
Partitioned Solution Strategies for
Strongly-Coupled Fluid-Structure Interaction

Problems in Maritime Applications

Vom Promotionsausschuss der
Technischen Universität Hamburg

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von
Marcel König, M.Sc.

aus
Pinneberg

2018

Vorsitzender des Prüfungsausschusses
Prof. Dr.-Ing. Otto von Estorff

Gutachter
1. Gutachter: Prof. Dr.-Ing. habil. Alexander Düster
2. Gutachter: Prof. Dr.-Ing. Moustafa Abdel-Maksoud

Tag der mündlichen Prüfung: 6. Juli 2018

II

Acknowledgements
The present thesis has emerged from the joint program Maritime safety aspects regarding
installation and maintenance of offshore wind turbines, funded by the Hamburg Research
and Science Foundation, and the research project Fluid-structure interaction and opti-
mization of floating platforms for offshore wind turbines, financed by the Federal Ministry
for Economic Affairs and Energy, which I conducted at the Institute for Ship Structural
Design and Analysis at Hamburg University of Technology from July 2013 to June 2017.
Many great people have contributed to my work and I would like to say “thank you” to
those without whom this thesis would not have been possible.
First and foremost, I would like to express my gratitude to Prof. Dr.-Ing. habil. Alexan-

der Düster for the supervision of my PhD thesis. His broad expertise, his helpfulness, and
our fruitful discussions guided me through my time at university during the past years.
I would also like to thank Prof. Dr.-Ing. Moustafa Abdel-Maksoud for acting as a co-
supervisor for this thesis.
Moreover, I am much obliged to the Hamburg Research and Science Foundation and the

Federal Ministry for Economic Affairs and Energy for providing the necessary funding for
the projects I have been working on and for sharpening the scope of my research.
I also owe credits to my colleagues at the Institute of Ship Structural Design and Analysis

who have always been an inspiration for my work and who made my four years at the
institute a pleasure. In particular, I would like to thank my colleague Lars Radtke for our
lively discussions, his constant helpfulness, and his willingness to share his knowledge.
Last but not least, I am indebted to my wonderful wife Marieke, and I would like to

express my deepest thanks to her – for her endless support, her patience, and her love.

III

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 State of the Art . 2
1.3 Purpose and Scope of this Thesis . 3
1.4 Outline of this Thesis . 4

2 Fluid Problems 5
2.1 Incompressible Navier-Stokes Equations . 5

2.1.1 Kinematics . 5
2.1.2 Conservation Laws . 10
2.1.3 Discretization and Numerical Solution 14

2.2 Potential Flow Equations . 18
2.2.1 Problem Statement . 19
2.2.2 Discretization and Numerical Solution 23

3 Structural Problems 25
3.1 Deformable Body Equations . 25

3.1.1 Kinematics . 25
3.1.2 Balance Equations . 28
3.1.3 Constitutive Relations . 30
3.1.4 Variational Formulation and Linearization 32
3.1.5 Spatial Discretization . 34
3.1.6 Temporal Discretization . 37

3.2 Rigid Body Equations . 40

4 Coupled Problems 42
4.1 Governing Equations . 42
4.2 Generic Partitioned Coupling Algorithm 45
4.3 Illustrative Coupled Problem . 46
4.4 Predictors . 48

4.4.1 Polynomial Predictors . 49
4.4.2 Predictors Based on Taylor Series Expansions 50
4.4.3 Adaptive Predictors . 50
4.4.4 Comparison of Predictors . 51

4.5 Interpolation Schemes . 53
4.5.1 Nearest Neighbor Interpolation . 55
4.5.2 Barycentric Interpolation . 60
4.5.3 Radial Basis Function Interpolation 66
4.5.4 Inverse Distance Weighting . 67
4.5.5 Interpolation on Finite Element Meshes 68

V

Contents

4.5.6 Interpolation on Polygonal and Polyhedral Meshes 75
4.5.7 Comparison of Interpolation Schemes 76

4.6 Convergence Criteria . 82
4.7 Convergence Acceleration Schemes . 83

4.7.1 Constant Relaxation . 84
4.7.2 Aitken Relaxation and Related Methods 84
4.7.3 Vector ε-Algorithm . 86
4.7.4 Topological ε-Algorithm . 87
4.7.5 Vector θ-Algorithm . 87
4.7.6 Generalized θ-Algorithm . 88
4.7.7 Vector w-Transformation . 89
4.7.8 Euclidean w-Transformation . 89
4.7.9 Broyden Method . 90
4.7.10 Quasi-Newton Least Squares Method 91
4.7.11 Comparison of Convergence Acceleration Schemes 93

5 Software Library comana 98
5.1 General Concepts . 98
5.2 Generic Data Structures . 105

5.2.1 Traits . 109
5.2.2 Containers . 111

5.3 Communication Data Structures . 114
5.4 Mesh Data Structures . 118

5.4.1 Custom Point Scattering . 118
5.4.2 Basis Functions, Cell Topology, and Cell Geometry 119
5.4.3 Projection Procedure . 124
5.4.4 Integration . 125

5.5 Algorithmic Data Structures . 127
5.5.1 Predictors . 127
5.5.2 Interpolation Schemes . 128
5.5.3 Convergence Acceleration Schemes 129

5.6 Adapter Data Structures . 130
5.6.1 Generic Functions and Classes . 131
5.6.2 C/C++ Solvers . 135
5.6.3 Fortran Solvers . 136
5.6.4 MATLAB/Octave Solvers . 136
5.6.5 Python Solvers . 142
5.6.6 APDL Solvers . 146

5.7 Simulation Setup . 147

6 Benchmark Problems 158
6.1 Two-Dimensional Lid-Driven Cavity Flow with Flexible Bottom 158
6.2 Three-Dimensional Lid-Driven Cavity Flow with Flexible Bottom 163
6.3 Round Cylinder with Flexible Membrane in Channel Flow 164
6.4 Square Cylinder with Flexible Membrane in Channel Flow 170
6.5 Flapping Console in Channel Flow . 174
6.6 Flexible Restrictor in Converging Channel 177

VI

Contents

6.7 Shell in Steady-State Cross-Flow . 180
6.8 Spherical Dome in Channel Flow . 181
6.9 Pressure Pulse in a Straight Elastic Vessel 183
6.10 Floating Object in Free-Surface Flow . 187
6.11 Sloshing Effects in Partly-Filled Tank . 191
6.12 Dam Break . 198
6.13 Hydrofoil in Steady-State Flow . 201
6.14 Ship Propeller . 204
6.15 Wind Turbine Rotor . 208
6.16 Electro-Thermo-Mechanically Coupled Rod 212
6.17 Bimetallic Beam . 214

7 Advanced Applications 218
7.1 Floating Offshore Wind Turbine . 218
7.2 Berthing Maneuver of Crew Transfer Vessel 226

7.2.1 Cylinder in Waves . 229
7.2.2 Crew Transfer Vessel in Waves . 232
7.2.3 Crew Transfer Vessel in Waves Including the Influence of Monopile 233
7.2.4 Contact Problem between Fender and Monopile 234
7.2.5 Berthing Maneuver of Crew Transfer Vessel 237

8 Conclusions and Outlook 241

A Shape Functions 244
A.1 Linear line element . 244
A.2 Quadratic line element . 244
A.3 Cubic line element . 244
A.4 Linear triangle element . 244
A.5 Quadratic triangle element . 245
A.6 Linear quadrilateral element . 245
A.7 Serendipity quadrilateral element . 246
A.8 Quadratic quadrilateral element . 247
A.9 Linear tetrahedral element . 247
A.10 Quadratic tetrahedral element . 248
A.11 Linear hexahedral element . 248
A.12 Serendipity hexahedral element . 249
A.13 Quadratic hexahedral element . 250

Bibliography 252

VII

List of Acronyms
AAA Almost always use auto
AABB Axis-aligned bounding box
ALE Arbitrary Lagrangian-Eulerian
APDL ANSYS parametric design language
API Application programming interface
BEM Boundary element method
BMWi Bundesministerium für Wirtschaft und Energie (Federal Ministry for

Economic Affairs and Energy)
CFD Computational fluid dynamics
COG Center of gravity
CPU Central processing unit
FE Finite element
FEM Finite element method
FSI Fluid-structure interaction
FV Finite volume
FVM Finite volume method
HF High frequency
HyStOH Hydrodynamische und strukturmechanische Optimierung eines

Halbtauchers für Offshore-Windenergieanlagen (Hydrodynamic and
structural optimization of a floating platform for offshore wind turbines)

JONSWAP Joint North Sea Wave Project
LF Low frequency
MPI Message passing interface
MVP Most vexing parse
ODR One definition rule
OWT Offshore wind turbine
pImpl Pointer to implementation
POD Plain old data
RAII Resource acquisition is initialization
RANS Reynolds-averaged Navier-Stokes
RAO Response amplitude operator
RBF Radial basis function
RVO Return value optimization
SFINAE Substitution failure is not an error
VOF Volume of fluid

VIII

List of Symbols
Nomenclature
In this thesis, the following notation for the distinction of scalars, vectors, tensors, and
matrices is introduced. Scalars s are denoted in italic font. Vectors v from the Euclidean
space as well as second-order tensors T defined as linear maps between vector spaces are
typeset in bold italic font. Bold calligraphic symbols are used to represent tensors C of
order higher than two. While “short” local discrete vectors v and matricesM are typeset
in bold italic font, “long” global discrete vectors v and matrices M are denoted by an
upright bold symbol.

Symbol Description
card(S) Cardinality of the set S
Φ ◦ Ψ Composition of the transformations Φ and Ψ
Φ−1 Inverse of the transformation Φ
δu Variation of u
∆u Increment of u
u0 Initial value of u
uref Reference value of u
u|x=x∗ u evaluated at x = x∗

ū Prescribed value of u (Chapter 2, 3)
Mean value of u (Chapter 4, 6)

uT Transpose of the vector or tensor u
v−1 := v/‖v‖2

2, Moore-Penrose inverse of the vector v
Du · v Directional derivative of u in the direction of the vector v
∂u/∂x Partial derivative of u with respect to x
∂u/∂t|X Derivative of u with respect to time t, with the material coordinate X held

fixed
∂u/∂t|χ Derivative of u with respect to time t, with the referential coordinate χ held

fixed
Du/Dt := ∂u/∂t|X , material derivative of u
u̇ := Du/Dt
ü := D2u/Dt2

grad s := ∑d
i=1 ∂s/∂xiei, gradient of the scalar s

Grad s := gradX s, gradient of the scalar s in the reference configuration
gradv := ∑d

i,j=1 ∂vj/∂xiei ⊗ ej, gradient of the vector v
Gradv := gradX v, gradient of the vector v in the reference configuration
curl v := e1(∂v3/∂x2−∂v2/∂x3)+e2(∂v1/∂x3−∂v3/∂x1)+e3(∂v2/∂x1−∂v1/∂x2),

curl of the vector v
div v := ∑d

i=1 ∂vi/∂xi, divergence of the vector v
Div v := divX v, divergence of the vector v in the reference configuration

IX

Contents

divT := ∑d
i,j=1 ∂Tij/∂xiej, divergence of the tensor T

DivT := divX T , divergence of the tensor T in the reference configuration
∆s := div grad s, Laplacian of the scalar s
u · v := ∑d

i=1 uivi, scalar product of the vectors u and v
S · T := ∑d

i,j=1 SijTij, scalar product of the second-order tensors S and T
v · T := ∑d

i,j=1 vjTjiei, dot product of the vector v and the second-order tensor S
Tv := ∑d

i,j=1 Tijvjei, dot product of the second-order tensor S and the vector v
u⊗ v := uvT, dyadic product of the vectors u and v
ST := ∑d

i,j,k=1 SijTjkei⊗ek, tensor product of the second-order tensors S and T
detT Determinant of the tensor T
trT := ∑d

i=1 Tii, trace of the tensor T
‖x‖p :=

(∑d
i=1 |xi|p

)1/p
, p-norm of the vector x

H1(Ω) Sobolev space of component-wise weak differentiable functions in L2(Ω) with
derivatives in L2(Ω)

H1
0 (Ω) Set of functions in H1(Ω) with vanishing trace on the Dirichlet boundary of

Ω
L2(Ω) Hilbert space of component-wise Lebesgue-measurable functions with inte-

grable squares over Ω

0 Zero vector
a Axis
a Acceleration vector
da Area element in the current configuration
da := nda, directed area element in the current configuration
Ak Influence coefficient
dA Area element in the reference configuration
dA := NdA, directed area element in the reference configuration
A Convergence acceleration scheme
b Body force vector
Bk Influence coefficient
B Set of bounding boxes
B := FF T, left Cauchy-Green deformation tensor
B̂ := J2/3I, dilatational (i.e., volume-changing or volumetric) part of the left

Cauchy-Green deformation tensor B
B̄ := J−2/3B, distortional (i.e., volume-preserving or isochoric) part of the left

Cauchy-Green deformation tensor B
c Speed of sound (Chapter 2)

Damping constant (Chapter 4, 5)
cp Specific heat capacity
C Child of a tree node (Chapter 4)

Center of gravity (Chapter 6, 7)
Ck Influence coefficient
C := F TF , right Cauchy-Green deformation tensor

X

Contents

Ĉ := J2/3I, dilatational (i.e, volume-changing or volumetric) part of the right
Cauchy-Green deformation tensor C

C̄ := J−2/3C, distortional (i.e., volume-preserving or isochoric) part of the right
Cauchy-Green deformation tensor C

C Fourth-order material tensor
C Damping matrix
d Dimension of space (Chapter 3)

Distance (Chapter 4, 5)
d Displacement vector
d Discrete displacement vector
D Diameter
D Rate-of-strain tensor
e Error
e Cartesian basis vector
E Young’s modulus
E Green-Lagrange strain tensor
f Generic function
f External force vector
f Discrete external force vector
F External force
F Deformation gradient (Chapter 3)

Distance function (Chapter 4)
F̂ := J1/3I, dilatational (i.e, volume-changing or volumetric) part of the defor-

mation gradient F
F̄ := J−1/3F , distortional (i.e., volume-preserving or isochoric) part of the de-

formation gradient F
g Gravitational acceleration
g Nonlinear field equation
G Weak form (Chapter 3)

Shear modulus (Chapter 6)
h Height
H Height
H Displacement gradient
IT , IIT , IIIT Invariants of the second-order tensor T
I Interpolation scheme
I Identity mapping (Chapter 2)

Second-order identity tensor (Chapter 3)
I Fourth-order identity tensor
I Identity matrix
j Time step
J := detF , Jacobian determinant (Chapter 3)

Advance ratio (Chapter 6)
J Jacobian matrix
J Discrete Jacobian matrix
k Spring constant (Section 4.3)

Iteration (Chapter 4 (except Section 4.3), 5, 6)

XI

Contents

Wave number (Chapter 7)
kt Thrust coefficient
kq Torque coefficient
K Bulk modulus
K Tangent stiffness matrix
Km Material stiffness matrix
Ks Initial stress matrix
` Tree level (Chapter 4)

Length (Chapter 6)
l Angular momentum
L Length
m Number of finite volumes (Section 2.1)

Number of boundary elements (Section 2.2)
Number of finite elements (Chapter 3)
Number of subdomains (Section 4.1, 4.2, Section 5.1)
Number of query points (Section 4.5, 5.4, 5.5)
Mass (Section 2.1.2, 3.1.2, 4.3, Chapter 6, 7)

ms Number of boundary segments (Chapter 2)
Number of finite element surfaces (Chapter 3)

m̄ Specific mass
m External moment
Ma Mach number
M Mass matrix
n Number of nodes (Chapter 3)

Number of time steps (Section 4.4)
Number of source points (Section 4.5)
Rotational speed (Chapter 6)
Number of mooring lines (Chapter 7)

n Outer unit normal in the spatial or current configuration
N Shape function (Chapter 3)

Tree node (Chapter 4)
N Outer unit normal in the reference configuration (Section 3.1.1, 3.1.2)

Vector of shape functions (Section 3.1.5)
p Pressure (Chapter 2, 6, 7)

Polynomial order (Chapter 4, 6)
p Linear momentum (Chapter 3)

Source point (Chapter 4, 5)
P Point
P Predictor scheme (Section 4.2, 4.4)

Set of source points (Section 4.5, Chapter 5)
P First Piola-Kirchhoff stress tensor
q Torque (Section 6.14)

Heat flux (Section 6.17)
q Query point
Q Set of query points
r Radius
r Moment arm

XII

Contents

r Residual or out-of-balance vector
Rϕ Joule heating term
R Set of nearest neighbor or nearest bounding box candidates
R Rotation tensor
s Shrink factor (Chapter 4)

Scaling factor (Chapter 6, 7)
S Sequence
S̃ Transformed sequence
S Solver
S Second Piola-Kirchhoff stress tensor
t Time (except Section 6.14)

Thrust (Section 6.14)
t′ Ramp time
t Traction
T Final time
u Generic scalar-valued quantity
u Generic scalar-, vector-, or tensor-valued quantity
u Generic discrete quantity
U Dilatational part of the strain energy density U
U Right stretch tensor
v Volume in the current configuration (Chapter 3)

Velocity (Chapter 2, 6, 7)
v Velocity
v̂ Mesh velocity
ṽ := v − v̂, convective velocity
V Volume in the reference configuration
V Left stretch tensor
w Interpolation weight
w Material velocity in the referential configuration
W Strain energy density (Section 3.1.3)

Virtual work (Section 3.1.4)
Width (Chapter 6, 7)

W̄ Distortional part of the strain energy density W
W Set of interpolation weights
W Interpolation matrix
x Particle in the spatial or current configuration
x′ Collocation point
X Particle in the material or reference configuration
y State vector

α Angle of attack
αϑ Thermal expansion coefficient
αϕ Linear temperature coefficient
β Newmark parameter
γ Diffusion coefficient (Chapter 2)

Newmark parameter (Chapter 3, 6, 7)

XIII

Contents

Peak enhancement factor (Chapter 7)
Γ := ∂Ω, boundary of the domain Ω
∆ Thickness (Chapter 6)

Draft (Chapter 7)
ε Tolerance (except Section 6.17)

Emissivity (Section 6.17)
ε Linear strain
ζ Wave elevation
η0 Efficiency
η Test function
ηηη Discrete test function vector
θ Angle between cell normals (Chapter 4)

Misalignment angle θ (Chapter 7)
ϑ Temperature
Θ Inertia tensor in the inertial frame
Θ̂ Inertia tensor in the body frame
λϑ Thermal conductivity
λϕ Electrical conductivity
λλλ Weighting vector
µ Dynamic viscosity (Section 2.1, Chapter 6)

Doublet strength (Section 2.2)
ν Kinematic viscosity
ξ, ξ Coordinate in the parameter space of a finite element
ρ Density
ρ∞ Spectral radius
ρ Quaternion
σ Source strength
σsb Stefan-Boltzmann constant
σv von Mises stress
σ Cauchy stress
φ Generic scalar quantity (Chapter 2)

Electric potential (Chapter 6)
Phase angle (Chapter 7)

ϕ := Φ ◦ Ψ−1, bijective transformation from the material or reference configu-
ration ΩX to the spatial or current configuration Ωx (Chapter 2, 3)
Vector storing rotations about x, y, and z (Chapter 4)

Φ Generic extensive property (Section 2.1)
Velocity potential (Section 2.2)

Φ Bijective transformation from the referential configuration Ωχ to the spatial
configuration Ωx

χ Particle in the reference configuration
Ψ Bijective transformation from the referential to the material configuration
ω Relaxation factor (Chapter 4, 6)

Angular frequency (Chapter 6, 7)
ω Angular velocity pseudo-vector
Ω ⊂ Rd, domain in d-dimensional space Rd

XIV

Contents

∂Ω ⊂ Rd−1, boundary of the domain Ω ⊂ Rd in d-dimensional space Rd

XV

Abstract
A broad range of engineering applications are governed by coupled multifield phenomena. Due to
their highly nonlinear nature, fluid-structure interaction problems belong to the most challenging
problems in this area. Prominent examples for such problems can, in particular, be found in the
maritime industry. In this thesis, emphasis is placed on the numerical investigation of the fluid-
structure interaction of a floating offshore wind turbine and of the landing maneuver of a crew
transfer vessel to an offshore wind turbine. Due to the ever increasing computational resources,
even such highly complex problems have become amenable to a numerical analysis, which helps to
provide a deeper insight into the governing physical processes, to reduce the number of expensive
experiments, to increase the confidence in the final product, and, last but not least, to reduce
costs by shortening the product development cycle.

In the present work, a partitioned solution approach is followed in order to split a coupled
problem into separate subproblems, which are coupled by iteratively exchanging the relevant
field quantities within a time increment. This procedure enables the use of different spatial and
temporal discretization schemes in each of the subdomains. Existing specialized and efficient
solvers can then be reused to solve the subproblems – which significantly enhances modularity,
software reusability, and also performance. However, these advantages come at the expense of re-
duced stability of the solution process. Appropriate measures must hence be taken to circumvent
stability problems and to accelerate the convergence of the partitioned solution procedure. There-
fore, different predictors are proposed so as to provide a reasonable initial guess for the solution in
the current time increment and to help to reduce the number of implicit iterations. Regarding the
transfer of the relevant field quantities between possibly non-conforming discretizations, several
mesh-independent and mesh-dependent interpolation schemes are presented and assessed with
respect to accuracy and computational efficiency. Moreover, efficient convergence acceleration
schemes, which are suitable to stabilize and accelerate the coupling procedure, are discussed in
detail.
In order to simplify the computer implementation of customized coupling strategies for various

kinds of multifield problems, the C++ software library comana is presented. It offers a vast range
of modular and well-tested algorithmic building blocks, which can easily be combined to create a
coupling algorithm tailored to the specific problem under consideration. Based on a master/slave
architecture, comana allows the user to select from plenty of solvers for different physical phe-
nomena and to simply exchange them in a black-box manner. Shared- and distributed-memory
parallelized solvers can be integrated into a coupled computation without difficulty rendering
even large computations possible. Preparing a solver for a coupled simulation only requires an
adapter module and very little modifications in the solver code. Adapters for various solvers for
thermodynamics, fluid and structural dynamics are readily provided; adapters not yet available
can be implemented with little effort.

In the last part of this work, the software library is verified by means of numerous benchmark
problems – and it is also applied to several advanced applications from the maritime industry. Ex-
ploiting the full versatility of the software library comana, it is demonstrated that the partitioned
solution approach is well suited to solve even highly complex and strongly coupled problems ef-
ficiently. Particular focus is placed on the fluid-structure interaction of a floating offshore wind
turbine and on the landing maneuver of a service ship to an offshore wind turbine, as specific
applications from the maritime industry.

XVI

1 Introduction
Coupled multifield problems in general and fluid-structure interaction (FSI) problems in
particular occur in a vast range of technical applications. Prominent examples are airfoil
flutter, the wind-induced vibration of bridges, or the blood flow in arterial vessels. Such
kind of problems can be categorized into weakly- and strongly-coupled problems. In the
case of weakly-coupled problems, one of the subproblems affects the other subproblem,
but not the other way round. For strongly-coupled problems, the situation is different:
The subproblems interact with each other, and changes in one of the fields have influence
on the respective other. In the context of FSI, problems are weakly coupled if the fluid
flow induces a structural deformation that is, however, considered small enough to neglect
the feedback on the surrounding flow. Strongly-coupled problems are much more complex,
as the structural deformation is considered to have a notable impact on the behavior of
the fluid flow and vice versa. In the analysis of the fluid problem, the deflection of the
mechanical structure therefore needs to be taken into account.
In the maritime sector, a majority of problems is actually of coupled nature. Interac-

tions between the ship hull and the waves (such as springing, slamming, or whipping) or
vibrations in marine propulsion systems are well-known examples for strongly-coupled FSI
problems from this area. In this thesis, the FSI of a floating offshore wind turbine and the
landing maneuver of a crew transfer vessel to an offshore wind turbine will be of particular
interest – as two interesting but also challenging practical applications. In the following,
these highly complex, strongly-coupled FSI problems will be briefly introduced, serving to
motivate the methodology for the analysis of FSI problems outlined in this work.

1.1 Motivation
Among several other countries in the world, the German government aims to reduce car-
bon dioxide emissions and to intensify the use of renewable, “green” energies to achieve
the ambitious climate targets. Offshore wind energy is considered one of the primary re-
sources to provide energy in an environmentally friendly and sustainable way. In recent
years, floating offshore wind turbines (OWTs) have become an interesting alternative to
fixed-foundation wind turbines, which are limited to on- or near-shore areas. Far away
from the coast, the higher water depths render fixed-foundation platforms technically and
economically unfeasible. In contrast, floating platforms can be assembled onshore and,
afterwards, be installed offshore quite easily. Despite the higher cost for feeding the gen-
erated power into the land-based electricity grid, the stronger and steadier wind renders
floating OWTs economically attractive. In order to increase the efficiency of the turbine
and to ensure the structural integrity of the entire platform, it is vital to take the FSI
into account. Neglecting the coupling effects can lead to a serious underestimation of the
acting forces – or to an oversizing, which would impair the competitiveness of the concept.
As a second major problem, we consider the landing maneuver of a crew transfer vessel

1

1 Introduction

to an OWT. Service ships are the preferred means of transportation to bring the servicing
staff from the shore to the OWT to carry out maintenance or repair work. To allow the
servicing staff to disembark safely, the vessel is equipped with a fender at its bow which
is pressed towards the boat landing. In doing so, a vertical friction force is created, which
counteracts the hydrodynamic forces acting on the ship hull and keeps the bow in position.
Obviously, this process is particularly safety-critical, as a sudden movement of the ship’s
bow during the disembarkation could be a great danger for the servicing staff. A detailed
analysis of the landing maneuver is therefore mandatory to study the forces acting on the
ship and to judge under which sea conditions a safe transfer can still be ensured. Moreover,
based on the findings from the analysis, it is possible to develop innovative crew transfer
concepts that help to increase the safety of the service personnel and to widen the weather
window for servicing, thus increasing the availability of the OWT.
Because of their high nonlinearity and complexity, such problems can seldom be solved

analytically, and experimental measurements often turn out to be prohibitively expensive
or impossible. Numerical simulations have therefore evolved as an important means to
analyze all kinds of physical processes. Due to the ever rising availability of computational
processing power, numerical simulations of even very complex phenomena have become
feasible and increasingly attractive – not only for research but also for industrial applica-
tions. In recent years, such simulations have developed a great potential to accelerate the
product development process by reducing the necessity to conduct expensive experiments,
contributing to confidence in the final product.

1.2 State of the Art
Following the literature overview in [163, p. 1 sq.], first numerical investigations of FSI
problems were carried out in the middle of the 1990s, see [10, 108, 132, 179, 28, 150, 143,
169], for instance. Since then, FSI problems in particular, but also other coupled multifield
problems, have attracted much attention from researchers and the industry alike. One of
the most prominent applications involving the interaction of a fluid and an elastic structure
are aeroelastic problems, which, for example, appear in connection with the operation of
aircraft [47], wind turbines [14, 13, 72], but also immovable light-weight structures such as
tents [59, 182]. Another interesting application are parachutes [150, 151, 140] or inflatable
structures like airbags [124]. Maritime applications are certainly another important field
for FSI problems. Well-known examples are the interaction of hydrofoils [105] or propellers
[118, 101] with the surrounding water flow, but also the interaction of the wind flow and
the sails of sailing boats [127]. In view of cardiovascular diseases as one of the major causes
of death in the industrial countries, biomedical applications such as the simulation of the
human heart [90, 133] or the investigation of the blood flow in arterial vessels [159, 5, 135,
134] have come into focus. In recent years, FSI problems have been enhanced by other
physical phenomena such as heat transfer [19, 114], acoustics [104, 141, 163], or coupling
to control systems [145].
For the numerical analysis of coupled multifield problems, essentially two main strate-

gies have emerged. The monolithic approach treats the entire physical system at once,
exhibiting good stability characteristics if an implicit time stepping procedure is used.
However, monolithic schemes lead to unsymmetric system matrices due to the presence
of cross-derivatives stemming from the consistent linearization of each field’s unknowns

2

1.3 Purpose and Scope of this Thesis

with respect to the unknowns of the other fields. In addition, the system matrices can
become very large because the unknowns of the entire physical problem enter the system
of equations. Both these aspects may lead to systems of equations that are expensive to
solve. Even more importantly, the monolithic approach tends to be rather inflexible as
tailored solvers are required to solve a particular coupled problem. Existing specialized
and fast black-box solvers can hence not be reused.
In contrast, the partitioned approach deals with each of the subproblems separately and

realizes the coupling between the subproblems by iteratively exchanging the relevant field
quantities within each time increment. This concept enables the use of different spatial
and temporal discretization schemes for each of the subproblems. In addition, existing
customized black-box solvers can be employed for the solution of the subproblems, which
boosts software reusability, performance, and, above all, flexibility. However, the parti-
tioned solution approach also poses some challenges. Partitioned schemes may converge
slowly or even become unstable. Yet, several actions can be taken to circumvent these
problems. For instance, the implicit coupling algorithm can be enhanced by a predictor
that computes a reasonable initial solution for the current time increment based on the
solutions from the previous time steps. No less important is the use of effective convergence
acceleration schemes, which considerably reduce the number of required implicit iterations
within a time increment. With these strategies, the partitioned approach becomes a very
flexible but also effective tool for the solution of arbitrary coupled multifield problems.

1.3 Purpose and Scope of this Thesis
In the scope of this thesis, a generic partitioned solution procedure for the numerical
analysis of weakly- or strongly-coupled multifield problems is developed. It is shown that
the proposed framework can be easily applied to different kinds of problems without the
need for major modifications. In addition, it already covers the possibility of using different
time increments in each of the subproblems, adaptive time stepping, and the selection of
different predictor, interpolation, and convergence acceleration schemes.
When it comes to the computer implementation of the partitioned approach, a dedicated

software library providing the necessary algorithmic building blocks can be of great help
to organize the data transfer between the subproblem solvers, and also to select and tune
a coupling strategy. To this end, several software packages have already been developed,
see [88, 165, 148, 67, 146, 26], for instance. Yet, these packages are either closed source
and hence not extensible, do not offer much flexibility to tune the coupling scheme, or
are focused on a specific application only. To overcome the limitations of existing soft-
ware in this respect, the C++ library comana [96] is presented. It is based on a modular
architecture and strongly focused towards high flexibility. Its algorithmic building blocks
are well-tested and can be quickly exchanged as needed to apply the most suitable cou-
pling strategy for the particular problem under consideration. Due to the fact that the
subproblem solvers are addressed in a black-box manner, they can be quickly exchanged
to employ an efficient numerical method for each of the subproblems. Thanks to a mas-
ter/slave communication concept, shared- or distributed-memory parallelized solvers can
be easily integrated into a partitioned solution strategy as well. Enabling a solver for a
coupled simulation requires only a minimalistic interface to access the solver’s database,
which reduces the necessary modifications in the solver code to a minimum. Interfaces for

3

1 Introduction

solvers from different disciplines – e.g., thermodynamics, fluid dynamics, rigid body and
structural dynamics – are readily provided along with comana. Interfaces for solvers not
yet supported can be implemented with little effort.
In order to demonstrate the versatility of the proposed generic partitioned solution pro-

cedure and its implementation in comana, several benchmark examples are presented,
primarily focusing on FSI, but also on other multifield problems such as electro-thermo-
mechanically coupled problems. Based on these examples, it is shown that – in contrast
to the majority of available software tools – comana is not limited to a particular kind of
multifield problem, but allows to apply the partitioned solution approach to arbitrary mul-
tifield problems. Exploiting its great flexibility, comana is used to treat problems involving
single- and multiphase flows, large structural deformations and rotations, composite mate-
rials, plasticity, and contact. Different spatial discretizations such as finite element, finite
volume, or boundary element discretizations are coupled to each other. Choosing different
time step sizes for each of the subfields or adapting the time step size during the simu-
lation helps to reduce the computational cost. Finally, the FSI of a floating OWT and
the berthing maneuver of a crew transfer vessel to an OWT are simulated numerically us-
ing a partitioned approach, which provides interesting insight into the governing physical
phenomena of these sophisticated problems from the maritime industry.

1.4 Outline of this Thesis
In Chapter 2 and 3, we first review the partial differential equations governing the fluid
and the structural subproblem and summarize the most prevalent methods for their nu-
merical treatment. Following that, we outline the integration of the subproblems into
the partitioned solution approach and propose a generic framework suited not only for
the analysis of FSI but also other multifield problems in Chapter 4. Here, we present
several predictor schemes to provide an initial guess close to the solution in the current
time increment before entering the implicit iteration. For the data transfer between the
possibly non-matching discretizations of the subproblems, different mesh-independent and
mesh-dependent interpolation schemes are discussed and compared with respect to their
accuracy and computational efficiency. Furthermore, convergence acceleration schemes
are recapitulated, adapted to the generic partitioned solution procedure, and eventually
assessed with regard to their ability to reduce the number of implicit iterations. Sub-
sequently, in Chapter 5, we sketch the computer implementation of the software library
comana, which is then used to solve various benchmark problems in Chapter 6, before
being applied to the simulation of the FSI of a floating OWT and the berthing maneuver
of a service ship to an OWT in Chapter 7. Last but not least, Chapter 8 summarizes the
main achievements of this work and gives an outlook on future research topics.

4

2 Fluid Problems
In this chapter, we discuss the governing fluid equations and present two different numer-
ical methods for their solution. First of all, we derive the Navier-Stokes equations in a
framework suitable for use in an FSI analysis. In particular, we focus on incompressible
flows, which, especially with a view to maritime applications, are of notable interest to
engineers. For the numerical solution of the Navier-Stokes equations, we briefly revisit the
finite volume method (FVM), which, alongside finite difference and finite element meth-
ods, has emerged as one of the most widely-used numerical methods in computational fluid
dynamics. Since the Navier-Stokes equations are expensive to solve numerically, we also
discuss the potential flow equations, which are based on imposing the additional restraints
of the flow being inviscid and irrotational. In many problems in the maritime sector, this
assumption poses an adequate approximation of reality. Having derived the equations gov-
erning potential flow, we introduce the boundary element method (BEM) as a fast and
efficient method for the numerical solution of potential problems. In contrast to the FVM,
where the whole fluid domain needs to be discretized, it suffices to discretize the fluid
boundary in the BEM, which leads to the significant boost in performance.

2.1 Incompressible Navier-Stokes Equations
In order to describe the motion of a continuous fluid in space, we usually employ an
Eulerian description, which assumes the computational mesh to be fixed in space with the
continuum moving relative to it, see Figure 2.1. A Lagrangian description, in contrast,
follows a material particle as it moves through space. The latter approach is commonly used
in structural mechanics, see also Chapter 3 and in particular Section 3.1. In the context
of FSI, it is necessary to overcome the limitation of a fixed computational domain for the
description of the fluid problem, and to allow the computational domain to deform and
follow the structural deformation. Therefore, we introduce a formulation that combines
the advantages of the Eulerian and the Lagrangian description, known as the Arbitrary
Lagrangian-Eulerian (ALE) description [39, p. 2]. The ALE formulation emerged in the
mid of the 1960s for the use in finite difference or finite volume methods, cf., among
others, [121, 53, 162, 69]. Since then, the method has been considerably enhanced and, in
particular, extended to finite element discretizations [38, 17, 16, 74].

2.1.1 Kinematics
For the derivation of the governing conservation equations in the ALE context, we primar-
ily follow [39], but also [93, 172, 52, 102]. To begin with, let us introduce three different
configurations as depicted in Figure 2.2, namely the referential configuration Ωχ, the mate-
rial configuration ΩX following the particle motion in space, and the spatial configuration
Ωx, which corresponds to the Eulerian description. By means of the bijective transfor-

5

2 Fluid Problems

Time t

Time t

Time t Lagrangian description

Eulerian description

ALE description

Material point
Mesh vertex

Particle motion
Mesh motion

Figure 2.1: Mesh and particle motion in the
Eulerian, Lagrangian, and ALE description [39,
p. 2].

Ωχ

Ωx

ΩX
Ψ

Φ

ϕχ

X

x

moving and
deforming

Figure 2.2: Referential configuration Ωχ, ma-
terial configuration ΩX , and spatial configura-
tion Ωx in the ALE description of motion [39,
p. 4].

6

2.1 Incompressible Navier-Stokes Equations

mations Ψ and Φ, the referential configuration Ωχ is mapped to the material and spatial
configurations ΩX and Ωx, respectively. These two transformations also serve to describe
the mapping from the material to the spatial configuration by introducing the composition
ϕ = Φ ◦Ψ−1, which clearly indicates that the three mappings are not independent of each
other. Let us formally define the transformation

Φ : Ωχ × [t0, T)→ Ωx × [t0, T) ,
(χ, t) 7→ Φ(χ, t) = (x, t) ,

(2.1)

where t denotes the time, while t0 and T mark the beginning and the end of the time
interval under consideration. The gradient of Φ with respect to (χ, t),

∂Φ

∂(χ, t) =


∂x

∂χ

∂x

∂t

∣∣∣∣∣
χ

0T 1

 , (2.2)

involves the mesh velocity

v̂(χ, t) = ∂x

∂t

∣∣∣∣∣
χ

, (2.3)

where the notation |χ implies that the referential coordinate χ is held fixed. By 0T, we
denote the row-vector of all zeros the length of which matches the number of columns in
the spatial derivative ∂x/∂χ.
Regarding Ψ , it makes sense to consider only its inverse Ψ−1, which will be useful to

find an expression for ϕ = Φ ◦ Ψ−1. Let us now define the transformation

Ψ−1 : ΩX × [t0, T)→ Ωχ × [t0, T) ,
(X, t) 7→ Ψ−1(X, t) = (χ, t)

(2.4)

from the material to the referential configuration. The gradient of Ψ−1 amounts to

∂Ψ−1

∂(X, t) =

 ∂χ

∂X
w

0T 1

 , (2.5)

where we introduced the velocity

w = ∂χ

∂t

∣∣∣∣∣
X

. (2.6)

The expression (2.6) can be construed as the particle velocity in the referential configura-
tion. Having derived the gradients of the mappingsΦ and Ψ−1, we have all the prerequisites
to differentiate ϕ = Φ ◦Ψ−1 and obtain the relations between the material velocity v, the
mesh velocity v̂, and the particle velocity w in the referential configuration:

∂ϕ

∂(X, t)(X, t) = ∂Φ

∂(χ, t)
(
Ψ−1(X, t)

) ∂Ψ−1

∂(X, t)(X, t) = ∂Φ

∂(χ, t)(χ, t) ∂Ψ−1

∂(X, t)(X, t) . (2.7)

7

2 Fluid Problems

In block matrix form, this reads ∂x

∂X
v

0T 1

 =


∂x

∂χ
v̂

0T 1


 ∂χ

∂X
w

0T 1

 . (2.8)

From this, we extract the relation

v = v̂ + ∂x

∂χ
w . (2.9)

After rearranging, this results in an expression for the convective velocity

ṽ := v − v̂ = ∂x

∂χ
w , (2.10)

which represents the relative velocity between the material particles and the mesh. Note
that ṽ is distinct from w; only if the mesh motion is purely translational, these velocities
become identical.
It is also worth noting that the ALE description of motion covers both the Lagrangian as

well as the Eulerian formulation. For a Lagrangian description, we choose Ψ = I, where I
is the identity mapping, which implies X ≡ χ. Consequently, the material and the mesh
velocity coincide, meaning that v = v̂, and the convective velocity ṽ vanishes. An Eulerian
description is recovered if Φ = I and x ≡ χ. Then, the mesh velocity v̂ vanishes, and the
convective velocity ṽ becomes identical to the material velocity v.
For the derivation of the conservation equations later on, it is required to establish a

relation between the time derivative of a generic scalar quantity φχ, φX , and φ – defined in
the referential, material, and spatial frame, respectively. Relating the material and spatial
description of a quantity by means of the transformation ϕ, we obtain

φX(X, t) = φ (ϕ(X, t), t) (2.11)

and, after differentiation, the gradient

∂φX
∂(X, t)(X, t) = ∂φ

∂(x, t)(x, t) ∂ϕ

∂(X, t)(X, t) . (2.12)

Recast in matrix notation, this reads

(
∂φX
∂X

∂φX
∂t

)
=
(
∂φ

∂x

∂φ

∂t

) ∂x

∂X
v

0T 1

 . (2.13)

From the second equation, the important relation

∂φX
∂t

= ∂φ

∂t
+ ∂φ

∂x
· v . (2.14)

is revealed. In the following, we simplify the notation by introducing the shorthand oper-
ators

D ·
Dt := ∂ ·

∂t

∣∣∣∣∣
X

(2.15)

8

2.1 Incompressible Navier-Stokes Equations

for the material time derivative and

∂ ·
∂t

:= ∂ ·
∂t

∣∣∣∣∣
x

(2.16)

for the spatial time derivative, unless indicated otherwise. Using this, Equation (2.14)
becomes

Dφ
Dt = ∂φ

∂t
+ v · gradφ . (2.17)

Let us now derive the relation between the material and the referential time derivative.
With the inverse transformation Ψ−1 introduced in (2.4), the material and the referential
representation of a quantity are related by

φX = φχ ◦ Ψ−1 . (2.18)

Differentiation leads us to

∂φX
∂(X, t)(X, t) = ∂φχ

∂(χ, t)(χ, t) ∂Ψ−1

∂(X, t)(X, t) , (2.19)

or, in matrix notation,

(
∂φX
∂X

∂φX
∂t

)
=
(
∂φχ
∂χ

∂φχ
∂t

) ∂χ

∂X
w

0T 1

 . (2.20)

From the second block equation, we notice that

∂φX
∂t

= ∂φχ
∂t

+ ∂φχ
∂χ
·w , (2.21)

or, taking (2.10) into account,

∂φX
∂t

= ∂φχ
∂t

+ ∂φ

∂x
· ∂x
∂χ
w = ∂φχ

∂t
+ ∂φ

∂x
· ṽ . (2.22)

Leaving the subscripts apart and employing the shorthand notation proposed in (2.15) and
(2.16), this reads

Dφ
Dt = ∂φ

∂t

∣∣∣∣∣
χ

+ ∂φ

∂x
· ṽ = ∂φ

∂t

∣∣∣∣∣
χ

+ ṽ · gradφ . (2.23)

Combining (2.17) and (2.23) eventually reveals the important relation

∂φ

∂t
= ∂φ

∂t

∣∣∣∣∣
χ

− v̂ · gradφ (2.24)

between the spatial and the referential time derivative.

9

2 Fluid Problems

2.1.2 Conservation Laws
Based on our findings from above, let us proceed to establishing the basic conservation
laws, which serve to describe the motion of a fluid in the ALE context. Major parts of
the following paragraphs are, apart from [39], adopted from the standard textbooks for
fluid dynamics [49, 142, 128, 20, 175, 31]. Considering a generic intensive property φ(x, t)
in the spatial frame, the corresponding extensive property Φ(t) is obtained by integrating
over the moving and time-varying material volume Ωt:

Φ(t) =
∫
Ωt

ρφ(x, t) dΩ . (2.25)

A change of the extensive property Φ(t) over time t is expressed by the material time
derivative

DΦ
Dt (t) = D

Dt

∫
Ωt

ρφ(x, t) dΩ , (2.26)

which is expanded as

D
Dt

∫
Ωt

ρφ(x, t) dΩ =
∫
Ωt

∂ (ρφ(x, t))
∂t

dΩ +
∫
Γt

ρφ(x, t)v · n dΓ . (2.27)

Here, Γt := ∂Ωt is the boundary of the material volume Ωt, which moves with the material
velocity v = v(x, t) and n symbolizes the outer unit surface normal of the surface Γt. In
essence, this equation states that the variation of the extensive property Φ with time is
equal to the sum of the local change of the property within the moving material volume
Ωt and its net flux through the (likewise moving) boundary Γt. Note that the validity of
this equation is still retained if φ is a vector- or tensor-valued quantity. Equation (2.27)
represents a generic conservation equation and is known as the Reynolds transport theorem.
In the ALE framework, Equation (2.27) is applied to an arbitrary volume Ωt moving with
the mesh velocity v̂:

∂

∂t

∣∣∣∣∣
χ

∫
Ωt

ρφ(x, t) dΩ =
∫
Ωt

∂ (ρφ(x, t))
∂t

dΩ +
∫
Γt

ρφ(x, t)v̂ · n dΓ . (2.28)

Note that, in this case, the characterizing velocity is no longer the material velocity v but
the mesh velocity v̂.
In virtually all flows of engineering interest, the mass within the moving material volume

Ωt is conserved, which is conveyed by the equation

Dm
Dt = 0 . (2.29)

Based on this, substituting φ = 1 in (2.27) leads us to

D
Dt

∫
Ωt

ρ dΩ =
∫
Ωt

∂ρ

∂t
dΩ +

∫
Γt

ρv · n dΓ = 0 . (2.30)

From (2.28), we see (after rearranging) that
∫
Ωt

∂ρ

∂t
dΩ = ∂

∂t

∣∣∣∣∣
χ

∫
Ωt

ρ dΩ −
∫
Γt

ρv̂ · n dΓ . (2.31)

10

2.1 Incompressible Navier-Stokes Equations

Plugging (2.31) into (2.30) and recalling the definition of the convective velocity ṽ (2.10)
results in the ALE form of the mass conservation or continuity equation

∂

∂t

∣∣∣∣∣
χ

∫
Ωt

ρ dV +
∫
Γt

ρṽ · n dΓ = 0 . (2.32)

Subsequent to deriving the integral form of the continuity equation, let us proceed with
the differential form. Exploiting the identity (2.24), we restate (2.30) as∫

Ωt

∂ρ

∂t
dΩ +

∫
Γt

ρv · n dΓ =
∫
Ωt

∂ρ

∂t

∣∣∣∣∣
χ

− v̂ · grad ρ dΩ +
∫
Γt

ρv · n dΓ = 0 . (2.33)

Applying Gauss’s divergence theorem to the surface integral leaves us with∫
Ωt

∂ρ

∂t

∣∣∣∣∣
χ

− v̂ · grad ρ dΩ +
∫
Ωt

div(ρv) dΩ = 0 , (2.34)

which, keeping in mind that

div(ρv) = v · grad ρ+ ρ div v , (2.35)

is more compactly written as∫
Ωt

∂ρ

∂t

∣∣∣∣∣
χ

−v̂ ·grad ρ+v ·grad ρ+ρ div v dΩ =
∫
Ωt

∂ρ

∂t

∣∣∣∣∣
χ

+ṽ ·grad ρ+ρ div v dΩ = 0 . (2.36)

Apparently, this equation must also hold for infinitesimal volumes Ωt, which takes us to
the differential form of the continuity equation (2.32):

∂ρ

∂t

∣∣∣∣∣
χ

+ ṽ · grad ρ+ ρ div v = 0 . (2.37)

In many technical and most maritime applications, the Mach number Ma of the flow, which
relates the maximum fluid velocity vmax to the speed of sound c, satisfies the relation

Ma = vmax

c
< 0.3 . (2.38)

Given this assumption, the flow can be considered as incompressible (or, more precisely,
isochoric), which significantly simplifies the description of the fluid behavior. For the
material time derivative of the density ρ, it then holds that

Dρ
Dt = ∂ρ

∂t

∣∣∣∣∣
χ

+ ṽ · grad ρ = 0 , (2.39)

which simplifies the continuity equation (2.36) to read∫
Ωt

ρ div v dΩ = 0 . (2.40)

Similarly, the differential form (2.37) becomes

div v = 0 . (2.41)

11

2 Fluid Problems

Newton’s second law of motion teaches us that the change in momentum D(mv)/Dt of
a material volume Ωt equals the sum of external forces f(t) acting on the material volume
such that

D (mv)
Dt = f(t) . (2.42)

Substituting φ = v and inserting (2.27) into (2.42) produces the momentum equation
∫
Ωt

∂(ρv)
∂t

dΩ +
∫
Γt

ρvv · n dΓ = f(t) . (2.43)

Subdividing the sum of external forces into surface and volume forces, we obtain∫
Ωt

∂(ρv)
∂t

dΩ +
∫
Γt

ρvv · n dΓ =
∫
Γt

σn dΓ +
∫
Ωt

ρb dΩ , (2.44)

where σ denotes the stress tensor and b represents the volume force per unit mass. Re-
calling Equation (2.28), we are led to the momentum equation in ALE integral form:

∂

∂t

∣∣∣∣∣
χ

∫
Ωt

ρv dΩ +
∫
Γt

ρvṽ · n dΓ =
∫
Γt

σn dΓ +
∫
Ωt

ρb dΩ . (2.45)

Let us now reformulate (2.44) in component form:
∫
Ωt

∂(ρvi)
∂t

dΩ +
∫
Γt

ρviv · n dΓ =
∫
Γt

σijnj dΓ +
∫
Ωt

ρbi dΩ . (2.46)

Once again drawing on relation (2.24), we realize that (2.46) can also be written as
∫
Ωt

∂(ρvi)
∂t

∣∣∣∣∣
χ

− v̂ · grad(ρvi) dΩ +
∫
Γt

ρviv · n dΓ =
∫
Γt

σijnj dΓ +
∫
Ωt

ρbi dΩ . (2.47)

Following this, we apply Gauss’s divergence theorem on the surface integral terms, which
results in∫

Ωt

∂(ρvi)
∂t

∣∣∣∣∣
χ

− v̂ · grad(ρvi) + div(ρviv) dΩ =
∫
Ωt

div(σijej) + ρbi dΩ , (2.48)

where ej is the Cartesian basis vector in the jth coordinate direction. Taking (2.35) into
account, this changes to
∫
Ωt

∂(ρvi)
∂t

∣∣∣∣∣
χ

− v̂ ·grad(ρvi)+v ·grad(ρvi)+ρvi div v dΩ =
∫
Ωt

div(σijej)+ρbi dΩ , (2.49)

or, with the definition of the convective velocity ṽ in Equation (2.10),
∫
Ωt

∂(ρvi)
∂t

∣∣∣∣∣
χ

+ ṽ · grad(ρvi) + ρvi div v dΩ =
∫
Ωt

div(σijej) + ρbi dΩ . (2.50)

Exploiting the identity
grad(ρvi) = ρ grad vi + vi grad ρ , (2.51)

12

2.1 Incompressible Navier-Stokes Equations

we notice that∫
Ωt

∂(ρvi)
∂t

∣∣∣∣∣
χ

+ ṽ · (ρ grad vi + vi grad ρ) + ρvi div v dΩ =
∫
Ωt

div(σijej) + ρbi dΩ . (2.52)

Inserting the relation
∂(ρvi)
∂t

∣∣∣∣∣
χ

= vi
∂ρ

∂t

∣∣∣∣∣
χ

+ ρ
∂vi
∂t

∣∣∣∣∣
χ

(2.53)

for the referential time derivative in (2.52) and rearranging the terms leads us to

∫
Ωt

vi

 ∂ρ
∂t

∣∣∣∣∣
χ

+ ṽ · grad ρ+ ρ div v
+ ρ

∂vi
∂t

∣∣∣∣∣
χ

+ ρṽ · grad vi dΩ =
∫
Ωt

div(σijej) + ρbi dΩ .

(2.54)
By virtue of the continuity equation (2.37), the term in parentheses on the left-hand side
vanishes, and the remainder reads

∫
Ωt

ρ
∂vi
∂t

∣∣∣∣∣
χ

+ ρṽ · grad vi dΩ =
∫
Ωt

div(σijej) + ρbi dΩ , (2.55)

or, again in tensor notation,

∫
Ωt

ρ

 ∂v
∂t

∣∣∣∣∣
χ

+ ṽ · gradv
 dΩ =

∫
Ωt

divσ + ρb dΩ . (2.56)

Evidently, this equation must also be fulfilled if the volume Ωt approaches zero, which
gives us the differential form of (2.56):

ρ

 ∂v
∂t

∣∣∣∣∣
χ

+ ṽ · gradv
 = divσ + ρb . (2.57)

For Newtonian fluids, which are exclusively considered in this work, the stress tensor σ
reads

σ = −
(
p+ 2

3µ div v
)
I + 2µD , (2.58)

where p is the pressure, µ is the dynamic viscosity, and D is the rate-of-strain tensor, for
which

D = 1
2
(
gradv + (gradv)T

)
(2.59)

holds. Respecting the continuity equation for isochoric flow (2.41), the second term in
parentheses in Equation (2.58) vanishes, and the stress tensor reduces to

σ = −pI + 2µD . (2.60)

Substituting (2.59) into (2.60) and subsequently into (2.56) results in

∫
Ωt

ρ

 ∂v
∂t

∣∣∣∣∣
χ

+ ṽ · gradv
 dΩ =

∫
Ωt

µ∆v − grad p+ ρb dΩ , (2.61)

13

2 Fluid Problems

or, in a form better suited for the discussion later on,

∂

∂t

∣∣∣∣∣
χ

∫
Ωt

ρv dΩ +
∫
Γt

ρvṽ · n dΓ =
∫
Γt

µ gradv · n dΓ −
∫
Γt

pn dΓ +
∫
Ωt

ρb dΩ . (2.62)

In differential form, Equation (2.61) reads

ρ

 ∂v
∂t

∣∣∣∣∣
χ

+ ṽ · gradv
 = µ∆v − grad p+ ρb . (2.63)

The sets of equations (2.40), (2.62) or (2.41), (2.63) represent the ALE form of the in-
compressible Navier-Stokes equations. The unknowns in these equations are the pressure
p and the velocity v. In order to constitute a well-posed initial-boundary value problem,
the problem needs to be subjected to the Dirichlet boundary condition

v = v̄ on Γv,x := ∂Ωv,x (2.64)

and the Neumann boundary condition

σn = t̄ on Γt,x := ∂Ωt,x ; (2.65)

where v̄ and t̄ denote the prescribed velocity and traction, respectively. In addition, an
initial velocity v0 needs to be prescribed at t = t0:

v(t = t0) = v0 in Ωx . (2.66)

2.1.3 Discretization and Numerical Solution
For the numerical solution of the system of coupled nonlinear partial differential equations
(2.41), (2.63) subject to the initial conditions (2.66) and the boundary conditions (2.64),
(2.65), we employ the FVM, which is well-suited for complex geometries and conservative
by construction [49, p. 36]. It has become one of the most popular methods for com-
putational fluid dynamics and is also implemented in many open-source and commercial
software packages, see [123, 3], for instance. Other frequently used numerical methods
are the finite difference method or the finite element method, which, however, will not be
discussed further in this work. The interested reader is referred to the standard literature
on these methods, see [49, 136, 187], for instance. The derivation of the numerical schemes
in the following paragraphs is closely oriented towards [49, pp. 73–79,136].
In the FVM, we subdivide the domain of interest into m finite control volumes such that

Ω ≈ Ωh =
m⋃
`=1

Ω` . (2.67)

Here, Ωh denotes the discrete approximation of the continuous domain Ω. In each of the
finite control volumes Ω`, the conservation equations (2.32) and (2.45) hold. A representa-
tive two-dimensional Cartesian finite volume (FV) discretization is depicted in Figure 2.3.
Following the idea of the cell-centered FVM, the unknowns are located at the centers of
the control volumes. In order to illustrate the discretization of the individual terms in the
integral equations, we introduce the so-called compass notation [128, 49] and associate the

14

2.1 Incompressible Navier-Stokes Equations

W P EWW EE

NENNW

SW
S

SE

n ne
e
sessw

w
nw

x

y

∆x

∆y

Figure 2.3: Control volume in an exemplary two-dimensional Cartesian FV discretization [49,
p. 73].

superscripts W, E, N, S, NW, NE, SW, and SE to the quantities located at the centers
of the control volumes adjacent to the considered control volume with center P. For the
boundaries of the control volume, we utilize lowercase superscripts w, e, n, s, nw, ne,
sw, and se. The extension to higher space dimensions and non-orthogonal meshes will be
omitted here for the sake of conciseness.
In the momentum equation (2.62), the convective term

∫
Γ`
ρvṽ · n dΓ , the diffusive

term
∫
Γ`
µ gradv · n dΓ , and the pressure term

∫
Γ`
pn dΓ are surface integrals of the type∫

Γ`
f dΓ , where Γ` refers to the surface of the finite control volume Ω`. For their numerical

treatment, these integrals are split into a sum of integrals over the ms,` surface segments
Γ`,k, k = 1, . . . ,ms,` of the control volume Ω` such that∫

Γ`

f dΓ =
ms,`∑
k=1

∫
Γ`,k

f dΓ . (2.68)

Subsequently, each of the integrals must be integrated numerically. As an example, let
us consider the surface segment “e” of the finite control volume depicted in Figure 2.3.
Applying the midpoint rule results in∫

Γe
f dΓ ≈ fe|Γe| , (2.69)

while the trapezoidal rule produces∫
Γe
f dΓ ≈ |Γe|

2 (fne + fse) . (2.70)

By |Γe|, we denote the length of the surface segment Γe. Both the midpoint and the
trapezoidal rule are second-order accurate approximations. A fourth-order accurate scheme
is given by the Simpson rule∫

Γe
f dΓ ≈ |Γe|

2 (fne + 4fe + fse) . (2.71)

15

2 Fluid Problems

Further, the term
∫
Ω`
ρv dΩ and the integral over the volumetric forces

∫
Ω`
ρb dΩ in

Equation (2.62) are integrals of the kind
∫
Ω`
q dΩ. Here, we can also employ the midpoint

rule to obtain the second-order accurate approximation∫
Ω`

q dΩ ≈ qP |Ω`| . (2.72)

By |Ω`|, we denote the area of the finite control volume Ω`. Higher-order approximations
can be constructed by fitting a polynomial to the variable value in the center of the
considered control volume and to the values in the centers of the neighboring control
volumes. For instance, after determining the coefficients in the expression

q(x, y) = a0 + a1x+ a2y + a3x
2 + a4y

2 + a5xy + a6x
2y + a7xy

2 + a8x
2y2 , (2.73)

the integration on a regular Cartesian grid yields the fourth-order accurate approximation∫
Ω`

q dΩ ≈ |Ω`|
36 (16qP + 4qs + 4qn + 4qw + 4qe + qse + qsw + qne + qnw) . (2.74)

Apparently, the numerical integration of the surface and the volume integrals require
the evaluation of the integrand at points which may not coincide with the control volume
centers. Hence, an interpolation scheme must be applied to interpolate the values from
the control volume centers to the evaluation points. In the following, we presume that we
want to interpolate the value φe of the variable φ on the boundary segment “e”. A simple
but also highly diffusive and, consequently, inaccurate interpolation scheme is the upwind
differencing scheme

φe ≈

φP if (v · n) ≥ 0
φE if (v · n) < 0

. (2.75)

A better interpolation is given by the central differencing scheme

φe ≈ λeφE + (1− λe)φP , λe = xe − xp

xE − xP
, (2.76)

which also provides a good approximation for the diffusive flux:(
∂φ

∂x

)
e
≈ φE − φP

xE − xP
. (2.77)

Higher-order interpolations can be constructed by fitting a polynomial to the values in the
neighboring control volume centers. A fourth-order accurate interpolation is, for instance,
given by fitting the function

φ(x) = a0 + a1x+ a2x
2 + a3x

3 (2.78)

to the values φW, φP, φE, and φEE. For an equidistant Cartesian discretization, this leads
us to

φe ≈
27φP + 27φE − 3φW − 3φEE

48 . (2.79)

Differentiating the polynomial results in(
∂φ

∂x

)
e

= a1 + 2a2x+ 3a3x
2 , (2.80)

16

2.1 Incompressible Navier-Stokes Equations

which, for an equidistant Cartesian grid, can be used to approximate the diffusive flux as(
∂φ

∂x

)
e
≈ 27φE − 27φP + φW − φEE

24∆x . (2.81)

The above spatial discretizations finally lead to a system of equations, which contains the
pressures p` and the velocities v` at the control volume centers as unknowns.
Following the spatial discretization, Equation (2.62) must also be discretized in time.

For this step, it suffices to consider an equation of the kind

D(φ(t))
Dt = f(t, φ(t)) , φ(t = t0) = φ0 (2.82)

which resembles the nature of the momentum equation with respect to time. Starting from
t = tj, we aim to find the solution φ at time tj+1 = tj + ∆t. Commonly used methods
for the integration of ordinary differential equations such as (2.82) are the explicit Euler
scheme

φj+1 ≈ φj + ∆t f (tj, φj) , (2.83)
or the implicit Euler scheme (also known as first-order backward differencing scheme)

φj+1 ≈ φj + ∆t f (tj+1, φj+1) . (2.84)

While the explicit Euler scheme requires a time step size ∆t smaller than a problem-
dependent critical time step size ∆tcrit for stability reasons, the implicit Euler scheme
does not exhibit such a limitation – but is unconditionally stable. Other possible time
integration schemes are the second-order backward differencing scheme [176, p. 190]

φj+1 ≈
1
3 (4φj − φj−1 + 2∆t f (tj+2, φj+2)) (2.85)

or the trapezoidal rule

φj+1 ≈ φj + ∆t
2 (f (tj, φj) + f (tj+1, φj+1)) . (2.86)

As already mentioned above, the unknowns in the incompressible Navier-Stokes equa-
tions (2.41), (2.63) are the pressure p and the velocity v. Apparently, the momentum
equation (2.63) serves to determine the components of the velocity v. The pressure p,
however, cannot be obtained from the remaining continuity equation (2.41) as it does not
even contain the pressure. We circumvent this problem by combining the continuity equa-
tion and momentum equation in a Poisson equation for the pressure, which, for the case
of constant density and viscosity, reads [32, pp. 6–7]:

div (grad p) = div (ρb− ṽ · gradv) . (2.87)

Note that the Laplacian on the left-hand side of the equation is the product of the diver-
gence operator, stemming from the continuity equation and the gradient operator origi-
nating from the momentum equation. In a numerical approximation of this equation, it is
important to retain the consistency of these operators and to define the discrete Laplacian
as the product of the divergence and gradient approximation used in the basic equations
[49, p. 167 sq.].

17

2 Fluid Problems

For the numerical solution of the discretized system of coupled partial differential equa-
tions (2.41), (2.63), we employ an enhanced version of the PISO (Pressure Implicit with
Splitting of Operator) algorithm [84] to determine the pressure p and velocity v. Following
[84, 49, p. 178], the procedure can be summarized as follows:

1. In time step tj+1, estimate the pressure pj+1 using the converged value pj from the
previous time step tj. Assign p∗ := pj.

2. Assemble and solve the discretized momentum equation to obtain the velocity v∗.

3. Assemble and solve the discretized pressure correction equation (2.87) to determine
p′.

4. Update the pressure according to p∗ := p∗ + p′.

5. Determine a velocity correction v′ such that the continuity equation is fulfilled.

6. Update the velocity according to v∗ := v∗ + v′.

7. Repeat steps 2–6 until convergence.

8. Assign pj+1 := p∗, vj+1 := v∗ and proceed to the next time step.

In view of its application to FSI problems later on, we have introduced the ALE formula-
tion of the Navier-Stokes equations. This formulation includes the mesh velocity v̂, which
is computed from the mesh displacement. In an FSI context, the mesh displacement is
prescribed at the fluid-structure interface and needs to propagate through the mesh while
retaining the validity of the boundary conditions on the rest of the fluid boundary and
the quality of the finite control volumes. Different methods have been proposed in the
literature, see [156, 85, 171], for instance. In this work, we usually employ an approach
based on the solution of the Laplace equation

div(γ gradd) = 0 (2.88)

for the displacement d of the mesh vertices, where the diffusion coefficient γ can be adapted
to achieve that the mesh behaves relatively stiff in the vicinity of the fluid-structure in-
terface, while becoming softer with increasing distance from the boundary. A common
choice is γ(r) = r−2, where r is the minimum distance between the mesh vertex and the
boundary.

2.2 Potential Flow Equations
Although the availability of computational resources is steadily increasing, the numerical
treatment of the Navier-Stokes equations, in particular in the context of FSI, may still
prove to be prohibitively expensive for larger problems. If applicable, however, the Navier-
Stokes equations can be simplified considerably by imposing certain restrictions on the
behavior of the fluid flow, which leads to Laplace’s equation as the governing equation.
For the numerical treatment of this equation, it is possible to employ the BEM, which can
also be easily integrated into a partitioned solution strategy for an FSI analysis.

18

2.2 Potential Flow Equations

n

n

Γw

Γb

Ω

Γε x′

2ε

Γ∞

Ωb

Ωεr(x)
x

Figure 2.4: Potential flow problem [91, p. 53].

2.2.1 Problem Statement
In potential theory, we assume the fluid to be incompressible, which is conveyed by (2.39),
inviscid, i.e., µ = 0, and irrotational:

curl v = 0 . (2.89)

From vector calculus, we then deduce the existence of a scalar velocity potential Φ, the
gradient of which again yields the velocity v such that

gradΦ = v . (2.90)

If we take the incompressibility condition (2.39) and the resulting continuity equation
(2.41) into account, we are left with Laplace’s equation

div(gradΦ) = ∆Φ = 0 (2.91)

for the velocity potential Φ. Equation (2.91) marks the starting point for the derivation of
the governing equations of potential flow. In our discussion of the theoretical foundations,
we primarily follow the standard textbooks [91, 87, 34], but also refer to [177, 168, 27, 157,
158, 1].
To begin with, let us consider the situation depicted in Figure 2.4, where a body Ωb ⊂ Rd

bounded by a sufficiently regular boundary Γb := ∂Ωb ⊂ Rd−1 is completely submerged in
a fluid. In the following, let us focus on the three-dimensional case, where d = 3. The fluid
domain Ω is bounded by the boundary Γ∞ := ∂Ω∞ and the outer unit normal n points to
the outside of the fluid domain Ω. Clearly, the directional derivative normal to the body’s
surface must vanish, since no flow can pass through the body [91, p. 423]:

(gradΦ− vb) · n = 0 on Γb . (2.92)

Here, n denotes the outer unit normal of the fluid domain Ω on the boundary Γb (that is,
the inner unit normal of Ωb) and vb is the surface velocity as seen from the inertial frame.

19

2 Fluid Problems

Note the presence of the minus sign in the inertial frame, which corresponds to a positive
velocity in the body frame. In addition, the disturbance due to the motion of the body
decreases with increasing distance r from the body – and vanishes in the limit case that r
tends to infinity [91, p. 53]:

lim
r→∞

(gradΦ− vrel) = 0 , (2.93)

where r = r(x) is a function of the position x and vrel = v∞ − vb represents the relative
velocity between the undisturbed fluid v∞ and the velocity vb of the body.
Following [91, pp. 53–57], we aim to represent the solution to Laplace’s equation (2.91)

for the fluid potential Φ by an integral involving the boundary conditions for Φ. For
two scalar-valued functions Φ1 = Φ1(x), Φ2 = Φ2(x), it follows from applying Gauss’s
divergence theorem that∫

Γ
(Φ1 gradΦ2 − Φ2 gradΦ1) · n dΓ =

∫
Ω

(Φ1∆Φ2 − Φ2∆Φ1) dΩ , (2.94)

which is also known as Green’s second identity. The boundary Γ comprises the boundary
Γb around the body, the wake surface Γw, which represents a surface across which the
velocity or the velocity potential may be discontinuous, and the outer boundary Γ∞ such
that

Γ = Γb ∪ Γw ∪ Γ∞ . (2.95)
As indicated in Figure 2.4, let us place a source with a potential

Φ1(x) = 1
r(x) (2.96)

at the point x′, where r(x) := ‖x − x′‖2 denotes the Euclidean distance of an arbitrary
point x from the location x′ of the source. Apparently, Φ1(x) is unbounded as x approaches
x′, or, equivalently, as r tends to zero. Further, let us set

Φ2(x) = Φ(x) , (2.97)

where Φ(x) is the velocity potential in Ω as introduced in Equation (2.90). In the situation
where x′ 6∈ Ω, i.e. the source is placed outside the fluid domain Ω, both Φ1 and Φ2 satisfy
Laplace’s equation – and it follows from (2.94) that∫

Γ

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ = 0 . (2.98)

If, on the other hand, x′ ∈ Ω, i.e. the source is placed inside the fluid domain Ω, Φ1 and
Φ2 still satisfy Laplace’s equation in the region Ω \Ωε – and (2.94) becomes∫

Γ∪Γε

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ

= −
∫
Γε

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ +

∫
Γ

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ = 0 .

(2.99)
For the evaluation of the integral over the sphere Γε enclosing the point x′, we take into
account that grad(1/r) · n = −(1/r2). Subsequently, we use Gauss’s divergence theorem

20

2.2 Potential Flow Equations

and the mean value theorem, which states that the average potential over the spherical
surface Γε equals the potential Φ(x′) at the sphere center x′ [75, p. 232, 1, p. 6]:∫

Γε

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ = 1

r

∫
Γε

gradΦ · n dΓ + 1
r2

∫
Γε

Φ dΓ

= 1
r

∫
Ωε

div gradΦ︸ ︷︷ ︸
=0

dΩ + 1
r2

∫
Γε

Φ dΓ︸ ︷︷ ︸
4πr2Φ(x′)

= 4πΦ(x′) .

(2.100)
Note that the first integral vanishes due to the fact that Φ is a solution to Laplace’s
equation (2.91). Plugging the result (2.100) into Equation (2.99), we obtain

Φ(x′) = 1
4π

∫
Γ

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ . (2.101)

Note that (2.101) represents the potential at any point x′ ∈ Ω in the flow domain in terms
of the potential Φ and the normal derivative ∂Φ/∂n on the boundary Γ . Recalling (2.95),
we replace the integral over Γ by integrals over the boundary segments Γb, Γw, and Γ∞:

Φ(x′) = 1
4π

∫
Γb

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ + 1

4π

∫
Γw

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ

+ 1
4π

∫
Γ∞

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ .

(2.102)
Regarding the first integral, let us consider the situation in which some imaginary flow
occurs within the boundary Γb. From (2.101), we deduce that the associated interior
potential Φi, evaluated at a point x′ ∈ Ωb, amounts to

Φi(x′) = 1
4π

∫
Γb

(1
r

gradΦi − Φi grad 1
r

)
· n dΓ . (2.103)

If, on the other hand, x′ ∈ Ω, then, according to (2.98),

Φi(x′) = 1
4π

∫
Γb

(1
r

gradΦi − Φi grad 1
r

)
· n dΓ = 0 . (2.104)

Accounting for the opposite orientation of the outer surface normal for the interior potential
Φi and adding this expression to the first integral in (2.102) leads us to

1
4π

∫
Γb

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ

= 1
4π

∫
Γb

(1
r

grad(Φ− Φi)− (Φ− Φi) grad 1
r

)
· n dΓ .

(2.105)

For the contribution of the integral over the wake surface Γw, we assume the wake to be
thin and, further, that ∂Φ/∂n is continuous over the wake (that is, no fluid-dynamic loads
will be supported by the wake). Based upon these assumptions, we obtain

1
4π

∫
Γw

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ = − 1

4π

∫
Γw
Φn · grad 1

r
dΓ . (2.106)

21

2 Fluid Problems

For the remaining integral term over the boundary Γ∞, we write

Φ∞(x′) = 1
4π

∫
Γ∞

(1
r

gradΦ− Φ grad 1
r

)
· n dΓ . (2.107)

Incorporating the relations (2.105)–(2.107) into (2.102) results in

Φ(x′) = 1
4π

∫
Γb

(1
r

grad(Φ− Φi)− (Φ− Φi) grad 1
r

)
· n dΓ

− 1
4π

∫
Γw
Φn · grad 1

r
dΓ + Φ∞(x′) .

(2.108)

As already noted above, Equation (2.108) provides the solution for the potential Φ(x′),
depending on Φ and ∂Φ/∂n on the boundaries. Substituting

−µ = Φ− Φi (2.109)

for the difference between the external potential Φ and the internal potential Φi
1 and

−σ = ∂Φ

∂n
− ∂Φi

∂n
(2.110)

for the difference in the normal derivative ∂Φ/∂n of the external potential and the normal
derivative ∂Φi/∂n of the internal potential, Equation (2.108) is restated as

Φ(x′) = − 1
4π

∫
Γb

(
σ
(1
r

)
− µn · grad

(1
r

))
dΓ

+ 1
4π

∫
Γw

(
µn · grad

(1
r

))
dΓ + Φ∞(x′) .

(2.111)

(2.109) is termed a doublet, while (2.110) represents a source. Note that both expressions
approach zero as r tends to infinity. Following that, we replace n ·grad(1/r) by ∂(1/r)/∂n
to eventually obtain

Φ(x′) = − 1
4π

∫
Γb

(
σ
(1
r

)
− µ ∂

∂n

(1
r

))
dΓ + 1

4π

∫
Γw

(
µ
∂

∂n

(1
r

))
dΓ +Φ∞(x′) . (2.112)

In order to determine a solution for the velocity potential Φ in the fluid domain Ω, the
strengths of the doublet and source distribution on the surface must be determined. How-
ever, there is no unique solution to the problem unless some assumptions are made – which
are usually based on the physics of the problem under consideration. For instance, we may
choose

∂Φi

∂n
= ∂Φ

∂n
on Γb , (2.113)

which results in the source term vanishing on the boundary. Then, only the contribution
from the doublet will remain, and the problem is termed a Neumann problem. If, on the
other hand, we impose

Φi = Φ on Γb , (2.114)
the doublet term vanishes on the boundary, and the source term is what remains; this
problem is named a Dirichlet problem.

1The symbol µ has previously been used to represent the dynamic viscosity of the fluid. Since in potential
theory, µ = 0 is assumed and hence does not appear in any of the relevant equations, there is little
chance of confusion with the doublet strength introduced at this point.

22

2.2 Potential Flow Equations

2.2.2 Discretization and Numerical Solution
A solution of the potential problem using analytical techniques is only possible for prob-
lems based on relatively simple geometries. For advanced applications involving more
complicated geometries, numerical methods have to be applied. Following [91, pp. 237–
250,421–431], in the BEM, the surface of the body Γb is subdivided into a set of m body
panels, whereas the wake is discretized by mw wake panels such that

Γb ≈ Γb,h =
m⋃
k=1

Γk and Γw ≈ Γw,h =
mw⋃
`=1

Γ` . (2.115)

By the symbols Γb,h and Γw,h, we denote the discrete approximations of the body’s surface
Γb and the wake surface Γw, respectively. Based on these discretizations, the Dirichlet
boundary condition (2.114) takes the following form:

m∑
k=1

1
4π

∫
Γk

µn · grad
(1
r

)
dΓ

+
mw∑
`=1

1
4π

∫
Γ`

µn · grad
(1
r

)
dΓ −

m∑
k=1

1
4π

∫
Γk

σ
(1
r

)
dΓ = 0 .

(2.116)

For a panel Γk of constant source strength µ, the influence on the collocation point x′ is

Ck = 1
4π

∫
Γk

∂

∂n

(1
r

)
dΓ . (2.117)

For a panel of constant doublet strength σ, we have

Bk = − 1
4π

∫
Γk

(1
r

)
dΓ . (2.118)

Having defined the influence coefficients Ck in (2.117) and Bk in (2.118), Equation (2.116)
becomes

m∑
k=1

Ckµk +
mw∑
`=1

C`µ` +
m∑
k=1

Bkσk = 0 (2.119)

for each collocation point x′. If the doublet strength σk on a panel Γk is selected as
σk = −nk · vb with vb being the surface velocity, the contributions Bkσk are known and
can be moved to the right-hand side of Equation (2.119).
The Kutta condition states that the wake doublet strength µw is constant and equals

the doublet strength µ? at the trailing edge:

µw = µ? = const. (2.120)

Alternatively, this condition may also be written in terms of the doublet strengths µu and
µl on the upper and lower surface at the trailing edge:

µw = µu − µl . (2.121)

Based on the Kutta condition (2.121), the doublet strengths µ` associated to the wake
panels Γ` can be related to the doublet strengths µk on the body panels Γk. For a pair

23

2 Fluid Problems

of arbitrary body panels Γu and Γl at the trailing edge, the doublet strength on the
corresponding wake panel Γw evaluates to

Cwµw = Cw(µu − µl) . (2.122)

Substituting this algebraic relation into (2.119) enables us to replace the influence coeffi-
cients Ck related to the unknown body doublet strengths µk such that

Ak = Ck if the panel Γk is not at the trailing edge
and Ak = Ck ± Cw if the panel Γk is at the trailing edge .

(2.123)

In the second expression, the plus sign applies if the panel Γk is located at the upper side
of the trailing edge, whilst the minus sign must be used for panels on the lower side of
the trailing edge. With the abbreviations defined in Equation (2.123), we arrive at the
algebraic relation

m∑
k=1

Akµk = −
m∑
k=1

Bkσk (2.124)

for each collocation point x′. Note that Equation (2.124) is linear in the unknown doublet
strengths µk. Hence, we obtain a linear system of equations by writing down (2.124) for
each collocation point xk, k = 1, . . . ,m:

A11 · · · A1m
...

Am1 · · · Amm



µ1
...
µm

 = −


B11 · · · B1m
...

Bm1 · · · Bmm



σ1
...
σm

 , (2.125)

or, in compact notation,
Aµµµ = −Bσσσ = b . (2.126)

After solving the linear system of equations for the unknowns µ1, . . . , µm, the tangential
velocity components ṽξ, ṽη in the local (ξ, η, ζ) panel coordinate system can be obtained
from

ṽξ = ∂σ

∂ξ
and ṽη = ∂σ

∂η
(2.127)

by numerical differentiation involving the neighboring panels. The normal component is
computed from

ṽζ = −σ . (2.128)

Subsequently, the total velocity vk in the panel coordinate system reads

vk = −
(
vb,ξ vb,η vb,ζ

)T

`
+
(
ṽξ ṽη ṽζ

)T

k
. (2.129)

Finally, we calculate the panel pressure pk from the Bernoulli equation

p∞ − pk
ρ

= ‖vk‖
2
2

2 − ‖vb,k‖2
2

2 + ∂Φ

∂t
. (2.130)

For the computation of the evolution of pressure over time, we can employ one of the
time integration schemes for ordinary differential equations of first order introduced in
Section 2.1.3.

24

3 Structural Problems
In this chapter, we consider the structural subproblem of the coupled problem. In the most
general case, the mechanical structure is treated as a deformable body undergoing large
displacements and large rotations. In Section 3.1, we derive the governing equations of
motion and introduce the finite element method (FEM) for the efficient numerical analysis
of the problem. If the body undergoes large displacements and large rotations, but only
small deformations, and if the internal stress state is not of interest, it is sufficient to idealize
the structure as a rigid body – which simplifies the governing equations considerably.
Therefore, we will briefly state the rigid body equations and review the numerical methods
for their solution in Section 3.2.

3.1 Deformable Body Equations
To study the dynamic behavior of a deformable structure, it is necessary to describe the
configuration of the body at different instants of time. Following the discussion of the
kinematical relations, we include the effect of external forces acting on the structure in
order to derive the governing balance equations. Making these equations amenable to a
numerical analysis, we transform the strong form of the equilibrium equations into a weak
form. Subsequent to linearizing the weak form of the equilibrium equations, we outline
the spatial and temporal discretization in the framework of the FEM. Our discussion is
primarily based on the standard textbooks [70, 181, 21]; the interested reader is encouraged
to consult these works for further details on the topic.

3.1.1 Kinematics
For the derivation of the kinematical relations describing the state of a deformable structure
under the effect of large displacements and large rotations, we consider a body Ω ⊂ Rd in
d-dimensional Euclidean space Rd with a sufficiently regular boundary Γ := ∂Ω ⊂ Rd−1.
In the following, let us restrict to d = 3, which certainly is the most relevant case for the
numerical investigations carried out in the remainder of this work. In contrast to fluid
mechanics, where an Eulerian or, if moving domains are considered, ALE description of
motion is the most natural choice, a Lagrangian description is most commonly adopted in
structural mechanics. Here, we introduce the reference configuration ΩX and the current
configuration Ωx as depicted in Figure 3.1. By means of the nonlinear bijective mapping
[39, p. 3]

ϕ : ΩX × [t0, T)→ Ωx × [t0, T)
(X, t) 7→ ϕ(X, t) = (x, t) ,

(3.1)

we relate the reference configuration ΩX at time t = t0 to the current configuration Ωx
at time t ≥ t0. In other words, the mapping ϕ transforms the material point X in the
reference configuration ΩX to the point x in the current configuration Ωx. Adopting

25

3 Structural Problems

ΩxΩX

ϕ

X
x

Figure 3.1: Reference configuration ΩX and current configuration Ωx in the Lagrangian de-
scription of motion [39, p. 3].

the notation in the standard textbooks of solid mechanics (see, e.g., [181, 21]), we use
uppercase variables for quantities referring to the reference configuration, while lowercase
variables are used for those related to the current configuration.
In order to characterize local deformation, we consider the transformation of the in-

finitesimal line element dX from the reference configuration ΩX to the line element dx in
the current configuration Ωx. The partial derivative

F = ∂x

∂X
(3.2)

is the deformation gradient. Because F is regular, its inverse is well-defined and can hence
be applied to obtain

dX = F−1dx . (3.3)
Nanson’s formula covers the change of a directed area element dA:

da = nda = JF−TNdA = JF−TdA , (3.4)

which involves the Jacobian determinant

J = detF 6= 0 . (3.5)

Note that the condition J 6= 0 holds due to the fact that ϕ represents an invertible
mapping. The relation (3.4) can also be expressed using the cofactor

Cof F := JF−T (3.6)

of the deformation gradient F and then becomes

da = Cof FdA . (3.7)

Lastly, the transformation of an infinitesimal volume element dv from the reference to the
current configuration is described by

dv = JdV . (3.8)

For the difference between the current position of a material point x = ϕ(X, t) in the
current configuration and the position X in the reference configuration, we introduce the
displacement vector

d(X, t) = x(X, t)−X . (3.9)

26

3.1 Deformable Body Equations

Denoting the second-order identity tensor by I and recalling the definition of the deforma-
tion gradient F in Equation (3.2), the gradient of the displacement d(X, t) is computed
as

H = Gradd(X, t) = F − I , (3.10)
where Grad denotes the gradient operator with respect to the reference configuration. The
deformation gradient F can be decomposed into an orthogonal rotation tensor R and a
symmetric stretch tensor U or V , respectively, such that

F = RU = V R . (3.11)

The right stretch tensor U and the left stretch tensor V are related by the polar decom-
positions

U = RTV R and V = RURT . (3.12)
In order to formulate the constitutive relations in Section 3.1.3, suitable strain measures
must be introduced. For a proper description of the local deformation, these measures
should be independent of rigid body motions. A strain tensor that refers to the reference
configuration is the Green-Lagrange strain tensor

E = 1
2
(
F TF − I

)
. (3.13)

Introducing the right Cauchy-Green deformation tensor

C = F TF , (3.14)

the Green-Lagrange strain tensor (3.13) reads

E = 1
2 (C − I) . (3.15)

In the small strain case, the Green-Lagrange strain tensor reduces to the linear strain
measure

ε = 1
2
(
H +HT

)
(3.16)

with the displacement gradient H from Equation (3.10). The invariants of the right
Cauchy-Green deformation tensor C are given as [181, p. 515]

IC = trC , IIC = 1
2
(
tr2C − trC2

)
, and IIIC = detC . (3.17)

In addition to the right Cauchy-Green deformation tensor, let us also introduce the left
Cauchy-Green deformation tensor

B = FF T , (3.18)

which, due to its definition, has the same invariants as the right Cauchy-Green deformation
tensor C [181, p. 42]. Later on, it will turn out useful to perform a multiplicative split of
the deformation gradient F into a dilatational (i.e, volume-changing or volumetric) part
F̂ and a distortional (i.e., volume-preserving or isochoric) component F̄ , such that [50]

F = F̂ F̄ . (3.19)

27

3 Structural Problems

For the dilatational component, we have F̂ = J1/3I, whereas the distortional part amounts
to F̄ = J−1/3F . Building on this, the right Cauchy-Green deformation tensor C is decom-
posed into the dilatational part Ĉ and the distortional component C̄, such that

C = ĈC̄ , (3.20)

where Ĉ = J2/3I and C̄ = J−2/3C. In the forthcoming, we will also need the invariants

IC̄ = tr C̄ = J−2/3 trC = J−2/3IC ,

IIC̄ = 1
2
(
tr2 C̄ − tr C̄2

)
= 1

2

((
J−2/3 trC

)2
− tr(J−4/3C2)

)
= J−4/3IIC ,

IIIC̄ = det C̄ = J−6/3 detC = J−2IIIC = J−2J2 = 1 ,

(3.21)

of the distortional part C̄ of the right Cauchy-Green deformation tensor C. Similar to
(3.20), the left Cauchy-Green tensor B can be written as

B = B̂B̄ (3.22)

using B̂ = J2/3I and B̄ = J−2/3B.
For the description of the transient nature of motion, we introduce the velocity vector

v(X, t) = ∂x

∂t

∣∣∣∣∣
X

(X, t) = Dx
Dt (X, t) = ẋ(X, t) . (3.23)

In accordance with Chapter 2, the derivative D ·/Dt indicates the material time derivative.
Differentiating once more with respect to time produces the acceleration vector

a = v̇(X, t) = ẍ(X, t) . (3.24)

3.1.2 Balance Equations
For the derivation of the balance equations, we assume that the mass m of the body under
consideration does not change with time, which is conveyed by

Dm
Dt = ṁ = 0 . (3.25)

In terms of the density ρ, this relation is equivalently written as

m =
∫
Ωx

ρ(x, t) dv =
∫
ΩX

ρX(X) dV = const. (3.26)

Evidently, the balance of mass (3.26) must also hold for an infinitesimal mass element and,
with dm(x) = ρdv and dm(X) = ρXdV , leads us to

ρdv = ρXdV . (3.27)

Recalling the transformation rule (3.8) from the infinitesimal volume element dV in the ref-
erence configuration to the volume element dv in the current configuration, Equation (3.27)

28

3.1 Deformable Body Equations

gives us a relation between the density ρX in the reference configuration and the density
ρ = ρx in the current configuration:

ρX = Jρ . (3.28)

From Newton’s second law of motion, we learn that the change in linear momentum p(t)
equals the sum of external forces f(t) acting on the body:

Dp
Dt (t) =

∫
Ωx

ρ
Dv
Dt dv =

∫
Ωx

ρv̇ dv = f(t) , (3.29)

where the external forces f(t) embody the surface traction t integrated over the surface
Γx and the body force ρb integrated over the volume Ωx:

f(t) =
∫
Γx

t da+
∫
Ωx

ρb dv . (3.30)

Cauchy’s theorem states that
t = σn (3.31)

and, thus, provides a relation between the traction vector t, the Cauchy stress tensor σ,
and the outer surface normal n. Building on this, the balance of linear momentum (3.29)
is restated as ∫

Ωx

ρv̇ dv =
∫
Γx

σn da+
∫
Ωx

ρb dv . (3.32)

Clearly, Equation (3.32) must also hold for a differential volume dv, which, after employing
Gauss’s divergence theorem, leads us to the differential form of mechanical equilibrium in
the current configuration

ρv̇ = divσ + ρb . (3.33)
In order to express Equation (3.32) in the reference configuration, we first apply Nanson’s
formula to obtain ∫

Γx

σn da =
∫
ΓX

σJF−TN dA =
∫
ΓX

PN dA . (3.34)

Here, we introduced the first Piola-Kirchhoff stress tensor P , which is related to the Cauchy
stress tensor σ by

P = JσF−T . (3.35)
Note that this tensor is unsymmetric. In the following, it will be more convenient to work
with a symmetric stress tensor. By premultiplying (3.35) from the left by F−1, we obtain
the second Piola-Kirchhoff stress tensor

S = F−1P = JF−1σF−T , (3.36)

which is symmetric. Recalling the transformation rule (3.27) and using (3.34), Equa-
tion (3.32) becomes ∫

ΩX

ρX v̇ dV =
∫
ΓX

PN dA+
∫
ΩX

ρXb dV . (3.37)

In differential form, we have
ρX v̇ = DivP + ρXb , (3.38)

29

3 Structural Problems

or, with the second Piola-Kirchhoff stress tensor introduced in (3.36),

ρX v̇ = Div (FS) + ρXb . (3.39)

In addition to the balance of linear momentum (3.32), angular momentum must be con-
served as well. It can be shown that the balance of angular momentum implies

σ = σT (3.40)

and, thus, the symmetry of the Cauchy stress tensor σ. Equation (3.40) is commonly
referred to as Cauchy’s second equation of motion [149, p. 154].
Summarizing the above, our initial-boundary value problem, formulated in the reference

configuration, reads as follows:

ρX v̇ = Div (FS) + ρXb in ΩX (3.41)
d = d̄ on Γd,X (3.42)

FSN = t̄ on Γt,X (3.43)
v = v0 in ΩX at t = t0 (3.44)

To make the problem well-posed, the mechanical equilibrium (3.41) was augmented by the
displacement boundary condition (3.42) on the Dirichlet boundary Γd,X := ∂Ωd,X and the
traction boundary condition (3.43) on the Neumann boundary Γt,X := ∂Ωt,X as well as the
initial condition (3.44) for the velocity v(X, t0) at time t = t0. Note that, for a transient
problem, the Dirichlet boundary Γd,X may also be empty.

3.1.3 Constitutive Relations
To relate the stress inside the body to its deformation, a proper description of the specific
material behavior must be found. In this work, we focus on elastic materials under the
assumption of Green elasticity; the theoretical foundations of elasto-plastic, visco-elastic,
and visco-plastic material behavior are omitted for the sake of conciseness. Instead, the
interested reader is referred to the standard textbooks [181, 21], where such material laws
are discussed in sufficient detail. For hyperelastic materials, the constitutive relation can
be derived from a scalar potential W representing the strain energy stored in the body.
Following [107, 122, 161, 181], the second Piola-Kirchhoff stress tensor S is given as the
derivative of the strain energy density W with respect to the Green-Lagrange strain tensor
E such that

S = ∂W

∂E
= 2∂W

∂C
. (3.45)

Differentiating once more with respect to C produces the fourth-order material tensor

C = 2 ∂S
∂C

= 4 ∂2W

∂C∂C
. (3.46)

In the small strain case, an appropriate description of the material behavior is provided
by the St. Venant-Kirchhoff model

W (E) = λ

2 tr2E + µE2 , (3.47)

30

3.1 Deformable Body Equations

where λ and µ are the Lamé parameters. This material model represents an extension of
a linear-elastic material behavior to the case of large displacements and large rotations.
Inserting (3.47) into the relations (3.45) and (3.46) for the second Piola-Kirchhoff stress
tensor S and the material tensor C yields

S = λ tr(E)I + 2µE , (3.48)
C = λI ⊗ I + 2µI , (3.49)

where I ⊗ I is the dyadic product of the second-order identity tensor with itself, while I
denotes the fourth-order identity tensor.
Once the body exhibits large deformations, the St. Venant-Kirchhoff model is no longer

appropriate. On the contrary, it may cause material instabilities and lead to unrealistic
and nonphysical stresses in the large strain regime. Hence, if strains become large, more
elaborated constitutive models need to be applied. When considering the finite elasticity
of rubber or foam materials, it is convenient to split the strain energy density W into a
sum of a distortional part W̄ (C̄) and a dilatational part U(J):

W (C̄, J) = W̄ (C̄) + U(J) . (3.50)

For the distortional part, we assume a polynomial sum of the form

W̄ (C̄) =
n∑

i,j=0
Cij(IC̄ − 3)i(IIC̄ − 3)j , (3.51)

where the coefficients Cij are material constants and IC̄ , IIC̄ are the first and second invari-
ant of the distortional component C̄ of the right Cauchy-Green deformation tensor from
Equation (3.21). The dilatational component U(J) can be interpreted as a penalty term
to enforce the incompressibility constraint, and it is computed from the sum

U(J) =
m∑
k=1

Dk(J − 1)2k (3.52)

with the constants Dk and the Jacobian determinant J from Equation (3.5). From the
general forms (3.51) and (3.52), we recover, for instance, the compressible Neo-Hooke
model [137] choosing n = 0, m = 1, and C01 = C11 = 0:

W (C̄, J) = C10(IC̄ − 3) +D1(J − 1)2 . (3.53)

For reasons of consistency with small-strain theory, it holds that C10 = µ/2 and D1 = κ/2,
where µ is the shear modulus and κ denotes the bulk modulus [8, p. 162]. Setting n = 1,
C01 = C2, C11 = 0, C10 = C1, and m = 1 produces the compressible Mooney-Rivlin model
[116, 137, 181, p. 43]

W (C̄, J) = C10(IC̄ − 3) + C01(IIC̄ − 3) +D1(J − 1)2 . (3.54)

Based on (3.51) and (3.52), various other constitutive models can be derived. The constants
Cij and Dk can be determined by parameter identification to experimental measurements,
for instance.

31

3 Structural Problems

For a strain energy density function of the kind (3.50), the second Piola-Kirchhoff stress
tensor reads

S = 2∂W
∂C

= 2∂W̄
∂C̄

∂C̄

∂C
+ 2∂U

∂J

∂J

∂C
, (3.55)

where the derivative ∂J/∂C evaluates to

∂J

∂C
= ∂
√

detC
∂C

= 1
2JC

−1 (3.56)

and the derivative ∂C̄/∂C is computed from

∂C̄

∂C
=
∂
(
J−2/3C

)
∂C

= ∂J−2/3

∂C
C + J−2/3∂C

∂C
= J−2/3

(
I − 1

3C
−1C

)
. (3.57)

3.1.4 Variational Formulation and Linearization
Equation (3.41) stipulates mechanical equilibrium in a pointwise sense and is therefore
commonly referred to as the strong form of dynamic equilibrium. If an approximation dh
instead of the exact solution d is used in (3.41), a residual r will remain, indicating the
error in not fulfilling the balance equation, such that

DivP (dh) + ρXb− ρX v̇h = r . (3.58)

In what follows, the residual r will be reduced to zero in a weak sense by multiplying (3.58)
by a test function η and by integrating over the domain ΩX . The test functions η stem
from the space

H1
0 (ΩX ;Rd) :=

{
η(X) ∈H1(ΩX ;Rd)

∣∣∣η = 0 on Γd,X
}
, (3.59)

which represents the restriction of the space

H1(ΩX ;Rd) :=
{
η(X) ∈ L2(ΩX ;Rd)

∣∣∣∣∣ ∂η∂X ,
∂η

∂Y
,
∂η

∂Z
∈ L2(ΩX ;Rd)

}
(3.60)

to the set of functions vanishing on the Dirichlet boundary Γd,X . As usual, L2(ΩX ;Rd) de-
notes the space of component-wise Lebesgue-measurable functions with integrable squares
over ΩX . Multiplying (3.58) by a test function η ∈H1

0 (ΩX ;Rd) leads us to∫
ΩX

DivP (dh) · η dV +
∫
ΩX

ρX(b− v̇h) · η dV = 0 . (3.61)

Evidently, this equation must also hold for the exact solution d:∫
ΩX

DivP (d) · η dV +
∫
ΩX

ρX(b− v̇) · η dV = 0 . (3.62)

Integrating the first term by parts, applying Gauss’s divergence theorem and introducing
the traction boundary condition (3.43) results in

G(ϕ,η) =
∫
ΩX

P ·Gradη dV −
∫
ΩX

ρX(b− v̇) · η dV −
∫
Γt,X

t̄ · η dA = 0 , (3.63)

32

3.1 Deformable Body Equations

which represents the weak form of linear momentum, also known as the principle of virtual
work. Noting that the first Piola-Kirchhoff stress tensor P can be substituted by P = FS,
the expression P ·Gradη may be recast as

P ·Gradη = S · F T Gradη = S · 1
2
(
F T Gradη + GradT ηF

)
= S · δE , (3.64)

where δE denotes the variation of the Green-Lagrange strain tensor. It is obtained from
the directional derivative

DE · η = d
dα

1
2
(
F T(ϕ+ αη)F (ϕ+ αη)− 1

)∣∣∣∣∣
α=0

= d
dα

1
2
(
(Grad(ϕ+ αη))T Grad(ϕ+ αη)− 1

)∣∣∣∣∣
α=0

= 1
2
(
(Gradη)T F + F T Gradη

)
= δE .

(3.65)

This allows us to reformulate (3.63) as

G(ϕ,η) =
∫
ΩX

S · δE dV −
∫
ΩX

ρX(b− v̇) · η dV −
∫
Γt,X

t̄ · η dA = 0 . (3.66)

In Section 3.1.5, it will be shown that the discretization of the weak form (3.63) or (3.66)
results in a set of nonlinear algebraic equations. For the solution of this system of equations,
we usually employ the Newton-Rapshon procedure by performing a Taylor series expansion
about an already computed approximate solution. In the vicinity of the solution, the
Newton-Rapshon method will converge quadratically. The Taylor expansion corresponds
to a linearization of the weak form about a state of equilibrium ϕ̄. The linear part L(G)ϕ=ϕ̄
of the weak form G(ϕ,η) amounts to

L(G)ϕ=ϕ̄ = G(ϕ̄,η) + DG(ϕ̄,η) ·∆d . (3.67)

For the sake of simplicity, let us assume that the external surface and volume load do not
depend on the state of deformation. In the context of FSI, this assumption is not valid,
however, and the dependence of the external loads on the deformation must be included
in the linearization. The reader is referred to [181, pp. 100–102, 142–148, 185, 65, 66] for
details on this procedure. Under the assumption of deformation-independent loads, the
directional derivative in (3.67) becomes

DG(ϕ̄,η) ·∆d =
∫
ΩX

(DP (ϕ̄) ·∆d) ·Gradη dV . (3.68)

Recalling that P = FS, the linearization of the first Piola-Kirchhoff stress tensor yields

DG(ϕ̄,η) ·∆d =
∫
ΩX

(
Grad ∆d S̄ + F̄ (DS(ϕ̄) ·∆d)

)
·Gradη dV . (3.69)

Quantities marked with a bar refer to the current deformation state ϕ̄. For the linearization
of the second Piola-Kirchhoff stress tensor, we have

DS(ϕ̄) ·∆d = C̄∆Ē . (3.70)

33

3 Structural Problems

Here, C̄ denotes the elasticity tensor, evaluated at ϕ = ϕ̄:

C̄ = 4 ∂2W

∂C∂C

∣∣∣∣∣
ϕ=ϕ̄

. (3.71)

Inserting (3.71) into (3.70) and then into (3.69) leaves us with

DG(ϕ̄,η) ·∆d =
∫
ΩX

(
Grad ∆d S̄ + F̄ C̄∆Ē

)
·Gradη dV , (3.72)

or, more compactly,

DG(ϕ̄,η) ·∆d =
∫
ΩX

Grad ∆dS̄ ·Gradη + δĒ · C̄∆Ē dV . (3.73)

For the variation of the Green-Lagrange strain tensor, it holds that

δĒ = 1
2
(
F̄ T Gradη + GradT ηF̄

)
, (3.74)

whereas the increment of the Green-Lagrange strain tensor takes the form

∆Ē = 1
2
(
F̄ T Grad ∆d+ GradT ∆dF̄

)
. (3.75)

3.1.5 Spatial Discretization
In the FEM, we subdivide the body ΩX into a set of m non-overlapping finite elements
Ω`, ` = 1, . . . ,m such that

ΩX ≈ Ωh =
m⋃
`=1

Ω` . (3.76)

In the general case of an arbitrarily curved geometry, Ωh represents a discrete approxi-
mation of the original geometry ΩX . For each of the finite elements, we interpolate the
geometry by a linear combination of the coordinates X`,i, i = 1, . . . , n` of the n` nodes of
the element:

X`(ξ) =
n∑̀
i=1

Ni(ξ)X`,i . (3.77)

The coefficients Ni(ξ) in front of the nodal coordinates Xi are termed shape functions and
are defined on a standard element Ω̂ in terms of the local coordinates ξ. Depending on the
element topology, the corresponding standard element Ω̂ and hence also the set of shape
functions is different. Appendix A provides an excerpt of commonly used finite elements
such as triangular and quadrilateral elements in the two-dimensional case or tetrahedral
and hexahedral elements in the three-dimensional case. The transformation between the
standard element Ω̂ and the element Ω is characterized by the Jacobian matrix

J` = GradξX`(ξ) = ∂X`

∂ξ
(ξ) =

n∑̀
i=1
X`,i ⊗

∂Ni

∂ξ
(ξ) , (3.78)

which relates the derivatives ∂Ni/∂ξ and ∂Ni/∂X with respect to the local coordinates ξ
and the element coordinates X, respectively. Based on (3.78), we obtain

∂Ni

∂ξ
= ∂X`

∂ξ

∂Ni

∂X`

= JT
`

∂Ni

∂X`

(3.79)

34

3.1 Deformable Body Equations

and the inverse relation
∂Ni

∂X`

= ∂ξ

∂X`

∂Ni

∂ξ
= J−T

`

∂Ni

∂ξ
(3.80)

for i = 1, . . . , n`. Inserting (3.80) into the definition (3.2) for the deformation gradient F`
results in

F` = Gradx` = ∂x`
∂X`

=
n∑̀
i=1
xi ⊗

∂Ni

∂X`

=
n∑̀
i=1
xi ⊗

(
J−T
`

∂Ni

∂ξ

)
. (3.81)

In this work, we shall adopt the isoparametric concept, which employs the same set of
shape functions for the interpolation of the geometry as well as for the interpolation of the
primary field variable. In the case of a structural problem, the primary field variable is the
displacement d. Hence, on element Ω`, the displacement and its gradient are interpolated
as

d(ξ) =
n∑̀
i=1

Ni(ξ)di = N`(ξ)d` and Gradd =
n∑̀
i=1
di ⊗

∂Ni

∂X`

(ξ) . (3.82)

Here, the shape functions were gathered in the shape function vector N` =
(
N1, . . . , Nn`

)
.

Analogous to (3.82), the test function η and the corresponding derivative are interpolated
as

η(ξ) =
n∑̀
i=1

Ni(ξ)ηi = N`(ξ)η` and Gradη =
n∑̀
i=1
ηi ⊗

∂Ni

∂X`

(ξ) . (3.83)

For the internal virtual work, we have

δWi =
∫
ΩX

S · δE dΩ (3.84)

with the variation of the Green-Lagrange strain tensor δE from Equation (3.65). Recalling
the relations for the discrete deformation gradient (3.81) and the discrete gradient of the
test function (3.83), Equation (3.65), applied to a finite element Ω`, is recast as

δE` = 1
2

n∑̀
i=1

(
F T
`

(
ηi ⊗

∂Ni

∂X`

(ξ)
)

+
(
∂Ni

∂X`

(ξ)⊗ ηi
)
F`

)
. (3.85)

Taking advantage of the fact that the strain tensor is symmetric, the nine components
of this second-order tensor can be condensed to Voigt notation, which, in the three-
dimensional case, reads

δEv
` =

(
δE`,11 δE`,22 δE`,33 2δE`,12 2δE`,23 2δE`,13

)T
. (3.86)

It is straightforward to show that Equation (3.85) can be rewritten as

δEv
` =

n∑̀
i=1
Biηi =

(
B1 · · · Bn`

)
︸ ︷︷ ︸

=B`


η1
...
ηn`


︸ ︷︷ ︸

=η`

, (3.87)

35

3 Structural Problems

where the nodal strain-displacement matrices Bi evaluate to

Bi =



F11Ni,X F21Ni,X F31Ni,X

F12Ni,Y F22Ni,Y F32Ni,Y

F13Ni,Z F23Ni,Z F33Ni,Z

F11Ni,Y + F12Ni,X F21Ni,Y + F22Ni,X F31Ni,Y + F32Ni,X

F12Ni,Z + F13Ni,Y F22Ni,Z + F23Ni,Y F32Ni,Z + F33Ni,Y

F11Ni,Z + F13Ni,X F21Ni,Z + F23Ni,X F31Ni,Z + F33Ni,X


(3.88)

and Ni,X indicates the derivative of the ith shape function Ni with respect to X. Note that
the Bi depend linearly on the displacement d as F = I+Gradd holds for the deformation
gradient. Rewriting the second Piola-Kirchhoff element stress tensor S` in Voigt notation
as Sv

` , we eventually approximate the variation δWi of the internal virtual work as

δWi =
∫
ΩX

δE · S dV ≈
m⋃
`=1

n∑̀
i=1
ηT
i

∫
Ω`

BT
` S

v
` dV =

m⋃
`=1

n∑̀
i=1
ηT
i ri(d`) = ηηη

Tr(d) . (3.89)

For the variation of the external virtual work We, we have

δWe = −
∫
ΩX

ρX v̇ · η dV +
∫
ΩX

ρXb · η dV +
∫
Γt,X

t̄ · η dA . (3.90)

The part related to the inertia terms amounts to∫
ΩX

ρX v̇ · η dV ≈
m⋃
`=1

n∑̀
i=1

n∑̀
j=1
ηT
i

∫
Ω`

ρXNiNj dV v̇j = ηηη
TMv̇ , (3.91)

while the contribution from the external surface and body loads is∫
ΩX

ρXb · η dV +
∫
Γt,X

t̄ · η dA

≈
m⋃
`=1

n∑̀
i=1
ηT
i

∫
Ω`

NiρXb dV +
ms⋃
k=1

ns,k∑
j=1
ηT
j

∫
Γ`

Nj t̄ dA = ηηη
Tf .

(3.92)

The assembly procedure for the surface traction operates on the ms element surfaces sub-
jected to a prescribed traction t̄ by summing up the contributions from the ns,k nodes of
the surface Γk. In the state of equilibrium, δWi−δWe = 0. From (3.89), (3.91), and (3.92),
it then follows that

ηηη
T (Mv̇ + r(d)− f) = 0 . (3.93)

Due to the fact that the discrete test function ηηη is arbitrary, we are led to the system of
equations

Mv̇ + r(d)− f = 0 , (3.94)
which is nonlinear in d because of the term r(d). For the linearization, we resort to
Equation (3.73). Using (3.82) and (3.83), we obtain for the first part∫

ΩX

Grad ∆d S̄ ·Gradη dV ≈
m⋃
`=1

n∑̀
i=1

n∑̀
j=1

∫
Ω`

(
∆dj ⊗

∂Nj

∂X`

)
S̄` ·

(
ηi ⊗

∂Ni

∂X`

)
dV

=
m⋃
`=1

n∑̀
i=1

n∑̀
j=1
ηT
i

∫
Ω`

ḠijI dV∆dj = ηηη
TKs∆d ,

(3.95)

36

3.1 Deformable Body Equations

where we introduced the abbreviation

Ḡij =
(
∂Ni

∂X`

)T

S̄`
∂Nj

∂X`

=
(
Ni,X Ni,Y Ni,Z

)S̄11 S̄12 S̄13
S̄21 S̄22 S̄23
S̄31 S̄32 S̄33


Nj,X

Nj,Y

Nj,Z

 (3.96)

with the derivatives of the shape functions Ni,X , Ni,Y , and Ni,Z with respect to X, Y , and
Z, respectively. The matrix Ks comprises only current stresses and is therefore termed
initial stress matrix. For the second part of the linearization (3.73), we have∫

ΩX

δĒ · C̄∆Ē dV =
m⋃
`=1

n∑̀
i=1

n∑̀
j=1
ηT
i

∫
Ω`

B̄T
i D̄B̄j dV ∆dj = η

TKm∆d (3.97)

with the material stiffness matrix Km. Merging the expressions (3.95) for the initial stress
matrix and (3.97) for the material stiffness matrix, we arrive at∫

ΩX

Grad ∆d S̄ ·Gradη + δĒ · C̄∆Ē dV

=
m⋃
`=1

n∑̀
i=1

n∑̀
j=1
ηT
i

∫
Ω`

ḠijI + B̄T
i D̄B̄j dV ∆dj = ηηη

TK∆d .
(3.98)

In this expression, K is termed the tangent stiffness matrix.

3.1.6 Temporal Discretization
In the previous section, we derived the semi-discrete equations of motion (3.93), which are
usually stated as

Md̈ + r(d) = f , (3.99)
where M represents the mass matrix, r symbolizes the internal force vector, and f embodies
the time-dependent external surface and body loads. It is possible to include damping
effects by adding a velocity-dependent damping term Cḋ such that the equations of motion
(3.99) become

Md̈ + Cḋ + r(d) = f . (3.100)
In explicit integration schemes, the equations of motion are evaluated at time t = tj to
obtain the displacement dj+1 at time t = tj+1:

Md̈j + Cḋj + r(dj) = fj . (3.101)

In the central difference method, we make the assumptions

ḋ = 1
2∆t (dj+1 − dj−1) , (3.102)

d̈ = 1
∆t2 (dj+1 − 2dj + dj−1) (3.103)

for the velocity vector ḋ and the acceleration vector d̈. Inserting the above into (3.101)
produces

M (dj+1 − 2dj + dj−1) + ∆t
2 C (dj+1 − dj−1) + ∆t2r(dj) = ∆t2fj (3.104)

37

3 Structural Problems

Rearranging the resulting expression then yields(
M + ∆t

2 C
)

dj+1 = ∆t2 (fj − r(dj)) + ∆t
2 Cdj−1 + M(2dj − dj−1) . (3.105)

Apparently, Equation (3.105) can be solved efficiently by factorizing the term M+∆t/2C.
However, explicit time integration schemes are not unconditionally stable but obey a crit-
ical time step size ∆tcrit. In problems where a high frequency displacement response must
be resolved, the time step size ∆t might already be determined by the physics rather than
the critical time step size ∆tcrit. For problems where this is not the case, the requirement
∆t ≤ ∆tcrit might however render explicit time integration schemes prohibitively expen-
sive. In such cases, it is preferable to resort to implicit time integration schemes which
solve the equations of motion (3.100) at time t = tj+1:

Md̈j+1 + Cḋj+1 + r(dj+1) = fj+1 . (3.106)

A popular representative of the class of implicit integration schemes is the Newmark
method, which assumes

dj+1 = dj + ∆t ḋj + ∆t2
2
(
(1− 2β)d̈j + 2βd̈j+1

)
, (3.107)

ḋj+1 = ḋj + ∆t
(
(1− γ)d̈j + γd̈j+1

)
(3.108)

for the displacement dj+1 and the velocity ḋj+1 at time t = tj+1. By adjusting the param-
eters γ ≥ 1/2 and β ≥ (γ+1/2)2/4, it is possible to control the properties of the Newmark
scheme. Introducing the integration constants

α1 = 1
β∆t2 , α2 = 1

β∆t , α3 = 1− 2β
2β ,

α4 = γ

β∆t , α5 =
(

1− γ

β

)
, α6 =

(
1− γ

2β

)
∆t ,

(3.109)

the expressions

d̈j+1 = α1(dj+1 − dj)− α2ḋj − α3d̈j , (3.110)
ḋj+1 = α4(dj+1 − dj) + α5ḋj + α6d̈j (3.111)

arise. Plugging (3.109) and (3.110)–(3.111) into (3.106) results in

g(dj+1) = M
(
α1(dj+1 − dj)− α2ḋj − α3d̈n

)
+ C

(
α4(dj+1 − dj) + α5ḋj + α6d̈j

)
+ r(dj+1)− fj+1 = 0 ,

(3.112)

which is iteratively solved using the Newton-Raphson method within each time step:(
α1M + α4C + K(dkj+1)

)
∆dk+1

j+1 = −g(dkj+1)
dk+1
j+1 = dkj+1 + ∆dk+1

j+1 .
(3.113)

38

3.1 Deformable Body Equations

Table 3.1: Parameters for different implicit time integration schemes as a function of the
spectral radius ρ∞ [100, p. 585].

Algorithm αm αf β γ

Newmark method [119] 0 0 1
(ρ∞+1)2

3−ρ∞
2ρ∞+2

Bossak-α method [180] ρ∞−1
ρ∞+1 0 1

4 (1− αm)2 1
2 − αm

Hilber-α method [68] 0 1−ρ∞
ρ∞+1

1
4 (1 + αf)2 1

2 + αf

Generalized-α method [30] 2ρ∞−1
ρ∞+1

ρ∞
ρ∞+1

1
4(1− αm + αf)2 1

2 − αm + αf

In the Generalized-α method, the terms in Equation (3.100) are evaluated at an inter-
mediate time tj ≤ tj+1−α ≤ tj+1, where

tj+1−α = tj+1 − α(tj+1 − tj) = (1− α)tj+1 + αtj (3.114)
with the adjustable parameter α. Introducing the parameters αm and αf , the displacement,
the velocity, and the acceleration are evaluated as

dj+1−αf = (1− αf)dj+1 + αfdj ,
ḋj+1−αf = (1− αf)ḋj+1 + αf ḋj ,
d̈j+1−αm = (1− αm)d̈j+1 + αmd̈j .

(3.115)

Based on these approximations, the semi-discrete equations of motion (3.93) become
Md̈j+1−αm + Cḋj+1−αf + r(dj+1−αf) = fj+1−αf . (3.116)

In order to relate the velocity ḋj+1−αf and the acceleration d̈j+1−αm to the displacement
dj+1 as the only unknown, we resort to the Newmark approximations

ḋj+1 = γ

β∆t(dj+1 − dj)−
γ − β
β

ḋj −
γ − 2β

2β ∆td̈j , (3.117)

d̈j+1 = 1
β∆t2 (dj+1 − dj)−

1
β∆t ḋj −

1− 2β
2β d̈j . (3.118)

From this, we obtain [100, p. 574]

ḋj+1−αf = 1− αm

β∆t (dj+1 − dj)−
1− αm

β
ḋj −

1− αm − 2β
2β ∆td̈j

d̈j+1−αm = (1− αf)γ
β∆t2 (dj+1 − dj)−

(1− αf)γ − β
β

ḋj −
(γ − 2β)(1− αf)

2β ∆td̈j .
(3.119)

Table 3.1 summarizes possible choices for the integration parameters in terms of the spec-
tral radius ρ∞. Note that we recover the Newmark method when choosing αm = αf = 0.
The approximations (3.119) are then plugged into (3.116), which then takes the form [100,
p. 575]

g(dj+1) = M
(

1− αm

β∆t2 (dj+1 − dj)−
1− αm

β∆t ḋj −
1− αm − 2β

2β d̈j
)

+ C
(

(1− αf)γ
β∆t (dj+1 − d)− (1− αf)γ − β

β
dj −

(γ − 2β)(1− αf)
2β ∆td̈j

)
+ r(dj+1−αf)− fj+1−αf = 0 .

(3.120)

39

3 Structural Problems

x

Roll ϕ

z

y

Pitch θ

Yaw ψ

Figure 3.2: Euler angles yaw ψ, pitch θ, and roll ϕ.

In each time step, this equation is solved using the Newton-Raphson procedure(
1− αm

β∆t2 M + (1− αf)γ
β∆t C + K(dkj+1)

)
= −g(dkj+1)

dk+1
j+1 = dkj+1 + ∆dk+1

j+1 .

(3.121)

3.2 Rigid Body Equations
If the elasticity of the structure is negligible and the internal stress state is not of interest,
the structure can be considered as a rigid body. The configuration of the body is then
completely described by six degrees of freedom, namely the displacement d of the center
of mass and the Euler angles φ, θ, and ψ representing the orientation of the body-attached
frame with respect to the inertial frame. In the context of (aero-)nautical applications, the
Euler angles are termed yaw ψ, pitch θ, and roll ϕ, see Figure 3.2, and follow a z− y′−x′′
sequence of rotation. In addition to displacement and rotation, the current state of the
body is also characterized by the translational velocity v and the rotational velocity ω.
First, let us consider the translational motion, which is governed by Newton’s second

law of motion or conservation of linear momentum

Dp
Dt (t) = f(t) = m

Dv
Dt (t) , (3.122)

where Dp/Dt denotes the material time derivative of linear momentum, f embodies the
external forces acting on the body, m symbolizes the constant mass of the body, and Dv/Dt
is the acceleration of the center of mass. Accordingly, angular motion is described by the
Euler equations or conservation of angular momentum

Dl
Dt(t) = m(t) = D

Dt(Θ(t)ω(t)) . (3.123)

Here, Dl/Dt represents the time derivative of angular momentum,m is the sum of external
moments acting on the body, Θ is the time-dependent inertia tensor in the inertial frame,
and ω = Θ−1l denotes the angular velocity pseudo-vector. The inertia tensor Θ̂ defined
in the body frame does not depend on time, and it serves to compute the time-dependent
inertia tensor Θ in the inertial frame by virtue of the transformation Θ = RΘ̂RT with the
orthonormal rotation matrix R [6, p. 15]. From the inverse transformation Θ̂ = RTΘR,
it is possible to compute Θ̂ from Θ. In computer implementations, it is often preferable
to employ a quaternion ρ instead of the rotation matrix R to describe the orientations of

40

3.2 Rigid Body Equations

the body. This helps to avoid numerical drift, i.e., a loss of orthonormality of the rotation
matrix, and the gimbal lock phenomenon [6, p. 20, 178, p. 21]. The force f and the moment
m are obtained by integrating the external loads over the body’s surface.
In order to integrate (3.122) and (3.123) in time, it is convenient to transform these equa-

tions into a state space representation, which produces the system of ordinary differential
equations

Dy
Dt = f(y) . (3.124)

Here,
y =

(
x ρ p l

)T
(3.125)

is the state vector, the derivative of which amounts to

Dy
Dt =

(
v 1

2ω ∗ ρ f m
)T

. (3.126)

The expression ω ∗ ρ symbolizes the quaternion product of (0,ω) and ρ [6, p. 20 sq.]. To
constitute a well-posed problem, the initial condition y(t = 0) = y0 needs to be imposed.
Based on the state space description (3.124), we can apply a wide range of different

time integration schemes for ordinary differential equations of first order. Possible choices
are the explicit or implicit Euler scheme or more sophisticated time-adaptive Runge-Kutta
methods.

41

4 Coupled Problems
Having reviewed the fluid and structural equations in Chapter 2 and 3, we will now focus
on the interaction of multiple fields in the framework of a partitioned solution approach.
Of course, the interaction of two fields as in the case of FSI problems will be of particular
interest.
First of all, we will describe the geometrical setting of a general multifield problem and

contrast a monolithic solution procedure with a partitioned approach, which is pursued
in this work. Following that, we will present a generic partitioned solution procedure and
introduce a simple coupled problem suited for a partitioned analysis, which will later serve
to illustrate the integral parts of the solution procedure. As the individual components of
the coupling procedure may have a significant influence on its stability and computational
effort, they will be discussed in sufficient detail. Predictors, for instance, serve to stabilize
the solution process and may reduce the number of implicit iterations by providing an initial
solution at the beginning of each time increment that is closer to the converged solution in
the current time increment than the converged solution from the previous time increment.
By considering the displacement response of a simple mechanical system, the performance
of the various predictors will be investigated; this analysis is expected to provide useful
hints for the application of the predictor schemes also in more complex problems. In order
to transfer the field quantities of interest between possibly non-conforming discretizations,
a vast range of different interpolation schemes can be applied. Based on several benchmark
examples, the interpolation schemes presented in this work will be compared regarding
their accuracy and computational efficiency. Subsequently, we will briefly recapitulate
different convergence criteria that are used to verify whether the coupling algorithm has
converged. Last but not least, several convergence acceleration schemes are proposed and
formulated in a manner that allows for a seamless integration into the generic partitioned
solution procedure. Also here, a simple coupled problem will be studied to give a general
impression of the performance of the different schemes.

4.1 Governing Equations
In a general multifield problem, we consider a finite number of separate open subdomains
Ω1, . . . , Ωm such that

Ω̄ =
m⋃
i=1

Ω̄i (4.1)

holds for the closure Ω̄ := Ω ∪ ∂Ω of Ω. Multifield problems can be classified into surface-
or geometrically coupled and volume- or materially coupled problems [110, p. 27], see
Figure 4.1. In surface-coupled problems, distinct subdomains Ωi, Ωj do not overlap each
other, i.e., Ωi ∩ Ωj = ∅ for i 6= j, but only share a common boundary Γi,j = Γj,i :=
Γi ∩ Γj 6= ∅, where Γi := ∂Ωi denotes the boundary of the domain Ωi. In volume-coupled
problems, in contrast, distinct subdomains Ωi, Ωj may overlap each other in part or in full,

42

4.1 Governing Equations

Ω1
Ω2

Ωi

Ωm

Γ := ∂Ω

Γi,m

Γ1,m

Γ1,2

Γ2,m Γi,2

(a)

Ωm

Ω1

Ω2

Ωi

Ω2,i

Ω2,m

Ω1,m

Ω1,2

(b)

Figure 4.1: Comparison of (a) surface- or geometrically coupled and (b) volume- or materially
coupled problems.

i.e., Ωi,j = Ωj,i := Ωi ∩ Ωj 6= ∅ for i 6= j. For the sake of notation, we introduce the term
interface and the symbol Ii,j to denote the intersection Γi,j of the boundaries Γi, Γj, i 6= j
in a surface-coupled problem or the intersection Ωi,j of the domains Ωi, Ωj, i 6= j in a
volume-coupled problem.
A prominent example of surface-coupled problems are FSI problems, where the fluid

flow causes a deformation of the mechanical structure, which in turn also leads to a change
in the surrounding fluid flow. Further examples are acoustic-structure interaction1 [109,
p. 4] or purely mechanically coupled problems arising in contact mechanics. A typical
example of volume-coupled problems are thermo-mechanically coupled problems, where the
change in temperature leads to a thermal expansion of the mechanical structure, which
in turn influences the thermal properties of the structure. Other applications include
thermoelectricity (involving the interaction of heat conduction and electrodynamics) or
reaction-diffusion systems, which are characterized by the interaction of chemical reactions
and diffusive transport [109, p. 4].
Besides the classification into volume- and surface coupled problems, multifield problems

can also be categorized either as weakly or one-way coupled problems or as strongly or
two-way coupled problems. In weakly coupled two-field problems, a change in the first field
leads to a change in the second field, whereas the influence of the second field on the first
field is negligible. In contrast, the fields in a strongly coupled two-field problem interact
with each other, i.e. a change in the first field causes the second field to change, which in
turn affects the first field again. If more than two fields are involved, the overall problem
may comprise weakly- as well as strongly coupled two-field problems. The terms weak
and strong hence always refer to the mutual interaction of two fields. Strongly coupled
problems are considerably more difficult to solve and are therefore mainly focused in this
work.

1Precisely speaking, acoustic-structure interaction also involves the interaction of a fluid and a mechanical
structure. However, the governing equations are different – while acoustic problems are governed by
the Helmholtz equation, flow problems are described by the more difficult Navier-Stokes equations.

43

4 Coupled Problems

For the interaction ofm fields, the coupled multifield problem may be stated as a discrete
system of coupled nonlinear equations

gi(t,u1,u2, . . . ,ui, . . . ,um) = 0 on Ωi , i = 1, . . . ,m , (4.2)

where gi is a discrete nonlinear field equation defined on Ωi, ui is the corresponding state
variable, and t denotes time. Introducing g :=

(
g1 . . . gm

)
and u :=

(
u1 . . . um

)
, the

coupled problem (4.2) can be more compactly written as

g(u) = 0 on Ω . (4.3)

In a monolithic approach, Equation (4.3) is solved by applying a Newton-Raphson pro-
cedure using u0 as an initial guess and iterating for k = 0, 1, 2, . . .:

∂g
∂u

∣∣∣∣∣
u=uk

∆uk = −g
(
uk
)

uk+1 = uk + ∆uk+1 ,

(4.4)

where the Jacobian matrix Jg := ∂g/∂u is computed from

∂g
∂u

=


∂g1
∂u1

· · · ∂g1
∂um...

∂gm

∂u1
· · · ∂gm

∂um

 . (4.5)

Remarkable advantages of this approach are its good stability characteristics and quadratic
convergence rates in the vicinity of the solution u∗ which satisfies g(u∗) = 0. However,
the computation of the cross-derivatives in the off-diagonal entries in the Jacobian ma-
trix is complicated, and the resulting discrete system of equations may become large and
expensive to solve. Moreover, the monolithic approach is rather inflexible as customized
solvers are required for each particular coupled problem. Hence, it is out of the question
to reusing existing specialized and efficient black-box solvers.
Partitioned solution approaches primarily aim at circumventing this lack of flexibility of

the monolithic approach. By considering each of the subproblems separately and exchang-
ing the relevant field quantities in an iterative manner within each time increment, the
partitioned approach enables the use of different spatial and temporal discretizations for
each of the subproblems, which entails the reuse of available specialized and fast black-box
solvers. This does not only boost software modularity and reusability, but also promotes
performance and the efficient use of computational resources. Yet, the partitioned approach
also comes with some difficulties. More specifically, the solution procedure may become
unstable – or a high number of implicit iterations within a time increment may render the
approach prohibitively expensive. To tackle these problems, several predictor schemes are
proposed in this work, providing a reasonable initial iterate close to the converged solution
before entering the implicit iteration. To further improve the stability of the solution pro-
cess and accelerate convergence, the use of an appropriate convergence acceleration scheme
is indispensable. Numerous convergence acceleration schemes will therefore be discussed
in the present thesis.

44

4.2 Generic Partitioned Coupling Algorithm

4.2 Generic Partitioned Coupling Algorithm
In a partitioned solution approach, the nonlinear equations (4.2) are solved separately,
and the relevant field quantities are exchanged iteratively within a time increment across
the interface. A generic staggered solution procedure, which applies to surface- as well
as volume-coupled problems, is sketched in Algorithm 1. The term staggered reflects the

1: function PartitionedSolutionAlgorithm(initial solution u0, start time t0, final
time T , initial time increment ∆tj, convergence tolerance ε)

2: j := 0
3: while tj ≤ T do
4: k := 0
5: ũkj+1 := P(uj,uj−1, . . .) . Predictor
6: while true do
7: ukj+1 := Sm

(
· · · S2

(
I1,2

(
S1
(
ũkj+1

))))
. Subfield solution, interpolation

8: rkj+1 := ukj+1 − ũkj+1
9: if ‖rkj+1‖p ≤ ε then . Convergence check

10: uj+1 := ukj+1,U(:, j) := uj+1
11: break
12: end if
13: ũk+1

j+1 := A
(
ukj+1,uk−1

j+1 , . . . , rkj+1, rk−1
j+1 , . . .

)
. Convergence acceleration

14: k := k + 1
15: end while
16: tj+1 := tj + ∆tj
17: j := j + 1
18: end while
19: return U . Converged solutions
20: end function

Algorithm 1: Generic partitioned solution algorithm.

fact that the field problems are solved in a sequential manner, as opposed to solving them
in parallel [25, p. 1121]. In the former case, the most recently computed field quantities
can be employed for the solution of each of the subfields, whereas quantities from the
previous iteration must be used in the latter case to permit a parallel execution of the
subproblem solvers. Due to the fact that the subfield solvers work simultaneously and
do not have to wait for each other, parallel schemes have a great potential with regard
to saving computational cost. However, they are also prone to instability and require
a potentially higher number of iterations per time increment, which may even wipe out
their advantages regarding the computational effort. Yet, parallel schemes are still an
active research topic, and the interested reader is referred to the recent publications in this
field [25, 111, 163]. Besides staggered and parallel schemes, we furthermore distinguish
between implicit and explicit schemes. In an implicit scheme, the relevant field quantities
are exchanged multiple times per time increment, whereas an explicit scheme limits the
number of iterations in a time increment to one – in other words, the implicit iteration
within a time increment is omitted.
Let us now return to Algorithm 1. Prior to starting the solution procedure, we need

to provide an initial value u0. At the beginning of each time increment, a predictor P

45

4 Coupled Problems

Table 4.1: Parameters for the mass-spring-damper system depicted in Figure 4.2.

Parameter Values

Masses LF case: m1 = 2 kg, m2 = 8 kg, m3 = 4 kg
HF case: m1 = 0.2 kg, m2 = 0.8 kg, m3 = 0.4 kg

Spring constants k1 = 500 N/m, k2 = 240 N/m, k31 = 180 N/m, k32 = 120 N/m2,
k4 = 350 N/m

Damping coefficients c1 = 0.015 Ns/m, c2 = 0.1 Ns/m, c3 = 0.08 Ns/m, c4 = 0.05 Ns/m

Forces Fi(t) = A1i sin(2πf1it) sin(2π(Bi + A2i sin(2πt))t)
A11 = 50 N, f11 = 1.1 Hz, B1 = 4 Hz, A21 = 0.05 Hz
A12 = 8.5 N, f12 = 2.4 Hz, B2 = 4 Hz, A22 = 0.13 Hz
A13 = 16 N, f13 = 1.6 Hz, B3 = 10 Hz, A23 = 0.1 Hz

is applied to generate a reasonable initial solution ũ0
j+1 for the current time increment

tj+1. Following that, we enter the iterative solution procedure and supply the solution
ũkj+1 to the first subfield solver S1. The result is then passed over to the interpolation
operator I1,2 to interpolate the result from the surface discretization Γ1,h in the case of a
surface-coupled problem or from the volume discretization Ω1,h in the case of a volume-
coupled problem to the discretization Γ2,h or Ω2,h, respectively. The procedure is repeated
until the last subfield solver Sm delivers the solution ukj+1. From the difference between
the solutions ukj+1 and ũkj+1, we compute the residual rkj+1. If the p-norm ‖rkj+1‖p of the
residual undershoots a predefined convergence tolerance ε, the algorithm is considered to
be converged, and the most recent solution ukj+1 is stored in the jth column of the solution
matrix U before we proceed to the next time increment tj+1 = tj + ∆tj. Certainly, also
other convergence criteria or combinations thereof can be employed to check convergence.
If the coupling algorithm is not yet converged, a convergence acceleration scheme A is
applied to improve the solution ukj+1 and to compute an updated solution ũk+1

j+1 .

4.3 Illustrative Coupled Problem
Before addressing the constituent parts of the generic coupling algorithm depicted in Al-
gorithm 1, we will discuss a simple coupled problem that can be analyzed using the parti-
tioned approach. Later, it will serve to illustrate the predictor and convergence acceleration
schemes presented in the forthcoming sections.
Let us consider the simple three-degree-of-freedom mass-spring-damper system depicted

in Figure 4.2. Each of the masses is connected to the fixed wall or its neighboring mass by
a spring and a damper. The first, second, and fourth spring are linear springs, while the
third spring is nonlinear and exhibits the force-displacement relationship Fs3 = k31(d3 −
d2)+k32(d3−d2)2. The dampers are all linear; hence, the resulting damping force depends
linearly on the velocity. In addition, every mass mi is subjected to a time-dependent
force Fi(t). All relevant parameters of the system are listed in Table 4.1. To adjust the
frequency of the displacement response, two different sets of masses are chosen. The first
set of masses results in a low-frequency (LF) displacement response, whereas each mass

46

4.3 Illustrative Coupled Problem

d1

k1

m1

c1

F1(t)

d2

k2

m2

c2

F2(t)

d3

k31, k32

m3

c3

F3(t)
k4

c4

dA,1, ḋA,1 dA,2, ḋA,2 dA,3, ḋA,3
A

B
fB,1 fB,2 fB,3

dB,1, ḋB,1 dB,2, ḋB,2 dB,3, ḋB,3

fA,1 fA,2 fA,3

Figure 4.2: Mass-spring-damper system and partitioned subsystems A and B.

is reduced by a factor of s = 10 in the second set of masses to generate a high-frequency
(HF) displacement response.

The system is amenable to an analysis by means of the partitioned approach if the
system is, for instance, split into the subsystem A including the springs and dampers and
the subsystem B consisting of the masses m1, m2, and m3 subject to time-, displacement-,
and velocity-dependent external forces. Establishing the equations of dynamic mechanical
equilibrium leads to

fA,1 = −k1dA,1 − c1ḋA,1 + k2(dA,2 − dA,1) + c2(ḋA,2 − ḋA,1) + F1(t)
fA,2 = −k2(dA,2 − dA,1)− c2(ḋA,2 − ḋA,1) + k31(dA,3 − dA,2) + k32(dA,3 − dA,2)2

+ c3(ḋA,3 − ḋA,2) + F2(t)
fA,3 = −k31(dA,3 − dA,2)− k32(dA,3 − dA,2)2 − c3(ḋA,3 − ḋA,2)− k4dA,3 − c4ḋA,3 + F3(t)

(4.6)
for subsystem A and

m1d̈1 = fB,1

m2d̈2 = fB,2

m3d̈3 = fB,3

(4.7)

47

4 Coupled Problems

for subsystem B. In matrix form, this is more compactly recast as

fA =



−k1dA,1 − c1ḋA,1 + k2(dA,2 − dA,1)
+c2(ḋA,2 − ḋA,1) + F1(t)

−k2(dA,2 − dA,1)− c2(ḋA,2 − ḋA,1) + k31(dA,3 − dA,2)
+k32(dA,3 − dA,2)2 + c3(ḋA,3 − ḋA,2) + F2(t)

−k31(dA,3 − dA,2)− k32(dA,3 − dA,2)2

−c3(ḋA,3 − ḋA,2)− k4dA,3 − c4ḋA,3 + F3(t)


= fA(t,dA, ḋA) (4.8)

for subsystem A and

Md̈B =

m1 0 0
0 m2 0
0 0 m3


d̈B,1d̈B,2
d̈B,3

 =

fB,1fB,2
fB,3

 = fB (4.9)

for subsystem B. At the interface, the conditions

dA = dB , ḋA = ḋB , and fA = fB (4.10)

must hold. In subsystem B, the initial conditions

dB(t = 0) = dB,0 , ḋB(t = 0) = ḋB,0 , and d̈B(t = 0) = d̈B,0 (4.11)

apply. Following the partitioned solution strategy outlined in Algorithm 1, the displace-
ment dA = dB and the velocity ḋA = ḋB are first fed to subsystem A, which evaluates
the displacement- and velocity-dependent spring and damper forces as well as the time-
dependent forces to produce the force fA = fA(t,dA, ḋA). Subsequently, the force fB = fA
is passed over to subsystem B, which computes the displacement dB and the velocity
ḋB under the action of the external force fB. In each time increment, this procedure is
repeated until the subsystems are in equilibrium with each other.
In subsystem B, we choose the Newmark scheme presented in Section 3.1.6 to advance

in time. Equation (3.112) reduces to a linear system, which can easily be solved due to
the diagonality of the mass matrix M:

α0MdB,j+1 = fB,j+1 + M
(
α0dB,j + α2ḋB,j + α3d̈B,j

)
. (4.12)

The low- and high frequency displacement response of the system are shown in Figure 4.3.
At t = 0 s, dB,0,1 = 0 m, dB,0,2 = 0.5 m, dB,0,3 = 0.75 m, ḋB,0,i = 0 m/s, and d̈B,0,i =
fB,i(t = 0 s, dB,0,i, ḋB,0,i)/mi, i = 1, . . . , 3 are chosen as initial conditions. Obviously, the
time signal is sufficiently complex to allow for a sound comparison of the various predictor
and convergence acceleration schemes and allude to differences in their performance.

4.4 Predictors
Clearly, a reasonable initial value u0

j+1 at the beginning of the current time increment
tj+1 will reduce the number of implicit iterations and, hence, have a notable effect on the
efficiency of the entire solution procedure. To this end, we employ a predictor P that
extrapolates the solutions uj,uj−1, . . . from the previous time steps tj, tj−1, . . . to compute
an initial solution u0

j+1 for the current time increment tj+1.

48

4.4 Predictors

−1.5
−1
−0.5

0
0.5

1
1.5

0 2 4 6 8 10

D
isp

la
ce
m
en
t
d
i/

m

d1 d2 d3

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

0 2 4 6 8 10

D
isp

la
ce
m
en
t
d
i/

m

Time t/s

Figure 4.3: LF (top) and HF (bottom) displacement response of the mass-spring-damper
system from Figure 4.2.

4.4.1 Polynomial Predictors
Polynomial predictors are based on the assumption that the solution u exhibits a poly-
nomial behavior over time. From the solutions uj,uj−1, . . . in the previous time steps
tj, tj−1, . . ., a polynomial predictor of order p determines the ith component u0

j+1,i of the
initial guess u0

j+1 from

u0
j+1,i =

min(p,j)∑
l=0

cj−l t
l
j+1 , (4.13)

where the coefficients cj, . . . , cj−min(p,j) are obtained from


cj
cj−1
...

cj−min(p,j)

 =


1 tj · · · t

min(p,j)
j

1 tj−1 · · · t
min(p,j)
j−1

...
1 tj−min(p,j) · · · t

min(p,j)
j−min(p,j)



−1

︸ ︷︷ ︸
=V −1


uj,i
uj−1,i

...
uj−min(p,j),i

 . (4.14)

V −1 represents the inverse of the Vandermonde matrix V and can cheaply be computed
explicitly as seldom p > 3. The term min(p, j) in the upper bound of the summation in
(4.13) ensures that, in the first time increments, not more solutions than available at that
time are taken into account. In the case that equidistant time increments ∆t = const. are
used, Equation (4.13) produces the predictors listed in Table 4.2 up to an order p = 3.
Note that a predictor of order j is applied in the case j < p. Predictors up to second
order usually provide good initial solutions; higher-order polynomial prediction should be

49

4 Coupled Problems

Table 4.2: Polynomial predictors up to an order p = 3 for ∆t = const.

Order p Polynomial predictor

0 u0
j+1 = uj

1 u0
j+1 = 2uj − uj−1

2 u0
j+1 = 3uj − 3uj−1 + uj−2

3 u0
j+1 = 4uj − 6uj−1 − 20

3 uj−2 − uj−3

used with due care, as the predicted values may become highly inaccurate due to Runge’s
phenomenon [139].
A polynomial predictor can also be combined with a linear extrapolation scheme. As-

suming an equidistant time increment ∆t = const., we interpolate the results uj, uj−1, and
uj−2 from the previous three time increments tj, tj−1, and tj−2 by a polynomial of second
order and use the tangent at uj for linear extrapolation to t = tj+1, which leads us to

u0
j+1 = 5

2uj − 2uj−1 + 1
2uj−2 , (4.15)

which has also been successfully applied in [36], for instance.

4.4.2 Predictors Based on Taylor Series Expansions
While polynomial predictors are only based on the solutions for the primary field variable
from the previous time increments, predictors constructed from Taylor series expansions
may enhance the quality of the prediction by taking additional physical considerations
into account. For instance, in addition to the interface displacement d, also the interface
velocity ḋ and acceleration d̈ can be evaluated as a result of the solution of the structural
subproblem. From the Taylor series expansion about the previous displacement dj, we
obtain the following approximation for the displacement dj+1 in the time increment tj+1:

dj+1 ≈ dj + ∆tḋj + ∆t2
2 d̈j + (4.16)

Truncating this Taylor series after the second term leads to the first-order predictor [130,
p. 1218, 56, p. 52]

d0
j+1 = dj + ∆tḋj . (4.17)

A second-order predictor is obtained by truncating the series expansion (4.16) after the
acceleration term [131, p. 3150, 56, p. 52]:

d0
j+1 = dj + ∆tḋj + ∆t2

2 d̈j . (4.18)

4.4.3 Adaptive Predictors
The above predictors compute the initial solution from a linear combination of the primary
field quantity and its derivatives from previous time steps, in which the coefficients are fixed
throughout time. Adaptive predictors, in contrast, allow the coefficients to vary during the

50

4.4 Predictors

simulation and, hence, may improve the quality of the prediction. To this end, the Taylor
series-based predictors (4.17) and (4.18) are enhanced by premultiplying each of the terms
by a constant, which is adjusted as we march forward in time. For instance, an adaptive
second-order predictor reads [56, p. 52 sq.]

d0
j+1 = C1dj + C2∆tḋj + C3

∆t2
2 d̈j . (4.19)

The coefficients Ci are determined by evaluating this expression at time tj and by mini-
mizing the expression

argmin
Ci

∥∥∥∥∥C1dj−1 + C2∆tḋj−1 + C3
∆t2
2 d̈j−1 − dj

∥∥∥∥∥
2
, (4.20)

in which all kinematical quantities are known. In this context, it is assumed that the
coefficients Ci do not vary much from one time step to another, Then, (4.19) generates a
reasonable initial displacement solution d0

j+1 although the coefficients Ci are calculated by
taking only quantities from previous time increments into account.

4.4.4 Comparison of Predictors
Based on the simple mechanical system introduced in Section 4.3 and the LF and HF
displacement response depicted in Figure 4.3, we aim to assess the performance of the
predictor schemes presented above. To investigate the predictor schemes in isolation, the
displacement response is precomputed and afterwards the predictor scheme is applied to
determine the prediction error in the jth time step from

ej+1 =

∥∥∥d0
j+1 − dj+1

∥∥∥
2

‖dj+1‖2
. (4.21)

To obtain a scalar value characterizing the prediction error over the whole time range, we
accumulate the errors ej+1 in each time increment for the n time increments j = 0, . . . , n−1
and take the arithmetic mean of the resulting sum such that

e = 1
n

n−1∑
j=0

ej+1 = 1
n

n−1∑
j=0

∥∥∥d0
j+1 − dj+1

∥∥∥
2

‖dj+1‖2
. (4.22)

Results for the LF and the HF case are shown in Figure 4.4 and 4.5. In general, both
diagrams indicate the same tendencies regarding the performance of the predictor schemes.
As expected, all predictor schemes produce lower prediction errors e for decreasing time
step sizes ∆t. At least for the example considered here, a polynomial predictor of order
p = 0 or p = 1 performs worse than the higher-order polynomial predictor of order p = 2.
Except for large time step sizes, the linear extrapolation predictor (4.15) exhibits higher
prediction errors than the polynomial predictor of second order. The Taylor series-based
predictor of order p = 1 performs better than the polynomial predictors or the linear ex-
trapolation predictor for larger time step sizes; however, as the time step size decreases,
the first-order Taylor series-based predictor is outperformed by the second-order polyno-
mial predictor, and the difference to the linear extrapolation predictor becomes marginal.

51

4 Coupled Problems

10−6

10−5

10−4

10−3

10−2

10−1

100

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Pr
ed
ic
tio

n
er
ro
r
e

Time step size ∆t/s

Polynomial predictor p = 0
Polynomial predictor p = 1
Polynomial predictor p = 2

Linear extrapolation predictor
Taylor series-based predictor p = 1
Taylor series-based predictor p = 2

Adaptive predictor p = 1
Adaptive predictor p = 2

Figure 4.4: Comparison of the performance of the predictor schemes for the LF displacement
response.

10−5

10−4

10−3

10−2

10−1

100

0 0.005 0.01 0.015 0.02 0.025

Pr
ed
ic
tio

n
er
ro
r
e

Time step size ∆t/s

Polynomial predictor p = 0
Polynomial predictor p = 1
Polynomial predictor p = 2

Linear extrapolation predictor
Taylor series-based predictor p = 1
Taylor series-based predictor p = 2

Adaptive predictor p = 1
Adaptive predictor p = 2

Figure 4.5: Comparison of the performance of the predictor schemes for the HF displacement
response.

52

4.5 Interpolation Schemes

Γi,h

Γ

Γj,h

(a)

Ωi,h

Ωj,h

Ω

(b)

Figure 4.6: Non-conforming (a) boundary and (b) planar discretizations.

Throughout the whole range of considered time step sizes, the Taylor series-based predictor
of order p = 2 yields a high-quality prediction and outperforms all previously mentioned
predictor schemes. To further reduce the prediction error of the Taylor series-based predic-
tors, we also investigate the adaptive variants of these predictors. The adaptive first-order
predictor does not produce significantly better results than the first-order Taylor series-
based predictor. For smaller time step sizes, the performance of the adaptive predictor
is slightly better, while the opposite is true for larger time step sizes. In contrast, the
adaptive predictor of order p = 1 may also lead to rather unsatisfactory results, especially
for the HF displacement response. The adaptive predictor of second order, however, pro-
duces high-quality predictions throughout the entire range of considered time step sizes,
and it is capable of reducing the already small prediction error of the second-order Taylor
series-based predictor even further.
Although only a simple example has been considered in the comparison of the presented

predictor schemes, it can be expected that the findings regarding their performance also
apply to more complex problems involving a higher number of degrees of freedom. This
is due to the fact that all considered predictor schemes operate on a degree-of-freedom
basis and can hence be expected to obey a similar behavior independent of the number of
degrees of freedom.

4.5 Interpolation Schemes
Since the spatial discretizations Γi,h and Γj,h in the case of a surface-coupled problem or Ωi,h

and Ωj,h in the case of a volume-coupled problem are non-conforming in the general case, an
interpolation scheme Ii,j needs to be applied to interpolate the quantities u(p1), . . . ,u(pn)
at the points p1, . . . ,pn on the source discretization to the query points q1, . . . , qm on the
target discretization. Figure 4.6a depicts a typical scenario in a surface-coupled problem,
where the boundaries Γi and Γj were discretized by non-conforming meshes. A situation
representative for a two-dimensional volume-coupled problem is sketched in Figure 4.6b,
where the coincident planar domains Ωi and Ωj were discretized by meshes of different
size. In what follows, we consider the interpolation of a generic coupling quantity u. In
the case of an FSI problem, u equals the displacement d if the interpolation is performed

53

4 Coupled Problems

from the structural to the fluid domain – or the traction t if the interpolation is applied
in the opposite direction.
Interpolation schemes can be categorized into mesh-independent and mesh-based in-

terpolation schemes. The former group does not use any topological information of the
spatial discretizations, whereas the interpolation schemes falling in the latter category aim
to improve the quality of the interpolation by taking the mesh information into account.
Consequently, access to specific mesh data structures is not required for mesh-independent
interpolation schemes such as nearest neighbor interpolation, barycentric interpolation,
inverse distance weighting, or interpolation by means of radial basis functions; only the
evaluation points p1, . . . ,pn on the source discretization and the query points q1, . . . , qm
on the target mesh are needed. Mesh-based interpolation schemes, in contrast, require
the topological information from the computational mesh, and they need to be tailored to
the data structure of each specific solver. However, as will be discussed in Section 4.5.7
in further detail, the improved interpolation accuracy usually outweighs this additional
effort.
In addition to mesh-independent and mesh-based methods, interpolation schemes can

also be classified into consistent and conservative schemes [164, p. 2421, 57, p. 683 sq.]. The
difference between consistent and conservative schemes is best explained if the interpolation
is written as a matrix-vector product

u(q1)
...

u(qm)

 =


W11 · · · W1n
...

Wm1 · · · Wmn


︸ ︷︷ ︸

=W


u(p1)

...
u(pn)

 (4.23)

involving the interpolation matrix W ∈ Rm×n. An interpolation method is termed con-
sistent if the constant field u(pl) = ū ∀ l = 1, . . . , n is retained by the interpolation such
that u(qk) = ū ∀ k = 1, . . . ,m. For this condition to hold, the sum of the entries in each
row of W must be equal to one, in other words

n∑
l=1

Wkl = 1 ∀ k = 1, . . . ,m . (4.24)

By contrast, a conservative interpolation scheme retains the sum of quantities such that∑n
l=1 u(pl) = ∑m

k=1 u(qk). In this case, the sum of the entries in each column of W are
equal to one:

m∑
k=1

Wkl = 1 ∀ l = 1, . . . , n . (4.25)

Consistent interpolation schemes are typically used for the interpolation of continuous fields
such as displacement fields or quantities scaled by length, area, or volume like traction, flux,
or density. Conservative interpolation schemes, on the other hand, are applied for integral
values such as forces or currents. In an FSI problem, the use of consistent interpolation
schemes is appropriate if the displacement d and the traction t are chosen as coupling
quantities. If the fluid solver integrates the traction on the coupling interface on its own,
a conservative interpolation scheme is appropriate to interpolate the resulting force f . It
should be emphasized at this point that a consistent interpolation scheme should usually
be preferred, as conservative interpolation schemes may introduce high local errors. Due

54

4.5 Interpolation Schemes

to this fact, consistent interpolation schemes are chosen for all the numerical examples
presented in Chapter 6 and 7. The interpolation schemes presented in the remainder of this
section are primarily constructed as consistent interpolation schemes; the corresponding
conservative interpolation scheme, which is essentially shown for reasons of completeness,
can often be derived from the consistent version.

4.5.1 Nearest Neighbor Interpolation
A simple yet effective and often-used interpolation scheme is the nearest neighbor inter-
polation scheme depicted in Algorithm 2. Given a query point q, the set of source points

1: function NearestNeighborInterpolation(set of source points P = {p1, . . . ,pn},
function values u(p1), . . . ,u(pn), query point q)

2: Find pj ∈ {p1, . . . ,pn} such that d(pj, q) becomes minimal
3: return u(q) := u(pj)
4: end function

Algorithm 2: Nearest neighbor interpolation.

P = {p1, . . . ,pn} is searched for the point pj, for which the distance metric d(pj, q)
assumes a minimum. For the scenarios considered in this work, the Euclidean norm
d(pj, q) := ‖pj − q‖2 is the most natural choice. Once the nearest neighbor pj has been
determined, the function value u(q) is set to the function value u(pj). It is obvious that
the quality of the interpolation increases with an increasing number of source points n.
Different strategies may be employed to determine the nearest neighbor pj of a query

point q. A naive approach is to traverse the point set {p1, . . . ,pn} in a sequential fashion,
evaluate the distance metric d(pl, q) for each source point pl, and to check whether d(pl, q)
undershoots any previously determined minimum distance. For the application in other
interpolation schemes, it is useful to generalize the idea of the nearest neighbor search
to the problem of determining the k-nearest neighbors. A possible implementation based
on a naive linear search is outlined in Algorithm 3. First, we initialize dmax := ∞ and
R := ∅. Looping through the source points {p1, . . . ,pn}, the distance d(pl, q) is calculated
for each point pl. If d(pl, q) < dmax, the point pl is added to the set of k-nearest neighbor
candidates R such that all elements in R are sorted by their distance to the query point
q in ascending order. If the number of k-nearest neighbor candidates in R exceeds k, the
source point with the greatest distance is dropped from the set. Next, the distance dmax
is set to the greatest distance of a source point in R from the query point q. Then, the
cycle starts over again until all n source points have been examined.
Especially if a large number of query points is considered, the effort associated to the

linear k-nearest neighbor search becomes prohibitively high – and it is wise to resort to
more effective search strategies, which are usually based on space-partitioning methods.
Probably one of the simplest is the k-d tree, first proposed in [18], which can, for instance,
be generated by means of Algorithm 4. The application of a k-d tree to partition a two-
dimensional space for an effective nearest-neighbor search is illustrated in Figure 4.7 for
n = 6 source points P = {p1, . . . ,p6}. Given a query point q, the k-d tree is then traversed
to find the nearest neighbor in the source point set P . The generic procedure is outlined
in Algorithm 5. Initially, N is the root node of the k-d tree, the tree level is set to ` := 1,

55

4 Coupled Problems

1: function LinearKNearestNeighborSearch(set of source points P = {p1, . . . ,
pn}, query point q)

2: dmax :=∞, R := ∅
3: for l = 1 : n do
4: if d(pl, q) < dmax then
5: R := R∪ {pl}
6: Sort R such that ∀pi,pj ∈ R it holds that d(pi, q) ≤ d(pj, q) if i < j
7: if card(R) > k then
8: Delete the last element of R
9: dmax := maxpi∈R d(pi, q)
10: end if
11: end if
12: end for
13: return R
14: end function

Algorithm 3: Linear k-nearest neighbor search.

1: function KdTree(set of source points P = {p1, . . . ,pn}, tree level `)
2: Determine axis a := mod(`− 1, d) + 1 for sorting
3: Sort points in P along axis a
4: Determine the median p̃ of P
5: Split P at the median p̃ to form a left subset Pleft and a right subset Pright
6: Increase the tree level ` := `+ 1
7: Create a tree node N
8: if Pleft 6= ∅ then
9: Create left child node N .left := KdTree(Pleft, `)
10: end if
11: if Pright 6= ∅ then
12: Create right child node N .right := KdTree(Pright, `)
13: end if
14: return N
15: end function

Algorithm 4: Function KdTree for the recursive setup of a k-d tree in d-dimensional space.

56

4.5 Interpolation Schemes

1

2

2

p1

p3

p6

p2

p4

p5

p1

p2

p4 p1 p6

p3

Figure 4.7: k-d tree.

for the set of nearest neighbors R := ∅, and the maximum distance for a point pl ∈ P to
be considered as a candidate for the k-nearest neighbors is initialized to dmax :=∞. First,
it is necessary to determine the axis a along which the source points have been sorted
on the given tree level `. Next, we compute the distance d(pl, q) between the point pl
associated to the tree node N and the query point q. If d(pl, q) < dmax, the point pl
is added to the current set of k-nearest neighbor candidates R such that the elements in
R are sorted by their distance to the query point q in ascending order, i.e., the element
closest to q comes first. If the number of candidates in R exceeds k, then the element
farthest away from q is discarded from the set. Furthermore, the distance dmax is updated
to the maximum distance of a source point in R to q. Then, we calculate the distance d′
between pl and the query point q along axis a. If d′ < 0, then the left branch is the closer
one, whereas d′ ≥ 0 indicates that the right branch should be traversed first. Subsequently,
the tree level ` is incremented – and the closer branch, if not empty, is traversed. The
farther branch only needs to be investigated if it is non-empty and if the hypersphere of
radius dmax intersects the splitting hyperplane. The procedure is graphically visualized
in Figure 4.8 for the simple example with n = 6 source points, depicted in Figure 4.7,
and the search for a single nearest neighbor, i.e., k = 1. In the first step illustrated in
Figure 4.8a, the tree level is ` = 1 and the distance dmax (initially set to dmax := ∞) is
updated to dmax := ‖p1 − q‖2. Since the sphere surrounding q intersects the left half-
plane, the left branch of the k-d tree from Figure 4.7 must be investigated. As sketched
in Figure 4.8b, we compute the distance d(p2, q) between p2 and the query point q and
update dmax := d(p2, q) as the current best distance. Descending further down the left
branch of the k-d tree, as shown in Figure 4.8c, the points p4 and p5 are discarded due
to the fact that the point p2, which has already been visited, exhibits a closer distance to
q. In the last step in Figure 4.8d, it is checked whether, once again starting from the root
node, the right branch of the tree needs to be visited. Yet, since the current best-estimate
sphere does not intersect the splitting plane corresponding to tree level ` = 1, the right
branch is discarded and p2 is eventually identified as the nearest neighbor.
The nearest neighbor interpolation outlined in Algorithm 2 is a consistent interpolation

scheme. This fact is easily verified for the simple example sketched in Figure 4.9. If a
constant function is to be interpolated and, thus, u(pl) = ū ∀ l = 1, . . . , 4, the function

57

4 Coupled Problems

1: procedure KdTreeKNearestNeighborSearch(tree node N , query point q,
number of nearest neighbors k, tree level `, k-nearest neighbor candidates R, distance
dmax)

2: Determine axis a := mod(`− 1, k) + 1
3: Compute distance d(pl, q), where pl is the point associated to tree node N
4: if d(pl, q) < dmax then
5: R := R∪ {pl}
6: Sort R such that ∀pi,pj ∈ R it holds that d(pi, q) ≤ d(pj, q) if i < j
7: if card(R) > k then
8: Delete the last element of R
9: dmax := maxpi∈R d(pi, q)
10: end if
11: end if
12: Compute distance in a-direction: d′ := pl,a − qa
13: if d′ < 0 then
14: Cclose := N.left, Cfar := N.right
15: else
16: Cclose := N.right, Cfar := N.left
17: end if
18: Increase the tree level ` := `+ 1
19: if Cclose 6= empty then . Traverse closer branch
20: KdTreeKNearestNeighborSearch(Cclose, q, k, `, R, dmax)
21: end if
22: if Cfar 6= empty ∧ |d′| < dmax then . Traverse farther branch
23: KdTreeKNearestNeighborSearch(Cfar, q, k, `, R, dmax)
24: end if
25: end procedure

Algorithm 5: Procedure KdTreeKNearestNeighborSearch for the recursive traversal
of a k-d tree.

58

4.5 Interpolation Schemes

1

2

2

p1

p3

p6

p2

p4

p5

q

(a)

1

2

2

p1

p3

p6

p2

p4

p5

q

(b)

1

2

2

p1

p3

p6

p2

p4

p5

q

(c)

1

2

2

p1

p3

p6

p2

p4

p5

q

(d)

Figure 4.8: k-d tree traversal.

Source points

Query points

p1 p2 p3 p4

q1 q2 q3

Figure 4.9: Consistent nearest neighbor interpolation.

59

4 Coupled Problems

values at the query points become u(q1) = u(p2) = ū, u(q2) = u(p2) = ū, and u(q3) =
u(p3) = ū; the constant function is hence retained by the interpolation scheme. In matrix
notation, the interpolation scheme for this example reads

u(q1)
u(q2)
u(q3)

 =

0 1 0 0
0 1 0 0
0 0 1 0



u(p1)
u(p2)
u(p3)
u(p4)

 . (4.26)

Apparently, the requirement (4.24) for consistent interpolation schemes – that the entries
in each row of the interpolation matrix add up to one – is fulfilled. In the correspond-
ing conservative interpolation scheme, the function values at the query points amount to
u(q1) = u(p1), u(q2) = u(p2), u(q3) = u(p3) + u(p4). In matrix form, this reads

u(q1)
u(q2)
u(q3)

 =

1 0 0 0
0 1 0 0
0 0 1 1



u(p1)
u(p2)
u(p3)
u(p4)

 . (4.27)

Obviously, the criterion (4.25) is fulfilled, and the sum of the entries in each column is
equal to one.
For computer implementation, it turns out useful to construct a conservative interpo-

lation scheme by reusing the implementation for the consistent version. To this end, we
reverse source and query points, determine the consistent interpolation weights, and trans-
pose the resulting interpolation matrix to obtain the interpolation matrix for the conserva-
tive scheme. Of course, if the interpolation scheme has compact support, the interpolation
matrix is never constructed explicitly but rather stored as a set of sets {W1, . . . ,Wm},
where each setWi = {. . . , (pj, wj), . . .} contains pairs (pj, wj) associating an interpolation
weight wj to a source point pj such that the function value u(qi) can be determined by
summing the terms wju(pj) for all pairs (pj, wj) in the setWi. Algorithm 6 illustrates the
reuse of the implementation for the calculation of the consistent interpolation weights to de-
termine the interpolation weights of the corresponding conservative interpolation scheme.

4.5.2 Barycentric Interpolation
Barycentric interpolation schemes (see, e.g., [167, p. 116 sq.]) can be categorized into
surface and volumetric interpolation schemes. For surface interpolation in two-dimensional
space, we search the set of source points P = {p1, . . . ,pn} to determine the points pa and
pb, which span a line that exhibits minimum Euclidean distance to the query point q in
the sense that no other pair of points pi,pj ∈ P , i 6= j spans a line closer to q. It should be
noted that the points pa and pb are not necessarily the nearest neighbors of q, as illustrated
in Figure 4.10.
If the source discretization, from which the source points p1, . . . ,pn have been extracted,

is convex, it suffices to perform a Delaunay triangulation of the source point set and to
remove all inner edges such that only the outer edges remain, see Figure 4.11. A query
point q is then successively projected to the outer edges of the Delaunay triangulation to
identify the points pa and pb, which will later be used for the interpolation. If the edges

60

4.5 Interpolation Schemes

1: function ConservativeInterpolationWeights(set of source points P =
{p1, . . . ,pn}, set of query points Q = {q1, . . . , qm})

2: Reverse source and query points such that P ′ := Q and Q′ := P
3: Determine consistent interpolation weights for P ′,Q′
4: for l = 1 : n do
5: Consider the set of interpolation weights W ′l = {. . . , (qi, wi), . . .} associated to
pl

6: for all (qi, wi) ∈ W ′l do
7: Consider the set of interpolation weights Wi = {. . . , (pj, wj), . . .}

associated to qi, initialized to Wi := ∅ on first access
8: Set Wi :=Wi ∪ {(pl, wi)}
9: end for
10: end for
11: return {W1, . . . ,Wm}
12: end function

Algorithm 6: Reuse of the implementation for the calculation of consistent interpolation
weights to determine the interpolation weights of the corresponding conservative interpolation
scheme.

p1

p3

p2

q

Figure 4.10: Situation where p1 and p2 are the nearest neighbors of q but the closest line is
spanned by p2 and p3.

(a) (b) (c)

Figure 4.11: (a) Source points and original surface discretization indicated by dashed lines,
(b) Delaunay triangulation of the convex hull of the source points, and (c) removal of the inner
edges of the Delaunay triangulation (colored in gray).

61

4 Coupled Problems

(a) (b) (c) (d)

Figure 4.12: (a) Geometry, (b) boundary discretization, (c) α-shape for a shrink factor s = 0,
and (d) α-shape for a shrink factor s = 0.8.

are parameterized by a local parameter ξ ∈ [−1, 1], the projection technique outlined in
Section 4.5.5 can readily be employed for this task. Since a Delaunay triangulation always
triangulates the convex hull of a set of points, this method is inappropriate for concave
surfaces. For sufficiently smooth boundaries, it helps to compute an α-shape [42] of the
source point set and to apply a suitable shrink factor s. To illustrate the idea of α-shapes
in Rd, we imagine the construction of an infinite number of spheres of minimum radius
1/α without enclosing any of the points in the considered point set. Next, we subtract
the space occupied by these spheres from Rd. The linear approximation of the remaining
shape will then define the α-shape associated to the point set. Based on this, the role of
the shrink factor s is explained as follows. First, we compute an α-shape for the source
point set and determine the critical α-value αcrit, which still leads to a simply-connected
region enclosing the considered point set. Subsequently, all α-values exceeding αcrit are
extracted, and the shrink factor s is used to select a single α ∈ [αcrit, αmax]. Ranging from
0 to 1, a shrink factor s = 0 corresponds to the convex hull of the point set, and s = 1
produces a compact envelope around the points. The procedure is shown in Figure 4.12 for
the source points stemming from the boundary discretization of a C-shaped domain. The
reader is referred to the documentation of [160] for further details regarding the practical
application of α-shapes.

In many situations, however, the boundary is not sufficiently smooth to expect a shrunk
α-shape to resemble the shape of the original boundary discretization. Another approach
to circumvent this substantial disadvantage is to find the k ≥ 2 nearest neighbors and
generate a local Delaunay triangulation of this point set. Here, k is a user-defined param-
eter. It should be chosen large enough to ensure the proper construction of a Delaunay
triangulation, containing edges sufficiently close to the query point q and small enough
so as not to compromise the computational efficiency of the interpolation scheme. For
well-behaved boundary discretizations, k = 3 or k = 4 will usually suffice to construct
an interpolation scheme that is both efficient and accurate. After the k-nearest neighbors
have been triangulated, the query point q is projected to the closest edge resulting in the
projected point q∗, and the function value u(q) is determined by computing the function

62

4.5 Interpolation Schemes

pa
pb

a1

q∗

(a)

pa
pb

pc

a1

a2
q∗

(b)
a1

a3 a2

pa
pb

pd

pc

q∗

(c)

Figure 4.13: Barycentric interpolation on a (a) line (volume interpolation in one-dimensional
space or surface interpolation in two-dimensional space), (b) triangle (volume interpolation in
two-dimensional space or surface interpolation in three-dimensional space), or (c) tetrahedral
(volume interpolation in three-dimensional space).

value u(q∗) by linear interpolation between the points pa,pb such that

u(q) = u(q∗) = u(pa) + a1
u(pb)− u(pa)
‖pb − pa‖2

=
(

1− a1

‖pb − pa‖2

)
︸ ︷︷ ︸

=α

u(pa) + a1

‖pb − pa‖2︸ ︷︷ ︸
=β

u(pb) ,
(4.28)

see also Figure 4.13a. In practice, the line spanned by pa and pb will not necessarily be
the line with minimum Euclidean distance to the query point q, but it will quite certainly
suffice for an accurate interpolation of the function value u(q) due to the positive properties
of the Delaunay triangulation (such as minimum angle maximization, for instance).
To perform a barycentric surface interpolation in three-dimensional space, we adopt a

similar procedure to that in two-dimensional space. Instead of a line, we are searching for
the triangle spanned by the points pa, pb, and pc, which has minimum Euclidean distance
to the query point q. Also here, in order to obtain a high-quality interpolation, it does not
suffice to find the three nearest neighbors. Rather, the preferable approach is to search
for the k > 3 nearest neighbors to generate a local Delaunay triangulation. Choosing
k in the range from 7 to 10 will usually provide an acceptable compromise to ensure the
construction of a proper Delaunay triangulation and to also retain computational efficiency.
Having determined the k-nearest neighbors and their Delaunay triangulation, the query
point q is successively projected to each of the triangles in the tessellation to obtain q∗.
The triangle with minimum Euclidean distance to q is then selected for interpolation:

u(q) = u(q∗) = u(pa) + a1
u(pb)− u(pa)
‖pb − pa‖2

+ a2
u(pc)− u(pa)
‖pc − pa‖2

=
(

1− a1

‖pb − pa‖2
− a2

‖pc − pa‖2

)
︸ ︷︷ ︸

=α

u(pa) + a1

‖pb − pa‖2︸ ︷︷ ︸
=β

u(pb) + a2

‖pc − pa‖2︸ ︷︷ ︸
=γ

u(pc) .

(4.29)

63

4 Coupled Problems

Ericson [46, p. 47 sq.] mentions an efficient method to compute the barycentric coordinates
α, β, γ, which is based on solving a linear system using Cramer’s rule and is close to optimal
in terms of computational efficiency, see Algorithm 7.

1: function BarycentricTriangleCoordinates(source points pa, pb, pc, projected
query point q∗)

2: v1 := pb − pa, v2 := pc − pa, v3 := q∗ − pa
3: D11 := v1 · v1, D12 := v1 · v2, D22 := v2 · v2, D31 := v3 · v1, D32 := v3 · v2
4: D := D11D22 −D12D12, D−1 := 1/D
5: α := D−1(D22D31 −D12D32)
6: β := D−1(D11D32 −D12D31)
7: γ := 1− α− β
8: return α, β, γ
9: end function

Algorithm 7: Efficient computation of the barycentric coordinates α, β, γ for the projected
query point q∗ with respect to the triangle spanned by the points pa, pb, pc.

The strategies followed for surface interpolation are, after minor modifications, also
applicable to volume interpolation. For “volume” interpolation in two-dimensional space
(or, in other words, planar interpolation), we again perform a local Delaunay tessellation of
the k-nearest neighbors of a query point q, where k ≥ 3, and interpolate the function value
according to Equation (4.29). As opposed to surface interpolation, where q 6= q∗ holds
almost always if the surface is curved and the source and target discretizations are non-
conforming, q = q∗ is the most likely case in volume interpolation. Only in the case where
q lies outside the original source discretization, q 6= q∗ applies as q must be projected to
the surface of the local Delaunay triangulation.
Eventually, barycentric volume interpolation in three-dimensional space is performed by

local Delaunay triangulation of the k ≥ 4 nearest neighbors of the query point q and by
applying the interpolation formula

u(q) = u(q∗) = u(pa) + a1
u(pb)− u(pa)
‖pb − pa‖2

+ a2
u(pc)− u(pa)
‖pc − pa‖2

+ a3
u(pd)− u(pa)
‖pd − pa‖2

=
(

1− a1

‖pb − pa‖2
− a2

‖pc − pa‖2
− a3

‖pd − pa‖2

)
︸ ︷︷ ︸

=α

u(pa) + a1

‖pb − pa‖2︸ ︷︷ ︸
=β

u(pb)

+ a2

‖pc − pa‖2︸ ︷︷ ︸
=γ

u(pc) + a3

‖pd − pa‖2︸ ︷︷ ︸
=δ

u(pd) .

(4.30)
The barycentric coordinates α, β, γ, δ are efficiently computed by applying Algorithm 7
in a slightly modified version suitable for tetrahedra instead of triangles.
The barycentric interpolation scheme as described above is a consistent interpolation

scheme. This is easily illustrated with the help of the simple example sketched in Fig-
ure 4.14a. In the case that u(pl) = ū ∀ l = 1, . . . , n, the function values at the query

64

4.5 Interpolation Schemes

(a)
Source points

Query points

a1 b1 a2 b2 a3 b3

p1 p2 p3 p4

q1 q2 q3

(b)
Source points

Query points

p1 p2 p3 p4

a1 b1 a2 b2

q1 q2 q3

Figure 4.14: Barycentric interpolation in its (a) consistent and (b) conservative version.

points are computed as

u(q1) = α1u(p1) + β1u(p2) = (α1 + β1)︸ ︷︷ ︸
=1

u ,

u(q2) = α2u(p2) + β2u(p3) = (α2 + β2)︸ ︷︷ ︸
=1

u ,

u(q3) = α3u(p3) + β3u(p4) = (α3 + β3)︸ ︷︷ ︸
=1

u .

(4.31)

In matrix notation, these relations are recast as
u(q1)
u(q2)
u(q3)

 =

α1 β1 0 0
0 α2 β2 0
0 0 α3 β3



u(p1)
u(p2)
u(p3)
u(p4)

 , (4.32)

where the interpolation matrix obviously fulfills the requirement (4.24). For the conserva-
tive scheme, we deduce from Figure 4.14b that

u(q1) = u(p1) + α1u(p2) ,
u(q2) = β1u(p2) + α1u(p3) ,
u(q3) = β2u(p3) + u(p4) ,

(4.33)

or, in matrix notation,
u(q1)
u(q2)
u(q3)

 =

1 α1 0 0
0 β1 α2 0
0 0 β2 1



u(p1)
u(p2)
u(p3)
u(p4)

 . (4.34)

Obviously, it holds that

u(p1)+u(p2)+u(p3)+u(p4) = u(p1)+(α1 + β1)︸ ︷︷ ︸
=1

u(p2)+(α2 + β2)︸ ︷︷ ︸
=1

u(p3)+u(p4) , (4.35)

65

4 Coupled Problems

which confirms the requirement (4.25) for conservative interpolation schemes. For the
calculation of the conservative interpolation weights, one can again take advantage of
Algorithm 6 to reuse the implementation already available for the consistent scheme.

4.5.3 Radial Basis Function Interpolation
Radial basis function interpolation schemes (see, e.g, [24]) are based on interpolating the
function value u(q) at the query point q from the weighted sum

u(q) =
n∑
l=1
λlϕ (‖q − pl‖2) , (4.36)

where ϕ represents a scalar-valued radial basis function (RBF). In matrix notation, this
reads 

u(q1)
...

u(qm)


︸ ︷︷ ︸

=u?

=


ϕ(‖q1 − p1‖2) · · · ϕ(‖q1 − pn‖2)

...
ϕ(‖qm − p1‖2) · · · ϕ(‖qm − pn‖2)


︸ ︷︷ ︸

=ΦΦΦ1


λ1
...
λn


︸ ︷︷ ︸

=λλλ

. (4.37)

For the evaluation of the weighting vector λλλ, we consider the special case m = n and
qi = pi, i = 1, . . . , n, which results in

u(p1)
...

u(pn)


︸ ︷︷ ︸

=u

=


ϕ(‖p1 − p1‖2) · · · ϕ(‖p1 − pn‖2)

...
ϕ(‖pn − p1‖2) · · · ϕ(‖pn − pn‖2)


︸ ︷︷ ︸

=ΦΦΦ2


λ1
...
λn

 (4.38)

and, thus,
λλλ = ΦΦΦ

−1
2 u . (4.39)

It should be emphasized that the inverse in (4.39) should never be computed explicitly.
Instead, it is more efficient to factorize ΦΦΦ2 and to solve (4.39) by forward and backward
substitution. Inserting (4.39) into (4.37) leads us to

u? = ΦΦΦ1ΦΦΦ
−1
2 u (4.40)

and correlates the function values u(q1), . . . ,u(qm) at the query points q1, . . . , qm to the
function values u(p1), . . . ,u(pn) at the source points p1, . . . ,pn.
Possible choices for the RBF ϕ are listed in Table 4.3. The RBFs listed in the

left half of Table 4.3 have global support – and they lead to fully populated matrices
ΦΦΦ1 and ΦΦΦ2, which usually renders (4.40) prohibitively expensive to solve for large point
sets. It is therefore often advisable to choose an RBF with compact support, which results
in sparse matrices ΦΦΦ1,ΦΦΦ2 and significantly reduces the amount of required memory and
computational time for the solution of (4.40). Several interesting compactly-supported
RBFs were proposed in [173], for instance, which are listed on the right half of Table 4.3.
Note that, in practice, the radius r in both types of RBFs is normally scaled by a parameter
r0, and the ratio r/r0 instead of just the radius r is used in the evaluation of the RBFs.
The parameter r0 is problem-dependent; a small r0 leads to a stronger influence of source

66

4.5 Interpolation Schemes

Table 4.3: Selection of global RBFs (left) and compactly-supported Wendland-type RBFs
(right), where r := ‖y − x‖2 and a+ := max{a, 0} [173, 29, p. 15].

Description RBF ϕ(r) Description RBF ϕ(r)

Linear r Wendland (1) (1− r)2
+

Cubic r3 Wendland (2) (1− r)4
+(4r + 1)

Gaussian exp (−r2) Wendland (3) (1− r)6
+(35r2 + 18r + 3)

Multiquadric
√

1 + r2 Wendland (4) (1− r)8
+(32r3 + 25r2 + 8r + 1)

Inverse quadratic (1 + r2)−1 Wendland (5) (1− r)3
+

Inverse multiquadric
√

1 + r2−1 Wendland (6) (1− r)5
+(5r + 1)

Thin plate spline r2 log(1 + r) Wendland (7) (1− r)7
+(16r2 + 7r + 1)

points close to the query point q, whereas a larger r0 increases the region where the RBF
is substantially different from zero.
For a conservative version of the consistent interpolation scheme outlined above, the

source and query point set P and Q are reversed, resulting in the point sets P ′ := Q and
Q′ := P . The matrices ΦΦΦ

′
1,ΦΦΦ

′
2 are then constructed based on the consistent procedure,

but instead of Equation (4.40), we solve

u? =
(
ΦΦΦ
′
1ΦΦΦ
′
2
−1)T

u = ΦΦΦ
′
2
−T

ΦΦΦ
′
1

Tu . (4.41)

4.5.4 Inverse Distance Weighting
Inverse distance weighting is another interesting mesh-independent interpolation scheme,
which dates back to Shepard [144] and is therefore also often referred to as Shepard’s
method. Given a set of source points P = {p1, . . . ,pn} and associated function values
u(p1), . . . ,u(pn), Shepard’s method interpolates the function value u(q) at the query
point q according to

u(q) =


∑n
l=1wl(q)u(pl)∑n

l=1wl(q) , if d(pl, q) 6= 0 for all l = 1, . . . , n

u(pl) , if d(pl, q) = 0 for any l = 1, . . . , n
. (4.42)

Therein,
wl(q) = d(pl, q)−p (4.43)

is the interpolation weight associated to the source point pl and d(pl, q) is a suitable
distance metric such as the Euclidean norm. The power parameter p is a user-defined
parameter, usually chosen as p = 2. For larger data sets, it becomes expensive to include
all source values u(p1), . . . ,u(pn) to determine the interpolated value u(q). It is therefore
advisable to include only source points within a cut-off radius r around the query point q
to compute u(q) and to neglect all other source points. Since the weight (4.43) decays for
increasing distances d(pl, q), it can be expected that they have only a minor influence on
u(q). The source points within the cut-off radius can efficiently be found by range search

67

4 Coupled Problems

z

y

x

ξ
η

∂x
∂η

∂x
∂ξ

x
ζ

x∗(ξ, η)
n

Figure 4.15: Nearest point projection for a surface in three-dimensional space [98, p. 38].

techniques, which rely on space partitioning methods comparable to those already used for
the k-nearest neighbor search.
A conservative version of this consistent interpolation scheme is again easily constructed

by means of Algorithm 6.

4.5.5 Interpolation on Finite Element Meshes
The previously discussed interpolation schemes all fall in the category of mesh-independent
interpolation schemes. The term mesh-independent is due the fact that the topology
information from the computational meshes of the source and target discretization is not
taken into account for interpolation. In contrast, mesh-dependent interpolation schemes
do use the mesh topology, usually with the aim to improve the quality of the interpolation.
The reader is referred to Section 4.5.7, where the various mesh-independent interpolation
schemes are compared to a mesh-dependent interpolation using several different benchmark
discretizations. From a practical point of view, a notable drawback of a mesh-dependent
interpolation scheme is the requirement to access the mesh information from a solver’s
database. Nonetheless, the effort of extracting the mesh connectivity in addition to the
source point coordinates, which are also needed in mesh-independent interpolation schemes,
is usually more than outweighed by the increased interpolation quality.
In an FE mesh, the elements are parameterized by x∗(ξ), where x∗ ∈ Rd represents

a point in the element, expressed in global coordinates, and ξ ∈ Rl stems from the ele-
ment’s l-dimensional parameter space. Figure 4.15 sketches a typical situation in three-
dimensional space, where a point is projected on a surface.
It is possible to formulate the problem of projecting a point x ∈ Rd to an element in

d-dimensional space as an optimization problem [98, pp. 38–40]:

argmin
ξ∈Γ

‖x− x∗(ξ)‖2 , (4.44)

68

4.5 Interpolation Schemes

or, equivalently,
argmin
ξ∈Γ

((x− x∗) · (x− x∗)) . (4.45)

Existence and uniqueness of a solution to the minimization problem (4.45) is guaranteed
if the function

F = 1
2(x− x∗) · (x− x∗) (4.46)

is convex for ξ ∈ Ω, where Ω represents the domain occupied by the element. Hence, a
Newton-Raphson procedure can be applied to solve (4.45) and can be expected to converge
for any initial solution ξ0 ∈ Ω.
For twice continuously differentiable elements, the Newton-Raphson procedure reads

∆ξk = −
(
F ′′

k
)−1

F ′
k

ξk+1 = ξk + ∆ξk .
(4.47)

Given the local coordinates ξ corresponding to a projected point x∗, the shape functions
of the element can be evaluated at that point. Then, the value of a field quantity u(x∗)
is obtained from a linear combination of the products of the evaluated shape functions at
x∗ and the values of the field quantity at the element’s degrees of freedom. In the case of
isoparametric elements, which are primarily considered in this work, the element’s degrees
of freedom are situated at the nodes of the element. For FE meshes, an interpolation based
on the above projection procedure can be considered to be optimal in terms of accuracy.
For other discretization schemes such as the FVM or the BEM, the procedure can be
slightly modified as outlined in Section 4.5.6.
Insofar as entire meshes are concerned, the question arises how to determine the elements

that need to be considered for projection. Taking all elements into account for the iterative
and, thus, comparably expensive Newton-Raphson procedure will certainly result in an
unacceptably high numerical effort. It is therefore advisable to select only a small subset of
elements and to consider only these elements as possible candidates for the closest element
to a given query point q. To this end, we propose an efficient spatial search strategy based
on an axis-aligned bounding box (AABB) tree, similar to the method proposed in [99]. The
basic idea behind AABB trees is a subdivision of the search space into partitions. Then, it
is sufficient to visit only a small subset of elements, comparable to the k-d tree introduced
in Section 4.5.1. In the first step, each element of the FE mesh is tightly enclosed by a
bounding box, thus generating a set of bounding boxes B = {B1, . . . , Bn}. A bounding
box in d-dimensional space is fully characterized by a pair of points (xmin,xmax), reflecting
the spatial extension of the enclosed object. The bounding boxes are then organized into
a tree structure – the AABB tree – by subdividing the search space successively into half
spaces until only a single element is left in a half space; these are then the leaves of the
tree. Algorithm 8 illustrates a possible implementation based on a recursive tree setup.
Once the AABB tree is created, it can be queried for a point q to return a set of nearest
bounding boxes R, enclosing the elements that represent the possible candidates for the
nearest element to q. The procedure is outlined in Algorithm 9. Starting at the root node,
we first determine the axis a along which the bounding boxes were sorted in the current
tree level `. Then, the distance dmax(Bl, q) := max{d(xmin,l, q), d(xmax,l, q)} is computed.
It reflects the maximum distance a point inside Bl might have to the query point q. If
dmax(Bl, q) undershoots d? (which is initially set to d? := ∞), the bounding box Bl is

69

4 Coupled Problems

1: function AabbTree(set of bounding boxes B = {B1, . . . , Bn}, tree level `)
2: Determine axis a := mod(`− 1, d) + 1 for sorting
3: Sort elements in B along axis a by considering the bounding box centers c1, . . . , cn
4: Determine the median c̃ of {c1, . . . , cn}
5: Split B at the bounding box B̃ corresponding to the median c̃ to form a left subset
Bleft and a right subset Bright

6: Increase the tree level ` := `+ 1
7: Create a tree node N
8: if Bleft 6= ∅ then
9: Create left child node N .left := AabbTree(Bleft, `)
10: end if
11: if Bright 6= ∅ then
12: Create right child node N .right := AabbTree(Bright, `)
13: end if
14: return N
15: end function

Algorithm 8: Function AabbTree for the recursive setup of an AABB tree in d-dimensional
space.

considered a candidate for one of the nearest bounding boxes to q. Bl is added to the set
R such that all elements inR are sorted according to their minimum distance dmin(Bi, q) :=
min{d(xmin,i, q), d(xmax,i, q)} to the query point q. Subsequently, all elements Bi for which
dmin(Bi, q) > d? are cleared from R, and d? is set to the largest distance dmax(B, q) of all
elements B ∈ B. Following that, the directed distance d′ := cl,a− qa is computed to decide
which branch to descend next. The tree level ` is incremented and the closer branch is
traversed. If the hypersphere of radius d? intersects the splitting plane, the farther branch
needs to be visited as well.
The procedure is graphically visualized in Figure 4.16 for a simple example. Starting

at the root node, see Figure 4.16a, d? := dmax(B1, q) is computed. Continuing with
the left half-space as depicted in Figure 4.16b, the distance d? is updated and set to
d? := dmax(B2, q). The sphere of radius d? does not intersect B1, and, hence, B1 is
discarded from the set R and B2 is added instead. Descending further down the tree, as
indicated in Figure 4.16c, B4 is not included in R as it is not intersected by the current
best-estimate sphere. On the contrary, B5 must be included in R. Ascending back to the
root node, see Figure 4.16d, the right half-plane can be safely discarded from the search,
as the splitting plane in the first tree level is not intersected by the current best-estimate
sphere. Finally, R = {B2, B5}, i.e. either B2 or B5 must enclose the nearest element to the
query point q. The projection procedure only has to be performed for the elements enclosed
by these bounding boxes, which consequently reduces the numerical effort considerably as
compared to taking all elements into consideration. In fact, the spatial search based on
AABB trees is very generic and can be applied whenever neighborhood relations between
potentially complex geometric objects need to be established.
The projection procedure outlined in Equation (4.47) is perfectly suited for all kinds

of low- and also high-order continuum elements. However, a different approach must be
adopted for structural elements such as beam or shell elements. For such elements, the
coupling surface or volume does not coincide with the space occupied by the element,

70

4.5 Interpolation Schemes

1: procedure NearestBoundingBoxSearch(tree node N , query point q, tree level
`, set of nearest bounding boxes R, distance d?)

2: Determine axis a := mod(`− 1, k) + 1
3: Compute distance dmax(Bl, q) := max{d(xmin,l, q), d(xmax,l, q)}, where Bl is the

bounding box associated to tree node N
4: if dmax(Bl, q) < d? then
5: R := R∪ {Bl}
6: Sort R such that ∀Bi, Bj ∈ R it holds that
dmin(Bi, q) := min{d(xmin,i, q), d(xmax,i, q)} ≤ dmin(Bj, q) if i < j

7: Delete all elements Bi ∈ R for which dmin(Bi, q) > d?

8: Set d? := maxBi∈R dmax(Bi, q)
9: end if
10: Compute distance in a-direction: d′ := cl,a − qa
11: if d′ < 0 then
12: Cclose := N.left, Cfar := N.right
13: else
14: Cclose := N.right, Cfar := N.left
15: end if
16: Increase the tree level ` := `+ 1
17: if cclose 6= empty then . Traverse closer branch
18: NearestBoundingBoxSearch(Cclose, q, `, R, dmax)
19: end if
20: if cfar 6= empty ∧ |d′| < d? then . Traverse farther branch
21: NearestBoundingBoxSearch(Cfar, q, `, R, dmax)
22: end if
23: end procedure

Algorithm 9: Procedure NearestBoundingBoxSearch for the recursive traversal of an
AABB tree.

71

4 Coupled Problems

1

2

2q

B6

B3

B5

B2

B4

B1

(a)

1

2

2q

B6

B3

B5

B2

B4

B1

(b)
1

2

2q

B6

B3

B5

B2

B4

B1

(c)

1

2

2q

B6

B3

B5

B2

B4

B1

(d)

Figure 4.16: AABB tree traversal.

72

4.5 Interpolation Schemes

(a) (b)

Figure 4.17: Slender structure discretized by (a) beam and (b) shell elements.

and the interpolation scheme must be tailored to still ensure an accurate data transfer
across the coupling interface. For the sake of clarity, the discussion is limited to structural
Timoshenko beams and Reissner-Mindlin shells applied in an FSI analysis. The general
ideas, however, can, after some modifications, also be applied to other beam and shell
element types such as Euler-Bernoulli beams or Kirchhoff shells, for instance.
In the first step, let us consider the interpolation of the displacement d from the struc-

tural to the fluid mesh. The situation is sketched in Figure 4.17, where a slender structure
is discretized by beam elements (Figure 4.17a) or shell elements (Figure 4.17b). Regardless
of whether the FVM, the FEM, or the BEM is used for the numerical treatment of the flow
problem, the displacement needs to be interpolated from the nodes of the structural FE
mesh to the vertices of the fluid discretization. Since structural elements do not only have
translational but also rotational degrees of freedom, the interpolation procedure proposed
for continuum elements must be modified to also include rotational deformation. To this
end, we propose the following approach. Given a point q on the fluid mesh, where the
displacement is required, that point is first projected to the nearest beam or shell element,
resulting in the projected point q∗. The distance vector between these two points is given
by r = q − q∗. At the projected point q∗ = q∗(ξ), the displacement is evaluated from a
linear combination of the displacement values stored at the n nodes of the element:

d(q∗(ξ)) =
n∑
i=1

Ni(ξ)di . (4.48)

Following that, the rotation matrix R(q∗) signifying the orientation at the projected point
q∗ is analogously computed as

R(q∗(ξ)) =
n∑
i=1

Ni(ξ)Ri . (4.49)

Based on (4.48) and (4.49), the displacement d(q) becomes

d(q) = d(q∗) +R(q∗)r . (4.50)

The rotation matrix R(q∗), however, is not directly accessible and must be constructed
incrementally from the nodal rotation increments in each time increment. Moreover, to

73

4 Coupled Problems

x

z

y

r

q

q∗

ξ

1

2

q∗

1

2

Figure 4.18: Displacement interpolation for a twisted Timoshenko beam element.

avoid numerical drift, we resort to a quaternion ρi instead of the rotation matrix Ri

to represent the orientation at the ith element node. The rotation matrix Ri can be
recaptured from the quaternion ρi = (s,v) by virtue of [6, p. 22]

Ri =

1− 2v2
y − v2

z 2vxvy − 2svz 2vxvz + 2svy
2vxvy + 2svz 1− 2v2

x − 2v2
z 2vyvz − 2svx

2vxvz − 2svy 2vyvz + 2svx 1− 2v2
x − 2v2

y

 . (4.51)

Given a rotation increment ∆ϕi,j = ∆ϕi,j,1e1 + ∆ϕi,j,2e2 + ∆ϕi,j,3e3 in the jth time incre-
ment, the corresponding unit quaternion reads [147, p. 112 sq.]

∆ρi,j =
(

cos ‖∆ϕi,j‖2

2 ,
∆ϕi,j
‖∆ϕi,j‖2

sin ‖∆ϕi,j‖2

2

)
. (4.52)

An updated, improved quaternion ρi,j+1 is obtained from

ρi,j+1 = ∆ρi,j ∗ ρi,j , (4.53)

where ∗ again implies the quaternion product. Following the outlined procedure, the
displacement d(q) can then be determined according to (4.50).
In the second step, we consider the interpolation of the fluid traction to the structural

FE mesh and the calculation of the resulting nodal forces required in the assembly of the
global load vector. For this, let us assume that some discretization approximating the
geometric surface of the structure be given. This discretization may also coincide with the
discrete surface of the fluid domain at the FSI interface. Then, each element is furnished
with a set of integration points suitable for the element’s particular topology. If required,
the fluid traction can be easily interpolated to these integration points by applying any of
the aforementioned mesh-independent or mesh-based interpolation schemes. Considering
an element Al of the surface discretization and an integration point q̃j with an associated
local coordinate ζj and integration weight wj on Al, we denote the (interpolated) traction
at that point by tj. By projecting the integration point q̃j to the closest structural element,
we obtain the projected point q̃∗j , which corresponds to ξj in the parameter space of the
structural element. The distance vector is again denoted by rj = q̃j − q̃∗j . Considering a

74

4.5 Interpolation Schemes

(a)
(b)

Figure 4.19: Decomposition of a (a) polygon or (b) polyhedron into triangles or tetrahedra,
respectively.

particular structural element, the contribution of the traction tj at the integration point
q̃j to the nodal force at the ith node of the structural element amounts to

fi,j = wjNi(ξj)tj detJ s
l (ζj) (4.54)

and the nodal moment at the ith node is computed as

mi,j = wjNi(ξj)(rj × tj) detJ s
l (ζj) , (4.55)

where detJ s
l (ζj) signifies the determinant of the Jacobian matrix of the surface element Al,

evaluated at the local point ζj of its parameter space. In order to increase the accuracy of
the integration, it is also possible to apply a composed integration by splitting the surface
elements Al into smaller integration domains. Based on this, discontinuous integrands can
be integrated accurately as well.

4.5.6 Interpolation on Polygonal and Polyhedral Meshes

The interpolation procedure for FE meshes outlined in the previous section is, after some
modifications, also applicable to other discretization schemes where an interpolation of the
values stored at the elements’ degrees of freedom by means of shape functions is not avail-
able. Among others, the FVM and the BEM presented in Chapter 2 are examples for such
schemes. Here, the computational mesh consists of polygonal or polyhedral cells. In order
to determine the polygon closest to a given query point q in a surface-coupled problem
or, in a volume-coupled problem, find the polyhedron q is located in, the polygons (or
polyhedra) are first decomposed into triangles (or tetrahedra) as depicted in Figure 4.19.
By applying the presented projection procedure for FE meshes, we then first determine the
closest triangle or enclosing tetrahedron and, subsequently, the parent polygon or polyhe-
dron by a table lookup. Once the polygon or polyhedron corresponding to a query point q
has been determined, we identify the neighboring polygons or polyhedra (that is, polygons
(polyhedra) sharing at least one vertex with the considered polygon (polyhedron)). By
intention, we also consider the nearest polygon or polyhedron to be a neighbor of itself.
In the FVM and the BEM, the result quantities (such as the traction t, for instance) can
be requested at the cell or panel centers. Denoting the number of neighbors by m and

75

4 Coupled Problems

Projected query point q∗
Neighboring facesNearest face

Sharp edge

Figure 4.20: Surface interpolation on discretizations involving sharp edges.

indicating the center of the ith neighbor by ci, a sound interpolation scheme is given by

u(q) =


∑m
i=1wi(q)u(ci)∑m

i=1wi(q) , if d(ci, q) 6= 0 for all i = 1, . . . ,m

u(ci) if d(ci, q) = 0 for any i = 1, . . . ,m
. (4.56)

similar to the inverse distance weighting scheme. Again, d(ci, q) is a suitable distance
metric such as the Euclidean norm, and the interpolation weight is wi(q) = d(ci, q)−p
including the power parameter p.
Particular attention has to be paid to surface interpolation on discretizations involving

sharp edges. In almost every case, an interpolation across a sharp edge produces inaccurate
or nonphysical results – and should therefore best be avoided. Neighboring polygons with
an outer normal ni enclosing an angle θi greater than a user-defined threshold angle θ′ with
the outer normal n∗ of the nearest polygon the projected query point q∗ has been associated
to are therefore excluded from the interpolation, see Figure 4.20. In most situations,
the interpolation error can be reduced significantly as compared to mesh-independent
interpolation techniques if the proposed mesh-based interpolation scheme is employed. A
typical situation is sketched in Figure 4.21, where a floating cube is considered. Figure 4.21a
depicts the interpolation result at the red cross if a nearest neighbor scheme is applied.
Evidently, the resulting traction is directed in negative x-direction although one would
expect a traction solely directed in y-direction. As shown in Figure 4.21b, a similar problem
arises if a barycentric interpolation scheme is employed; the resulting traction still contains
a component in negative x-direction. An accurate result resembling the expected value is
only obtained if the topology of the mesh is taken into account, see Figure 4.21c.

4.5.7 Comparison of Interpolation Schemes
In order to compare the various interpolation schemes in terms of accuracy and computa-
tional effort, several benchmark problems are considered. The examples are deliberately
based on functions evaluated on discrete geometry representations, which are better suited
to give an account of the situation in a numerical analysis than the interpolation in con-
tinuous space. In all examples, the source discretization is an FE mesh consisting of
isoparametric elements. A generic scalar quantity u is prescribed at the elements’ nodes
and shall be interpolated to a set of query points randomly distributed on the original

76

4.5 Interpolation Schemes

Pressure distribution

Cube

Water

(a)

(b)

(c)

x

y

Figure 4.21: Sharp edge interpolation error.

(a) (b) (c) (d)

Figure 4.22: Discretizations of a circular line (a, b) and a circle (c, d).

geometry. Since all source discretizations are FE meshes, a reference value uref to judge
about the quality of an interpolation scheme can be computed by applying the projection
procedure outlined in Section 4.5.5. Apparently, this approximation is the best possible
one. For the assessment of the interpolation error, we determine the relative global error
measure

e =

√∑m
k=1 (u(q∗k)− uref(q∗k))

2√∑m
i=1 u

2
ref(q∗k)

. (4.57)

Increasing the source mesh density successively while holding the number of query points
m fixed enables us to analyze the error e as the number of source points n available for
interpolation increases. Certainly, the quality of each of the proposed interpolation schemes
can be expected to improve with an increasing number of source points n.
In the first example, we consider the interpolation on the boundary of a unit circle

discretized by an FE mesh consisting of linear line elements, as depicted in Figure 4.22a
and 4.22b. The mesh density and, hence, the number of elements are increased incremen-
tally, whereas the number of m = 103 query points randomly distributed on the original

77

4 Coupled Problems

0

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500 3000 3500 4000

In
te
rp
ol
at
io
n
er
ro
r
e

Number of source points n

Nearest neighbor interpolation
Barycentric interpolation, k = 3

RBF interpolation, Wendland (2)
Inverse distance weighting, p = 2

Figure 4.23: Interpolation errors of mesh-independent interpolation schemes on a discretized
circular line.

continuous boundary of the circle remains unchanged. The function

u(x, y) = ū(x, y) = 3(1− x)2 exp
(
−x2 − (y + 1)2

)
− 10

(
x

5 − x
3 − y5

)
exp

(
−x2 − y2

)
− 1

3 exp
(
−(x+ 1)2 − y2

)
(4.58)

is evaluated at the nodes of the FE mesh; these nodal values are then used to produce
the discrete reference solution by means of shape function interpolation as outlined in
Section 4.5.5. The interpolation error for this example is depicted in Figure 4.23. The
barycentric interpolation scheme resembles the reference solution almost exactly as, ap-
parently, always two points forming a line coinciding with a line element from the boundary
discretization have been selected for interpolation. The RBF interpolation scheme is also
able to generate very accurate results; the interpolation error soon drops well below 0.1 %
as the number of source points increases. Noticeably inferior results are obtained by inverse
distance weighting and nearest neighbor interpolation.
In the next example, we investigate the performance of the interpolation schemes for

the “volume” interpolation on a discretized circle – as depicted in Figure 4.22c and 4.22d
– for two different exemplary mesh densities. As before, the function (4.58) is evaluated
at the nodes of the FE mesh to generate the discrete function values at the source points
for interpolation. Figure 4.24 delineates the interpolation error. As expectedly, the best
results are again obtained by the barycentric interpolation scheme, although only a very
small number of k = 4 nearest neighbors was used for the generation of the local Delaunay
tessellation. The error produced by the other interpolation schemes is significantly higher.
Similar to the previous example, the barycentric interpolation scheme is followed by the
RBF interpolation and then by inverse distance weighting and nearest neighbor interpola-
tion. Although the mesh density is already comparably high at the maximum refinement
level, inverse distance weighting and the nearest neighbor interpolation still produce errors
in the single-digit percentage area.
For surface interpolation in three-dimensional space, we consider the interpolation on

78

4.5 Interpolation Schemes

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500 3000 3500 4000

In
te
rp
ol
at
io
n
er
ro
r
e

Number of source points n

Nearest neighbor interpolation
Barycentric interpolation, k = 4

RBF interpolation, Wendland (2)
Inverse distance weighting, p = 2

Figure 4.24: Interpolation errors of mesh-independent interpolation schemes on a discretized
circle.

(a) (b) (c)

Figure 4.25: Discretizations of a spherical surface using linear (a) triangles and (b) quadrilat-
erals and (c) discretization of a half sphere using linear tetrahedra.

a discretized spherical surface as illustrated in Figure 4.25a and 4.25b. In the first case,
linear triangular elements are used, while linear quadrilateral elements are employed in a
second study. In order to generate the function values at the nodes of the FE mesh, the
function (4.58) is augmented by a term to introduce a dependency on z, such that

u(x, y, z) = ū(x, y)− z2 . (4.59)

Figure 4.26 depicts the interpolation error for this example. Evidently, the errors as-
sociated to inverse distance weighting and nearest neighbor interpolation obey a similar
tendency, irrespective of the element type the FE mesh consists of. On the contrary, the
error in the RBF interpolation scheme is less if quadrilaterals are used, which is due to the
fact that the average number of source points in the compact support of the RBF is differ-
ent. As was to be expected too, the error in the barycentric interpolation scheme is slightly
higher if a quadrilateral mesh is considered, which can be explained by the fact that the
local Delaunay tessellation does not resemble the original discretization as accurately as
in the case of the triangular mesh. Yet, the error for the barycentric interpolation scheme
is again very small in absolute terms – and also in comparison to the other interpolation

79

4 Coupled Problems

10−4

10−3

10−2

10−1

100

0 10000 20000 30000 40000 50000 60000 70000 80000

In
te
rp
ol
at
io
n
er
ro
r
e

Number of source points n

Nearest neighbor interpolation, triangles
Nearest neighbor interpolation, quadrilaterals

Barycentric interpolation, k = 7, triangles
Barycentric interpolation, k = 7, quadrilaterals

RBF interpolation, Wendland (2), triangles
RBF interpolation, Wendland (2), quadrilaterals

Inverse distance weighting, p = 2, triangles
Inverse distance weighting, p = 2, quadrilaterals

Figure 4.26: Interpolation errors of mesh-independent interpolation schemes on a discretized
spherical surface.

schemes. RBF interpolation still leads to acceptable results, whereas the inverse distance
weighting and the nearest neighbor interpolation do not prove to be competitive.
In the last example, we compare the interpolation schemes for the volume interpolation

in a discrete half sphere in three-dimensional space, see Figure 4.25c. Like in the previous
example, the function (4.59) is employed to generate the function values at the nodes of the
tetrahedral FE mesh. Figure 4.27 visualizes the interpolation error. Again, the barycentric
interpolation scheme performs best. Interestingly, RBF interpolation and inverse distance
weighting obey a similar error, which can certainly be attributed to the average number
of source points constituting the compact support of the interpolation schemes. Hence, it
seems that the particular choice of the scaling parameter r0 (RBF interpolation) or the
cut-off radius r (inverse distance weighting) and the resulting number of source points
contributing to the interpolation of the function value at a particular query point has
a notable impact on the accuracy of these interpolation schemes. It can be assumed
that including more source points to determine u(q∗) would have a positive effect on the
accuracy of the interpolation. Yet, including too many source points will compromise the
efficiency of these interpolation methods.
Summing up, the above examples provide a clear indication of the accuracy of the pre-

sented mesh-independent interpolation schemes. Irrespective of the considered dimension
of space, the barycentric interpolation scheme exhibits by far the best performance. Even
if only a moderate number of nearest neighbors are taken into account to generate the
local Delaunay tessellation, the results are very accurate in all considered examples. Yet,
the effort invested to find the nearest neighbors and to triangulate this point set is rather
high and, very importantly, almost always higher than the cost associated to the projec-

80

4.5 Interpolation Schemes

10−4

10−3

10−2

10−1

100

0 10000 20000 30000 40000 50000 60000 70000

In
te
rp
ol
at
io
n
er
ro
r
e

Number of source points n

Nearest neighbor interpolation
Barycentric interpolation, k = 13
RBF interpolation, Wendland (2)
Inverse distance weighting, p = 2

Figure 4.27: Interpolation errors of mesh-independent interpolation schemes on a discretized
half sphere.

tion procedure outlined in Section 4.5.5. If it is possible to access the mesh topology, it is
therefore advisable to take advantage of that information instead of trying to reconstruct
the surface indirectly by a local Delaunay tessellation. RBF interpolation still produces
acceptable results, which, however, are far less accurate than those of the barycentric inter-
polation. Inverse distance weighting performs moderately. It should be emphasized that
the accuracy of both the RBF interpolation and the inverse distance weighting is strongly
influenced by the number of source points forming the local support for interpolation; it can
therefore be expected that the schemes produce different interpolation errors depending
on the particular choice of the user-defined configuration parameters. It is, however, hard
to make a reasonable choice for the scaling parameter r0 or the cut-off radius r a priori,
as these parameters depend on the mesh density (which may also vary locally) and on the
local variation of the discrete function values. Due to the difficulty of adjusting the inter-
polation schemes in order to achieve a certain accuracy while at the same time retaining
their efficiency, these mesh-independent interpolation schemes do not offer any significant
advantage over the mesh-based projection procedure. Nearest neighbor interpolation is
very efficient and robust, but also leads to high interpolation errors, which decrease only
slowly with increasing source point density. For all examined examples, nearest neighbor
interpolation can thus not be considered as a reasonable option. Summarizing the above,
at least for the examples considered here, the mesh-independent interpolation methods do
not exhibit any clear benefits as compared to mesh-based interpolation schemes.
Yet, the examples are all based on FE discretizations and on the interpolation of a

continuous field u = u(x). In this case, the interpolation by means of projection can
be considered optimal in the sense of the underlying discretization scheme. However,
the definition of a “good” interpolation scheme becomes diffuse if discretization schemes
other than the FEM are considered. For instance, in the FVM or the BEM applied for
fluid problems, the traction is available at the face or panel centers, but the variation of
the traction across the surface is not sharply defined. From a physical point of view, a
constant traction per face or panel clearly poses a comparably bad assumption. Rather,

81

4 Coupled Problems

Table 4.4: Comparison of the advantages and disadvantages of mesh-independent and mesh-
based interpolation schemes.

Mesh-independent interpolation
schemes

Mesh-dependent interpolation
schemes

A
dv

an
ta

ge
s • No need to access mesh data structure

• Generic in the sense that they can be
applied to arbitrary discretizations
• Robust (nearest neighbor and

barycentric interpolation)

• Highly accurate
• Resolves geometric features such as

sharp edges
• Robust

D
is

ad
va

nt
ag

es

• Rather inaccurate, in particular for
coarse meshes
• Inherent difficulty to resolve geometric

features such as sharp edges
• Sensitive to user parameters (inverse

distance weighting, RBF interpola-
tion)

• Need to access mesh data structure
• Projection procedure required to asso-

ciate query points to elements of the
discretization

an interpolation involving the neighboring faces or panels as illustrated in Section 4.5.6
represents a better approximation of reality. In this light, a mesh-based interpolation
again offers notable advantages over mesh-independent interpolation schemes. It features
sharp edge detection capability, does not require any user input (except for the threshold
angle θ∗, admittedly, but θ∗ = π/3 is most often a reasonable choice), and incorporates an
inherent adaptivity to local changes in the mesh density.
Table 4.4 once again summarizes the advantages and disadvantages of mesh-independent

and mesh-based interpolation schemes. Evidently, mesh-based interpolation is appropriate
in most cases. The effort invested into the projection procedure is usually amortized over
the number of time increments in the simulation. If no relative motion between source
and target discretization occurs, it suffices to compute the local coordinates corresponding
to the query points and the associated interpolation weights once at the beginning of the
coupling procedure.
It remains to remark that our comparison only includes consistent interpolation schemes.

Conservative interpolation schemes were deliberately excluded due to the fact that it is
difficult to define an objective error measure for these schemes.

4.6 Convergence Criteria
In the generic partitioned coupling procedure outlined in Algorithm 1, the implicit itera-
tions within a time increment are carried out until all the subfields are equilibrated with
each other to sufficient accuracy. Hence, a convergence criterion needs to be defined to
decide when to stop the implicit iteration and to proceed to the next time increment. Due
to the fact that the subfield residuals are controlled by the individual solvers, it suffices
to apply the convergence criterion (or a combination of different convergence criteria) to
the interface residual rkj+1. In addition, it may be necessary for the stability of the cou-

82

4.7 Convergence Acceleration Schemes

pling procedure to include the interface residuals of the other coupling quantities in the
convergence check as well.
In general, absolute or relative convergence criteria can be used. Absolute criteria are

based on the evaluation of the p-norm ‖rkj+1‖p of the interface residual, where 1 ≤ p <∞.
To make this scalar measure independent of the number of degrees of freedom n on the
interface discretization, it is useful to divide by n in order to obtain

1
n
‖rkj+1‖p ≤ ε , (4.60)

see [56, p. 49], for instance. Relative convergence criteria are independent of the magnitude
of the coupling quantity by definition, as they are divided by an appropriate reference value:

‖rkj+1‖p
‖r0

j+1‖q
or
‖rkj+1‖p
‖rk−1

j+1‖q
. (4.61)

Note that p 6= q in the general case, but p = q is appropriate in most cases.

4.7 Convergence Acceleration Schemes
An essential part of the generic partitioned coupling procedure depicted in Algorithm 1
is the convergence acceleration scheme A. If chosen properly, it does not only stabilize
the solution procedure but also has significant influence on the efficiency by reducing the
number of implicit iterations required to equilibrate the subfields with each other. A
broad range of different convergence acceleration procedures has already been proposed
in the literature, and it is merely impossible to give a complete overview. Therefore, the
discussion is limited to the convergence acceleration schemes that are most often used in
practice and are also applied to solve the numerical examples in Chapter 6 and 7.
In what follows, it will turn out useful to introduce the parameter kmax, which indi-

cates that a convergence acceleration scheme A is applied in only every kmaxth iteration.
Otherwise, the solution ukj+1 is assigned to ũk+1

j+1 without modification:

ũk+1
j+1 = ũkj+1 + rkj+1 = ũkj+1 +

(
ukj+1 − ũkj+1

)
= ukj+1 . (4.62)

If kmax = 1, the solution is accelerated in every iteration.
Convergence acceleration schemes can basically be classified into two major categories.

Following [22, p. 27], the first family of convergence acceleration schemes can be con-
structed from so-called vector sequence acceleration methods, which are based on the idea
of transforming a given series

S := {u0, . . . ,uk−1,uk} (4.63)

converging towards a limit u∗ into a sequence

S̃ := {ũ0, . . . , ũk−1, ũk} (4.64)

that converges faster to u∗ than the original sequence S such that

lim
k→∞

‖ũk − u∗‖2

‖uk − u∗‖2
= 0 . (4.65)

83

4 Coupled Problems

A sequence transformation like this can be generated by using a certain number of iterates
uk,uk−1, . . . from the original series S to construct an element ũk from the transformed
series S̃. In this work, we present several vector variants of Aitken’s classical δ-squared
process [2] as a typical representative of a sequence transformation. Furthermore, we
reformulate numerous other vector sequence acceleration schemes in such a way that they
can be applied for convergence acceleration in a partitioned solution approach.
From the formulation of the generic coupling scheme depicted in Algorithm 1, it is evident

that the partitioned solution approach can also be interpreted as a fixed-point problem, in
which we aim to solve the nonlinear algebraic system of equations

rkj+1 = Sm
(
· · · S2

(
I1,2

(
S1
(
ũkj+1

))))
− ũkj+1 = 0 . (4.66)

If the Newton-Raphson method is applied to solve this system, we are led to the iterative
process

∂rkj+1

∂ũj+1

∣∣∣∣∣
ũj+1=ũk

j+1

∆ũkj+1 = −rkj+1 ,

ũk+1
j+1 = ũkj+1 + ∆ũkj+1 .

(4.67)

Due to the fact that different discretization schemes and different solvers are involved, a
direct evaluation of the Jacobian matrix in Equation (4.67) is not possible in the partitioned
approach and, moreover, would also violate the black-box idea as the cornerstone of the
partitioned approach. The problem that the Jacobian is not directly accessible leads to
the idea of finding an approximation of the Jacobian matrix, which has motivated the class
of inexact- or quasi-Newton methods. The Broyden method and the quasi-Newton least
squares method belong to the most effective methods for convergence acceleration in the
partitioned solution of even strongly coupled multifield problems, which is why they will
be briefly described in the following.

4.7.1 Constant Relaxation
Probably the most simple convergence acceleration scheme is the static or constant relax-
ation. In each iteration k, an updated solution ũk+1

j+1 is computed by adding the increment
∆ukj+1 = ωrkj+1 to the modified solution ũkj+1 of the previous iteration k − 1 such that

ũk+1
j+1 = ũkj+1 + ωrkj+1 . (4.68)

The relaxation factor ω ∈ (0, 2] is held constant throughout the coupling algorithm and
must therefore be chosen small enough to ensure a stable and convergent implicit iteration
in each time increment. Consequently, it is rather unlikely that the constant relaxation
scheme will provide optimal convergence characteristics in every time increment.

4.7.2 Aitken Relaxation and Related Methods
A possible remedy to the problems related to a constant relaxation factor ω is to employ
a dynamic relaxation factor ωk, which is recomputed in each iteration k. One of the most
popular methods in this regard is Aitken’s δ-squared process [2]. It was originally developed
to accelerate scalar sequences but can easily be extended to the vector case. Following [106],

84

4.7 Convergence Acceleration Schemes

an accelerated sequence can be constructed given three subsequent iterates uk−2, uk−1, and
uk:

ũk−1 = uk−2 + ωk
(
uk−1 − uk−2

)
= uk−2 + ωk∆uk−1 ,

ũk = uk−1 + ωk
(
uk − uk−1

)
= uk−1 + ωk∆uk .

(4.69)

The relaxation factor ωk is chosen such that it minimizes the expression

argmin
ωk

∥∥∥ũk − ũk−1
∥∥∥

2
= argmin

ωk

∥∥∥uk−1 − uk−2 + ωk
(
∆uk −∆uk−1

)∥∥∥
2

= argmin
ωk

∥∥∥∆uk−1 + ωk∆2uk
∥∥∥

2
,

(4.70)

where ∆2uk := ∆uk −∆uk−1. From this, we obtain

ωk = −∆ukT∆2uk−1

‖∆2uk‖2
2

. (4.71)

Herein, the Moore-Penrose inverse [22, p. 217]

v−1 := v
‖v‖2

2
(4.72)

of a vector v was used.
If adopted to the generic partitioned solution procedure, the update formula applied in

every kmax = 3rd iteration reads

ũk+1
j+1 = ak + ωkbk . (4.73)

In this update rule, the parameters ak, bk, and ωk were introduced to cover the several
different variants of the classical Aitken relaxation, some of which are listed in Table 4.5.
A notable disadvantage of the convergence acceleration schemes based on the classical

Aitken relaxation is the fact that a solution update is computed only in every third itera-
tion, which can lead to a high number of iterations before convergence acceleration actually
takes effect. A modification of the classical Aitken relaxation was therefore proposed by
Irons et al. [83], who reformulated the scheme with the aim to apply a relaxation in every
iteration. In the first iteration k = 0, a user-defined initial relaxation factor ω0 must be
provided. In subsequent iterations k > 0, the relaxation factor is then updated according
to

ωk = −ωk−1 ∆rkj+1
Trk−1

j+1

/
‖rkj+1‖2

2 . (4.74)
In a comparative study for different convergence acceleration schemes applied to FSI,

Minami et al. [113] describe the line extrapolation method, which was first applied in [184]
and can be understood as an extension to the scheme proposed by Irons et al. [83]. Likewise
applicable in every coupling iteration, the update rule reads [113, p. 1133]

ũk+1
j+1 = αkũkj+1 +

(
1− αk

)
ũk−1
j+1 + β

(
αkrkj+1 +

(
1− αk

)
rk−1
j+1

)
. (4.75)

The factor αk can be interpreted as a relaxation parameter, which is set to α0 := 1 if k = 0
and amounts to

αk = −∆rkTrk−1
j+1

/
‖∆rk‖2 (4.76)

85

4 Coupled Problems

Table 4.5: Variants of the classical Aitken relaxation [106, 44, p. 92].

ak ωk bk Reference

ũkj+1 −
rk−1
j+1

T∆rkj+1

‖∆rkj+1‖2
2

rkj+1 Aitken [2]

ũkj+1 −
‖rk−1

j+1‖2
2

rk−1
j+1

T∆rkj+1

rkj+1 Graves-Morris [60]

ukj+1 − ‖∆rk‖2
2

∆rkT
(
rkj+1 + rk−1

j+1

) rkj+1 + rk−1
j+1 Iguchi [78]

ukj+1 −
‖rkj+1‖2

2

rkj+1
T∆rkj+1

rkj+1 Zienkiewicz et al. [186]

ukj+1 −
rkj+1

Trk−1
j+1

rk−1
j+1

T∆rkj+1

rkj+1 Jennings [86]

ukj+1 −
‖rkj+1‖2

2

‖∆rkj+1‖2
2

∆rkj+1 Arthur in [106]

in iterations k > 0, where
∆rk = rkj+1 − rk−1

j+1 (4.77)

denotes the difference of subsequent residuals. The second parameter 0 < β ≤ 1 is a user-
defined line search parameter that serves to circumvent a situation in which the search
space is limited to a single line.

4.7.3 Vector ε-Algorithm
Originally developed for scalar sequences by Wynn [183] in the mid of the 1950s, Wynn’s ε-
algorithm was later extended to vector sequences and henceforth termed vector ε-algorithm
[22, p. 216]. It is constructed from the recursive formula

εεε
k
−1 = 0 , εεε

k
0 = uk , k = 0, 1, . . .

εεε
k
`+1 = εεε

k+1
`−1 +

(
εεε
k+1
` − εεε

k
`

)−1
, k, ` = 0, 1, . . .

(4.78)

Given a convergent series uk−1,uk, . . ., a simple vector sequence acceleration scheme is
constructed by choosing ` = 1 and by evaluating the terms needed to compute εεε

k−2
2 .

Trivially,
εεε
k−2
0 = uk−2 , εεε

k−1
0 = uk−1 , εεε

k
0 = uk . (4.79)

Next, we have

εεε
k−2
1 = εεε

k−1
−1︸ ︷︷ ︸
=0

+
(
εεε
k−1
0 − εεε

k−2
0

)−1
, εεε

k−1
1 = εεε

k
−1︸︷︷︸

=0

+
(
εεε
k
0 − εεε

k−1
0

)−1
. (4.80)

86

4.7 Convergence Acceleration Schemes

From the above expressions, we can finally compute

ũk+1
j+1 = εεε

k−2
2 = εεε

k−1
0 +

(
εεε
k−1
1 − εεε

k−2
1

)−1
(4.81)

in every kmax = 3rd iteration.

4.7.4 Topological ε-Algorithm
The topological ε-algorithm [22, p. 222] is based on the recursion

εεε
k
−1 = 0 , εεε

k
0 = uk , k = 0, 1, . . .

εεε
k
2`+1 = εεε

k+1
2`−1 + y

yT∆εεε
k+1
2`

, k, ` = 0, 1, . . .

εεε
k
2`+2 = εεε

k+1
2` + ∆εεε

k+1
2`

∆εεε
k+1
2`+1

T∆εεε
k+2
2`

, k, ` = 0, 1, . . .

(4.82)

Therein, y represents an arbitrary non-zero vector, which solely serves to avoid a zero
denominator. Once again considering a convergent series uk−1,uk, . . ., we construct an
acceleration scheme using ` = 0 and evaluating the terms required to determine εεε

k−2
2 . The

first required non-zero terms are

εεε
k−2
0 = uk−2 , εεε

k−1
0 = uk−1 , εεε

k
0 = uk . (4.83)

In the next recursion level, we compute

εεε
k−1
1 = εεε

k
−1︸︷︷︸

=0

+ y
yT
(
εεεk0 − εεε

k−1
0

) , εεε
k−2
1 = εεε

k−1
−1︸ ︷︷ ︸
=0

+ y
yT
(
εεε
k−1
0 − εεε

k−2
0

) . (4.84)

Following that, we eventually arrive at

ũk+1
j+1 = εεε

k−2
2 = εεε

k−1
0 + εεε

k−1
0 − εεε

k−2
0(

εεε
k−1
1 − εεε

k−2
1

)T (
εεεk0 − εεε

k−1
0

) (4.85)

for the application in every kmax = 3rd implicit iteration.

4.7.5 Vector θ-Algorithm
In the vector θ-algorithm proposed in [22, p. 249], the recursion

θθθ
k
−1 = 0 , θθθ

k
0 = uk , k = 0, 1, . . .

θθθ
k
2`+1 = θθθ

k+1
2`−1 +

(
∆θθθ

k+1
2`

)−1
, k, ` = 0, 1, . . .

θθθ
k
2`+2 = θθθ

k+1
2` + ∆θθθ

k+2
2`+1

T∆2θθθ
k+2
2`+1

‖∆2θθθ
k+2
2`+1‖2

2
∆θθθ

k+2
2` , k, ` = 0, 1, . . .

(4.86)

is employed to generate the elements of a transformed, faster-converging series. Choosing
` = 0, the element θθθ

k−3
2 is constructed from the elements of the original series as follows.

First of all, we have

θθθ
k−3
0 = uk−3 , θθθ

k−2
0 = uk−2 , θθθ

k−1
0 = uk−1 , θθθ

k
0 = uk . (4.87)

87

4 Coupled Problems

Noting that

θθθ
k−3
1 = θθθ

k−2
−1︸ ︷︷ ︸
=0

+
(
∆θθθ

k−2
0

)−1
, θθθ

k−2
1 = θθθ

k−1
−1︸ ︷︷ ︸
=0

+
(
∆θθθ

k−1
0

)−1
, θθθ

k−1
1 = θθθ

k
−1︸︷︷︸

=0

+
(
∆θθθ

k
0

)−1
,

(4.88)
the updated solution is computed from θθθ

k−3
2 in every kmax = 4th iteration as

ũk+1
j+1 = θθθ

k−3
2 = θθθ

k−2
0 + ∆θθθ

k−1
1

T∆2θθθ
k−1
1

‖∆2θθθ
k−1
1 ‖2

2
∆θθθ

k−1
0

= θθθ
k−2
0 +

(
θθθ
k−1
1 − θθθ

k−2
1

)T (
∆θθθ

k−1
1 −∆θθθ

k−2
1

)
∥∥∥∆θθθ

k−1
1 −∆θθθ

k−2
1

∥∥∥2

2

∆θθθ
k−1
0

= θθθ
k−2
0 +

(
θθθ
k−1
1 − θθθ

k−2
1

)T (
θθθ
k−1
1 − 2θθθ

k−2
1 + θθθ

k−3
1

)
∥∥∥θθθk−1

1 − 2θθθ
k−2
1 + θθθ

k−3
1

∥∥∥2

2

(
θθθ
k−1
0 − θθθ

k−2
0

)
.

(4.89)

4.7.6 Generalized θ-Algorithm
A similar vector sequence acceleration method is the generalized θ-algorithm proposed in
[22, p. 248]. It is based on the recursion

θθθ
k
−1 = 0 , θθθ

k
0 = uk , k = 0, 1, . . .

θθθ
k
2`+1 = θθθ

k+1
2`−1 + y

yT∆θθθ
k+1
2`

, k, ` = 0, 1, . . .

θθθ
k
2`+2 = θθθ

k+1
2` + ωk` δδδ

k
2`+1 , ωk` = − zT∆θθθ

k+1
2`

zT∆δδδ
k+1
2`+1

, δδδ
k
2`+1 = ∆θθθ

k+1
2`

∆θθθ
k+1
2`+1

T∆θθθ
k+1
2`

,

k, ` = 0, 1, . . . ,

(4.90)

where y and z are arbitrary non-zero vectors to avoid a zero denominator. By choosing
` = 0, we are led to an acceleration scheme constructed as follows. First, we have

θθθ
k−3
0 = uk−3 , θθθ

k−2
0 = uk−2 , θθθ

k−1
0 = uk−1 , θθθ

k
0 = uk . (4.91)

Building on this, the next elements of the transformed sequence become

θθθ
k−3
1 = θθθ

k−2
−1︸ ︷︷ ︸
=0

+ y
yT
(
θθθ
k−2
0 − θθθ

k−3
0

) (4.92)

θθθ
k−2
1 = θθθ

k−1
−1︸ ︷︷ ︸
=0

+ y
yT
(
θθθ
k−1
0 − θθθ

k−2
0

) (4.93)

θθθ
k−1
1 = θθθ

k
−1︸︷︷︸

=0

+ y
yT
(
θθθ
k
0 − θθθ

k−1
0

) . (4.94)

Finally, we compute the auxiliary quantities

δδδ
k−3
1 = θθθ

k−2
0 − θθθ

k−3
0(

θθθ
k−2
1 − θθθ

k−3
1

)T (
θθθ
k−2
0 − θθθ

k−3
0

) , δδδ
k−2
1 = θθθ

k−1
0 − θθθ

k−2
0(

θθθ
k−1
1 − θθθ

k−2
1

)T (
θθθ
k−1
0 − θθθ

k−2
0

)
ωk−3

0 = −
zT
(
θθθ
k−1
0 − θθθ

k−2
0

)
zT
(
δδδ
k−2
1 − δδδ

k−3
1

)
(4.95)

88

4.7 Convergence Acceleration Schemes

to obtain the update rule

ũk+1
j+1 = θθθ

k−3
2 = θθθ

k−2
0 + ωk−3

0 δδδ
k−3
1 (4.96)

to be applied in every kmax = 4th coupling iteration.

4.7.7 Vector w-Transformation
The vector w-transformation is another interesting vector sequence acceleration method.
It was first proposed by Osada [125] and follows the recursion

wk
0 = uk , k = 0, 1, . . .

wk
` = wk−1

`−1 +
1− ∆wk−1

`−1
T∆wk−2

`−1

∆wk−2
`−1

T∆wk−2
`−1


·
((

∆wk
`−1

)−1
− 2

(
∆wk−1

`−1

)−1
+
(
∆wk−2

`−1

)−1
)−1

,

` = 1, 2, . . . ; k = 3`, 3`+ 1, . . .

(4.97)

One possible acceleration scheme is constructed by selecting ` = 1, which requires the
following sequence members in the transformed series. First of all, we set

wk−3
0 = uk−3 , wk−2

0 = uk−2 , wk−1
0 = uk−1 , wk

0 = uk . (4.98)

Expanding the differences

∆wk−2
0 = wk−2

0 −wk−3
0 , ∆wk−1

0 = wk−1
0 −wk−2

0 , ∆wk
0 = wk

0 −wk−1
0 , (4.99)

the update formula for every kmax = 4th iteration

ũk+1
j+1 = wk

1

= wk−1
0 +

1− ∆wk−1
0

T∆wk−2
0

∆wk−2
0

T∆wk−2
0

T ((
∆wk

0

)−1
− 2

(
∆wk−1

0

)−1
+
(
∆wk−2

0

)−1
)−1

(4.100)
is acquired.

4.7.8 Euclidean w-Transformation
A close relative to the aforementioned vector w-transformation is the Euclidean w-
transformation, which was likewise proposed by Osada [125] and is constructed from the
recursive formula

wk
0 = uk , k = 0, 1, . . .

wk
` = wk−1

`−1 −
∆wk

`−1
T∆wk−2

`−1

∆wk
`−1

T∆2wk−2
`−1 −∆wk−2

`−1
T∆2wk−1

`−1

∆wk−1
`−1 ,

` = 1, 2, . . . ; k = 3`, 3`+ 1, . . .

(4.101)

89

4 Coupled Problems

Choosing ` = 1, the following sequence members need to be computed. Obviously, as
before, the first elements are

wk−3
0 = uk−3 , wk−2

0 = uk−2 , wk−1
0 = uk−1 , wk

0 = uk . (4.102)

Subsequently, we write down the differences

∆wk−2
0 = wk−2

0 −wk−3
0 , ∆wk−1

0 = wk−1
0 −wk−2

0 , ∆wk
0 = wk

0 −wk−1
0 , (4.103)

which are then used to generate the update rule

ũk+1
j+1 = wk

1 = wk−1
0 − ∆wk

0
T∆wk−2

0

∆wk
0

T∆2wk−2
0 −∆wk−2

0
T∆2wk−1

0

∆wk−1
0 (4.104)

used for convergence acceleration in every kmax = 4th iteration.

4.7.9 Broyden Method
The Broyden method was originally proposed by Broyden [23] and belongs to the class of
quasi-Newton methods. It is based on the iterative process

Bk∆ũkj+1 = rkj+1

ũk+1
j+1 = ũkj+1 + ∆ũkj+1 ,

(4.105)

where the Jacobian matrix in (4.67) was replaced by the Broyden matrix Bk. In the first
iteration k = 0, B0 = I is the typical choice. In subsequent iterations k > 0, the Broyden
matrix is updated according to

Bk+1 = Bk +
(
∆rkj+1 −Bk∆ũkj+1

)T (
∆ũkj+1

)−1
= Bk + vkTwk , (4.106)

where the abbreviations

vk :=
∆rkj+1 −Bk∆ũkj+1

‖∆ũkj+1‖2
and wk :=

∆ũkj+1

‖∆ũkj+1‖2
(4.107)

were introduced. The inverse Hk+1 := (Bk+1)−1 is computed by means of the Sherman-
Morrison formula [7]

Hk+1 =
(
Bk + vkTwk

)−1
=

I−

(
Hkvk

)T
wk

1 + wkTHkvk

Hk (4.108)

and, according to [92, p. 125], the inverse (Bk)−1 = Hk amounts to

Hk =
k−1∏
i=0

I +
∆ũi+1

j+1

(
ũij+1

)T

‖∆ũij+1‖2
2

. (4.109)

Evidently, by computing Hk+1, the increment ∆ũkj+1 required to update ũkj+1 is obtained by
matrix-vector products only. A drawback of Broyden’s method in its original formulation is
the necessity to keep a potentially large matrix in memory. To alleviate this disadvantage,
a restart version was proposed in [92, pp. 123–127, 113, p. 1134], which – as it is sufficient
to update only a vector instead of a whole matrix in each iteration – reduces the storage
requirements significantly. Algorithm 10 gives an outline of this procedure.

90

4.7 Convergence Acceleration Schemes

1: function BroydenMethod(iteration k, modified solution ũkj+1, residual rkj+1, relax-
ation factors ω0, . . . , ωk+1, number of iterations until restart k∗)

2: k̃ := mod(k − 1, k∗) + 1
3: if k̃ > then
4: p := rkj+1
5: for i = 0, 1, . . . , k − 1 do
6: α := ωi/ωi+1, β := ωi − 1
7: p := p + siTp/‖si‖2

2 (αsi+1 + βsi)
8: end for
9: sk+1 :=

(
p− (1− ωk)sk

)
/
(
1− ωkskTp/‖sk‖2

2

)
10: else
11: s̃k+1

j+1 := rk+1
j+1

12: end if
13: return ũk+1

j+1 := ũkj+1 + ωk+1sk+1

14: end function

Algorithm 10: Restart version of the Broyden method [113, p. 1134].

4.7.10 Quasi-Newton Least Squares Method
A relatively new but promising convergence acceleration scheme is the interface quasi-
Newton method with inverse Jacobian from a least squares model, proposed by Degroote
et al. [36]. As the name suggests, it is based on the idea of approximating the exact
Jacobian matrix in (4.67) by a reduced order method. For a fully-converged solution, we
desire to minimize the residual

rk+1
j+1 = rkj+1 + ∆rkj+1 (4.110)

in the current iteration. Following [36], the residual increment ∆rkj+1 is approximated by
the linear combination

∆rkj+1 ≈
k−1∑
i=0

αki ∆rij+1 (4.111)

of residual increments ∆rij+1 from previous iterations i = 0, . . . , k − 1. Combining (4.110)
and (4.111), this leads to the minimization problem

argmin
αk

i

∥∥∥rk+1
j+1

∥∥∥
2
≈ argmin

αk
i

∥∥∥∥∥rkj+1 +
k−1∑
i=0

αki ∆rij+1

∥∥∥∥∥
2
. (4.112)

In order to solve (4.112), the matrix

Vk =
(
∆rk−1

j+1 · · · ∆r0
j+1

)
(4.113)

is set up, and the system of equations

Vkαk = −rkj+1 (4.114)

is solved in a least squares sense. To this end, Vk ∈ Rm×k is QR-decomposed such that
Vk = QkRk. The vector αk, if m ≥ k − 1, is then obtained from the solution of

Rkαk = QkT (−rkj+1

)
(4.115)

91

4 Coupled Problems

by back substitution without inverting Rk explicitly. It suffices to perform an economy-size
QR factorization of Vk, where Rk ∈ Rk×k. For an increasing number of iterations k, the
matrix Vk is prone to becoming increasingly ill-conditioned. It is therefore advisable to
remove the ith column from Vk if [36, 62, p. 12]

|Rii| < ε or |Rii| < ε‖R‖2 (4.116)

with a suitable tolerance ε and to recompute the QR decomposition. If required, the
procedure is repeated until no further columns are deleted.
Algorithm 11 depicts the quasi-Newton least squares procedure suited for the direct

integration into the generic partitioned solution strategy. In the first iteration, k = 0 and

1: function QuasiNewtonLeastSquaresMethod(iteration k, unmodified solution
ukj+1, modified solution ũkj+1, residual rkj+1, updated matrices Vk, Wk, static relaxation
factor ω)

2: if k > 0 then
3: ∆rk := rkj+1 − rk−1

j+1 , Vk :=
(
∆rk Vk−1

)
4: ∆uk := ukj+1 − uk−1

j+1 , Wk :=
(
∆uk Wk−1

)
5: Decompose Vk such that Vk = QkRk

6: Solve Rkαk = QkT(−rkj+1)
7: ∆ũkj+1 := Wkαk + rkj+1
8: else
9: Initialize Vk,Wk

10: ∆ũkj+1 := ωrkj+1
11: end if
12: return ũk+1

j+1 := ũkj+1 + ∆ũkj+1
13: end function

Algorithm 11: Quasi-Newton least squares method [36, p. 796].

the increment ∆ũkj+1 is determined by performing a relaxation step using the constant
relaxation factor ω:

∆ũ0
j+1 = ωr0

j+1 . (4.117)

In the following iterations, k > 0 and the current residual difference ∆rk and the current
unmodified solution difference ∆uk are prepended to the matrices Vk−1 and Wk−1 to
generate the updated matrices Vk and Wk, respectively. Vk is then QR decomposed to
determine the coefficients αk. The increment ∆ũkj+1 is then determined according to

∆ũkj+1 = Wkαk + rkj+1 . (4.118)

Finally, using the increment (4.117) for k = 0 or (4.118) for k > 0, an updated solution is
obtained from

ũk+1
j+1 = ũkj+1 + ∆ũkj+1 . (4.119)

By reusing the information from previous time steps, it is also possible to construct the
matrix

V′k =
(
Vk
j+1 Vj · · · Vj−`+1

)
(4.120)

92

4.7 Convergence Acceleration Schemes

from the most recent matrix Vk
j+1 in the time increment tj+1 and the last matrices

Vj, . . . ,Vj−`+1 from the previous ` time increments. Analogously, the coefficients αk
are computed by first performing a QR factorization of V′k before solving

R′kαk = Q′k
T (
−rkj+1

)
(4.121)

by back substitution. Here, QR filtering becomes even more important, and one is well-
advised to apply the criterion (4.116) to successively remove columns from V′k in order
to obtain a stable solution procedure. For the sake of completeness, this version of the
quasi-Newton least squares procedure is depicted in Algorithm 12.

1: function MultiTimeStepQuasiNewtonLeastSquaresMethod(time step j, it-
eration k, unmodified solution ukj+1, modified solution ũkj+1, residual rkj+1, updated
matrices Vk

j+1, Wk
j+1, static relaxation parameter ω)

2: if k > 0 then
3: ∆rk := rkj+1 − rk−1

j+1 , Vk
j+1 :=

(
∆rk Vk−1

j+1

)
4: V′k :=

(
Vk
j+1 Vj · · · Vj−`+1

)
5: ∆uk := ukj+1 − uk−1

j+1 , Wk
j+1 :=

(
∆uk Wk−1

j+1

)
6: W′ :=

(
Wk

j+1 Wj · · · Wj−`+1
)

7: Decompose V′k such that V′k = QkRk

8: Solve Rkαk = QkT(−rkj+1)
9: ∆ũkj+1 := Wkαk + rkj+1

10: else
11: Initialize Vk

j+1,Wk
j+1

12: ∆ũkj+1 := ωrkj+1
13: end if
14: return ũk+1

j+1 := ũkj+1 + ∆ũkj+1
15: end function

Algorithm 12: Variant of the quasi-Newton least squares method reusing information from
previous time increments [36, p. 796].

4.7.11 Comparison of Convergence Acceleration Schemes
In order to compare the convergence acceleration schemes proposed in the previous sec-
tions, a partitioned solution procedure is applied to solve the simple mechanical system
introduced in Section 4.3. The convergence acceleration schemes serve to accelerate con-
vergence and to reduce the number of required implicit iterations within a time increment.
For the assessment of the numerical effort, the number of iterations in each time increment
are accumulated over all time increments and afterwards divided by the number of time
increments so as to obtain a mean number of iterations per time increment. Since the
number of implicit iterations correlates directly with the number of subsystem evaluations
for the convergence acceleration schemes proposed in this work, the mean number of iter-
ations per time increment is an appropriate measure for the total computational cost of
the entire solution procedure. In order to decouple the results from the influence of the
predictor, a second-order polynomial predictor is chosen in all cases.

93

4 Coupled Problems

5
10
15
20
25
30
35
40
45
50

0 0.005 0.01 0.015 0.02 0.025M
ea
n
nu

m
be

r
of

ite
ra
tio

ns
k̄

Time step size ∆t/s

ω = 1.0
ω = 0.9

ω = 0.8
ω = 0.7

ω = 0.6
ω = 0.5

Figure 4.28: Influence of the relaxation factor ω on the performance of the constant relaxation
scheme.

In Figure 4.28, the influence of the relaxation factor ω on the performance of the constant
relaxation scheme is compared. A relaxation factor ω = 1 corresponds to the unrelaxed
case, where the modified displacement d̃k+1

j+1 equals the unmodified solution dkj+1. Evidently,
the mean number of iterations k̄ is high for large time step sizes ∆t, but it decreases rapidly
with decreasing time step size. For the smallest investigated time step size, a relaxation
factor ω = 1 achieves the lowest mean number of iterations as compared to the other
constant relaxation schemes with ω < 1. For larger time step sizes ∆t, we observe that
the smaller the relaxation factor ω, the higher the reduction in the average number of
iterations k̄. However, this tendency diminishes with decreasing time step size, and the
relaxation schemes with ω < 1 eventually exhibit a worse performance than the unrelaxed
scheme.
In the next step, we investigate the performance of the various Aitken-type relaxation

schemes presented in Section 4.7.2. Figure 4.29 reveals that all relaxation schemes based
on the classical Aitken relaxation are capable of reducing the mean number of iterations k̄
as compared to the constant relaxation scheme using ω = 1. Similar to the constant relax-
ation schemes, the number of iterations reduces notably as the time step size ∆t becomes
smaller. For the considered example, the variants of the classical Aitken relaxation scheme
– likewise applied in every third coupling iteration, and listed in Table 4.5 – do not lead to
a performance benefit as compared to the original version. In contrast, the modifications
developed by Iguchi [78] and Arthur [106] deteriorate the performance conspicuously. Yet,
the variant of Irons et al. [83], which can be applied in each coupling iteration instead of
in every third, produces slightly better results, in particular for larger time step sizes. The
advantage diminishes for smaller time step sizes, and almost no difference is observed for
∆t < 0.015 s.
Subsequently, we investigate and compare the performance of the other vector sequence

acceleration-based schemes presented in Section 4.7.3–4.7.8. The average number of cou-
pling iterations per time increment is depicted in Figure 4.30. Apparently, the vector
ε-algorithm and the topological ε-algorithm perform best. Regarding the mean number

94

4.7 Convergence Acceleration Schemes

5
10
15
20
25
30
35
40
45
50

0 0.005 0.01 0.015 0.02 0.025

M
ea
n
nu

m
be

r
of

ite
ra
tio

ns
k̄

Time step size ∆t/s

Constant relaxation, ω = 1.0
Aitken [2]

Graves-Morris [60]
Iguchi [78]

Zienkiewicz et al. [186]
Jennings [86]

Arthur in MacLeod [106]
Irons et al. [83]

Line extrapolation method

Figure 4.29: Comparison of the performance of Aitken-type relaxation schemes. The constant
relaxation scheme using ω = 1 is plotted for reference.

5
10
15
20
25
30
35
40
45

0 0.005 0.01 0.015 0.02 0.025

M
ea
n
nu

m
be

r
of

ite
ra
tio

ns
k̄

Time step size ∆t/s

Vector ε-algorithm
Topological ε-algorithm

Vector θ-algorithm
Generalized θ-algorithm
Vector w-transformation

Euclidean w-transformation

Figure 4.30: Comparison of the performance of the several vector-sequence acceleration-based
schemes.

95

4 Coupled Problems

5
10
15
20
25
30
35
40
45
50

0 0.005 0.01 0.015 0.02 0.025

M
ea
n
nu

m
be

r
of

ite
ra
tio

ns
k̄

Time step size ∆t/s

Constant relaxation
Line extrapolation method

Vector ε-algorithm
Broyden method

Quasi-Newton least squares method

Figure 4.31: Comparison of the performance of various convergence acceleration schemes.

of required implicit iterations, hardly any difference between these schemes can be ob-
served. The vector w-transformation exhibits a slightly worse performance throughout
the entire range of considered time step sizes. The vector θ-algorithm and the Euclidean
w-transformation exhibit an almost equal but slightly inferior performance as compared
to the schemes mentioned before. The generalized θ-algorithm is not competitive for the
considered example, as it requires a significantly higher number of iterations in average
until convergence is achieved.
Finally, we compare the best performing convergence acceleration schemes based on

vector sequence acceleration to those from the class of quasi-Newton methods. In Fig-
ure 4.31, we once again plot the mean number of iterations k̄ against the time step size ∆t.
Most importantly, the graphs indicate that the use of a convergence acceleration scheme
usually reduce the number of required coupling iterations significantly and, hence, have
a notable impact on the computational efficiency of the entire solution procedure. The
quasi-Newton least squares method obeys the best convergence characteristics through-
out the entire range of considered time step sizes. Remarkably, the quasi-Newton least
squares procedure requires only one third of the iterations of the unrelaxed scheme for
the largest time step size, which represents a huge boost in performance. The Broyden
method requires only slightly more iterations on average as compared to the quasi-Newton
least squares method. The line extrapolation method exhibits a satisfactory convergence
behavior as well. The vector ε-algorithm – as the best of the vector sequence acceleration-
based schemes, apart from the classical Aitken relaxation – experiences a notably worse
performance as compared to the schemes mentioned before. Nonetheless, the performance
gain as compared to the constant relaxation using ω = 1 is still remarkable, especially for
larger time step sizes.
Summarizing the results, the quasi-Newton least squares method, the Broyden method,

and the line extrapolation scheme belong to the best-performing convergence acceleration
schemes. It should be noted, however, that the results only apply to a comparably simple
problem originating from the partitioned analysis of the mechanical system presented in
Section 4.3. It is difficult to generalize the findings to arbitrary two-field or multifield

96

4.7 Convergence Acceleration Schemes

problems involving even more than two fields. Yet, the conclusions drawn for this simple
example can serve as useful hints for the choice of a convergence acceleration scheme for
larger-scale problems.

97

5 Software Library comana
For the partitioned solution of a general multifield problem, separate dedicated solvers are
used for each of the involved subproblems. Interaction between the subproblems is achieved
by iteratively exchanging the relevant field quantities at the boundaries Γ1, . . . , Γm in the
case of a surface-coupled problem or in the subdomains Ω1, . . . , Ωm in the case of a volume-
coupled problem within a time increment. If all subfields are equilibrated with each other,
we proceed to the next time increment. In order to steer the coupled solution procedure
and organize the data transfer between the solvers, we propose the C++ software library
comana. It is based on a master/slave communication model suitable for the integration
of serial as well as shared- or distributed-memory parallelized solvers into a partitioned
analysis. Due to the modular architecture of the coupling extensions, modifications in the
solvers are kept to a minimum. For the implementation of a custom partitioned solution
strategy in a dedicated C++ program, comana offers a vast range of different modular,
reusable, and extensible algorithmic building blocks. This way, the user may exploit the full
power of the C++ language in order to set up the solution procedure, to easily manipulate
the relevant field quantities, or to alter the order in which the subproblems are to be
solved. Shared-memory parallelized building blocks contribute to reducing the time spent
on executing the coupling algorithm.
In this chapter, we provide a concise overview of the general concepts on which comana is

based. Then, we will present the most important data structures and their efficient use for
the algorithmic tasks arising in the context of a partitioned solution procedure. Particular
emphasis is placed on the discussion of the data structures required to prepare a solver
for participation in a partitioned analysis. The simple and straightforward integration
of solvers implemented in C/C++, Fortran, Python, MATLAB/Octave, or the ANSYS
Parametric Design Language (APDL) can be considered as one of the most outstanding
strengths of comana. Last but not least, a simple coupled problem is analyzed with the
help of comana to illustrate the simulation setup and to demonstrate the usefulness of our
software library for the implementation of a tailored partitioned solution strategy.

5.1 General Concepts
To conveniently address the different solvers involved in the partitioned solution of a general
multifield problem and to organize the data transfer of the relevant field quantities, an
elaborate communication concept is inevitable. In comana, we decided on the master/slave
model sketched in Figure 5.1. The master process steers the solution process, and it
serves to organize the data transfer of the field quantities between the subproblem solvers
S1, . . . ,Sm. Basically, it executes a coupling procedure similar to the one outlined in
Algorithm 1, possibly tailored to the particular problem under consideration. The slave
processes are responsible for the solution of the subproblems. If a subproblem solver
is distributed-memory parallelized and the solution of the corresponding subproblem is

98

5.1 General Concepts

M
as
te
r
pr
oc
es
s

Master socket group 1

Slave process group 1

Master socket
group 2, . . . ,m

Slave process
group 2, . . . ,m

M
as
te
r
so
ck
et

C
al
ls

D
at
a

A
da

pt
er

Solver

Sl
av
e
so
ck
et

M
as
te
r
so
ck
et

C
al
ls

D
at
a

A
da

pt
er

Solver

Sl
av
e
so
ck
et

M
as
te
r
so
ck
et

Sl
av
e
pr
oc
es
s

M
as
te
r
so
ck
et

C
al
ls

D
at
a

A
da

pt
er

Solver

Sl
av
e
so
ck
et

Figure 5.1: Master/slave communication concept.

99

5 Software Library comana

1: j := 0
2: while tj ≤ T do

3: Solve gi(tj,u1, . . . ,
ui, . . . ,um) = 0

4: j := j + 1
5: tj+1 := tj + ∆tj
6: end while

Algorithm 13: Generic solver Si.

1: Initialize driver
2: Initialize communication
3: j := 0
4: while tj ≤ T do
5: k := 0
6: while true do
7: Data transfer
8: Solve gi(tj,u1, . . . ,

ui, . . . ,um) = 0
9: Data transfer

10: if converged then
11: break
12: end if
13: k := k + 1
14: end while
15: j := j + 1
16: tj+1 := tj + ∆tj
17: end while
18: Exit communication
19: Clear driver

Algorithm 14: Modified generic solver Si.

accomplished by several solver processes, this terminology must be generalized further.
Then, the individual slave processes, which in this case are responsible for solving only
part of the subproblem, constitute a slave process group. If a solver is single-threaded or
shared-memory parallelized, the slave process group consequently contains just a single
slave process. In the master process, a master socket group bundles several master sockets
into a single data structure. From an algorithmic point of view, each master socket group
and its corresponding slave process group represent a subproblem solver, independent
of whether one or multiple solver instances are actually used to solve the subproblem.
Later on, it will be shown that the concept of process groups substantially simplifies the
implementation of a coupling algorithm. Each of the master sockets can be seen as a
communication peer for a slave socket for sending and receiving data. The slave socket is
part of an adapter, which prepares a solver for participation in a partitioned analysis and
that allows to access and modify the solver’s database during the simulation. In addition,
some modifications in the solver’s source code are required to enable multiple implicit
iterations within a time increment and to facilitate the data transfer between the solver
and the adapter as well as, subsequently, between the adapter and the master process.
To illustrate the necessary changes, let us consider the generic solver Si for the solution

of the ith subproblem sketched in Algorithm 13. Practically all transient solvers should fit
the depicted scheme. For steady-state solvers, time can be interpreted as pseudo-time or
as load steps. To begin with, the time increment counter j is initialized to zero, and the
solver enters the time stepping procedure. In each loop cycle, the discrete field equations
gi(tj,u1, . . . ,ui, . . . ,um) are solved, j is incremented by one, and the time is increased by
the time increment ∆tj. If time adaptivity is supported by the solver, ∆tj may also be

100

5.1 General Concepts

different between time steps. The procedure continues until the final time T is reached.
If a solver is to be integrated into a partitioned solution strategy, the modifications

outlined in Algorithm 14 are required. In addition, the solver must offer the possibility
to access and modify its database during the solution process. To this end, so-called
drivers are introduced. In order to retain state during the simulation, the driver’s data
structures must be initialized to begin with (line 1). After that, the connection to the
master process is established (line 2). In an implicit partitioned solution strategy, the
relevant field quantities are, within a time increment, iteratively exchanged between the
solvers until all subfields are equilibrated with each other. Consequently, the solution
process of a single-field solver Si must be embedded into an implicit iteration such that
the set of discrete field equations gi can be solved several times within the same time
increment (lines 6 and 14). Furthermore, the program flow before and after the solution
process needs to be modified (lines 7 and 9–12). Before solving the subfield equations gi,
the relevant field quantities are received from the master process and applied as boundary
conditions (line 7). After changing the boundary conditions, the subfield solution yields an
updated set of discrete result variables, which need to be passed over to the other solvers
involved in the partitioned solution process. In the case of surface-coupled problems, these
are the solvers operating on domains sharing at least a part of the boundary Γi. For volume-
coupled problems, the updated solution must be supplied to all solvers for subproblems on
domains that partly or entirely overlap the domain Ωi. This data transfer is carried out
in line 9. Specifically, the solution is first sent to the master process, interpolated to the
other solvers’ discretizations (if required), and then forwarded to those solvers. Following
the second data transfer, the master process informs the solver about the convergence
status, indicating whether the subfields have already been equilibrated with each other up
to a user-defined tolerance. If this is the case, the implicit iteration stops, and the solver
continues with the next time increment (line 10–12). Otherwise, the iteration counter is
incremented (line 13), and a further implicit iteration is carried out. Finally, the connection
to the master process is terminated (line 18) and, if required, the resources acquired for
the driver’s data structures are released (line 19).
From the comparison of Algorithm 13 and 14, it becomes apparent that the modifications

required to prepare a single-field solver for the integration into a partitioned solution
procedure are minimally invasive. In fact, external functions are only called to establish
the communication to the master process before entering the solution process (line 2),
to transfer the relevant field quantities before and after the solution of the discrete field
equations (lines 7 and 9), and eventually to finalize the communication to the master
process (line 18). Since these functions interrupt the regular program flow of the solver,
they will be referred to as interrupt functions in the following. In addition, the functions to
initialize and clear the driver, which is used to access the solver’s database, must be called
(line 1 and 19). Clearly, any logic behind these functions should be hidden from the solver.
Therefore, the implementation details are shifted into an adapter library as depicted in
Figure 5.2. It furnishes a solver modified according to Algorithm 14 with all the necessary
functionalities to participate in a partitioned solution process. In Algorithm 14, the first
function called by the solver initializes the driver’s global data structure (line 1). In contrast
to the rest of the adapter library, the driver is implemented in the same programming
language as the solver to avoid passing specific solver data structures across language
barriers. To make these data structures accessible to the driver functions during the
solution process, the driver stores references to them internally. To this end, a global data

101

5 Software Library comana

Solver process

C
al
ls

D
at
a Adapter

Accessor
C
al
ls

D
at
a

C
al
ls

D
at
a

Slave process

Slave socket

C
al
ls

D
at
a

Driver functions (Global) driver data
Calls

Data

Solver database

Calls

Data

Driver

C
al
ls

D
at
a

Interrupt functions
Calls

Data
Request handler

C
al
ls

D
at
a

Calls
Data

Figure 5.2: Adapter library enhancing a solver for the integration into a partitioned solution
strategy.

102

5.1 General Concepts

structure must be introduced to retain state between subsequent function calls, which
can involve a language barrier between C++ and the language the solver is implemented
in. In line 1, this global data structure is initialized. Further explanations regarding the
drivers are shifted to Section 5.6. Subsequent to initializing the driver data structures,
the communication to the master process is initialized (line 2). Once the connection is
established, the solver proceeds to the first data transfer (line 7). Most commonly, solvers
receive and apply updated boundary conditions from the master process at this stage.
However, it is also possible that different actions are required – which is why the generic
concept of requests was introduced. In the data transfer phase, the solver polls for requests
sent to it by the master process before carrying out different actions depending on the
particular type of request. In that sense, the solver can be seen as being remote-controlled
by the master process. A request consists of a request tag and request data. The request
tag uniquely defines a request, the set of associated actions, and the request data to be sent
to or received from the master process. Subsequent to receiving a request tag via the slave
socket, the appropriate request handler responsible for processing the request is invoked.
In the request handler, the accessor is addressed to access or modify the solver’s database.
Instead of accessing or modifying the solver data directly, however, a driver function is
internally called. In essence, the set of driver functions represents a concise interface to
the solver’s database. The data from the solver’s database, if any, is then passed back to
the accessor and, subsequently, to the request handler. If data is to be sent to the master
process, the data is forwarded to the slave socket. In turn, if data is to be received from the
master process, the data is received by the slave socket and then passed over to the request
handler. In the second data transfer (line 9), the same procedure applies – except that,
usually, different requests than in first data transfer are received from the master process.
In most cases, the master process will request the updated field solution at this point. At
the end of the solution process, the slave socket terminates the connection to the master
process (line 18). Finally, the driver data structures need to be cleaned up (line 19). If,
for instance, heap memory was allocated upon driver initialization, these resources must
again be released at the end of the simulation to prevent a memory leak.
Adapter libraries and modified source code files for various open source and commer-

cial solvers for fluid dynamics, structural mechanics and thermodynamics implemented in
C/C++, Fortran, Python, MATLAB/Octave, or APDL are readily available in comana.
An overview of the supported solvers is given in Table 5.1. If an adapter library is not yet
available for a solver, it can be implemented fairly easily using the vast range of generic
data structures provided for this task in comana; the reader is referred to the following
sections for further information regarding this topic.
Solvers to be integrated into the partitioned solution procedure are usually based on

numerical methods that employ a discrete approximation of a continuous geometry. In
comana, parts of the discretization associated to certain parts of the original geometry that
are necessary to apply, for example, boundary conditions are referred to as patches. In
the master/slave communication model, however, a slave process, if part of a distributed-
memory parallelized process group, may only be responsible for a part of that patch,
which leads to the concept of process patches. A process patch denotes the part of a patch
occupied by a slave process, see also Figure 5.3 for an illustrative example.
In the partitioned solution procedure, the relevant field quantities need to exchanged at

the coupling interface of a subdomain. In the general case, the coupling interface comprises
several patches, which are termed a patch group. Therefore, a patch group is the relevant

103

5 Software Library comana

Table 5.1: Adapter libraries currently available in comana.

Solver Availability Applications Discretization Language

AdhoC [41, 40] In-house Structural mechanics FEM C
ANSYS [3] Commercial Structural mechan-

ics, thermodynamics
FEM APDL/Fortran

Code_Aster [43] Open source Structural mechan-
ics, thermodynamics

FEM Fortran

foam-extend [61] Open source Fluid dynamics FVM C++
MSC Marc [117] Commercial Structural mechanics FEM Fortran
oct6dof In-house Rigid body dynamics – MATLAB/Octave
OpenFOAM [123] Open source Fluid mechanics FVM C++
panMARE [12] In-house Fluid mechanics BEM Python

Patch 3

Patch 2

Process 2 Process 3 Process 4

Patch 1 Patch group 1

Process 1

Process patch 1 Process patch 4
Process
patch 2

Process
patch 3

Figure 5.3: Patches, patch groups, and process patches.

104

5.2 Generic Data Structures

entity in the master process. In contrast, the process patches are the entities a slave
process operates on. In comana, a patch group stores a reference to the master socket
group it was associated to. Field quantities to be applied as boundary conditions on a
patch group are scattered to the master sockets in the master socket group, from where
they are sent to the slave sockets. In a slave process, the received field quantities are then
forwarded to the request handler, the accessor, and finally the driver, which modifies the
solver’s database. In the other direction, a master socket group gathers the field quantities
from the individual process patches by going through the patch identifiers and requesting
the field quantities associated to the process patches from each of the slave processes. By
interacting only with the patch groups and master socket groups, the user can conveniently
implement a coupling strategy irrespective of the particular solvers and irrespective of the
number of distributed processes used for the subfield solution.
In order to request certain field quantities from a slave, the slave needs to be informed

about the type of the quantity and its location, where the discrete quantity is available. In
an FSI analysis, the type of the quantity could be displacement or traction, for instance.
The location of these quantities could either be vertex in the case of displacements on
a finite element discretization, or cell if tractions at the face centers of a finite volume
discretization or at the collocation points of a boundary element mesh are considered. In
addition to these standard point locations, there is also the concept of custom points,
which serves to evaluate a field quantity at a set of user-defined points. In an FSI analysis,
one would typically request the displacement at the vertices of the fluid discretization from
the structural solver. In the opposite direction, it is convenient to define the structural
integration points as evaluation points for the traction in the fluid solver. If custom points
are used, the slave employs the projection procedure outlined in Section 4.5.5 and 4.5.6 to
associate the custom points to the discretization in order to interpolate the field quantities
from their standard locations to the custom points. Due to the fact that these mesh-
dependent interpolation schemes need access to a solver’s specific mesh data structure,
the interpolation is performed in the adapter library instead of passing the information
required for the interpolation to the master process, as in the case of mesh-independent
interpolation schemes. In most situations, exchanging the field quantities at custom points
is the preferred way of organizing the data transfer, as mesh-based interpolation schemes
usually provide the highest interpolation accuracy.

5.2 Generic Data Structures
Our software framework comana was purposefully implemented in the C++ programming
language. C++ is a general-purpose and feature-rich programming language, which is,
among other applications, particularly well suited for the implementation of numerical
software. As opposed to older languages like C or Fortran, it provides a lot of program-
ming concepts that do not only make programming in C++ more convenient, but also
faster and safer. At the same time, the execution speed of programs written in C++ is
still comparable to codes implemented in C or Fortran. C++ is a multiparadigm language,
i.e., in addition to functional and object-oriented paradigms, it also supports generic and
metaprogramming. It also provides the standard library, which offers several generic con-
tainer types, algorithms to manipulate or operate on these containers, function objects,
strings and streams, or mathematical functions. Many common programming tasks can

105

5 Software Library comana

be accomplished using the standard library and its well-tested and efficient classes and
functions. In the course of the introduction of the recent C++ standards C++11 [80],
C++14 [81], and the upcoming C++17 [82] standard, a vast range of interesting features
have been added to the language. Bjarne Stroustrup, the inventor of the C++ program-
ming language, remarks that “C++11 feels like a new language” [154]. In what follows,
the most essential added features are therefore briefly summarized:

• Move semantics [112, pp. 157–214]: In older C++ standards, the only means to
transfer state from one object to another was a deep and potentially costly copy
operation. In many situations, however, the copied-from value is no longer used
– hence making the copy superfluous as the temporary could be modified directly
instead. This led to the concept of rvalue references. Consider, for example, a
std::vector<Type> that is returned from a function. In the absence of return value
optimization (RVO), assigning the result of this function to a variable involved a deep
copy of the std::vector<Type> until C++03 [79]. In C++11, this copy is avoided
due to the fact that std::vector<Type> defines a move constructor that accepts an
rvalue reference and creates a new std::vector<Type> instance by “reusing” the
data members from the moved-from vector.

• Automatic type deduction [112, pp. 37–48]: In C++03 and former C++ standards,
it was necessary to specify the type of a variable explicitly. In C++11, this necessity
was mitigated by introducing the auto keyword, which allows to infer the type from
the right-hand side of an assignment. For instance,
auto number = 3;

deduces the type of number to int since the type of the literal 3 is int. The auto
keyword makes production code safer, easier to read and to maintain. In order to
underline the usefulness of the auto keyword, Herb Sutter coined the acronym AAA
(“almost always auto”) [112, p. XIII]. A further mechanism for automatic type
deduction is provided by the keyword decltype, which enables to infer the type
from another variable at compile time:
int number1;
decltype(number1) number2;

Here, number2 will be of type int – just as number1.

• Generalized constant expressions [112, pp. 97–103]: Before C++11, a constant ex-
pression must not involve a function call or an object constructor. Using the newly
introduced constexpr keyword, an expression can now be designated a compile-time
constant. For instance, the function
constexpr int factorial(int n) {

return n <= 1 ? 1 : (n * factorial(n - 1));
}

evaluates the factorial of n at compile-time [126, p. 141].

• Initializer lists [112, pp. 52–58]: Initializer lists have been available in C++ ever
since, but only for plain old data (POD) types such as arrays or structs. C++11
generalized the concept of initializer lists and introduced the template std::initial

106

5.2 Generic Data Structures

izer_list. This way, constructors or other functions may accept initializer lists as
arguments:
struct Foo {

Foo(std::initializer_list<int> numbers);
};

An instance of the class Foo can then be constructed from a list of integers as follows:
Foo foo{ 1, 2, 6, 8 };

• Uniform initialization [112, pp. 50–51]: C++11 extends the initializer list syntax to
a fully uniform type initialization applicable to any kind of objects. Consider the
structs
struct Pair1 {

int a, b;
};

struct Pair2 {
Pair2(int a, int b)

private:
int a, b;

};

which can, in C++11, both be initialized in the same manner:
Pair1 pair1{1, 2};
Pair2 pair2{3, 4};

Uniform initialization removes any distinction between (), {}, and initialization with
no braces by means of the default constructor. This syntax also helps to avoid
repeating the typename in function arguments or returns. Moreover, it solves the
most vexing parse (MVP) problem.

• Lambda expressions [112, pp. 215–240]: C++11 also introduced the concept of
anonymous or lambda functions. For example, the lambda function
[](int x, int y) -> int { return x + y; }

adds the integers x and y. The return type is implicitly deduced from the type of
the returned expression (in this case: decltype(x + y)).

• Range-based for loops [112, p. 41]: Another useful feature in recent C++ standards
is the availability of range-based for loops. For C-style arrays, initializer lists, and
any data types that define the functions begin() and end(), iterating through these
data structures is as simple as
for (auto &x : someArray)

x += 5;

Here, each element in someArray is incremented by 5.

• Variadic templates [153, p. 66 sq.]: C++11 introduces templates that can take a
variable number of arguments. This allows the implementation of type-safe variadic

107

5 Software Library comana

functions, as will also be shown in the remainder of this chapter. To illustrate the
concept, let us consider a C++-style print function that accepts a variable number
of arguments of different type:
template<class Type>
void print(const Type &message) {

std::cout << message << " ";
}

template<class Head, class ...Tail>
void print(Head head, Tail ...tail) {

print(head);
print(tail...);

}

Note that the first print function is primarily required to end the recursion once
only one argument is left in the argument list.

• Strongly typed enumerations [112, pp. 67–74]: In former C++ standards, enumera-
tions are not type-safe. Essentially, they directly translate to integers, which allows
to substitute an integer wherever an enumeration type is actually expected. C++11
introduces strongly typed enumerations expressed by the enum class keyword to be
used in situations where an automatic conversion to an integer is not desired.

• Alias declarations [112, pp. 63–67]: C++11 introduces the using keyword to declare
a synonym for a previously declared type. In this context, it essentially replaces the
typedef keyword. In addition, an alias can also be defined for a template, for
example:
template<class Type, class Allocator = std::allocator<Type>>
using Vector = std::vector<Type, Allocator>;

Vector is termed an alias template.

• General-purpose smart pointers [112, pp. 117–156]: Recent C++ standards provide
the smart pointer types std::unique_ptr, std::shared_ptr, and std::weak_ptr.
These types simulate a pointer but add additional features that make them safer
to use than raw pointers. For instance, a std::unique_ptr releases its memory
automatically if it goes out of scope, without the need to delete as in the case of
raw pointers. Smart pointers thus avoid memory leaks and bugs that are difficult to
find, but at the same time essentially retain the efficiency of raw pointers.

The above list is by no means complete, but sets the outline for the discussion of the
most important data structures in comana. For further details regarding the recent C++
language features, the interested reader is referred to the standard textbooks [155, 153,
112, 89].
Practically all classes in comana are based on a set of generic data structures. One of the

most important programming concept are type traits, which serve to retrieve type infor-
mation at compile-time. Type traits are used excessively throughout comana, contributing
significantly to a generic and reusable code.

108

5.2 Generic Data Structures

For the data transfer of the relevant field quantities between the subproblem solvers and
the master process, and for the implementation of extensible algorithmic building blocks,
it is convenient to introduce custom container classes that are not included in the C++
standard library. In particular, we will discuss enhanced versions of the matrix classes
provided in the Eigen linear algebra library as well as a class for the storage of physical
quantities.

5.2.1 Traits
Type traits provide a powerful mechanism in template metaprogramming. By means of
type traits, it becomes possible to provide information about types at compile-time – one
of the cornerstones of reusable, generic, and type-safe software. Recent C++ standards
and C++11 in particular have added a lot of type traits to the standard library. Hence, it
suffices to provide only a small number of additional traits for the use in comana.
Exemplary, let us consider the trait IsIterator, which provides the functionality to test

whether Type is an iterator or not:

template<class Type>
struct IsIterator {
private:

template<class Iterator>
static constexpr std::true_type test(typename

std::iterator_traits<Iterator>::iterator_category *);

template<class Iterator>
static constexpr std::false_type test(...);

public:
static constexpr bool value = decltype(test<Type>(nullptr))::value;

};

template<class Type>
constexpr bool IsIterator<Type>::value;

If the compiler detects a specialization of std::iterator_traits for Type, the first test
function is instantiated and value becomes true. Otherwise, the second test function is
instantiated and value becomes false. Note the additional definition of the constexpr
member value is necessary as value is ODR-used [80, sec. 9.4.2]. Another useful trait is
the IsIteratorCategory trait

template<class Iterator, typename IteratorTag>
using IsIteratorCategory = std::is_same<

typename std::iterator_traits<Iterator>::iterator_category, IteratorTag>;

to match an IteratorTag against the iterator_category field in the std::itera
tor_traits template and identify a certain class of iterators. Based on this, itera-
tors providing random access to a range of values are, for instance, identified by the
IsRandomAccessIterator trait

109

5 Software Library comana

template<class Iterator, class Enable = void>
struct IsRandomAccessIterator: public std::false_type {
};

template<class Iterator>
struct IsRandomAccessIterator<Iterator, typename std::enable_if<

IsIterator<Iterator>::value && IsIteratorCategory<Iterator,
std::random_access_iterator_tag>::value>::type> : public std::true_type {

};

Here, the idiom substitution failure is not an error (SFINAE) has been used to condition-
ally enable the specialization of the IsRandomAccessIterator struct and to initialize its
value property to true by inheriting std::true_type. As a last iterator trait, we present
the RequireInputIterator trait, which is useful to selectively enable a template if the
given template argument represents an input iterator1:

template<class InputIterator>
using RequireInputIterator = typename std::enable_if<std::is_convertible<

typename std::iterator_traits<InputIterator>::iterator_category,
std::input_iterator_tag>::value>::type;

Similar traits are provided to check whether a Type provides certain type aliases, which
are present in the container types in the C++ standard library. For example, consider
the HasValueType trait, which sets its member value to true if Type declares the typedef
value_type:

template<class Type>
struct HasValueType {
private:

template<class Container>
static constexpr std::true_type test(typename Container::value_type *);

template<class Container>
static constexpr std::false_type test(...);

public:
static constexpr bool value = decltype(test<Type>(nullptr))::value;

};

Further traits of the kind HasMember <Type> are available. Based on these traits, one is
able to implement

template<class Type>
struct IsContainer: public std::integral_constant<bool,

HasValueType<Type>::value &&
HasPointer<Type>::value && HasConstPointer<Type>::value &&
HasReference<Type>::value && HasConstReference<Type>::value &&
HasIterator<Type>::value && HasConstIterator<Type>::value &&

1In fact, this trait is a minor modification of the std::_RequireInputIter trait distributed along with
the GCC 5.4.0 [54].

110

5.2 Generic Data Structures

HasSizeType<Type>::value &&
HasDifferenceType<Type>::value> {

};

to check whether Type is a container type. Several other traits are provided to check
whether a container’s underlying memory is contiguous, whether a container is resizable,
or if it is a nested container (that is, a container of containers).
As already mentioned, all these traits serve to conditionally enable and instantiate the

correct template for a certain type. Several applications of this concept will be shown in
the forthcoming sections.

5.2.2 Containers
The C++ standard library provides a broad range of different container types that – as
they are generic, robust, and fast – also prove useful in numerical software. For the use in
comana, we define type aliases such as

template<class Type, std::size_t sizeAtCompileTime>
using Array = std::array<Type, sizeAtCompileTime>;

template<std::size_t sizeAtCompileTime>
using DoubleArray = Array<double, sizeAtCompileTime>;

template<class Type, class Allocator = std::allocator<Type>>
using DynamicArray = std::vector<Type, Allocator>;

using DoubleDynamicArray = DynamicArray<double>;

to ease typing for often-used container types and to increase the readability of the source
code. Yet, the standard library lacks container classes providing mathematical operations
by means of operator overloading. Instead, numerical operations on containers have been
shifted to separate free functions for the sake of genericity. These functions operate on
iterators instead of containers. Thus, the implementations are independent of specific con-
tainer types and may also be used for custom container types. However, as soon as a
lot of mathematical operations need to be performed, the readability decreases and the
maintainability deteriorates. In comana, standard container types are therefore only used
to store objects, plain numbers not intended for the use in mathematical expressions, and
other containers, but do not represent mathematical entities. For linear algebra, we resort
to the high-level header-only Eigen library [55], which provides a vast range of different
dense and sparse matrix types, as well as plain array and tensor types. Eigen makes heavy
use of expression templates and generates expression trees at compile-time, surrounded
by custom code for their evaluation. Depending on the platform and compiler settings,
the Eigen library unrolls loops at compile-time and performs automatic vectorizations.
Because of their efficiency and easy use, comana relies on Eigen containers wherever nu-
merical operations have to be performed on containers. To increase the compatibility of
the Eigen containers with the standard library, numerous enhancements have been added
by means of Eigen plugins and other utility functions and traits. For instance, let us
consider an excerpt from the changes injected in the Eigen::Matrix class by defining the
EIGEN_MATRIX_PLUGIN macro:

111

5 Software Library comana

// In <COMANA_ROOT>/comana/kernel/container/matrix.h:
define EIGEN_MATRIX_PLUGIN "comana / kernel / container / eigen_matrix_plugin.def"

// In <COMANA_ROOT>/comana/kernel/container/eigen_matrix_plugin.def:
template<class InputIterator, class = RequireInputIterator<InputIterator>>
EIGEN_STRONG_INLINE Matrix(InputIterator begin, InputIterator end) : Base() {

Base::_check_template_params();
const auto numberOfElements = std::distance(begin, end);

if (base().size() == 0)
this->resize(numberOfElements, 1);

std::size_t index = 0;
for (auto iterator = begin; iterator != end; ++iterator, ++index)

coeffRef(index) = *iterator;
}

EIGEN_STRONG_INLINE Matrix(const InitializerList<Scalar> initializerList)
: Matrix(std::begin(initializerList), std::end(initializerList)) {

}

EIGEN_STRONG_INLINE Matrix(
const InitializerList<InitializerList<Scalar>> initializerList) : Base() {
// Initialize from nested initializer list; if the storage order is
// row-major, the matrix is initialized row-wise, while if the storage
// order is column-major, the matrix is initialized column-wise

}

EIGEN_STRONG_INLINE const Scalar * begin() const noexcept {
return this->data();

}

EIGEN_STRONG_INLINE const Scalar * end() const noexcept {
return this->data() + this->size();

}

Enhancing the Eigen::Matrix class with these constructors, it becomes possible to con-
struct an Eigen::Matrix from an iterator range, an initializer list, or a nested initializer
list in the same manner as a standard container. Adding the functions begin and end fur-
nishes the Eigen::Matrix class with iterator access and, moreover, allows to use the free
functions std::begin and std::end on Eigen::Matrix objects. Note that the non-const
versions of begin and end are implemented completely analogously. Similar enhancements
also exist for other Eigen types.
One of the core classes in comana is the Field class for the storage of physical quantities:

class Field {
public:

using value_type = QuantityView;
using ComponentVector = DynamicDoubleVector;
// Other type aliases, omitted here

112

5.2 Generic Data Structures

Field() noexcept;
explicit Field(const QuantityType quantityType,

const std::size_t size = 0) noexcept;
explicit Field(const std::size_t quantitySize,

const std::size_t size = 0) noexcept;
Field(const QuantityType quantityType, const ComponentVector &components);
Field(const std::size_t quantitySize, const ComponentVector &components);
Field(const QuantityType quantityType, const std::size_t size,

const QuantityView::Scalar value) noexcept;
Field(const std::size_t quantitySize, const std::size_t size,

const QuantityView::Scalar value) noexcept;
template<class Quantity, class = RequireQuantity<Quantity>>
Field(const Quantity &quantity, const std::size_t size) noexcept;
template<class Quantity, class = RequireQuantity<Quantity>>
Field(const InitializerList<Quantity> initializerList);
template<class InputIterator, class = RequireInputIterator<InputIterator>>
Field(InputIterator first, InputIterator last);
Field(const Field &field) noexcept;
Field(Field &&field) noexcept;
Field & operator=(const Field &field) noexcept;
Field & operator=(Field &&field) noexcept;
~Field() noexcept = default;
// Iterator access, omitted here
// Requesting and changing capacity, omitted here
// Element and component access, omitted here

private:
using QuantityViewArray = DynamicArray<value_type>;
std::size_t quantitySize_;
ComponentVector components_;
QuantityViewArray quantityViews_;
static QuantityViewArray createQuantityViewArray(

const std::size_t quantitySize, ComponentVector &components);
};

In comana, a quantity is basically an array of values equipped with mathematical opera-
tions such as addition, subtraction, multiplication, or division. If a certain quantity type
is requested from a solver, it is convenient to store the quantities in an array-like struc-
ture, which, however, provides some additional functionality for memory management and
data access. In a Field, the quantities’ real-valued components are stored in a contiguous
DynamicDoubleVector. On top of this, the Field holds a QuantityViewArray member
quantityViews_ gathering so-called views to the quantities’ components. Internally, views
essentially only store the memory address to their components, whereas, seen from out-
side, they behave just as a regular quantity. That way, the components of a Field can
be manipulated either directly through the component vector or indirectly through the
quantity views. In the implementation of the partitioned solution procedure, this data
representation offers several advantages. On the one hand, the user can request a Field
from a slave – and operate on quantity views and, hence, on a data representation that
is close to the physical interpretation. For instance, in a field of type Field, accessing
field[1] returns the second quantity in the field, which refers to the field components

113

5 Software Library comana

3 to 5 (note that C++ uses zero-based indexing). This avoids the need for tedious and
erroneous indexing in the component vector. On the other hand, the direct access to the
underlying components turns out beneficial in the application of the predictor or conver-
gence acceleration methods that manipulate a plain numeric vector instead of a nested
one. Moreover, the implementation of these classes then becomes much easier, and the
required mathematical operations execute significantly faster if the underlying memory is
contiguous. Also, the low-level data transfer functions used in communication between the
master and the slave process expect the data to be organized in contiguous memory.
Several constructors for the Field class are provided; it can be default-constructed,

constructed from quantity type and field size, or from the size of a single quantity and
the entire field size. Instead of providing a field size, the field components can also be
provided directly. Further constructors that accept initializer lists or ranges of quantities
are implemented as well. Moreover, it offers iterator access, functions to request and
change its capacity, and members for element and component access. Hence, the Field
class allows to easily access and manipulate physical quantities, for simple and convenient
indexing, and for a nested or flat data representation of its components, each of which
prove to be expedient, depending on the context the Field class is used in.

5.3 Communication Data Structures
For the data transfer between the master process and the slave processes, the Message
Passing Interface (MPI) is employed, which provides an Application Programming Interface
(API) to exchange messages across a network in a standardized and portable manner. Due
to the fact that the MPI C++ bindings are deprecated since the MPI 2.2 release, comana
provides its own C++ interface to the MPI functionality, which essentially serves three
important purposes. First of all, the MPI functions become much easier to use in a C++
application if a dedicated C++ interface is provided. Secondly, the MPI C bindings are
not const-correct, which leads to the necessity of frequent const_casts, cluttering the
production code and deteriorating its maintainability. Lastly, C++ templates can be used
to increase type-safety, and they remedy the need to individually specify the address of the
data to be sent or received, its size, and its type. For instance, let us consider the function

int MPI_Send(void *buffer, int count, MPI_Datatype type, /* ... */)

to send a buffer of length count and type type. If we intend to send a std::vector<int>
v, for example, we would have to call

MPI_Send(const_cast<int *>(v.data()), v.size(), MPI_INT, /* ... */)

As passing the latter two arguments separately is potentially error-prone, this is best
avoided by introducing a function template

template<class Type>
void send(/* ... */ , const Type &data) noexcept {

Sender<Type>::send(/* ... */ , data);
}

Here, Sender<Type> is a class template specialized for all data types that need to be
exchanged across the network. SFINAE can again be leveraged to conditionally enable

114

5.3 Communication Data Structures

a particular specialization depending on the template argument. For std::vector<int>,
the specialization

template<class Container>
struct Sender<Container, typename

std::enable_if<IsContiguousContainer<Container>::value>::type> {
static void send(/* ... */ , const Container &container) noexcept {

sendRange(/* ... */ , std::begin(container), std::end(container));
}

};

is instantiated. A second version of the send functions allows to send only part of a vector
by providing an iterator range:

template<class InputIterator, class = RequireInputIterator<InputIterator>>
void send(const Socket &socket, InputIterator first, InputIterator last)

noexcept {
Sender<InputIterator>::send(socket, first, last);

}

In this case, the specialization

template<class Iterator>
struct Sender<Iterator,

typename std::enable_if<
IsArithmeticRandomAccessIterator<Iterator>::value>::type> {

static void send(const Socket &socket, Iterator first, Iterator last)
noexcept {

// random_access_iterators can be safely dereferenced and converted to
// an ordinary pointer
sendRange(socket, convertToPointer(first), convertToPointer(last));

}
};

is instantiated. Internally, specializations of Sender<Type> dispatch their arguments to
the function

template<class Type>
void sendRange(/* ... */ , const Type *first, const Type *last) {

MPI_Send(const_cast<Type *>(first), std::distance(first, last),
DataType<Type>::type, /* ... */);

}

which finally invokes MPI_Send. DataType<Type> is a class template specialized for all
primitive data types:

template<class Type>
struct DataType {
};

template<>
struct DataType<int> {

115

5 Software Library comana

static constexpr MPI_Datatype type = MPI_INT;
};

// Further specializations for all built-in data types

Note that the variants of the send function template still use MPI_Send in the end, but
make it a lot easier and safer to use.
A look at the full declaration of MPI_Send reveals that, in addition to the data to be

sent, its destination has to be specified as well:

int MPI_Send(const void *buffer, int count, MPI_Datatype type, int rank,
int tag, MPI_Comm communicator)

Together, MPI communicator and rank uniquely identify the destination for a message.
In essence, the communicator addresses a group of processes and the rank represents the
local process number inside that process group. Evidently, it makes sense to merge these
two entities into a single data structure. In comana, this data structure is termed a socket.
It essentially offers the following interface:

class Socket {
public:

virtual ~Socket() noexcept = 0;
virtual const Mpi::Communicator & getCommunicator() const noexcept = 0;
Mpi::Communicator & getCommunicator() noexcept;
virtual std::size_t getPeerRank() const noexcept = 0;

};

Here, the getCommunicator method simply returns the Mpi::Communicator instance as-
sociated to the Socket, which is nothing but a thin wrapper around MPI_Comm. Not
to be confused with the rank of the process in which the Socket is used, the function
getPeerRank returns the rank of the process a Socket communicates to. From the Socket
class, the classes MasterSocket and SlaveSocket are then derived. First, let us consider
the MasterSocket class:

class MasterSocket: public Socket {
public:

MasterSocket(const Mpi::Communicator &communicator,
const std::size_t peerRank = 0) noexcept;

const Mpi::Communicator & getCommunicator() const noexcept override;
std::size_t getPeerRank() const noexcept override;

private:
const Mpi::Communicator &communicator_;
std::size_t peerRank_;

};

In its constructor, it expects an Mpi::Communicator and the peerRank, which are supplied
by the parent MasterSocketGroup, which internally creates as many MasterSockets as
there are slave processes in the slave process group it is associated to. Each MasterSocket
instance is assigned the rank of the slave process it is responsible for. In doing so,
a one-to-one correspondence between master sockets and slave sockets is accomplished,

116

5.3 Communication Data Structures

which simplifies the communication substantially. In contrast to the MasterSocket con-
structor, the SlaveSocket constructor does not take any arguments, but initializes the
Mpi::Communicator on its own:

class SlaveSocket: public Socket {
public:

SlaveSocket() noexcept;
const Mpi::Communicator & getCommunicator() const noexcept override;
std::size_t getPeerRank() const noexcept override;

private:
UniquePointer<Mpi::Communicator> communicator_;

};

Further, the constructor also does not require a peer rank, as a SlaveSocket instance
always has rank 0 inside its communicator. Consequently, the getPeerRank method al-
ways returns 0. For the communicator_ member, we use the pointer to implementation
(pImpl) idiom to remove the compile-time dependency of the SlaveSocket class on the
MPI headers.
Due to the fact that the send and receive functions presented above accept a const

Socket & as their first argument, the same set of functions can be used for both Mas
terSockets and SlaveSockets alike. Based on the presented functions and classes, the
following concise and type-safe interface to the original MPI functions can be supplied.
For the task of sending data, there is a variant of the send function that accepts a single
argument and one that accepts an iterator range:

template<class Type>
void send(const Socket &socket, const Type &data) noexcept;

template<class InputIterator, class = RequireInputIterator<Iterator>>
void send(const Socket &socket, InputIterator first,

InputIterator last) noexcept;

Similarly, different variants of the receive function exist:

template<class Iterator>
typename std::enable_if<IsIterator<Iterator>::value, void>::type receive(

const Socket &socket, Iterator result) noexcept;

template<class Type>
typename std::enable_if<!IsIterator<Type>::value, void>::type receive(

const Socket &socket, Type &data) noexcept;

template<class Type>
Type receive(const Socket &socket) noexcept;

In the first version, the received values are inserted at the memory address pointed to by
result. In the second variant, a single argument of type Type & to be modified in-place
is expected. Lastly, the third version returns the received message by value.

117

5 Software Library comana

5.4 Mesh Data Structures
Most numerical schemes for the solution of partial differential equations involve a compu-
tational mesh. For the application of the projection procedure outlined in Section 4.5.5
and 4.5.6, the user-defined custom points need to be distributed from the master process
to the slave processes of a slave process group. In the following, we will therefore briefly
discuss the strategy followed in this regard. Subsequent to receiving the custom points in
a slave process, the mesh needs to be traversed in order to identify the nearest element
to a given custom point and, after that, to interpolate the requested field quantities to
this point. In order to reduce code duplication in the implementation of this procedure
in the adapter library to a minimum, several generic mesh data structures are provided
along with comana. Last but not least, generic classes and functions for performing the
integration on a computational mesh are presented. These prove, for example, particularly
useful for the load integration on finite element meshes in the case that a solver does not
allow to specify a distributed load at the integration points directly.

5.4.1 Custom Point Scattering
In Section 4.5, it was outlined that mesh-based interpolation schemes offer substantial
advantages over mesh-independent interpolation techniques. In comana, a mesh-based
interpolation is performed in the adapter library of a slave process, so as to avoid the need
to handle heterogeneous mesh data structures in the master process. This is opposed to
the generic mesh-independent interpolation schemes, which need to be applied explicitly
in every implicit iteration of the coupling algorithm executed by the master process.
If the user chooses a mesh-based interpolation scheme, the set of user-defined custom

points, at which the interpolated field quantities are desired, needs to be associated to
a patch group and supplied to the subfield solver. As already outlined in Section 5.1,
a patch group may comprise multiple patches, each of which may be distributed across
several processes. It is therefore required to also distribute the custom points such that
each custom point is associated to the part of the mesh it is closest to. In comana, the
strategy pursued in this regard is the following. First, the vertices of the process patches
belonging to the patch group are requested from each slave process. For each of the process
patches, we determine the bounding box enclosing its set of vertices. Based on Algorithm 9
implementing the AABB tree traversal, a nearest bounding box search is then performed
to associate a set of bounding boxes Ri = {Bi,1, . . . Bi,N} to each custom point qi, which
need to be considered as possible candidates to contain the part of the discretization closest
to qi. For each custom point qi, we initialize a current best distance d?i to the maximum
distance dmax(Bi,1, qi) between the custom point qi and a point in its closest bounding box
Bi,1. For each process patch bounding box Bl, the closest custom points are then gathered
and sent to the associated slave process in batch to perform the projection procedure
discussed in Section 4.5.5 for FE meshes or Section 4.5.6 for polygonal and polyhedral
meshes. Next, the distances between the custom points and their projection to the lth
process patch are passed over to the master process. Here, the current best distances d?i
of the custom points last considered are updated, and bounding boxes Bi,j with distance
dmin(Bi,j, qi) exceeding d?i are deleted from the set of candidates Ri. The procedure is
repeated until no further possible candidates are left for any of the custom points qi, i.e,
Ri = ∅ ∀ i = 1, . . . ,m.

118

5.4 Mesh Data Structures

5.4.2 Basis Functions, Cell Topology, and Cell Geometry
For the FEM, the concept of isoparametric elements and the use of shape functions for
the interpolation of nodal quantities to the interior of the element were already discussed
in Chapter 3. This concept is not restricted to the FEM, though, but can be deployed for
any computational meshes that consist of elements exhibiting the same topology as the
standard element types available in the FEM. In comana, the notion cell is used as an
umbrella term for ordinary finite elements and elements for which the same interpolation
can be applied, but which are not necessarily associated to an FE discretization. If the
geometry and the field variables are not interpolated with the same set of shape functions,
it is convenient to distinguish between the mapping functions for the interpolation of
the geometry and the shape functions for the interpolation of the field variables. In the
following, mapping and shape functions are subsumed under the term basis functions. Due
to the fact that mapping and shape functions are not necessarily identical, it is convenient
to separate the basis from a specific cell geometry and to factor it out into its own class:

template<class LocalSpace1, std::size_t numberOfFunctions1>
struct Basis final {

using LocalSpace = LocalSpace1;

static constexpr std::size_t localSpaceDimension { LocalSpace::dimension };

using LocalPoint = typename LocalSpace::Point;

static constexpr std::size_t numberOfFunctions { numberOfFunctions1 };

using Functions = DoubleVector<numberOfFunctions>;

static Functions evaluate(const LocalPoint &localPoint);

using Derivatives = DoubleVector<numberOfFunctions>;

using FirstOrderDerivatives = Array<Derivatives, localSpaceDimension>;

static FirstOrderDerivatives evaluateFirstOrderDerivatives(
const LocalPoint &localPoint);

using SecondOrderDerivatives = Array<Derivatives,
computeNumberOfSecondOrderDerivatives(localSpaceDimension)>;

static SecondOrderDerivatives evaluateSecondOrderDerivatives(
const LocalPoint &localPoint);

template<class Quantities>
static typename StorageType<typename Quantities::value_type>::type

interpolate(const Quantities &quantities, const LocalPoint &localPoint);
};

Here, the local space represents the domain, on which the basis is defined. For quadrilateral
domains, for instance, we have:

119

5 Software Library comana

struct QuadrilateralLocalSpace final {
static constexpr std::size_t localSpaceDimension { 2 };

using Point = Comana::Point<dimension>;

static bool isInside(const Point &point) noexcept;
};

In the context of the projection procedure, the function isInside becomes relevant to
judge whether the local coordinates ξ of a projected global point are still inside the local
space of the cell. In the above example, isInside returns true if ξ ∈ [−1, 1]∧ η ∈ [−1, 1].
In the Basis class, the basis function vectorN (ξ) and its first- or second-order derivatives
∂N/∂ξ, ∂N/∂η or ∂2N/∂ξ2, ∂2N/∂η2, and ∂2N/∂ξ∂η are represented as DoubleVectors
of fixed size and can be evaluated at a LocalPoint ξ of the parameter space using the
evaluation methods, which are fully specialized for each particular basis2:

using Quadrilateral4Basis = Basis<QuadrilateralLocalSpace, 4>;

template<>
Quadrilateral4Basis::Functions Quadrilateral4Basis::evaluate(

const LocalPoint &localPoint) {
const auto r = localPoint[R], rm = 1 - r, rp = 1 + r, //

s = localPoint[S], sm = 1 - s, sp = 1 + s;
return { //

0.25 * rm * sm, // (1)
0.25 * rp * sm, // (2)
0.25 * rp * sp, // (3)
0.25 * rm * sp // (4)

};
}

template<>
Quadrilateral4Basis::FirstOrderDerivatives

Quadrilateral4Basis::evaluateFirstOrderDerivatives(
const LocalPoint &localPoint) {

const auto r = localPoint[R], rp = 1 + r, rm = 1 - r, //
s = localPoint[S], sp = 1 + s, sm = 1 - s;

return { { //
// Derivatives ∂/∂r
{ //

-0.25 * sm, // (1)
+0.25 * sm, // (2)
+0.25 * sp, // (3)
-0.25 * sp // (4)

}, //
// Derivatives ∂/∂s
{ //

-0.25 * rm, // (1)

2Note that, in comana, the local variables are named r, s, and t rather than ξ, η, and ζ.

120

5.4 Mesh Data Structures

-0.25 * rp, // (2)
+0.25 * rp, // (3)
+0.25 * rm // (4)

} //
} };

}

template<>
Quadrilateral4Basis::SecondOrderDerivatives

Quadrilateral4Basis::evaluateSecondOrderDerivatives(
const LocalPoint &) {

return { { //
// Derivatives ∂2/∂r2

{ //
0, // (1)
0, // (2)
0, // (3)
0 // (4)

}, //
// Derivatives ∂2/∂s2

{ //
0, // (1)
0, // (2)
0, // (3)
0 // (4)

}, //
// Derivatives ∂2/∂r∂s
{ //

+0.25, // (1)
-0.25, // (2)
+0.25, // (3)
-0.25 // (4)

} //
} };

}

A field quantity u(ξ) can then be evaluated at a particular point ξ of the parameter space
by means of the interpolate method, which first evaluates the basis functions at ξ and
subsequently accumulates the products of the evaluated shape functions Ni(ξ) and the
values ui stored at the cell’s degrees of freedom.
In order to gather topological cell information, we introduce the CellTopology class:

template<class Basis1, std::size_t numberOfSurfaces1>
class CellTopology final {
public:

using Basis = Basis1;

using LocalSpace = typename Basis::LocalSpace;

static constexpr std::size_t localSpaceDimension { LocalSpace::dimension };

121

5 Software Library comana

using LocalPoint = typename LocalSpace::Point;

static constexpr std::size_t numberOfVertices { Basis::numberOfFunctions };

using LocalVertexCoordinates = Array<LocalPoint, numberOfVertices>;

static const LocalVertexCoordinates localVertexCoordinates;

static constexpr std::size_t numberOfSurfaces { numberOfSurfaces1 };

using SurfaceIndices = Array<SizeTypeDynamicArray, numberOfSurfaces>;

static const SurfaceIndices surfaceIndices;

static constexpr std::size_t surfaceLocalSpaceDimension {
localSpaceDimension - 1 };

using SurfaceLocalPoint = Point<surfaceLocalSpaceDimension>;

// ...
};

Its members are likewise specialized for each particular cell topology, for instance:

template<>
const Quadrilateral4Topology::LocalVertexCoordinates

Quadrilateral4Topology::localVertexCoordinates { { //
{ -1, -1 }, // (1)
{ +1, -1 }, // (2)
{ +1, +1 }, // (3)
{ -1, +1 }, // (4)

} };

template<>
const Quadrilateral4Topology::SurfaceIndices

Quadrilateral4Topology::surfaceIndices { { //
{ { 0, 1 } }, // (1)
{ { 1, 2 } }, // (2)
{ { 2, 3 } }, // (3)
{ { 3, 0 } } // (4)

} };

// ...

Finally, the CellGeometry class connects the cell topology to the global space the cell
is defined in by accepting the dimension of the global space as a template parameter:

template<class Topology, std::size_t globalSpaceDimension>
class CellGeometry final {
public:

122

5.4 Mesh Data Structures

using GlobalPoint = Point<globalSpaceDimension>;

using GlobalVector = DoubleVector<globalSpaceDimension>;

template<class VertexCoordinates>
static BoundingBox computeBoundingBox(

const VertexCoordinates &vertexCoordinates) noexcept;

template<class VertexCoordinates, class LocalPoint1>
static double computeJacobianDeterminant(

const VertexCoordinates &vertexCoordinates,
const LocalPoint1 &localPoint);

template<class VertexCoordinates, class LocalPoint1>
static DoubleVector<globalSpaceDimension> computeNormal(

const VertexCoordinates &vertexCoordinates,
const LocalPoint1 &localPoint);

using ProjectionResult = Comana::ProjectionResult<LocalPoint, GlobalPoint>;

template<class VertexCoordinates, class GlobalPoint1>
static ProjectionResult projectPoint(

const VertexCoordinates &vertexCoordinates,
const GlobalPoint1 &globalPoint);

// ...

private:
using ProjectionFunctionValue = DoubleVector<localSpaceDimension>;

using ProjectionJacobianMatrix = DoubleMatrix<localSpaceDimension,
localSpaceDimension>;

using ProjectionOutput = Tuple<ProjectionFunctionValue,
ProjectionJacobianMatrix, GlobalPoint, GlobalVector>;

template<class VertexCoordinates, class GlobalPoint1>
static ProjectionOutput projectPointToVolumeHelper(

const VertexCoordinates &vertexCoordinates,
const GlobalPoint1 &globalPoint, const LocalPoint &localPoint =

LocalPoint::Zero());
};

In doing so, essentially the same set of functions can, for instance, be used for quadrilateral
cells in two- or three-dimensional space. Note that the CellGeometry class does not require
any specializations as any cell-specific information was shifted to the specializations of
the Basis and CellTopology template, which promotes a very generic, modular, and
extensible design.

123

5 Software Library comana

5.4.3 Projection Procedure
For the projection procedure outlined in Section 4.5.5, an iterative Newton-Raphson proce-
dure is required as one essential building block. To this end, we provide a solve function,
which accepts a functor, an initial iterate x0, a convergence tolerance, and a maximum
number of iterations after which to stop the iterative procedure irrespective of whether
convergence has been achieved. Given an argument x, the functor is expected to return
a tuple consisting of at least the function value f(x) and the Jacobian matrix J(x). In
order to avoid recomputing the functor output in the projection procedure, the solve
function does not only return the converged solution x∗, for which f(x∗) = 0 to sufficient
accuracy, but also the last function output, which contains the function value f(x∗) and
the Jacobian matrix J(x∗):

template<class Functor, class Argument>
using FunctionOutput = typename std::result_of<Functor(Argument)>::type;

template<class Functor, class Argument>
using SolutionOutput = Pair<Argument, FunctionOutput<Functor, Argument>>;

template<class Functor, class Vector>
SolutionOutput<Functor, Vector> solve(Functor functor,

Vector startVector, const double tolerance = VERY_TINY_VALUE,
const std::size_t maximumNumberOfIterations = 1e2) {

FunctionOutput<Functor, Vector> functionOutput;
for (auto iteration : range(maximumNumberOfIterations)) {

static_cast<void>(iteration); // unused
functionOutput = functor(startVector);
const auto &functionValue = std::get<0>(functionOutput);
if (functionValue.norm() <= tolerance) break;
const auto &jacobianMatrix = std::get<1>(functionOutput);
const Vector increment(jacobianMatrix.inverse() * functionValue);
if (increment.norm() <= tolerance) break;
startVector -= increment;

}
return {startVector, functionOutput};

}

Based on this, the projectPoint method of the CellGeometry class can be implemented
as follows:

template<class Topology, std::size_t globalSpaceDimension>
template<class VertexCoordinates, class GlobalPoint1>
typename CellGeometry<Topology, globalSpaceDimension>::ProjectionResult

CellGeometry<Topology, globalSpaceDimension>::projectPoint(
const VertexCoordinates &vertexCoordinates,
const GlobalPoint1 &globalPoint) {

// Project to volume first
auto functor = std::bind(&projectPointToVolume<VertexCoordinates,

GlobalPoint1>, vertexCoordinates, globalPoint,
std::placeholders::_1);

124

5.4 Mesh Data Structures

auto solutionOutput = solve(functor, LocalPoint(LocalPoint::Zero()));
ProjectionResult projectionResult { std::move(solutionOutput.first),

std::move(std::get<2>(solutionOutput.second)),
std::move(std::get<3>(solutionOutput.second)) };

if (Topology::LocalSpace::isInside(projectionResult.localPoint))
return projectionResult;

// Successively project to surfaces if local point is NOT inside the
// cell volume...

}

Herein, the given global point x is first projected to the “volume” of the cell (that is, the
cell itself). If the local coordinates ξ of the projected global point x∗ are outside the local
space of the cell, the global point is subsequently projected to the surfaces of the cell.
Finally, the recursion stops at zero-dimensional surfaces (or, in other words, the vertices
of the cell) and the projected point is exactly that point of the cell, which is closest to the
global point x in the sense of the Euclidean distance.

5.4.4 Integration
Promoting a modular design, integration rules in comana are not bound to a specific cell
type, but implemented as separate classes. For example, let us consider an integration rule
for quadrilateral cells based on Gauss-Legendre integration:

template<std::size_t numberOfIntegrationPoints_>
class QuadrilateralIntegration {
public:

static constexpr std::size_t numberOfIntegrationPoints {
numberOfIntegrationPoints_ };

static constexpr std::size_t localSpaceDimension { 2 };

using IntegrationPoint = Comana::IntegrationPoint<localSpaceDimension>;

using IntegrationPoints = Array<IntegrationPoint,
numberOfIntegrationPoints>;

static const IntegrationPoints & getIntegrationPoints() noexcept;
};

An IntegrationPoint combines the coordinates of the sampling points on the unit square
[−1, 1]2 and the associated integration weight into a single structure. The Quadrilateral
GaussLegendreIntegration class is a template that can be specialized for different num-
bers of integration points. In the getIntegrationPoints method, the integration points
are initialized as the tensor product of the one-dimensional Gauss-Legendre integration
points upon first access following the RAII idiom.
For the integration of a field over a cell, the class Integrator is provided:

template<class IntegrationRule, class MappingFunctions,
class ShapeFunctions = MappingFunctions>

125

5 Software Library comana

class Integrator {
public:

template<class VertexCoordinates>
static Field integrate(const VertexCoordinates &vertexCoordinates,

Field::const_iterator &quantityIterator) noexcept;

private:
using WeightedShapeFunctionsAtIntegrationPoint

= typename ShapeFunctions::ValueArray;

// We use a dynamic array to save stack space
using WeightedShapeFunctionsAtAllIntegrationPoints

= DynamicArray<WeightedShapeFunctionsAtIntegrationPoint>;

using MappingFunctionDerivativesAtIntegrationPoint
= Array<typename MappingFunctions::ValueArray,

MappingFunctions::localSpaceDimension>;

// We use a dynamic array to save stack space
using MappingFunctionDerivativesAtAllIntegrationPoints

= DynamicArray<MappingFunctionDerivativesAtIntegrationPoint>;

static WeightedShapeFunctionsAtAllIntegrationPoints
initializeWeightedShapeFunctionsAtAllIntegrationPoints() noexcept;

static const WeightedShapeFunctionsAtAllIntegrationPoints &
getWeightedShapeFunctionsAtAllIntegrationPoints() noexcept;

static MappingFunctionDerivativesAtAllIntegrationPoints
initializeMappingFunctionDerivativesAtAllIntegrationPoints() noexcept;

static const MappingFunctionDerivativesAtAllIntegrationPoints &
getMappingFunctionDerivativesAtAllIntegrationPoints() noexcept;

};

Integrator represents a generic class that can be specialized for a particular integration
rule and for particular sets of mapping and shape functions. By default, the shape func-
tions are assumed to be identical to the mapping functions. In this case, the cell, on which
the integration is performed, is isoparametric. In its public interface, the Integrator
class exposes only the integrate method. For the computation of the Jacobian deter-
minant, it requires the vertices of the cell as an input argument. Furthermore, it takes a
quantityIterator as a second argument, which refers to the range of function values eval-
uated at the integration point locations. Consequently, the range the quantityIterator
operates on must contain at least as many quantities as there are integration points as
determined by the integration rule. Private member functions are responsible for the eval-
uation of the mapping and shape functions at the integration points. This avoids having to
recompute these values upon each call to integrate. Also here, the RAII idiom is applied,
and the data structures are initialized locally inside the member function on first access.
Based on this, the implementation of the integrate method then becomes as simple as

126

5.5 Algorithmic Data Structures

template<class IntegrationRule, class MappingFunctions, class ShapeFunctions>
template<class VertexCoordinates>
Field Integrator<IntegrationRule, MappingFunctions, ShapeFunctions>::integrate(

const VertexCoordinates &vertexCoordinates,
Field::const_iterator &quantityIterator) noexcept {

const auto numberOfVertices = vertexCoordinates.size();
const auto quantitySize = quantityIterator->size();
Field result(quantitySize, numberOfVertices, 0);
const auto &weightedShapeFunctionsAtAllIntegrationPoints =

getWeightedShapeFunctionsAtAllIntegrationPoints();
const auto &mappingFunctionDerivativesAtAllIntegrationPoints =

getMappingFunctionDerivativesAtAllIntegrationPoints();
for (auto integrationPointIndex : range(

IntegrationRule::numberOfIntegrationPoints)) {
const auto jacobianMatrix = computeJacobianMatrix(

mappingFunctionDerivativesAtAllIntegrationPoints[
integrationPointIndex], vertexCoordinates);

const auto jacobianDeterminant
= computeJacobianDeterminant(jacobianMatrix);

for (auto vertexIndex : range(numberOfVertices))
result[vertexIndex] += weightedShapeFunctionsAtAllIntegrationPoints[

integrationPointIndex][vertexIndex] * jacobianDeterminant *
*quantityIterator;

++quantityIterator;
}
return result;

}

5.5 Algorithmic Data Structures
One of the most notable strengths of comana is the flexibility to customize a partitioned
solution strategy to the particular problem under consideration. For each coupled multifield
problem, the user implements the coupling algorithm in a dedicated C++ program, which is
then compiled and launched as the master process. In order to simplify the implementation
of a coupling strategy as much as possible, comana provides a vast range of well-tested,
modular, and extensible algorithmic building blocks. These building blocks enable the user
to develop a coupling algorithm in C++, which is hardly distinguishable from pseudocode
notation. An illustrative example of a full simulation setup is provided in Section 5.7 for
the simple coupled problem considered in Section 4.3. Before that, the implementation of
the constituent parts of the coupling algorithm is briefly outlined in the following.

5.5.1 Predictors
In every coupled problem, it is advisable to employ a predictor at the beginning of each time
increment so as to provide an initial solution to the first solver S1, which is closer to the
(initially unknown) converged solution in the current time increment than the converged
solution from the previous time increment. All predictor classes accept the converged
unmodified solution uj from the previous time increment and compute the initial modified

127

5 Software Library comana

solution ũ0
j+1 for the current time increment. In addition, a RunInfo instance needs to

be supplied. RunInfo objects store the time increment counter, time, time step size, and
iteration index – and they serve to control the execution of the coupling algorithm and
terminate the simulation once all time increments have been computed. For a predictor,
the RunInfo object is needed, due to the fact that it contains the information about the
current time step size, which is required for prediction. One of the simplest predictors is
the PolynomialPredictor. It is constructed from the polynomial order p, and it stores the
converged solutions uj,uj−1, . . . from the previous time increments upon each invocation
of its predict method:

class PolynomialPredictor {
public:

PolynomialPredictor(const std::size_t polynomialOrder);
void predict(const RunInfo &runInfo, DoubleDynamicVector &solution);

private:
std::size_t polynomialOrder_;
Deque<DoubleDynamicVector> solutionSeries_;
DoubleDeque timeStepSizes_;

};

For the storage of the solutions uj,uj−1, . . ., the use of a Deque is of particular advantage.
If the size of the deque exceeds p + 1, the foremost entry can cheaply be deleted by
the Deque’s pop_front method. In addition, the PolynomialPredictor keeps track of
the varying time step sizes to compute the Vandermonde matrix V and then its inverse
V −1. Also here, the use of a Deque proves beneficial. Further predictors such as the
LinearExtrapolationPredictor, TaylorSeriesBasedPredictor, and AdaptiveNewmark
Predictor, cf. Section 4.4, are provided and used in almost the same manner.

5.5.2 Interpolation Schemes
As the next constituent parts of a coupling algorithm, let us consider the implementation
of the various interpolation schemes available in comana. In this context, it is important
to remark that only mesh-independent interpolation schemes are used explicitly in the
implementation of a coupling algorithm. Mesh-based interpolation schemes, in contrast,
are employed implicitly in the adapter library of a slave if the user supplies a set of custom
points. If custom points are used, a subfield’s boundary conditions or result quantities
can be directly requested at these points – thus eliminating the need for an explicit in-
terpolation scheme in the coupling algorithm. For most interpolation schemes, it proves
useful to store the interpolation weights in a nested list W = {W1, . . . ,Wm} of m sets
Wi = {. . . , (pj, wj), . . .} of pairs of source points pj and weights wj associated to each of
the m query points qi. That way, the computation of the interpolation matrix is avoided
and the interpolation can be performed as efficient as possible. In comana, a generic in-
terpolation weight storing the source point index and an associated weight is provided for
this task:
struct InterpolationWeight {

const std::size_t index;
double weight;

};

128

5.5 Algorithmic Data Structures

Convenient typedefs for the sets Wi and the entire nested set W are also available:

using InterpolationWeightDynamicArray = DynamicArray<InterpolationWeight>;

using InterpolationWeightDynamicArrayDynamicArray
= DynamicArray<InterpolationWeightDynamicArray>;

Employing these auxiliary data types, the interface of the consistent barycentric surface
interpolation in three-dimensional space becomes as simple as

class BarycentricConsistentSurface3DInterpolation final {
public:

BarycentricConsistentSurface3DInterpolation(const Field &sourcePoints,
const Field &targetPoints);

void apply(const Field &sourceQuantities, Field &targetQuantities) const;

Field apply(const Field &sourceQuantities) const;

private:
InterpolationWeightDynamicArrayDynamicArray interpolationWeights_;

};

Similar to other interpolation schemes, this barycentric interpolation scheme is constructed
from a Field of source points {p1, . . . ,pn} and query points {q1, . . . , qm}. Like the predic-
tor classes, the interpolation schemes support two variants of the apply method responsible
for actually performing the interpolation. While the first one works in-place and modi-
fies existing targetQuantities without allocating additional memory, the second variant
returns the interpolated field quantities by value. Further barycentric and the other mesh-
independent interpolation schemes exhibit a similar interface. For each mesh-independent
interpolation scheme, a consistent as well as a conservative version is available.

5.5.3 Convergence Acceleration Schemes
It has already been discussed in Chapter 4 that a convergence acceleration scheme is es-
sential to stabilize the partitioned solution procedure and to reduce the number of implicit
iterations by improving the convergence behavior. In comana, a convergence acceleration
scheme expects the current modified solution ũkj+1, the unmodified solution ukj+1, and the
residual rkj+1 to compute an updated modified solution ũk+1

j+1 . Providing an almost identi-
cal interface to the user, the convergence acceleration schemes offer the updateSolution
method, which either modifies the modified solution ũkj+1 in-place to produce ũk+1

j+1 or to
return it by value. During the simulation, the convergence acceleration schemes keep track
of the coupling quantities from previous iterations and time increments by storing them
as private members.
For example, consider the QuasiNewtonLeastSquaresMethod class

class QuasiNewtonLeastSquaresMethod final {
public:

QuasiNewtonLeastSquaresMethod(const std::size_t numberOfReusedTimeSteps = 0,
const double staticRelaxationFactor = 0.2);

129

5 Software Library comana

void updateSolution(const RunInfo &runInfo,
DoubleDynamicVector &modifiedSolution,
const DoubleDynamicVector &unmodifiedSolution,
const DoubleDynamicVector &residual);

private:
std::size_t numberOfReusedTimeSteps_;
double staticRelaxationFactor_;
Deque<DoubleDynamicMatrix> unmodifiedSolutionDifferences_;
Deque<DoubleDynamicMatrix> residualDifferences_;

};

For the construction of an instance of this class, the user needs to supply the maximum
number of time steps ` to be used for the construction of the matrices Vk

j+1 and Wk
j+1.

By default, only the current time increment is used. In addition, it is possible to spec-
ify the static relaxation factor ω for the first iteration k = 0 in each time increment.
In each iteration within a time increment, the updateSolution method is invoked to
compute the modified solution ũk+1

j+1 . As arguments, the method takes a RunInfo object
storing information about the current time increment and iteration, the current modi-
fied solution ũkj+1, the unmodified solution ukj+1, and the residual rkj+1. Of course, the
latter three coupling quantities are not independent of each other. but already available
in the coupling algorithm. Hence, they can be used by this function to avoid recomput-
ing them. For the evaluation of the matrices Vj,Vj−1, . . . and Wj,Wj−1, . . . from the
previous time increments and the matrices Vk

j+1 and Wk
j+1 from the current time incre-

ment, cf. Algorithm 12, the private members unmodifiedResidualDifferences_ and
unmodifiedSolutionDifferences_ have been introduced and are updated upon each call
to the updateSolution member function.
The other convergence acceleration schemes presented in Section 4.7 have been imple-

mented in comana as well, and they can be used in just about the same manner as the
QuasiNewtonLeastSquaresMethod class.

5.6 Adapter Data Structures
In order to enable a solver to participate in a partitioned solution procedure, a dedicated,
solver-specific adapter library is required. It provides the ability to communicate to the
master process and implements the interface to access or modify the solver’s database.
Oriented towards modularity, it is divided into a generic, solver-independent part (im-
plemented in C++) and a solver-specific part (partly implemented in C++ and in the
language of the solver code). Referring again to Figure 5.2, the slave socket used as a
communication hub to the master process and the request handler responsible for process-
ing requests received from the master process are integrated into the generic component.
As the interrupt functions are generic too, they are implemented in the C++ language
as well. However, the interrupt functions are invoked from the solver code, which may
be implemented in a programming language other than C++. Hence, language-specific
interfaces to the interrupt functions must be provided. Currently, comana supports inter-
facing solvers implemented in Fortran, MATLAB/Octave, Python, or APDL. Apart from

130

5.6 Adapter Data Structures

the generic solver-independent components, the adapter library consists of a solver-specific
part tailored to access and modify a solver’s data structures during the partitioned solu-
tion procedure. Accessor and process patches serve as a generic interface to the solver’s
database for the request handler. For these entities, we introduce generic base classes to
be inherited by the concrete solver-specific implementations. Aiming at reducing code du-
plication and entailing the reuse of generic mesh data structures, the accessor and process
patch base and child classes are implemented in C++. The last remaining component of
the adapter library is the driver, which manages the data transfer between the solver’s
database and the adapter library. In order to simplify access from the accessor or the pro-
cess patch (both of which are implemented in C++) another interface layer is introduced
between the low-level driver functions and the rest of the adapter library. This interface
serves to define a dedicated set of functions to manipulate a solver’s database from C++
and to shield the specific implementations of the driver functions in the native solver lan-
guage from the rest of the adapter library – thus promoting modularity and simplified
testing.
In the following, we first present the generic interrupt functions as well as the accessor

and process patch base classes. Furthermore, we will outline the interplay between this part
of the adapter library and the request handler and the slave socket presented in Section 5.3.
Next, we discuss the language-specific interfaces and helper classes to invoke the interrupt
functions from the solver code on the one hand and to manipulate the solver’s database
by means of the driver functions on the other hand.

5.6.1 Generic Functions and Classes
In Section 5.1, we discussed the general architecture of an adapter library used to enhance
a solver for a partitioned solution strategy. It was outlined that a major part of the adapter
library is generic in the sense that no solver-specific modifications are required. In order
to reduce code duplication and the effort invested into testing, the solver-specific part may
use generic data structures as well.
As illustrated in Algorithm 14 in lines 2, 7, 9, and 18, the modified solver prepared for

a partitioned solution procedure needs to invoke functions to initiate the connection to
the master process, transfer data to or receive data from the master process, and finally
terminate the connection to the master process. By calling the function

void comana_initialize_coupling() {
if (!Mpi::isCoupledProcess())

return;

Mpi::initialize(); // if ‘Mpi::initialized()‘ is ‘true‘,
// ‘Mpi::finalizeMpi = false‘

getSlaveSocket().connect();
}

the solver establishes the connection to the master process. Before actually connecting, it is
checked whether the current process is run as part of a coupled solution procedure. If this is
not the case, the function returns directly. This way, a solver executable modified according
to Algorithm 14 and linked to an adapter library can still be used for uncoupled simulations.
It behaves in the same manner as an unmodified solver as sketched in Algorithm 13, for

131

5 Software Library comana

instance. By setting the environment variable COMANA_PROCESS_GROUP to a non-empty
value before launching the solver executable, the subfield solver is signaled that it is used
in a coupled solution procedure. In that case, the MPI session is initialized and the internal
variable Mpi::finalizeMpi is set to true. If the solver has already initialized the MPI
session, no further initialization is required and, hence, also the finalization of the MPI
session is left to the solver itself; Mpi::finalize is set to false. Once the MPI session
has been initialized, the slave socket is connected. Again following the RAII principle, it
is initialized upon first access:

SlaveSocket & getSlaveSocket() {
static SlaveSocket socket;
return socket;

}

As the next interrupt function, the solver calls

int comana_do_transfer(const int stage) {
if (!Mpi::isCoupledProcess())

return true;

auto &accessor = getAccessor();
accessor.initializeTransfer(stage);

int status;

while (true) {
const auto &slaveSocket = getSlaveSocket();
const auto requestTag = receive<RequestTag>(slaveSocket);

switch (requestTag) {
case RequestTag::proceed:

status = RequestHandler::proceed(slaveSocket);
break;

case RequestTag::initializePatch:
RequestHandler::initializePatch(slaveSocket, accessor);
break;

// Further requests, omitted here
default:

// Error: unhandled request
}

}

accessor.finalizeTransfer(stage);

return status;
}

Again, it is first checked whether the process is actually a coupled process. Similar to
the slave socket, the accessor is obtained from a function getAccessor() initializing a
local static Accessor instance upon first access according to the RAII idiom. Following

132

5.6 Adapter Data Structures

that, the accessor is notified about the fact that a data transfer takes place by invoking
the initializeTransfer method. As an argument, we pass the stage variable indicat-
ing at which point in the solution process the data transfer is performed. In line with
Algorithm 14, stage takes the value 0 in the first data transfer and the value 1 in the
second data transfer. Subsequently, the slave process successively receives requests from
the master process. Based on the requestTag, the appropriate request handler is selected.
Most request handlers expect the accessor and the slave socket as arguments. While the
accessor is required to manipulate the solver’s database through the driver functions, the
slave socket is used to receive request data from or send request data to the master process.
A special request handler is RequestHandler::proceed, which receives a status from the
master process indicating whether to continue the implicit iteration within the current
time increment (status takes the value 0) or terminate the implicit iteration and proceed
to the next time increment (status takes the value 1). In the first data transfer, the
return value of comana_do_transfer is unused and, hence, always set to 0, while both
values are possible in the second data transfer. Recalling again the modified generic solver
in Algorithm 14, the return value of comana_do_transfer after the second data transfer
in line 9 serves to decide whether to stop the implicit iteration in line 10–12.
As a last interrupt function, we have

void comana_exit_coupling() {
if (!Mpi::isCoupledProcess())

return;

getSlaveSocket().disconnect();
Mpi::finalize(); // Only invokes ‘MPI_Finalize‘ if ‘finalizeMpi‘

// was previously set to ‘false‘
}

After the obligatory check for a coupled process, the slave socket is disconnected from
the master process, and the MPI session is finalized. If the solver itself has initialized the
MPI session before calling comana_initialize_coupling, the last step is omitted and the
solver is expected to also finalize the MPI session after calling comana_finalize_coupling.
Having discussed the implementation of the generic interrupt functions, let us consider

the accessor and process patch classes serving as the base classes for the concrete solver-
specific implementations of these concepts. In the Accessor base class, the following
interface is provided:

class Accessor {
public:

virtual ~Accessor() noexcept = 0;

virtual void initializeTransfer(const int stage);

virtual void finalizeTransfer(const int stage);

virtual void initializePatch(const String &label,
const Topology topology);

virtual const ProcessPatch & getPatch(const String &label) const;

133

5 Software Library comana

ProcessPatch & getPatch(const String &label);

virtual Quantity getGlobalQuantity(const QuantityType quantityType) const;

virtual void setGlobalQuantity(const QuantityType quantityType,
const Quantity &quantity);

};

Because Accessor is a pure virtual base class, the destructor must also be declared as pure
virtual. Signaling the initiation or the end of a data transfer to an Accessor instance, the
methods initializeTransfer and finalizeTransfer are called in comana_do_transfer.
For the initialization of a patch and associated data structures, the initializePatch
member function is supplied. Next, the getPatch function returns a patch of base type
ProcessPatch. As will be explained in a moment, the ProcessPatch class provides mem-
ber functions to manipulate discrete field data. Last but not least, the Accessor class
provides the member functions getGlobalQuantity and setGlobalQuantity to query or
modify global quantities such as the time step size ∆t, for instance, in a solver’s database.
All member functions of the Accessor class are equipped with a default implementation
such that children do not necessarily need to override all member functions. In case a
non-overridden member function is called on a solver-specific Accessor instance, the base
class implementation throws an exception signaling the missing functionality to the caller.
A second important base class providing high-level access to a solver’s database is the

ProcessPatch class. It provides the following public interface:
class ProcessPatch {
public:

virtual ~ProcessPatch() noexcept = 0;

virtual void initializeCustomPoints(const std::size_t pointSetIndex,
const SizeTypeDynamicArray &pointIndices,
const Field &globalCoordinates);

virtual void selectCustomPoints(const std::size_t pointSetIndex,
const SizeTypeDynamicArray &pointIndices);

virtual const SizeTypeDynamicArray & getCustomPointIndices(
const std::size_t pointSetIndex) const;

std::size_t getFieldSize(const Location location) const;

std::size_t getCustomFieldSize(const std::size_t pointSetIndex) const;

virtual Field getField(const Location location,
const QuantityType quantityType) const;

virtual Field getCustomField(const std::size_t pointSetIndex,
const QuantityType quantityType) const;

virtual void setField(const Location location,

134

5.6 Adapter Data Structures

const QuantityType quantityType, const Field &field);

virtual void setCustomField(const std::size_t pointSetIndex,
const QuantityType quantityType, const Field &field);

};

Similar to the Accessor class, the ProcessPatch class is a pure virtual base class and,
hence, needs to provide a pure virtual destructor. By overriding the initializeCustom
Points method, children may implement the projection procedure outlined in Section 4.5.5
or 4.5.6. As its arguments, the method expects the index of the set of custom points, the
individual indices of the custom points in the entire user-supplied array of custom points
in the master process, and their coordinates. For the custom point scattering procedure
discussed in Section 5.4.1, a selectCustomPoints method is available to select and keep
previously initialized custom points and discard all custom points from the given point
set with indices that are not part of the array of custom point indices. In addition, the
getCustomPointIndices member function was introduced to be able to associate the
custom points of a slave process to the custom points originally provided by the user based
on their index in the entire set of user-supplied custom points. Further, the getFieldSize
function returns the size of a field at a particular set of points defined by the location
argument. Lastly, the getField and setField method are intended to access or modify
a certain type of quantity at a particular set of points of the discretization. Analogous
methods are available for custom points. Like the Accessor class, the ProcessPatch class
provides default implementations for each of its member functions, throwing an exception
in case a child does not override these functions. In the implementation of its member
functions, children of the ProcessPatch base class may use any of the generic mesh data
structures presented in Section 5.4 or shift the actual work to the various generic utility
functions provided in comana. That way, the effort to implement a derived solver-specific
ProcessPatch class is reduced to a minimum. As a bonus, code duplication is avoided,
and the need for testing is limited to a small amount of added functionality only.

5.6.2 C/C++ Solvers
For C and C++ solvers, the interface to the generic interrupt functions is as simple as

ifdef __cplusplus
extern "C" {
endif
void comana_initialize_coupling();
int comana_do_transfer(const int stage);
void comana_exit_coupling();
ifdef __cplusplus
}
endif

This header is also part of the implementation of the generic interrupt functions as
outlined in the previous section. If a C++ compiler is used to compile a source file including
this interface, the extern "C" construct prevents the function names from being mangled,
but to have C linkage instead. Consequently, both C and C++ solvers can include the
same header and refer to the same implementation of the generic interrupt functions.

135

5 Software Library comana

No special measures must be taken for the data transfer between the driver and the
solver database, as all data types can be exchanged natively.

5.6.3 Fortran Solvers
Fortran solvers use the same implementation of the generic interrupt functions, but they
do not call them directly. Instead, an additional interface layer is provided, which wraps
the calls to the C++ implementation of the interrupt functions:

ifdef __cplusplus
extern "C" {
endif
void comana_initialize_coupling_();
int comana_do_transfer_(const int stage);
void comana_exit_coupling_();
ifdef __cplusplus
}
endif

Note the underscores appended to the end of the function names, which are necessary
due to the fact that most Fortran compilers expect external symbol names to have an
underscore appended to them. A symbol without an underscore would result in a linker
error.
Data between the driver and the solver database can be exchanged by passing their

memory address. Yet, only fundamental data types such as character arrays for the rep-
resentation of strings or integers and floating point numbers or arrays thereof are used
to exchange information to keep the interface as transparent and simple as possible and
to reduce portability issues to a minimum. On most platforms, these data types can be
safely exchanged without using the intrinsic iso_c_binding module available since For-
tran 2003. Moreover, there is hardly any information that cannot be represented by any of
the previously mentioned data types or a combination thereof in numerical computations.

5.6.4 MATLAB/Octave Solvers
For solvers implemented in MATLAB or Octave, the interrupt functions need to provide
an interface that is callable from a scripting language. Both MATLAB and Octave solvers
call the anonymous functions

comana_initialize_coupling ...
= @() <solver_adapter_library>(’comana_initialize_coupling’);

comana_do_transfer ...
= @(stage) <solver_adapter_library>(’comana_do_transfer’, stage);

comana_exit_coupling = @() <solver_adapter_library>(’comana_exit_coupling’);

where <solver_adapter_library> is substituted by the adapter library name without
file extension. The anonymous functions redirect to a shared library <solver_adapter_
library>.mex that implements the function

void mexFunction(int number_of_output_arguments, mxArray *output_arguments[],
int number_of_input_arguments, const mxArray *input_arguments[]);

136

5.6 Adapter Data Structures

All anonymous functions invoke the same mexFunction and pass their given arguments to
that function. Based on the first input argument, mexFunction decides which interrupt
function to call.
For the data exchange between the driver and the solver database, C++ data structures

must be converted to MATLAB/Octave data structures – and vice versa. From C/C++,
MATLAB/Octave functions are called through the function

int mexCallMATLAB(int number_of_output_arguments, mxArray *output_arguments[],
int number_of_input_arguments, mxArray *input_arguments[],
const char *command_name);

declared in mex.h. The called command populates the resulting array of mxArrays by
allocating dynamic memory for each output argument and by storing the pointer in output
_arguments. Likewise, input_arguments is an array of dynamically allocated mxArrays.
For both input and output arguments, the caller must ensure that the dynamic memory
is again properly released after the function call. To this end, variadic templates and the
automatic memory management of smart pointers prove particularly useful.
First of all, a file mex_type.def is created to associate the MATLAB/Octave data types

to their corresponding C++ data types:

MEX_TYPE_DEFINE(mxLOGICAL_CLASS, bool)
MEX_TYPE_DEFINE(mxCHAR_CLASS, char)
MEX_TYPE_DEFINE(mxINT8_CLASS, int8_t)
// Further fixed-size integer types; omitted here
MEX_TYPE_DEFINE(mxSINGLE_CLASS, float)
MEX_TYPE_DEFINE(mxDOUBLE_CLASS, double)

Making these type associations available in C++, the template

template<class cppType>
struct CppToMexType {
};

is introduced and fully specialized using the definitions from mex_type.def:

define MEX_TYPE_DEFINE(mexType, cppType) \
template<> \
struct CppToMexType<cppType> { \

static constexpr auto type = mexType; \
};

include "mex_type.def"
undef MEX_TYPE_DEFINE

In order to pass a C++ variable to MATLAB/Octave, it needs to be converted to a mxArray
that can be passed as an argument to mexCallMATLAB. For this purpose, the MexAllocator
class is introduced:

template<class Type, class Enable = void>
struct MexAllocator {
};

This class is then specialized for different types, for instance:

137

5 Software Library comana

template<>
struct MexAllocator<bool> {

static mxArray * allocate(const bool value) noexcept;
};

If required, SFINAE can be employed to conditionally enable certain specializations based
on the template argument:
template<class Container>
struct MexAllocator<Container,

typename std::enable_if<std::is_arithmetic<
typename Container::value_type>::value>::type> {

static mxArray * allocate(const Container &container) noexcept {
const mwSize size[] = { static_cast<mwSize>(container.size()), 1 };
auto object = mxCreateNumericArray(2, size,

CppToMexType<typename Container::value_type>::type, mxREAL);
std::copy(std::begin(container), std::end(container),

static_cast<typename Container::pointer>(mxGetData(object)));
return object;

}
};

Similar to the MexAllocator class, we provide a MexDeallocator class, which provides
the operator() that takes an array of mxArrays and deletes every element in that array
before destroying the outer array:
template<std::size_t size>
struct MexDeallocator {

void operator()(mxArray *object[]) noexcept {
std::for_each(object, object + size,

[](mxArray *element) { mxDestroyArray(element); });
delete[] object;

}
};

This class can then be used as a custom deleter for a UniquePointer that manages a
dynamically allocated mxArray:
template<std::size_t size>
using MexUniquePointer = UniquePointer<mxArray *[], MexDeallocator<size>>;

Filling an mxArray *[] before supplying it to mexCallMATLAB is possible by means of the
mexAllocateHelper, which is based on a variadic template to process its input arguments
recursively at compile-time:
template<std::size_t index>
void mexAllocateHelper(mxArray *) {
}

template<std::size_t index = 0, class Head, class ...Tail>
void mexAllocateHelper(mxArray *object[], const Head &head, Tail &&...tail) {

object[index] = MexAllocator<Head>::allocate(head);
mexAllocateHelper<index + 1>(object, std::forward<Tail>(tail)...);

}

138

5.6 Adapter Data Structures

In the implementation, the mxArray array at index is allocated using the appropriate
specialization of MexAllocator. Next, the argument counter index is incremented by one
so as to instantiate mexAllocateHelper for the next recursion level. The remaining input
arguments are passed over to mexAllocateHelper<index + 1> using perfect forwarding.
Based on this, the function mexAllocate can be implemented accepting a variable number
of arguments to allocate an array of dynamic mxArrays managed by a UniquePointer to
prevent hard-to-detect memory leaks:

template<class ...Types>
MexUniquePointer<sizeof...(Types)> mexAllocate(Types &&...arguments) {

constexpr auto numberOfArguments = sizeof...(Types);
MexUniquePointer<numberOfArguments> object(new mxArray

*[numberOfArguments]);↪→

mexAllocateHelper(object.get(), std::forward<Types>(arguments)...);
return object;

}

Note that a specialization for an empty argument list is required, due to the fact that an
array of zero length is forbidden by the C++ language standard:

template<>
MexUniquePointer<0> mexAllocate();

Having discussed the processing of the input arguments, let us proceed with the con-
version of the output arguments populated by mexCallMATLAB. To this end, it turns out
useful to introduce a function mexCopyTypedRange that takes the address of an mxArray
object and an Iterator the contents of the mxArray should be copied to:

template<class Type, class Iterator>
void mexCopyTypedRange(const mxArray * const object, Iterator result) noexcept {

const auto source = static_cast<Type *>(mxGetData(object));
const auto length = getMexObjectSize(object);
std::copy(source, source + length, result);

}

Note that mexCopyTypedRange expects the C++ data type as an additional argument
to be able to cast the result of mxGetData to a pointer of correct size. Following that,
mexCopyTypedRange can be employed to define mexCopyRange, which has a similar signa-
ture as mexCopyTypedRange but does not require the Type template argument:

template<class Iterator>
void mexCopyRange(const mxArray * const object, Iterator result) {

switch (mxGetClassID(object)) {
define MEX_TYPE_DEFINE(mexType, cppType) case mexType: \

mexCopyTypedRange<cppType>(object, result); return;
include "mex_type.def"
undef MEX_TYPE_DEFINE

default:
throw std::runtime_error("Unknown primitive data type.");

}
}

139

5 Software Library comana

Instead, a macro and the file mex_type.def are used to generate a switch-case statement
required for the conversion of an mxArray object at runtime. The function mexCopyRange
is then used by specializations of the class

template<class Type, class Enable = void>
struct MexConverter {
};

For instance, consider the specialization of the MexConverter class for Lists of arithmetic
types (bool, int, double, . . .):

template<class Type, class Allocator>
struct MexConverter<List<Type, Allocator>,

typename std::enable_if<std::is_arithmetic<Type>::value>::type> {
static List<Type, Allocator> convert(const mxArray * const object) {

List<Type, Allocator> list;
mexCopyRange(object, std::back_inserter(list));
return list;

}
};

Next, let us introduce a mexConvertHelper function that recursively converts arrays of
mxArrays to C++ objects stored in a Tuple<Types...> of possibly different types:

template<std::size_t index>
void mexConvertHelper(const mxArray * const *) {
}

template<std::size_t index = 0, class ...Types>
typename std::enable_if<index < sizeof...(Types), void>::type
mexConvertHelper(const mxArray * const *object, Tuple<Types...> &tuple) {

std::get<index>(tuple) = MexConverter<typename std::tuple_element<index,
Tuple<Types...> >::type>()(object[index]);

mexConvertHelper<index + 1, Types...>(object, tuple);
}

Finally, it is possible to define the function

template<class Type>
Type mexConvert(const mxArray * const *object) {

return MexConverter<Type>::convert(*object);
}

for single return types, as well as a variant for multiple return types relying on mexCon
vertHelper:

template<class First, class Second, class ...Tail>
Tuple<First, Second, Tail...> mexConvert(const mxArray * const *object) {

Tuple<First, Second, Tail...> tuple;
mexConvertHelper(object, tuple);
return tuple;

}

140

5.6 Adapter Data Structures

In order to reserve space for the output arguments populated by the mexCallMATLAB
function, the function

template<std::size_t numberOfOutputs>
MexUniquePointer<numberOfOutputs> mexCreateOutput() noexcept {

return MexUniquePointer<numberOfOutputs>(new mxArray *[numberOfOutputs]);
}

is introduced. For the case that no output arguments are returned by the called MAT-
LAB/Octave function, mexCreateOutput must be specialized to avoid the creation of an
array of zero length, which is forbidden by the C++ language standard:

template<>
MexUniquePointer<0> mexCreateOutput<0>() noexcept {

return nullptr;
}

Further, we implement the function

template<std::size_t numberOfOutputs, class ...InputTypes>
MexUniquePointer<numberOfOutputs> mexCallHelper(const String &functionName,

InputTypes &&...cppInput) {
static constexpr std::size_t numberOfInputs { sizeof...(cppInput) };
auto mexInput = mexAllocate(std::forward<InputTypes>(cppInput)...);
auto mexOutput = mexCreateOutput<numberOfOutputs>();
mexCallMATLAB(numberOfOutputs, mexOutput.get(), numberOfInputs,

mexInput.get(), functionName.c_str());
return mexOutput;

}

which generates the input arguments as expected by mexCallMATLAB, calls the MATLAB-
/Octave function, and returns the output arguments wrapped in a MexUniquePointer.
Building on this, the function mexCall without any output arguments reads

template<class ...InputTail>
void mexCall(const String &functionName, InputTail &&...cppInput) {

mexCallHelper<0>(functionName, std::forward<InputTail>(cppInput)...);
}

For a single return value, the function

template<class OutputType, class ...InputTail>
OutputType mexCall(const String &functionName, InputTail &&...cppInput) {

static constexpr std::size_t numberOfOutputs { 1u };
return mexConvert<OutputType>(

mexCallHelper<numberOfOutputs>(functionName,
std::forward<InputTail>(cppInput)...).get());

}

is provided. Multiple return values are packed into a variadic tuple:

141

5 Software Library comana

template<class First, class Second, class ... OutputTail, class ...InputTail>
Tuple<First, Second, OutputTail...> mexCall(const String &functionName,

InputTail &&... cppInput) {
static constexpr std::size_t numberOfOutputs { sizeof...(OutputTail) + 2 };
return mexConvert<First, Second, OutputTail...>(

mexCallHelper<numberOfOutputs>(functionName,
std::forward<InputTail>(cppInput)...).get());

}

In the implementation of the C++ wrappers for the MATLAB/Octave driver functions,
mexCall can then conveniently and safely be used as follows:

const auto output = mexCall<int, DoubleDynamicArray>("function",
DoubleDynamicArray { 1.0, 2.0, 3.0 });

Note that mexCall reduces the following tasks to a single call: type-safe conversion of C++
data structures to their MATLAB/Octave equivalents, invocation of a MATLAB/Octave
function, and automatic conversion of MATLAB/Octave data structures back to C++.
This way, the data exchange across the language barrier in the driver is significantly sim-
plified. In addition, type-safety and maintainability of the driver code are increased as
well.

5.6.5 Python Solvers
For Python solvers, comana provides a Python interface to the interrupt functions in
comana_interrupt.py:

from ctypes import CDLL, RTLD_GLOBAL, c_int

solver_adapter_library = CDLL("<solver_adapter_library>", mode = RTLD_GLOBAL)

Define arguments to C interrupt functions
solver_adapter_library.comana_initialize_coupling.argtypes = []
solver_adapter_library.comana_do_transfer.argtypes = [c_int]
solver_adapter_library.comana_exit_coupling.argtypes = []

Define Python interrupt functions
def comana_initialize_coupling():

solver_adapter_library.comana_initialize_coupling()

def comana_do_transfer(stage):
return solver_adapter_library.comana_do_transfer(stage)

def comana_exit_coupling():
solver_adapter_library.comana_exit_coupling()

Python comes with the ctypes module, which allows to interface a shared library from a
Python script. The CDLL command loads the shared library <solver_adapter_library>
and creates the object solver_adapter_library through which the library functions can
be called. Note that <solver_adapter_library> is to be substituted by the specific

142

5.6 Adapter Data Structures

adapter library name. In the adapter library, the function names all have C linkage, and
the function arguments are hence not encoded in the function symbol. It is therefore
required to define the arguments to the library functions. For convenient use in a Python
script, the rather lengthy interrupt functions are wrapped by another layer of ordinary
Python functions.
Regarding the data transfer between the solver and the driver, data must be passed

across a language barrier between C++ and Python. Although there are readily available
interfaces to transfer even complex objects and data structures from C++ to Python (see
[15], for instance), we prefer to provide our own interface to keep it as small and as simple
as possible.
First, let us consider the transfer of C++ data structures to Python. It proves useful to

introduce a generic PythonAllocator template that can then be partially specialized for
different data types:

template<class Type, class Enable = void>
struct PythonAllocator {
};

In some situations, it is convenient to leverage SFINAE to conditionally enable a struct for
a certain group of types. For floating point types such as float and double, for instance,
PythonAllocator can be specialized as follows:

template<class Type>
struct PythonAllocator<Type,

typename std::enable_if<std::is_floating_point<Type>::value>::type> {
static PyObject * allocate(const Type value) noexcept {

return PyFloat_FromDouble(value);
}

};

As a counterpart for the PythonAllocator class, we introduce the PythonDeallocator
class:

struct PythonDeallocator {
void operator()(PyObject *object) noexcept;

};

PythonDeallocator provides the operator() member function that takes a PyObject for
destruction. In the implementation, the reference count for that object is decremented
to signal the Python memory manager that the object is no longer needed and that any
associated resources can be released back to the system. In order to avoid memory leaks,
any dynamically allocated Python object should be managed by a smart pointer. For the
proper release of memory upon destruction of a Python object, PythonDeallocator is
used as a custom deleter:

using PythonUniquePointer = UniquePointer<PyObject, PythonDeallocator>;

When calling a Python function from C++, the input arguments are passed as a Python
tuple. Introducing pythonAllocateHelper, a variable number of arguments can be con-
verted to Python objects and stored in a Python tuple:

143

5 Software Library comana

template<std::size_t index>
void pythonAllocateHelper(PyObject *) noexcept {
}

template<std::size_t index = 0, class Head, class ...Tail>
void pythonAllocateHelper(PyObject *object, const Head &head,

Tail &&...tail) noexcept {
PyTuple_SetItem(object, index, PythonAllocator<Head>::allocate(head));
pythonAllocateHelper<index + 1>(object, std::forward<Tail>(tail)...);

}

Note the use of a variadic template to achieve compile-time recursion. Here, index acts
as a counter to indicate the position of an allocated Python object in the tuple. Appro-
priate specializations of the PythonAllocator class are automatically instantiated based
on the type of head. Further arguments to pythonAllocateHelper are passed as univer-
sal references, which are then recursively passed to pythonAllocateHelper using perfect
forwarding. Now, a pythonAllocate function can be implemented as follows:
template<class ...Types>
PyObject * pythonAllocate(Types &&...arguments) noexcept {

auto object = PyTuple_New(sizeof...(Types));
pythonAllocateHelper(object, std::forward<Types>(arguments)...);
return object;

}

Accepting a variable number of arguments as universal references, the function creates a
Python tuple and uses pythonAllocateHelper to fill the tuple.
Next, the conversion from Python data structures to C++ needs to be discussed. Similar

to the PythonAllocator, we introduce a PythonConverter class, which may be specialized
for different data types:
template<class Type, class Enable = void>
struct PythonConverter {
};

For instance, consider the conversion of a Python floating point number to a C++ floating
point number of type float, double, or long double:
template<typename Type>
struct PythonConverter<Type,

typename std::enable_if<std::is_floating_point<Type>::value>::type> {
static Type convert(PyObject *object) {

if (PyFloat_Check(object))
return PyFloat_AsDouble(object);

else
throw std::runtime_error(

"Invalid conversion to floating point type.");
}

};

If a Python function returns a tuple instead of a single return value, the Python tuple
is converted to a C++ tuple. To this end, it is again convenient to implement a helper
function to convert the tuple elements recursively and to store them in a C++ tuple:

144

5.6 Adapter Data Structures

template<std::size_t index = 0, class ...Types>
void pythonConvertHelper(PyObject *object, Tuple<Types...> &tuple) {

using Type = typename std::tuple_element<index, Tuple<Types...>>::type;
std::get<index>(tuple) = PythonConverter<Type>::convert(

PyTuple_GetItem(object, index));
pythonConvertHelper<index + 1, Types...>(object, tuple);

}

The variadic function template accepts a Python tuple object and a C++ tuple of elements
of possibly different types. Inferring the type of the tuple element at position index
becomes possible using std::tuple_element. Appropriate specializations of PythonCon
verter are instantiated to convert the Python tuple element to C++; the result of the
conversion is then assigned to the corresponding tuple element. The next level of recursion
is started by incrementing the positional index by one. For the conversion of a single return
value, a first variant of the function pythonConvert is implemented as follows:

template<class Type>
Type pythonConvert(PyObject *object) {

return PythonConverter<Type>::convert(object);
}

Multiple return values are stored in a C++ tuple, and a second variant of pythonConvert
hence needs to be supplied:

template<class First, class Second, class ...Tail>
Tuple<First, Second, Tail...> pythonConvert(PyObject *object) {

Tuple<First, Second, Tail...> tuple;
pythonConvertHelper(object, tuple);
return tuple;

}

Combining the functions pythonAllocate and pythonConvert, we can implement a
function pythonCall to call a Python function and handle all the necessary data conversion
internally. Before this function is discussed, let us consider the variadic function template
pythonCallHelper:

template<class ...InputTypes>
PythonUniquePointer pythonCallHelper(const String &moduleName,

const String &functionName, InputTypes &&...cppInput) {
auto state = pythonEnsureState();
const auto function = pythonLoad(moduleName, functionName);
const auto pythonInput = pythonAllocate(

std::forward<InputTypes>(cppInput)...);
const auto pythonOutput = PyObject_CallObject(function.get(),

pythonInput.get());
pythonReleaseState(state);
return pythonOutput;

}

It accepts the mandatory Python module and function name and a variable number of
further arguments of possibly different type as input arguments. Before a Python function

145

5 Software Library comana

is called, pythonEnsureState ensures that the Python thread is ready to call the Python
C API, irrespective of the current state of Python. Next, the Python function is loaded by
supplying the module and function name to pythonLoad. Subsequently, a Python tuple
object is created by means of pythonAllocate. Note again the beneficial use of perfect
forwarding. Following that, the Python function is called and, after the Python thread
is released by pythonReleaseState, the resulting Python object is returned. Based on
this, three different versions of the pythonCall function can be implemented. Firstly, the
version without any output arguments:

template<class ...InputTypes>
void pythonCall(const String &moduleName, const String &functionName,

InputTypes &&...cppInput) {
pythonCallHelper(moduleName, functionName,

std::forward<InputTypes>(cppInput)...);
}

Secondly, the version with a single output argument:

template<class OutputType, class ...InputTypes>
OutputType pythonCall(const String &moduleName, const String &functionName,

InputTypes &&...cppInput) {
return pythonConvert<OutputType>(

pythonCallHelper(moduleName, functionName,
std::forward<InputTypes>(cppInput)...).get());

}

And, thirdly, a version with multiple output arguments wrapped in a C++ tuple:

template<class First, class Second, class ...OutputTail, class ...InputTypes>
Tuple<First, Second, OutputTail...> pythonCall(const String &moduleName,

const String &functionName, InputTypes &&...cppInput) {
return pythonConvert<First, Second, OutputTail...>(

pythonCallHelper(moduleName, functionName,
std::forward<InputTypes>(cppInput)...).get());

}

Now, the user is able to conveniently call a Python function from C++ without the need
for manual data conversion, for instance:

auto output = pythonCall<int, DoubleDynamicArray>("module", "function",
DoubleDynamicArray{ 1.0, 2.0, 3.0 });

5.6.6 APDL Solvers
The ANSYS software suite includes the scripting language ANSYS parametric design lan-
guage (APDL) to interact with the ANSYS pre- and post-processing utilities and the
ANSYS solver. To invoke the interrupt functions from an APDL script, the following
interface is provided:

146

5.7 Simulation Setup

ifdef __cplusplus
extern "C" {
endif
int comana_initialize_coupling_(const char * const command);
int comana_do_transfer_(const char * const command);
int comana_exit_coupling_(const char * const command);
ifdef __cplusplus
}
endif

Note that, as opposed to the other language interfaces, the interrupt functions accept a
const char * argument. In APDL, the entire command string is passed as an argu-
ment to the external command, and function arguments need to be processed manually.
Unfortunately, APDL does not allow return values for external commands. Instead of
returning the convergence status, comana_do_transfer_ therefore defines the variable
convergence_status_, which can then be used to query the convergence status in an
APDL script. The underscore appended to the variable name serves to prevent name
clashes with any existing variables. In order to inform ANSYS about the presence of
a shared library providing external commands for the use in an APDL script, the file
ans_ext.tbl needs to be visible to the ANSYS process. In addition to the full path to the
shared library and the function symbol, it is also necessary to define a shorthand command
preceded by a tilde representing the command in APDL:

<install_dir>/libansys_adapter.so ~initco comana_initialize_coupling_
<install_dir>/libansys_adapter.so ~dotran comana_do_transfer_
<install_dir>/libansys_adapter.so ~exitco comana_exit_coupling_

For the data transfer between the solver’s database and the driver, thin wrappers around
the ANSYS Fortran API are created to isolate ANSYS variable and function definitions
from the C++ part of the driver, which does not only keep the C++ code from being
cluttered by third-party code, but also simplifies modular testing.

5.7 Simulation Setup
In order to demonstrate the use of comana for the partitioned analysis of a coupled mul-
tifield problem, we once again consider the simple mechanical system introduced in Sec-
tion 4.3. Splitting this system into two subsystems A and B, the equations

fA =



−k1dA,1 − c1ḋA,1 + k2(dA,2 − dA,1)
+c2(ḋA,2 − ḋA,1) + F1(t)

−k2(dA,2 − dA,1)− c2(ḋA,2 − ḋA,1) + k31(dA,3 − dA,2)
+k32(dA,3 − dA,2)2 + c3(ḋA,3 − ḋA,2) + F2(t)

−k31(dA,3 − dA,2)− k32(dA,3 − dA,2)2

−c3(ḋA,3 − ḋA,2)− k4dA,3 − c4ḋA,3 + F3(t)


= fA(t,dA, ḋA) ,

Md̈B =

m1 0 0
0 m2 0
0 0 m3


d̈B,1d̈B,2
d̈B,3

 =

fB,1fB,2
fB,3

 = fB .

(5.1)

147

5 Software Library comana

are acquired, see also Equation (4.8) and (4.9). In addition, the interface conditions

dA = dB , ḋA = ḋB , and fA = fB (5.2)

and the initial conditions

dB(t = 0) = dB,0 , ḋB(t = 0) = ḋB,0 , and d̈B(t = 0) = d̈B,0 (5.3)

are prescribed. Building on a partitioned solution approach, we iteratively, within a time
increment, prescribe the displacement dA and velocity ḋA in subsystem A, evaluate the
displacement-, velocity- and time-dependent force fA(t,dA, ḋA), pass the result over to
subsystem B, solve for the displacement dB and the velocity ḋB, and repeat the cycle all
over again.
For the numerical treatment of the subsystems A and B, we use the dedicated force

solver SA and the motion solver SB. The force solver SA comprises the header file
force_solver.h

struct Problem {
DoubleArray3 displacement, velocity, force;

};

and the implementation file force_solver.cpp

include "force_solver.h"

// Time-dependent force contribution
double timeDependentForce(const double a0, const double a1, const double b,

const double f, const double time) noexcept {
return a0 * std::sin(2 * M_PI * f * time) * std::sin(2 * M_PI

* (b + a1 * std::sin(2 * M_PI * time)) * time);
}

int main() {
// Transient analysis parameters
constexpr auto stopTime = 10., timeStepSize = 5e-3;
constexpr std::size_t numberOfTimeSteps = stopTime / timeStepSize;
auto time = 0.;

// Data structure storing displacement, velocity, and force
Problem problem;

// Spring, damper, and external force constants
constexpr auto k0 = 5e2, k1 = 2.4e2, k21 = 1.8e2, k22 = 1.2, k3 = 3.5e2;
constexpr auto c0 = 1.5e-2, c1 = 1e-1, c2 = 8e-2, c3 = 5e-2;
constexpr auto a00 = 50., a10 = .05, b0 = 4., f0 = 1.1;
constexpr auto a01 = 8.5, a11 = .12, b1 = 4., f1 = 2.4;
constexpr auto a02 = 16., a12 = .1, b2 = 10., f2 = 1.6;

// Loop through time steps
for (std::size_t timeStep = 0; timeStep < numberOfTimeSteps;

timeStep++, time += timeStepSize) {

148

5.7 Simulation Setup

problem.force[0] =
- k0 * problem.displacement[0]
- c0 * problem.velocity[0]
+ k1 * (problem.displacement[1] - problem.displacement[0])
+ c1 * (problem.velocity[1] - problem.velocity[0])
+ timeDependentForce(a00, a10, b0, f0, time);

problem.force[1] =
- k1 * (problem.displacement[1] - problem.displacement[0])
- c1 * (problem.displacement[1] - problem.displacement[0])
+ k21 * (problem.displacement[2] - problem.displacement[1])
+ k22 * std::pow(problem.displacement[2]

- problem.displacement[1], 2)
+ c2 * (problem.velocity[2] - problem.velocity[1])
+ timeDependentForce(a01, a11, b1, f1, time);

problem.force[2] =
- k21 * (problem.displacement[2] - problem.displacement[1])
- k22 * std::pow(problem.displacement[2]

- problem.displacement[1], 2)
- c2 * (problem.velocity[2] - problem.velocity[1])
- k3 * problem.displacement[2] - c3 * problem.velocity[2]
+ timeDependentForce(a02, a12, b2, f2, time);

}
}

For the motion solver SB, we have the header file motion_solver.h

struct Problem {
DoubleVector3 displacement {{ 0, 0.75, 0.5 }};
DoubleVector3 velocity {{ 0, 0, 0 }};
DoubleVector3 acceleration {{ 5.06250e1, -1.85156e1, 7.81250e-1 }};
DoubleVector3 force;

};

and the source file motion_solver.cpp, which implements the linear version of the New-
mark time integration scheme (3.112):

include "motion_solver.h"

int main() {
// Transient analysis parameters
constexpr auto stopTime = 10., timeStepSize = 5e-3;
constexpr std::size_t numberOfTimeSteps = stopTime / timeStepSize;
auto time = 0.;

// Newmark parameters and integration constants
constexpr auto beta = .25, gamma = .5;
constexpr auto alpha0 = 1 / (beta * timeStepSize * timeStepSize),

alpha2 = 1 / (beta * timeStepSize), alpha3 = 1 / (2 * beta) - 1,
alpha6 = timeStepSize * (1 - gamma), alpha7 = gamma * timeStepSize;

// Data structure storing displacement, velocity, acceleration, and force

149

5 Software Library comana

Problem problem;

// Masses
constexpr DoubleVector3 masses {{ 2., 8., 4. }};

auto previousDisplacement = problem.displacement;
auto previousVelocity = problem.velocity;
auto previousAcceleration = problem.acceleration;

// Loop through time steps
for (std::size_t timeStep = 0; timeStep < numberOfTimeSteps;

timeStep++, time += timeStepSize) {
const auto effectiveForce = problem.force + masses * (alpha0

* previousDisplacement + alpha2 * previousVelocity + alpha3
* previousAcceleration);

problem.displacement = effectiveForce / (alpha0 * masses);

problem.acceleration = alpha0 * (problem.displacement
- previousDisplacement) - alpha2 * previousVelocity
- alpha3 * previousAcceleration;

problem.velocity = previousVelocity + alpha6 * previousAcceleration
+ alpha7 * problem.acceleration;

previousDisplacement = problem.displacement;
previousVelocity = problem.velocity;
previousAcceleration = problem.acceleration;

}
}

In order to integrate these solvers into a partitioned solution strategy, some modifications
are required.
For the force solver SA, we insert the lines highlighted in yellow:

include "force_solver.h"
#include "force_solver_adapter.h"

int main() {
// Transient analysis parameters
constexpr auto stopTime = 10., timeStepSize = 1e-3;
constexpr std::size_t numberOfTimeSteps = stopTime / timeStepSize;
auto time = 0.;

// Data structure storing displacement, velocity, and force
Problem problem;

// Spring, damper, and external force constants...

force_solver_initialize_driver(problem);
comana_initialize_coupling();

150

5.7 Simulation Setup

// Loop through time steps
for (std::size_t timeStep = 0; timeStep < numberOfTimeSteps;

timeStep++, time += timeStepSize) {
while (true) {

comana_do_transfer(0);
problem.force[0] = // ...
problem.force[1] = // ...
problem.force[2] = // ...
if (comana_do_transfer(1))

break;
}

}

comana_exit_coupling();
force_solver_clear_driver(problem);

}

As the first modification, the header force_solver_adapter.h is included, which again
includes comana_interrupt.h and force_solver_driver_setup.h. The first header
comana_interrupt.h was already introduced in Section 5.6.2. It provides the C/C++
interface to the generic implementations of the interrupt functions comana_initialize_
coupling, comana_do_transfer, and comana_exit_coupling. The second header com-
prises the interface to the functions initializing and clearing the global driver data struc-
tures:

include "force_solver_driver_setup.h"
include "force_solver_global.h"

void force_solver_initialize_driver(Problem &problem) {
const auto &forceSolverGlobal = getForceSolverGlobal();
forceSolverGlobal.problem = &problem;

}

void force_solver_clear_driver() {
}

In force_solver_initialize_driver, the function getForceSolverGlobal returns the
global data structure forceSolverGlobal responsible for retaining the driver’s state across
several external function calls. The address of the problem object is assigned to the
problem field of the ForceSolverGlobal instance. As no dynamic memory was allocated
upon driver initialization in force_solver_clear_driver, no cleanup is required. For
reasons of completeness, let us consider the header force_solver_global.h:

struct Problem;

struct ForceSolverGlobal {
Problem *problem;

};

151

5 Software Library comana

ForceSolverGlobal & getForceSolverGlobal() noexcept;

In the first line, we forward-declare the Problem struct. Equipped with a pointer to
a Problem instance initialized upon the call to force_solver_initialize_driver, a
ForceSolverGlobal instance is constructed as a local static object in the getForce
SolverGlobal on first access following the RAII idiom. In the implementation of
the driver functions, this global data structure is required to access the problem
instance instantiated in the force solver’s main function before being passed on to
force_solver_initialize_driver through its memory address:

include "force_solver_driver.h"
include "force_solver_global.h"

void force_solver_set_displacement(const DoubleArray3 &displacement) noexcept {
const auto &forceSolverGlobal = getForceSolverGlobal();
forceSolverGlobal.displacement = displacement;

}

void force_solver_set_velocity(const DoubleArray3 &velocity) noexcept {
const auto &forceSolverGlobal = getForceSolverGlobal();
forceSolverGlobal.velocity = velocity;

}

DoubleArray3 force_solver_get_force() noexcept {
const auto &forceSolverGlobal = getForceSolverGlobal();
return forceSolverGlobal.force;

}

Similar to the force solver, the motion solver SB is modified as well – as indicated by
the lines highlighted in yellow:

include "motion_solver.h"
#include "motion_solver_adapter.h"

int main() {
// Transient analysis parameters
constexpr auto stopTime = 10., timeStepSize = 1e-3;
constexpr std::size_t numberOfTimeSteps = stopTime / timeStepSize;
auto time = 0.;

// Newmark parameters and integration constants...

// Data structure storing displacement, velocity, acceleration, and force
Problem problem;

// Masses
constexpr DoubleVector3 masses {{ 2., 8., 4. }};

auto previousDisplacement = problem.displacement;

152

5.7 Simulation Setup

auto previousVelocity = problem.velocity;
auto previousAcceleration = problem.acceleration;

motion_solver_initialize_driver(problem);
comana_initialize_coupling();

// Loop through time steps
for (std::size_t timeStep = 0; timeStep < numberOfTimeSteps;

timeStep++, time += timeStepSize) {
while (true) {

comana_do_transfer(0);
const auto effectiveForce = problem.force + masses * (alpha0

* previousDisplacement + alpha2 * previousVelocity + alpha3
* previousAcceleration);

problem.displacement = effectiveForce / (alpha0 * masses);

problem.acceleration = alpha0 * (problem.displacement
- previousDisplacement) - alpha2 * previousVelocity
- alpha3 * previousAcceleration;

problem.velocity = previousVelocity + alpha6 * previousAcceleration
+ alpha7 * problem.acceleration;

if (comana_do_transfer(1))
break;

}

previousDisplacement = problem.displacement;
previousVelocity = problem.velocity;
previousAcceleration = problem.acceleration;

}

comana_exit_coupling();
motion_solver_clear_driver(problem);

}

Strong similarities to the changes conducted for the force solver are not mistakable. Since
the implementation of the functions motion_solver_initialize_driver and motion_
solver_clear_driver and the driver functions is completely analogous to those for the
force solver SA, it is omitted here.
Functions to initialize the driver data structures as well as the driver functions themselves

are compiled into the adapter libraries libforce_solver_adapter.so and libmotion
_solver_adapter.so and then linked to the corresponding executables force_solver
and motion_solver. This completes the modifications required to use these solvers in a
partitioned analysis.
For the implementation of the partitioned solution procedure to solve the simple me-

chanical system from Section 4.3, a dedicated C++ program needs to be written and
compiled into an executable. Although this involves some programming, the implemen-

153

5 Software Library comana

tation is hardly more difficult than setting up an input file as required in other software
packages implementing the partitioned solution approach. On the contrary, due to the fact
that all the constructs available in the C++ language can be used, the simulation setup
often even becomes simpler. In the first step, a file mass_spring_damper_system.cpp is
created, and the comana header is included:

include "comana/kernel/comana.h"

Functions and classes from the Comana namespace can be brought into the current scope
to avoid typing by using

using namespace Comana;

Following that, we open the main function:

int main() {

Next, the master socket groups forceSolver and motionSolver, which are used to com-
municate to the slave process groups forceSolver and motionSolver, are created:

MasterSocketGroup forceSolver("forceSolver"),
motionSolver("motionSolver");

Note that the names of the slave process groups do not necessarily need to be identical to
the file names of the solver executables or to the variable names of the master socket groups.
Upon construction of the master socket groups, the connections to the slave process groups
are established. Subsequently, we create the patch group springsDampersAndForces,
which binds the master socket group forceSolver to the mesh label and the topology of
the patch group representing the coupling surface in the force solver:

PatchGroup springsDampersAndForces(forceSolver, "", Topology::point);

The first argument to the PatchGroup constructor is the master socket group, the second
one designates the mesh label of the patch. In this particular case, the mesh label is an
empty string, which is due to the fact that the force solver does not support addressing
patches by their mesh label – and there is just a single one. As a third argument, we pass
the topology of the patch. Since the coupling surface is one-dimensional – springs and
dampers and masses are only connected at points – we choose Topology::point. Next,
the patch group must be initialized using

Request::initializePatchGroup(springsDampersAndForces);

Thereafter, the patch group in the motion solver is set up and initialized by

PatchGroup masses(motionSolver, "", Topology::point);
Request::initializePatchGroup(masses);

In order to start the coupled solution process, we need to request the initial condition for
the displacement dB and the velocity ḋB from the motion solver:

auto displacement = Request::getField(masses, Location::vertex,
QuantityType::displacement); // d0

B,0
auto velocity = Request::getField(masses, Location::vertex,

QuantityType::velocity); // ḋ0
B,0

154

5.7 Simulation Setup

During the solution process, we will iteratively modify the components of the displacement
and the velocity field to equilibrate the subfields with each other. The convergence acceler-
ation schemes applied to speedup the convergence operate on references to the displacement
and velocity field’s components:

auto &unmodifiedDisplacementComponents = displacement.getComponents();
auto modifiedDisplacementComponents = unmodifiedDisplacementComponents;

auto &unmodifiedVelocityComponents = velocity.getComponents();
auto modifiedVelocityComponents = unmodifiedVelocityComponents;

Now, we create polynomial predictors to obtain reasonable initial guesses for the displace-
ment and the velocity at the beginning of each time increment:

PolynomialPredictor displacementPredictor(2), velocityPredictor(2);

In order to check whether the subfields are equilibrated with each other up to an acceptable
tolerance, the convergence criteria

ConvergenceCriterion absoluteConvergenceCriterion(1e-12); // εabs = 10−12

ConvergenceCriterion relativeConvergenceCriterion(1e-6); // εrel = 10−6

are required. For convergence acceleration, we use the quasi-Newton least squares method
introduced in Section 4.7.10:

QuasiNewtonLeastSquaresMethod displacementSolutionUpdate,
velocitySolutionUpdate;

In this example, the simulation runs for T = 10 s in steps of ∆t = 5 · 10−3 s. To control
the solution process, we create a run info object

RunInfo runInfo(0, 10, 5e-3);

After that, we enter the coupled solution procedure:

while (runInfo.run()) {

At the beginning of each time step, we predict the displacement and the velocity to obtain
a good starting value for the inner iteration. The fields’ components are modified in-place
to avoid unnecessary reallocations:

predictor.predict(runInfo,
modifiedDisplacementComponents); // d̃kB,j+1 := Pd(dB,j)

predictor.predict(runInfo,
modifiedVelocityComponents); // ˜̇dkB,j+1 := Pḋ(ḋB,j)

Then, we enter the implicit iteration:

while (runInfo.iterate()) {

Subsequently, we instruct the force solver to apply the displacement dkA,j+1 = d̃kB,j+1 and
the velocity ḋkA,j+1 = ˜̇dkB,j+1 as an updated boundary condition, solve for the resulting
force fkA,j+1, and pass it back to the master process:

155

5 Software Library comana

Request::setField(springsDampersAndForces, Location::vertex,
QuantityType::displacement, displacement); // dkA,j+1 = d̃kB,j+1

Request::setField(springsDampersAndForces, Location::vertex,
QuantityType::velocity, displacement); // ḋkA,j+1 = ˜̇dkB,j+1

Request::proceed(forceSolver);
auto force = Request::getField(springsDampersAndForces,

Location::vertex, QuantityType::force); // fkA,j+1

In turn, the motion solver is supplied with the updated force fkB,j+1 = fkA,j+1 used to
solve for the displacement dkB,j+1 and the velocity ḋkB,j+1 at the end of the current time
increment. The result is then sent over to the master process:

Request::setField(masses, Location::vertex, QuantityType::force,
force); // fkB,j+1 = fkA,j+1

Request::proceed(motionSolver);
displacement = Request::getField(masses, Location::vertex,

QuantityType::displacement); // dkB,j+1
velocity = Request::getField(masses, Location::vertex,

QuantityType::velocity); // ḋkB,j+1

Following that, the displacement residual rkd,B,j+1 = dkB,j+1− d̃kB,j+1 and the velocity resid-
ual rk

ḋ,B,j+1 = ḋkB,j+1 −
˜̇dkB,j+1 are computed – and it is checked whether the absolute or

the relative convergence criterion are fulfilled:

displacementResidual = unmodifiedDisplacementComponents
- modifiedDisplacementComponents; // rkB,j+1 := dkB,j+1 − d̃kB,j+1

velocityResidual = unmodifiedVelocityComponents
- modifiedVelocityComponents; // rk

ḋ,B,j+1 := ḋkB,j+1 −
˜̇dkB,j+1

// if
(
‖rkd,B,j+1‖2 < εabs

)
∨
(
‖rkd,B,j+1‖2/‖r0

d,B,j+1‖2 < εrel
)

then
if (absoluteConvergenceCriterion.fulfilled(displacementResidual)

|| relativeConvergenceCriterion.fulfilled(runInfo,
displacementResidual)) {

Request::proceed(forceSolver);
Request::proceed(motionSolver);
break;

} else {
Request::iterate(forceSolver);
Request::iterate(motionSolver);

// d̃k+1
B,j+1 := Ad

(
d̃kB,j+1,dkB,j+1, rkd,B,j+1

)
displacementSolutionUpdate.updateSolution(runInfo,

modifiedDisplacementComponents,
unmodifiedDisplacementComponents,
displacementResidual);

// ˜̇dk+1
B,j+1 := Aḋ

(˜̇dkB,j+1, ḋkB,j+1, rkḋ,B,j+1

)
velocitySolutionUpdate.updateSolution(runInfo,

156

5.7 Simulation Setup

modifiedVelocityComponents,
unmodifiedVelocityComponents,
unmodifiedVelocityComponents

- modifiedVelocityComponents);
}

If any of the convergence criteria fulfills the user-defined tolerances, the solvers are in-
structed to stop the implicit iteration and proceed to the next time increment. Otherwise,
the solvers are informed that the subfields are not yet equilibrated with each other, and
that at least another implicit iteration is required. Moreover, the solution updates mod-
ify d̃kB,j+1 in-place to compute d̃k+1

B,j+1 and, analogously, ˜̇dkB,j+1 to obtain ˜̇dk+1
B,j+1. Finally,

we close the scope for the implicit iteration, the time stepping procedure, and the main
function:

}
}

}

157

6 Benchmark Problems
In this chapter, we present several numerical examples in order to verify and illustrate the
effectiveness of the partitioned solution approach. Depending on the particular problem
under consideration, different spatial and temporal discretization schemes are employed
for each of the subproblems. In order to stabilize and accelerate the solution procedure,
the predictor and convergence acceleration schemes presented in Section 4.4 and 4.7 are
applied. If not mentioned separately, a second-order polynomial predictor and the quasi-
Newton least squares method are used, which have already been found to perform partic-
ularly well for the simple benchmark problem in Section 4.3. For the interpolation of the
exchanged field quantities, a mesh-dependent interpolation according to Section 4.5.5 and
4.5.6 is performed unless stated otherwise. This ensures both an effective and accurate
transfer of the relevant fields between the possibly non-conforming subfield discretizations.
All problems are solved using our versatile software library comana, introduced in Chap-
ter 5. Due to the modular architecture of comana, the appropriate subproblem solvers
can be integrated into the partitioned solution strategy with little effort. A vast range of
available algorithmic building blocks enables to easily steer and tune the solution proce-
dure as necessary – and to exchange the predictor, interpolation technique, or convergence
acceleration scheme if required.

6.1 Two-Dimensional Lid-Driven Cavity Flow with
Flexible Bottom

In the first example, we consider a lid-driven cavity flow in a square domain of side length
L = H = 1 m with a flexible membrane of thickness h = 2 × 10−3 m at the bottom,
see Figure 6.1. This benchmark problem has already been discussed in [169, pp. 190 sq.,
115, pp. 99–103 and 135–139, 166, pp. 160–162], for instance. For the fluid, we choose
a density ρf = 103 kg/m3 and a kinematic viscosity νf = 0.01 m2/s. For the membrane, we
assume a St. Venant-Kirchhoff material with a density ρs = 500 kg/m3, Young’s modulus
E = 250 N/m2, and Poisson’s ratio νs = 0. At the top of the flow domain, a time-varying
velocity vx = v̄ = (1 − cos(2πt/5 s)) m/s is prescribed, whereas vy = 0 m/s. At the inlet,
the velocity vx varies linearly from vx = 0 m/s at y = 0.875 m to vx = v̄ at y = 1 m. At
the outlet, a fixed reference pressure p = 0 Pa is imposed. At the fixed walls and at the
bottom membrane, we prescribe a no-slip condition, i.e. vx = vy = 0 m/s. The membrane
is clamped at both ends, and dx = dy = 0 m at x = 0 m and x = L is enforced.
The pseudo-three-dimensional fluid domain is discretized by 40 × 40 × 1 hexahedral

finite volumes and solved using the pimpleDyMFoam solver, which is part of the open-
source CFD package OpenFOAM [123]. For the structure, we employ 16×1 geometrically
nonlinear biquadratic plane-stress elements, available in the in-house FEM code AdhoC
[41, 40]. For comparative purposes, the OpenFOAM pimpleDyMFoam solver is replaced by
its equivalent from the OpenFOAM fork foam-extend [61] in a second study. Concerning

158

6.1 Two-Dimensional Lid-Driven Cavity Flow with Flexible Bottom

H1 = 0.875 m

H2 = 0.125 m

h = 0.002 m

L = 1 m

x

y

vx = v̄ y−H2
H1

vx = v̄, vy = 0 m/s

p = 0 Pa

Bottom membrane

v x
=
v y

=
0m
/s

H = 1 m

vx = vy = 0 m/s
v x

=
v y

=
0m
/s

Figure 6.1: Geometry and boundary conditions for the two-dimensional lid-driven cavity flow
with flexible bottom.

the temporal discretization, we apply the second-order accurate Euler backward method
for the fluid problem, and the generalized-α scheme with spectral radius ρ∞ = 0.8 for
the structural field. The time step size is taken as ∆t = 0.01 s, kept constant throughout
the simulation. In the coupled solution procedure, the absolute convergence criterion
‖rkj+1‖2/

√
n < εabs = 10−9 is applied to check whether the fluid and the structural field

are equilibrated to sufficient accuracy, where n denotes the number of degrees of freedom
at the fluid-structure interface.
Snapshots of the pressure and the velocity field at time t = 35.39 s and t = 69.77 s are

shown in Figure 6.2. The vertical displacement at the bottom midpoint is depicted in
Figure 6.3, showing a fair agreement with the reference results reported in [115, p. 135,
166, p. 161].
In the next step, we investigate the performance of the various convergence accelera-

tion schemes proposed in Section 4.7. For this study, the convergence tolerance is further
tightened to εabs = 10−15. This way, many iterations per time increment will be necessary
until the convergence criterion is fulfilled – and it is especially the convergence acceleration
schemes which cannot be applied in every coupling iteration that have better chances to
unveil their potential to accelerate the solution process. In order to compare the conver-
gence acceleration schemes with each other, the average number of iterations k̄ per time
increment is computed by accumulating the iterations in each time increment and dividing
by the total number of time increments afterwards. Evidently, this is a direct measure

159

6 Benchmark Problems

(a)

Pressure p/103 Pa
−0.2 −0.1 0

Velocity magnitude ‖v‖2/m/s

0 0.16 0.32

(b)

x

y

Figure 6.2: Pressure and velocity field for the two-dimensional lid-driven cavity flow at (a)
t = 35.39 s and (b) t = 69.77 s.

160

6.1 Two-Dimensional Lid-Driven Cavity Flow with Flexible Bottom

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70

D
isp

la
ce
m
en
t
d
y
/m

Time t/s

Mok et al. [115, p. 135]
Vázquez [166, p. 161]

Present work – OpenFOAM/AdhoC
Present work – foam-extend/AdhoC

Figure 6.3: Membrane midpoint vertical displacement dy versus time t for the two-dimensional
lid-driven cavity flow.

for the overall computational effort associated to the solution process. In addition to the
mean number of iterations k̄, we also measure the CPU time tCPU,f and tCPU,s spent on the
solution of the fluid and the structural field, as well as the time tCPU,alg required for the
remaining algorithmic tasks in the coupling algorithm, such as the execution of the predic-
tor or convergence acceleration scheme. In practice, tCPU,alg is obtained by subtracting the
subfield solution time tCPU,f + tCPU,s from the overall CPU time spent on the coupled solu-
tion procedure. From the results listed in Table 6.1, we notice that, regarding the number
of iterations, the quasi-Newton least squares procedure exhibits the best performance. It
requires the least number of iterations per time increment; k̄ = 8.44 iterations are, on av-
erage, required until convergence is achieved. It is followed by the modified version of the
classical Aitken relaxation scheme proposed by Irons et al. [83] with k̄ = 12.54. Next comes
the line extrapolation method, which, however, requires already more than 4 additional
implicit iterations as compared to the Irons-Tuck relaxation scheme, and it almost doubles
the computational effort associated to the quasi-Newton least squares method. Between
20 and 25 iterations are needed by the classical Aitken relaxation, the vector-ε algorithm,
and the modification of the conventional Aitken relaxation proposed by Jennings [86] and
Graves-Morris [60]. All other considered convergence acceleration schemes take up over 25
iterations per time increment on average and, thus, require at least three times the com-
putational cost as compared to the quasi-Newton least squares method. Although these
results cannot necessarily be generalized to other problems, this study serves as a valuable
indicator of which convergence acceleration schemes seem to be preferable for the solution
of coupled multifield problems using a partitioned approach. Furthermore, it is interesting
to note that the CPU time spent on the solution of the fluid and the structural subproblem
mostly takes up more than 99 % of the total CPU time. In this regard, the quasi-Newton
least squares method is the only exception as here tCPU,alg ≈ 1.5 % – due to the fact that
this convergence acceleration scheme involves the solution of a least squares problem using
a QR decomposition, which is slightly more expensive than other convergence acceleration
schemes. Yet, the fraction tCPU,alg is almost negligible as compared to the subfield solution

161

6 Benchmark Problems

Table 6.1: Comparison of the performance of various convergence acceleration schemes for the
two-dimensional lid-driven cavity flow. Convergence acceleration schemes marked by † apply a
constant relaxation with ω = 0.5 in iterations mod(k, kmax) 6= 0 to avoid divergence.

Convergence acceleration scheme Mean number
of iterations k̄

Fluid field
solution time

tCPU,f/%

Struct. field
solution time

tCPU,s/%

Remaining alg.
tasks time
tCPU,alg/%

Constant relaxation, ω = 0.5 25.34 82.04 17.76 0.21
Aitken relaxation† 20.92 80.93 18.83 0.24

Graves-Morris relaxation† 22.16 87.47 12.34 0.19
Iguchi relaxation† 31.70 88.06 11.74 0.20

Zienkiewicz relaxation† 36.17 87.72 12.06 0.21
Jennings relaxation† 22.16 83.30 16.49 0.21
Arthur relaxation† 22.64 83.44 16.29 0.25

Irons-Tuck relaxation, ω0 = 0.5 12.54 78.42 21.30 0.28
Line extrapolation method,

β = 1 16.71 86.71 13.01 0.27

Vector ε-algorithm† 21.57 83.49 16.28 0.23
Topological ε-algorithm† 34.04 84.50 15.28 0.23

Vector θ-algorithm† 47.99 89.29 10.49 0.23
Generalized θ algorithm† 43.05 89.35 10.24 0.41
Vector w-transformation† 26.32 84.28 15.47 0.25

Euclidean w-transformation† 34.93 85.97 13.82 0.21
Broyden method,
ω0 = 1, k∗ = 10 28.56 88.60 10.95 0.45

Quasi-Newton least squares
method, ω0 = 0.2, ` = 1 8.44 86.68 11.83 1.49

162

6.2 Three-Dimensional Lid-Driven Cavity Flow with Flexible Bottom

Bottom membrane

H1 = 0.875 m

W = 1 m

H2 = 0.125 m

L = 1 m

vx = v̄
vx = v̄

vx = 0 m/s

y

x

z

h = 0.002 m

vx = 0 m/s

p = 0 Pa

H = 1 m

Figure 6.4: Geometry and boundary conditions for the three-dimensional lid-driven cavity flow
with flexible bottom.

time. Also, it can be expected that this tendency does not change for larger problems.
From these time measurements, it can be concluded that the implementation of the algo-
rithmic building blocks available in comana is efficient enough to have only minor influence
on the overall solution time.

6.2 Three-Dimensional Lid-Driven Cavity Flow with
Flexible Bottom

As an extension to the previous example, we now consider a cuboidal domain of side length
L = W = H = 1 m with a flexible membrane at the bottom, cf. Figure 6.4. This bench-
mark problem has already been considered in [115, pp. 153–156, 166, pp. 163–166], for
instance, and it serves to verify the partitioned solution procedure for a three-dimensional
setting. Geometry and material parameters are chosen as before. Regarding the bound-
ary conditions, we apply no-slip conditions at the front and rear side and prescribe an
oscillatory lid velocity vx = v̄ = 1− cos(2πt/5 s) at the top.
For the fluid part, we choose a hexahedral mesh consisting of 24×24×24 hexahedral finite

volumes, whereas the structural domain is discretized by 24× 24 bilinear underintegrated
membrane SHELL181 elements with hourglass control, available in the commercial FEM
software suite ANSYS [3]. Following the benchmark definition, the time step size is changed
to ∆t = 0.1 s, and the structural time integration scheme uses a slightly higher spectral

163

6 Benchmark Problems

z
x

y

−0.14 −0.07 0 0 0.11 0.22
Pressure p/103 Pa Velocity magnitude ‖v‖2/m/s

Figure 6.5: Pressure and velocity field in the three-dimensional cavity at time t = 24.7 s.

radius ρ∞ = 0.9 to reduce numerical damping as compared to the two-dimensional example.
Identical settings are chosen for the coupling procedure.
An impression of the pressure and velocity field at time t = 24.7 s is given in Figure 6.5.

The deformed membrane at different instants of time is depicted in Figure 6.6. In order to
compare the numerical results to the results provided in [166, p. 164], we track the shell
midpoint displacement dy over time t as illustrated in Figure 6.7. Obviously, the results
are again in fair agreement with the reference solution.

6.3 Round Cylinder with Flexible Membrane in Channel
Flow

In this numerical example, we analyze the deflections of an elastic membrane attached to
a rigid cylinder, which is subjected to a laminar incompressible channel flow, see Figure
6.8. Originally proposed in [71], this problem serves as another benchmark. The channel
is of rectangular shape with side lengths L = 2.5 m and H = 0.41 m. Measured from
the bottom left corner of the channel, the cylinder of diameter D = 0.1 m is located at
Cx = Cy = 0.2 m. A membrane is symmetrically attached to the cylinder; it exhibits a
length ` = 0.35 m, a height h = 0.02 m, and extends to x = 0.6 m. In what follows, three
different configurations as listed in Table 6.2 are considered. The fluid is again assumed
to be Newtonian, and incompressible with density ρf and kinematic viscosity νf . For the
elastic membrane, we choose a St. Venant-Kirchhoff material with density ρs, Young’s
modulus E, and Poisson’s ratio νs. At the inlet, we prescribe a parabolic velocity profile

vx = 3v̄y(H − y)
2(H/2)2 , (6.1)

164

6.3 Round Cylinder with Flexible Membrane in Channel Flow

z

x
y

0 0.13 0.25

t = 5 s

Displacement dy/m/s

t = 7.8 s

t = 13.3 s t = 24.7 s

Figure 6.6: Deformed membrane at different instants of time.

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70

D
isp

la
ce
m
en
t
d
y
/m

Time t/s

Vázquez [166, p. 164]
Present work – OpenFOAM/ANSYS

Figure 6.7: Membrane midpoint vertical displacement dy versus time t for the three-
dimensional lid-driven cavity flow.

165

6 Benchmark Problems
H

=
0.

41
m

L = 2.5 m

` = 0.35 m

h = 0.02 m

Cy = 0.2 m

Flexible membrane

C
x

=
0.

2m

x

y

vx = v̄, vy = 0 m/s

vx = vy = 0 m/s

vx = vy = 0 m/s

p = 0 Pa
A

D = 0.1 m

Figure 6.8: Geometry and boundary conditions for the round cylinder with flexible membrane
in channel flow.

Table 6.2: Parameter settings for the round cylinder with flexible membrane in channel flow.

Parameter FSI1 FSI2 FSI3

Fluid
Density ρf/kg/m3 103 103 103

Kinematic viscosity νf/m2/s 10−3 10−3 10−3

Mean inflow velocity v̄/m/s 0.2 1 2
Reynolds number Re = v̄D/νf 20 100 200

Structure
Density ρs/kg/m3 103 104 103

Young’s modulus E/N/m2 1.4× 106 5.6× 106 1.4× 106

Poisson’s ratio νs 0.4 0.4 0.4

such that the mean inflow velocity becomes v̄x = v̄ and the maximum inflow velocity
amounts to v̂x = 3v̄/2. At the outlet, we impose p = 0 Pa as a fixed reference pressure. We
apply a no-slip condition for the fluid at the bottom and top wall, at the cylinder, and at
the membrane. In the first parameter set, the flexible membrane is chosen as being light
and stiff with a density ρs = 103 kg/m3, Young’s modulus E = 1.4× 106 N/m2, and Poisson’s
ratio νs = 0.4. For the mean inflow velocity, we take v̄ = 0.2 m/s. As will be shown in a
moment, this setting results in a steady-state solution with constant membrane deflection.
In the second parameter set, the density is increased to ρs = 104 kg/m3 and a higher Young’s
modulus E = 5.6 × 106 N/m2 is used, while the Poisson’s ratio is left unchanged. This set
of parameters, together with a higher mean inflow velocity v̄ = 1 m/s, leads to a transient
membrane displacement inducing a von Kármán vortex street in the channel. Last but
not least, the third parameter set uses the same structural properties as the steady-state
case, while a significantly higher inlet velocity v̄ = 2 m/s is applied. Here, a transient
displacement response is to be expected as well. In all three cases, identical properties for
the fluid are assumed: the density is taken as ρf = 103 kg/m3 and the kinematic viscosity
amounts to νf = 10−3 m2/s. For the transient cases, the inflow velocity is smoothly increased

166

6.3 Round Cylinder with Flexible Membrane in Channel Flow

according to

vx(t, y) = 3y(H − y)
2(H/2)2 v̄∗(t) , v̄∗(t) =

v̄
1−cos(πt/t′)

2 if t < t′ = 2 s
v̄ otherwise

. (6.2)

For the solution of the fluid field, we employ the FVM and a computational mesh of
20,940 finite volumes, which are strongly graded towards the cylinder and the membrane
in order to properly resolve the flow phenomena of most interest. Again, we apply the
pimpleDyMFoam solver distributed along with the open-source CFD package OpenFOAM
[123] to accomplish the flow solution. For the solution of the structural field, we use 3× 1
anisotropic high-order quadrilateral elements of order px = 8 and py = 4, available in the
high-order FEM software AdhoC [41, 40]. The transient problems are solved by applying
the implicit second-order accurate backward differencing scheme for the fluid field, and the
undamped Newmark scheme with β = 0.25 and γ = 0.5 for the structural part. For the
first two parameter sets, the time step size is chosen as ∆t = 10−3 s, whereas ∆t = 10−2 s
for the third setting. In the coupled solution procedure, we apply an absolute convergence
criterion ‖rkj+1‖2 < εabs = 10−8 and a relative criterion ‖rkj+1‖2/‖r0

j+1‖2 < εrel = 10−6 to
decide when to leave the implicit iteration and proceed to the next time increment.
Figure 6.9 depicts the steady-state pressure and velocity field for the first parameter

set. Apparently, the deflection of the membrane is fairly small for this case. Table 6.3
lists the most important result quantities. Both the steady-state deflection of the point

Table 6.3: Results for the round cylinder with flexible membrane in channel flow compared
to the reference solution from [71, pp. 383 sq.]. For the transient problems, the oscillation
frequency at the point A is given in square brackets.

Parameter FSI1 FSI2 FSI3

Displacement dx/10−3 m Present work 0.0227 −14.58±12.44 [3.8] −2.69± 2.53 [10.9]
[71, pp. 383 sq.] 0.0221 −15.34±13.03 [3.8] −2.89± 2.72 [10.9]
Rel. error e/% 7.6 −5.0∓ 4.5 [0.0] −6.9∓ 7.0 [0.0]

Displacement dy/10−3 m Present work 0.8209 1.23± 80.60 [2.0] 1.48± 34.38 [5.3]
[71, pp. 383 sq.] 0.8001 1.37± 80.34 [2.0] 1.51± 35.10 [5.3]
Rel. error e/% 2.6 −10.2± 0.3 [0.0] −2.0∓ 2.1 [0.0]

Drag force Fd/N
Present work 14.295 208.83± 73.75 [3.8] 457.3± 22.66 [10.9]

[71, pp. 383 sq.] 14.159 219.10± 77.00 [3.8] 462.4± 25.42 [10.9]
Rel. error e/% 1.0 −4.7∓ 4.2 [0.0] −1.1∓ 10.9 [0.0]

Lift force Fl/N
Present work 0.7638 0.88± 234.20 [2.0] 2.22± 149.78 [5.3]

[71, pp. 383 sq.] 0.7627 −1.55±256.74 [2.0] 2.05± 156.45 [5.3]
Rel. error e/% 0.1 −156.8∓ 8.8 [0.0] 8.3∓ 4.3 [0.0]

A(t = 0 s) = (0.6 m, 0.2 m) at the tip of the membrane as well as the total lift force Fl
and drag force Fd across the cylinder and the membrane are in good agreement with the
reference solution.
Figure 6.10 provides a visual impression of the pressure and velocity field for the second

parameter set. In this case, the flexible membrane is strongly deformed and induces a von
Kármán vortex street in the flow. In order to compare our results to the reference results
in [71, p. 383], we trace the displacements at the deflected point A as well as the total lift
force Fl and total drag force Fd on the cylinder and the membrane over time, as shown in
Figure 6.11. Here, the results are in good agreement with the reference solution as well.

167

6 Benchmark Problems

0 0.07 0.15 0 0.2 0.4

Pressure p/103 Pa Velocity magn. ‖v‖2/m/s

Figure 6.9: Steady-state pressure and velocity field for the round cylinder with membrane in
channel flow and parameter set FSI1.

−1.3 0.36 2.03 0 1.1 2.25

Pressure p/103 Pa Velocity magn. ‖v‖2/m/s

Figure 6.10: Pressure and velocity field for the round cylinder with membrane in channel flow
and parameter set FSI2 at time t = 9.7 s.

168

6.3 Round Cylinder with Flexible Membrane in Channel Flow

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

10 10.2 10.4 10.6 10.8 11

D
isp

la
ce
m
en
t
d
x
/1

0−
3

m

Time t/s

Hron et al. [71, p. 383]
Present work

– foam-extend/AdhoC

−0.1
−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08
0.1

10 10.2 10.4 10.6 10.8 11
D
isp

la
ce
m
en
t
d
y
/1

0−
2

m
Time t/s

Figure 6.11: Displacement dx and dy at point A for the round cylinder with membrane in
channel flow and parameter set FSI2.

120
140
160
180
200
220
240
260
280
300
320

10 10.2 10.4 10.6 10.8 11

D
ra
g
fo
rc
e
F

d/
10

2
N

Time t/s

Hron et al. [71, p. 383]
Present work

– foam-extend/AdhoC

−300

−200

−100

0

100

200

300

10 10.2 10.4 10.6 10.8 11

Li
ft

fo
rc
e
F

l/
10

2
N

Time t/s
Figure 6.12: Lift force Fl and drag force Fd for the round cylinder with membrane in channel
flow and parameter set FSI2.

169

6 Benchmark Problems

−4.73 3.45 6.9 0 2.2 4.4

Pressure p/103 Pa Velocity magn. ‖v‖2/m/s

Figure 6.13: Pressure and velocity field for the round cylinder with membrane in channel flow
and parameter set FSI3 at time t = 9.58 s.

The same holds for the lift and drag force depicted in Figure 6.12. As before, the mean
and maximum displacement and forces are listed in Table 6.3.
The pressure and velocity field for the last parameter set FSI3 are depicted in Figure 6.13

for the moment where the flexible membrane exhibits maximum deflection. As illustrated
in Figure 6.14 and 6.15, the numerical results again resemble the reference solution fairly
well. Minor deviations can be attributed to the different discretization scheme for the fluid
problem and the different spatial and temporal resolution as compared to the reference.

6.4 Square Cylinder with Flexible Membrane in Channel
Flow

Next, we consider a deformable thin elastic shell attached to a square cylinder, subjected to
an incompressible Newtonian flow. Originally proposed in [170, pp. 14 sq.], this problem
was later also computed in [152, pp. 116–123, 37, pp. 258–270, 73, pp. 2100-2102, 166,
pp. 152–159], for instance. As sketched in Figure 6.16, the computational domain is of
rectangular shape and exhibits a length L = 0.21 m and a height H = 0.12 m. Symmet-
rically placed in the channel, the bluff body has a side length a = 0.01 m and extends to
L1 = 0.055 m. At the right end of the square cylinder, an elastic membrane with length
` = 0.04 m and thickness h = 6× 10−4 m is attached.
In what follows, we consider two different parameter sets with different material prop-

erties and inflow velocities. In parameter set #1, we choose a fluid density ρf = 1.18 kg/m3

and a dynamic viscosity µ = 1.82 × 10−5 Pa s. For the elastic membrane, we as-
sume a St. Venant-Kirchhoff material with density ρs = 2 × 103 kg/m3, Young’s modulus
E = 2×105 N/m2, and Poisson’s ratio νs = 0.35. At the inlet, the flow velocity in x-direction
is taken as vx ≡ v̄ = 0.315 m/s. At the bottom and top wall, we apply a slip condition
and impose vy = 0 m/s. At the outlet, we enforce a fixed reference pressure p = 0 Pa.

170

6.4 Square Cylinder with Flexible Membrane in Channel Flow

−6

−5

−4

−3

−2

−1

0

5 5.2 5.4 5.6 5.8 6 6.2 6.4

D
isp

la
ce
m
en
t
d
x
/1

0−
3

m

Time t/s

Hron et al. [71, p. 384]
Present work

– OpenFOAM/AdhoC

−4
−3
−2
−1

0
1
2
3
4

5 5.2 5.4 5.6 5.8 6 6.2 6.4
D
isp

la
ce
m
en
t
d
y
/1

0−
2

m
Time t/s

Figure 6.14: Displacement dx and dy at point A for the round cylinder with membrane in
channel flow and parameter set FSI3.

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5 5.2 5.4 5.6 5.8 6 6.2 6.4

D
ra
g
fo
rc
e
F

d/
10

2
N

Time t/s

Hron et al. [71, p. 384]
Present work

– OpenFOAM/AdhoC

−2
−1.5
−1
−0.5

0
0.5

1
1.5

2

5 5.2 5.4 5.6 5.8 6 6.2 6.4

Li
ft

fo
rc
e
F

l/
10

2
N

Time t/s
Figure 6.15: Lift force Fl and drag force Fd for the round cylinder with membrane in channel
flow and parameter set FSI3.

171

6 Benchmark Problems

L1 = 0.055 m

L = 0.21 m

H = 0.12 m

a
=

0.0
1m

` =
0.0

4m

a
x

y

vx = v̄
vy = 0 m/s

vy = 0 m/s

vy = 0 m/s

p = 0 Pah = 6 · 10−4 m

Figure 6.16: Square cylinder with a flexible membrane in channel flow.

In parameter set #2, we change the density and the Young’s modulus of the structure
to ρs = 102 kg/m3 and E = 2.5 × 105 N/m2, respectively. In addition, the inlet velocity is
increased to v̄ = 0.513 m/s.
We use an identical spatial and temporal discretization for both parameter sets. For the

spatial discretization of the fluid field, we employ an FV mesh consisting of 25,394 cells.
The flow problem is solved by applying the pimpleDyMFoam solver available from the open-
source CFD toolbox OpenFOAM [123]. For the discretization of the elastic membrane,
we choose an FE mesh consisting of 18× 1 anisotropic high-order elements of polynomial
order px = 8 and py = 4. This problem is solved utilizing the in-house high-order FEM
software AdhoC [41, 40]. Regarding the temporal discretization of the fluid problem, we
use the second-order backward differencing scheme. For time integration of the structural
subproblem, we choose the undamped Newmark scheme with β = 0.25 and γ = 0.5. In the
coupled solution process, we apply an absolute convergence criterion ‖rkj+1‖2 < εabs = 10−8

and a relative criterion ‖rkj+1‖2/‖r0
j+1‖2 < εrel = 10−6 to judge whether the subfields are

equilibrated to sufficient accuracy.
Figure 6.17 shows the pressure and velocity fields for parameter set #1 at different

instants of time and gives an impression of the large deflections of the elastic structure.
Clearly, the large deformations require appropriate mesh deformation techniques to deform
the FV mesh according to the structural displacement response. Due to the unsteady
dissolution of vortices from the membrane, a vortex street evolves in downstream direction.
In order to compare the results to the reference solution available from [166, p.154], the
displacement dy at the membrane tip is tracked over time. This leads to the graph depicted
in Figure 6.18, indicating that the periodic oscillation is in acceptable agreement with the
reference solution. Yet, it should be mentioned that the frequency obtained in this work is
slightly higher than that of the reference result, which is due to the fact that, as opposed
to the reference case, undamped time integration schemes have been used for the fluid and

172

6.4 Square Cylinder with Flexible Membrane in Channel Flow

Pressure p/Pa Velocity magnitude ‖v‖2/m/s

−0.15 −0.04 0.08 0 0.26 0.52 t = 13.025 s

Pressure p/Pa Velocity magnitude ‖v‖2/m/s

−0.33 −0.17 0 0 0.26 0.52 t = 15.985 s

Figure 6.17: Pressure and velocity fields for the square cylinder with flexible membrane in
channel flow using parameter set #1.

−0.008
−0.006
−0.004
−0.002

0
0.002
0.004
0.006
0.008

0 2 4 6 8 10 12 14

D
isp

la
ce
m
en
t
d
y
/m

Time t/s

Vázquez [166, p. 154]
Present work – foam-extend/AdhoC

Figure 6.18: Membrane tip displacement dy versus time t for the square cylinder in channel
flow and parameter set #1.

173

6 Benchmark Problems

Pressure p/Pa Velocity magnitude ‖v‖2/m/s

−0.41 −0.11 0.21 0 0.45 0.90 t = 1.57 s

Pressure p/Pa Velocity magnitude ‖v‖2/m/s

−0.46 −0.12 0.21 0 0.46 0.92 t = 1.73 s

Figure 6.19: Pressure and velocity fields for the square cylinder with flexible membrane in
channel flow using parameter set #2.

the structural subproblem.
With parameter set #2, the pressure and velocity fields depicted in Figure 6.19 are

obtained. Here, a notable deformation of the elastic membrane can be observed as well,
underlining the necessity of an appropriate mesh deformation technique for the FV mesh.
Figure 6.20 graphs the tip displacement of the elastic membrane – obviously, the amplitude
of the oscillation is in good agreement with the reference results. Due to the use of
undamped time integration schemes for the fluid and the structural subproblem, also here
the frequency is a little bit higher as compared to the reference solution.

6.5 Flapping Console in Channel Flow
Another interesting benchmark problem – as depicted in Figure 6.21, taken from a tutorial
accompanying the open-source CFD toolbox OpenFOAM [123] – is an elastic console sub-
jected to a channel flow. Here, we consider a channel section of total length L = 6 m and
height H = 1 m. At L1 = 2 m, a flexible flap of thickness ` = 0.05 m is installed, forcing
the flow to pass through the remaining gap between the flap tip and the channel top. Ma-
terial properties for the incompressible Newtonian fluid are the density ρf = 1 kg/m3 and the

174

6.5 Flapping Console in Channel Flow

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

1 1.2 1.4 1.6 1.8 2 2.2

D
isp

la
ce
m
en
t
d
y
/m

Time t/s

Steindorf [152, p. 119]
Vázquez [166, p. 157]

Present work – OpenFOAM/AdhoC

Figure 6.20: Membrane tip displacement dy versus time t for the square cylinder in channel
flow and parameter set #2.

p = 0 Pa

vx = vy = 0 m/s

vx = vy = 0 m/svx = vy = 0 m/s

vx = v̄
vy = 0 m/s

L1 = 2 m

` = 0.05 m
H = 1 m

h = 0.6 m

L = 6 m

y

x

Figure 6.21: Flapping console in channel flow.

175

6 Benchmark Problems

Velocity magnitude ‖v‖2/m/sPressure p/Pa
−33.9 25.5 85 0 8.2 16.3

Figure 6.22: Steady-state pressure and velocity field for the flapping console in channel flow.

kinematic viscosity νf = 10−3 m/s2. For the structure, we assume a St. Venant-Kirchhoff
material with density ρs = 103 kg/m3, Young’s modulus E = 2 × 106 N/m2, and Poisson’s
ratio νs = 0.3. At the inlet of the channel, a parabolic velocity profile is applied, which is
smoothly increased according to the ramp function

vx(t, y) = 3y(H − y)
2(H/2)2 v̄∗(t) , v̄∗(t) =

v̄
1−cos(πt/t′)

2 if t < t′

v̄ otherwise
, (6.3)

where v̄ = 4 m/s is the final mean inlet velocity, and t′ = 5 s represents the ramp time.
A no-slip condition is imposed at the top and the bottom wall, while a fixed reference
pressure p = 0 Pa is applied at the outlet.
For the spatial discretization of the fluid field, we employ an FV mesh comprising 4,900

cells, strongly graded towards the structure. This subproblem is again solved using the
pimpleDyMFoam solver from the OpenFOAM [123] package. An FE mesh consisting of
1 × 3 plane-stress anisotropic high-order finite elements of polynomial degree px = 4 and
py = 8 is chosen for the spatial discretization of the elastic flap. The structural problem
is solved using the high-order FEM software AdhoC [41, 40]. Regarding the temporal
discretization of the fluid problem, we use the Euler backward scheme and a time step
size ∆t = 0.01 s to advance in time. For time integration of the structural subproblem,
we select the undamped standard Newmark scheme with β = 0.25 and γ = 0.5. In the
coupled solution process, the relevant field quantities are iteratively exchanged within a
time increment until either the absolute convergence criterion ‖rkj+1‖2 < εabs = 10−3 or the
relative criterion ‖rkj+1‖2/‖r0

j+1‖2 < εrel = 10−2 is fulfilled.
Figure 6.22 illustrates the steady-state pressure and velocity field for this problem. Be-

hind the flap, the flow separates and a vortex evolves. At the tip of the flap, a steady-state
deflection dx = 0.066 m and dy = −0.004 m is observed.

176

6.6 Flexible Restrictor in Converging Channel

` = 5× 10−3 m

h = 0.25 m

L = 1.75 m

H1 = 0.5 m

L1 = 0.5 m

L2 = 0.4 m

H2 = 0.2 m

x

y vx = vy = 0 m/s

vy = 0 m/s
p = 0 Pa

vx = vx(y, t)
vy = 0 m/s A

B

Figure 6.23: Flexible restrictor in converging channel.

6.6 Flexible Restrictor in Converging Channel
In the next benchmark problem, we consider a flexible restrictor in a converging channel,
as illustrated in Figure 6.23. Mok et al. [115, pp. 147–152], Vázquez [166, pp. 167–170],
and Degroote et al. [36, pp. 799 sq.] already computed this problem in order to verify their
subproblem solvers and FSI setup. The channel exhibits an overall length L = 1.75 m,
a height H1 = 0.5 m at the inlet, and a height H2 = 0.2 m at the outlet. For the fluid,
we assume a density ρf = 956 kg/m3 and a dynamic viscosity µ = 0.145 Pa s. For the
structure, we choose a St. Venant-Kirchhoff material with density ρs = 1.5 × 103 kg/m3,
Young’s modulus E = 2.3 × 106 N/m2, and Poisson’s ratio νs = 0.45. At the inlet, the
parabolic velocity profile

vx(y, t) =
(

1−
(
y −H
H

)2)
v̂∗(t) , v̂∗(t) =

v̂
1−cos(πt/t′)

2 if t < t′

v̂ otherwise
(6.4)

is imposed, where the peak inflow velocity is taken as v̂ = 0.06067 m/s and t′ = 10 s for
the ramp time. For the bottom walls, we prescribe a no-slip condition, while we apply a
symmetry boundary condition at the top wall. For the spatial discretization of the flow
problem, we employ the FVM and a mesh of 16,080 cells. Here again, the pimpleDyMFoam
solver from the CFD toolbox OpenFOAM [123] is used for the solution of the flow problem.
The structure is discretized by anisotropic high-order plane-stress finite elements with
polynomial orders px = 2 and py = 4, available as part of the in-house high-order FEM
code AdhoC [41, 40]. Regarding the temporal discretization, we employ the second-order
backward differencing scheme for the fluid, whereas we apply the undamped Newmark
scheme with the parameters β = 0.25 and γ = 0.5 for the structural problem. A time
step size ∆t = 0.1 s is chosen and kept constant throughout the total number of 250
calculated time steps. In the coupled solution procedure, an absolute convergence criterion
‖rkj+1‖2 < εabs = 10−7 and a relative criterion ‖rkj+1‖2/‖r0

j+1‖2 < εrel = 10−3 serve to decide
whether the subfields are equilibrated to sufficient accuracy within a time increment.
Figure 6.24 illustrates the evolution of the pressure and velocity field over time until

a steady state is reached. In order to compare the numerical results to the reference
solution, we evaluate the horizontal displacement dx and the pressure p at the point A at
the top left corner, as well as at the point B at the center of the left edge of the restrictor
over time. Figure 6.25 graphs the results. Apparently, the displacement response of the
elastic structure and the pressure on the moving surface are in perfect agreement with the
reference solutions.

177

6 Benchmark Problems

Pressure p/Pa
−0.17 11.47 22.37

Velocity magnitude ‖v‖2/m/s

0 0.06 0.13

t
=

5s
t

=
7.

5s
t

=
10

s
t

=
15

s
t

=
20

s
t

=
25

s

Figure 6.24: Pressure and velocity field for the flexible restrictor in the converging channel at
different instants of time.

178

6.6 Flexible Restrictor in Converging Channel

Point A, Mok et al. [115, p. 148]
Point A, Vázquez [166, p. 168]

Point A, Degroote et al. [36, p. 800]
Point A, present work
– OpenFOAM/AdhoC

Point B, Mok et al. [115, p. 148]
Point B, Vázquez [166, p. 168]

Point B, Degroote et al. [36, p. 800]
Point B, present work
– OpenFOAM/AdhoC

(a)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 5 10 15 20 25

D
isp

la
ce
m
en
t
d
x
/m

(b)

0

5

10

15

20

25

0 5 10 15 20 25

Pr
es
su
re
p/

Pa

Time t/s
Figure 6.25: (a) Horizontal displacement dx and (b) pressure p versus time t at the points A
and B for the flexible restrictor in the converging channel.

179

6 Benchmark Problems

L = 12 mW = 8 m

H = 5 m

∆z = 3 m h
=

3m

w = 2 m

Slip

z

x

y No slip

p = 0 Pa

∆x = 2 m

Figure 6.26: Shell in steady-state cross-flow.

6.7 Shell in Steady-State Cross-Flow
In the next example, which is adopted from [9, pp. 638,640, 11, pp. 609,614, 36, pp. 798–
799, 58, pp. 84–89, 94, pp. 92-100], we consider a shell in a steady-state cross-flow. As
illustrated in Figure 6.26, the rectangular computational domain under consideration has
a length L = 12 m, width W = 8 m, and height H = 5 m. At a distance ∆x = 2 m from
the inlet, a thin flexible shell of thickness t = 1.25× 10−3 m is installed. For the fluid, we
choose a density ρf = 103 kg/m3 and a dynamic viscosity µ = 0.1 Pa s. For the shell, we use
the St. Venant-Kirchhoff material model with a Young’s modulus E = 70 × 109 N/m2 and
Poisson’s ratio νs = 0.3. At the inlet, a parabolic velocity profile

v(y) = 3v̄
2H2

(
2Hy − y2

)
, (6.5)

is prescribed. In what follows, the same example is computed for varying mean inflow
velocities 0.01 m/s ≤ v̄ ≤ 0.1 m/s in steps of ∆v̄ = 0.01 m/s. On the shell and at the bottom,
a no-slip condition is imposed, while a slip condition is applied at the back, front, and
top wall. At the outlet, p = 0 Pa is taken as a fixed reference pressure. In order to save
computational costs, we consider only half of the problem, and apply symmetry boundary
conditions at the midplane at z = 0 m.
For the spatial discretization of the fluid domain, we employ a rather coarse FV mesh

consisting of 8,064 cells, graded towards the shell to resolve the flow phenomena of most in-
terest. The flow solution is accomplished using the pimpleDyMFoam solver from the open-
source CFD package foam-extend. For the sake of comparison, the structural problem is
computed using two different discretizations. In the first case, the structure is discretized
by an FE mesh of 12× 6 (refinement level 1) or 24× 12 (refinement level 2) eight-noded,

180

6.8 Spherical Dome in Channel Flow

Velocity mag-
nitude ‖v‖2/m/s

Displacement
magnitude ‖d‖2/m

0 0.04 0.080 0.01 0.02

(a) v̄ = 0.01 m/s

Velocity mag-
nitude ‖v‖2/m/s

Displacement
magnitude ‖d‖2/m

0 0.68 1.350 0.041 0.082

(b) v̄ = 0.05 m/s

Figure 6.27: Displaced shell in steady-state cross-flow and velocity streamlines at z = 0 m for
different inlet velocities.

quadratic SHELL281 elements based on Reissner-Mindlin theory, which exhibit three trans-
lational and three rotational degrees of freedom per node. For the structural problem, we
apply the commercial FEM software ANSYS [3]. In a second study, the structure is dis-
cretized by 3 anisotropic high-order hexahedral elements over the height of the shell with
a polynomial degree px = 1, py = 4, and pz = 2, available in the in-house p-FEM code Ad-
hoC [41, 40]. Regarding the coupled solution procedure, we employ the absolute criterion
‖rkj+1‖2 < εabs = 10−6 and the relative criterion ‖rkj+1‖2/‖r0

j+1‖2 < εrel = 10−2 to judge
whether convergence is achieved.
Figure 6.27 illustrates the deformed structure and the velocity streamlines on the sym-

metry plane at z = 0 m. For the higher inflow velocities, significant displacements of the
shell can be observed. In order to compare the numerical results to the reference solution
available from [58], the tip displacement dx in flow direction is graphed versus the Reynolds
number Re = v̄ρfH/µ for increasing values of the mean inflow velocity v̄. As depicted in
Figure 6.28, the results for the different structural discretizations are in good agreement
with each other. They also match the available reference solutions for v̄ = 0.01 m/s and
v̄ = 0.05 m/s quantitatively.

6.8 Spherical Dome in Channel Flow
All the previous numerical examples involved flat deformable structures only. In order
to demonstrate that an FSI analysis can also be carried out for more complex, curved
three-dimensional structures, a spherical dome in a channel flow is now considered.
Geometry and main dimensions for this example are given in Figure 6.29a. Due to the

symmetry of the problem, we consider only one half of the channel of length L = 36 m,

181

6 Benchmark Problems

0
0.5

1
1.5

2
2.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
isp

la
ce
m
en
t
d
x
/m

Reynolds number Re

Geller [58, p. 638]
Present work – foam-extend/ANSYS, refinement level 1
Present work – foam-extend/ANSYS, refinement level 2
Present work – foam-extend/AdhoC

Figure 6.28: Displacement dx of the tip of the shell in steady-state cross flow for different
Reynolds numbers Re.

z

y
x

R = 1 m

(a) Geometry

L = 36 m

W = 6 m

H
=

6m

(b) Structural mesh (c) Fluid mesh

Figure 6.29: (a) Geometry, (b) structural mesh, and (c) fluid mesh for the spherical dome in
channel flow.

182

6.9 Pressure Pulse in a Straight Elastic Vessel

Displacement magnitude ‖d‖2/10−6 m

0 4 8

z
x

y

(a) t = 0.4 s (b) t = 0.8 s (c) t = 1.6 s

Figure 6.30: Deflections of the spherical dome at different instant of time t.

width W = 6 m, and height H = 6 m. At ∆x = 9 m from the channel inlet, a spherical
dome of radius R = 1 m and thickness t = 0.05 m is located. For the incompressible Newto-
nian fluid, we assume a density ρf = 103 kg/m3 and a kinematic viscosity νf = 10−3 m2/s. For
the structure, we use a St. Venant-Kirchhoff material with density ρs = 103 kg/m3, Young’s
modulus E = 7×107 N/m2, and Poisson’s ratio νs = 0.35. At the midplane plane at z = 0 m,
symmetry boundary conditions are applied. At the inlet, we prescribe a parabolic velocity
profile

v(z) = v̂

H2

(
2Hz − z2

)
, (6.6)

where v̂ = 1 m/s denotes the maximum velocity at z = H. At the outlet, a fixed reference
pressure p = 0 Pa is imposed. Slip conditions are applied on all other boundaries.
For the solution of the flow problem, we employ a hex-dominant FV mesh comprising

144,125 cells and the open-source CFD package OpenFOAM [123]. As usual, the FEM is
chosen for the spatial discretization of the structure. Due to the thin walls of the membrane,
the ratio of the thickness to the lateral dimension is high and the use of shell elements is
advisable. Here, the structure is discretized by bilinear four-noded SHELL181 elements
based on Reissner-Mindlin theory with three translational and three rotational degrees
of freedom per node available in the commercial FEM software ANSYS [3]. Regarding
the temporal discretization, the fluid solver uses the backward Euler scheme, while the
undamped Newmark scheme with β = 0.25 and γ = 0.5 is applied for the structural
problem. Both schemes use the same time step size ∆t = 2× 10−3 s = const. An absolute
criterion ‖rkj+1‖2 < εabs = 10−4 and a relative criterion ‖rkj+1‖2/‖r0

j+1‖2 < εrel = 10−3 are
used for checking convergence.
Figure 6.30 depicts the deflection of the spherical dome at different instants of time.

Figure 6.31 graphs the displacement components dx and dy versus time for the points
A(∆x,R, 0) at the top of the spherical dome and B(∆x−R cos(π/4), R sin(π/4), 0) at an
azimuthal angle θ = π/4.

6.9 Pressure Pulse in a Straight Elastic Vessel
In the next example, we consider a laminar flow of an incompressible Newtonian fluid
through a straight elastic vessel. Originally proposed by Nobile [120] and Formaggia et al.

183

6 Benchmark Problems

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

15.4 15.6 15.8 16 16.2 16.4

D
isp

la
ce
m
en
t
d
x
/1

0−
5

m

Time t/s
(a) Displacement dx at point A

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

15.4 15.6 15.8 16 16.2 16.4

D
isp

la
ce
m
en
t
d
y
/1

0−
5

m

Time t/s
(b) Displacement dy at point A

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

15.4 15.6 15.8 16 16.2 16.4

D
isp

la
ce
m
en
t
d
x
/1

0−
5

m

Time t/s
(c) Displacement dx at point B

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

15.4 15.6 15.8 16 16.2 16.4

D
isp

la
ce
m
en
t
d
y
/1

0−
5

m

Time t/s
(d) Displacement dy at point B

Figure 6.31: Displacement components dx and dy at the points A and B of the spherical
dome over time t.

184

6.9 Pressure Pulse in a Straight Elastic Vessel

L

d

D

x

(a) Geometry (b) Fluid mesh (c) Structural mesh

r

ϕ

Figure 6.32: Geometry, fluid, and structural discretization of the straight elastic vessel.

[51], this problem was later also computed in [48, 166, 36], for instance, and represents a
simplified model for the FSI in large arterial vessels.
As depicted in Figure 6.32, the vessel has a length L = 0.05 m, the inner diameter is

d = 10−2 m, and the outer diameter amounts to D = 1.2 × 10−2 m – corresponding to a
wall thickness of ∆ = (D−d)/2 = 10−3 m. For the fluid, we choose a density ρf = 103 kg/m3

and a dynamic viscosity µ = 3× 10−3 Pa s. The vessel wall is modeled using a St. Venant-
Kirchhoff material with density ρs = 1.2×103 kg/m3, Young’s modulus E = 3×105 N/m2, and
Poisson’s ratio νs = 0.3. The structure is fully clamped at the inlet and outlet. Initially at
rest, the fluid is subjected to a pressure pulse p = 1.3332× 103 Pa = 10 mmHg in the time
interval 0 s ≤ t ≤ 3× 10−3 s. From t > 3× 10−3 s on, the pressure is reduced to p = 0 Pa.
The fluid region is discretized by 1,600 finite control volumes of hexahedral shape and

is solved using the pimpleDyMFoam solver, available in the open-source CFD package
OpenFOAM [123], while the structural mesh consists of 1,200 bilinear Reissner-Mindlin
SHELL181 elements with three translational and three rotational degrees of freedom per
node, available in the commercial FEM software ANSYS [3]. The fluid solver employs
the second-order accurate backward differencing scheme, while the structural solver uses
the generalized-α scheme and a spectral radius ρ∞ = 0.8. The simulation covers a time
period of T = 0.018 s, discretized into equally spaced time steps of size ∆t = 10−4 s. In
the implicit iteration of the coupled solution procedure, we use an absolute convergence
criterion ‖rkj+1‖2 < εabs = 10−6 and a relative criterion ‖rkj+1‖2/‖r0

j+1‖2 < εrel = 10−3

to decide whether the fluid and the structural field are equilibrated with each other to
sufficient accuracy.
Figure 6.33 shows snapshots of the pressure wave propagating through the compliant

vessel at different instants of time t. For illustrative purposes, the displacement was mag-
nified by a scaling factor s = 10. Figure 6.34 shows the vessel in its deformed configuration
at different instants of time.
Lastly, Figure 6.35 graphs the pressure p and the radial displacement dr at fixed loca-

185

6 Benchmark Problems

Pressure p/Pa

−4× 102 1.5× 103

(a) t = 0.0025 s (b) t = 0.005 s (c) t = 0.01 s

Figure 6.33: Pressure wave propagating through the elastic vessel.

Displacement
magn. ‖d‖2/m

0 1.4× 10−4

(a) t = 0.0025 s (b) t = 0.005 s (c) t = 0.01 s

Figure 6.34: Deformed configuration of the elastic vessel at different instants of time t.

186

6.10 Floating Object in Free-Surface Flow

−1.5
−1
−0.5

0
0.5

1
1.5

Pr
es
su
re
p/

10
3

Pa

Level 1: x = L/4
Level 2: x = L/4
Level 3: x = L/4
Level 4: x = L/4

x = L/2
x = L/2
x = L/2
x = L/2

x = 3L/4
x = 3L/4
x = 3L/4
x = 3L/4

−1
−0.5

0
0.5

1
1.5

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

R
ad

ia
l

di
sp
la
ce
m
en
t
d
r
/1

0−
4

m

Time t/s

Figure 6.35: Variation of pressure p and radial displacement dr at different positions x ∈
{L/4, L/2, 3L/4} over time t.

tions x ∈ {L/4, L/2, 3L/2} over time t for different refinement levels of the fluid and the
structural mesh. No significant deviations between the solutions can be observed; hence,
the solution can be considered converged in space.

6.10 Floating Object in Free-Surface Flow
Especially for maritime applications, the numerical simulation of free-surface flows is of
particular interest. In this benchmark problem, which is adopted from a tutorial provided
along with the open-source CFD package OpenFOAM [123], we therefore study the motion
of a rigid floating object in a free-surface flow. Referring to Figure 6.36, the considered
cuboidal computational domain has a side length W = H = 1 m. Up to H1 = 0.5368 m,
the domain is filled with water. At the front right edge, a fluid soil of side lengths a = 0.3 m
and b = 0.2 m and height c = 0.1132 m is located and dropped at the beginning of the
simulation. A rigid floating body of side length w = 0.3 m and height h = 0.1333 m is
placed in the center of the computational domain.
We assume a density ρw = 998 kg/m3 and a kinematic viscosity νw = 10−6 m2/s for the water

phase, while we choose a density ρa = 1 kg/m3 and a kinematic viscosity νa = 1.48×10−5 m2/s

for the air phase filling the rest of the computational domain. For the rigid floating
object, we take a mass m = 9.6 kg and moments of inertia Θx = Θy = 0.086 kg m2 and
Θz = 0.144 kg m2 about the center of mass at C(0.5, 0.5, 0.5).
At the stationary walls and on the floating object, we use a fixed flux pressure boundary

187

6 Benchmark Problems

x
y

z

W = 1 m
W = 1 m

H = 1 m
h = 0.1333 m

w = 0.3 m w = 0.3 m H1 = 0.5368 m

b = 0.2 m
a = 0.3

m

c = 0.1132 m

Figure 6.36: Floating object in free-surface flow.

188

6.10 Floating Object in Free-Surface Flow

x
y

z

Figure 6.37: Discretization of the fluid and the structural region for the floating object in
free-surface flow.

condition, adjusting the gradient of the pressure in such a way that the boundary flux
matches the one specified by the velocity boundary condition. At the top of the domain,
we impose a fixed uniform atmospheric pressure p = 0 Pa. Following the notion in 3.2,
surge, sway, yaw, and roll motion for the floating object are constrained to zero; heave and
pitch are left free.

For the fluid, we utilize the FVM and a purely hexahedral mesh comprising 11,856 cells,
as illustrated in Figure 6.37. The fluid problem is solved employing the volume of fluid
(VOF) technique available in the interDyMFoam multiphase solver as part of the open-
source CFD package OpenFOAM [123]. For the structural problem, we use the rigid body
solver distributed along with the commercial software ANSYS [3]. For the sole purpose of
integrating the fluid traction over the floating object’s surface, a surface mesh consisting
of 170 quadrilateral cells is introduced. Regarding the time stepping procedures, we utilize
the Euler backward scheme for the fluid problem, whereas we apply the Newmark method
with the parameters β = 0.2525 and γ = 0.5050 for the structural problem.

Figure 6.38 gives an impression of the evolution of the free surface and the motion
response of the floating object at different instants of time. In order to verify the results
obtained for this problem, we track the heave and pitch motion of the floating object over
time and compare it to the solution produced by OpenFOAM only, which likewise employs
a partitioned solution procedure internally to couple the fluid and the rigid body problem.
As shown in Figure 6.39, both motion plots apparently are in perfect agreement with each
other.

189

6 Benchmark Problems

−0.084 0.023 0.13
Water elevation ζ/m

x
y

z

(a) t = 0.12 s. (b) t = 0.51 s.

(c) t = 0.88 s. (d) t = 1.49 s.

Figure 6.38: Displaced floating object in free-surface flow at different instants of time t.

−0.008
−0.006
−0.004
−0.002

0
0.002
0.004
0.006
0.008

0 1 2 3 4 5 6
−5
−4
−3
−2
−1
0
1
2
3
4
5

H
ea
ve
d
z
/m

Pi
tc
h
θ/
◦

Time t/s

Heave dz – OpenFOAM/OpenFOAM
Heave dz – OpenFOAM/ANSYS

Pitch θ – OpenFOAM/OpenFOAM
Pitch θ – OpenFOAM/ANSYS

Figure 6.39: Heave dz and pitch θ of the floating object versus time t.

190

6.11 Sloshing Effects in Partly-Filled Tank

h = 0.0574 m

W = 0.609 m

H
=

0.
34

45
m

Oil

Air

w = 0.004 m

ω

(a) Setting #1: standing flap, shallow oil

h = 0.1148 m

W = 0.609 m

H
=

0.
34

45
m

Oil

Air

w = 0.004 m

ω

(b) Setting #2: standing flap, deep oil

h = 0.0574 m

W = 0.609 m

H
=

0.
34

45
m

Water

Air

w = 0.004 m

ω

(c) Setting #3: hanging flap, shallow water

Figure 6.40: Different settings for the partly-filled rolling tank.

6.11 Sloshing Effects in Partly-Filled Tank

Sloshing effects in partly-filled tanks are of great importance in the maritime industry.
Wave-induced ship motions are likely to induce resonance effects in the fluid, which can
lead to high local impact loads on the tank and may also affect the global ship motion [76,
p. 406]. In order to demonstrate that the FSI of a complex free-surface flow and an elastic
structure can be computed accurately, a rolling tank with a flexible flap is considered in
this example. Originally proposed by Idelsohn et al. [77], this benchmark problem was later
also computed by Degroote [35, p. 202–210] to verify the coupling code and the subproblem
solvers. As pictured in Figure 6.40, three different settings are considered, in each of which
the fluid interacts with a flexible flap installed in the middle of the tank. In all cases, the
tank exhibits a width W = 0.609 m and a height H = 0.3445 m. In setting #1, the flexible
structure has a width w = 0.004 m and a height h = 0.0574 m, and the tank is filled with
oil of density ρl = 917 kg/m3 and dynamic viscosity µl = 0.04585 Pas up to a filling height
h coinciding with the height of the flap, which has a density ρs = 1.1× 103 kg/m3, Young’s
modulus E = 6× 106 N/m2, and Poisson’s ratio νs = 0.49. In setting #2, the height of the
structure and the filling level are increased to h = 0.1148 m. In case #3, we consider a
hanging flap of density ρs = 1.1×103 kg/m3, Young’s modulus E = 6×106 N/m2, and Poisson’s
ratio νs = 0.49. Here, the tank is partly filled with water of density ρl = 998.2 kg/m3 and
kinematic viscosity µl = 0.001003 Pa s. In all three settings, the rest of the tank is filled

191

6 Benchmark Problems

Table 6.4: Material parameters for the liquid and gas phase and the structure in the rolling
tank example.

Parameter Standing flap,
shallow oil

Standing flap,
deep oil

Hanging flap,
shallow water

Liquid phase Density ρl/kg/m3 917 917 998.2
Dynamic viscosity µl/Pa s 0.04585 0.04585 0.001003

Gas phase Density ρg/kg/m3 1.225 1.225 1.225
Dynamic viscosity µg/Pa s 1.79× 10−5 1.79× 10−5 1.79× 10−5

Structure
Density ρs/kg/m3 1.1× 103 1.1× 103 1.9× 103

Young’s modulus E/N/m2 6× 106 6× 106 4× 106

Poisson’s ratio νs 0.49 0.49 0.49

with air of density ρg = 917 kg/m3 and a dynamic viscosity µg = 0.04585 Pas. Table 6.4
once again summarizes the material parameters for this example.
At the bottom of the tank, a rolling motion of angular frequency

ω =
√
πg

W
tanh πh

W
(6.7)

is imposed. Herein, g = 9.81 m/s2 is the gravitational acceleration. On the side and bottom
walls, we impose a no-slip condition for the velocity and a fixed flux boundary condition
for the pressure, where the gradient of the pressure is adjusted such that the boundary
flux matches the velocity boundary condition. On the top wall, a fixed reference pressure
p = 0 Pa is prescribed. A no-slip condition for the velocity and a zero gradient condition
for the pressure are applied on the flexible flap.
As illustrated in Figure 6.41, the fluid region is discretized by a structured FV grid

consisting of 10,554 (standing flap, shallow oil), 10,240 (standing flap, deep oil), or 10,228
(hanging flap, shallow water) hexahedral control volumes. Since this is a multiphase prob-
lem, it is solved using the interDyMFoam solver from the OpenFOAM [123] CFD package.
For the structural domain, we employ an FE mesh comprising 3 high-order plane-stress
elements of polynomial order px = 2 and py = 6, solved using the in-house p-FEM code
AdhoC [41, 40]. In the flow field, we apply the Euler backward scheme for time integration,
whereas the Newmark scheme with β = 0.25 and γ = 0.5 is chosen for the structure. Both
problems are integrated using a time step size ∆t = 2.5× 10−3 s (standing flap, shallow oil
and standing flap, deep oil) or ∆t = ×10−3 s (standing flap, shallow water).
A comparison between the experiments reported by Idelsohn et al. [77] and the numerical

results obtained in this work is shown in Figure 6.42–6.44. In general, a fair agreement
between the measurements and the numerical solution can be observed. In addition,
Figure 6.45 graphs the horizontal displacement dx̂ of the flag tip in the rotating reference
frame of the tank over time t. Here, we can observe an excellent correspondence between
the numerical results reported by Degroote [35, p. 209] and the solution obtained in the
present work.

192

6.11 Sloshing Effects in Partly-Filled Tank

(a)

(b) (c)

Figure 6.41: Fluid meshes for the rolling tank with (a) standing flap and shallow oil, (b)
standing flap and deep oil, and (c) hanging flap and shallow water.

193

6 Benchmark Problems

(a) t = 0.92 s (b) t = 1.2 s

(c) t = 1.4 s (d) t = 1.68 s

Figure 6.42: Comparison of experimental measurements and numerical results for the rolling
tank with standing flap and shallow oil at different instants of time t.

194

6.11 Sloshing Effects in Partly-Filled Tank

(a) t = 1.84 s (b) t = 2.12 s

(c) t = 2.32 s (d) t = 2.56 s

Figure 6.43: Comparison of experimental measurements and numerical results for the rolling
tank with standing flap and deep oil at different instants of time t.

195

6 Benchmark Problems

(a) t = 0.76 s (b) t = 1.64 s (c) t = 2.4 s (d) t = 2.68 s

(e) t = 2.96 s (f) t = 3.32 s (g) t = 3.4 s (h) t = 3.56 s

(i) t = 3.8 s (j) t = 3.84 s (k) t = 4 s (l) t = 4.16 s

Figure 6.44: Comparison of experimental measurements and numerical results for the rolling
tank with hanging flap and shallow water at different instants of time t.

196

6.11 Sloshing Effects in Partly-Filled Tank

Experiment – Idelsohn et al. [77, p.129–132]
Numerical result – Degroote [35, p.209]

Numerical result OpenFOAM/AdhoC – present work

(a)

−0.015
−0.01
−0.005

0
0.005
0.01

0.015

0 1 2 3 4 5

H
or
iz
on

ta
lt
ip

di
sp
la
ce
m
en
t
d
x̂
/m

(b)

−0.1
−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08
0.1

0 1 2 3 4 5

H
or
iz
on

ta
lt
ip

di
sp
la
ce
m
en
t
d
x̂
/m

(c)

−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08

0 1 2 3 4 5

H
or
iz
on

ta
lt
ip

di
sp
la
ce
m
en
t
d
x̂
/m

Time t/s
Figure 6.45: Flap tip displacement dx̂ in the rotating reference frame for the (a) standing flap
in shallow oil, (b) standing flap in deep oil, and (c) hanging flap above shallow water.

197

6 Benchmark Problems

Water column H
=

0.
58

4m

W = 0.584 m

a = 0.1461 m

b
=

0.
29

2m

h = 0.048 m

∆ = 6.35× 10−3 m

∆x
= 0.1459 m

x

y

Air

(a) Geometry (b) Fluid mesh

Figure 6.46: (a) Geometry and (b) fluid mesh for the dam break problem.

6.12 Dam Break
So far, only elastic deformations of the structure have been considered. In many practical
applications, plastic effects play an important role as well. A fluid impacting a structure
may, for instance, lead to high loads that exceed the elastic limit of the structure, causing
plastic deformations. Due to the use of a partitioned solution approach, a solver supporting
the analysis of plasticity problems can easily be applied to solve the structural subproblem.
In this example, adopted from [123], we study the plastic deformation of a deformable
obstacle subjected to an impact load caused by a breaking dam. According to Figure 6.46,
the computational domain has a width W = 0.584 m and a height H = 0.584 m. At the
left end of the domain, a water column of width a = 0.1461 m and height b = 0.292 m is
dropped at the beginning of the simulation. The obstacle has a thickness ∆ = 6.35×10−3 m
and a height h = 0.048 m. For the water phase, a density ρw = 103 kg/m3 and a kinematic
viscosity νw = 10−6 m2/s are assumed, while the air phase exhibits a density ρa = 1 kg/m3

and a kinematic viscosity νa = 1.48 × 10−5 m2/s. Regarding the prediction of the effects
of turbulence, we use the well-established k-ε model. In order to capture the elastic
material behavior of the obstacle, we choose a St. Venant-Kirchhoff model with density
ρs = 103 kg/m3, Young’s modulus E = 5 × 105 N/m2, and Poisson’s ratio νs = 0.49. In the
plastic regime, the behavior of the structure is described by a bilinear isotropic hardening
model with yield stress σ0 = 2× 105 N/m2 and tangent modulus Et = 5× 105 N/m2. No-slip
conditions are prescribed at the left, lower, and right boundary of the domain including
the surface of the obstacle. At the upper domain boundary, a fixed uniform atmospheric
pressure p = 0 Pa is imposed.
The fluid problem is discretized by an FV mesh comprising 7,472 cells, solved using the

VOF technique available in the interDyMFoam multiphase solver available as part of the
open-source CFD package OpenFOAM [123]. For the spatial discretization of the obstacle,
we utilize an FE mesh of 576 biquadratic, eight-noded plane-stress PLANE183 elements
available in the commercial solver ANSYS [3]. As usual, we use the second-order accurate

198

6.12 Dam Break

Phase fraction α

0 0.5 1

(a) t = 0.192 s (b) t = 0.327 s (c) t = 0.62 s

(d) t = 0.82 s (e) t = 1.2 s (f) t = 2 s

Figure 6.47: Evolution of the phase fraction α over time t.

Euler backward scheme as a time stepping procedure for the fluid, while we integrate the
structural problem with the Newmark scheme, where β = 0.2525 and γ = 0.5050. Starting
from an initial time step size ∆t = 10−3 s, the time step size is adaptively controlled via
the Courant number as a means to save computational costs.

Figure 6.47 depicts the evolution of the phase fraction α over time. The highest deflection
is observed at the moment the fluid hits the obstacle, which is also confirmed by the record
of the obstacle’s tip displacement over time, as shown in Figure 6.48. As illustrated in
Figure 6.49, the high impact load leads to a permanent plastic deformation of the structure
at the clamping. Due to the fluid flowing around the obstacle, the high pressure difference
is alleviated, and the obstacle elastically flips back in negative x-direction. Despite the
vanishing pressure difference, the obstacle does not reach its initial state, however, because
of the permanent plastic deformation.

199

6 Benchmark Problems

−0.005
0

0.005
0.01

0.015
0.02

0.025

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2D
isp

la
ce
m
en
t
d
x
,d

y
/m

Time t/s

Displacement dx
Displacement dy

Figure 6.48: Components dx, dy of the obstacle’s tip displacement over time t.

0 0.063 0.127

Equivalent plastic strain ε̄p

(a) t = 0.192 s (b) t = 0.327 s (c) t = 0.62 s (d) t = 0.82 s (e) t = 1.2 s (f) t = 2 s

Figure 6.49: Deformed obstacle colored by equivalent plastic strain ε̄p at different instants of
time t.

200

6.13 Hydrofoil in Steady-State Flow

x

z

y

α = 8◦

v = 1 m/s

NACA-0012 cross section

W/2 = 5 m

L = 1 m

Symmetry plane z = 0 m

Figure 6.50: Hydrofoil in steady-state flow.

6.13 Hydrofoil in Steady-State Flow
From the above numerical examples, it became clear that the FVM is well suited for various
kinds of FSI problems. However, the FVM can quickly become costly and prohibitively
expensive for a fully implicit FSI analysis. Moreover, large mesh deformations can lead
to solver difficulties because the FV mesh needs to follow the structural deformation at
the FSI interface, which may lead to badly-shaped or self-penetrating cells. In contrast,
the assumption of an incompressible, inviscid, and irrotational flow – and the use of the
BEM as the method of choice to solve potential flow problems – usually results in much
less computational effort. In addition, the boundary element mesh can easily track even
large deformations of the fluid-structure interface without experiencing any notable mesh
quality issues. These facts indicate that the BEM is in fact a very interesting alternative
to the FVM, and it appears to be particularly attractive for maritime applications, where
the assumption of a potential flow is often justified.
In order to explore the capabilities of the BEM in the context of FSI, we study the

steady-state deflection of a NACA0012 cross section profile in this example. Exhibiting a
chord length L = 1 m and a width W = 10 m, the profile is fully clamped in the middle. It
is subjected to a water flow of density ρf = 998 kg/m3 and kinematic viscosity νf = 10−6 m2/s

at constant velocity v = 1 m/s under an angle of attack α = 8◦. Manufactured from steel,
the profile exhibits a Young’s modulus E = 2.1 × 1011 N/m2 and Poisson’s ratio νs = 0.3.
As sketched in Figure 6.50, only half of the hydrofoil is modeled, and symmetry boundary
conditions for the fluid problem are applied at z = 0 m in order to save computational
costs.
In the FSI analysis, the flow problem is solved using either the FVM and the pimpleDyM-

Foam solver distributed along with the open-source CFD package OpenFOAM [123] or the
BEM available in the in-house first-order panel code panMARE [12]. In the RANS cal-
culation, we utilize a relatively fine mesh consisting of 1,311,723 cells, strongly graded
towards the boundary layer around the hydrofoil. The well-established k-ω-SST model
serves to predict the effects of turbulence. For the potential flow problem, only the surface

201

6 Benchmark Problems

(a) FV mesh (b) Boundary element mesh

Figure 6.51: Different fluid discretizations around the hydrofoil.

of the hydrofoil needs to be discretized. Preliminary mesh studies revealed that 30 panels
in chordwise and 10 panels in spanwise direction (summing up to a total of 1,600 panels)
provide a reasonably accurate solution of the flow problem. An identical discretization is
therefore also used in the FSI analysis, where comparably small deflections and, hence,
only minor changes in the global flow behavior are to be expected. Figure 6.51 gives an
impression of the FVM and BEM mesh for the solution of the flow problem.
For the numerical treatment of the structural subproblem, we choose the FEM as usual,

but employ different discretizations comprising either 18 high-order hexahedral elements
with polynomial order px = py = 4 and pz = 12, 160 triquadratic twenty-noded hexahe-
dral HEXA20 elements with reduced integration, 2,880 trilinear eight-noded hexahedral
SOLID185 elements with enhanced strain formulation, 204 bilinear four-noded SHELL181
elements based on Reissner-Mindlin plate theory, or 20 linear two-noded BEAM188 ele-
ments based on Timoshenko beam theory. The high-order hexahedral elements are part
of the in-house p-FEM code AdhoC [41, 40]. The open-source FEM software Code_Aster
[43] provides the HEXA20 elements, while the SOLID185, SHELL181, and BEAM188 el-
ements are available in the commercial FEM software suite ANSYS [3]. Figure 6.52 gives
an overview of the different structural discretizations for the hydrofoil. Table 6.5 lists
the computed tip deflections of the hydrofoil in steady state conditions. Apparently, the
different considered numerical methods for the solution of the flow problem as well as the
different structural discretizations are able to capture the problem reasonably well, as only
very little deviation between the results can be observed. It should be noted, however, that
a remarkably different amount of computational effort was invested to accomplish these
solutions. Clearly, the FVM combined with a structural solid model poses the most expen-
sive solution strategy, whereas the BEM and the structural beam model is considerably
cheaper.
In order to demonstrate the capability of the BEM/FEM coupling procedure to also

capture large deflections of the hydrofoil, the stiffness of the structure is significantly
reduced by scaling the Young’s modulus by a factor s = 10−3 such that E∗ = 2.1×108 N/m2.
It is obvious that the FVM experiences difficulties dealing with larger mesh deformations
– as was to be expected in this case. In the BEM, however, only the surface of the
body needs to be discretized such that the boundary element mesh can inherently follow
the deformation of the body. Apart from the reduced computational expenditure to be

202

6.13 Hydrofoil in Steady-State Flow

(a) High-order hexahedral (b) HEXA20

(c) SOLID185 (d) SHELL181 (e) BEAM188

Figure 6.52: Different structural discretizations for the hydrofoil.

Table 6.5: Steady-state tip deflection of the hydrofoil.

Fluid solver Structural solver Structural element type Steady-state
deflection dy/10−3 m

panMARE AdhoC High-order hexahedral 1.6160
panMARE Code_Aster HEXA20 1.6373
panMARE ANSYS SOLID185 1.6111
panMARE ANSYS SHELL181 1.6096
panMARE ANSYS BEAM188 1.6182
OpenFOAM ANSYS SOLID185 1.6064

203

6 Benchmark Problems

Pressure p/Pa

−1,781 −566 485

(a)

0 0.89 1.79

Displacement
magnitude ‖d‖2/m

(b)

Figure 6.53: (a) Pressure p and (b) displacement magnitude ‖d‖2 for the soft hydrofoil with
a reduced Young’s modulus E∗ = 2.1× 108 N/m2 in steady-state conditions.

invested in the solution of the flow field, this mesh deformation capability can be seen as
one of the most notable advantages of the BEM in an FSI context. Except for the reduced
Young’s modulus E∗, all other parameters are kept as before. Figure 6.53 depcits the result
of the simulation carried out using the BEM for the fluid problem and the beam model for
the representation of the hydrofoil.

6.14 Ship Propeller
Due to the unsteady inflow caused by the wake of the ship, marine propellers operate un-
der highly unsteady loading conditions. Clearly, the varying pressure distribution on the
propeller has a significant impact on the resulting torque and thrust and, hence, on its per-
formance. Furthermore, the pressure fluctuations may induce vibrations in the propulsion
system, which propagate further into the hull structure [118, p. 191]. In the design stage,
the hydrodynamically induced forces are usually approximated using simplified empirical
formulas. However, these formulas do not provide a detailed insight into the transient
nature of the FSI occurring between the elastic propeller and the surrounding flow field.
For the derivation of a both reliable and efficient design, a realistic and accurate prediction
of the propeller deflection and the transient flow field is essential. In this work, the par-
titioned solution approach is employed to deliver these results and to provide a profound
understanding of the transient physical phenomena occurring in propeller operation.
In the following, we consider a fully submerged model-scale KCS P1356 propeller of

diameter D = 0.25 m equipped with five blades, as depicted in Figure 6.54, subjected to a
uniform inflow. Manufactured from UNS C36000 free-cutting brass, the propeller exhibits
a density ρs = 8.49× 103 kg/m3, Young’s modulus E = 9.7× 1012 N/m2, and Poisson’s ratio
νs = 0.31. It rotates at constant speed n = 9.5 1/s about the x-axis. In the present study,
the deflection of the hub is neglected, and only the blades are considered to be deformable.
In addition, the influence of gravity is assumed to have minor influence on the results and
is hence omitted here. Since the propeller operates under periodic conditions, it suffices
to discretize a single blade only and to apply periodic boundary conditions in the flow

204

6.14 Ship Propeller

x y

z

(a)
x

z

y

(b)

Figure 6.54: (a) Front and (b) side view of the model-scale KCS P1356 propeller.

z
y
x

(a) BEM mesh

y
x

z y
x

z

(b) FEM mesh

Figure 6.55: (a) Fluid and (b) structural discretization of the ship propeller blade.

field. For the numerical treatment of the fluid problem, again the BEM implemented
in the software package panMARE [12] is chosen. Consequently, only the surface of the
propeller and the wake need to be discretized, which offers the substantial advantages of
being computationally cheap as compared to finite volume methods. Further, this allows
to handle arbitrarily large mesh motion without difficulty. As depicted in Figure 6.55a,
we use 20 panels in chordwise direction and 18 panels in spanwise direction for the pro-
peller. In the wake region, we resolve two rotations. In total, the boundary element
mesh consists of 740 body and 6,480 wake panels. For the structural part, we use the
commercial FE software ANSYS [3]. In order to save computational cost, we discretize
the blade mid-plane by means of four-noded SHELL181 elements based on the Reissner-
Mindlin theory, with three translational and three rotational degrees of freedom per node.
As illustrated in Figure 6.55b, the thickness normal to the mid-plane is prescribed at the
nodes and interpolated linearly to evaluate the thickness at the element integration points.
In total, the shell discretization comprises 770 elements and 4,899 degrees of freedom.
In the structural model, we prescribe the translational and rotational motion of the pro-

205

6 Benchmark Problems

von Mises stress σv/106 N/m2

0 0.55 1.1

(a) J = 0.5 (b) J = 0.6 (c) J = 0.7 (d) J = 0.8

Figure 6.56: Von Mises stress σv for different advance ratios J .

peller at the connection between the blade root and the hub. From the angular velocity
ω = 2πn, the current rotation angle of a node initially located at (x0, y0, z0) is calculated
as ϕt = ϕ0 +ωt = arctan(z0/y0)+ωt and the current position at time t becomes (xt, yt, zt),
where xt = x0 + vt, yt = r cosϕt, and zt = r sinϕt with the distance r =

√
y2

0 + z2
0 from

the rotation axis. Different advance ratios J ∈ {0.5, 0.6, 0.7, 0.8} are considered, resulting
in different translational velocities v = JnD. Due to the large translations and rotations,
a geometrically nonlinear analysis is to be performed. For the description of the material
behavior, it suffices to choose the St. Venant-Kirchhoff model, as small strains are to be
expected for the comparably stiff material.
Regarding the time integration procedures, the backward Euler scheme is used for the

fluid part, whereas the Newmark scheme with parameters β = 0.2525 and γ = 0.5050 is
employed for the structural problem.
In order to judge whether the fluid and the structural field are equilibrated to suffi-

cient accuracy within a time increment, it is checked whether ‖rkj+1‖2 < εabs = 10−4 or
‖rkj+1‖2/‖r0

j+1‖2 < εrel = 5× 10−3. A total of three propeller revolutions are computed for
all sets of simulations using a constant angle increment ∆ϕ = 2◦, which corresponds to a
time step size ∆t ≈ 5.85× 10−4 s.
Figure 6.56 illustrates the von Mises stress σv for different advance ratios J . As to be

expected, the von Mises stress decreases for increasing advance ratios J . Moreover, the
highest stress occurs in the center of the blade and in the middle of the trailing edge.
Figure 6.57 depicts the openwater diagram with the thrust coefficient kt = t/ρn2D4, the
torque coefficient kq = q/ρn2D5, and the efficiency η0 = Jkt/2πkq for the studied propeller,
where t and q denote thrust and torque, respectively.
In the next step, the hydrodynamic coefficients of the propeller will be determined.

Rotating at constant angular speed and subjected to a constant uniform inflow as before,
the propeller is subjected to an additional superimposed harmonic swaying motion w(t) :=
w0 sin(ω0t) such that v(t) = v0 + w(t), so as to determine the hydrodynamic mass and
damping coefficients. Herein, w0 = 0.3011 m/s denotes the swaying amplitude, and ω0 =
ω/5 is the angular frequency of the oscillation. In order to capture at least two full periods
of the oscillatory motion, a simulation is carried out for 15 propeller revolutions. The time
step size remains unchanged at ∆t = 5.85 × 10−4 s corresponding to an angle increment

206

6.14 Ship Propeller

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 0.55 0.6 0.65 0.7 0.75 0.8

T
hr
us
t
co
effi

ci
en
t
k

t,
to
rq
ue

co
effi

ci
en
t
k
q
/1

0−
1 ,

effi
ci
en
cy

η 0

Advance ratio J = v/nd

Thrust coefficient kt
Torque coefficient kq

Efficiency η0

Figure 6.57: Openwater diagram for the KCS P1356 ship propeller obtained from an FSI
analysis.

∆ϕ = 2◦.
In order to determine the hydrodynamic coefficients, let us first consider a function

f(w, ẇ) depending on the superimposed swaying velocity w and acceleration ẇ. Carrying
out a Taylor series expansion leads us to

f(w, ẇ) ≈ f0 + ∆wfw + ∆ẇfẇ + 1
2
(
∆w2f2w + 2∆w∆ẇfwẇ + ∆ẇ2f2ẇ

)
(6.8)

with the increments

∆w = w − w0 = w0(sin(ω0t)− 1) , ∆ẇ = ẇ − ẇ0 = w0ω0 cos(ω0t) (6.9)

as an expression for the loads induced by the additional swaying motion. Dropping higher
order derivatives, the Taylor series becomes

f(w, ẇ) ≈ f0 + ∆wfw + ∆ẇfẇ + 1
2
(
∆w2f2w + 2∆w∆ẇfwẇ

)
=
(
f0 − w0fw + 1

2w
2
0f2w

)
+ sin(ω0t)

(
w0fw − w2

0f2w
)

+ sin2(ω0t)
1
2w

2
0f2w

+ cos(ω0t)
(
w0ω0fẇ − w2

0ω0fwẇ
)

+ cos(ω0t) sin(ω0t)w2
0ω0fwẇ

=
(
f0 − w0fw + 3

4w
2
0f2w

)
+ cos(ω0t)

(
w0ω0fẇ − w2

0ω0fwẇ
)

+ sin(ω0t)
(
w0fw − w2

0f2w
)

+ cos(2ω0t)
(
−1

4w
2
0f2w

)
+ sin(2ω0t)

(1
2w

2
0ω0fwẇ

)
.

(6.10)

In the above approximation, the coefficients f0, fw, fẇ, f2w, and fwẇ represent the hy-
drodynamic coefficients. Having obtained the force F (t) in x-direction and the moment
M(t) about the x-axis at the propeller hub from the simulation, the second-order Fourier

207

6 Benchmark Problems

Table 6.6: Hydrodynamic (a) force and (b) moment coefficients for different advance ratios
J .

(a) Force

Advance ratio J Hydrodynamic coefficients
fw/10−1 fẇ/10−1 f2w/10−1 fwẇ/10−1

0.5 −4.184 −1.104 −5.010 2.718
0.6 −4.848 −0.932 −4.110 1.911
0.7 −5.387 −0.778 −3.506 1.412
0.8 −5.846 −0.646 −3.133 1.096

(b) Moment

Advance ratio J Hydrodynamic coefficients
fw/10−2 fẇ/10−2 f2w/10−1 fwẇ/10−2

0.5 4.090 1.426 1.047 −2.101
0.6 5.620 1.240 1.108 −1.428
0.7 7.202 1.044 1.225 −1.133
0.8 8.834 1.081 1.356 −0.486

expansion

f(t) ≈ a0 +
2∑

k=1
(ak cos(ωkt) + bn sin(ωkt)) (6.11)

is fitted to F (t) and M(t) to determine the coefficients a0, a1, b1, a2, and b2. By equating
the coefficients of the Fourier expansion (6.11) and the Taylor series expansion (6.10), the
hydrodynamic coefficients are then computed from

f0 = a0 + b1 − a2 , fw = b1 − 4a2

w0
, fẇ = a1 + 2b2

w0ω0
, f2w = −4a2

w2
0

, fwẇ = 2b2

w2
0ω0

.

(6.12)
It is convenient to transform the dimensioned hydrodynamic coefficient into dimensionless
quantities. Regarding the force coefficients, the equations

f
′

w = 1
ρnD3fw , f

′

ẇ = 1
ρD3fẇ , f

′

2w = 1
ρD2f2w , f

′

wẇ = n

ρD2fwẇ (6.13)

are employed to nondimensionalize the hydrodynamic coefficients, whereas the relations

f
′

w = 1
ρnD4fw , f

′

ẇ = 1
ρD4fẇ , f

′

2w = 1
ρD3f2w , f

′

wẇ = n

ρD3fwẇ (6.14)

are applied for the calculation of the moment coefficients. Table 6.6 lists the dimension-
less hydrodynamic coefficients for the considered KCS P1356 propeller obtained by the
aforementioned procedure for different advance ratios J .

6.15 Wind Turbine Rotor
In the previous example, it was demonstrated that structural elements may offer substantial
advantages over continuum elements if slender or thin-walled structures are considered. In

208

6.15 Wind Turbine Rotor

Spar caps

Skin Skin

Layer 1
Layer 2

Layer 3

Shear
webs

Figure 6.58: Typical wind turbine blade, reproduced from [4, p. 352].

y

z, rx

ϕ

R = 0.75 m L = 30 m

r∗ = r −R

Figure 6.59: Front view of a blade of the three-bladed wind turbine rotor. The airflow of
density moves in positive x-direction and the rotor turns in clockwise direction as seen from
the direction of the wind.

these cases, structural elements usually require much less degrees of freedom to reach the
same accuracy as continuum elements, which is why they have great potential to reduce
the computational costs associated to the solution of the structural subproblem.
In the following, we will consider another example in which it is favorable to use structural

elements. This time, however, beam elements instead of shell elements will be used.
In order to combine high structural strength with a light weight, wind turbine blades are

usually manufactured from highly advanced composite materials arranged in several layers,
as pictured in Figure 6.58. From the inside, the blade is equipped with shear webs and
spar caps to stiffen the structure. During operation under the action of aerodynamic loads,
the structure is usually allowed to deflect by a considerable amount. Hence, a detailed
investigation of the FSI is of significant importance to obtain an accurate estimate of the
internal stresses as well as to predict the effect of the blade deflection on the surrounding
airflow and, thus, on the efficiency of the entire wind turbine.
Our numerical study is based on a structural setup outlined in the ANSYS Technology

Demonstration Guide [4, p. 351–362]. As illustrated in Figure 6.59, the three-bladed rotor
turns at a constant frequency f = 13.6 1/min ≈ 0.2267 1/s about the x-axis. For the hub
radius, we assume R = 0.75 m, and each blade has a length L = 30 m. Figure 6.60 shows
the cross section of a blade at different radii r∗ = r − R, and Table 6.7 summarizes the
material parameters for the three skin layers, the spar caps, and the shear webs. For

209

6 Benchmark Problems

(a) r∗ = 0 m (b) r∗ = 2 m (c) r∗ = 4 m

(d) r∗ = 6 m (e) r∗ = 10 m (f) r∗ = 15 m

(g) r∗ = 20 m (h) r∗ = 30 m

Figure 6.60: Blade cross section at different radii r∗ = r −R.

Table 6.7: Parameters for the different materials of a wind turbine blade.

Material constants Skin layer 1 Skin layer 2 Skin layer 3 Spar caps Shear webs

Density ρ / kg/m3 1.90× 103 1.75× 103 2.00× 103 1.80× 103 1.85× 103

Young’s modulus Ex / N/m2 1.39× 1010 1.20× 1010 1.48× 1010 1.66× 1010 1.59× 1010

Young’s modulus Ey / N/m2 1.39× 1010 1.20× 1010 1.48× 1010 1.66× 1010 1.59× 1010

Young’s modulus Ez / N/m2 1.05× 1010 9.50× 109 1.10× 1010 1.21× 1010 1.15× 1010

Poisson’s ratio νxy 0.43 0.38 0.48 0.40 0.52
Poisson’s ratio νyz 0.15 0.18 0.13 0.15 0.10
Poisson’s ratio νxz 0.15 0.18 0.13 0.15 0.10
Shear modulus Gxy / N/m2 1.09× 1010 9.30× 109 1.10× 1010 1.24× 1010 1.19× 1010

Shear modulus Gyz / N/m2 5.48× 109 6.03× 109 5.03× 109 4.08× 109 4.48× 109

Shear modulus Gxz / N/m2 5.48× 109 6.03× 109 5.03× 109 4.08× 109 4.48× 109

210

6.15 Wind Turbine Rotor

Displacement magnitude ‖d‖2/m

−4.85 −2.43 0

z

x
y

(a)
z x

y

(b)

Figure 6.61: (a) Oblique and (b) side view of the wind turbine rotor in steady operation.

the airflow, we assume a density ρ = 1.2 kg/m3, kinematic viscosity ν = 1.48× 105 m2/s, and
constant speed v = 11 m/s in positive x-direction.
The fluid field is discretized by 400 first-order body and 2,125 wake panels, adding up to

2,525 panels in total, and is solved using the in-house BEM code panMARE [12]. It suffices
to discretize only a single blade of the rotor and to apply periodic boundary conditions to
account for the other two blades of the entire rotor. For the discretization of the structure,
we use a beam model incorporating the varying blade cross section from Figure 6.60 and
consisting of 9 linear two-noded BEAM188 elements, based on Timoshenko beam theory,
with three translational and three rotational degrees of freedom per node. In order to take
the rotation of the blade about the x-axis into account, the displacement and rotation at
the blade root are prescribed according to

dy = −R sin(ω(t+ ∆t))
dz = −R(1− cos(ω(t+ ∆t)))
ϕ = ωt .

(6.15)

Regarding the temporal discretization, the Euler backward scheme is employed for the
fluid problem, whereas the Newmark scheme with β = 0.2525 and γ = 0.5050 is chosen for
the structure. A time step size ∆t ≈ 2.45 × 10−2 s corresponding to an angle increment
∆ϕ = 2◦ is applied for both subproblems. It is kept constant throughout the simulation,
which covers three full rotations of the rotor.
Figure 6.61 gives an impression of the deflected wind turbine rotor in steady operation.

Figure 6.62 illustrates the displacement dy at the blade tip at a radius r∗ = L.
Our numerical investigations reveal that the blade deflection is quite significant. Conse-

quently, it leads to a notable change in the surrounding airflow, which perfectly underpins
the necessity to conduct a strongly-coupled FSI analysis for this application.

211

6 Benchmark Problems

0
1
2
3
4
5
6
7

0 5 10 15 20 25

Bl
ad

e
tip

di
sp
la
ce
m
en
t
d
x
/m

Time t/s

Figure 6.62: Displacement dy at the blade tip at r∗ = L.

x

ϕ = 0, ϑ = ϑ0, d = 0

ϕ = ϕ0, ϑ = ϑ0

Figure 6.63: Geometry and boundary conditions for the electro-thermo-mechanically coupled
rod.

6.16 Electro-Thermo-Mechanically Coupled Rod
So far, only the interaction of a structural and a fluid field has been considered. In order
to demonstrate that also other multifield problems can be conveniently solved using a
partitioned strategy, an electro-thermo-mechanically coupled problem is considered in this
example, involving the interaction of three different fields.
Adopting the problem setting from [45, p. 1088–1090, 96, p. 1784–1786], a rod of length

L = 0.2 m and cross section A = 2.5×10−5 m2 as depicted in Figure 6.63 is considered. For
the material parameters of the rod, we choose the values listed in Table 6.8. Geometrically

Table 6.8: Material parameters for the electro-thermo-mechanically coupled rod.

Material parameter Value
Electrical conductivity λϕ(ϑ = ϑ0)/A/Vm 1.2× 104

Specific heat capacity cp/J/kgK 460
Thermal conductivity λϑ/N/sK 45
Thermal expansion coefficient αϑ/1/K 1.2× 10−5

Young’s modulus E/N/m2 2.07× 1011

Poisson’s ratio ν 0.3

212

6.16 Electro-Thermo-Mechanically Coupled Rod

linear deflection and a linear-elastic material behavior are assumed. Hence, the governing
set of partial differential equations reads

(λϕϕ′(x, t))′ = 0 , (6.16)
ρcpϑ̇(x, t) = (λϑϑ′(x, t))′ +Rϕ , (6.17)

EA (d′(x, t)− αϑϑ(x, t))′ = 0 . (6.18)

In this particular case, we neglect the thermoelastic coupling effect, meaning that the heat
or cooling effects due to the elastic strain rate are considered to be significantly smaller
than the Joule heating term Rϕ. The boundary conditions are set to

ϕ = 0, ϑ = ϑ0, d = 0 at x = 0 ,
ϕ = ϕ0, ϑ = ϑ0 at x = L .

(6.19)

For the reference electric potential and the reference temperature, we choose ϕ0 = 5 V and
ϑ0 = 293.15 K, respectively. Following [95], the boundary value problem (6.16)-(6.19) can
be solved analytically. For the electric potential, we obtain the time-independent linear
function

ϕ(x, t) = ϕ(x) = ϕ0x/L . (6.20)

Hence, the Joule heating term takes the constant value

Rϕ = λϕ

(
∂ϕ

∂x

)2

= λϕϕ
2
0/L

2 . (6.21)

Due to the fact that the source term is constant, we find that the infinite sum

ϑ(x, t) = ϑ0 + 4Rϕ

πρcp

∞∑
n=1

sin nπ
L
x

β2n

(
1− exp

(
−βt2

))
, n = 1, 3, 5, 7, . . . , (6.22)

solves Equation (6.17). Herein, β = nπγ/L and γ =
√
λϑ/(ρcp). Inserting the temperature

distribution (6.22) into (6.18) and integrating along the x-coordinate leads us to

d(x, t) = 4αϑLRϕ

π2ρcp

∞∑
n=1

1− cos nπ
L
x

β2n2

(
1− exp

(
−β2t

))
(6.23)

as the solution for the mechanical field.
Having derived the analytical reference solution, let us apply a partitioned solution

approach to the problem, treat the electric, thermal, and mechanical field separately – and,
within a time increment, exchange the relevant field quantities between the fields. All fields
are discretized by 10 linear finite elements and solved using the commercial FEM software
ANSYS. We use bilinear uniaxial LINK68 elements to discretize the electric field, while
we employ bilinear uniaxial LINK33 elements for the thermal field and bilinear uniaxial
LINK180 elements for the structural problem. In each time increment, we first solve the
electric field and transfer the resulting internal heat generation Rϕ to the thermal field,
where it is applied as a source term. Subsequently, the thermal field is solved to obtain
the temperature ϑ, which is then passed over to the mechanical field. Here, the increasing
temperature leads to a thermal expansion of the structure. A linear interpolation scheme

213

6 Benchmark Problems

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 5 10 15 20 25 30T
ip

di
sp
la
ce
m
en
t
d
/1

0−
3

m

Time t/102 s

Analytical sol.
Numerical sol.

0
1
2
3
4
5
6
7
8
9

0 5 10 15 20 25 30

M
id

te
m
pe

ra
tu
re

in
cr
ea
se

∆
ϑ
/1

02 K

Time t/102 s

Analytical sol.
Numerical sol.

Figure 6.64: Displacement d at the end and temperature increase ∆ϑ in the middle for the
electro-thermo-mechanically coupled rod.

z

y

x

Silver

Steel

L = 2 m
W = 0.1 m

H = 0.01 m

Figure 6.65: Geometry of the bimetallic beam.

is applied to ensure an accurate data transfer from one field to another. For the time
step size, we choose ∆t = 50 s. The trapezoidal rule is used for the time integration of
the electric and thermal field, while the undamped Newmark scheme with the parameters
β = 0.25 and γ = 0.5 is applied for the structural problem. Since the present example
represents a weakly-coupled problem, it suffices to follow an explicit coupling procedure and
to exchange the field quantities only once per time increment. Consequently, the implicit
iteration within a time increment is omitted and a convergence acceleration scheme does
not need to be applied. To allow for a comparison of the numerical results to the analytical
solution, we evaluate the displacement d at the end and the temperature increase ∆ϑ in
the middle of the rod, as depicted in Figure 6.64. Evidently, the numerical solutions are
in excellent agreement with the analytical reference results.

6.17 Bimetallic Beam
Due to the fact that only small deflections and weakly-coupled fields have been considered
in the previous example, the application of an implicit solution procedure was not required.
Intending to increase the difficulty of the problem, let us consider a bimetallic beam con-
sisting of two different layer materials – steel and silver – as depicted in Figure 6.65. The
problem is adopted from [174, pp. 343–345, 45, pp. 1090–1094, 44, pp. 145–151], where
the solution was likewise accomplished using a partitioned solution strategy. The beam
exhibits a length L = 2 m, a width W = 0.1 m, and a height H = 0.01 m. Its material

214

6.17 Bimetallic Beam

Table 6.9: Material parameters for steel and silver.

Material parameter Steel Silver
Density ρ/kg/m3 7.8× 103 1.05× 104

Bulk modulus K/N/m2 1.642× 1011 1.061× 1011

Shear modulus G/N/m2 8.02× 1010 3.03× 1010

Heat capacity cp/J/kgK 4.6× 102 2.3× 102

Thermal conductivity λϑ/N/sK 0.45× 102 4.30× 102

Thermal expansion coefficient αϑ/1/K 1.55× 10−5 1.95× 10−5

Emissivity ε 0.8 0.1
Electrical conductivity λϕ(ϑ = ϑ0)/A/Vm 1.2× 107 6.2× 107

Linear temperature coefficient αϕ/1/K 5.6× 10−3 3.8× 10−3

Figure 6.66: Computational mesh used for the discretization of the electric, thermal, and
structural field of the bimetallic beam.

parameters are listed in Table 6.9. In order to introduce a feedback effect of the thermal
field on the electric field, a temperature-dependent electrical conductivity

λϕ(ϑ) = λϕ,0
1 + αϕ(ϑ− ϑ0) (6.24)

is assumed, where λϕ,0 = λϕ(ϑ = ϑ0) denotes the electrical conductivity at the reference
temperature ϑ0 and αϕ represents the linear temperature coefficient. Essential boundary
conditions for the electric and the structural field are chosen as follows:

ϕ = 0 , ux = uy = uz = 0 at z = 0 ,
ϕ = ϕmax (1− exp (−ϕ̇0/ϕmaxt)) at z = L ,

(6.25)

where ϕmax = 3 V and ϕ0 = 2.25 V. On the free surfaces of the beam, the radiative heat
transfer is approximated according to q̄ = q̄r = εσsb(ϑ4 − ϑ4

∞), where ϑ∞ = ϑ0 = 273.15 K
represents the reference temperature. At the clamped end of the beam, an adiabatic
boundary condition q = 0 is assumed.
All fields are discretized by an FE mesh consisting of 5 × 2 × 60 triquadratic solid ele-

ments strongly refined towards the clamped end of the beam, as illustrated in Figure 6.66,
to accurately resolve the expected strong curvature in that region and solved using the
commercial FEM software ANSYS [3]. For the electric field, 20-noded SOLID231 elements
are used, 20-noded SOLID90 elements are chosen for the thermal field, and 20-noded

215

6 Benchmark Problems

Electric
potential ϕ/V

0 0.75 1.5

(a)

365.3 367.9 370.4

Temperature ϑ/K

(b)

Displacement
magnitude ‖d‖2/m

0 0.22 0.44

(c)

Figure 6.67: (a) Electric potential ϕ, (b) temperature ϑ and (c) displacement magnitude ‖d‖2
at time t = T .

SOLID186 elements are employed for the structural problem. The electric and thermal
field are solved using the trapezoidal rule, while the Newmark method with the parameters
β = 0.25 and γ = 0.5 is applied for the structural field. In all cases, an identical time step
size ∆t = 0.5 s is used. It is kept constant throughout the simulation over a time interval
T = 100 s.
In the partitioned solution strategy, we first solve the electric field to obtain the electric

potential, which leads to a Joule heating to be applied to the thermal problem. Due to the
internal dissipative heating, the temperature increases and is passed over to the structural
problem, where the thermal expansion causes a displacement, which is finally passed back
to the electric field. The procedure continues until we reach an absolute convergence
criterion ‖rkj+1‖2 < εabs = 10−3 or a relative criterion ‖rkj+1‖2/‖r0

j+1‖2 < εrel = 10−2.
Figure 6.67 illustrates the electric potential ϕ, temperature ϑ, and displacement magni-

tude ‖d‖2 at time t = T . Figure 6.68 shows the evolution of the tip temperature increase
∆ϑ and displacement dy. Evidently, the numerical solutions obtained in this work are in
good agreement with the results reported by Erbts [44, p. 149].

216

6.17 Bimetallic Beam

Erbts [44, p. 149]
Present work – ANSYS, monolithic

Present work – ANSYS/ANSYS/ANSYS

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

Te
m
pe

ra
tu
re

in
cr
ea
se

∆
ϑ
/K

Time t/102 s

−0.45
−0.4
−0.35
−0.3
−0.25
−0.2
−0.15
−0.1
−0.05

0

0 20 40 60 80 100

D
isp

la
ce
m
en
t
d
y
/m

Time t/102 s
Figure 6.68: Temperature increase ∆ϑ and displacement dy of the tip of the bimetallic beam.

217

7 Advanced Applications
In this chapter, the partitioned solution approach is applied to more sophisticated prob-
lems. As the title of this work suggests, the problems are adopted from the maritime
industry, where a major part of applications are governed by FSI in fact. Here, the analy-
sis of the FSI of a floating offshore wind turbine (OWT) and the berthing maneuver of a
crew transfer vessel to an OWT are of particular interest. Substantiated by the results ob-
tained in these numerical studies, it is demonstrated that the partitioned solution approach
is suitable even for such complex kinds of strongly-coupled problems.

7.1 Floating Offshore Wind Turbine
In recent years, offshore wind energy has become an increasingly attractive alternative
to supply environmentally friendly, sustainable energy and replace conventional energy
sources. Many countries in the world have already identified the huge potential of wind
energy to achieve their ambitious climate targets and to contribute to decelerating global
warming by reducing carbon dioxide emissions. During the last decade, floating OWTs
have gained much interest as they overcome the limitation of conventional fixed-foundation
OWTs to coastal areas, where the water is shallow enough to ground the platforms. Float-
ing platforms, in contrast, may also be installed in higher water depths. Far away from the
shore, the wind blows more constantly – representing a more attractive source of energy.
Recent studies document that floating OWTs can achieve up to twice the amount of full
load hours as compared to land-based wind turbines [63, p. 6], and they can also reach
significantly higher energy harvesting rates than near-shore OWTs. In addition, floating
OWTs may be produced onshore before being installed offshore quite easily. These factors
render floating OWTs technically and economically attractive.
It is obvious that floating OWTs also come with great challenges from a technical point

of view. There are hydrodynamic forces that act on the platform permanently, inducing
a motion of the platform as well as of the tower structure and the turbine mounted on
top. Due to the significant interaction between waves and current, airflow, and the floating
structure, it is essential to treat the problem as a strongly-coupled FSI problem to assess the
performance of the OWT under different operating conditions and to obtain an accurate
estimate of the acting hydro- and aerodynamic forces in order to verify the structural
integrity and identify potentials for an optimization of the structural design.
In the following, we present an innovative concept for a floating OWT developed in the

scope of the project “Hydrodynamic and structural optimization of a floating platform
for offshore wind turbines” (HyStOH) [33], financed by the Federal Ministry of Economic
Affairs and Energy (BMWi) under grant number 03SX409C. As illustrated in Figure 7.1,
the downwind turbine is mounted on a symmetric floating platform equipped with four
floaters that provide the required hydrostatic lift. The platform is moored at the aft such
that the aerodynamic forces acting on the rotor and the lateral surfaces of the profiled tower

218

7.1 Floating Offshore Wind Turbine

Mooring

Seabed

Anchoring

Surface water level

Rotor

Tower

Platform

x

z
y

Wind

Towerhead

x̃
θ

Figure 7.1: Conceptual design of a weather-vaning floating OWT.

result in a self-adjustment of the wind turbine according to the current wind direction. In
order to reduce manufacturing costs, the design of the wind turbine is intentionally kept
simple. Thus, main components such as the platform and the tower can be produced on
shipyards quite inexpensively. A high ratio of generated power to manufacturing costs is
intended to boost the competitiveness of the proposed concept and help to open up new
resources of wind energy offshore.
For the numerical studies conducted in this work, a constant density ρa = 1.2 kg/m3

and kinematic viscosity νa = 1.48 × 10−5 m2/s are chosen for the air, which flows at a
rated speed va = 12.3 m/s in the direction of the global x-axis. For the sea water, a
density ρw = 1.026× 103 kg/m3 and a kinematic viscosity νw = 10−6 m2/s are assumed. Not
necessarily identical to the direction of the airflow, the current direction x̃ may enclose
a misalignment angle θ with the global x-axis. In what follows, two different sea states
will be considered. For the first sea state, we assume regular waves based on Airy wave
theory with an elevation ζ = 3 m and period T = 8 s corresponding to an angular frequency
ω = 2π/T ≈ 0.79 rad/s. In the second sea state, we choose a JONSWAP spectrum with
a significant wave height Hs = 3.44 m and peak period Tp = 8.96 s, corresponding to an
angular velocity ωp ≈ 0.70 rad/s. Proposed by Hasselmann et al. [64] as an enhancement to
the Pierson-Moskowitz spectrum developed by Pierson et al. [129], this spectrum is based
on the equation [103, p. 184–186]

S(ω) = αg2

ω5 exp
(
−5

4

(
ωp

ω

)4
)
γr (7.1)

219

7 Advanced Applications

x

y

W
p

=
55

m
Lp = 80 m

Section A-A

Wind

AA

z

xy

∆p = 13 m

H
t

=
79
.5

m

r r
=

70
m

Hp = 23.5 m

Figure 7.2: Geometry of the floating OWT. The dimensions of the floating platform are
detailed in Section A-A.

for the spectral density, where

α ≈ 5
16

H2
s ω

4
p

g2(1 + η) , g = 9.81 m/s2 , η ≈ (γ − 1)/6 ,

γ = 3.3 r = exp
(
−(ω − ωp)2

2σ2ω2
p

)
, σ =

0.07 if ω ≤ ωp

0.09 if ω > ωp
.

(7.2)

For the preliminary study conducted here, the misalignment angle is taken as θ = 0◦.
Figure 7.2 gives the geometry and main dimensions of the OWT. Symmetric with respect

to the x- and y-axis, the floating platform is equipped with four hexagonal floaters – at
the fore and aft, and at port and starboard – to supply the required hydrostatic lift and
floating stability. The floaters are connected by horizontal girders, which simultaneously
act as heave plates to dampen the motion induced by the hydrodynamic forces. The
overall length of the platform amounts to Lp = 80 m to compensate the high forces acting
downwind, which lead to high pitch moments about the y-axis. With a width ofWp = 55 m,
the platform is still able to pass the locks on the way to the final installation site. The
floaters have a total height Hp = 23.5 m, while the horizontal girders exhibit a height
hp = 3 m. Internally, longitudinal and transverse bulkheads partition the platform hull
into several compartments to reinforce the structure and carry the ballast water. To
equilibrate the full construction under load-free and calm-water conditions, the floater at
the aft is flooded with a larger amount of water than the ones at the sides and at the fore.
In ballasted conditions, the draft of the platform amounts to ∆p = 13 m. The platform

220

7.1 Floating Offshore Wind Turbine

0
1
2
3
4
5
6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
G
en
er
at
or

m
om

en
t
M
/1

06
N

m

Rotor frequency f/Hz

Figure 7.3: Generator moment M versus rotor frequency f .

mass amounts to mp = 1.81 × 106 kg, and the moments of inertia about the center of
gravity (COG) at Cp(0, 0,−3.65) m are Θp,x = 6.03 × 108 kg m2, Θp,y = 9.91 × 108 kg m2,
and Θp,z = 1.39×109 kg m2. For the ballast water, a massmb = 5.30×106 kg and moments
of inertia Θb,x = 1.36 × 109 kg m2, Θb,y = 2.51 × 109 kg m2, and Θb,z = 3.82 × 109 kg m2

about the COG at Cb(−3.16, 0,−10.1) m are assumed.
Attached to the aft of the platform, the mooring consists of nm = 6 radially symmetric

lines. All mooring properties used in this study are taken from [138, p. 26]. Each line has
a diameter Dm = 7.66 × 10−2 m and a specific mass m̄m = 113.35 kg/m. The material is
assumed to be linear elastic with a Young’s modulus Em = 1.64× 1011 N/m2 and Poisson’s
ratio νm = 0.3. A mass-proportional damping factor am = 0.02 reflects the damping
properties of the mooring system. Each with a length Lm = 200 m, the mooring lines are
anchored on the seabed at a water depth Hw = 50 m in a radius rm = 192.62 m around
the platform attachment point. The overall mooring mass amounts to mm = m̄mnmLm ≈
1.30 × 105 kg. The hydrostatic lift is accounted for by a linearly varying fluid pressure
p(z) = −ρwgz and an added mass coefficient ζ = 1 includes the effect of increased inertia
of the submerged structure.
The tower exhibits a NACA0035 cross section with chord length L(1)

t = 12 m narrowed
down to L(2)

t = 8 m towards the towerhead. The tower acts similar to an airfoil, and the
large lateral surfaces assist in turning the OWT towards the wind direction. It has a mass
mt = 3.07 × 105 kg and the moments of inertia about the COG at Ct(24.6, 0, 39.8) m are
Θt,x = 1.47× 108 kg m2, Θt,y = 1.50× 108 kg m2, and Θt,z = 6.48× 107 kg m2.
The towerhead has a massmh = 2.22×105 kg and is located at a height Hh = 90 m above

the design water line. The COG is located at Ch(38.82, 0, 90) m, and the moments of inertia
in the body coordinate system amount to Θh,x = 1.01×109 kg m2, Θh,y = 1.19×109 kg m2,
and Θh,z = 1.78× 108 kg m2.
The rotor features two blades with a cone angle βr = 9◦ and zero tilt angle. It has a radius

rr = 70 m and turns in clockwise direction as seen from the direction of the airflow. At
t = 0 s, the nominal rotor frequency is f = 0.23 1/s, corresponding to an angular frequency
ω = 2πf ≈ 1.42 rad/s. At rated conditions, the generator delivers a nominal moment
M = 4.21× 106 Nm and a power P = 6× 106 W. As graphed in Figure 7.3, the generator
moment M varies with the rotor frequency f and acts in counter-clockwise direction as
seen from the direction of the airflow. The rotor has a mass mr = 1.18 × 105 kg, and
the moments of inertia about the COG at Cr(42.16, 0, 90) m are Θr,x = 4.11 × 107 kg m2,
Θr,y = 1.03× 106 kg m2, and Θr,z = 4.21× 107 kg m2.

221

7 Advanced Applications

Table 7.1: Mass properties of the individual components of the floating OWT.

Component COG/m Mass m/kg Principal moments of inertia/kg m2

x y z Θx Θy Θz

Platform 0 0 −3.65 1.81× 106 6.03× 108 9.91× 108 1.39× 109

Ballast water −3.16 0 −10.1 5.30× 106 1.36× 109 2.51× 109 3.82× 109

Tower 24.6 0 39.8 3.07× 105 1.47× 108 1.50× 108 6.48× 107

Towerhead 38.82 0 90 2.22× 105 1.01× 109 1.19× 109 1.78× 108

Rotor 42.16 0 90 1.18× 105 4.11× 107 1.03× 106 4.21× 107

(3) Structural motion(1) Water flow
around platform

(2) Airflow around
tower and rotor

Figure 7.4: Partitioning of the coupled FSI problem into separate subproblems.

Table 7.1 once again summarizes the mass properties of the individual components of
the floating OWT.
For the numerical analysis of the FSI of the floating OWT, we follow a partitioned

solution approach and split the coupled problem into three separate subproblems, as il-
lustrated in Figure 7.4. In subproblem (1), we compute the flow field around the floating
platform. In order to save computational cost, we again resort to the assumption of po-
tential flow and solve this fluid problem using the BEM implemented in panMARE [12].
Due to the use of the BEM, only the surface of the platform needs to be discretized.
Here, a surface mesh consisting of 1,400 first-order panels is employed. Since the motion
behavior of the platform is dominated by the hydrodynamic forces rather than the aero-
dynamic forces acting above the water line, the influence of the airflow on the platform is
neglected. As a second fluid problem, the airflow around the tower and the rotor needs
to be computed. A potential flow is likewise assumed for this second flow problem. For
its numerical treatment, we choose the boundary element code panMARE [12] together
with a surface mesh comprising 3,960 body and 4,900 wake panels. In the third and last
subproblem, we use the commercial software package ANSYS [3] to compute the motion

222

7.1 Floating Offshore Wind Turbine

response of the structure to the acting hydro- and aerodynamic forces. In the preliminary
study conducted in this work, we primarily focus on the motion behavior of the entire
OWT and, hence, assume the floating platform, the tower, and the rotor to be rigid. Since
the elasticity of the mooring can be expected to have a significant influence on the motion
of the OWT, this part is modeled as elastic. Other components can be modeled as elastic
as well, if their deformation is considered to have a notable impact on the flow fields or if
their internal stress state is of interest. Based on the assumptions above, the total mass
mc = mp + mb + mt + mh = 7.63 × 106 kg of the platform, the ballast water, the tower,
and the towerhead can be concentrated in a common COG at Cc(0, 0,−3.65) m. By using
an MPC184 joint element, the rotor is constrained to rotate about the local x̂r-axis of the
rotor coordinate system initially located at Cr(42.16, 0, 90) m with all its axes parallel to
the global coordinate system. The rotor mass is represented by a MASS21 element with
rotary inertia and concentrated at the origin of the local rotor coordinate system. Using
an MPC184 beam element, the rotor coordinate system is connected to the common COG
Cc of the platform, ballast water, tower, and towerhead. Hence, the platform, ballast wa-
ter, tower, towerhead, and rotor represent a multibody system. In order to compute the
forces and moments acting on the aforementioned parts of the floating OWT, a surface
discretization coinciding with the panel discretizations for the two fluid problems is intro-
duced to integrate the traction from the fluid problems. It is emphasized that the surface
discretization in the structural solver does not introduce any additional degrees of freedom,
but serves for the sole purpose of integration only. For the discretization of each of the
mooring lines, we use 14 two-noded geometrically nonlinear BEAM188 elements based on
Timoshenko beam theory, with three translational and three rotational degrees of freedom
per node. The translational degrees of freedom of the mooring lines at the anchoring point
are completely fixed, while the mooring lines are constrained to follow the motion of the
multibody system at the point of attachment to the floating platform.
A time period T = 150 s is simulated, split into comparably large, equally-sized time

increments ∆t = 0.1 s. For both fluid subproblems, the backward Euler scheme is chosen to
march in time, whereas the slightly damped Newmark scheme with parameters β = 0.2525
and γ = 0.5050 is selected for the structural subproblem. In the coupled solution procedure,
the water and the airflow are solved first and the computed traction at the water/platform,
air/tower, and air/rotor interface is passed over to the structural solver. By integrating the
traction over the discretized surface of the platform, tower, and rotor, and by summing
the resulting point forces and associated moments around the corresponding COGs, we
obtain a total force and moment, which enter the rigid body equations. After solving
for the rigid body displacement with regard to the applied constraints, the displacement
at the fluid-structure interfaces is passed over to the fluid solvers. This procedure is
continued until either the absolute convergence criterion ‖rkj+1‖2 < εabs = 10−2 or the
relative criterion ‖rkj+1‖2/‖r0

j+1‖2 < εrel = 10−6 is met. As usual, we apply a second-
order polynomial predictor and the quasi-Newton least squares method to stabilize and
accelerate the solution procedure.
For the regular waves, the partitioned solution procedure requires 6.57 iterations on

average to reach the convergence criterion. Figure 7.5 depicts snapshots of the simulation
results for the regular sea state at different instants of time t. Figure 7.6 graphs the
motion of the common COG of platform, ballast water, tower, and towerhead, as well as
the translational motion and acceleration of the towerhead versus time.
In case of the JONSWAP spectrum, the solution is acquired after 2.57 iterations on

223

7 Advanced Applications

Wave elevation ζ/m

-1.5 1.50

Displacement magnitude ‖d‖2/m

0 4.3 8.7

(a) t = 0 s (b) t = 50 s

(c) t = 100 s (d) t = 150 s

Figure 7.5: Floating OWT in regular waves of height Hs = 3 m and period T = 8 s at different
instants of time t.

224

7.1 Floating Offshore Wind Turbine

−1
−0.5

0
0.5

1
1.5

2
2.5

0 50 100 150

Su
rg
e
d
x
,s

wa
y
d
y
,

he
av
e
d
z
/m

Time t/s

Surge dx Sway dy Heave dz

(a) Surge dx, sway dy, and heave dz of the com-
mon COG Cc of platform, ballast water, tower,
and towerhead

−1
0
1
2
3
4
5
6

0 50 100 150

Ya
w
ψ
,p

itc
h
θ,

ro
ll
ϕ
/◦

Time t/s

Yaw ψ Pitch θ Roll ϕ

(b) Yaw ψ, pitch θ, and roll ϕ of the common
COG Cc of platform, ballast water, tower, and
towerhead

−4
−2

0
2
4
6
8

10

0 50 100 150

D
isp

la
ce
m
en
t

d
x
,d

y
,d

z
/m

Time t/s

Displ. dx Displ. dy Displ. dz

(c) Displacement dx, dy, and dz of the towerhead

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

0 50 100 150

A
cc
el
er
at
io
n

a
x
,a

y
,a

z
/m
/s

2

Time t/s

Acc. ax Acc. ay Acc. az

(d) Acceleration ax, ay, and az of the towerhead

Figure 7.6: Motion behavior of the floating wind turbine in regular waves of height H = 3 m
and period T = 8 s over time t.

225

7 Advanced Applications

Wave elevation ζ/m

-3.19 3.180

Displacement magnitude ‖d‖2/m

0 4.85 9.70

(a) t = 0 s (b) t = 50 s

(c) t = 100 s (d) t = 150 s

Figure 7.7: Floating OWT in JONSWAP spectrum of significant wave height Hs = 3.44 m
and peak period T = 8.96 s at different instants of time t.

average. Figure 7.7 shows several snapshots of the numerical results at different instants of
time. The towerhead displacement and acceleration for this case are given in Figure 7.8.
In both considered sea states, the platform motion and the towerhead displacement and

acceleration stay within moderate bounds, which is why they can be expected not to have
much influence on the power generation of the floating OWT. Yet, it is necessary to
carry out further studies regarding the self-adjustment capability in case of a change of
the wind direction. In addition, a detailed analysis of the internal stresses, especially in
critical regions such as the tower or at the tower/platform connection is required to assess
the structural integrity of the floating OWT also under extreme loading conditions, which
have not been considered yet. For sophisticated technical applications such as the studied
floating OWT, an experimental validation of the numerical results is indispensable and,
thus, strongly recommended as a future research task.

7.2 Berthing Maneuver of Crew Transfer Vessel
Regular maintenance and, if necessary, occasional repair are one of the key factors for
a safe and reliable operation of OWTs. Due to their comparably low operational cost
and their ability to carry bulky technical equipment, crew transfer vessels are still the
preferred means of transportation to bring the servicing staff, tools, and spare parts from
the shore to the OWT. In order to ensure that the service personnel can safely disembark
from the vessel, it is essential to limit the relative motion between the ship and the boat

226

7.2 Berthing Maneuver of Crew Transfer Vessel

−4
−3
−2
−1

0
1
2
3
4

0 50 100 150

Su
rg
e
d
x
,s

wa
y
d
y
,

he
av
e
d
z
/m

Time t/s

Surge dx Sway dy Heave dz

(a) Surge dx, sway dy, and heave dz of the com-
mon COG Cc of platform, ballast water, tower,
and towerhead

−8
−6
−4
−2

0
2
4
6

0 50 100 150

Ya
w
ψ
,p

itc
h
θ,

ro
ll
ϕ
/◦

Time t/s

Yaw ψ Pitch θ Roll ϕ

(b) Yaw ψ, pitch θ, and roll ϕ of the common
COG Cc of platform, ballast water, tower, and
towerhead

−12
−10
−8
−6
−4
−2

0
2
4
6
8

10

0 50 100 150

D
isp

la
ce
m
en
t

d
x
,d

y
,d

z
/m

Time t/s

Displ. dx Displ. dy Displ. dz

(c) Displacement dx, dy, and dz of the towerhead

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

0 50 100 150

A
cc
el
er
at
io
n

a
x
,a

y
,a

z
/m
/s

2

Time t/s

Acc. ax Acc. ay Acc. az

(d) Acceleration ax, ay, and az of the towerhead

Figure 7.8: Motion behavior of the floating wind turbine in JONSWAP spectrum of significant
wave height Hs = 3.44 m and peak period Tp = 8.96 s over time t.

227

7 Advanced Applications

Wave
direction

Cylindrical offshore structure

Deformable fender Service vessel

Contact area/
boat landing

z
xy

Figure 7.9: Berthing maneuver of a crew transfer vessel to an offshore structure.

landing. For this purpose, the service vessel is equipped with a fender at its bow, which
is pressed towards the boat landing to establish frictional contact. The resulting vertical
friction force counteracts the hydrodynamic forces acting on the ship, and it holds the bow
in position such that the technicians can safely pass over to the OWT. Obviously, the
landing maneuver represents a strongly-coupled FSI problem, governed by the ship motion
at sea and by the presence of contact between the fender and the offshore structure.
Following [97], where the problem was first presented, and building on the partitioned
solution approach, this coupled process will be analyzed numerically in the following. It is
believed that the findings from the simulation can help to identify the limiting conditions
under which the berthing operation can still be carried out safely – and to generate a
valuable data basis for the development of future transfer concepts that will help to increase
the safety of the service personnel, to improve the accessibility of the offshore structure,
and, last but not least, to reduce operational cost.
First, let us discuss the problem setting as shown in Figure 7.9. During the berthing

operation, an elastic fender that is attached to the bow of the vessel is pushed towards
the boat landing in order to create a friction force acting in vertical direction, holding the
bow at rest so that the servicing staff can safely disembark from the ship to the offshore
structure.
For the numerical analysis of the problem, the small deformations of the ship hull are

neglected, and the service vessel is treated as rigid so as to save computational cost.
Apparently, due to the mutual interaction of the rigid body and the surrounding flow field,
the ship motion in the seaway represents a strongly-coupled problem. Apart from the vessel
motion, the influence of the offshore foundation is taken into account for the computation
of the flow field as well. In this case, the problem is a weakly-coupled one: the structure
affects the wave field, but the deformations caused by the hydrodynamic forces acting on
the structure are negligible. Last but not least, we have to account for the contact between
the vessel’s fender and the boat landing. If the acting forces exceed the limiting frictional
resistance of the contact pairing, the contact partners may also slip or separate. During
contact, the fender, which is usually manufactured from a rubber- or foam-like material,

228

7.2 Berthing Maneuver of Crew Transfer Vessel

−0.4

−0.2

0

0.2

0.4

−0.5 0 0.5 1

P1

P2Wave
direction

y
/m

x/m

Figure 7.10: Cylinder in regular waves and position of the evaluation points P1(1.21, 0.33)
and P2(0.34,−0.096).

undergoes large deformations, and there are geometrical and material nonlinearities.
In the following, the subproblems constituting the entire berthing maneuver are first an-

alyzed individually before integrating them in a partitioned solution procedure to compute
the coupled problem.

7.2.1 Cylinder in Waves
Due to the fact that most of the OWTs currently in operation are installed on a monopile,
this is the foundation type chosen for this study. In a first step, the influence of a cylindrical
structure on regular waves of different frequency is investigated numerically. For the sake
of comparison to experimental measurements, the study is conducted at model scale. As
depicted in Figure 7.10, we consider a cylinder of diameter D = 0.5 m founded in a water
depthH = 2.3 m. The wave height is chosen as h = 0.1 m, and the wave angular frequencies
are ω1 = 3 rad/s and ω2 = 5 rad/s, respectively. Based on the dispersion relation

ω =
√
gk tanh(kH) , (7.3)

the wave numbers are computed as k1 ≈ 0.94 1/m and k2 ≈ 2.55 1/m. From the equation
λ = 2π/k, the wave lengths are calculated as λ1 ≈ 6.67 m and λ2 ≈ 2.47 m. The waves
travel in positive x-direction from left to right.
In order to analyze the wave field around the cylinder numerically, the software package

panMARE [12] is employed. Since the wave potential superposed by the diffraction poten-
tial of the cylinder is available in analytical form, the wave field around the cylinder can
be directly evaluated at different points in space and time. Table 7.2 and 7.3 compare the
wave field at different phase angles ϕ ∈ {0, π/2, π, 3π/2} obtained with the BEM, based
on the results of a laminar RANS calculation and on experimental measurements. For
the RANS solution, we use the FVM, which is available in the open source CFD software
package OpenFOAM [123]. Figure 7.11 graphs the wave elevation ζ versus time t for
ω1, evaluated at point P1, and for the angular frequency ω2, evaluated at point P2. Evi-
dently, we observe a fair agreement between the comparably simple (yet effective) BEM,
the significantly more sophisticated and hence more expensive RANS calculation, and the
experimental data.

229

7 Advanced Applications

Table 7.2: Comparison of the wave elevation ζ in the vicinity of the cylinder for an angular
frequency ω1 = 3 rad/s and different phase angles ϕ.

BEM RANS Experiment

ϕ
=

0

0

0.6

1.2

ϕ
=
π
/2

0

0.6

1.2

ϕ
=
π

0

0.6

1.2

ϕ
=

3π
/2

0 0.6 1.2
0

0.6

1.2

0 0.6 1.2 0 0.6 1.2

−0.055 0 0.055
Wave elevation ζ/m

230

7.2 Berthing Maneuver of Crew Transfer Vessel

Table 7.3: Comparison of the wave elevation ζ in the vicinity of the cylinder for an angular
frequency ω2 = 5 rad/s and different phase angles ϕ.

BEM RANS Experiment

ϕ
=

0

0

0.6

1.2

ϕ
=
π
/2

0

0.6

1.2

ϕ
=
π

0

0.6

1.2

ϕ
=

3π
/2

0 0.6 1.2
0

0.6

1.2

0 0.6 1.2 0 0.6 1.2

−0.055 0 0.055
Wave elevation ζ/m

231

7 Advanced Applications

−0.06
−0.04
−0.02

0
0.02
0.04
0.06

−0.06
−0.04
−0.02

0
0.02
0.04
0.06

0 5 10 15 20 25 30 35

W
av
e
el
ev
at
io
n

ζ
/m

BEM RANS Experiment

P1, ω = 3 rad/s

W
av
e
el
ev
at
io
n

ζ
/m

Time t/s

P1, ω = 3 rad/sP2, ω = 5 rad/s

Figure 7.11: Comparison of the wave elevation ζ for an angular frequency ω1 = 3 rad/s,
evaluated at point P1 (upper graph), and for an angular frequency ω2 = 5 rad/s, evaluated at
point P2 (lower graph).

7.2.2 Crew Transfer Vessel in Waves
In the next step, we focus on the numerical analysis of the hydrodynamic behavior of the
catamaran vessel in regular waves. As already mentioned in the introductory paragraph,
the comparably small deflections of the ship hull are neglected, and the vessel is considered
as a rigid body. Also here, the analysis is conducted at model scale to allow for a comparison
to experimental measurements. The dimensions of the catamaran are given in Figure 7.12.
It has a mass m = 79.2 kg and the moments of inertia with respect to the COG are
Θx̂ = 8.82 kg m2, Θŷ = 31.49 kg m2, and Θẑ = 36.66 kg m2. Degrees of freedom other than
heave and pitch are constrained to zero to resemble the setting in the experiments.
For the numerical treatment of the problem, we follow a partitioned solution approach.

ẑ

x̂

0.1 0.0
5

1.196 0.995

0.275

0.1
0.095
0.155 COG

1.145

0.12

Figure 7.12: Dimensions of the catamaran service vessel. All dimensions are given in meter.

232

7.2 Berthing Maneuver of Crew Transfer Vessel

The fluid and the rigid body problem are computed as separate subproblems, and the
relevant coupling quantities – that is, the rigid body displacement and the fluid traction
at the fluid-structure interface – are exchanged iteratively within a time increment until
both subfields are equilibrated with each other to sufficient accuracy. For the fluid field,
again the BEM and the software panMARE [12] are employed. In this case, however, a
surface discretization is required, as a closed-form expression for the diffraction potential
of the moving catamaran cannot be derived. Therefore, the surface of the catamaran is
discretized by a boundary element mesh consisting of 1,508 first-order panels. Regarding
the temporal discretization, the explicit Euler scheme with a time step size ∆t = 10−2π/ω,
corresponding to 200 time steps per wave period, is chosen for both the fluid problem and
the rigid body.
Figure 7.13 graphs the response amplitude operator (RAO) of the catamaran. Heave and

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6 8 10 12 14

D
im

en
sio

nl
es
s

he
av
e
ζ s
/ζ

Dimensionless wave length λ/L

BEM Experiment

0

0.3

0.6

0.9

1.2

0 2 4 6 8 10 12 14

D
im

en
sio

nl
es
s

pi
tc
h
θ/

(k
ζ
)

Dimensionless wave length λ/L

Figure 7.13: Comparison of heave and pitch motion for different wave lengths λ.

pitch motion are underestimated for λ/L < 2, whereas the motion is slightly overestimated
for larger wave lengths. This discrepancy can be attributed to the fact that the free surface
boundary condition is not included in the formulation. The difference in the pitch and
heave error is associated to the peculiarities of the numerical differencing scheme, where
differences between quantities towards the fore and the aft are evaluated, which tends
to cancel the pitch motion error, while the heave motion error accumulates. Yet, the
deviations are considered acceptable for the purpose of the current study.

7.2.3 Crew Transfer Vessel in Waves Including the Influence of
Monopile

Following the analysis of the motion of the catamaran vessel in regular waves and free water
conditions, the scope of the next study is the investigation of the influence of a cylindrical
offshore structure on the hydrodynamic behavior of the catamaran. As before, the analysis
is again carried out at model scale. For this purpose, the catamaran is placed in front of the
cylindrical structure of diameter D = 0.5 m, as already considered in Section 7.2.1, heading
in negative x-direction. This setting reflects a typical scenario under real-life operating
conditions. For two different angular frequencies ω1 = 3.509 rad/s and ω2 = 4.965 rad/s,
the motion of the catamaran is compared to the case without monopile. All spatial and
temporal discretization parameters are chosen as in the previous study.
Figure 7.14 and 7.15 depict the results, which confirm the expectation that the influence

of the cylindrical structure diminishes towards decreasing angular frequencies or increasing

233

7 Advanced Applications

−0.04

−0.02

0

0.02

0.04

0 2 4 6 8 10 12 14 16 18

H
ea
ve
ζ s

/
m

Time t / s

w/o monopile w monopile

−5

−2.5

0

2.5

5

0 2 4 6 8 10 12 14 16 18

Pi
tc
h
θ
/
◦

Time t / s

Figure 7.14: Heave and pitch motion for a wave frequency ω1 = 3.509 rad/s.

−0.004

−0.002

0

0.002

0 2 4 6 8 10 12 14

H
ea
ve
ζ s

/
m

Time t / s

w/o monopile w monopile

−5

−2.5

0

2.5

5

0 2 4 6 8 10 12 14

Pi
tc
h
θ
/
◦

Time t / s

Figure 7.15: Heave and pitch motion for a wave frequency ω2 = 4.965 rad/s.

wave lengths. For the smaller angular frequency ω1 corresponding to the larger wave length,
hardly any influence of the monopile structure on the catamaran motion can be spotted.

7.2.4 Contact Problem between Fender and Monopile
During the landing maneuver, the fender plays an essential role in generating the vertical
friction force, which is responsible for keeping the ship’s bow in position, allowing the
service personnel to disembark safely from the ship to the OWT. In the present work, we
consider two D-profile fenders with different wall thicknesses, consisting of rubber materials
of different stiffness. Figure 7.16 sketches the geometries of the fenders. Due to the higher
wall thickness and the stiffer material, the first fender exhibits a significantly higher stiffness
than the second one.
In order to capture the material behavior of the fenders, we choose either a Neo-Hooke

or Mooney-Rivlin material as introduced in Section 3.1.3. Several material samples are
subjected to uniaxial tension and compression tests to generate the required input for a
subsequent parameter identification carried out to determine the unknown coefficients in
these hyperelastic material models. For the stiff fender material, for instance, Figure 7.17
indicates that the hyperelastic material models are capable of resembling the material be-
havior of the rubber material over the whole strain range. Note that in this case, the
Neo-Hooke model and the Mooney-Rivlin model coincide, as the parameter identification
produces a parameter C01 = 0 for the Mooney-Rivlin model. Despite the fact that the

234

7.2 Berthing Maneuver of Crew Transfer Vessel

H
1

=
0.

02
5m

H
2

=
0.

05
m

H
=

0.
1m

W = 0.1 m

r1 = 0.025 m

r2 = 0.05 m

(a) H
1

=
0.

01
m

H
2

=
0.

08
m

H
=

0.
1m

W = 0.1 m

r1 = 0.04 m

r2 = 0.05 m

(b)

Figure 7.16: Geometry of the (a) hard and (b) soft fender.

−9× 107
−8× 107
−7× 107
−6× 107
−5× 107
−4× 107
−3× 107
−2× 107
−1× 107

0
1× 107

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1En
gi
ne
er
in
g
st
re
ss
σ

e/
N /

m
2

Engineering strain εe

Experiment
Neo-Hooke/Mooney-Rivlin model

Figure 7.17: Least squares fit of the Neo-Hooke model (3.53) and the Mooney-Rivlin model
(3.54) for uniaxial tension and compression tests for the stiff fender material.

235

7 Advanced Applications

x y

z

0 0.0304

Vertical displacement
magnitude ‖dz‖2/m

(a)

0.06590

Vertical displacement
magnitude ‖dz‖2/m

(b)

Figure 7.18: Deformed (a) hard and (b) soft fender under compression loading.

stress-strain relationship is captured very accurately for the present case, the parameters
obtained from the least squares fit to the uniaxial tests should be expected to change if
fully three-dimensional loading conditions are considered. In order to account for this
fact, the entire fenders are subjected to a quasi-static displacement-controlled compression
test. At the maximum compression level, the reaction force at the bottom of the fender is
measured and fed to an optimization procedure based on a three-dimensional FE model,
which takes the material parameters obtained from the uniaxial tests as initial values. The
effect of friction is included here as well. The applied friction coefficients µ = 1.05 for the
stiff and µ = 1.46 for the soft fender material are obtained from separate friction tests
conducted on individual material samples. It should be noted, however, that these coeffi-
cients may depend on velocity or temperature, for instance. In operating conditions, the
friction coefficient may also vary with the local properties of the contact surface, which is
often corroded or covered by maritime vegetation. Nevertheless, the coefficients of friction
are assumed to be constant due the lack of more detailed information. The stiff and soft
fender are discretized by 4,025 and 5,025 underintegrated trilinear hexahedral SOLID185
elements, available in ANSYS [3]. For capturing the contact, we use an augmented La-
grangian method for constrained minimization. In accordance with the experimental setup,
a quasi-static analysis is undertaken, and we apply a fixed displacement d̄z = 0.03 m (stiff
fender) or d̄z = 0.06 m (soft fender) at the bottom, ramped up linearly over 100 load
steps. Figure 7.18 illustrates the strongly deformed fenders subjected to the displacement-
controlled compression loading. Table 7.4 holds the parameters for the material models
obtained by means of the parameter identification procedure, which will also be used in
the following.
In view of the partitioned analysis of the entire berthing maneuver in the next section,

where the fluid and the structural problem are solved iteratively multiple times per time
increment, it seems reasonable to replace the sophisticated FE model by a reduced struc-
tural model, which takes only a fraction to compute. As sketched in Figure 7.19, the
simplified model consists of two nonlinear springs based on the Neo-Hooke or Mooney-
Rivlin material model, the parameters of which are listed in Table 7.5. Due to the fact
that the geometrical stiffness of the reduced structural model differs significantly from the
full FE model, the material parameters are of course completely different. With regard

236

7.2 Berthing Maneuver of Crew Transfer Vessel

Table 7.4: Material parameters for the FE fender model.

Fender Material model Material parameters

A Neo-Hooke C10 = 1.51× 106

Mooney-Rivlin C10 = 1.46× 106, C01 = 3.25× 104

B Neo-Hooke C10 = 2.20× 105

Mooney-Rivlin C10 = 2.01× 104, C01 = 1.87× 105

y

z

Figure 7.19: Reduced structural
fender model.

Table 7.5: Material parameters for reduced structural
fender model.

Fender Material model Material parameters

A
Neo-Hooke C10 = 4.04× 103

Mooney-Rivlin C10 = 3.88× 103,
C01 = 1.24× 102

B
Neo-Hooke C10 = 1.90× 102

Mooney-Rivlin C10 = 3.92× 101,
C01 = 2.02× 101

to the nonlinear displacement constraint originating from the presence of the contact, a
node-to-segment contact model is chosen.

7.2.5 Berthing Maneuver of Crew Transfer Vessel
Having analyzed all the subproblems arising in the berthing maneuver individually, we
next proceed to the analysis of the entire coupled problem. Following a partitioned solution
approach, the subproblem simulations are integrated into a three-field simulation, where,
within a time increment, the displacement from the rigid body is first applied to the elastic
fender, which solves for the reaction force at the attachment point to the ship’s bow. The
reaction force is then exerted on the rigid body, and a new position and orientation of
the rigid body are calculated. In another nested iteration, the rigid body displacement
is passed over the fluid solver, and the resulting traction is in turn again applied on the
rigid body. Once this embedded procedure is converged, another outer implicit iteration
is performed. The whole procedure is continued until all involved fields are equilibrated
with each other.
In the following, we consider two different sea states. In the first case, the catamaran

vessel already investigated in Section 7.2.2 and 7.2.3 is subjected to regular waves with
angular frequency ω1 = 4 rad/s and amplitude ζ1 = 0.03 m. The propulsion system is
represented by a single constant follower force F1 = 127 N applied at the stern of the ship.
Here, the stiff fender serves to establish the contact to the cylindrical offshore structure.
For the second case, we change the angular frequency to ω2 = 4.5 rad/s and choose a slightly

237

7 Advanced Applications

−180
−160
−140
−120
−100
−80
−60
−40

3 4 5 6 7 8 9 10

H
or
iz
on

ta
lf
en
de
r
fo
rc
e
F

h/
N

Time t/s

Experiment
Full model, Neo-Hooke

−80
−60
−40
−20

0
20
40
60
80

3 4 5 6 7 8 9 10
Ve

rt
ic
al

fe
nd

er
fo
rc
e
F

v/
N

Time t/s

Reduced model, Neo-Hooke
Reduced model, Mooney-Rivlin

Figure 7.20: Horizontal and vertical fender force Fh and Fv for an angular frequency ω1 =
4 rad/s, wave height ζ1 = 0.03 m, and thrust P1 = 127 N.

higher wave amplitude ζ2 = 0.04 m. The propulsion force is reduced to F2 = 61 N, and the
stiff fender is replaced by the soft fender.
Since the discretization schemes and spatial resolutions for the individual subproblems

have been found to perform well, identical settings are also applied in the analysis of the
coupled problem. For the fender involving the contact problem, we use the Newmark
scheme with the parameters β = 0.2525 and γ = 0.5050. In order to investigate the
capability of the reduced structural fender model resembling the behavior of the full con-
tinuum model and eventually the real fender, each of the simulations is carried out using
both fender models. For each of the subproblems, we apply an identical time step size
∆t = 10−2π/ω, corresponding to 200 time increments per wave period.
To begin with, let us discuss the results for the first scenario. Figure 7.20 graphs the

horizontal and vertical fender reaction force Fh and Fv over time t. As to be expected, all
fender models are able to recover the frequency of the force components measured in the
experiments. Notable deviations can, however, be observed regarding the force amplitude
and the variation of the force over time. Although the full fender model captures the
amplitude of the horizontal force component Fh quite accurately, it does not resemble
the particular dynamic behavior of this force component. In contrast, the full model
produces a higher vertical force Fv than measured in the experiments, but its curve shape
is a better match than that for the horizontal force component. In general, the results
produced by the full fender model based on the Neo-Hooke material model are in acceptable
agreement to the experimental measurements. Force frequency and amplitude, which
are certainly of most interest, match reasonably well. Regarding the reduced structural
model, it is interesting to note that the Neo-Hooke and the Mooney-Rivlin model yield
almost identical results. For the horizontal force component, a significant deviation in
amplitude to the experiments is undeniable. Yet, the vertical force component, although
still underestimated, exhibits a much better accordance already. Still, the results obtained
using the reduced structural model seem to indicate that a simplified model, possibly
enhanced by further spring or damper elements, is, in general, capable of resembling the

238

7.2 Berthing Maneuver of Crew Transfer Vessel

−140
−120
−100
−80
−60
−40
−20

0

3 4 5 6 7 8 9

H
or
iz
on

ta
lf
en
de
r
fo
rc
e
F

h/
N

Time t/s

Experiment
Full model, Neo-Hooke

−20
−10

0
10
20
30
40
50
60
70
80

3 4 5 6 7 8 9

Ve
rt
ic
al

fe
nd

er
fo
rc
e
F

v/
N

Time t/s

Reduced model, Neo-Hooke
Reduced model, Mooney-Rivlin

Figure 7.21: Horizontal and vertical fender force Fh and Fv for an angular frequency ω2 =
4.5 rad/s, wave height ζ2 = 0.04 m and thrust P2 = 61 N.

structural fender response.
Figure 7.21 graphs the horizontal and vertical reaction force Fh and Fv for the second

sea state. Apparently, the reaction forces obtained by means of the full fender model incor-
porating the Neo-Hooke material model are in very good agreement with the experimental
measurements. The reduced structural model based on the Neo-Hooke model again under-
estimates the horizontal force component, whereas the vertical force component is in good
accordance with the experiments. The horizontal reaction force produced by the reduced
structural model shows a deviating dynamic behavior as observed in the experiments, but
exhibits an almost identical amplitude. Similar to the other models, the vertical force
component is also recovered by this model.
Finally, Figure 7.22 depicts a snapshot of the deformed fenders in the different sea states

at a particular instant of time. Particularly large deformations can be observed especially
for the soft fender.

239

7 Advanced Applications

x

y
z

0 3.41e− 20 1.74e− 3

Displacement
magnitude ‖d‖2/m

Displacement
magnitude ‖d‖2/m

Figure 7.22: Deformed fenders during the berthing operation. The left figure shows the stiff
fender at time t = 6.3 s, whereas the right figure represents the soft fender at time t = 5.82 s.

240

8 Conclusions and Outlook
In the present thesis, the partitioned solution approach was successfully applied to solve
highly complex strongly-coupled multifield problems. In particular, it was demonstrated
that the proposed solution procedure is very well suited for the numerical treatment of
strongly-coupled FSI problems arising in the context of maritime applications. Major
advantages of the partitioned approach include the possibility to use different spatial and
temporal discretizations as well as different dedicated and existing solvers for each of the
subproblems, which renders the concept not only very flexible but also efficient.
Recapitulating the main contents of this work, we first reviewed the governing equations

of the fluid and the structural subproblem, as well as the common spatial and temporal
discretization schemes for their numerical treatment.
Following this, we presented a generic partitioned procedure for the solution of weakly-

and strongly-coupled multifield problems. Based upon the idea of dividing the entire com-
putational domain into several separate subdomains, a partitioned solution scheme allows
to use different numerical schemes for the discretization of space and time in each of the
subdomains. Moreover, it enables the reuse of specialized and efficient solvers that are
already available. Subsequently, the essential building blocks of the partitioned solution
procedure were discussed in detail. In order to generate a reasonable initial solution at the
beginning of a time increment, numerous predictor schemes were proposed. For the sake of
comparison, all predictor schemes were applied to a simple benchmark problem based on a
three-degree-of-freedom system. It was shown that predictors such as Taylor series-based
or adaptive predictors, which take the physics behind the problem under consideration into
account, have great potential to generate an initial solution close to the final converged
solution in that time increment. This can be expected to stabilize and accelerate the cou-
pled solution process. Regarding the interpolation of the relevant field quantities between
the possibly non-conforming subproblem discretizations, various mesh-independent and
mesh-based interpolation techniques were investigated. Further, the interpolation schemes
were thoroughly tested for several benchmark problems and compared to each other with
respect to accuracy and performance. It was demonstrated that mesh-based interpolation
schemes usually provide the highest interpolation accuracy – and that they also function
efficiently if appropriate search strategies are used to associate the given query points to
the corresponding mesh entities. In order to ensure the stability of the solution process
and to reduce the required number of implicit iterations within a time increment until con-
vergence is achieved, the use of a convergence acceleration scheme is advisable. A broad
range of different convergence acceleration schemes based on vector sequence acceleration
or quasi-Newton methods were discussed. In a comparison of these schemes for a simple
benchmark problem, the line extrapolation method, the Broyden method, and, in partic-
ular, the quasi-Newton least squares procedure were found to perform particularly well.
Although it is difficult to generalize the findings, the presented numerical study provides
a useful hint on which schemes may prove useful and efficient also for other multifield
problems.

241

8 Conclusions and Outlook

In the following section, we introduced the dedicated C++ software library comana de-
veloped at the Institute for Ship Structural Design and Analysis at the Hamburg University
of Technology. Based on a master/slave communication concept, the software permits to
easily integrate an arbitrary number of subproblem solvers in a coupled solution strategy.
With the proposed communication concept, all subproblem solvers can be addressed in
the same manner, independent of whether they operate in serial or shared- or distributed-
memory parallelized mode. This way, not only FSI but also other multifield problems
can be solved effectively – and specialized subfield solvers that are already available can,
quickly and with minimally invasive modifications, be prepared for the integration into a
partitioned solution strategy. For the implementation of a customized coupling algorithm
in a dedicated C++ program, several modular and well-tested algorithmic building blocks
are provided along with comana. Each component of the coupling algorithm can thus be
carefully selected and used in a coupling strategy suiting the particular problem under
consideration.
In order to demonstrate the effectiveness and efficiency of the proposed generic parti-

tioned solution procedure, we computed numerous benchmarks involving FSI, but also
other multifield problems such as electro-thermo-mechanically coupled problems. Being in
reasonable agreement with the reference solutions available from the literature or obtained
by analytical or other numerical methods, the numerical results for the considered bench-
mark problems confirmed that the partitioned solution strategy is a suitable means for the
solution of general strongly-coupled multifield problems.
Following the numerical benchmarks, the partitioned solution procedure was also em-

ployed to investigate more advanced applications from the maritime industry. In a first
scenario, the FSI of a floating OWT was analyzed in order to examine the aero- and hydro-
dynamic behavior of the structure under different environmental conditions. The motion
behavior of the floating OWT, investigated in a previous study, may now serve to estimate
the inertia forces acting on the tower structure and the platform.
As a second application from maritime technology, the berthing maneuver of a crew

transfer vessel to an OWT was studied. Once again drawing on a partitioned solution
approach, this sophisticated operation was successfully analyzed numerically. We consid-
ered different sea states, their influence on the catamaran motion, as well as the contact
forces – and the results can now be used to assess the safety of the service personnel during
disembarkation or to provide useful data for the development of future transfer concepts.
Summarizing the above, the methodological and numerical studies undertaken in the

present thesis underline that the partitioned solution approach is a suitable means to solve
sophisticated strongly-coupled multifield problems. Also, this solution strategy is clearly
quite advanced regarding stability and performance. In future research, a particular focus
should therefore be placed on the enhancement of the subproblem models. In view of the
fact that each of the subproblems needs to be solved several times per time increment,
the computational effort spent on the subfield solution has a large impact on the overall
computational time required for the coupled problem. Nowadays, multifield problems
involving sophisticated subfield problems are still challenging to solve in acceptable time,
and they may in fact occasionally even prove prohibitively expensive to solve for some
real-world industrial applications. Apart from the use of parallelized subproblem solvers,
which has already become feasible with the proposed master/slave communication concept
implemented in comana, the simultaneous solution of the subproblems as opposed to a
sequential or staggered solution may be a promising measure to reduce the time required

242

to compute the coupled problem. However, parallel coupling schemes are prone to stability
issues or to poor convergence rates, and further research must be invested to achieve
considerable savings in computational cost as compared to the sequential schemes.
In order to verify the numerical results for the problems studied in this work, it would

be necessary to carry out extensive spatial and temporal convergence studies, which were
mostly omitted due to the high computational effort involved. In addition, a validation
of the numerical findings by experiments is essential to assess the applicability of the
numerical models for the analysis of the considered technical systems and processes, and
to underpin the advantages of numerical simulations for a fast and reliable investigation of
physical phenomena. This would serve to reduce the need for expensive experiments and
to accelerate product or process development cycles.

243

A Shape Functions

A.1 Linear line element

1 2ξ

N1(ξ) = 1
2 (1− ξ) N2(ξ) = 1

2 (1 + ξ)

A.2 Quadratic line element

1 2

ξ

3

N1(ξ) = 1
2
(
−ξ + ξ2

)
N2(ξ) = 1

2
(
ξ + ξ2

)
N3(ξ) = 1− ξ2

A.3 Cubic line element

1 2

ξ

3 4

N1(ξ) = 1
16
(
−1 + ξ + 9ξ2 − 9ξ3

)
N2(ξ) = 1

16
(
−1− ξ + 9ξ2 + 9ξ3

)
N3(ξ) = 1

16
(
9− 27ξ − 9ξ2 + 27ξ3

)
N4(ξ) = 1

16
(
9 + 27ξ − 9ξ2 − 27ξ3

)

A.4 Linear triangle element

1

3

ξ

η

2

244

A.5 Quadratic triangle element

N1(ξ, η) = 1− ξ − η N2(ξ, η) = ξ N3(ξ, η) = η

A.5 Quadratic triangle element

1

3

ξ

η

24

5

6

c0 = 1− ξ − η

N1(ξ, η) = −c0(1− 2c0) N2(ξ, η) = −ξ(1− 2ξ)
N3(ξ, η) = −η(1− 2η) N4(ξ, η) = 4ξc0

N5(ξ, η) = 4ξη N6(ξ, η) = 4ηc0

A.6 Linear quadrilateral element

1

4

ξ

η

2

3

ξ− = 1− ξ ξ+ = 1 + ξ

η− = 1− η η+ = 1 + η

245

A Shape Functions

N1(ξ, η) = 1
4ξ−η− N2(ξ, η) = 1

4ξ+η−

N3(ξ, η) = 1
4ξ+η+ N4(ξ, η) = 1

4ξ−η+

A.7 Serendipity quadrilateral element

1

4

ξ

η

2

3

5

6

7

8

ξ− = 1− ξ ξ+ = 1 + ξ ξ̃ = 1− ξ2

η− = 1− η η+ = 1 + η η̃ = 1− η2

N1(ξ, η) = 1
4ξ−η−(−1− ξ − η) N2(ξ, η) = 1

4ξ+η−(−1 + ξ − η)

N3(ξ, η) = 1
4ξ+η+(−1 + ξ + η) N4(ξ, η) = 1

4ξ−η+(−1− ξ + η)

N5(ξ, η) = 1
2 ξ̃η− N6(ξ, η) = 1

2 η̃ξ+

N7(ξ, η) = 1
2 ξ̃η+ N8(ξ, η) = 1

2 η̃ξ−

246

A.8 Quadratic quadrilateral element

A.8 Quadratic quadrilateral element

1

4

ξ

η

2

3

5

6

7

8
9

ξ− = 1
2ξ(ξ − 1) ξ± = −(ξ + 1)(ξ − 1) ξ+ = 1

2ξ(ξ + 1)

η− = 1
2η(η − 1) η± = −(η + 1)(η − 1) η+ = 1

2η(η + 1)

ζ− = 1
2ζ(η − 1) ζ± = −(ζ + 1)(ζ − 1) ζ+ = 1

2ζ(ζ + 1)

N1(ξ, η) = ξ−η− N2(ξ, η) = ξ+η−

N3(ξ, η) = ξ+η+ N4(ξ, η) = ξ−η+

N5(ξ, η) = ξ±η− N6(ξ, η) = ξ+η±

N7(ξ, η) = ξ±η+ N8(ξ, η) = ξ−η±

N9(ξ, η) = ξ±η±

A.9 Linear tetrahedral element

1
2ξ

η

ζ 3

4

N1(ξ, η, ζ) = 1− ξ − η − ζ N2(ξ, η, ζ) = ξ

N3(ξ, η, ζ) = η N4(ξ, η, ζ) = ζ

247

A Shape Functions

A.10 Quadratic tetrahedral element

1
2ξ

η
ζ 3

4

6

10
8

7
9

5

c0 = 1− ξ − η − ζ

N1(ξ, η, ζ) = (2c0 − 1)c0 N2(ξ, η, ζ) = (2ξ − 1)ξ
N3(ξ, η, ζ) = (2η − 1)η N4(ξ, η, ζ) = (2ζ − 1)ζ
N5(ξ, η, ζ) = 4ξc0 N6(ξ, η, ζ) = 4ξη
N7(ξ, η, ζ) = 4ηc0 N8(ξ, η, ζ) = 4ξζ
N9(ξ, η, ζ) = 4ηζ N10(ξ, η, ζ) = 4ζc0

A.11 Linear hexahedral element

1

2

3

4

5

6 7

8

ξ

η

ζ

ξ− = 1− ξ ξ+ = 1 + ξ

η− = 1− η η+ = 1 + η

ζ− = 1− ζ ζ+ = 1 + ζ

248

A.12 Serendipity hexahedral element

N1(ξ, η, ζ) = 1
8ξ−η−ζ− N2(ξ, η, ζ) = 1

8ξ+η−ζ−

N3(ξ, η, ζ) = 1
8ξ+η+ζ− N4(ξ, η, ζ) = 1

8ξ−η+ζ−

N5(ξ, η, ζ) = 1
8ξ−η−ζ+ N6(ξ, η, ζ) = 1

8ξ+η−ζ+

N7(ξ, η, ζ) = 1
8ξ+η+ζ+ N8(ξ, η, ζ) = 1

8ξ−η+ζ+

A.12 Serendipity hexahedral element

1

2

3

4

5

6 7

8

ξ

η

ζ

9 10

11
12

13

14

20

1617

19

18

15

ξ− = 1− ξ ξ+ = 1 + ξ ξ̃ = 1− ξ2

η− = 1− η η+ = 1 + η η̃ = 1− η2

ζ− = 1− ζ ζ+ = 1 + ζ ζ̃ = 1− ζ2

249

A Shape Functions

N1(ξ, η, ζ) = 1
8ξ−η−ζ−(−ξ − η − ζ − 2) N2(ξ, η, ζ) = 1

8η+η−ζ−(ξ − η − ζ − 2)

N3(ξ, η, ζ) = 1
8η+η+ζ−(ξ + η − ζ − 2) N4(ξ, η, ζ) = 1

8ξ−η+ζ−(−ξ + η − ζ − 2)

N5(ξ, η, ζ) = 1
8ξ−η−ζ+(−ξ − η + ζ − 2) N6(ξ, η, ζ) = 1

8η+η−ζ+(ξ − η + ζ − 2)

N7(ξ, η, ζ) = 1
8η+η+ζ+(ξ + η + ζ − 2) N8(ξ, η, ζ) = 1

8ξ−η+ζ+(−ξ + η + ζ − 2)

N9(ξ, η, ζ) = 1
4 ξ̃η−ζ− N10(ξ, η, ζ) = 1

4η+η̃ζ−

N11(ξ, η, ζ) = 1
4 ξ̃η+ζ− N12(ξ, η, ζ) = 1

4ξ−η̃ζ−

N13(ξ, η, ζ) = 1
4ξ−η−ζ̃ N14(ξ, η, ζ) = 1

4η+η−ζ̃

N15(ξ, η, ζ) = 1
4η+η+ζ̃ N16(ξ, η, ζ) = 1

4ξ−η+ζ̃

N17(ξ, η, ζ) = 1
4 ξ̃η−ζ+ N18(ξ, η, ζ) = 1

4η+η̃ζ+

N19(ξ, η, ζ) = 1
4 ξ̃η+ζ+ N20(ξ, η, ζ) = 1

4ξ−η̃ζ+

A.13 Quadratic hexahedral element

1

2

3

4

5

6 7

8

ξ

η

ζ

9 10

1112

13

14

20

1617

19

18

22

24

21

26

25
23

27
15

ξ− = 1
2ξ(ξ − 1) ξ± = −(ξ + 1)(ξ − 1) ξ+ = 1

2ξ(ξ + 1)

η− = 1
2η(η − 1) η± = −(η + 1)(η − 1) η+ = 1

2η(η + 1)

ζ− = 1
2ζ(η − 1) ζ± = −(ζ + 1)(ζ − 1) ζ+ = 1

2ζ(ζ + 1)

250

A.13 Quadratic hexahedral element

N1(ξ, η, ζ) = ξ−η−ζ− N2(ξ, η, ζ) = ξ+η−ζ− N3(ξ, η, ζ) = ξ+η+ζ−

N4(ξ, η, ζ) = ξ−η+ζ− N5(ξ, η, ζ) = ξ−η−ζ+ N6(ξ, η, ζ) = ξ+η−ζ+

N7(ξ, η, ζ) = ξ+η+ζ+ N8(ξ, η, ζ) = ξ−η+ζ+ N9(ξ, η, ζ) = ξ±η−ζ−

N10(ξ, η, ζ) = ξ+η±ζ− N11(ξ, η, ζ) = ξ±η+ζ− N12(ξ, η, ζ) = ξ−η±ζ−

N13(ξ, η, ζ) = ξ−η−ζ± N14(ξ, η, ζ) = ξ+η−ζ± N15(ξ, η, ζ) = ξ+η+ζ±

N16(ξ, η, ζ) = ξ−η+ζ± N17(ξ, η, ζ) = ξ±η−ζ+ N18(ξ, η, ζ) = ξ+η±ζ+

N19(ξ, η, ζ) = ξ±η+ζ+ N20(ξ, η, ζ) = ξ−η±ζ+ N21(ξ, η, ζ) = ξ±η±ζ−

N22(ξ, η, ζ) = ξ±η−ζ± N23(ξ, η, ζ) = ξ+η±ζ± N24(ξ, η, ζ) = ξ±η+ζ±

N25(ξ, η, ζ) = ξ−η±ζ± N26(ξ, η, ζ) = ξ±η±ζ+ N27(ξ, η, ζ) = ξ±η±ζ±

251

Bibliography
[1] Y. Abbas and M. Madboulli. “Implementation of the panel method to the solu-

tion of flow around aircraft”. In: Proceedings of the 3rd International Workshop on
Numerical Modelling in Aerospace Sciences. Bucharest, Romania, 2015.

[2] A. Aitken. “On Bernoulli’s numerical solution of algebraic equations”. In: Proceed-
ings of the Royal Society of Edinburgh. Vol. 46. 1926, pp. 289–305.

[3] ANSYS, Inc. ANSYS Academic Research, Release 17.0. Canonsburg, PA, 2017. url:
http://ansys.com (visited on 07/01/2017).

[4] ANSYS, Inc. ANSYS Mechanical APDL Technology Demonstration Guide, Release
17.0. Canonsburg, PA, 2017.

[5] D. Balzani et al. “Numerical modeling of fluid-structure interaction in arteries with
anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models
at finite strains”. In: International Journal for Numerical Methods in Biomedical
Engineering 32.10 (2016).

[6] D. Baraff. An introduction to physically based modeling: Rigid body simulation I –
Unconstrained rigid body dynamics. Carnegie Mellon University, Pittsburgh, PA,
1997.

[7] M. S. Bartlett. “An inverse matrix adjustment arising in discriminant analysis”. In:
The Annals of Mathematical Statistics 22.1 (1951), pp. 107–111.

[8] Y. Başar and D. Weichert. Nonlinear continuum mechanics of solids: Fundamental
mathematical and physical concepts. Berlin, Germany et al.: Springer, 2000.

[9] K.-J. Bathe and G. A. Ledezma. “Benchmark problems for incompressible fluid
flows with structural interactions”. In: Computers & Structures 85.11-14 (2007),
pp. 628–644.

[10] K.-J. Bathe, C. Nitikitpaiboon, and X. Wang. “A mixed displacement-based fi-
nite element formulation for acoustic fluid-structure interaction”. In: Computers &
Structures 56.2 (1995), pp. 225–237.

[11] K.-J. Bathe and H. Zhang. “A mesh adaptivity procedure for CFD and fluid-
structure interactions”. In: Computers & Structures 87.11-12 (2009), pp. 604–617.

[12] M. Bauer and M. Abdel-Maksoud. “A 3d potential based boundary element method
for the modelling and simulation of marine propeller flows”. In: 7th Vienna Confer-
ence on Mathematical Modelling. Vienna, Austria, 2012.

[13] Y. Bazilevs, M.-C. Hsu, and M.A. Scott. “Isogeometric fluid-structure interaction
analysis with emphasis on non-matching discretizations, and with application to
wind turbines”. In: Computer Methods in Applied Mechanics and Engineering 249–
252 (2012), pp. 28–41.

252

http://ansys.com

Bibliography

[14] Y. Bazilevs et al. “3D simulation of wind turbine rotors at full scale. Part II: Fluid-
structure interaction modeling with composite blades”. In: International Journal
for Numerical Methods in Fluids 65 (2011), pp. 236–253.

[15] David M. Beazley. “SWIG: An easy to use tool for integrating scripting languages
with C and C++”. In: Proceedings of the 4th Conference on USENIX Tcl/Tk Work-
shop. Vol. 4. Monterey, CA, 1996, pp. 129–139.

[16] T. Belytschko and J. M. Kennedy. “Computer methods for subassembly simula-
tion”. In: Journal of Nuclear Engineering and Design 49 (1978), pp. 17–38.

[17] T. Belytschko, J. M. Kennedy, and D. F. Schoeberle. “Quasi-Eulerian finite element
formulation for fluid-structure interaction”. In: Proceedings of Joint ASME/CSME
Pressure Vessels and Piping Conference. New York, NY, 1978, p. 13.

[18] J. L. Bentley. “Multidimensional binary search trees used for associative searching”.
In: Communications of the ACM 18.9 (1975), pp. 509–517.

[19] P. Birken et al. “Fast solvers for thermal fluid structure interaction”. In: Proceedings
of the 5th Conference on Computational Methods in Marine Engineering. Hamburg,
Germany, 2013.

[20] J. Blazek. Computational fluid dynamics: principles and applications. Amsterdam,
Netherlands et al.: Elsevier, 2005.

[21] J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element anal-
ysis. Cambridge, UK et al.: Cambridge University Press, 2008.

[22] C. Brezinski. Extrapolation methods: theory and practice. Amsterdam, Netherlands
et al.: North-Holland, 1991.

[23] C. Broyden. “A class of methods for solving nonlinear simultaneous equations”. In:
Mathematics of Computation 19 (1965), pp. 577–593.

[24] M. Buhmann. Radial basis functions: theory and implementations. Cambridge, UK:
Cambridge University Press, 2003.

[25] H.-J. Bungartz et al. “A plug-and-play coupling approach for parallel multi-field
simulations”. In: Computational Mechanics 55.6 (2015), pp. 1119–1129.

[26] H.-J. Bungartz et al. “preCICE – A fully parallel library for multi-physics surface
coupling”. In: Computers & Fluids (2016).

[27] G. F. Carey and S. W. Kim. “Lifting aerofoil calculation using the boundary ele-
ment method”. In: International Journal for Numerical Methods in Fluids 3 (1983),
pp. 481–492.

[28] J. R. Cebral and R. Loehner. “Conservative load projection and tracking for fluid-
structure problems”. In: AIAA Journal 35.4 (1997), pp. 687–692.

[29] C. S. Chen, Y. C. Hon, and R. A. Schaback. Scientific computing with radial basis
functions. (in preparation). 2012.

[30] J. Chung and G. M. Hulbert. “A time integration algorithm for structural dynamics
with improved numerical dissipation: the generalized-α method”. In: Journal of
Applied Mechanics, Transactions of the ASME 1993 60 (1993), pp. 371–375.

253

Bibliography

[31] T. J. Chung. Computational fluid dynamics. Cambridge, UK: Cambridge University
Press, 2010.

[32] J. Cornthwaite. “Pressure Poisson method for the incompressible Navier-Stokes
equations using Galerkin finite elements”. PhD thesis. Statesboro, GA: Georgia
Southern University, 2013.

[33] J. Cruse. “Floating wind turbine promises cost reductions”. In: HANSA Interna-
tional Maritime Journal 153.9 (2016), p. 173.

[34] R. M. Cummings et al. “Applied computational aerodynamics”. In: Cambridge, UK:
Cambridge University Press, 2015. Chap. Panel methods, pp. 267–305.

[35] J. Degroote. “Development of algorithms for the partitioned simulation of strongly
coupled fluid-structure interaction problems”. PhD thesis. Ghent, Belgium: Ghent
University, 2010.

[36] J. Degroote, K.-J. Bathe, and J. Vierendeels. “Performance of a new partitioned
procedure versus a monolithic procedure in fluid-structure interaction”. In: Com-
puters & Structures 87 (2009), pp. 793–801.

[37] W. G. Dettmer. “Finite element modeling of fluid flow with moving free surfaces
and interfaces including fluid-solid interaction”. PhD thesis. Wales, UK: University
of Wales, 2004.

[38] J. Donea, P. Fasoli-Stella, and S. Giuliani. “Lagrangian and Eulerian finite element
techniques for transient fluid-structure interaction problems”. In: Transactions of
the 4th International Conference on Structural Mechanics in Reactor Technology –
Volume B: Thermal and Fluid/Structure Dynamics Analysis. San Francisco, CA:
North-Holland Publishing Company, 1977, pp. 1–12.

[39] J. Donea et al. “Arbitrary Lagrangian-Eulerian methods”. In: Encyclopedia of com-
putational mechanics. Ed. by E. Stein, R. de Borst, and T. J. R. Hughes. Chichester,
UK et al.: John Wiley & Sons, 2004, pp. 413–437.

[40] A. Düster, H. Bröker, and E. Rank. “The p-version of the finite element method
for three-dimensional curved thin walled structures”. USenglish. In: International
Journal for Numerical Methods in Engineering 52 (2001), pp. 673–703.

[41] A. Düster and S. Kollmannsberger. AdhoC 4 user’s guide. Chair for Computation in
Engineering, Technische Universität München, Numerical Structural Analysis with
Application in Ship Technology, Hamburg University of Technology. 2010.

[42] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. “On the shape of a set of points
in the plane”. In: IEEE Transactions on Information Theory 29.4 (1983), pp. 551–
559.

[43] EDF R&D. Code_Aster – An open source FEA software, Release 12.1. Paris,
France, 2014. url: http://code-aster.org (visited on 07/01/2017).

[44] P. Erbts. “Partitioned solution strategies for electro-thermo-mechanical problems
applied to the field assisted sintering technology”. PhD thesis. Hamburg, Germany:
Hamburg University of Technology, 2016.

[45] P. Erbts, S. Hartmann, and A. Düster. “A partitioned solution approach for
electro-thermo-mechanical problems”. In: Archive of Applied Mechanics 85.8 (2015),
pp. 1075–1101.

254

http://code-aster.org

Bibliography

[46] C. Ericson. Real-time collision detection. Ed. by T. Cox. San Francisco, CA: Else-
vier, 2005.

[47] C. Farhat, P. Geuzaine, and G. Brown. “Application of a three-field nonlinear fluid-
structure formulation to the prediction of the aeroelastic parameters of an F-16
fighter”. In: Computers & Fluids 32 (2003), pp. 3–29.

[48] M. A. Fernández and M. Moubachir. “A Newton method using exact Jacobians for
solving fluid-structure coupling”. In: Computers & Structures 83 (2005), pp. 127–
142.

[49] J. H. Ferziger and M. Perić. Computational methods for fluid dynamics. Berlin,
Germany et al.: Springer, 2002.

[50] P. J. Flory. “Thermodynamic relations for high elastic materials”. In: Transaction
of the Faraday Society 57 (1961), pp. 829–838.

[51] L. Formaggia et al. “On the coupling of 3D and 1D navier-stokes equations for flow
problems in compliant vessels”. In: Computer Methods in Applied Mechanics and
Engineering 191 (2001), pp. 561–582.

[52] C. Förster, W. A. Wall, and E. Ramm. “On the geometric conservation law in
transient flow calculations on deforming domains”. In: International Journal for
Numerical Methods in Fluids 50 (2006), pp. 1369–1379.

[53] R. M. Franck and R. B. Lazarus. “Mixed Eulerian-Lagrangian method”. In:Methods
in computational physics. Ed. by B. Alder, S. Fernbach, and M. Rotenberg. Vol. 3.
New York, NY: Academic Press, 1964, pp. 47–67.

[54] Free Software Foundation, Inc. Using the GNU compiler collection: for GCC version
5.4.0. Boston, MA, 2015. url: https://gcc.gnu.org (visited on 07/01/2017).

[55] G. Gaël and J. Benoît. Eigen v3. 2010. url: http://eigen.tuxfamily.org (visited
on 07/01/2017).

[56] T. G. Gallinger. “Effiziente Algorithmen zur partitionierten Lösung stark gekoppel-
ter Probleme der Fluid-Struktur-Wechselwirkung”. PhD thesis. Munich, Germany:
Technische Universität München, 2010.

[57] B. Gatzhammer, M. Mehl, and T. Neckel. “A coupling environment for partitioned
multiphysics simulations applied to fluid-structure interaction scenarios”. In: Pro-
ceedings of the International Conference on Computational Science. Amsterdam,
Netherlands, 2010, pp. 681–689.

[58] S. Geller. “Ein explizites Modell für die Fluid-Struktur-Interaktion basierend auf
LBM und p-FEM”. PhD thesis. Braunschweig, Germany: Technische Universität
Braunschweig, 2010.

[59] M. Glück et al. “Computation of fluid-structure interaction on lightweight struc-
tures”. In: Journal of Wind Engineering and Industrial Aerodynamics 89 (2001),
pp. 1351–1368.

[60] P. R. Graves-Morris. “Extrapolation methods for vector sequences”. In: Numerische
Mathematik 61.1 (1992), pp. 475–487.

[61] B. Gschaider et al. foam-extend, Release 3.1. 2014. url: https://sourceforge.n
et/projects/foam-extend (visited on 07/01/2017).

255

https://gcc.gnu.org
http://eigen.tuxfamily.org
https://sourceforge.net/projects/foam-extend
https://sourceforge.net/projects/foam-extend

Bibliography

[62] R. Haeltermann et al. “Improving the performance of the partitioned QN-ILS proce-
dure for fluid-structure interaction problems: Filtering”. In: Computers & Structures
171 (2016), pp. 9–17.

[63] B. Hahn et al. “Die Grenzen des Wachstums sind noch nicht erreicht”. In: Windin-
dustrie in Deutschland (June 2015).

[64] K. Hasselmann et al. “Measurements of wind-wave growth and swell decay during
the Joint North Sea Wave Project (JONSWAP)”. In: Ergänzungsheft zur Deutschen
Hydrographischen Zeitschrift Reihe A(8).12 (1973), p. 95.

[65] U. Heißerer. “High-order finite elements for material and geometric nonlinear finite
strain problems”. PhD thesis. Munich, Germany: Technische Universität München,
2008.

[66] U. Heißerer, A. Düster, and E. Rank. “Follower loads for axisymmetric high order
finite elements”. In: Proceedings of Applied Mathematics and Mechanics. Vol. 5.
2005, pp. 405–406.

[67] M. A. Heroux et al. “An overview of the Trilinos project”. In: ACM Transactions
on Mathematical Software 31.3 (2005), pp. 397–423.

[68] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. “Improved numerical dissipation
for time integration algorithms in structural dynamics”. In: Earthquake Engineering
& Structural Dynamics 5 (1977), pp. 283–292.

[69] C. W. Hirt, A. A. Amsden, and J. L. Cook. “An arbitrary Lagrangian-Eulerian
computing method for all flow speeds”. In: Journal of Computational Physics 14
(1974), pp. 227–253.

[70] G. A. Holzapfel. Nonlinear solid mechanics: A continuum approach for engineering.
Chichester, UK et al.: John Wiley & Sons, 2000.

[71] J. Hron and S. Turek. “Proposal for numerical benchmarking of fluid-structure inter-
action between elastic object and laminar incompressible flow”. In: Fluid-structure
interaction, modelling, simulation and optimisation. Ed. by H. J. Bungartz and M.
Schäfer. Vol. 53. Berlin, Germany et al.: Springer, 2006, pp. 146–170.

[72] M.-C. Hsu and Y. Bazilevs. “Fluid-structure interaction modeling of wind turbines:
simulating the full machine”. In: Computational Mechanics 50 (2012), pp. 821–833.

[73] B. Hübner, E. Walhorn, and D. Dinkler. “A monolithic approach to fluid-structure
interaction using space-time finite elements”. In: Computer Methods in Applied Me-
chanics and Engineering 193 (2004), pp. 2087–2104.

[74] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. “Lagrangian-Eulerian finite
element formulation for incompressible viscous flows”. In: Computer Methods in
Applied Mechanics and Engineering 29.3 (1981), pp. 329–349.

[75] K. Hutter and Y. Wang. Fluid and thermodynamics – Volume 1: Basic fluid me-
chanics. Cham, Switzerland: Springer International Publishing, 2016.

[76] R. A. Ibrahim. Liquid sloshing dynamics: Theory and applications. Cambridge, UK
et al.: Cambridge University Press, 2005.

256

Bibliography

[77] S. R. Idelsohn et al. “Interaction between an elastic structure and free-surface flows:
experimental versus numerical comparisons using the PFEM”. In: Computational
Mechanics 43 (2008), pp. 125–132.

[78] K. Iguchi. “Convergence property of Aitken’s ∆2-process and the applicable accel-
eration process”. In: Journal of Information Processing 7 (1984), pp. 22–30.

[79] International Organization for Standardization. International standard ISO/IEC
14882:2003 Information technology – Programming languages – C++. Standard.
Geneva, Switzerland, 2003.

[80] International Organization for Standardization. International standard ISO/IEC
14882:2011 Information technology – Programming languages – C++. Standard.
Geneva, Switzerland, 2011.

[81] International Organization for Standardization. International standard ISO/IEC
14882:2014 Information technology – Programming languages – C++. Standard.
Geneva, Switzerland, 2014.

[82] International Organization for Standardization. International standard working
draft N4659 Information technology – Programming languages – C++. Working
Draft. Geneva, Switzerland, 2017.

[83] B. Irons and R. Tuck. “A version of the Aitken accelerator for computer implemen-
tation”. In: International Journal for Numerical Methods in Engineering 1 (1969),
pp. 275–277.

[84] R. I. Issa. “Solution of the implicitly discretised fluid flow equations by operator-
splitting”. In: Journal of Computational Physics 62 (1985), pp. 40–65.

[85] H. Jasak and Ž. Tuković. “Automatic mesh motion for the unstructured finite vol-
ume method”. In: Transactions of FAMENA 30.2 (2006), pp. 1–20.

[86] A. Jennings. “Accelerating the convergence of matrix iterative processes”. In: Jour-
nal of the Institute of Mathematics and its Applications 8 (1971), pp. 99–110.

[87] W. Johnson. Rotorcraft aeromechanics. Cambridge, UK: Cambridge University
Press, 2013.

[88] W. Joppich and M. Kürschner. “MpCCI – A tool for the simulation of coupled appli-
cations”. In: Concurrency and Computation: Practice and Experience 18.2 (2006),
pp. 183–192.

[89] N. Josuttis. The C++ standard library: A tutorial and reference. Upper Saddle
River, NJ et al.: Addison-Wesley, 2012.

[90] D. Kamensky et al. “A variational immersed boundary framework for fluid-structure
interaction: Isogeometric implementation and application to bioprosthetic heart
valves”. In: Computers Methods in Applied Mechanics and Engineering (2014).

[91] J. Katz and A. Plotkin. Low-speed aerodynamics. Cambridge, UK: Cambridge Uni-
versity Press, 1991.

[92] C. T. Kelley. Iterative methods for linear and nonlinear equations. Raleigh, NC:
SIAM, 1995.

257

Bibliography

[93] E. M. Knobbe. “Mesh movement governed by entropy production”. In: Proceedings
of the 13th International Meshing Roundtable. Williamsburg, VA, 2004, pp. 265–
276.

[94] S. Kollmannsberger. “ALE-type and fixed grid fluid-structure interaction involving
the p-version of the Finite Element Method”. PhD thesis. München: Technische
Universität München, 2010.

[95] A. Komech and A. Komech. Principles of partial differential equations. New York,
NY: Springer, 2009.

[96] M. König, L. Radtke, and A. Düster. “A flexible C++ framework for the partitioned
solution of strongly coupled multifield problems”. In: Computers & Mathematics
with Applications 72.7 (2016), pp. 1764–1789.

[97] M. König et al. “Numerical investigation of the landing manoeuvre of a crew transfer
vessel to an offshore wind turbine”. In: Ships and Offshore Structures 12.1 (2017),
pp. 115–133.

[98] A. Konyukhov and K. Schweizerhof. Computational contact mechanics: Geometri-
cally exact theory for arbitrary shaped bodies. Karlsruhe, Germany: Springer, 2013.

[99] R. Krause and E. Rank. “A fast algorithm for point-location in a finite element
mesh”. In: Computing 57.1 (1996), pp. 49–62.

[100] D. Kuhl and M. A. Crisfield. “Energy-conserving and decaying algorithms in non-
linear structural dynamics”. In: International Journal for Numerical Methods in
Engineering 45 (1999), pp. 569–599.

[101] H. Lee et al. “Hydro-elastic analysis of marine propellers based on a BEM-FEM
coupled FSI algorithm”. In: International Journal of Naval Architecture and Ocean
Engineering 6 (2014), pp. 562–577.

[102] T. Lee. “Modelling time-dependent partial differential equations using a moving
mesh approach based on conservation”. PhD thesis. Reading, UK: University of
Reading, 2011.

[103] E. M. Lewandowski. The dynamics of marine craft: maneuvering and seakeeping.
Singapore, Singapore: World Scientific Publishing, 2004.

[104] G. Link et al. “A 2D finite-element scheme for fluid-solid-acoustic interactions and
its application to human phonation”. In: Computer Methods in Applied Mechanics
and Engineering 198.41-44 (2009), pp. 3321–3334.

[105] C. Lothode et al. “Fluid-structure interaction analysis of an hydrofoil”. In: Pro-
ceedings of the 5th International Conference on Computational Methods in Marine
Enginerring. Hamburg, Germany, 2013.

[106] A. J. MacLeod. “Acceleration of vector sequences by multidimensional ∆2 methods”.
In: Communications in Applied Numerical Methods 1 (1986), pp. 3–20.

[107] L. E. Malvern. Introduction to the mechanics of a continuous medium. Englewood
Cliffs, NJ: Prentice-Hall, 1969.

[108] N. Maman and C. Farhat. “Matching fluid and structure meshes for aeroelastic com-
putations: A parallel approach”. In: Computers & Structures 54.4 (1995), pp. 779–
785.

258

Bibliography

[109] B. Markert. “Weak or strong – On coupled problems in continuum mechanics”.
Habilitation thesis. Stuttgart, Germany: University of Stuttgart, 2010.

[110] Bernd Markert. “A survey of selected coupled multifield problems in computational
mechanics”. In: Journal of Coupled Systems and Multiscale Dynamics 1.1 (2013),
pp. 22–48.

[111] M. Mehl et al. “Parallel coupling numerics for partitioned fluid-structure interaction
simulations”. In: Computers and Mathematics with Applications (2015).

[112] S. Meyers. Effective modern C++: 42 specific ways to improve your use of C++11
and C++14. Beijing, China et al.: O’Reilly, 2015.

[113] S. Minami and S. Yoshimura. “Performance evaluation of nonlinear algorithms with
line-search for partitioned coupling techniques for fluid-structure interactions”. In:
International Journal for Numerical Methods in Fluids 64 (2010), pp. 1129–1147.

[114] D. Mira et al. “Heat transfer effects on a fully premixed methane impinging flame”.
In: Flow, Turbulence and Combustion 97.1 (2016), pp. 339–361.

[115] D. P. Mok and W. A. Wall. “Partitioned analysis schemes for the transient in-
teraction of incompressible flows and nonlinear flexible structures”. In: Trends in
Computational Structural Mechanics (2001). Ed. by W. A. Wall, K. U. Bletzinger,
and K. Schweizerhof, pp. 689–698.

[116] M. Mooney. “A theory of large elastic deformation”. In: Journal of Applied Physics
11 (1940), pp. 582–592.

[117] MSC Software Corporation. MSC Marc 2016. Santa Ana, CA, 2016. url: http:
//mscsoftware.com (visited on 07/01/2017).

[118] J. Neugebauer, M. Abdel-Maksoud, and M. Braun. “Fluid-structure interaction of
propellers”. In: Proceedings of the IUTAM Symposium on Fluid-Structure Interac-
tion in Ocean Engineering. Hamburg, Germany, 2007, pp. 191–204.

[119] N. M. Newmark. “A numerical method for structural dynamics”. In: Journal of
Engineering Mechanics 85 (1959), pp. 67–94.

[120] F. Nobile. “Numerical approximation of fluid-structure interaction problems with
application to haemodynamics”. PhD thesis. Laussane, Switzerland: École Poly-
technique Fédérale de Laussane, 2001.

[121] W. Noh. “CEL: A time-dependent two-space-dimensional coupled Eulerian-
Lagrangian code”. In: Methods in computational physics. Ed. by B. Adler, S. Fern-
bach, and M. Trotenberg. Vol. 3. New York, NY: Academic Press, 1964.

[122] R. W. Ogden. Non-linear elastic deformations. Chichester, UK: Dover Publications,
1984.

[123] OpenCFD (ESI Group). OpenFOAM – The open source CFD toolbox, Release 2.3.1.
Bracknell, UK, 2014. url: http://openfoam.com (visited on 07/01/2017).

[124] T. van Opstal, E. van Brummelen, and G. van Zwieten. “A finite-
element/boundary-element method for three-dimensional, large-displacement fluid-
structure-interaction”. In: Computer Methods in Applied Mechanics and Engineer-
ing 284 (2015), pp. 637–663.

259

http://mscsoftware.com
http://mscsoftware.com
http://openfoam.com

Bibliography

[125] N. Osada. “Acceleration methods for vector sequences”. In: Journal of Computa-
tional and Applied Mathematics 38 (1991), pp. 361–371.

[126] B. Overland. C++ for the impatient. Upper Saddle River, NJ et al.: Addison-Wesley,
2013.

[127] N. Parolini and M. Lombardi. “Unsteady FSI simulation of downwind sails”. In:
Proceedings of the 5th International Conference on Computational Methods in Ma-
rine Engineering. Hamburg, Germany, 2013.

[128] S. V. Patankar. Numerical heat transfer and fluid flow. Ed. by W. J. Minkowycz and
E. M. Sparrow. New York, NY et al.: Hemisphere Publishing Corporation, 1980.

[129] W. J. J. Pierson and L. A. Moskowitz. “Proposed spectral form for fully developed
wind seas based on the similarity theory of S. A. Kitaigorodskii”. In: Journal of
Geophysical Research 69 (1964), pp. 5181–5190.

[130] S. Piperno. “Explicit/implicit fluid-structure staggered procedures with a structural
predictor and fluid subcycling for 2D inviscid aeroelastic simulations”. In: Interna-
tional Journal for Numerical Methods in Fluids 25 (1997), pp. 1207–1226.

[131] S. Piperno and C. Farhat. “Partitioned procedures for the transient solution of cou-
pled aroelastic problems – Part II: Energy transfer analysis and three dimensional
applications”. In: Computer Methods in Applied Mechanics and Engineering 190
(2001), pp. 3147–3170.

[132] S. Piperno, C. Farhat, and B. Larrouturou. “Partitioned procedures for the tran-
sient solution of coupled aroelastic problems – Part I: Model problem, theory and
two-dimensional application”. In: Computer Methods in Applied Mechanics and En-
gineering 124 (1995), pp. 79–112.

[133] A. Quarteroni. Modeling the heart and the circulatory system. Cham, Switzerland:
Springer, 2015.

[134] L. Radtke, M. König, and A. Düster. “The influence of geometric imperfections in
cardiovascular FSI simulations”. In: Computers & Mathematics with Applications
74 (2017), pp. 1675–1689.

[135] L. Radtke et al. “Convergence acceleration for partitioned simulations of the fluid-
structure interaction in arteries”. In: Computational Mechanics (2016), pp. 1–20.

[136] J. N. Reddy and D. K. Gartling. The finite element method in heat transfer and
fluid dynamics. Boca Raton, FL et al.: CRC Press, 2010.

[137] R.S. Rivlin. “Large elastic deformations isotropic materials. IV. Further develop-
ments of the general theory”. In: Philosophical Transaction of the Royal Society of
London 241.835 (1948), pp. 379–397.

[138] A. Robertson et al. Definition of the semisubmersible floating system for phase II
of OC4. Tech. rep. National Renewable Energy Laboratory, 2014.

[139] C. Runge. “Über empirische Funktionen und die Interpolation zwischen äquidis-
tanten Ordinaten”. In: Zeitschrift für Mathematik und Physik 46 (1901), pp. 224–
243.

260

Bibliography

[140] S. Sathe et al. “Fluid-structure interaction modeling of complex parachute designs
with the space-time finite element techniques”. In: Computers & Fluids 36.1 (2007),
pp. 127–135.

[141] F. Schäfer et al. “Fluid-structure-acoustic interaction of the flow past a thin flexible
structure”. In: AIAA Journal 48.4 (2010), pp. 738–748.

[142] M. Schäfer. Computational engineering – Introduction to numerical methods. Berlin,
Germany et al.: Springer, 2006.

[143] S. Schulte. “Modulare und hierarchische Simulation gekoppelter Probleme”. PhD
thesis. Munich, Germany: Technische Universität München, 1998.

[144] D. Shepard. “A two-dimensional interpolation function for irregularly-spaced data”.
In: Proceedings of the 23rd ACM National Conference. Las Vegas, NV, 1968,
pp. 517–524.

[145] S. Sicklinger. “Stabilized co-simulation of coupled problems including fields and
signals”. PhD thesis. Munich, Germany: Technische Universität München, 2014.

[146] S. Sicklinger and T. Wang. Enhanced multiphysics interface research engine (EM-
PIRE). Munich, Germany, 2016. url: http://empire-multiphysics.com (visited
on 07/01/2017).

[147] J.C. Simo and L. Vu-Quoc. “A three-dimensional finite-strain rod model. Part II:
Computational aspects”. In: Computer Methods in Applied Mechanics and Engi-
neering 58 (1986), pp. 79–116.

[148] S. Slattery, P. Wilson, and R. Pawlowski. “The data transfer kit: A geometric
rendezvous-based tool for multiphysics data transfer”. In: International Conference
on Mathematics & Computational Methods Applied to Nuclear Science & Engineer-
ing. 2013, pp. 5–9.

[149] D. R. Smith. An introduction to continuum mechanics – After Truesdell and Noll.
Dordrecht, Netherlands: Springer Science+Business Media, 1993.

[150] K. R. Stein et al. Parallel computation of parachute fluid-structure interactions.
UMSI Research Report 97:54. Minneapolis, MN: University of Minnesota, 1997.

[151] K. R. Stein et al. “Simulation of parachute descent and maneuvers”. In: Proceedings
of the 5th International Conference on Computation of Shell and Spatial Structures.
Salzburg, Austria, 2005.

[152] J. Steindorf. “Partitionierte Verfahren für Probleme der Fluid-Struktur-
Wechselwirkung”. PhD thesis. Braunschweig, Germany: Technische Universität
Braunschweig, 2002.

[153] B. Stroustrup. A tour of C++. Upper Saddle River, NJ et al.: Addison-Wesley,
2014.

[154] B. Stroustrup. C++11 – The new ISO C++ standard. 2016. url: http://www.st
roustrup.com/C++11FAQ.html (visited on 04/19/2017).

[155] B. Stroustrup. The C++ programming language. Upper Saddle River, NJ et al.:
Addison-Wesley, 2013.

[156] T. Tang. “Moving mesh methods for computational fluid dynamics”. In: Contem-
porary Mathematics 383 (2005), pp. 141–174.

261

http://empire-multiphysics.com
http://www.stroustrup.com/C++11FAQ.html
http://www.stroustrup.com/C++11FAQ.html

Bibliography

[157] M. S. Tarafder, G. M. Khalil, and M. R. Islam. “Analysis of potential flow around
two-dimensional hydrofoil by source based lower and higher order panel methods”.
In: Journal of the Institution of Engineers 71.2 (2009), pp. 13–21.

[158] M. S. Tarafder, G. K. Saha, and S. T. Mehedi. “Analysis of potential flow around
3-ddimensional hydrofoils by combined source and dipole based panel method”. In:
Journal of Marine Science and Technology 18.3 (2010), pp. 376–384.

[159] T. Tezduyar et al. “Modelling of fluid-structure interactions with the space-time
finite elements: Arterial fluid mechanics”. In: International Journal for Numerical
Methods in Fluids 54.6-8 (2007), pp. 901–922.

[160] The MathWorks, Inc. MATLAB, Release R2017a. Natick, MA, 2017. url: https:
//www.mathworks.com/ (visited on 04/17/2017).

[161] C. Truesdell and W. Noll. The nonlinear field theories of mechanics. Berlin, Ger-
many et al.: Springer, 2004.

[162] J. G. Trulio. Theory and structure of the AFTON codes. Tech. rep. Albuquerque,
NM: Air Force Weapons Laboratory: Kirtland Air Force Base, 1966.

[163] B. W. Uekermann. “Partitioned fluid-structure interaction on massively parallel
systems”. PhD thesis. Munich, Germany: Technische Universität München, 2016.

[164] P. A. Ullrich and M. A. Taylor. “Arbitrary-order conservative and consistent remap-
ping and a theory of linear maps: Part I”. In: Monthly Weather Review 143.6 (2015),
pp. 2419–2440.

[165] S. Valcke. “The OASIS3 coupler: A European climate modelling community soft-
ware”. In: Geoscientific Model Development 6 (2013), pp. 373–388.

[166] J. G. V. Vázquez. “Nonlinear analysis of orthotropic membrane and shell strucures
including fluid-structure interaction”. PhD thesis. Barcelona, Spain: Universitat
Politecnica de Catalunya, 2007.

[167] L. Velho, J. Gomes, and L. H. de Figueiredo. Implicit objects in computer graphics.
New York, NY: Springer, 2002.

[168] S. Wagner and A. Röttgermann. “A transonic panel method for helicopter flows”. In:
Boundary element topics: proceedings of the final conference of the priority research
programme “Boundary Element Methods” 1989–1995 of the German Research Foun-
dation. Ed. by Wolfgang L. Wendland. Berlin et al.: Springer, 1997, pp. 363–393.

[169] W. A. Wall. “Fluid-Struktur-Interaktion mit stabilisierten finiten Elementen”. PhD
thesis. Stuttgart, Germany: Institut für Baustatik der Universität Stuttgart, 1999.

[170] W. A. Wall and E. Ramm. “Fluid-structure interaction based upon a stabilized
(ALE) finite element method”. In: Proceedings of the 4th World Congress on Com-
putational Mechanics. Ed. by S. Idelsohn, E. Oñate, and E. Dvorkin. Barcelona,
Spain, 1998.

[171] W. Wambold, G. Bärwolff, and H. Schwandt. “Moving meshes to fit large deforma-
tions based on centroidal Voronoi tessellation (CVT)”. In: Proceedings of the 15th
International Conference on Computational Science and Its Applications. Banff,
AB, Canada, 2015. Chap. Moving meshes to fit large deformations based on cen-
troidal Voronoi tessellation (CVT), pp. 313–328.

262

https://www.mathworks.com/
https://www.mathworks.com/

Bibliography

[172] X. S. Wang. Fundamentals of fluid-solid interactions: analytical and computational
approaches. Amsterdam, Netherlands et al.: Elsevier, 2008.

[173] H. Wendland. “Piecewise polynomial, positive definite and compactly supported
radial functions of minimal degree”. In: Advances in Computational Mathematics
4.1 (1995), pp. 389–396.

[174] G. Wendt, P. Erbts, and A. Düster. “Partitioned coupling strategies for multi-
physically coupled radiative heat transfer problems”. In: Journal of Computational
Physics 300 (2015), pp. 327–351.

[175] J. F. Wendt. Computational fluid dynamics: An introduction. Berlin, Germany et
al.: Springer, 2009.

[176] P. Wesseling. Principles of computational fluid dynamics. Berlin, Germany et al.:
Springer, 2001.

[177] D. J. Willis. “An unsteady, accelerated, high order panel method with vortex particle
wakes”. PhD thesis. Cambridge, MA: Massachusetts Institute of Technology, 2006.

[178] J. Wittenburg. Dynamics of systems of rigid bodies. Stuttgart, Germany: Teubner,
1977.

[179] K. Wolf and E. Brakkee. “Coupling fluids and structures codes on MPI”. In: Pro-
ceedings of the MPI Developer’s Conference. Notre Dame, IN, 1996.

[180] W. L. Wood, M. Bossak, and O. C. Zienkiewicz. “An alpha modification of New-
mark’s method”. In: International Journal for Numerical Methods in Engineering
15 (1981), pp. 1562–1566.

[181] P. Wriggers. Nonlinear finite element methods. Berlin, Germany et al.: Springer,
2008.

[182] R. Wüchner. “Computational mechanics of form finding and fluid-structure inter-
action of membrane structures”. PhD thesis. Munich, Germany: Technische Univer-
sität München, 2006.

[183] P. Wynn. “On a device for computing the em(Sn) transformation”. In: Mathematical
Tables and Other Aids to Computation 10 (1956), pp. 91–96.

[184] T. Yamada and S. Yoshimura. “Line search partitioned approach for fluid-structure
interaction analysis of flapping wing”. In: Computer Modeling in Engineering and
Sciences 24.1 (2008), pp. 51–60.

[185] Z. Yosibash et al. “Axisymmetric pressure boundary loading for finite deformation
analysis using p-FEM”. In: Computer Methods in Applied Mechanics and Engineer-
ing 196.7 (2007), pp. 1261–1277.

[186] O. C. Zienkiewicz and R. Löhner. “Accelerated relaxation or direct solution? Future
prospects for FEM”. In: International Journal for Numerical Methods in Engineer-
ing 21.1 (1985), pp. 1–11.

[187] O. C. Zienkiewicz and R. L. Taylor. The finite element method for fluid dynamics.
Oxford, UK: Butterworth-Heinemann, 2014.

263

	Introduction
	Motivation
	State of the Art
	Purpose and Scope of this Thesis
	Outline of this Thesis

	Fluid Problems
	Incompressible Navier-Stokes Equations
	Kinematics
	Conservation Laws
	Discretization and Numerical Solution

	Potential Flow Equations
	Problem Statement
	Discretization and Numerical Solution

	Structural Problems
	Deformable Body Equations
	Kinematics
	Balance Equations
	Constitutive Relations
	Variational Formulation and Linearization
	Spatial Discretization
	Temporal Discretization

	Rigid Body Equations

	Coupled Problems
	Governing Equations
	Generic Partitioned Coupling Algorithm
	Illustrative Coupled Problem
	Predictors
	Polynomial Predictors
	Predictors Based on Taylor Series Expansions
	Adaptive Predictors
	Comparison of Predictors

	Interpolation Schemes
	Nearest Neighbor Interpolation
	Barycentric Interpolation
	Radial Basis Function Interpolation
	Inverse Distance Weighting
	Interpolation on Finite Element Meshes
	Interpolation on Polygonal and Polyhedral Meshes
	Comparison of Interpolation Schemes

	Convergence Criteria
	Convergence Acceleration Schemes
	Constant Relaxation
	Aitken Relaxation and Related Methods
	Vector epsilon-Algorithm
	Topological epsilon-Algorithm
	Vector theta-Algorithm
	Generalized theta-Algorithm
	Vector w-Transformation
	Euclidean w-Transformation
	Broyden Method
	Quasi-Newton Least Squares Method
	Comparison of Convergence Acceleration Schemes

	Software Library comana
	General Concepts
	Generic Data Structures
	Traits
	Containers

	Communication Data Structures
	Mesh Data Structures
	Custom Point Scattering
	Basis Functions, Cell Topology, and Cell Geometry
	Projection Procedure
	Integration

	Algorithmic Data Structures
	Predictors
	Interpolation Schemes
	Convergence Acceleration Schemes

	Adapter Data Structures
	Generic Functions and Classes
	C/C++ Solvers
	Fortran Solvers
	MATLAB/Octave Solvers
	Python Solvers
	APDL Solvers

	Simulation Setup

	Benchmark Problems
	Two-Dimensional Lid-Driven Cavity Flow with Flexible Bottom
	Three-Dimensional Lid-Driven Cavity Flow with Flexible Bottom
	Round Cylinder with Flexible Membrane in Channel Flow
	Square Cylinder with Flexible Membrane in Channel Flow
	Flapping Console in Channel Flow
	Flexible Restrictor in Converging Channel
	Shell in Steady-State Cross-Flow
	Spherical Dome in Channel Flow
	Pressure Pulse in a Straight Elastic Vessel
	Floating Object in Free-Surface Flow
	Sloshing Effects in Partly-Filled Tank
	Dam Break
	Hydrofoil in Steady-State Flow
	Ship Propeller
	Wind Turbine Rotor
	Electro-Thermo-Mechanically Coupled Rod
	Bimetallic Beam

	Advanced Applications
	Floating Offshore Wind Turbine
	Berthing Maneuver of Crew Transfer Vessel
	Cylinder in Waves
	Crew Transfer Vessel in Waves
	Crew Transfer Vessel in Waves Including the Influence of Monopile
	Contact Problem between Fender and Monopile
	Berthing Maneuver of Crew Transfer Vessel

	Conclusions and Outlook
	Shape Functions
	Linear line element
	Quadratic line element
	Cubic line element
	Linear triangle element
	Quadratic triangle element
	Linear quadrilateral element
	Serendipity quadrilateral element
	Quadratic quadrilateral element
	Linear tetrahedral element
	Quadratic tetrahedral element
	Linear hexahedral element
	Serendipity hexahedral element
	Quadratic hexahedral element

	Bibliography

