaginary (right) part6f (A.2) and (A.4)

A.1.3 PDF of 3{exp(jmsinU)}

To calculate the imaginary part, the transformation functiom is ¢g(y) =
sinmY, againy € [—1, 1]. Its derivative isg’(y) = 7 cos my. Its inverse again
has multiple solutions in the co-domaingf

=
fl@) =g (z) = qyo =

(—arcsing — ) for —m <7y < —3

: s i
arcsin x for -3 <7y < 3

A= ==

(—arcsinz +7) forf <my<m

<
W
I

The PDF of the transformed random variable must take into account all three
solutions of the inverse.

flm(x) - Z fY(yk)|

= 19 W= 0)
1
o 1 1 4 \/1—(1—%arcsinx)2 for z > 0
9 1 forz <0

72 cos arcsin \/ - (!

—arcsin x) V/1-(1+1 arcsinz)?

(A.3)

139



A Derivations

By merging the last term with the case distinction into an absolute valuesof t
arcsin, the result for the imaginary part is

1 1 1

= : +
m? cos arcsin x \/1 — (L arcsin z)? \/1 — (1 — L]arcsin a:\)z
(A.4)
This PDF is plotted in figure A.2, right picture. This function is symmetric and
has zero mean.

flm(x)

A.1.4 Mean value of R{exp(jrsinU)}

The mean value of the random phase shifts the goal of this derivation.
Above, the imaginary part af was shown to be symmetric, hence it has zero
mean. For the mean value 4f only its real part is relevant anymore. This
mean value of the real part part= fz.(x) is obtained by solving the integral
for the mean,

X

1
2
VZ/foe(ZC) d:z::ﬁ/ : . dr .
Y \/1 — (= arccos x)? - sin arccos

™

This integral is simplified using integration by parts,

1

2 . arccoszx ~arccos x|l
== T arcsin dx — mx arcsin
T T T —1

1
1
2 !
= — | arcsin(—arccosz) dv — 1.

s s
-1

The remaining integral is solved by solving the integral over its inversegtwhi

is possible because graphically one can observe how the inverse must be cho-
sen over the various co-domains. This way, to solve the integral pver
arcsin(£ arccos ) in z € [—1,1], instead an integral over = cos(rsiny) is

solved over suitable argument ranges, giving
/2

1
1
/arcsin(— arccos z) dr = g + /cos(w siny) dy .
m
“1 0
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A.1 PDF of random phases

Inserting this intoy above gives the mean value

/2 ™
2 1
v=— / cos(msiny) dy = —/COS(ﬂ' siny) dy
7r 7r
0 0

where in the second equation the integral borders could be doubled due to the
symmetry ofsin y with respect tay = /2. This last expression is identical to
the integral form of the Bessel function of the first kind with= T,

Jo(z) = l/cos(z sin @) df .

(0
0

The final result for the overall mean value is

v = fre = Jo(7).

Even in the generalization of the random phases where an integer méltiple
of Y occurs in the exponent and the transformatiosxis( j k7 sin U) (note the
k), the resulting mean value of this PDF is still the Bessel function of tke fir
kind,
fre = Jo(kmr) . (A.5)
Again, Jy(-) is the Bessel function of the first kind of order zero. lts first few
values are listed in table A.1.

J()(]{ZT(')
-0.3042
0.2203
-0.1812
0.1575
-0.1412

apr wNPEP|>

Table A.1: First few values of the Mean ¢k, (x), the real part of the random
phase shift distribution
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B Simthetic: A programming
framework for multiple
contributors in OFDM and
MIMO simulations

Research work often involves the programming of computer simulations for the
evaluation of proposed algorithms. In this chapter, a programming framework
is described that simplifies the creation of computationally intensive aimul
tions. This framework supports especially the combination of programming
contributions by several different researchers into the same simulatios. Thi
Is very common in a University context, where multiple PhD candidates and
other students work together on the same algorithmic problems. The presented
Simthetic software is publicly available as Open Source Software aeddir
includes many building blocks for OFDM and MIMO simulations.

B.1 Introduction

For any kind of proposed transmission system it is vital to demonstrate the
actual benefit of one approach versus others. In order to show this comparison
under controllable conditions, it is necessary to use a simulation environment
in which the algorithms and systems can be implemented.

A plethora of different simulation environments exist in the computer world,
and many researchers will simply produce their own simulation tools ¢ailor
to their specific needs. It is an open question whether such a simulation envi-
ronment can be designed in a way so that it has re-usable and universal compo-
nents. Additionally, a simulation tool should also support an easy combination
of contributions by several different researchers. This aspect is edpecial-
mon in a University context, where multiple PhD candidates and other students
work together on the same simulation problems.

The Technische Universitdt Hamburg-Harburg (TUHH, Hamburg University
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of Science and Technology) created the Simthefipen Source software for
Windows and Linux operating systems in order to find a common framework
for base-band system simulations [SR04, SR06]. The framework and first steps
for programming OFDM systems with or without MIMO techniques will be
described below.

B.2 Software

B.2.1 Simulation Structure

The simulation software Simthetic implements a stream-driven model of com
putation. The system is divided intd&vi ces” which exchange data by
means of streamlt er f aces”, figure B.1. These are classes in the pro-
gramming language C++ and a UML class diagram is shown in figure B.2
[Fow03]. Connections betwedmt er f aces are specified at run-time by

a simulation parameter file in XML format and are strongly type-checked at
run-time as well. Everydevi ce can be freely exchanged by otHegvi ces,

as long as the connections betwdart er f aces remain type-correct. It is
therefore very easy to re-use existing systems or parts of systems, aaitydir
extend them by new algorithms.

Cory o Psk = Ofdm

| e

Encoder Modulator Transmitter .\\

Figure B.1: Exampl®evi ces in Simthetic

To combine the contributions by several independent researchers, each one
would be asked to work on a differefevi ce class. The C++ language
will enforce the same data interfaces and configuration mechanisms on all
contributed C++ classes, so that eventually ev@gyi ce can be easily ex-
changed by functionally equivalent alternative implementations. For exam-
ple, aDevi ce for PSK modulation can easily be exchanged by an alterna-
tive Devi ce that implements a QAM modulation (figure B.3), and similar
Devi ces on the receiver side can be exchanged as well. This way, the perfor-
mance comparison between two modulation approaches can be achieved while
all the rest of the simulation parameters are completely unchanged.

Lhttp://simthetic.sourceforge.net
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Device Class Diagram ]

StreamDrivenSystem

Hmainsim ulationLoofooid
-nextlteratiofewoid
+queueFarProcesgvoid

Device

Input nterface

4

+process (ivold
#updatelnputlengths (hvold
Fupdateudputlengths Dovaid
#getOutputSequence Qowoid
#getlnputiequence Gvoid
#flushProce ssedSeq {uwoid
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#flushProcessedOutputSeq  (ovoid
+ startOfSimulation {ovoid
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+acceptMewData Qwvoid
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+setSequencelength  (ovoid
+processFinished Quwoid
+internSequence Q:woid
+flushProcessed (rwoid
#increm ent RefCount  Qovoid
#decrem entRefCount  {:woid

ength cint)wvoid

+Eet0utputSequence0
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+flushProceszsed (rwoid

+zetSequencelengthivoid

Figure B.2: UML Class Diagram [Fow03] of main classes in Simthetic

= Psk =  Ofdm
| SN | SEEE
& kodulator &
-
I am ' .
kodulator 4 Ed
¥ Switch
1. Switch
& Switch
= Switch

Transmitter

Figure B.3: Exchangin@evi ces in the graphical user interface
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B.2.2 Graphical user interface KSimthetic

Additionally, a graphical user interface nam€8imthetids available, see fig-
ure B.5. In this graphical user interface, a simulation is composed by tws:ste

1. Connections betwedmt er f aces are created, figure B.5,

2. and the settings (the so-calledoper t i es) of eachDevi ce are spec-
ified, figure B.4.

This simulation setup is saved in an XML file. At run-time of Simthetic,
this XML file is loaded. The Simthetic system will then instantiate the spec-
ified Devi ce objects with the giverPr operti es according to the simu-
lation XML file. Then, the connections between thet er f aces will be
created and the simulation starts by calling the processing code of the first
Devi ce. This first device will create a data stream that is passed through
thel nt er f ace to the secon@evi ce, whose processing code will be called
next, and so forth. This simulation loop will be repeated until the BER counting
Devi ce sends a special signal to the simulation system so that the simulation
ends and the final results are written into output files.

il PskModulator 2=l

Eigenzchaft Tvp et

bits_per_symbal {unsigned: |4
input_length <zequencelength: I'I 28 Pok
mapping {enunmz Igray "I Maodulator

ﬂhat'sThis?l SavekExit I LCancel |

&

Figure B.4: Setting th€r operti es of aDevi ce

Many different system blocks for coded OFDM with coherent, differential
or adaptive modulation and convolutional or turbo codes are available. For
MIMO-OFDM, various MIMO techniques and MIMO radio channel models
are available. Since the software is licensed under the LGPL (GNU Lesser
Public License [GNU99]), the full source code of the simulation blocks can
be downloaded by everyone from http://simthetic.sourceforge.net. Every in-
terested person can install, use, modify, or redistribute the softwatbdm-
selves.
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Figure B.5: Creating simulations in the graphical user interface (KSimjhet

B.3 OFDM

For future communication systems, the OFDM transmission technique is of
special interest [RGGO01]. The principle of multi-carrier modulation and OFDM

in particular is to map a serial high rate source bit stream onto multipbd-pa

lel low rate sub-streams. Each subcarrier is modulated individually based on
a single sub-stream. Since the symbol rate on each subcarrier is considerably
smaller than the serial symbol rate, the effects of delay spread signtiyica
decrease which reduces the equalizer computation complexity.

Every OFDM system consists of similar building blocks. In Simthetic, most
of the commonly proposed blocks are already available, figure B.5.

On the left side of the block diagram, a bit sequence is generated randomly.
The input bit sequence is then coded by a convolutional channel code, bit in-
terleaved, modulated into complex modulation symbols, and transmitted by the
OFDM transmission technique (IFFT and guard interval).

The time continuous signal that is transmitted through the radio channel can
be approximated using oversampling techniques. Time shifts of non-integer du-
ration are represented by appropriate oversampling in the radio channel model.
Itis also possible to display particular signals graphically and in anofirfaten,
for example the radio channel transfer function, figure B.6.

At the receiver side, each transmitter block has its corresponding eeceiv
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Figure B.6: Example radio channel transfer function animation

block. The received baseband signal is OFDM processed, demodulated, and
transmission errors are corrected by a Viterbi decoder. In the end, thedrg er
are counted, written into a file, and (optionally) displayed, figure B.7.

—
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Figure B.7: Example Bit Error Rate

B.4 Getting Started with Programming

This section should explain the necessary steps to follow when somebody in-
tends to add new processing code into the Simthetic system. As an example, it
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Is explained how a new MIMO radio channel model would be implemented.

First of all one should start to read the existing HTML-documentatigmere
the “Alphabetical List” of classes quickly shows the existMgMOChannel
class for a MIMO radio channel. In the documentation of that class, one can
see that all MIMO-Channels which are already implemented in Simthetic
subclasses of the basic claasnt h: : Devi ce. One can check for functions
of the base class that are available in all subclasses by clicking d*thece
button. At the beginning those functions are usually not needed.

Back in the documentation of thd MOChannel class, one can look un-
der “Public Methods” for the functiorget Tr ansfer () andtransm t ().
Those are the functions that one has to implement in a new channel class, in-
dicated by the=0 at the end of the function which declares these functions as
purely virtual. The functiort ransm t () should define how the transmis-
sion of the symbol-sequence from the transmitting antennas (variaisigm
to the receiving antennasit sym) is done.t ransm t () does its operation
in the time domain, because the function arguments are time domain signals.
get Tr ansf er () is used for an ideal estimation of the channel transfer func-
tion and should return the channel transfer matrieg’) in the frequency
domain, because the function argument is a frequency signal.

Now one should open the source codeditec/ m no- channel . cpp and
take a look at the source code of these functions in existing classes. For the
implementation of a MIMO channel normally several mathematical operations
from linear algebra are needed. The MIMO library of Simthetic uses data types
from the Lapack++ library/for those operations.

At the beginning one can easily build a “perfect” MIMO Channel, which of
course only works for an equal number of transmitting and receiving antennas
(set by the Properties in the simulation XML file). tmansmi t () every
sample from the incomingect or Ti neSi gnal i nsymis directly given to
the outgoingvect or Ti neSi gnal out sym

/1 The "transm ssion"
for(size_t k; k!=insymsize(); k++)
outsyn{ k] = insynk];

Starting with this simple channel one can extend it step by step. It can be
helpful to look at the work by others in the existing source code files. Also, for
many people it has been helpful to print intermediate valuestla; : cout to

2http://simthetic.sourceforge.net/mimolib/api-doatht
3http://lapackpp.sourceforge.net
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double-check the results with a calculator or a mathematical program. As soon
as a new class has been added with the virtual functions implemented, this new
class is available in the graphical tool KSimthetic and it can be used m ow
simulations.

B.5 Conclusion

The behavior and performance of any simulation algorithm needs to be con-
firmed by quantitative simulation results. The Open Source simulation seftwa
Simthetic offers a platform for many different communication systemuaval
tions, especially for OFDM systems and MIMO techniques. This simulation
framework additionally supports an easy integration of contributions by dif-
ferent researchers. This aspect is especially common in a Univeositgxt,
where multiple PhD candidates and other students work together on the same
simulation problems. All the described algorithms and systems can ditextly
downloaded with the full program source code for Windows and Linux oper-
ating systems, so that tests and modifications are available for evergsted
reader.
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