60 | Mai 1959

SCHRIFTENREIHE SCHIFFBAU

Dr. Maria Kirsch

Die Erzeugung von Zylindern aus vorgegebenen Singularitätenverteilungen

Die Erzeugung von Zylindern aus vorgegebenen Singularitätenverteilungen

Von Dr. Maria Kirsch

Institut für Schiffbau der Universität Hamburg

Vorbemerkung

Die vorliegende Veröffentlichung soll einen Beitrag liefern zu den Untersuchungen über die wechselseitigen Beziehungen zwischen der Strömung um einen Körper und der Form dieses Körpers. Derartige Berechnungen sind geeignet, Unterlagen und Voraussetzungen zu schaffen für Bestimmungen des Widerstandes in Abhängigkeit von der Schiffsform.

Die Arbeit ist entstanden auf Veranlassung und Anregung von Herrn Prof. Dr.-Ing. Weinblum, dem ich für seine Unterstützung und Förderung aufrichtig danke. — Die Berechnung der Integralwerte, die zur Bestimmung der Zylinderquerschnitte gebraucht werden, erfolgte mit Hilfe eines elektronischen Rechenautomaten, der IBM 650, und die Berechnung der Beispiele besorgten die Herren cand. arch. nav. Kracht, Lincke und Mertinatis, denen ich hiermit für ihre Mitarbeit danke.

Einleitung

Es wird die Aufgabe behandelt, aus der Verbindung einer vorgegebenen Singularitätenverteilung mit einer Parallelströmung den Querschnitt eines unendlich langen Zylinders zu ermitteln, der diesem Strömungsverlauf entspricht. Dies ist die Umkehrung des Problems, die Strömung um einen unendlich langen Zylinder zu bestimmen. Während aber in letzterem Fall der Zylinderguerschnitt bekannt ist und die zugehörige Strömung gesucht wird, ist in der vorliegenden Arbeit die Strömung vorgegeben und der Querschnitt des Zylinders zu ermitteln. Aus der Aufgabenstellung ist ersichtlich, daß hier nur der zweidimensionale Fall behandelt wird, da wir uns auf Zylinder beschränken. Eine weitere Vereinfachung besteht darin, daß in dieser Arbeit Symmetrie der Verteilungen zum Hauptspant und damit auch der Zylinderquerschnitte vorausgesetzt und gefordert wird, d. h. der Fall der Unsymmetrie findet keine Berücksichtigung.

Zur Erfassung des gesamten Fragenkomplexes bezüglich Körperform und Strömung gehört natürlich auch die Behandlung des räumlichen Problems und der Strömung um unsymmetrische Konturen. Jedoch bereitet die Beschäftigung mit dem dreidimensionalen Fall im allgemeinen erhebliche Schwierigkeiten; nur der Spezialfall der Rotationskörper und ihrer Umströmung erweist sich der Berechnung als leichter zugänglich.

Der Zweck derartiger Untersuchungen ist die Darstellung von Wasserlinien und Spantflächenkurven durch Vorgabe von Singularitätenverteilungen. Als Lösungsmethode für die vorliegende Aufgabe dient das Quell-Senkenverfahren, das von Rankine [1; 2] stammt. Die Voraussetzung für die Anwendung dieser Theorie ist das Vorhandensein einer Potentialströmung. Während Rankine eine Verteilung von Quellen und Senken in einzelnen Punkten annimmt, gibt D. W. Taylor [3] eine Weiterentwicklung und Ausdehnung dieser Theorie auf kontinuierliche Verteilungen mit graphischen Lösungsmethoden. Seither sind verschiedene Veröffentlichungen erschienen, die das Problem der wechselseitigen Beziehungen zwischen der Körperform und der Singularitätenverteilung behandeln. Weinblum bringt im Zusammenhang mit Widerstandsberechnungen die Darstellung von Rotationskörpern und Schiffsformen durch Singularitäten [4; 5] und Landweber [6] behandelt die Potentialströmung um Rotationskörper. Harvald [7] befaßt sich mit diesem Problem, indem er von Nachstromuntersuchungen ausgeht, während Inui [8;9] wie Weinblum auf dem Wege der Widerstandsbestimmungen zur Auseinandersetzung mit diesen Fragen gelangt. Dabei ist noch erwähnenswert, daß Inui sich hierbei nicht auf Zylinderquerschnitte und Rotationskörper beschränkt, sondern sich auch mit dem allgemeinen dreidimensionalen Fall befaßt [10]. Es sei aber vor allem Amtsberg genannt, der in seiner Arbeit "Untersuchungen über die Formabhängigkeit des Reibungswiderstandes" [11] eine Methode entwickelt, nach der auf Grund einer vorgegebenen Singularitätenverteilung der dieser Verteilung entsprechende Rotationskörper berechnet werden kann. Die Veröffentlichung von Amtsberg ist für die vorliegende Arbeit von grundlegender Bedeutung, da hier nach dieser Methode völlig analog die Querschnitte unendlich langer Zylinder bestimmt werden. Die Lösungen hängen von bestimmten Integralen ab, die numerisch ausgewertet und in Tabellenform zusammengestellt sind, um eine schnelle Berechnung von Zylinderquerschnitten für verschiedene Singularitätenverteilungen durch Interpolation zwischen den vorhandenen Integralwerten zu ermöglichen. Die Berechnung der Integrale erfolgte, wie bereits zu Anfang erwähnt, mit Hilfe eines elektronischen Rechenautomaten. Deshalb konnte eine sehr feine Intervallteilung in dem für die Rechnung in Frage kommenden xy-Bereich vorgenommen und auch der Umfang dieses Bereiches sehr weit erstreckt werden. Somit ist eine sehr genaue Interpolation möglich, bzw. es braucht auch in extremen Fällen wohl kaum eine Extrapolation durchgeführt zu werden.

Die Gliederung der Arbeit ist wie folgt: Zuerst wird ein Überblick über die Theorie gegeben. Nach Aufstellung der Integrale, die für die Ermittlung der Zylinderquerschnitte notwendig sind und einer kurzen Erklärung des Rechnungsganges erfolgt die numerische Auswertung der Integrale und ihre Zusammenfassung zu einer Tabelle. Mit Hilfe dieser Integralwerte wird eine Reihe von Zylinderquerschnitten berechnet; die Ergebnisse werden ausgewertet.

Beschreibung des Quell-Senkenverfahrens

Vorausgesetzt wird eine allseitig unbegrenzte, inkompressible, ideale Flüssigkeit, in der eine bestimmte Parallelströmung besteht. Da hier nur der zweidimensionale Fall behandelt wird, genügt es, den Strömungsverlauf in einer Ebene zu betrachten. Dafür wählen wir die XY-Ebene. Die Parallelströmung verläuft in Richtung der X-Achse, auf der in einem bestimmten Intervall Quellen und Senken verteilt werden. Durch die gemeinsame Wirkung dieser Quellen und Senken und der Translationsströmung entsteht eine Schar von Stromlinien mit einer geschlossenen Grenzstromlinie, die dem gesuchten Umriß entspricht. Es ist also die Stromfunktion $\Psi_{\rm Q}$ der vorgegebenen Quell-Senken- oder Dipolverteilung aufzustellen und die Stromfunktion $\Psi_{\rm T}$ der Parallelströmung. Die Addition dieser beiden Stromfunktionen ergibt die zusammengesetzte Strömung Ψ .

$$\Psi = \Psi_{\rm T} + \Psi_{\rm O} \tag{1}$$

Für $\Psi = \text{const. erhält man jeweils eine bestimmte Strom$ $linie. Die Grenzstromlinie ist gegeben durch <math>\Psi = 0$, d. h. $\Psi = 0$ ist die Gleichung der gesuchten Kontur.

Anstatt von der Quell-Senkenverteilung kann man auch von der Dipolverteilung ausgehen; das ändert nichts am Ergebnis. Da die Berechnung der Integrale für die Stromfunktion der Quell-Senkenverteilung durch partielle Integration zu Integralen führt, die von der Dipolverteilung abhängen, ist es praktisch, gleich von der Dipolverteilung auszugehen. So ist auch bei der Berechnung der Beispiele in dieser Arbeit vorgegangen worden. Außerdem wird angenommen, daß die Dipolverteilung — es handelt sich hierbei stets um kontinuierliche Verteilungen — angenähert dem halben Zylinderquerschnitt entspricht. Diese Näherung hat zur Voraussetzung, **daß es sich** um sehr schlanke Formen handelt; wir werden später an Hand der Beispiele sehen, daß sie auf unsere Fälle praktisch nicht anwendbar ist, aber sie bietet doch immerhin die Möglichkeit, die Dipolverteilungen so zu wählen, daß die ermittelten Konturen in etwa den Erwartungen entsprechen und sich nicht für den Schiffbau völlig unbrauchbare Formen ergeben.

Es hat sich als zweckmäßig erwiesen, entsprechend der mathematischen Darstellung von Schiffslinien als Polynome durch Weinblum [12; 13], die Dipolverteilung ebenfalls durch Polynome in dimensionsloser Form auszudrücken.

Im folgenden Abschnitt werden die Gleichungen $\Psi = 0$ zur Bestimmung der Zylinderquerschnitte aufgestellt.

Die Gleichungen $\Psi = 0$ für die Zylinderquerschnitte

Es werde folgendes rechtwinkliges Koordinatensystem gewählt. Die XY-Ebene sei eine Horizontalebene, die Z-Achse weise senkrecht nach oben. Der unendlich lange Zylinder möge so in der Flüssigkeit gelagert sein, daß seine Längsachse mit der Z-Achse zusammenfällt, und für seinen Querschnitt in der XY-Ebene gilt, daß die längere Achse des Querschnitts in der X-Achse liegt. Da der Strömungsverlauf in allen Horizontalebenen gleich ist, genügt es, die XY-Ebene zu betrachten. Es soll hier nur der symmetrische Fall erörtert werden; deshalb gilt, daß der Querschnitt sowohl zur X- als auch zur Y-Achse symmetrisch ist (Abb. 1). Das bedeutet, daß auch die Dipolverteilung bezüglich der Y-Achse symmetrisch ist. Gegeben ist nun eine bestimmte Singularitätenverteilung und gesucht der diesem Strömungsverlauf entsprechende Querschnitt.

Abb. 1: Lage des Querschnitts im Koordinatensystem

Für den zweidimensionalen Fall lautet die Gleichung der Stromfunktion für eine Quelle im Koordinatenursprung

$$\Psi = + \sigma \operatorname{arc} \operatorname{tg} \frac{Y}{X}$$

und für eine Quelle auf der X--Achse im Abstand \varXi vom Nullpunkt

$$\Psi = + \sigma \arctan \operatorname{tg} \frac{Y}{X - \tilde{Z}}$$

In diesen Gleichungen bedeutet σ die Quellstärke; zwischen σ und der Ergiebigkeit q besteht folgender Zusammenhang: $q = 2 \pi \sigma$

Zur Erzeugung des Zylinderquerschnittes werden auf der X-Achse von $\Xi = -\frac{L}{2}$ bis $\Xi = +\frac{L}{2}$ unendlich viele Quellen und Senken verteilt. Die Quellstärke σ ist eine Funktion von Ξ .

Da die Gesamtergiebigkeit Null sein muß, gilt

$$+\frac{L}{2} \int \sigma(\Xi) d\Xi = 0$$

$$-\frac{L}{2}$$
(2)

Die Gleichung der Stromfunktion für einen Punkt P (X, Y) lautet

$$\Psi_{Q} = + \int_{-\frac{L}{2}}^{\frac{1}{2}} \sigma(\Xi) \operatorname{arc} \operatorname{tg} \frac{Y}{X - \Xi} d\Xi \qquad (3)$$

Zwischen der Dipolverteilung η (Ξ) und der Quell-Senkenverteilung besteht folgender Zusammenhang:

$$\eta (\Xi) = - \int_{\mathbf{x}_1}^{\mathbf{x}_2} \sigma (\Xi) \, \mathrm{d} \, \Xi$$

Berücksichtigt man diese Beziehung und die Bedingung (2), so ergibt die partielle Integration von (3) den Ausdruck

$$\Psi_{Q} = + \mathbf{Y} \int_{-\frac{\mathbf{L}}{2}}^{+\frac{\mathbf{L}}{2}} \frac{\eta(\boldsymbol{\Xi}) \,\mathrm{d}\,\boldsymbol{\Xi}}{(\mathbf{X} - \boldsymbol{\Xi})^{2} + \mathbf{Y}^{2}}$$
(4)

Da jetzt hierbei die Dipolverteilung η (Ξ) in der Funktion unter dem Integralzeichen auftaucht, sieht man, daß bei der Bestimmung der Zylinderquerschnitte auch, wie vorher erwähnt, von der Dipolverteilung ausgegangen werden kann.

Die Stromfunktion einer ebenen Translationsströmung in Richtung der negativen X-Achse ist

$$\Psi_{\rm T} = - \mathbf{u}_{\rm o} \, \mathbf{Y} \tag{5}$$

uo ist die Translationsgeschwindigkeit.

Die Addition von Ψ_Q und Ψ_T ergibt die Gesamtströmung Ψ , und $\Psi = 0$ stellt die Kontur des gesuchten Querschnittes dar; sie ist durch die Gleichung (6) gegeben.

$$\Psi_{\rm Q} + \Psi_{\rm T} = - u_{\rm o} Y + Y \int_{-\frac{\rm L}{2}}^{+\frac{\rm L}{2}} \frac{\eta(\Xi) \, \mathrm{d} \Xi}{(\mathrm{X} - \Xi)^{\rm L} + Y^2} = 0 \qquad (6)$$

Durch eine geringe Umordnung ergibt sich

$$\frac{1}{u_{0}}\int_{-\frac{L}{2}}^{\frac{1}{2}}\frac{\eta(\Xi) d\Xi}{(X-\Xi)^{2}+Y^{2}} = 1$$
 (6a)

Diese Gleichung soll durch die Substitutionen

$$\mathbf{x} = \frac{\mathbf{X}}{\mathbf{L}/2}$$
 $\boldsymbol{\xi} = \frac{\boldsymbol{\Xi}}{\mathbf{L}/2}$ $\mathbf{y} = \frac{\mathbf{Y}}{\mathbf{B}/2}$ $\boldsymbol{\eta}(\boldsymbol{\xi}) = \frac{\boldsymbol{\eta}(\boldsymbol{\Xi})}{\boldsymbol{\eta}_{\max}}$

in dimensionslose Form gebracht werden. Es ist noch die Größe η_{\max} zu bestimmen. Soll die Breite des zu berechnenden Zylinderquerschnittes in der Y-Achse gleich B sein, so kann man setzen:

$$\eta_{\text{max.}} = u_0 \frac{\varkappa}{2\pi} B = u_0 \frac{\varkappa}{\pi} \frac{B}{2}$$

Der Koeffizient \varkappa wird als Breitenkorrektur bezeichnet; er bewirkt, daß die Breite des Querschnitts in dimensionsloser Form gleich 1 bzw. in dimensionsbehafteter Form tatsächlich gleich der Breite B wird, die dem vorgegebenen L/B-Verhältnis entspricht. L ist die Länge der Dipolverteilung, die in fast sämtlichen Fällen gleich der Länge des Zylinderschnittes in der X-Achse gesetzt werden kann. Das Verhältnis $\frac{1}{\varepsilon} = \frac{u_0 L}{2\pi \eta_{max.}} = \frac{L}{\varkappa B}$ der entsprechenden Dipol-

verteilung wird etwas kleiner als L/B sein, da der Korrekturfaktor \varkappa ein wenig größer als 1 ist. Damit ergibt sich die Gleichung des Zylinderquerschnittes in dimensionsloser Form:

$$\frac{\varkappa}{\pi} \frac{1}{L/B} \int_{-1}^{+1} \frac{\eta(\xi) d\xi}{(x-\xi)^2 + \left(\frac{y}{L/B}\right)^2} = 1$$
 (6b)

Wie bereits erwähnt, soll η (ξ) durch Polynome ausgedrückt werden, und zwar in der Form

$$\eta(\xi) = 1 - \sum_{m=1}^{n} a_m \xi^m$$
 (7)

Es ist somit notwendig, die Integrale

$$\int \frac{\xi n d\xi}{(x-\xi)^2 + \left(\frac{y}{L/B}\right)^2}$$

 $(n = 0, 1, 2 \dots)$

im Intervall (-1; + 1) zu integrieren und für verschiedene x- und y-Werte zu bestimmen.

Die Integration ergibt für

$$n = 0 \int_{-1}^{+1} \frac{d\xi}{(x - \xi)^2 + \left(\frac{y}{L/B}\right)^2} = \left[-\frac{1}{\frac{y}{L/B}} \operatorname{arctg} \frac{x - \xi}{\frac{y}{L/B}} \right]_{-1}^{+1}$$
$$n = 1 \int_{-1}^{+1} \frac{\xi d\xi}{(x - \xi)^2 + \left(\frac{y}{L/B}\right)^2} = \left[\frac{1}{2} \ln \left\{ (x - \xi)^2 + \left(\frac{y}{L/B}\right)^2 \right\} \right]_{-1}^{+1}$$

$$+ x \int_{-1}^{+1} \frac{d\xi}{(x-\xi)^2 + (\frac{y}{L/B})^2}$$

$$n \ge 2 \int_{-1}^{+1} \frac{\xi^n d\xi}{(x-\xi)^2 + (\frac{y}{L/B})} = \left[\frac{1}{n-1} \xi^{n-1}\right]_{-1}^{+1}$$

$$+ 2 x \int_{-1}^{+1} \frac{\xi^{n-1} d\xi}{(x-\xi)^2 + (\frac{y}{L/B})^2} - \left[x^2 + (\frac{y}{L/B})^2\right] \int_{-1}^{+1} \frac{\xi^{n-2} d\xi}{(x-\xi)^2 + (\frac{y}{L/B})^2}$$

Wegen der dimensionslosen Darstellung gilt $-1 \leq x \leq +1$ und $0 \leq y \leq 1$. Wenn Symmetrie des Querschnittes zur y-Achse (zum Hauptspant) vorausgesetzt wird, was hier der Fall sein soll, kann auch x auf das Intervall $0 \leq x \leq 1$ beschränkt werden. Da dann auch die Dipolverteilung symmetrisch zur y-Achse sein muß, ist in Gl. (7) bei allen ungeraden Potenzen von ξ der Absolutwert $|\xi|$ zu potenzieren, d. h. es sind in diesem Falle folgende Integrale zu berechnen:

$$\int_{-1}^{-1} \frac{|\xi|^2 n + 1 d\xi}{(x - \xi)^2 + \left(\frac{y}{L/B}\right)^2} \qquad (n = 0, 1, 2, ...)$$

Sie setzen sich folgendermaßen zusammen:

$$\int_{-1}^{1} \frac{|\xi|^{2 n+1} d\xi}{(x-\xi)^{2} + (\frac{y}{L/B})} = \int_{0}^{1} \frac{\xi^{2 n+1} d\xi}{(x-\xi)^{2} + (\frac{y}{L/B})^{2}} - \int_{-1}^{0} \frac{\xi^{2 n+1} d\xi}{(x-\xi)^{2} + (\frac{y}{L/B})^{2}}$$

Weil hier nur der symmetrische Fall behandelt werden soll, sind in der Integraltafel, die als Tabelle 1 bezeichnet ist und die Integrale bis zur 10. Potenz von ξ einschließlich enthält, bei den ungeraden Potenzen nur die absoluten Beträge $|\xi|$ berücksichtigt. Fernerhin ist die Tabelle aufgestellt für das Verhältnis L/B = 8, jedoch kann sie ohne Schwierigkeiten auch für andere L/B-Verhältnisse benutzt werden. Wir wollen die y-Werte für die verschiedenen L/B durch Indizes unterscheiden; y₈ möge bedeuten, daß L/B = 8 zugrunde gelegt ist, allgemein bezeichne y_m das Verhältnis L/B = m. Werden also die Integralwerte für L/B = m gesucht, so ist in Gleichung (6b) y₈/8 durch y_m/m zu ersetzen. Es muß also gelten:

$$\frac{y_8}{8} = \frac{y_m}{m} = \frac{a y_8}{m}, \text{ wobei} \frac{m}{a} = 8 \text{ ist und } a = \frac{m}{8}.$$

3

<u>Tabelle 1</u>

Integralwerte zur Berechnung von Zylindern

 $\int_{-1}^{1} \frac{\underline{\xi}^{\mathbf{m}} d\underline{\xi}}{N}$

in Abhängigkeit von x und y.

 $N = (x - \xi)^{2} + \left(\frac{y}{L/B}\right)^{2}$

a) Integrale für m= o bis 4

		±1	24	1 a	11 2	it 1
X	У	<u> ag</u>	<u>∫ιξι αξ</u>	<u>ξ"αξ</u>	<u> ξ [°]αξ</u>	<u>ξ[*] αξ</u>
		N	, N	I N	, N	N
0.00	0.30	81.776738	6.5682340	1.8850015	0.99076342	0.66401588
1 1	0.40	60.833507	5.9939614	1.8479162	0.98501510	0.66204688
	0.50	48.268056	5.5490761	1.8114530	o.97832392	0.65959068
	0.60	39.891589	5.1861436	1.7756098	0.97082794	0.65667886
1	0.66	35.703645	4.9767337	1.7520580	0.96543935	0.65449960
1 1	0.70	33.908904	4.8798001	1.7403850	0.90203857	0.000334184
	0.80	25 933388	4.0101200	1 6717806	0.95554819	0.64550819
1 1	1.00	23.142675	4.1743873	1.6383957	0.93477520	0.64106673
1 1	1.10	20.859845	3.9869925	1.6056186	0.92462092	0.63631044
	1.20	18.957954	3.8164906	1.5734460	0.91412896	0.63126413
	1.25	18.121297	3.7367168	1.5575855	0.90877156	0.62863968
1 1	1.3 <u>0</u>	17.349113	3.6602182	1.5418750	0.90334736	0.62595153
	1.33	16.866561	3.6109180	1.5314844	0.89969672	0.62412543
1	1.35	16.634240	3.5867525	1.5263140	0.89786162	0.62320249
1	1.40	15.970538	3.5161040	1.5109023	0.89231931	0.62039528
	1.40	10.002110	3 3825053	1 4900393	0.88108380	0.01103230
	1.55	14.236951	3.3192248	1.4655582	0.87539941	0.61165099
	1.60	13.731516	3.2580965	1.4507393	0.86967614	0.60863709
1 1	1.70	12.810115	3.1417930	1.4215432	0.85812841	0.60247510
0.10	0.40	60.813417	8.7829935	2.4160683	1.1313212	0.71840559
1 1	0.50	48.248038	7.4882925	2.2540361	1.1058717	0.71261984
	0.60	39.871666	6.6073129	2.1345326	1.0844064	0.70685953
1 1	0.66	35.683802	6.1573746		1.0713888	0.70295522
	0.70	33.889105	5 4620220	1 0602608	1.0001000	0.10091311
	0.80	25 913949	5.0620889	1.8915418	1.0301642	0.68862857
[]	1.00	23.123485	4.7298065	1.8304238	1.0136813	0.68214058
	1.10	20.840961	4.4477299	1.7750079	0.99761171	0.67544773
1	1.20	18.939442	4.2036326	1.7240203	0.98185060	0.66856137
	1.25	18.102998	4.0930868	1.6999001	0.97406381	0.66504998
	1.30	17.331047	3.9890884	1.6765775	0.96633127	0.66149564
	1.33	16.848662	3,9230516	1.6614362	0.96120404	0.65910319
	1.35	15 052005	3.8909030	1.60039804	0.95564833	0.00190032
1	1.45	15 348463	3.7113030	1.6320408	0.90101130	0.05420005
	1.50	14.767928	3.6271255	1.5897448	0.93578146	0.64688204
0.20	0.30	81.693656	17.839998	4.9909223	1.8987899	0.99465404
	0.40	60.750625	13.643682	4.1163952	1.7086406	0.95066549
	0.50	48.185435	11.120930	3.5776822	1.5857906	0.91985320
	0.60	39.809294	9.4341177	3.2072288	1.4967322	0.89554501
	0.66	35.621606	8.5878929	3.0165022	1.4486875	0.88147765
1 1	0.10	20 340064	7 3122800	2.9332239	1.4271063	0.87489697
	0.90	25.852507	6.5983489	2.5468848	1.3206326	0.83958118
	1.00	23.062429	6.0228605	2.4026264	1.2774083	0.82368630
1	1.10	20.780327	5.5479072	2.2793628	1.2385423	0.80853317
	1.20	18.879265	5.1482583	2.1720107	1.2030223	0.79393991
1	1.25	18.043062	4.9710073	2.1231571	1.1862895	o.78681382
{	1.30	17.271361	4.8064853	2.0770485	1.1701483	0.77978585
1	1.33	16.789147	4.7031678	2.0476908	1.1596877	0.77515045
1	1.30	15 902049	4.0032769	4.0333977		0.77284682
	1.45	15.276596	4.3761240	1 020214085	1 1947449	0.10098914
	1.50	14.700674	4.2502341	1.9148914	1.1104750	0.75249348

a) Integrale für m= o bis 4

						
		7	21	<i>t</i> 2	1 3	1 č.4
x	У	45	<u> ξ αξ</u>	<u>ξ-αξ</u>	<u> ξ dξ</u>	$\frac{\xi^{-}d\xi}{\xi}$
1 1		J N	J N	I N	I N	JN
	- 20	122 46661	37 813610	12 663676	4 7505654	2.0975310
0.30	0.20	00 324250	30 273041	10.383054	4.0551263	1.8834036
1 1	0.20	90.004209	30.213041	0 0566075	3 5860628	1 7371571
	0.30	81.919919	40.06.1.0	6 0000210	2 0877606	1 5465340
{ [0.40	60.636852	18,960102	6.9353843	2.9811090	1,0400049
4 1	0.50	48.072050	15.187275	2.1089090	2.0103912	1.4239031
1 1	0. <u>60</u>	39.696381	12.670491	4.9803860	2.3588271	1.3353675
	0.66	35.509053	11.411200	4.5807922	2.2252131	1.2877540
	0.70	33.714644	10.871223	4.4080619	2.1666029	1.2664040
	0.80	29.229237	9.5202248	3.9712063	2.0154786	1.2097673
	0.90	25.741490	8.4679345	3.6249319	1.8919849	1.1614391
1 1	1.00	22.952197	7.6246317	3.3423022	1.7880372	1.1190147
	1.10	20.670953	6.9332374	3.1061721	1.6984880	1.0809687
1	1.20	18.770818	6.3557133	2.9051076	1.6199027	1.0462880
]]	1.25	17.935104	6.1010978	2.8151512	1,5839480	1.0299826
	1 30	17,163908	5.8657384	2.7311890	1.5499007	1.0142742
	1 22	16 682030	5 7184585	2.6782214	1.5281650	1:0041053
1	4 28	16 450069	5 6474022	2 6525751	1 5175664	0 9991062
1	1.30	18 707446	5 4 4 4 5 2 3 4	2 5797557	1 4867786	0.9844304
	1.40		5 0 4 4 4 0 4 0 1 F 0 F F 0 4 0 0	2.0101001	1 4573020	0.9044304
	1.40	10.110100	0.4004490	0 449680-	1 4000044	0.01020494
	1.50	14.595393	2.0182990	4.4430330	17 4294044	7 7454-04
0.40	0.10	248.94672	99.808261	41.114881	11.403407	1.1404031
1	0.15	165.17124	66.297965	27.691811	12.059031	5.5822925
1	0.20	123.28379	49.542839	20.971083	9.3657446	4.4916792
	0.25	98.151636	39.489789	16.931457	7,7351024	3.8301688
	0.30	81.397188	32.787781	14.232519	6.6409385	3.3832987
1	0.40	60.455046	24.410346	10.846090	5.2577947	2.8117939
	0.50	47.890993	19.383987	8.8011669	4.4120579	2.4554895
1	0.60	39.516232	16.033191	7.4275354	3.8356356	2.2071731
	0.66	35.329596	14.357860	6.7357804	3.5413936	2.0778011
1 1	0.70	33,535558	13.639883	6.4379527	3.4136234	2.0209047
	0.80	29.051365	11.845024	5.6887904	3.0885613	1.8737193
	0.00	25.564977	10.449152	5.1002476	2 8285188	1.7528618
)	1 00	20.001011	0 3325014	4 6244361	2 6143299	1.6506800
	1.00	22.111101	9 4101940	4 2208744	2 4337800	1 5623042
1	1.10	10 100100		9 0000949	2.1001035	1 4944969
	1.20	19.233103	1.0001000	3.0992343	2.2101340	1 4400-69
1 1	1.25	17.764398	1.3233687	3.1520591	2.2089009	1.4400003
	1.30	16.994153	7.0143716	3.6154354	2.1435784	1.4149775
1 1	1.33	16.512935	6.8212717	3.5296409	2.1021998	1.3933619
	1.35	16.281293	6.7283049	3.4882151	2.0821283	1.3828168
1	1.40	15.619677	6.4627139	3.3694134	2.0242207	1.3521663
	1.45	15.004014	6.2154826	3.2581809	1.9695140	1.3228899
	1.50	14.429714	5.9847770	3.1537811	1.9177116	1.2948693
0.50	0.075	332.43679	165.98374	83.981524	42.001592	22.350931
	0.10	248.66118	124.09599	63.028106	32.515338	17.100580
1 1	0.15	164.88591	82.208513	42.065523	22.015190	11.836180
1	0.20	122.99877	61.265155	31.575314	16.751540	9.1901967
1 1	o.25	97.866993	48.699545	25.274295	13.582794	7.5918364
	0.30	81.113014	40.322892	21.068068	11.461754	6.5175030
1	0.40	60.172060	29.853269	15.798393	8.7919849	5.1555260
	0.50	47.609521	23.573089	12.624678	7.1714181	4.3188790
1	0.60	39.236591	19.387943	10.499706	6.0764303	3.7457669
{	0.66	35.051346	17.296324	9.4329707	5.5220575	3.4519219
1	0.70	33,258054	16,400216	8,9746533	5,2825932	3.3239876
1	0.80	28.776289	14.161090	7.8250902	4.6776738	2,9974328
j 1	0.90	25.292609	12.491910	6.9263191	4.1993013	2.7340216
1	1.00	22.547789	11 020050	6.20350101	3 8100347	2 5177244
}	1.10	20.231384	9 805-044	5 6000014	3 486-304	2 3330444
	1.10	400 52002	200 04247	190 14700	100 02402	66 2064
0.00	0.00	331 07040	109 24077	110 0100-	103.03433	44 50-0004
	0.010	001.01000	140 04868	TTA 01220	14.040004	44.040003
1	0.10	440.20324	140.44707	09.001380	04.714172	33.712888
1	0.15	104.42847	at*a83520	09.474122	30.585432	22.815349
[0.20	122.54200	72.851999	44.377172	27.505346	17.347374
]	0.25	97.411112	57.774266	35.312741	22.045239	14.051758
	0.30	80.658204	47,723499	29.264896	18.395549	11.842767
	0.40	59.719957	35.163024	21.695048	13.813062	9.0560505
	0.50	47.160852	27.630712	17.143689	11.043494	7.3585943
	0.60	38.792053	22.613237	14.102795	9.1820002	6.2074874
}	0.66	34.609931	20.106851	12.579542	8.2443895	5.6229443
	0.70	32.818307	19.033422	11.926026	7.8407391	5.3700130
	0.80	28.341952	16.352639	10.290165	6.8257389	4.7297693
(0.90	24.864251	14,271615	9,0156072	6.0291876	4.2220436
	1.00	22.085929	12.610749	7.9945440	5.3863500	3.8079636
1	1.10	19.816507	11.255717	7.1583314	4.8559848	3.4627485
0.70	0.02	1252.7156	875 76146	613 30441	430 14740	301 08084
** '	0.02	100 72274	347 07798	049 09441	171 50747	120 04500
1	0.075	331 18274	230,60190	161.2004K	114.01779	80 62000E

a) Integrale für m= o bis 4

x	У	$\int \frac{d\xi}{N}$	<u>ΪξΙαξ</u>	$\int \frac{\xi^2 d\xi}{N}$	<u>Γιει ³αε</u> Ν	$\int \frac{\xi^4 d\xi}{N}$
		24 10 100	172 04075	120 76200		fo E17254
0.10	0.15	163.63439	112.04915	79.697528	56.491470	40.349894
	0.20	121.74986	84.091524	59.157591	42.088681	30.241647
	o.25	96.621441	66.503352	46.829026	33.434601	24.158232
	0.30	79.371531	54.780512	38,606802	27.655705	20.088178
	0.40	58.940814		28.323779		14.970889
	0.50	38.033666	25.514038	18.035191		9.7867613
	0.66	33.859985	22.598526	15.978162	11.666379	8.7353843
	0.70	32.072838	21.350756	15.096990	11.037804	8.2826420
	0.80	27.610863	18.237837	12.896107	9.4636149	7.1442137
}]	0.90	24.148817	15.825937	11.187890	8.2367333	6.2513979
0.00	1,00	21.387234	13.905329	9.8254129	630 71945	512 42001
0.00	0.02	497.10090	395.99471	316,61037	253.65425	203.54590
	0.075	329.55132	261.95564	209.37006	167.84722	134.88241
	0.10	245.77836	194.93809	155.74727	124.93457	100.53483
	0.15	162.01064	127.92625	102.12121	82.005980	66.158230
	0.20		94.428180	75.307357	60.528602	
	0.40	78 277717	60 952331	48 499396	39 033890	31.688694
))	0.40	57.376867	44.244187	35,110076	28.279543	23.031484
	0.50	44.863992	34.249522	27.095724	21.830308	17.824024
	0.60	36.549059	27.615991	21.774123	17.540045	14.349031
	0.66	32.406459	24.315566	19.125885	15.401918	12.612745
	0.70	30.635535	22.906028	17.994849	14.488010	11.869501
	0.80	26.224465	19.400113	15.181903	12.212986	10.016028
0.90	0.90	1246.1128	1118 9992	13.014634	10.458035	8.5826295
0.50	0.05	492.14150	440.42664	395.31890	355.34793	319.74730
	0.075	324.60605	289.64715	259.61023	233.19548	209.78954
	0.10	240.85270	214.27249	191.76698	172.12309	154.80513
	0.15	157.14009	138.94058	123.95924	111.07267	99.825061
	0.20	115.33827			80.586040	72.357275
	0.20	73.682339	63.876745	56.397157	50.221851	44.983270
	0.40	53.032707	45.337466	39.724127	35,203909	31.436258
[0.50	40.801767	34.382420	29.885864	26.347933	23.447235
	0.60	32.781845	27.222139	23.469163	20.579214	18.246003
	0.66			20.330030	17.761363	15.707564
	0.70	27.102772	10 570044		10.572017	14.636889
	0.80	19,895975	15.808122	13.296857	11.468824	10.051445
0.95	0.02	1236.1409	1171.08413	1110.6510	1053.86699	1000.3245
	0.05	482.24521	454.88973	430.26141	407.48173	386.23424
[0.075	314.81995	295.84524	279.16937	263.93627	249.85072
] [0.10	231.21631	216.43480	203.73338	192,26801	
	0.10	141.90401	98 135171	91 305456	85 563936	80 376718
[[0.25	82.143010	74.949463	69.406103	64,697472	60.565211
1 1	0.30	66.103017	59.769598	55.027870	51.067876	47.635779
1 1	0.40	46.611182	41.375431	37.647162	34.626075	32.065835
{ [0.50	35.415951	30.863427	27.756744	25.304495	23.266789
0.96	0.60		24.194403	$21_{\circ}513479$	19.445860	17.757535
0.00	0.05	477.34514	454.77869	434 45349	1082.4800	307 79485
	0.075	310.03626	294.17682	280.28119	267.54232	255.69660
	0.10	226,58643	214.08481	203.40376	193.74288	184.84477
	0.15	143.66347	134.53144	127.068.05	120.48088	114.51986
	0.20	102.80956	95.377158	89.529144	84.478508	79.979903
1	0.25	78.798308	72.399598	67.528425	63.402218	59.779337
	0.40	44.400652	01.484001 39.609631	36 230064	49.765813	46.727097
	0.50	33.731721	29.514462	26.668564	24.430155	22.571524
0.97	0.02	1222.8730	1182.4074	1144.4821	1108.3033	1073.6056
1	0.05	469.28395	451.44383	435.45403	420.54221	406.46372
{ }	0.075	302.28789	289.48298	278.36836	268.17716	258.66999
({	0.10	219.23652	208.95658	200,28252	192.45073	185.22485
1 1	0.20	131.25205 97.366×20	129.51642	123.29386	117.82513	112.87780
	0.25	74.237681	68.594815	64 379142	60 816790	57.701610
}	0.30	59.373441	54.279459	50.575272	47.510908	44,861466
	0.40	41.716811	37.346266	34.317586	31.886594	29.832601
J	0.50	31.785617	27.885643	25.288860	23.257049	21.573575
0.98	0.02	1206.3900	1178.0713	1151.6182	1126.2880	1101.8511
		300,00040	*************	440.10929	41(193312	1407.h7093

a) Integrale für m= o bis 4

x	у	$\int_{N}^{\infty} \frac{d\xi}{N}$	$\int_{N}^{1} \frac{\xi_1 \mathrm{d}\xi}{\mathrm{N}}$	$\int \frac{\xi^2 d\xi}{N}$	$\int_{N} \frac{ \underline{\xi} ^3 d\underline{\xi}}{N}$	$\int \frac{\xi^4 d\xi}{N}$
o.98	0.075	287.84227 206.13442	277.98609 197.97794	269.60661 191.25598	261.97010 185.23618	254.85550 179.69879
	0.15	126.87850 89.316467 67.078496	120.45755 83.801818 63.037948	115.42106 79.639285 59.424646	111.03895 76.100852 56.412657	107.09341 72.970381 53.787438
	0.25 0.30 0.40	54.448441 38.521111	49.914195 34.541809	46.686321 31.833694	44.041034 29.677550	41.765371 27.863592
0.99	0.02	1158.1431 412.77642 254.26457	1141.6900 403.91156 247.13528	1126.6681 396.39175 241.32598	389.51045 236.13071	383.06009 231.34246
	0.10 0.15	179.14048	172.91756 104.16203	167.99838 100.20039	163.67758 96.815290 66.573979	159.74861 93.801120 64.065198
	0.20 0.25 0.30	77.549622 59.719614 48.347133	55.408346 44.317388	52.344480 41.521028	49.826685	47.651437 37.326991
1.00	0.02	627.81853 250.82741	621.52021 245.44538 162.07502	616.44538 241.28096 158.31120	611.91185 237.65215 155.07831	607.72336 234.36281 152.18043
	0.075		120.47479 78.992302	116.99377 75.907037	114.03913 73.339237	111.41513 71.093689

b) Integrale für m= 5 bis 9

			11		\$1 a	1 0
•	v	1 [15] ⁵ as	E ⁶ dE	[1E1 ⁷ aE	30 ⁸ 3]	1/121902
	3			N 12 1 12 12	N 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N N
		29 27		21		ž1
0.00	0.30	0.49860674	0.39906623	0.33263217	0.28515310	0.24953224
	0.40	0.49753746	0.39834488	0.33208949	0.28471842	0.24916978
	0.50	0.49617842	0.39742347	0.33139514	0.28416185	0.24870549
1	0.60	0.49453909	0.39630618	0.33055155	0.28348506	0.24814065
	0.66	0.49329556	0.39545486	0.32990767	0.28296807	0.24770897
	0.70	o.49262980	0.39499785	0.32956164	0.28269008	o.24747679
	0.80	0.49046151	0.39350391	0.32842872	0.28177925	0.24671571
	0.90	0.48804569	0.39183029	0.32715651	0.28075518	0.24585943
	1.00	0.48539414	0.38998333	0.32574905	0.27962080	0.24491017
Į –	1.10	0.48251889	0.38796976	0.32421071	0.27837923	0.24387039
	1.20	0.47943210	0.38579656	0.32254611	0.27703386	0.24274271
	1.25	0.47781319	0.38465235	0.32166797	0.27632336	0.24214678
[1.30	0.47614598	0.38347097	0.32076010	0.27558826	o.24152993
j .	1.33	0.47500842	o.38266318	0.32013865	0.27508475	0.24110726
	1.35	0.47443199	0.38225334	0.31982314	0.27482902	0.24089254
	1.40	0.47267272	0.38100039	0.31885773	0.27404615	0.24023498
1	1.45	0.47086969	0.37971309	0.31786453	0.27324012	0.23955765
ł	1.50	0.46902440	0.37839237	0.31684419	0.27241143	0.23886095
ļ	1.55	0.46713833	0.37703920	0.31579740	0.27156059	0.23814526
1	1.60	0.46521295	0.37565452	0.31472482	0.27068811	0.23741101
ļ	1.70	0.46125014	0.37279448	0.31250501	0.26888028	0.23588845
0.10	0.40	0.52809748	0.41873191	0.34732803	0.29688301	0.25929407
1	0.50	0.52593595	0.41751999	0.34648245	0.29622750	0.25875646
	0.60	0.52350044	0.41608056	0.34546171	0.29543242	0.25810332
1	0.6 6	0.52172395	0.41499804	0.34468626	o.29482633	0.25760477
}	0.70	0.52079060	0.41442082	0.34427061	0.29450086	0.25733683
l l	0.80	0.51781479	0.41254923	0.34291444	0.29343632	0.25645954
1	0.90	0.51458510	0.41047489	0.34139894	0.29224266	o.25547426
i	1.00	0.51111530	0.40820732	0.33973016	0.29092403	0.25438408
{	1.10	0.50741990	0.40575628	0.33791447	0.28948487	0.25319233
	1.20	0.50351365	0.40313164	0.33595841	0.28792983	0.25190254
	1.25	0.50148607	0.40175733	0.33492985	0.28711036	0.25122203
1	1.30	0.49941131	0.40034335	0.33386873	0.28626376	0.25051842
	1.33	·o.49800281	0.39937927	0.33314366	0.28568460	0.25003675
1	1.35	0.49729116	0.39889094	o.33277593	0.28539066	0.24979220
1	1.40	0.49512744	0.39740134	0.33165229	0.28449169	0.24904386
1	1.45	0.49292477	0.39587680	0.33049877	0.28356746	0.24827389
	1.50	0.49067872	0.39431629	0.32931605	0.28261870	0.24748283
0.20	0.30	0.65738282	0.49582220	0.40152276	0.33884275	0.29366755
1	0.40	0.64600414	0.49219801	0.39994741	0.33791200	0.29299588
	0.50	0.63694204	0.48877583	0.39820869	0.33678704	0.29215324
1	0.60	0.62888689	0.48530909	0.39626615	0.33546508	0.29114251
1	0.66	0.62379295	0.48292405	0.39485261	0.33447613	0.29037759
	0.70	0.62129370	0.48170403	0.39411027	0.33395002	0.28996839
1	0.80	0.61390338	0.47792392	0.39174320	0.33224847	0.28863650
L	0.90	0.60658323	0.47395706	0.38917229	0.33036842	0.28715308

٦

b) Integrale für m= 5 bis 9

		T			4.4	
		f 1= 1 5	F , 6	first Tar	1 8	1 1 1 9 a
x	У	151 <u>d</u>	<u> 5 as</u>		ا کیمک	
		J N	J N	I N	N	N N
0.20	1.00	0.59926308	0.46980398	0.38640743	0.32831863	0.28552482
	1.10	0.59190631	0.46547156	0.38345983	0.32610830	0.28375875
1	1.20	0.58449540	0.46097015	0.38034137	0.32374691	0.28186210
1	1 25	0.58076737	0.45865983	0.37872185	0.32251257	0.28086712
	1 20	0.57702407	0.45631191	0 37706419	0.32124407	0.27984229
	1.30	0.01102401	0.45031131	0.37593864	0.32038003	0.27914296
	1.00	0.01402010	0.40412001	0.37536004	0.02000000	0.07979956
	1.35	0.5/326574	0.45392800	0.31330991	0.31994202	0.21010000
1	1.40	0.56949291	0.45150996	0.3/304032	0.31800943	- 07650014
	1.45	0.56570627	0.44905929	0.37187753	0.31724368	0.27059814
	1.50	0.56190669	0.44657776	0.37008245	0.31585258	0.27546335
0.30	0.20	1,1292295	0.73134495	0.54147974	0.43546540	0.36772360
1	0.25	1.0624172	0.71004737	0.53441847	0.43293819	0.36668371
	0.30	1.0158823	0.69474199	0.52907618	0.43086226	o.36572664
	0.40	0.95313230	0.67296938	0.52081738	0.42725139	0.36382114
1	0.50	0.91048890	0.65690995	0.51398892	0.42383192	o.36177551
	0.60	0.87781632	0.64355192	0.50770789	0.42035288	o.35952383
	0.66	0.85933204	0.63548855	0.50363710	0.41795117	o.35789834
	0.70	0.85079260	0.63162652	0.50161403	0.41672041	0.35704785
	0.80	0.82727433	0.62051737	0.49554244	0.41289939	0.35434738
	0.90	0.80608498	0.60989697	0.48941441	0.40888062	0.35143027
1	1.00	0.78653026	0.59958124	0.48319372	0.40466755	0.34830836
	1.10	0.76817796	0.58946342	0.47686671	0.40027021	0.34499554
	1 20	0.75074797	0 57049149	0.47043933	0.39570215	0.34150679
1	1 25	0.10014101	0.01740112	A 46717689	0.0000000000	0.04100012
1	1 2-	0.14401009	0.01404000	0.46300470	0 + 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00010110
	1.30	0.73405105	0.50959842	0.40309010	0.39091013	0.00100140
	1.33	0.72862523	0.00032262	0.40109748	0.38937255	0.33000774
	1.35	0.72593625	0.56468789	0.46059418	0.38856384	0.33597712
1	1.40	0.71796001	0.55979587	0.45727038	0.38611520	0.33406259
1 1	1,45	0.71011213	0.55492152	0.45392700	0.38363788	0.33211559
	1.50	0.70238397	0.55006436	0.45056576	0.38113093	0.33013798
0.40	0.10	3.6797241	1.9282817	1.1420916	0.76755456	0.57411283
	0.15	2.8092608	1.5772805	1.0001709	0.70994026	0.55056849
	0.20	2.3677315	1.3977440	0.92672038	0.67960809	o.53784539
	0.25	2.0977849	1.2867384	0.88057233	0.66009514	0.52936128
	0.30	1.9136424	1.2099590	0.84801032	0.64591902	o.52292619
	0.40	1.6741196	1,1076438	0.80309238	0.62537317	0.51293354
	0.50	1.5205397	1.0393983	o.77144888	0.60979660	0.50462242
	0.60	1.4100608	0.98813189	0.74628431	0.59650363	0.49694334
1	0.66	1.3508444	0.95960510	0.73161381	0.58832860	0.49195463
	0.70	1.3243464	0.94655327	0.72472101	0.58437490	0.48947330
	0.80	1.2542472	0.91104309	0.70534807	0.57287672	0.48202334
1	0.90	1,1946943	0.87961133	0.68740427	0.56173412	0.47450748
	1.00	1.1426570	0.85108042	0.67045128	0.55079995	0.46689020
1	1.10	1.0962148	0.82471408	0.65422516	0.53999542	0.45916254
1	1.20	1.0540930	0.80003168	0.63856212	0.52928031	0.45133003
1	1.25	1.0343666	0.78821616	0.63090775	0.52395017	0.44737849
1	1.30	1.0154132	0.77670856	0.62335863	0.51863697	0.44340619
1	1 33	1 0031714	0 76919512	0.61838073	0.51510414	0 44074762
	1 35	0 00716155	0 76548336	0.61590754	0.51334054	0.430/15/0
	1 40	0.07055073	0.75451909	0.01050104	0.01004004	0.43540993
	1 45	0.91900010	0.73431838	0.00804001	0.00000120	0.43040883
1	1 50	0.94604888	0.73330207	0.00121140	0.00215500	0.40100019
0.50	0.075	11.862046	6 4857254	3 6078054	2.220KKAK	1.4307961
Jo • 00	0.010	9.2310660	5 1675245	3 0367602	1.8078464	1 972-071
	0.10	6 5800744	3 84010040	2 3606467	1 5412005	1 1 1 2 9795
	0.13	5 3573140	3.0401141	2.3090401	1 2004200	1.1032125
1	0.20	4 4400076	0.1010014	1 04074001	1 3967470	1 1.0100180
1	0.40	4.4402910	4.1003990	1 67/0005	1.00550-0	0.0000000
1	0.30	0.0014344	4.4104158	1.0743395	1.2055803	0.91967222
1	0.40	3.2012000	2.1130725	1.4836334	1.1039881	0.80446867
I I	0.50	2.7038696	1.8810765	1.3582988	1.0346880	0.82499090
1	0.60	2.4585918	1.7150659	1.2657235	0.98143884	0.79317611
	0.66	2.2993669	1.6265449	1.2149846	0.95127620	0.77446045
1	0.70	2.2293062	1.5870681	1.1919841	0.93734013	0.76562885
1	0.80	2.0479937	1.4831250	1.1301596	0.89898782	0.74069889
1	0.90	1.8990939	1.3955023	1.0764349	0.86452669	0.71750701
1	1.00	1.7732719	1.3195731	1.0285438	0.83287130	0.69555545
	1,10	1.6645858	1.2524016	0.98506041	0.80335217	0.67455088
0.60	0.05	40.592224	25.037335	15.602589	9.8569392	6.3407645
1	0.075	27.542658	17.201255	10.896306	7.0298573	4.6421827
1 1	0.10	21.007683	13.273941	8.5352647	5.6098827	3.7878159
1	0.15	14.452695	9.3283360	6.1585503	4.1770506	2.9232138
1	0.20	11.155662	7.3375729	4.9546967	3.4478121	2.4805984
1	0.25	9.1622694	6.1290778	4,2201759	3.0000687	2.2067286
(0.30	7.8210845	5.3120031	3.7204954	2.6931422	2.0172147
1	0.40	6.1181980	4.2658779	3.0739723	2.2907953	1.7647541
	0.50	5.0698713	3.6130027	2.6635203	2.0299300	1.5968362

b) Integrale für m= 5 bis 9

		1 +4		14	14	** 0
	v	IEL 5 dE	[E ⁶ dE	I IEL TAE	ε ⁸ αε 4	[ξ[⁹ αξ
	y					J N
				4		
0.60	0.60	4.3503931	3,1580219	2.3720221	1.8403852	1.4714779
	0.66	3.9810477	2.9212400	2.2177751	1.7380926	1.4022695
	0.70	3.8201582	2.8172310	2.1493377	1.6921736	1.3707884
	0.80	3.4093409	2.5487815	1.9704283	1.5703559	1.2858944
	0.90	3.0791200	2.3294169	1.8213982	1.4666671	1,2119157
1	1.00	2.8061707	2.1451683	1.6939135	1.3761676	1.1459570
	1.10	2.5756158	1.9871267	1.5826659	1.2957231	1.0861959
0.70	0.02	212.25266	149.38437	105.30227	74.369084	52.645079
	0.05	85.491279	60.637429	43.167618	30.865139	22.184510
(0.075	57.298424	40.890901	29.335283	21.174448	15.394496
	0.10	43.186259	31.000961	22.402622	16.313546	11,985319
	0.15	29.043600	21.078582	15.437744	11.422128	8.5482067
1	0.20	21.943008	16.086101	11.924077	8.9466812	6.8022668
	0.25	17.660420	13.066691	9.7918625	7.4384061	5.7333741
	0.30	14.787812	11.034746	8.3511987	6.4143974	5.0035268
	0.40	11.160459	8.4548401	6.5097030	5.0949008	4.0540880
	0.50	8.9487891	6.8679299	5.3647891	4.2639974	3.4472184
	0.60	7.4485983	5.7811025	4.5715006	3.6803468	3.0141450
1	0.66	6.6871712	5.2247806	4.1612996	3.3749744	2.7845037
	0.70	6.3579222	4.9829851	3.9819278	3.2405067	2.6825873
1	0.80	5.5256111	4.3677518	3.5220163	2.8927025	2.4163995
	0.90	4.8675291	3.8764664	3.1505104	2.6080919	2.1954590
	1.00	4.3330393	3.4736257	2.8425374	2.3692770	2.0076288
0.80	0.02	410.70119	329.37183	264.31152	212.24220	170.55228
1	0.05	163.57843	131.65010	106,11150	85.660998	69.267873
1	0.075	108.62852	87.670973	70.909685	57.482173	46.708831
	0.10	81.131728	65.654707	53.278481	43:360107	35.395407
	0.15	53.594169	43.588103	35.589799	29.175788	24.017074
	0.20	39.788213	32.508265	26.691862	22.025204	18.266661
1	0.25	31.478280	25.826728	21.313908	17.691776	14.770950
1	0.30	25.919093	21.347261	17.698958	14.769940	12.405524
	0.40	18.934640	15.699817	13.122277	11.052440	9.3787324
	0.50	14.715777	12.270471	10.325335	8.7635045	7.4990121
	0.60	11.888338	9.9596067	6.4282294	7.1990850	6.2030887
	0.66	10.470517	8.7955406	7.4673696	6.4017217	5.5378676
	0.70	9.8623310	8,2948854	7.0528075	6.0564504	5.2486431
	0.80	8.3418152	7.0391748	6.0090337	5.1833026	4.5136322
	0.90	7.1614775	6.0599062	5.1904970	4.4942070	3.9294569
0.90	0.02	733.24412	000.30910	004 . 19191	030.91400	402.90001
	0.00	180 06702	239.31192	158 70000	120 04600	190.09390
	0.010	120 45725	125 8-019	112 64221	102 77440	02 051641
	0.10	80 031010	81 196360	79 496091	66 599600	60 364554
	0.10	65 172785	58 858793	53 282965	48 340624	43.946132
	0.25	50 336852	45 467159	41 186851	37,407186	34.056891
	0.20	40.474379	36 556554	33.128628	30.112989	27.448147
1 1	0.40	28.237001	25.487093	23.102260	21.019528	19,190150
	0.50	21.015309	18,946250	17.166890	15.623719	14.276096
	0.60	16.313067	14.684284	13.294590	12.097260	11.057375
	0.66	14.018864	12.604497	11.403757	10.373514	9.4818501
1	0.70	13.051544	11.727632	10.606394	9.6462966	8.8167373
	0.80	10.686544	9.5843209	8,6572720	7.8680110	7,1893361
	0.90	8,9134899	7,9785263	7.1972130	6.5355838	5.9692015
0.95	0.02	949.75069	901.93011	856.67957	813.83748	773.25817
	0.05	366.33262	347.64338	330.06122	313.49843	297.87952
1	0.075	236.74643	224.50887	213.05070	202.30118	192.20091
	0.10	172.03778	163.01266	154.60137	146.74207	139.38368
	0.15	107.58576	101.74989	96.359125	91.361156	86.713862
1 1	0.20	75.696616	71.436278	67.533747	63.942105	60.624246
	0.25	56.877061	53.550119	50.526479	47.762921	45.225736
	0.30	44.603252	41.890881	39.443881	37.221852	35.193639
	0.40	29.844422	27.887869	26.146172	24.583159	23.171448
1	0.50	21,526793	20.014880	18.684747	17.503421	16.446313
	0.60	16.336231	15.116022	14.053683	13.118850	12.289160
0.96	0.02	995.72703	955.30833	916.69214	879.77469	844.463892
1	0.05	381.03447	365.16596	350.11078	335.80540	322.19630
1	0.075	244.60293	234.16822	224.32381	215.01563	206.19916
1 1	0.10	176.57422	168.84374	161.58999	154.76393	148.32586
	0.15	109.05659	104.00996	99.322634	94.951244	90.861434
1 1	0.20	75.909240	72.189356	68.766589	65.600965	62.661297
1 1	0.25	56.538974	53.606917	50.932191	48.477280	46.213256
1	0.30	44.037953	41.626595	39.444221	37.455274	35.632603
1	0.40	29.211493	21.445241	25.869041	24.450435	23.165035
6 67	0.00	40.003347	19.001223	18.382720	17.297851	16.324384
ľ.,	0.05	303 00498	389 34363 TAAD 10300	368 18034	256 10105	ATS 38000
	0.00	000.00160	000,04400	1909 19930	000.49185	340.30542

٠,

b) Integrale für m= 5 bis 9

x	у	$\int_{-\pi}^{\pi} \underline{\xi} ^{\frac{5}{N}} d\underline{\xi}$	$\int_{-\pi}^{\pi} \frac{\xi^6 d\xi}{N}$	$\int_{-\infty}^{\infty} \frac{ \xi ^7 d\xi}{N}$	$\int \frac{\xi^8 d\xi}{N}$	$\int_{N}^{\frac{1}{1}} \frac{9}{N} d\xi$
0.97	0.075	249.72455	241.26350	233,23192	225.58789	218,29784
	0.10	178.48549	172.15805	166.19024	160.54266	155.18415
	0.15	108.33609	104.12883	100.20693	96.534031	93.081847
	0.20	74.414994	71.260799	68.350905	65.650951	63.134527
	0.25	54.915510	52.391555	50.084534	47.961653	45.997937
1	0.30	42.517748	40.414477	38.507917	36.766596	35.166742
	0.40	28.049849	26.475985	25.069808	23.802082	22.651017
1	0.50	20.135859	18.884156	17.779473	16.794467	15.908994
0.98	0.02	1078.1906	1055.2323	1032.9229	1011.2213	990.09388
	0.05	397.89220	388.52900	379.53424	370.87276	362.51691
1	0.075	248.15415	241.79989	235.74734	229.96301	224.42084
1	0.10	174.53635	169.68382	165.09694	160.74322	156.59763
	0.15	103.47873	100.13154	97.009107	94.080402	91.321757
1	0.20	70.143651	67.558600	65.173699	62.959049	60.892011
	0.25	51.446126	49.327849	47.392149	45.610090	43.959917
	0.30	39.757772	37.958490	36,328051	34.838401	33.468578
	0.40	26,292800	24.907553	23.670206	22.554299	21.540282
0.99	0.02	1085.2162	1072.2008	1059.4991	1047.0818	1o34.9261
1	0.05	376.94133	371.09521	365.48233	360.07428	354.84943
]	0.075	226.86236	222.63194	218.61224	214.77527	211.09985
	0.10	156.11303	152.71277	149.50926	146.47486	143.58871
1	0.15	91.060288	88.535477	86.188797	83.993250	81.928582
	0.20	61.815119	59.767173	57.884138	56~ 139622	54.513927
	0.25	45.722872	43.985178	42.401799	40.946940	39.601439
	0.30	35.631972	34.118254	32.749945	31.501835	<u>30.355281</u>
1.00	0.02	603.78807	600.05270	596.48243	593.05267	589.74513
	0.05	231.32122	228.47419	225.78700	223.23515	220.80042
[0.075	149.52594	147.06181	144.75340	142.57633	140.51249
]	0.10	109.03034	106.83188	104.78525	102.86620	101.05672
1 1	0.15	69.079406	67.243873	65.552936	63.982634	62.515246

c) Integrale für m= 10

x	У	$\int_{N} \frac{\xi^{10} d\xi}{N}$	x	У	$\int_{-\infty}^{\infty} \frac{\xi^{10} d\xi}{N}$	x	У	$\int_{-\pi}^{\pi} \frac{\xi^{10} d\xi}{N}$
0.00	0.30	0.22182123	0.10	1.50	0.22010071	0.30	1.45	0.29279612
1	0.40	0.22151043	0.20	0.30	0.25935693		1.50	0.29117019
	0.50	0.22111221		0.40	0.25881945	0.40	0.10	0.46389828
1	0.60	0.22062762		0.50	0.25813644		0.15	0.45416264
1 1	0.66	0.22025717		0.60	0.25731092		0.20	o.44867782
	0.70	0.22005788		0.66	0.25668325		0.25	0.44481289
	0.80	0.21940443		0.70	0.25634668		0.30	0.44169391
[]	0.90	0.21866891		0.80	0.25524803		0.40	0.43639462
	1.00	o.21785315		0.90	0.25401976		0.50	0.43149975
1	1.10	0.21695911		1.00	0.25266697		0.60	0.42660807
1	1.20	o.21598896		1.10	0.25119511		0.66	0.42326993
	1.25	0.21547605		1.20	0.24960984		0.70	0.42156943
	1.30	0.21494497		1.25	0.24877650		0.80	0.41632752
1 1	1.33	0.21458098		1.30	0.24791702		0.90	0.41086723
	1.35	0.21439604		1.33	0.24732988		1.00	0.40519344
	1.40	o.21382956		1.35	0.24703215		1.10	0.39932126
1	1.45	0.21324586		1.40	0.24612264		1.20	0.39327111
1	1.50	0.21264526		1.45	0.24518926		1.25	0.39018642
1	1.55	0.21202809		1.50	0.24423278		1.30	0.38706595
	1.60	0.21139470	0.30	0.20	0.31994806		1.33	0.38496725
	1.70	0.21008060		0.25	0.31942194		1.35	0.38391271
0.10	0.40	0.23018147		0.30	0.31887706		1.40	0.38072972
	0.50	0.22972497		0.40	0.31766169		1.45	0.37751995
	0.60	0.22916996		0.50	0.31623825		1.50	0.37428635
	0.66	0.22874606		0.60	0.31459347	0.50	0.075	1.0024193
1	0.70	o.22851814		0.66	0.31337450		0.10	0.91863090
	0.80	0.22777149		0.70	0.31272899		0.15	0.83266626
	0.90	o.2269322o		0.80	0.31065238		0.20	0.78735341
j 1	1.00	0.22600271		0.90	0.30837402		0.25	0.75816349
1	1.10	o.22498566		1.00	0.30590578		0.30	0.73692992
	1.20	0.22388388		1.10	0.30326034	1	0.40	0.70611764
	1.25	0.22330215		1.20	0.30045081		0.50	0.68275739
L I	1.30	0.22270036		1.25	0.29898866		0.60	0.66286666
	1.33	o.22228822		1.30	0.29749047		0.66	0.65067563
1	1.35	0.22207891		1.33	0.29647246		0.70	0.64479506
	1.40	0.22143822		1.35	0.29595788		0.80	0.62776284
1	1.45	0.22077868		1.40	0.29439256		0.90	0.61137354

c) Integrale für m= 10

		~						
x	У	$\int_{-\pi}^{\pi} \frac{\xi^{10} d\xi}{N}$	x	У	$\int_{-\pi}^{\pi} \frac{\xi^{10} d\xi}{N}$	x	У	$\int_{-\infty}^{\infty} \frac{\xi^{10} d\xi}{N}$
0.50	1.00	0.59541886	0.80	0.20	15.228583	0.96	0.10	142,24261
1 1	1.10	0.57979003		0.25	12.405342		0.15	87.025096
0.60	0.05	4.1757739		0.30	10.487159		0.20	59.922441
	0.075	3.1549948		0.40	8.0166725		0.25	44.117061
	0.10	2.6406900		0.50	6.4674917		0.30	33.954772
1 1	0.15	2.1184045		0.60	5.3890464		0.40	21.993880
	0.20	1.8491187		0.66	4.8310943		0.50	15.445253
	0.25	1.6809045		0.70	4.5874227	0.97	0.02	890.51559
1	0.30	1.5631445		0.80	3.9648464		0.05	334.56702
11	0.40	1.4031493		0.90	3.4662420		0.075	211.33396
1 1	0.50	1.2934244	0.90	0.02	435.39322		0.10	150.08920
	0.60	1.2088900		0.05	172.28654		0.15	89.827611
	0.66	1.1610102		0.075	113.70280		0.20	60.780613
	0.70	1.1389122		0.10	84.341009		0.25	44.173696
	0.80	1.0782575		0.15	54.860965		0.30	33.689753
	0.90	1.0240783		0.20	40.028389		0.40	21.599792
1 1	1.00	0.97470841		0.25	31.077534		0.50	15.107678
	1.10	0,92911561		0.30	25.084294	0.98	0.02	969.51246
0.70	0.02	37.374894		0.40	17.575438		0.05	354.44413
1 1	0.05	16.046290		0.50	13.092313		0.075	219.09983
	0.075	11.288056		0.60	10.148090		0.10	152.64012
	0.10	8.8963655		0.66	8.7044327		0.15	88.714431
	0.15	6.4797444		0.70	8.0944842		0.20	58,954811
1 1	0.20	5.2468332		0.80	6.6008281		0.25	42.424666
1 1	0.25	4.4877810		0.90	5.4799068		0.30	32.202334
	0.30	3.9660213	0.95	0.02	734.80866		0.40	20.613167
	0.40	3.2796905		0 .0 5	283.13805	0.99	0.02	1023.0139
	0.50	2.8333572		0.075	182.69868		0.05	349.79074
	0.60	2.5090714		0.10	132.48289		0.075	207.56930
	0.66	2.3345273		0.15	82.382330		0.10	140.83449
	0.70	2.2563912	í I	0.20	57.549918		0.15	79.979013
	0.80	2.0501359		0.25	42.887794		0.20	52.991788
1 [0.90	1.8763102		0.30	33.334439		0.25	38.350520
	1.00	1.7264826	LI	0.40	21.889617		0.30	29.295976
0.80	0.02	137.15911		0.50	15.494454	1.00	0.02	586.54566
	0.05	56.114011		0.60	11.547575		0.05	218.46876
]	0.075	38.052287	0,96	0.02	810.67640		0.075	138.54790
1 1	0.10	28.987210		0.05	309.23709		0.10	99.342965
	0.15	19.856368		0.075	197.83667		0.15	61.137155

Daraus ergibt sich der Faktor, mit dem die Werte y8 zu multiplizieren sind, um die entsprechenden ym-Werte für das neue L/B-Verhältnis zu erhalten.

Es sei L/B = 10; dann wird

$$y_{10} = \frac{10}{8} y_8 = 1,25 y_8$$

Das bedeutet aber, daß man für L/B = 10 die Integral-Tabelle benutzen kann, indem man die dort angegebenen y-Werte mit dem Faktor 1,25 multipliziert. So gilt beispielsweise der gleiche Integralwert, der für y = 0,4 in der Tafel angegeben ist, auch für das Verhältnis L/B = 10, aber nun für den Wert $y_{10} = 1,25 \cdot 0,4 = 0,5$. Allgemein ausgedrückt ist

$$y_{\rm m} = -\frac{m}{8} y_8 \tag{9}$$

Zur Bestimmung der Breitenkorrektur z ist es notwendig, von dem Wert $y_m = 1$ auszugehen. Der zugehörige y_8 -Wert ist dann

$$y_8 = \frac{8}{m}$$
(9a)

Für diesen in Gleichung (9a) angegebenen y8-Wert ist der Koeffizient × zu berechnen. Damit der Übergang zu anderen L/B-Verhältnissen bei der Bestimmung von z nicht auf Schwierigkeiten stößt, sind in die Integral-Tabelle bewußt diejenigen y8-Werte aufgenommen worden, die notwendig sind zur Ermittlung von \varkappa für L/B = 5, 6, 10, 12, 16 und 20. Es ist aber durchaus möglich, daß auch für dazwischen liegende L/B-Verhältnisse die $y_m = 1$ entsprechenden y_8 -Werte aus der Tabelle entnommen werden können; sofern das nicht möglich sein sollte, sind für einige benachbarte L/B die z-Werte zu berechnen und als Kurve über L/B aufzutragen und x für das vorgeschriebene L/B-Verhältnis durch Interpolation zu ermitteln. Selbstverständlich ist bei Vorgabe

eines $L/B \neq 8$ auch im Vorfaktor des Integrales von Gl. (6b) das entsprechende L/B einzusetzen. Die praktische Durchführung dieser Rechnung wird an Hand der Beispiele aufgezeigt.

Die Berechnung von Zylinderquerschnitten

Es werden nun 12 verschiedene Dipolverteilungen vorgegeben, die durch folgende Polynome dargestellt sind:

- a) $\eta = 1 \xi^2$

- a) $\eta = 1 \xi^2$ b) $\eta = (1 \xi^2)^2$ c) $\eta = 1 1.5 \xi^2 + 0.5 \xi^4$ d) $\eta = 1 2.447 \xi^2 + 3.461 \xi^4 2.014 \xi^6$ e) $\eta = 1 3.197 \xi^2 + 6.667 \xi^4 4.470 \xi^6$ f) $\eta = 1 + 4.348576 \xi^2 16.497001 |\xi|^3 + 13.336623 \xi^4$ --- 2,188198 5

g)
$$\eta = 1 + 7,122190 \xi^2 - 22,834333 |\xi|^3 + 17,373743 \xi^4 - 2,661600 \xi^4$$

- h) $\eta = 1 2,201597 \xi^4 2,956804 \xi^6 + 8,151835 \xi^8 2,956804 \xi^6 + 2,956804 \xi^6 + 8,151835 \xi^8 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 2,956804 \xi^6 + 2,95680464 + 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 \xi^6 + 2,956804 +$ — 3,993434 ξ¹⁰
- i) $\eta = 1 + 3,334713 \xi^4 20,092792 \xi^6 + 26,279743 \xi^6$ - 10,521664 ξ¹⁰

k)
$$\eta = 1 + 6,102868 \xi^4 - 28,660786 \xi^6 + 35,343697 \xi^6 - 13,785779 \xi^{10}$$

l)
$$\eta = 1 - 2.7 \xi^2 + 2.4 |\xi|^3 - 0.7 \xi^4$$

m) $\eta = 1 - 2,025 \xi^2 + 1,55 \xi^4 - 0,525 \xi^6$

Polynome dieser Art faßt man in Gruppen zu sogenannten Polynomfamilien zusammen, die durch die Angabe der Potenzen charakterisiert sind; innerhalb einer Familie unterscheidet man die verschiedenen Polynome durch Angabe des Schärfegrades φ und der Eintrittstangente t. So gehören beispielsweise die Funktionen d) und e) unserer Aufstellung

zur Familie 2, 4, 6. Wegen
$$\varphi = \int_{0}^{1} \eta \, d\xi$$
 und $t = \frac{-d\eta}{d\xi}$

erhält man für d) $\varphi = 0,588$ und t = 3,13 und für e) $\varphi = 0,629$ und t = 6,55. Die Polynome können demnach auch auf folgende Art dargestellt werden:

d) < 2, 4, 6; 0,588;
$$3,13 >$$

Die ersten Ziffern geben die Zugehörigkeit zur Polynomfamilie an und die letzten beiden Zahlen den Schärfegrad φ und die Eintrittstangente t. Die hier für die Beispiele gewählten Polynome stammen aus Untersuchungen von Weinblum, wobei b), c), d) und e) dem Beitrag [5] entnommen sind, die Verteilungen 1) und m) den Modellen 1337 und 1370 in der Veröffentlichung "Rechnerische Entwicklung von Schiffsformen" von Weinblum [14] entsprechen und der Rest in [4] zu finden ist. Wie bereits in der Einleitung erwähnt, handelt es sich bei diesen Arbeiten vielfach um Untersuchungen des Wellenwiderstandes. Im Zusammenhang damit hat Weinblum für einige Polynomfamilien Verteilungen aufgestellt, die bezüglich des Wellenwiderstandes Optimal- oder auch Minimalformen darstellen, d. h diese Formen ergeben für jeweils eine bestimmte Froudesche Zahl den geringsten Wellenwiderstand. Zu diesen Minimalformen gehören von unseren Beispielen die Fälle d) bis k); d) gilt dabei als Minimalform für die Froudesche Zahl § = 0,316, e) für $\mathfrak{F} = 0,354$, f) bis k) für $\mathfrak{F} = 0,183$.

Für die Auswahl der Verteilungen in dieser Arbeit waren weiterhin folgende Gesichtspunkte maßgebend: Aus der Vielzahl der Polynome wurden einmal besonders verschiedenartige ausgewählt, um einen Überblick über die gesamten Möglichkeiten zu geben, zum anderen aber soll an den Polynomen, die durch Variationen des Schärfegrades aus einer Grundform entstanden sind, der Einfluß dieses Parameters aufgezeigt werden. In Beispiel a) ist der Fall parabolischer Dipolverteilung gegeben; dies ist von den kontinuierlichen Verteilungen der einfachste Fall. Der Schärfegrad ist $\varphi = \frac{2}{s}$ und t = 2. Der nächste einfache Fall b) mit dem Schärfegrad $\varphi = 0,533$ und t = 0 stellt eine ausgesprochen scharfe Form dar. Die Verteilung c) gehört ebenfalls zur Polynomfamilie 2, 4, 6; aber hier ist $\varphi = 0,60$ und t = 1. Die Minimalformen d) und e) geben Beispiele für den sogenannten "Schwanenhals", d. h. eine Zunahme von η nach den Enden hin nach schon vorangegangenem Absinken der Werte. Diese Formen sind durch hohe t-Werte charakterisiert. Für d) ist $\varphi = 0,588$ und t = 3,13 und für e) $\varphi = 0.629$ und t = 6.55. Die Optimalformen f) und k) geben Beispiele für Anschwellungen; die Verteilung η (ξ), die für $\xi = 0$ den Wert η (o) = 1 hat, nimmt von der Mitte ausgehend zunächst zu, d. h. sie schwillt an und nimmt Werte >1 zu, ehe sie sich verringert und bei $\xi = 1$ schließlich Null wird. Die Beispiele 1) und m) gehören zwar verschiedenen Polynomfamilien an, unterscheiden sich aber in ihrer Kontur kaum voneinander; für beide gilt $\varphi = 0,56$ und t = 1.

Die Verteilungen und die sich daraus ergebenden Zylinderquerschnitte sind in Abb. 2 zusammengestellt, die Aufmaße für die Konturen aus Tab. 2 zu entnehmen. Im allgemeinen sind die Rechnungen für das Verhältnis L/B = 8 durchgeführt. In den Beispielen a), b) und g) sind auch für andere L/B-Verhältnisse die Zylinderkonturen ermittelt. Daraus ist

J	< 2; 3; 4; 6; 0,680; 0, 5 77 >	8	y8*	1,000 0,998 0,992 0,915 0,915 0,915 0,109 0,1009 0,0109 0,0109 0,010000 0,010000 0,010000 0,0100000 0,010000000000000000000000000000000000	8	> < 2; 4; 6; 0,56; 1,0 >	8	y8*	1,000 0,936 0,941 0,777 0,532 0,777 0,777 0,777 0,777 0,777 0,042 0,067 0,042 0,067 0,042 0,028
¢	<2; 4; 6; 0,629; 6,55 >	8	y8*	1,000 0,928 0,928 0,580 0,587 0,587 0,587 0,587 0,587 0,186 0,186 0,186 0,186 0,186		> < 2; 3; 4; 0,560; 1,0 >	æ	y8*	1,000 0,937 0,937 0,539 0,539 0,539 0,539 0,539 0,248 0,0170 0,0142 0,0142 0,028
P	< 2; 4; 6; 0,588; 3,13 >	8	y8*	1,000 0,985 0,985 0,987 0,864 0,772 0,866 0,669 0,474 0,474 0,116 0,116 0,116 0,036 0,052	k	< 4; 6; 8; 10; 0,800; 2,661 >	8	y8*	1,000 0,998 0,998 0,985 0,985 0,985 0,130 0,130 0,108 0,108 0,085 0,085 0,085 0,085
U	< 2; 4; 0,60; 1,0 >	8	y ₈ *	1,000 0,979 0,979 0,979 0,714 0,714 0,714 0,714 0,714 0,000 0,045 0	i	10; 0, 76; 2, 197 >	8	y8*	1,000 0,992 0,992 0,982 0,955 0,955 0,4657 0,442 0,4657 0,465 0,465 0,465 0,465 0,465 0,465 0,465 0,091 0,072 0,029
		12	y12*	1,000 0,935 0,935 0,748 0,748 0,748 0,748 0,159 0,159 0,159		< 4; 6; 8;			
٩	533; 0 >	10	y ₁₀ *	1,000 0,984 0,986 0,755 0,755 0,755 0,478 0,478 0,167 0,040		1,267 >			
	< 2; 4; 0;	8	y8*	$\begin{array}{c} 1,000\\ 0,985\\ 0,941\\ 0,766\\ 0,766\\ 0,178\\ 0,178\\ 0,178\\ 0,052\\ 0,$	ų	10; 0,680;	∞ *	y ₈ *	1,000 0,994 0,994 0,980 0,918 0,0818 0,087 0,0326 0,055 0,029
		9	y6*	1,000 0,986 0,986 0,945 0,945 0,945 0,945 0,945 0,945 0,945 0,945 0,945 0,961 0,061 0,001 0,001		< 4; 6; 8;			
		12	y ₁₂ *	1,000 0,991 0,991 0,963 0,754 0,754 0,222 0,222 0,095 0,095		^	20	y20*	1,000 11,0655 11,0655 11,073 11,073 0,488 0,269 0,269 0,283
	; 2 >	0	*0	990 991 992 992 992 992 992 992 992 992 992		0; 0,733	12	y12*	1,000 1,015 1,015 1,015 0,989 0,988 0,988 0,530 0,500000000
	0,66		y,		50	; 6; 0,76	10	y10*	1,000 1,0110 1,0110 1,025 0,97
	< 2;1	×	y ₈ *	0,991 0,991 0,991 0,986 0,986 0,986 0,986 0,779 0,0756 0		< 2; 3; 4	8	y8*	1,000 1,007 1,007 1,006 0,958 0,726 0,00000000000000000000000000000000000
		8	y6*	$\begin{smallmatrix} 1,000\\ 0,993\\ 0,969\\ 0,966\\ 0,925\\ 0,9667\\ 0,9667\\ 0,576\\ 0,576\\ 0,576\\ 0,576\\ 0,124\\ 0,012\\ 0,000\\ 0,0$			9	y6*	1,000 1,005 1,005 0,986 0,555 0,555 0,1555 0,053 0,053 0,053 0,053 0,053
Beispiel	Polynom	L/B	x	0,000 0,100 0,200 0,200 0,200 0,200 0,200 0,200 0,200 0,200 0,200 0,200 0,200 0,900 0,900 0,900 0,900 0,990 0,9000 0,900 0,900000000	Beispiel	Polynom	L/B	x	$\begin{array}{c} 0,000\\ 0,100\\ 0,200\\ 0,300\\ 0,500\\ 0,500\\ 0,900\\ 0,980\\ 0,980\\ 0,980\\ 0,980\\ 0,980\\ 0,980\\ 0,990\\ 0,$

•

Tabelle 2 Aufmaße der Konturen in Abb. 2 der Einfluß von L/B auf die Erzeugung der Zylinder aus einer vorgegebenen Singularitätenverteilung ersichtlich. Gleichzeitig wird daran deutlich, wie die Integraltafel (Tab. 1), die für L/B = 8 aufgestellt und direkt benutzbar ist, für andere L/B-Verhältnisse gebraucht werden kann. Auf die Bedeutung der Ergebnisse wird später eingegangen. Hier soll erst einmal an Hand eines Beispieles der genaue Rechnungsgang erläutert werden. Dabei möchte ich nicht gerade von der einfachsten Dipolverteilung ausgehen, andererseits aber auch am gleichen Beispiel die Berechnung der Zylinderkonturen für verschiedene L/B-Verhältnisse aufzeigen. Deshalb wähle ich das Beispiel g), das den gestellten Anforderungen genügt. Es gilt

g)
$$\eta = 1 + 7,122190 \xi^2 - 22,834333 |\xi|^3 + 17,373743 \xi^4 - 2,661600 \xi^6.$$

Als erstes ist die Breitenkorrektur \varkappa zu berechnen. Zunächst soll L/B = 8 vorausgesetzt werden. Man geht von der Gleichung (6b) aus.

Daraus ergibt sich

$$x = \frac{\pi L/B}{\int_{-1}^{+1} \frac{\eta(\xi) d\xi}{(x-\xi)^2 + (\frac{y}{L/B})^2}} \text{ mit } x = 0 \text{ und } y = 1$$

In diesen Ausdruck wird die Funktion $\eta(\xi)$ aus g) eingesetzt und damit das Integral in eine Reihe von Integralen zerlegt, für welche die Werte für x = 0 und y = 1 aus der Tabelle 1 zu entnehmen sind. Da g) zur Polynomfamilie 2, 3, 4, 6 gehört, handelt es sich hierbei um die Potenzen 2, 3, 4, 6 und 0 von ξ . Wegen der vorausgesetzten Symmetrie der Verteilung kommt für die dritte Potenz nur der absolute Betrag von ξ in Frage. Somit erhält man für die Breitenkorrektur

$$\varkappa = \frac{8 \pi}{23,566764} = 1,0659079$$

Nun kann mit der Ermittlung der y-Werte der Zylinderkontur für die verschiedenen x-Werte begonnen werden. Es sind in (6b) für x bestimmte Werte zwischen Null und Eins einzusetzen und die Wurzeln dieser Gleichungen zu bestimmen, d. h. diejenigen Werte y, welche die Gleichung (6b) für die verschiedenen x-Werte befriedigen; sie sollen mit y* bezeichnet werden. Da die Gleichung (6b) sich nicht nach y auflösen läßt, muß die Berechnung entweder durch numerische Iteration erfolgen oder aber, und dazu dient die Tabelle 1, durch graphische Interpolation. Es müssen die Ausdrücke

$$\frac{\varkappa}{8\pi} \int_{-1}^{+1} \frac{\eta(\xi) d\xi}{(x-\xi)^2 + \left(\frac{y}{8}\right)^2}$$

<u>+1</u>

für eine Reihe von Wertepaaren x, y gebildet und über y mit x als Parameter aufgetragen werden. Die Schnittpunkte dieser Kurven mit der Geraden

$$\frac{\varkappa}{8\pi} \int_{-1}^{\infty} \frac{\eta(\xi) d\xi}{(\mathbf{x} - \xi)^2 + \left(\frac{\mathbf{y}}{8}\right)^2} = 1$$

ergeben die zu dem jeweiligen Parameter x gehörigen Werte y° der Zylinderkontur. Zur Aufstellung der Kurven wird ein Rechenschema angelegt, in das die Größen

$$\frac{\varkappa}{8\pi}\int_{-1}^{+1}\frac{\eta(\xi)\,\mathrm{d}\,\xi}{(x-\xi)^2+\left(\frac{y}{8}\right)^2}$$

eingetragen werden, wobei die Integralwerte für die verschiedenen Potenzen von ξ der Dipolverteilung η aus der Tabelle 1 zu entnehmen und mit den zugehörigen Koeffizienten der Verteilung zu multiplizieren sind.

Es folgt hier zur Erläuterung ein Teil des Rechenschemas für das Beispiel g). Die Rechnung beginnt stets mit x = 0,1, da für x = 0 bereits $y^{\circ} = 1$ vorgegeben ist. Es werden dann die in der Tabelle vorhandenen x-Werte durchlaufen, wenn notwendig bis x = 0.99, mindestens aber bis x = 0.95. Wie weit man hierbei gehen muß, hängt von der vorgegebenen Verteilung, speziell von deren Eintrittstangente t ab; für kleine Werte von t, besonders für t = 0 werden die y^o-Werte der Kontur so klein ausfallen, daß es genügt, bis x = 0.95 zu rechnen.

Tabelle 3

Ausschnitt aus dem Rechenschema zur Bestimmung der Zylinderkontur für das Beispiel g) mit L/B=8

		x	
у	0,1	0,2	 0,98
0,02 0,05 0,075 0,10			1,0637933 0,5534920 0,4386943 0,3802575
•			
0,60	1,7603551	1,8136633	
0,70	1,4923171	1,5296580	
0,80	1,2910757	1,3172442	
0,90	1,1344066	1,1525266	
1,00	1,0089730	1,0211715	
1,10	0,9062848	0,9140602	
1,20	0,82068020	0,8251160	
1,25	0,7830095	0,7860897	

Das Rechenblatt enthält die mit Hilfe der Tabelle 1 berechneten Werte

$$\frac{\varkappa}{8\pi} \int_{-1}^{+1} \frac{\eta(\xi) d\xi}{(x-\xi)^2 + \left(\frac{y}{8}\right)^2}$$

und zwar ergibt sich aus der 1. Spalte, welche die y-Werte enthält, für welchen y-Wert und aus der 1. Zeile für

Abb. 3: Graphische Ermittlung der Punkte der Zylinderkontur für den Fall g) η (ξ) = 1 + 7,122190 ξ^2 - 22,834333 ξ^3 + 17,373743 ξ^4 - 2,661600 ξ^8 L/B = 8

welchen x-Wert der Ausdruck gilt. Die Zahlen einer Spalte geben also die Werte einer Kurve in Abhängigkeit von y für einen bestimmten Parameter x an. Aus dem Schema ist ersichtlich, daß die zu dem jeweiligen x gehörigen y-Werte so zu wählen sind, daß die Werte

$$\frac{\varkappa}{8\pi}\int_{-1}^{+1}\frac{\eta(\xi)\,\mathrm{d}\,\xi}{(x-\xi)^2+\left(\frac{y}{8}\right)^2}$$

um 1 herum liegen, d. h. zum Teil größer und zum Teil kleiner als 1 sind, damit eine Interpolation möglich ist.

Die graphische Darstellung der Kurven ist in Abbildung 3 gegeben. An ihren Schnittpunkten mit der Geraden

$$\frac{\varkappa}{8\pi}\int_{-1}^{+1}\frac{\eta(\xi)\,\mathrm{d}\,\xi}{(x-\xi)^2+\left(\frac{y}{8}\right)^2}=1$$

sind die y[•]-Werte für die Zylinderkontur abgelesen. Die Zeichnung des Querschnittes für L/B = 8 findet sich in Abb. 2g).

Zur rein technischen Seite der Ausführung sei bemerkt, daß in der Abb. 3 für die Kurven mit dem Parameter $x \ge 0.8$ ein anderer Maßstab gewählt ist als für x < 0.8, um in jedem Falle schleifende Schnitte zu vermeiden.

Eine ausführliche Beschreibung dieses graphischen Verfahrens, das von Amtsberg entwickelt wurde und der Bestimmung des *x*-Koeffizienten findet sich in seiner schon in der Einleitung erwähnten Veröffentlichung [11].

Für das Beispiel g) sind auch Zylinderkonturen für andere L/B-Verhältnisse ermittelt worden. Es soll deshalb am gleichen Beispiel kurz erläutert werden, wie die Berechnung für $L/B \pm 8$ vor sich geht. Wir wählen das Verhältnis L/B = 6.

An der Gleichung für die Dipolverteilung ändert sich nichts. Jedoch werden sich jetzt andere y^e-Werte für die Kontur ergeben. Um die Größen y für die verschiedenen L/B-Verhältnisse voneinander zu unterscheiden, wird y jetzt mit einem Index versehen; wie bereits vorher erwähnt, soll $y_m(x)$ den Wert y an der Stelle x für eine bestimmte Dipolverteilung $\eta(\xi)$ und L/B = m bedeuten.

In Gleichung (9) ist die Beziehung zwischen den Größen y für eine bestimmte Verteilung η (ξ) und verschiedene L/B gegeben. Für m = 6 erhält man folglich

$$y_6 = \frac{6}{8} \quad y_8 = 0,75 \, y_8$$

Das bedeutet, daß beispielsweise ein Integralwert der Tabelle 1, der für $y_8 = 0.4$ abgelesen wird, für L/B = 6 für den Wert $y_6 = 0.3$ Gültigkeit hat.

Da zuerst die Breitenkorrektur \varkappa zu berechnen ist, muß der Wert y₈ bestimmt werden, der y₆ = 1 entspricht. Dies geschieht durch Gleichung (9a). Man erhält

$$y_8 = \frac{8}{m} = \frac{8}{6} = 1,3\overline{3}...$$

Folglich ist für x = 0 und $y_8 = 1,33$. . . der Wert

$$\int_{-1}^{+1} \frac{\eta(\xi) d\xi}{(x-\xi)^2 + \left(\frac{y_8}{8}\right)^2}$$

mit Hilfe der Tabelle 1 zu bestimmen.

Die Breitenkorrektur, die ebenfalls für die einzelnen L/B-Verhältnisse durch Index zu unterscheiden ist, wird dann

$$\kappa_{6} = \frac{6\pi}{\int\limits_{-1}^{+1} \frac{\eta(\xi) d\xi}{(x-\xi)^{2} + \left(\frac{y_{8}}{8}\right)^{2}}} = \frac{6\pi}{17,055005} = 1,1052214$$

Das Rechenschema zur Bestimmung der Werte y_6^* des Querschnittes ist das Gleiche wie bei der Berechnung der Kontur für L/B = 8; es wird lediglich um eine Spalte erweitert. In der ersten Spalte sind die Werte y_8 verzeichnet, für welche die Integralwerte aus der Tabelle 1 entnommen werden und in der 2. Spalte die umgerechneten Werte y_6 = 0,75 y_8 . Die Werte

$$\int_{-1}^{+1} \frac{\eta(\xi) d\xi}{(x-\xi)^2 + \left(\frac{y_8}{8}\right)^2}$$

werden mit $\frac{\varkappa_6}{6 \pi}$ multipliziert und in das Rechenblatt eingetragen. Die Auftragung der Kurven erfolgt über y₆. An

den Schnittpunkten der Kurven mit der Geraden +1

$$\frac{x_6}{6\pi} \int_{-1}^{1} \frac{\eta(\xi) d\xi}{(x-\xi)^2 + (\frac{y}{8})^2} = 1$$

werden die Werte y6* der Kontur abgelesen.

Falls für eine vorgegebene Dipolverteilung bereits die Berechnung des Zylinderquerschnittes für L/B = 8 vorliegt, kann man sich bei der Ermittlung der Konturen für andere L/B-Verhältnisse etwas Arbeit ersparen, indem man die in dem Rechenblatt zusammengestellten Größen

$$\frac{\varkappa_8}{8\pi} \int_{-1}^{+1} \frac{\eta(\xi) d\xi}{(x-\xi)^2 + \left(\frac{y_8}{8}\right)^2}$$

durch $\varkappa_8 / 8 \pi$ dividiert und mit dem Vorfaktor $\frac{\varkappa_m}{\pi m}$ des neuen L/B-Verhältnis L/B = m multipliziert, bzw. zuerst den Quotienten $\frac{\varkappa_m}{\varkappa_8} \cdot \frac{8}{m}$ bildet und damit multipliziert.

Auf diese Art kann der größte Teil der Werte aus der Rechnung für L/B = 8 übernommen werden; allerdings wird die Ergänzung einiger Werte in jedem Falle notwendig sein, damit die Kurven für die graphische Ermittlung der Kontur den Wert 1 enthalten, denn die Skala der Werte

$$\frac{\varkappa}{\pi L/B} \int_{-1}^{+1} \frac{\eta(\xi) d\xi}{(x-\xi)^2 + \left(\frac{y}{L/B}\right)^2}$$

verschiebt sich, je nach der Wahl des L/B-Verhältnisses entweder zu höheren oder niedrigeren Werten von y_8 . Mit diesen Ausführungen ist der Rechnungsgang wohl hinreichend erklärt.

Die Auswertung der Ergebnisse

Betrachtet man die Abb. 2, so kann man als Erstes feststellen, daß die errechneten Zylinderquerschnitte von den vorgegebenen Dipolverteilungen erheblich abweichen, die Näherung $\eta \approx y^{\circ}$ im Falle der Zylinder also nicht brauchbar ist. Auch eine Gesetzmäßigkeit zwischen der Eintrittstangente der Dipolverteilung und dem t-Wert der entsprechenden Kontur läßt sich nicht aufstellen. Dazu ist noch zu sagen, daß die t-Werte der Konturen nicht analytisch ermittelt, sondern nur an Hand der Kurven geschätzt sind, was durch das Zeichen \approx zum Ausdruck kommt.

Aus den Zeichnungen geht aber klar hervor, daß in der graphischen Darstellung die Länge der Dipolverteilung mit der Länge des Querschnitts in der x-Achse übereinstimmt. Das ist eine sehr wesentliche Aussage. — Eine Abweichung hiervon ist allerdings im Fall e) zu verzeichnen. Hier tritt eine, wenn auch geringe aber sichtbare Verlängerung der Kontur gegenüber der Verteilung auf. Die Größe dieser Verlängerung wurde mit Hilfe einer Integraltabelle ermittelt, die für y = 0 und eine Reihe von Werten x > 1 aufgestellt worden ist. Diese Tabelle, die im Institut für Schiffbau der Universität Hamburg vorhanden ist, wird in dieser Arbeit nicht gebracht, weil sie praktisch für die Berechnung der Zylinderquerschnitte nicht gebraucht wird, da im allgemeinen keine Verlängerung auftritt, die innerhalb der Genauigkeit der graphischen Methode feststellbar ist. Das Beispiel e) stellt einen sehr speziellen Fall dar; die Dipolverteilung zeigt eine ausgeprägte Schwanenhalsform, die für Zylinder kaum von Interesse ist, hier aber der Vollständigkeit halber gebracht wird.

Die Aussage, daß der halbe Zylinderquerschnitt mit der Dipolverteilung übereinstimmt, besitzt Gültigkeit beim Grenzübergang $L/B \rightarrow \infty$. Um die Tendenz dieser Annäherung feststellen zu können, sind für die drei Verteilungen a), b) und g) auch die Querschnitte für L/B = 6, 10 und 12 berechnet worden. Man erkennt, daß mit wachsendem L/B die Konturen näher an die Dipolverteilung herankommen, daß aber gleichzeitig die Konturen immer enger zusammenliegen, während die Abweichung von der Dipolverteilung immer noch beträchtlich bleibt. Das wird besonders deutlich am Fall g) mit der starken Anschwellung der Verteilung, für den auch der Querschnitt für L/B = 20berechnet ist. Aus der Zeichnung ist ersichtlich, daß für L/B = 6 nur eine ganz geringe Anschwellung vorliegt. Bei Übergang zu größeren L/B-Werten wächst die Anschwellung, bleibt aber selbst für L/B = 20 noch gering im Verhältnis zur Anschwellung der Verteilungskurve.

Es ist weiterhin untersucht worden, in welcher Beziehung die Schärfegrade der Kontur und der Verteilung zueinander stehen. Im Falle der Rotationskörper ergibt die parabolische Dipolverteilung $\eta = 1 - \xi^2$ eine Rotationsellipsoid, dessen Spantflächenkurve eine Parabel ist; d. h. in diesem Falle entsprechen sich die Dipolverteilung und die Spantflächenkurve exakt, und beide haben den gleichen Schärfegrad φ $= \frac{2}{3}$. Nun hat Weinig [15] festgestellt, daß der Schärfegrad der Spantflächenkontur $\varphi_{\rm K}$ kleiner ist als der Schärfegrad φ (η) der Verteilung, wenn φ (η) $> \frac{2}{3}$ und φ (η) $< \varphi_{\rm K}$, wenn φ (η) $< \frac{2}{3}$. Für φ (η) $= \frac{2}{3}$ gilt φ (η) $= \varphi_{\rm K}$.

Im Falle der Zylinder läßt sich hinsichtlich unserer Beispiele etwas Ähnliches feststellen; zu diesem Zweck sollen die Schärfegrade der Verteilungen φ (η) und die der Querschnitte $\varphi_{\rm K}$ nach der Größe φ (η) geordnet hingeschrieben werden (Tabelle 4). Hierbei werden vorerst nur die Schärfegrade für L/B = 8 berücksichtigt; auf die φ -Werte für andere L/B-Verhältnisse wird später eingegangen.

Tabelle 4

Gegenüberstellung der Schärfegrade der Verteilung und der Querschnitte für L/B = 8

Beispie	b)	1)	m)	d)	c)	e)	a)	
$arphi$ (η)	0,533	0,56	0,56	0,588	0,60	0,629	0,66.	
φ _K	0,576	0,610	0,607	0,645	0,636	0,691	0,693	
Beispiel	f)	h)	g)	i)	k)			
φ (η)	0,680	0,680	0,76	0,76	0,80			
φ _K	0,666	0,683	0,711	0,746	0,773			

Aus der Tabelle 4 ist ersichtlich, daß für die kleineren Werte von $\varphi(\eta)$ die Schärfegrade der Konturen größer sind, $\varphi(\eta) < \varphi_{\rm K}$, und für die größeren Werte von $\varphi(\eta)$ das Umgekehrte gilt: $\varphi_{\rm K} < \varphi(\eta)$. Jedoch läßt sich hier keine scharfe Grenze ziehen wie im Falle der Rotationskörper, wo für ²/s gilt $\varphi(\eta) = \varphi_{\rm K}$. Wir sehen nämlich aus der Tabelle, daß für $\varphi(\eta) = ^{2}/s$ im Falle a) $\varphi_{\rm K} = 0,693$ wird, also größer als ²/s; dieser Wert stellt demnach nicht die Grenze dar. Eine exakte Grenze läßt sich überhaupt nicht angeben, vielmehr erkennt man aus der Tatsache, daß im Falle f) mit $\varphi(\eta) = 0,680$ der Schärfegrad $\varphi_{\rm K} = 0,666$, also $\varphi_{\rm K} < 0,680$ wird und im Falle h) mit dem gleichen Schärfegrad der Dipolverteilung $\varphi(\eta) = 0,680$ der Schärfegrad des Querschnittes $\varphi_{\rm K} = 0,683$ und demnach $\varphi_{\rm K} > 0,680$ wird, daß die Grenze, für die $\varphi(\eta) = \varphi_{\rm K}$ gilt, fließend ist und offensichtlich in starkem Maße von der Verteilung selbst abhängt. Zu dem gleichen Differenzen $\varphi(\eta) - \varphi_{\rm K}$ in den verschiedenen Beispielen mit gleichem $\varphi(\eta)$ miteinander vergleicht. Betrachtet man die Schärfegrade $\varphi_{\rm K}$ in Abhängigkeit von dem Verhältnis L/B (Abb. 4), so erkennt man, daß sie sich mit wachsendem L/B dem Wert φ (η) der Dipolverteilung nähern; das bedeutet in den Fällen, in denen $\varphi_{\rm K} < \varphi$ (η) ein Anwachsen von $\varphi_{\rm K}$ und für $\varphi_{\rm K} > \varphi$ (η) eine Abnahme von $\varphi_{\rm K}$ mit wachsendem L/B. Die Tendenz dieser Annäherung ist wie die bei der Annäherung der Konturen an die Verteilung beobachtete, d. h. die Annäherung erfolgt sehr langsam; auch für hohe L/B-Verhältnisse bleibt zwischen den Werten φ (η) und $\varphi_{\rm K}$ noch immer eine erhebliche Differenz. Im Falle g) ist beispielsweise der Schärfegrad der Verteilung φ (η) = 0,76, während selbst für L/B = 20 erst der Wert $\varphi_{\rm K}$ = 0,728 erreicht wird.

Abb. 4: Abhängigkeit der Schärfegrade φ_K vom Verhältnis L/B

Inui [10] hat für die parabolische Verteilung $\eta = 1 - \xi^2$ Zylinderquerschnitte berechnet für die vorgegebenen Werte $\varepsilon = \frac{\times B}{L} = 0.2$; 0,1 und 0,05. Er gibt also keine konstante Querschnittsbreite vor, sondern läßt eine Reduktion dieser Breite zu. Um eine Vergleichsmöglichkeit und eine Kontrolle

 \varkappa und $\frac{\varkappa B}{L}$ in Abhängigkeit von L/B für $\eta = 1 - \xi^2$

L/B	5	6	8	10	12	16	20	
<u>×</u>	1,280	1,229	1,168	1,133	1,1104	1,082	1,064	
$\frac{\varkappa B}{L}$	0,2557	0,205	0,146	0,1133	0,0925	0,0677	0,0532	

für unsere Ergebnisse zu erhalten, sind die \varkappa -Koeffizienten der parabolischen Verteilung noch zusätzlich für die Verhältnisse L/B = 5, 16 und 20 berechnet worden. Die \varkappa -Werte für L/B = 6, 8, 10 und 12 liegen bereits vor, da für diese Verhältnisse die vollständigen Zylinderquerschnitte ermittelt sind. Die Ergebnisse sind nicht direkt mit Inui vergleichbar, da Inui von der Größe ε ausgeht, die nicht unserem B/L-Verhältnis gleichzusetzen ist; es gilt vielmehr

 $\varepsilon = \frac{\varkappa B}{L}$. Die Bezeichnung ε stammt von K. Eggers. Dadurch soll Mißverständnissen und der Verwechslung mit dem Verhältnis B/L der Konturen vorgebeugt werden. Wir bilden nun an Hand der für $\eta = 1 - \xi^2$ vorliegenden \varkappa -Koeffizienten die Größe $\varepsilon = \frac{\varkappa B}{L}$ und tragen sie über L/B auf (Abb. 5). Aus der Kurve kann man ablesen, was für ein Wert ε zu einem vorgegebenen L/B gehört. Damit bietet sich die Möglichkeit, unsere Ergebnisse mit denen

von Inui zu vergleichen. Die Koeffizienten \varkappa und $\frac{\varkappa B}{L}$ sind in Abhängigkeit von L/B in Tabelle 5 zusammengestellt.

Nach Inui beträgt bei Vorgabe von $\eta = 1 - \xi^2$ die Breite der Kontur für L/×B = 5 oder $\varepsilon = 0.2$ B_K = 1,634, wobei die Länge gleich 10 gewählt ist. Das entspricht einem L/B-Verhältnis von L/B = $\frac{10}{1,634}$ = 6,12. Aus der Kurve in Abb. 5 liest man ab, daß für L/B = 6,12 die Größe $\frac{\times B}{L}$ = 0,2 wird, was mit dem Ergebnis von Inui übereinstimmt. Auch für $\varepsilon = 0.1$ und $\varepsilon = 0.05$ ist völlige Übereinstimmung mit Inui festzustellen. Für $\varepsilon = 0.1$ ist B_K = 0,894, folglich $\frac{L}{B} = \frac{10}{0.894}$ = 11,19 und laut Kurve $\frac{\times B}{L}$ = 0,1; für $\varepsilon = 0.05$ gilt B_K = 0,471; daraus ergibt sich $\frac{L}{B} = \frac{10}{0.471}$ = 21,2 und in Übereinstimmung mit Inui $\frac{\times B}{L}$ = 0,05.

Die Berechnung der Geschwindigkeit im Punkt x = 0, y = 1

Für Widerstandsbestimmungen ist es notwendig, die Geschwindigkeitsverteilung um die Kontur zu kennen. Es soll zunächst die Geschwindigkeit im Punkt x = 0, y = 1 für sämtliche vorliegenden Konturen ermittelt werden; die Geschwindigkeit in diesem Punkt nennen wir die Geschwindigkeit am Hauptspant und bezeichnen sie mit u_{\odot} ^{*}). Wir bedienen uns wieder der von Amtsberg entwickelten Methode. Wir gehen von der Gleichung der Stromfunktion Ψ aus, die wir durch Addition der Funktionen Ψ_Q und Ψ_T erhalten, welche wir in diesem Falle aus den Gleichungen (3) und (5) übernehmen. Folglich wird

$$\Psi = -u_0 Y + \int_{-\frac{L}{2}}^{+\frac{L}{2}} \sigma(\Xi) \operatorname{arc tg} \frac{Y}{X - \Xi} d\Xi$$

In dimensionsloser Darstellung ergibt sich hieraus mit den schon vorher eingeführten Substitutionen

-1

$$\Psi = -\mathbf{u}_0 \mathbf{y} \frac{\mathbf{B}}{2} + \mathbf{u}_0 \frac{\mathbf{z} \mathbf{B}}{2\pi} \int_{-1}^{1} \sigma(\xi) \operatorname{arc} \operatorname{tg} \frac{\mathbf{y}}{\mathbf{L}/\mathbf{B}} d\xi$$

Zwischen der Stromfunktion Ψ und der Geschwindigkeit u_x in Richtung der negativen X-Achse besteht die Beziehung

$$-\frac{\partial \Psi}{\partial Y} = u_x$$

Hier steht ein Minuszeichen, um für die Geschwindigkeit $\mathbf{u}_x,$ die wie \mathbf{u}_0 in Richtung der negativen X-Achse verläuft, einen

positiven Wert zu erhalten. Wegen $Y = -\frac{B}{2}$ y ergibt sich somit aus der Gleichung (10) für das Verhältnis der Geschwindigkeit u_x zu u_0 der Ausdruck

$$\frac{\mathbf{u}_{\mathbf{x}}}{\mathbf{u}_{0}} = 1 - \frac{\varkappa}{\pi L/B} \int_{-1}^{1} \frac{(\mathbf{x} - \xi) \sigma(\xi)}{(\mathbf{x} - \xi)^{2} + \left(\frac{\mathbf{y}}{L/B}\right)^{2}} d\xi$$
$$= 1 - \frac{\varkappa}{\pi L/B} \mathbf{x} \int_{-1}^{1} \frac{\sigma(\xi) d\xi}{(\mathbf{x} - \xi)^{2} + \left(\frac{\mathbf{y}}{L/B}\right)^{2}} + \frac{\varkappa}{\pi L/B} \int_{-1}^{1} \frac{\xi \sigma(\xi) d\xi}{(\mathbf{x} - \xi)^{2} + \left(\frac{\mathbf{y}}{L/B}\right)^{2}}$$

Wegen $\sigma(\xi) = -\frac{\alpha'}{d\xi}$ ist auch die Quellstärke $\sigma(\xi)$

durch Polynome von ξ gegeben. Es handelt sich also praktisch um die Berechnung der gleichen Art von Integralen wie sie bei der Ermittlung der Konturen auftreten. Diese Feststellung hat Amtsberg zuerst getroffen, und zwar im Falle der Rotationskörper, und wir wenden sie nun auf die Zylinder an. Deshalb können für die Bestimmung der Geschwindigkeit u_x in den verschiedenen Punkten der Kontur ebenfalls die Integrale der Tabelle 1 benutzt werden. Für x = 0, $y_{111} = 1$ — der Index m bezeichnet das L/B-Ver-hältnis — (m = 5, 6, 8, 10, 16, 20) sind die Integralwerte direkt aus der Tabelle zu entnehmen; für diesen Punkt ist keine graphische Interpolation nötig. Auch verschwindet das 2. Glied auf der rechten Seite der Gleichung (11), weil x = 0ist. Wegen der vorausgesetzten Symmetrie zur y-Achse sind auch bei der Bestimmung der Geschwindigkeit für $\xi \sigma(\xi)$ die ungeraden Potenzen vom absoluten Betrag von ξ zu bilden. Die Berechnung erfolgt in Tabellenform nach dem Schema laut Tabelle 6.

In Tab. 6 sind mit na_n die Koeffizienten der (n-1). Potenz von ξ in der Entwicklung $\sigma(\xi) = \sum na_n \xi^{n-1}$ bezeichnet. Als Beispiele sind die Zahlenwerte für a) mit L/B = 6 und für c) mit L/B = 8 angegeben.

Die Ergebnisse für sämtliche hier behandelten Fälle sind in Tabelle 7 zusammengestellt. Die z-Werte sind dort gleichfalls verzeichnet, jedoch sind sie, obgleich auf bedeutend mehr Stellen berechnet, zur Auswertung der Ergebnisse hier nur mit vier Ziffern hinter dem Komma angegeben, um den Umfang der Tabelle etwas einzuschränken. Das Gleiche gilt für v_{\bigotimes} / u_0 . Der Vergleich der Größen u_{\bigotimes} / u_0 und z zeigt, daß sie nur wenig voneinander abweichen. Im allgemeinen ist der Koeffizient z etwas größer als u_{\bigotimes} / u_0 . Eine Ausnahme bilden diejenigen Fälle, in denen die Dipolverteilung starke Anschwellungen aufweist, was auch in der Form der Kontur

^{*)} Hier und in der Folge bedeutet 🛇 das Hauptspantzeichen.

Schema zur Berechnung der Geschwindigkeit u _x										
Beispiel	a)				b)				c)	
L/B	6	8	10	12	6	8	10	12	8	
$\frac{1}{na_{n}}\int_{-1}^{+1}\frac{\xi^{n} d\xi}{(x-\xi)^{2} + \left(\frac{y}{L/B}\right)^{2}} \begin{cases} 2\\ 3\\ 4\\ 6\\ 6\\ 8\\ 10 \end{cases}$	3,06296	88							4,91 51871 1,2821335	
$\sum_{j=1}^{j+1} \frac{\xi \sigma(\xi) d\xi}{(x-\xi)^2 + \left(\frac{y}{L/B}\right)^2}$	3,06296	88					;		3,6330536	
$\frac{\varkappa}{\pi} \frac{1}{L/B}$	0,06520	998							0,0476054	
$\frac{\varkappa}{\pi} \frac{1}{L/B} \int_{-1}^{+1} \frac{\xi \sigma(\xi) d\xi}{(x-\xi)^2 + (\frac{y}{L/B})^2}$	0,19978	3614							0,17295297	
u _o	1,19973	614							1,17295297	

Taballa 6

zum Ausdruck kommt. Dies trifft für die Beispiele f), g) und k) zu, bei denen man feststellen kann, daß u_ \otimes / u₀ größer ist als x. Besonders deutlich wird der Einfluß der Anschwellungen am Beispiel g), weil in diesem Fall die Konturen für 5 verschiedene L/B-Verhältnisse bestimmt sind. Es ist zu sehen, daß bei dieser Dipolverteilung für sämtliche L/B-Verhälntisse $\varkappa < u_{\otimes} / u_{o}$ bleibt; jedoch nimmt die Differenz zwischen beiden Werten mit steigendem L/B ab. Die gleiche Tendenz der Annäherung der beiden Größen u_{\bigotimes} /u₀ und \varkappa aneinander mit wachsendem L/B ist auch in den anderen Fällen zu beobachten, für welche die Rechnung für mehrere L/B-Verhältnisse durchgeführt ist, nur daß bei diesen Beispielen die Dipolverteilungen keine Anschwellungen aufweisen und daher stets $\varkappa > \mathbf{u}_{\otimes} / \mathbf{u}_{0}$ bleibt. Im Falle i) zeigt die Dipolverteilung zwar auch eine Anschwellung, aber da diese verhältnismäßig gering ist und außerdem erst in einiger Entfernung von der Mitte beginnt, wirkt sich dies noch nicht in dem Maße auf die Größe von u $_{\bigotimes}/u_{\varrho}$ und × aus, daß dadurch das Größenverhältnis schon umgekehrt wird; \varkappa bleibt hier noch etwas größer als u $_{\odot}$ / $u_{o}.$ Man kann daraus folgern, daß für eine bestimmte Größe und Form der Anschwellung $\varkappa = u_{\otimes} / u_0$ wird; für extremere Formen wird dann gelten $\varkappa < u_x / u_0$, während nach der anderen Seite hin u_{\otimes} / u_0 kleiner als \varkappa bleibt.

Die hydrodynamische Masse in x-Richtung

Mit Hilfe der Quell-Senkenmethode kann auch die hydrodynamische Masse in x-Richtung auf einfache Art ermittelt werden.

Es soll eine Beziehung zwischen der Geschwindigkeit am Hauptspant, den Schärfegraden der Kontur und der Dipolverteilung und der hydrodynamischen Masse in Richtung der x-Achse aufgezeigt werden. Die Geschwindigkeit am Hauptspant ist für die Ellipse

$$\mathbf{u}_{\otimes} = \mathbf{u}_0 (1 + \mathbf{k}_x), \text{ folglich } \mathbf{k}_x = \frac{\mathbf{u}_{\otimes}}{\mathbf{u}_0} - 1$$

k_x ist die hydrodynamische Masse in x-Richtung.

Speziell für den Kreiszylinder ist

$$u_{\bigotimes} = 2u_0$$
, demnach $k_x = 1$.

Für andere Querschnittsformen wird in Abhängigkeit von der Form u_{\bigotimes} / u_o zum Teil etwas größer oder etwas kleiner als $1 + k_x$ ausfallen. Wir haben bereits u_{\bigotimes} / u_o in Beziehung zur Breitenkorrektur \varkappa gesetzt; dies soll nun auch mit k_x geschehen. Zu diesem Zweck gehen wir vom Dipol-

	B	8	45 1,2186	0 0,560	0 0,607	4 1,124	07 1,188	4 0,124
	I	8	1,22	0,56	0,61	1,12	1,19	0,12
	×	8	1,1038	0,800	0,773	1,142	1,1041	0,142
		∞	1,1164	0,760	0,746	1,137	1,1155	0,137
	4	∞	1,1424	0,680	0,683	1,137	1,1377	0,137
		ଛ	1,0143	0,780	0,728	1,059	1,0241	0,059
		12	1,0341	0,760	0,717	1,096	1,0560	0,096
Masse k _x	80	10	1,0462	0,760	0,714	1,114	1,0727	0,114
unische]		8	1,0659	0,760	0,711	1,139	1,1007	0,139
/drodyna		8	1,1052	0,760	0,709	1,185	1,1498	0,185
t u $_{\otimes}$ und die hy	ł	8	1,1143	0,680	0,666	1,138	1,1302	0,138
	υ	8	1,2292	0,629	0,691	1,119	1,1879	0,119
vindigke	q	8	1,2214	0,588	0,645	1,113	1,1875	0,113
e Geschv	ల	80	1,1958	0,600	0,636	1,128	1,1730	0,128
enkorrektur ×, di	р	12	1,1475	0,533	0,560	1,092	1,1336	0,092
		10	1,1778	0,533	0,566	1,109	1,1585	0,109
Die Brei		8	1,2249	0,533	0,576	1,133	1,1945	0,133
I		9	1,3065	0,533	0,590	1,180	1,2516	0,180
	æ	12	1,1104	0,666	0,686	1,080	1,1032	0,080
		10	1,1335	0,666	0,689	1,097	1,1231	0,097
		8	1,1681	0,666	0,693	1,124	1,1524	0,124
		8	1,2292	0,666	0,704	1,165	1,1997	0,165
	Beispiel	L/B	×	(h)¢	₽K	$1+k_x$	× n	 الله ۱

Tabelle

moment laus. Das der Verteilung η (ξ) entsprechende Moment ist

$$\mathbf{M} = \varkappa \mathbf{B} \mathbf{L} \mathbf{u}_{\mathbf{o}} \varphi(\eta) \tag{12}$$

Nach G. I. Taylor [16] gilt aber auch folgende Formel für das Dipolmoment:

$$\mathbf{M} = (\mathbf{1} + \mathbf{k}_{\mathbf{x}}) \not\prec \mathbf{u}_{\mathbf{0}} = (\mathbf{1} + \mathbf{k}_{\mathbf{x}}) \mathbf{L} \mathbf{B} \varphi_{\mathbf{K}}$$
(13)

Mit \not ist das Volumen des völlig getauchten Körpers, bzw. im ebenen Fall der Flächeninhalt des Querschnittes bezeichnet.

Durch Gleichsetzen der beiden Ausdrücke (12) und (13) erhält man

$$1 + k_{x} = \varkappa \frac{\varphi(\eta)}{\varphi k}$$
(14)

Damit ist die hydrodynamische Masse, die sonst schwierig zu ermitteln ist, auf einfache Art in Abhängigkeit von den Schärfegraden der Kontur und der Verteilung und der Breitenkorrektur dargestellt.

Für unsere Beispiele sind auf Grund der Gleichung (14) die Werte für die hydrodynamische Masse k_x berechnet worden. Die Größen $\varphi(\eta)$, φ_K , k_x und $1 + k_x$ sind in der Tabelle 7 zu finden, die auch die Werte \varkappa und u_{\bigotimes} / u_o enthält.

Der Vergleich der Werte zeigt, daß im allgemeinen gilt: $1+k_x < u_{\otimes} \ / \ u_o < \varkappa$

Bei starken Anschwellungen in der Dipolverteilung kehrt sich diese Tendenz vollständig um; dann wird

$$\kappa < \mathbf{u}_{\otimes} / \mathbf{u}_{o} < 1 + \mathbf{k}_{x}$$

Zwischen diesen Extremfällen liegen die Verteilungen, die zwar Anschwellungen, aber nur geringfügiger Art, evtl. erst in einiger Entfernung von der Mitte ausgehend, aufweisen. Ein Beispiel dafür ist der Fall i), für welchen gilt

$$\frac{\mathbf{u}_{\otimes}}{\mathbf{u}_{\mathbf{o}}} < \varkappa < 1 + \mathbf{k}_{\mathbf{x}}$$

Hierzu ist festzustellen, daß die Werte \varkappa und u_{\bigotimes} / u_0 sehr dicht beieinander liegen, während die Differenz gegenüber $1 + k_x$ erheblich größer ist.

Zusammenfassung und Schluß

Auf Grund einer von Amtsberg für Rotationskörper entwickelten Methode sind aus vorgegebenen Dipolverteilungen Zylinderquerschnitte berechnet worden. Zu diesem Zweck wurde eine umfangreiche Tabelle von Integralwerten aufgestellt, die für die Berechnung der Konturen notwendig sind. An einer Reihe von Beispielen ist untersucht worden, in welcher Beziehung die Dipolverteilung und die zugehörige Querschnittsform zueinander stehen. Dabei ist auf den Einfluß des L/B-Verhältnisses und des Schärfegrades eingegangen. Es wurde die Geschwindigkeit am Hauptspant ermittelt und zur Breitenkorrektur \varkappa und zur hydrodynamischen Masse k_x in Beziehung gesetzt.

Diese Veröffentlichung liefert einen Beitrag zu den Untersuchungen der Fragen bezüglich Strömung und Körperform; weitere Arbeiten werden sich anschließen müssen. Besonders das Problem der Geschwindigkeitsverteilung um die Konturen bedarf noch eingehender Behandlung. Aber es ist zu hoffen, daß sich auf Grund der hier aufgestellten Integraltabelle weitere Berechnungen ohne viel Mühe ausführen lassen.

Literaturverzeichnis

- Rankine, W. I. M.: On the mathematical theory of stream-lines, with four foci and upwards. (Phil. Trans. Royal Soc. London. 1871, S. 267-306).
- [2] Rankine, W. I. M.: On plane water lines in two dimensions. (Phil. Trans. Royal Soc. London. 1864, S. 369-291).
- [3] Taylor, D. W.: On ship-shaped stream forms. (TINA 1894, S. 385-406).
- [4] Weinblum, G.: Schiffe geringsten Widerstandes. (Jb. STG. 1957, S. 175-214).
- [5] Weinblum, G.: The wave resistance of bodies of revolution. (TMB Report 758, 1951, 58 S.)
- [6] Landweber, L.: The axially symmetric potential flow about elongated bodies of revolution. (TMB Report 761, 1951, 82 S.)
- [7] Harvald, S. A.: Wake of merchant ships. Kopenhagen 1950. 220 S.
- [8] Inui, T.: Japanese developments of the theory of wave-making and wave resistance. 7th Int. Conf. on Ship Hydrodynamics, Oslo, 1954, 70 S.
- [9] Inui, T.: Study on wave-making resistance of ships. (Soc. of Naval Architects of Japan. 60th Anniversary series. Vol. 2, 1957, S. 173-356).
- [10] Inui, T.: A new theory of wave resistance, based on the exact conditions on the surface of ships. Part. 1. (Journal of Zosen Kyôkai. Bd. 85, 1952, S. 29).
- [11] Amtsberg , H.: Untersuchungen über die Formabhängigkeit des Reibungswiderstandes. (Jb. STG. 1937, S. 177-234).
- [12] Weinblum, G.: Die analytische Ausbildung von Schiffsformen. (ZAMM 15, 1935, S. 205-219).
- [13] Weinblum, G.: Systematische Entwicklung von Schiffsformen. (Jb. STG 47, 1953, S. 186-215).
- [14] Weinblum, G.: Rechnerische Entwicklung von Schiffsformen. (Mitt. Preuß. Versuchsanstalt für Wasser-, Erd- und Schiffbau, Berlin) / (Schiffbau 39, 1938, Seite 129-133, S. 151-155, S. 170-173).
- [15] Weinig: Diskussionsbeitrag zu [11] (Jb. STG. 1937, S. 230-233).
- [16] Taylor, G. I.: The energy of a body moving in an infinite fluid with an application to airships. (Proc. Royal Soc. Ser. A. 20, 1928, S. 13-21).
- [17] Harvald, S. A.: Three-dimensional potential flow and potential wake. Kopenhagen 1954. (Transactions of the Danish Academy of Technical Sciences. A.T.S. 1954, 2).

Benutzte Abkürzungen:

Phil. Trans. Royal Soc. London = Philosophical Transactions of the Royal Society of London

Proc. Royal Soc. = Proceedings of the Royal Society, London

Jb. STG = Jahrbuch der Schiffbautechnischen Gesellschaft

TINA = Transactions of the Institution of Naval Architects, London.