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Abstract
Purpose Localizing structures and estimating the motion of a specific target region are common problems for navigation
during surgical interventions. Optical coherence tomography (OCT) is an imaging modality with a high spatial and temporal
resolution that has been used for intraoperative imaging and also for motion estimation, for example, in the context of
ophthalmic surgery or cochleostomy. Recently, motion estimation between a template and a moving OCT image has been
studied with deep learning methods to overcome the shortcomings of conventional, feature-based methods.
Methods We investigate whether using a temporal stream of OCT image volumes can improve deep learning-based motion
estimation performance. For this purpose, we design and evaluate several 3D and 4D deep learning methods and we propose
a new deep learning approach. Also, we propose a temporal regularization strategy at the model output.
Results Using a tissue dataset without additional markers, our deep learning methods using 4D data outperform previous
approaches. The best performing 4D architecture achieves an correlation coefficient (aCC) of 98.58% compared to 85.0%
of a previous 3D deep learning method. Also, our temporal regularization strategy at the output further improves 4D model
performance to an aCC of 99.06%. In particular, our 4D method works well for larger motion and is robust toward image
rotations and motion distortions.
Conclusions We propose 4D spatio-temporal deep learning for OCT-based motion estimation. On a tissue dataset, we find
that using 4D information for the model input improves performance while maintaining reasonable inference times. Our
regularization strategy demonstrates that additional temporal information is also beneficial at the model output.

Keywords 4D deep learning · Optical coherence tomography · Motion estimation · Regularization

Introduction

Optical coherence tomography (OCT) is an image modality
that is based on optical backscattering of light and allows for
volumetric imaging with a high spatial and temporal reso-
lution [21]. The imaging modality has been integrated into
intraoperative microscopes [15] with applications to neuro-
surgery [8] or ophthalmic surgery [6]. Moreover, OCT has
been used for monitoring laser cochleostomy [19].

While OCT offers a high spatial and temporal resolution,
its field of view (FOV) is typically limited to a fewmillimeters
or centimeters [14]. Therefore, during intraoperative imag-
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ing, the current region of interest (ROI) can be lost quickly
due to tissue or surgical tool movement, which requires con-
stant tracking of the ROI and corresponding adjustment of
the FOV. Performing the adjustmentmanually can disrupt the
surgical workflow which is why automated motion compen-
sation would be desirable. In addition to that, some surgical
procedures such as laser cochleostomy also require adjust-
ment of a surgical tool in case patientmotion occurs [28].Due
to the small scale of the cochlea structure, accurate adjust-
ment is critical to avoid damaging surrounding tissue [3].
Both motion compensation for the adjustment of the OCT’s
FOV and the adjustment of surgical tools require accurate
motion estimation.

One approach is to use an external tracking system for
motion estimation. For example, Vienola et al. used this
approach with a scanning laser ophthalmoscope for motion
estimation in the context of FOV adjustment [24]. Also,
external tracking systems have been used in the context of
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cochleostomy [5,7]. Alternatively, the OCT images can be
used directly for motion estimation as OCT already offers a
high spatial resolution. For example, Irsch et al. estimated the
tissue surface distance from A-scans for axial FOV adjust-
ment [13]. Also, Laves et al. used conventional features such
as SIFT [18] and SURF [1] with 2D maximum intensity
projects for motion estimation in the context of volume of
interests stabilization with OCT [17]. Another approach for
high-speed OCT tracking relied on phase correlation for fast
motion estimation fromOCT images [20]. These approaches
rely on hand-crafted features which can be error-prone, and
the overall motion estimation accuracy is often limited [16].
Therefore, deep learning methods have been proposed for
motion estimation from OCT data. For example, Gessert et
al. proposed using 3D convolutional neural networks (CNNs)
for estimating a marker’s pose from single 3D OCT volumes
[10]. For estimating themotionbetween two subsequentOCT
scans, Laves et al. adopted a deep learning-based optical flow
method [12] using 2.5D OCT projections [16]. Similarly,
Gessert et al. proposed a deep learning approach for motion
estimation where the parameters for a motion compensation
system are directly learned from 3D OCT volumes by a deep
learning model [9].

So far, deep learning-based motion estimation with OCT
relied on an initial template volume and a moving image,
following the concept of registration-based motion estima-
tion, for example, using phase correlation [20]. This can be
problematic if motion between the original template and the
current state is very large as the overlap between the images
becomes small. Modern OCT systems could overcome this
problem by acquiring entire sequences of OCT volumes, fol-
lowing the motion trajectory, as very high acquisition rates
have been achieved [25]. Therefore, more information can
be made available between an initial state and the current
state which could be useful for motion estimation. While
deep learning approaches using two images could follow the
trajectory with pair-wise comparisons, we hypothesize that
processing an entire sequence of OCT volumes at oncemight
provide more consistence and improved motion estimation
performance.

In this paper, we compare several deep learning meth-
ods and investigate whether using 4D spatio-temporal OCT
data can improve deep learning-basedmotion estimation per-
formance, see Fig. 1. Using 4D data with deep learning
methods is challenging in terms of architecture design due
to the immense computational and memory requirements
of high-dimensional data processing. In general, there are
only few approaches that studied 4D deep learning. Exam-
ples include application to functional magnetic resonance
imaging [2,29] and computed tomography [4,23]. This work
focuses on studying the properties of deep learning-based
motion estimation and the challenging problem of learning
from high-dimensional 4D spatio-temporal data. First, we

design a 4D convolutional neural network (CNN) that takes
an entire sequence of volumes as the input. Second, we pro-
pose a mixed 3D–4D CNN architecture for more efficient
processing that performs spatial 3Dprocessingfirst, followed
by full 4D processing. Third, we also make use of temporal
information at the model output by introducing a regulariza-
tion strategy that forces the model to predict motion states
for previous time steps within the 4D sequence. For compar-
ison, we consider a deep learning approach using a template
and a moving volume as the input [9] which is common for
motion estimation [16]. In contrast to previous deep learning
approaches [9,10], we do not use an additional marker and
estimate motion for a tissue dataset. We evaluate our best
performing method with respect to robustness toward image
rotations and motion distortions. In summary, our contribu-
tions are threefold. First, we provide an extensive comparison
of different deep learning architectures for estimatingmotion
from high-dimensional 4D spatio-temporal data. Second, we
propose a novel architecture that significantly outperforms
previous deep learning methods. Third, we propose a novel
regularization strategy, demonstrating that additional tempo-
ral information is also beneficial at the model output.

Methods

Experimental setup

For evaluation of our motion estimationmethods, we employ
a setup which allows for automatic data acquisition and
annotation, see Fig. 2. We use a commercially available
swept-source OCT device (OMES, OptoRes) with a scan
head, a second scanning stage with two mirror galvanome-
ters, lenses for beam focusing and a robot (ABB IRB 120).
The OCT device is able to acquire a single volume in 1.2
ms. A chicken breast sample is attached with needles to a
holder of the robot. Our OCT setup allows for shifting the
FOV without moving the scan head by using the second mir-
ror galvanometers stage and by changing the pathlength of
the reference arm. Two stepper motors control the mirrors of
the second scanning stage, which shift the FOV in the lateral
directions. A third stepper motor changes the pathlength of
the reference arm to translate the FOV in the axial dimension.
For evaluation of our methods, we consider volumes of size
32 × 32 × 32 with a corresponding FOV of approximately
5mm × 5mm × 3.5mm.

Data acquisition

We consider the task of motion estimation of a given ROI
with respect to its initial position. To assess our methods on
various tissue regions, we consider 40 randomly chosenROIs
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Fig. 1 Our approach for motion estimation in comparison with previous methods. The approach is illustrated for 2D OCT images for simplicity.
Note, we perform all experiments with 3D volumetric OCT images and thus 4D spatio-temporal data

Fig. 2 The experimental setup for data acquisition and annotation. The
chicken breast sample is attached with needles to a holder of the robot.
The OCT device itself is not shown

of a chicken breast sample with the same size as the OCT’s
FOV.

For motion estimation, only the relative movement
between the FOV and ROI is relevant; hence, moving the
ROI and using a steady FOV is equivalent to moving the
FOV and using a steady ROI. This can be exploited for gen-
eration of both OCT and ground-truth labels. By keeping the
ROI steady and moving the FOV by a defined shift in step-
per motor space, we simulate relative ROI movement. At the
same time, the defined shift provides a ground-truth motion
as we can transform the shift in motor space to the actual
motion in image space using a hand-eye calibration.

Initially, the FOVcompletely overlapswith the target ROI.
After acquiring an initial template image volume xt0 of the
ROI, we use the stepper motors to translate the FOV by Δst1
such that the target ROI only partially overlaps with the FOV.
Now, we acquire an image volume xt1 for the corresponding
translation Δst1 . This step can be repeated multiple times,
resulting in a sequence of shifted volumes xti and known
relative translations Δsti between the initial ROI and a trans-
lated one. Note, each translation Δsti is relative to the initial
position of a ROI. The procedure is illustrated in Fig. 3.

In this way, we formulate a supervised learning problem
where we try to learn the relative translation Δstn of an ROI
experiencing motion with respect to its initial position, given
a sequence of volumes xt = {xt0 , . . . , xtn }.

For generation of a single motion trajectory, we consider
a sequence of five target translations, i.e., target motor shifts
Δst = [Δst0 ,Δst1 ,Δst2 ,Δst3 ,Δst4 ]. To generate a smooth
motion pattern, we randomly generate Δst4 and use spline
interpolation between Δst0 = [0, 0, 0], Δst4 and a randomly
generated connection pointΔsc. We sample the intermediate
target shifts Δst1,Δst2 ,Δst3 from the spline function. This
results in various patternswhere theFOVdrifts away from the
ROI. By using different distances between Δs0 and Δs4 we
simulate different magnitudes of motions and obtain various
different motor shift distances between subsequent volumes.
Example trajectories are shown in Fig. 4.We use a simple cal-
ibration between galvo motor steps and image coordinates,
to transform the shifts from stepper motor space to image
space, resulting in a shift in millimeters.

For data acquisition, we use the three following steps.
First, we use the robot for randomly choosing an ROI. Then,
the initial state of the three motors corresponds to an FOV
completely overlapping with the ROI. Second, we randomly
generate a sequence of five target motor states, as described
above, which shifts the FOV out of the ROI. Third, at each
of the target motor states, an OCT volume is acquired.

Overall, for each ROI, we acquire OCT volumes of 200
motion patterns, where eachmovement consists of five target
translations and five OCT volumes.

Moreover, we evaluate how the estimation performance is
affected by relative rotations between volumes of a sequence.
Note, our current scanning setup is designed for translational
motion as rotation is difficult to perform using galvo mirrors.
Therefore, we add rotations in a post-processing step, by
rotating acquired volumes of a sequence xt around the axial
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Fig. 3 Our data acquisition strategy. For motion estimation only the relative movement is relevant; hence, we use a fixed ROI and move the FOV
step-wise by Δsi − Δsi−1. This results in a sequence of OCT volumes xt with the corresponding relative translation Δs between the initial volume
xt0 and the last volume xtn of a sequence

axis. We define a maximal rotation αmax and transform each
volume of a sequence with x̃i = R(αi )xi , while αi = αmax

4 ·
i, ∀i ∈ [0, 4]. Note, R(αi ) is the rotationmatrix for rotations
around the depth axis. First, we consider rotations as noise
that is applied to the image data. Second, we incorporate
the rotation into our motion and adapt the ground truth with
respect to the rotation.

Last, we also consider the effect of fast and irregular
motion, such as high-frequency tremors that may cause dis-
tortion within an image. This effect is unlikely to occur with
our current setup as our high acquisition frequency prevents
common motion artifacts [27]. Nevertheless, we perform
experiments with simulated motion artifacts due to relevance
for slower OCT systems. We follow the findings of previous
works [14,26,27] and consider motion distortions as lateral
and axial shifts between B-scans of an OCT volume that has
been acquired without motion distortions. In this way, we
are able to augment our data with defined motion distortions
in a post-processing step. To simulate different intensities of
motion distortions, we introduce a factor pdist that defines
the probability that a B-scan is shifted. Also, we compare
shifting the B-scans one or two pixels randomly along the
spatial dimensions.

Deep learningmodels

All our deep learning architectures consist of an initial pro-
cessing block and a baseline block. For the baseline block,
we adapt the idea of densely connected neural networks
(densenet) [11]. Our baseline block consists of three densenet
blocks connected by average pooling layers. Each densenet
block consists of 2 layers with a growth rate of 10. After the
final densenet block, we use a global average pooling layer
(GAP) for connecting the three-dimensional linear regres-
sion output layer. Note, the output y of the architecture is the
relative translation between volume xt0 and xtn in all spatial

Fig. 4 Shown are 30 example trajectories for the translations in the
spatial dimensions, each trajectory consists of a sequence of five target
shifts Δsi (circle)

directions. Using this baseline block, we evaluate five differ-
ent initial processing concepts for motion estimation based
on 4D OCT data, shown in Fig. 5.

First, we follow the idea of a two-path architecture for
OCT-based motion estimation [9]. This architecture individ-
ually processes twoOCTvolumes up to a concatenation point
by a two-path CNN with shared weights. At the concatena-
tion point, the outputs of the two paths are stacked into the
channel dimension and subsequently processed jointly by a
3D CNN architecture. In this work, we use three CNN layers
for the initial two-path part and our densenet baseline block
with 3D convolutions (DensNet3D) for processing after the
concatenation point. In the first instance, we only consider
the initial volume xt0 and the last volume xtn of a sequence to
estimate the relative translation. We refer to this architecture
as Two-Path-3D.
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Fig. 5 Our proposed network architectures. The networks receive volumes xti from a stream of volumes to predict the motion between the volumes
xt0 and xtn . Note, for the multi-path architectures, the weights are shared across the paths

Second, we use Two-Path-3D and consider predicting the
relative translation between the initial and last volume, based
on the sum of the relative translations between two subse-
quent volumes of a sequence. In thisway, the network obtains
information from the entire sequence. The network receives
the input pairs [xt0 , xt1 ], [xt1 , xt2 ], [xt1 , xt2 ], [xt2 , xt3 ], [xt3 ,
xt4 ], and the estimations are added to obtain the final network
prediction y. Note, we train our network end-to-end based on
the relative translation between the initial and the last volume
and the network prediction y. We refer to this architecture as
S-Two-Path-3D.

Third, we extent the idea of a two-path architecture to pro-
cessing of an entire sequence of volumes, instead of using
only two volumes as the networks input. For this purpose, we
extend the two-path architecture to a multi-path architecture,
while the number of paths is equal to number of volumes
used. Note, similar to the two-path CNN, the multi-path lay-
ers consists of three layers with shared weights, followed
by our densenet baseline block with 3D convolutions (Den-
sNet3D). We refer to this architecture as Five-Path-3D.

Fourth, we use a 4D convolutional neural network, which
employs 4D spatio-temporal convolutions and hence jointly
learns features from the temporal and spatial dimensions. The

input of this network is four dimensional, (three spatial and
one temporal dimension) using a sequence of volumes. This
method consists of an initial convolutional part with three
layers, followedbyour densenet block using 4Dconvolutions
throughout the entire network. We refer to this architecture
as Dense4D.

Fifth, we combine the idea of 4D spatio-temporal CNNs
and multi-path architectures. At first, we split the input
sequence and use a multi-path 3D CNN to individually
process each volume of the sequence. However, instead
of concatenating the volumes along the feature dimension
at the output of the multi-path CNN, we reassemble the
temporal dimension by concatenating the outputs into a tem-
poral dimension. Then, we employ our DenseNet4D baseline
block. We refer to this architecture as Five-Path-4D.

Training and evaluation

We train our models to estimate the relativemotion of an ROI
using OCT volumes. Hence, we minimize the mean squared
error (MSE) loss function between the defined target motions
Δstn and our predicted motions ytn .
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Table 1 Comparison of the
different models for motion
estimation. Our errors refer to
the translation Δs between the
template and the last volume of
a motion sequence. Errors are
given in mm

MAE Δsx MAE Δsy MAE Δsz rMAE aCC (%)

Two-Path-3D 0.45 ± 0.52 0.42 ± 0.52 0.18 ± 0.15 0.34 ± 0.39 85.47

S-Two-Path-3D 0.20 ± 0.21 0.15 ± 0.16 0.13 ± 0.12 0.16 ± 0.17 97.70

Five-Path-3D 0.35 ± 0.45 0.18 ± 0.25 0.11 ± 0.09 0.21 ± 0.26 93.39

Dense4D 0.22 ± 0.21 0.20 ± 0.24 0.13 ± 0.11 0.19 ± 0.19 96.86

Five-Path-4D 0.16 ± 0.18 0.13 ± 0.15 0.10 ± 0.09 0.13 ± 0.14 98.58

Bold highlights the best performing method/results

L = 1

N

N
∑

j=1

∥

∥

∥Δs{ j}
tn − y{ j}

tn

∥

∥

∥

2
(1)

Our goal is to estimate the relative motion between an ini-
tial volume xt0 and a final volume xtn , corresponding to the
target shiftΔstn . Given the nature of our acquisition setup, the
intermediate shiftsΔsti are also available.As these additional
shifts represent additional motion information, we hypothe-
size that they could improve model training by enforcing
more consistent estimates and thus regularize the problem.

We incorporate the additionalmotion information by forc-
ing our models to also predict the relative shifts of previous
volumes xtn−1 and xtn−2 . Thus, we also consider the relative
translationsΔstn−1 andΔstn−2 andwe extent the network out-
put by also predicting ytn−1 and ytn−2 . Note, the additional
output ytn−1 and ytn−2 is only considered during training and
not required for application.

For optimization, we propose and evaluate the following
loss function and introduce parameters wn−1, wn−2 ∈ [0, 1]
for weighting of the additional temporal information, intro-
duced as a regularization term.

L = 1

N

N
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∥
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− y{ j}
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∥

∥

∥

2
(2)

We train all our models for 150 epochs, using Adam for
optimization with a batch size of 50. To evaluate our models
on previously unseen tissue regions, we randomly choose
five independent ROIs for testing and validating each. For
training, we use the remaining 30 ROIs.

Results

First, we compare the different methods and report the
mean absolute error (MAE), the relative mean absolute error
(rMAE) and average correlation coefficient (aCC) for our
experiments in Table 1. The MAE is given in mm based on
the calibration between galvo motor steps and image coor-
dinates. The rMAE is calculated by dividing the MAE by

Table 2 Number of parameters and inference times for all models

Number of parameters Inf. time (ms)

Two-Path-3D 143913 3.74 ± 0.52

S-Two-Path-3D 143913 5.84 ± 0.32

Five-Path-3D 208713 5.23 ± 0.27

Dense4D 270283 9.78 ± 0.74

Five-Path-4D 258323 9.34 ± 0.67

targets’ standard deviation. We state the number of parame-
ters and inference times for all models, see Table 2. For all
experiments, we test our results for significant differences
in the median of the rMAE using Wilcoxon signed-rank test
withα = 0.05 significance level.Overall, using a sequenceof
volumes improves performance significantly and Five-Path-
4D performs best with a high aCC of 98.58%. Comparing
Five-Path-4D to Two-Path-3D, the rMAE is reduced by a fac-
tor of approximately 2.6. Moreover, employing the two-path
architecture on subsequent volumes and adding the esti-
mations (S-Two-Path-3D) perform significantly better than
directly using the initial and the last volume (Two-Path-3D)
of a motion sequence.

Second, we extent the comparison of our models and
present the MAE over different motion magnitudes, shown
in Fig. 6. The error increases with an increasing magnitude
of the motion for all models. Comparing the different models
shows that the error increases only slightly for Five-Path-4D,
compared to the other models.

Third, Table 3 shows how rotations affect the performance
for our best performing model Five-Path-4D during evalua-
tion. First, we consider rotations as noise during motion and
do not transform the target shifts. Second, we consider rota-
tions as part of the motion and transform the target shifts
accordingly. For small rotation angels αmax < 5◦, perfor-
mance is robust and hardly reduced. For larger rotations
angels αmax > 5◦, lateral estimation performance is affected
when rotations are considered as noise, while performance
remains similar when rotations are considered as part of the
motion.

Fourth, Table 4 demonstrates how motion distortions
affect performance. We evaluate different magnitudes of
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Fig. 6 MAE for increasing
motion magnitudes. Results are
shown for four motion groups,
covering increasing magnitudes
of motion
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Table 3 Evaluation of the performance for different rotation angels dur-
ing motion. We evaluate the rotation as noise or as part of the motion,
where the ground truth Δs is rotated accordingly. The rotation angle
αmax refers to the relative rotation between the initial template volume

and the last volume of a sequence. Results are shown for the architec-
ture Five-Path-4D. The errors refer to the translation Δs between the
template and the last volume of a motion sequence and are given in mm

αmax MAE Δsx MAE Δsy MAE Δsz rMAE aCC (%)

Noise 2◦ 0.17 ± 0.18 0.13 ± 0.15 0.10 ± 0.09 0.13 ± 0.14 98.56

5◦ 0.19 ± 0.18 0.15 ± 0.15 0.09 ± 0.09 0.14 ± 0.14 98.44

10◦ 0.23 ± 0.19 0.16 ± 0.16 0.10 ± 0.09 0.17 ± 0.14 97.95

20◦ 0.34 ± 0.25 0.23 ± 0.20 0.10 ± 0.09 0.22 ± 0.18 96.04

Motion 2◦ 0.16 ± 0.18 0.13 ± 0.15 0.09 ± 0.09 0.13 ± 0.14 98.60

5◦ 0.16 ± 0.18 0.14 ± 0.15 0.10 ± 0.09 0.14 ± 0.14 98.55

10◦ 0.17 ± 0.18 0.16 ± 0.15 0.10 ± 0.09 0.15 ± 0.14 98.35

20◦ 0.19 ± 0.20 0.23 ± 0.19 0.10 ± 0.09 0.18 ± 0.16 97.48

motion distortions. The results show that performance is
hardly reduced when only fewmotion distortions are present
(pdist < 10%). However, as we increase the amount of
motion distortions, performance is notably affected, yet, per-
formance is recovered when distortions are also considered
during training.

Fifth, we address the temporal regularization strategy, see
Table 5 for our best performing model Five-Path-4D. We
report performance metrics for various weighting factors
wn−1 and wn−2. Our results demonstrate that using the reg-
ularization strategy improves performance. Fine-tuning the
weights improves performance significantly with a high aCC
of 99.06% for aweighting ofwn−1 = 0.75 andwn−2 = 0.75.

Discussion

Motion estimation is a relevant problem for intraoperative
OCT applications, for example in the context of motion
compensation [13] and surgical tool navigation [28]. While
previous approaches for motion estimation relied on a tem-
plate and moving images, we learn a motion vector from an
entire sequences of OCT volumes. This leads to the challeng-
ing problem of 4D spatio-temporal deep learning.

We design three new CNNmodels that address 4D spatio-
temporal processing in different ways. While Five-Path-3D
is an immediate extension of the previous two-path approach
[9], our Five-Path-4D and Dense4D models perform full 4D
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Table 4 Results for Five-Path-4D when motion distortions are applied
during evaluation; pdist refers to the probability that a B-scan is shifted.
We evaluate shifting the B-scans one (E-1) or two pixels (E-2) during
evaluation. Also, we consider motion distortions of two pixels during

training and evaluation (T/E-2). Our errors refer to the translation Δs
between the template and the last volume of a motion sequence. Errors
are given in mm

Type pdist (%) MAE Δsx MAE Δsy MAE Δsz rMAE aCC (%)

E-1 50 0.31 ± 0.33 0.29 ± 0.29 0.14 ± 0.11 0.25 ± 0.24 94.41

E-1 25 0.20 ± 0.22 0.20 ± 0.20 0.11 ± 0.10 0.17 ± 0.17 97.37

E-1 10 0.16 ± 0.18 0.16 ± 0.17 0.10 ± 0.09 0.14 ± 0.15 98.25

E-2 50 0.33 ± 0.35 0.28 ± 0.28 0.14 ± 0.12 0.25 ± 0.24 94.27

E-2 25 0.20 ± 0.21 0.20 ± 0.21 0.12 ± 0.10 0.17 ± 0.17 97.39

E-2 10 0.17 ± 0.18 0.15 ± 0.16 0.10 ± 0.09 0.14 ± 0.14 98.27

T/E-2 50 0.18 ± 0.21 0.15 ± 0.15 0.10 ± 0.08 0.14 ± 0.15 97.97

Table 5 Evaluation of the
temporal loss regularization
using different weighing factors
wn−1, wn−2. Results are shown
for the architecture
Five-Path-4D with respect to
predicting the motion Δs
between the template and the
last volume of a sequence.
Errors are given in mm

wn−1 wn−2 MAE Δsx MAE Δsx MAE Δsx rMAE aCC (%)

0 0 0.16 ± 0.18 0.13 ± 0.15 0.10 ± 0.09 0.13 ± 0.14 98.58

1 0 0.15 ± 0.22 0.12 ± 0.13 0.11 ± 0.10 0.13 ± 0.15 98.15

0.75 0 0.14 ± 0.13 0.11 ± 0.10 0.13 ± 0.10 0.14 ± 0.11 98.90

0.5 0 0.10 ± 0.09 0.14 ± 0.11 0.10 ± 0.08 0.12 ± 0.10 99.02

0.25 0 0.11 ± 0.11 0.14 ± 0.13 0.11 ± 0.09 0.12 ± 0.11 98.92

1 1 0.11 ± 0.10 0.19 ± 0.17 0.10 ± 0.09 0.14 ± 0.12 98.71

0.75 0.75 0.09 ± 0.09 0.11 ± 0.10 0.10 ± 0.08 0.10 ± 0.09 99.06

0.75 0.5 0.12 ± 0.10 0.10 ± 0.11 0.10 ± 0.08 0.11 ± 0.10 99.03

Bold highlights the best performing method/results

data processing. For a fair comparison, we also consider pair-
wise motion estimation along the sequence using Two-Path-
3D, aggregated to a final estimate. Our results in Table 1
show that the two-path method using only the start and the
end volume performs worse than the other methods. This
demonstrates that there is not enough information for motion
estimation or the motion is too large.

For using a full sequence of volumes, the Five-Path-3D
CNN performs significantly worse than the other deep learn-
ing approaches. This indicates that stackingmultiple volumes
in the models feature channel dimension is not optimal for
temporal processing. This has also been observed for spatio-
temporal problems in the natural image domain [22]. This
is also supported by pair-wise processing with S-Two-Path-
3D which shows a significantly higher performance than the
feature stacking approach and a higher performance than
Dense4D. Our proposed 4D architecture outperforms all
other approaches, including the previous deep learning con-
cepts using two volumes [9,16] and pair-wise processing.
Thus, we demonstrate the effective use of full 4D spatio-
temporal information with a new deep learning model.

Next, we also consider the effect of different motor shift
distances for our problem. Note, faster movements lead to
larger distance between subsequent volumes of a sequence
and to reduced overlap, making motion estimation harder
as there are fewer features for finding correspondence. The

results in Fig. 6 show the performance for different distances
between volumes. As expected, we observe a steady increase
with larger distances for all models. For the approaches using
just two volumes, the increase is substantial, while it remains
moderate for the 4D spatio-temporal models. Thus, 4D data
are also beneficial for various magnitudes of motion to be
estimated, and we demonstrate that the models effectively
deal with different spatial distances between time steps.

Moreover, Table 3 shows how rotations affect perfor-
mance for our best performing method when applied during
evaluation. When rotations are considered as noise, only for
large rotations αmax > 5◦ performance is notably reduced.
However,when rotations are considered as part of themotion,
performance remains similar even for larger rotations. As
rotations were not present in the training data, the results
indicate that our models are robust with respect to rotations.

Furthermore, we consider the problem of potential motion
artifacts. The OCT device we employ is able to acquire
an OCT volume in 1.2 ms. According to Zawadzki et al.,
motion artifacts are not present for volume acquisition speeds
below 100 ms [27]. However, to ensure that our methods are
applicable to slower OCT devices as well, we consider the
effect of fast and irregular motion that may cause image dis-
tortions. We consider motion distortions as lateral or axial
shifts between B-scans of an OCT volume, similar to pre-
vious works [14,26,27]. The results in Table 4 demonstrate

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:943–952 951

that motion distortions applied only during evaluation can
affect performance. This highlights the importance of fast
volumetric imaging when 4D data are used for motion esti-
mation. However, when motion artifacts are also considered
during training, performance can be recovered. These results
indicate that using deep learning with 4D data is a viable
approach, even if data are affected by fast and irregular
motion distortions.

As temporal information appears to be beneficial at the
model input, we also consider usage at the model output.
Here, we introduce a regularization strategy which forces
the model to learn consecutive motion steps. We also intro-
duce weighting factors for fine-tuning of our approach. Our
results in Table 5 demonstrate that the regularization method
appears to be effective. While a weighting equal to one does
not lead to an immediate performance improvement, using
a weighing of wn−1 = 0.75, wn−2 = 0.75 improves per-
formance notably up to an aCC of 99.06 %. As a result,
providing more information on the trajectory during training
appears to be helpful for 4D motion estimation.

While our 4Ddeep learningmethods significantly improve
performance, their more costly 4D convolution operations
also affect inference times which is important for applica-
tion when real-time processing is required. Inference times
in comparison with model size are shown in Table 2. While
Five-Path-4D significantly outperforms S-Two-Path-3D in
terms of motion estimation performance, S-Two-Path-3D
allows for faster predictions. Thus, there is a trade-off
between performance and inference time for the different
architectures. However, with an inference time of 107 Hz,
our 4D deep learning methods are already a viable approach
for real-time motion estimation which could be improved in
the future by using more powerful hardware or additional
low-level software optimization.

Conclusion

We investigate deep learning methods for motion estimation
using 4D spatio-temporal OCT data. We design and eval-
uate several 4D deep learning methods and compare them
to previous approaches using a template and a moving vol-
ume. We demonstrate that our novel 3D–4D deep learning
method significantly improves estimation performance on
a tissue data set, compared with the previous deep learning
approach of using two volumes.Weobserve that largemotion
is handled well by the 4D deep learning methods. Also, we
demonstrate the effectiveness of using additional temporal
information at the network’s output by introducing a regular-
ization strategy that forces the 4Dmodel to learn an extended
motion pattern. These results should be considered for future
applications such as motion compensation or the adjustment
of surgical tools during interventions. Also, our 4D spatio-

temporal methods could be extended to other problems such
as ultrasound-based motion estimation.
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