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Abstract

This dissertation focuses on the design of distributed congestion control algorithms for TCP/IP
networks that are more powerful by utilizing the theory of Congestion Pricing as a mathemat-
ical framework. Currently implemented congestion control algorithms have several drawbacks
that lead to sub-optimal usage and unfair distribution of network resources. Further, new appli-
cations have significantly changed the demand for network performance and quality of service.
As will be shown, the use of wireless links and large link capacities can cause instability of the
algorithms in use today.

Congestion Pricing is a strategy based on economics and optimization theory: A congestion
measure (shadow price) is computed at each network node and fed back to the source. The
sources adapt their rates according to utility functions and aggregate pricing information. It can
be shown that this will lead to a social optimum for the entire network while maintaining both
low queue sizes and high utilization. By choosing the user’s utility function, different classes of
service can be implemented without additional network support. Thus, the increasing demands
on the network can be met without changing the Internet’s fundamental principle of keeping
the network nodes simple, and thus retaining its flexibility and scalability. At the same time,
efficiency will also be significantly improved.

In this dissertation, Congestion Pricing will be applied to the Transmission Control Proto-
col (TCP). First, an implementation is developed that makes use of the full pricing information.
Then, in an effort to make the new TCP source compatible with the existing network and TCP
receivers, the pricing information is reduced to a single bit. This reduction of information intro-
duces new challenges that are addressed by a “Single Bit Resource Marking (SBRM)” proposal
developed by the author of this dissertation. Its performance is evaluated by comparison with
other proposals and current congestion control algorithms.

While the efficiency and scalability problems are solved by the application of Congestion
Pricing, a control theoretic model is further developed to examine the linear stability of the
proposed algorithms. Current congestion control algorithms can become unstable in realistic
scenarios, which significantly harms network performance. SBRM, in contrast, is stable over a
wider range of network scenarios, and the impact on performance parameters is lower in cases
of instability.

Lastly, multimedia applications are also addressed in this dissertation. They usually cannot
change their transmission rate. Therefore, a distributed Call Admission Control using Conges-
tion Pricing is developed. Even without special network support, it will be effective and highly
efficient. Since the Call Admission Control works in a distributed manner to make it scalable,
it can be implemented in network border gateways or in the sources themselves.
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Chapter 1

Introduction

The Internet, successor of the ARPANET, is a world wide computer network driven by a pro-
tocol suite commonly known as “TCP/IP”. This protocol suite was officially deployed on the
Internet in 1983 [Pos81b], creating a standard for the interconnection of different computer and
local area network architectures. The Internet Protocol (IP) was already developed in 1978 to
allow the addressing of computer systems at any network connected to the former ARPANET.
Still earlier, in 1974, the Transmission Control Protocol (TCP) was introduced. It replaced the
Network Control Protocol (NCP), which was the first transport layer protocol of the ARPANET.

TCP has four main purposes: The first purpose is the establishment and tear-down of logical
connections between two hosts as well as the segmentation of data transmitted between them. In
addition, TCP ensures reliability of the transmissions by transparently retransmitting segments
that were not received correctly. The third purpose is flow control. It is required to prevent
overflow of the receiver’s buffers. Flow control is different from congestion control, which is
the fourth purpose of TCP. Since the Internet lacks a call admission control, the network may
become overloaded. TCP adapts its sending rate automatically according to the network state.

The TCP/IP protocol suite has become extremely successful. However, when these pro-
tocols were developed, the Internet was mostly a research network connecting a few hundred
computers of various universities. Data link capacities were rather small. Nowadays, the Inter-
net is an international network connecting more than 170 million hosts [ISC03] in households,
companies and universities. The capacity of the data transfer links has grown dramatically and
will continue to grow in the future. New kinds of hosts are connected to the Internet such as
mobile phones and ubiquitous devices. TCP/IP was not designed for such growth. For exam-
ple, while twenty years ago four bytes seemed more than sufficient for addressing the hosts, IP
addresses are now considered a scarce resource. Links were considered to have very small bit
error rates, which is not the case with wireless links that are widely used today. Growing link
capacities and router queue memory sizes also have a negative impact on TCP’s fairly complex
rate control loop. And finally, the applications on the Internet are changing. Until a few years
ago, the world wide web, e-mail, network news, and file transfer were the only dominant ap-
plications. All of these applications are server/client based and use TCP. Today, peer-to-peer
and interactive multimedia applications are becoming popular. They pose different demands
on the network. For example, interactive multimedia traffic requires low latencies, and TCP’s
automatic retransmissions are thus counterproductive. The alternative protocol used today for
multimedia traffic, the User Datagram Protocol (UDP), completely lacks built-in congestion
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Chapter 1: Introduction

control. Since the proportion of UDP traffic on the Internet is growing, congestion control
algorithms for this type of traffic have to be developed.

In this dissertation, drawbacks of current congestion control algorithms and previously as
well as newly proposed modifications will be examined. It will further be demonstrated why
current TCP cannot be used in modern high-bandwidth networks. Congestion control is an
active field of research, and many changes to TCP and new links algorithms in the router queues
have been proposed to address some of the problems of the current TCP. While most additions to
TCP have been proposed as singular “fixes” to some of the problems of TCP, in this dissertation
another approach will be applied that makes use of a mathematical framework derived from
economics and optimization theory. It can be used to holistically redesign TCP and the link
algorithms for optimal performance.

This alternative approach, called “Congestion Pricing”, is based on cost and utility func-
tions. The cost functions describe link costs when they are busy or even overloaded. The utility
functions describe the benefit of the user when he can use the network at a certain rate. Using
these functions, the network can be optimized for maximum utility and minimum cost, for ex-
ample minimum queuing delay. While this optimization problem would be trivial if it could be
solved centrally, in practice this is not possible since the current network state and users’ prefer-
ences are not known. Even if one built such a central controller, it would not scale and therefore
not be able to handle the large number of flows on the Internet backbones. However, it was
shown that the optimization problem can be modified to a “distributed optimization problem”,
where each host on the network solves a separate optimization problem. The user information
is available at the end systems, thus the only problem is the transport of network state and cost
information to the hosts.

This mathematical framework can be applied to solve a large number of problems with TCP,
eventually leading to the desired “Scalable, Efficient and Stable Congestion Control” for IP net-
works and the Internet specifically. In this dissertation it will be shown how the mathematical
framework can be applied to TCP. Practical implementation issues and compatibility with cur-
rent TCP will also be addressed as well as the resulting performance improvements. Congestion
Pricing can also be used for other protocols such as UDP to implement a rate control, and it can
be used for distributed call admission control. This will be examined in the last part of this
dissertation.

To further motivate the topic of this dissertation and to present the background, in Chapter 2
current TCP variants and the problems of their congestion control algorithms will be presented.
Some changes and additions will also be discussed that have been proposed to solve some of
the problems. They will be used in the remainder of this dissertation as base for performance
comparisons.

In Chapter 3, the Congestion Pricing framework will be introduced. The mathematical
optimization problem will be presented, and how a distributed version also solves the global
optimization problem. This framework is the mathematical basis for the algorithms that will be
used throughout this dissertation.

To apply Congestion Pricing theory to TCP, significant changes are necessary. A TCP vari-
ant that makes full use of Congestion Pricing theory will be developed in Chapter 4. It will then
be compared to current TCP variants to demonstrate its superior performance. This version,
however, is not compatible with current IP networks such as the Internet. Only limited informa-
tion can be used because current protocols do not allow additional fields. Therefore in Chapter
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5, ways to apply Congestion Pricing to the Internet will be presented. Different approaches will
be compared, finally leading to an entirely new approach that outperforms all other variants and
conventional TCP by far. This new TCP variant, “Single Bit Resource Marking (SBRM)”, can
be used to solve almost all of the problems with current TCP.

Only recently, control theoretic analysis of Internet protocols became an active field of re-
search. Such models can be used to evaluate linear stability of congestion control algorithms.
A control theoretic model that was developed for SBRM will be introduced in Chapter 6. Using
the model, scalability of SBRM with regard to stability can be evaluated. Although SBRM may
also encounter stability problems, they occur later and with less impact than what is observed
with conventional TCP. The model can be used to better understand SBRM and to develop even
better algorithms.

In Chapter 7, Congestion Pricing theory will be applied to multimedia traffic. Two new
approaches for congestion control with these traffic types will be proposed: A distributed Call
Admission Control (CAC) and dynamic quality adjustment of streaming media as a reaction
to congestion signals. It will further be shown that Congestion Pricing can be well applied to
multimedia traffic. However, additional modifications are required.

Finally, to conclude, the presented methods and results will be summarized in Chapter
8. Furthermore, some potential applications and further improvements that have not been ad-
dressed within this dissertation will be presented.
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Chapter 2

Congestion Control Background

2.1 Congestion Control in Packet Switched Networks
In packet switched networks, when multiplexing different data streams, temporary overload
conditions can be resolved by queuing packets until the router or the output line becomes avail-
able again (cf. Figure 2.1.1). However, the average load has to stay well below 100%. If the

Figure 2.1.1: Multiplexing four sources

load is higher, the queues will continue to grow and overflow. But also temporary overload
conditions can be bad for some types of applications, for example real-time applications, as
the queuing introduces an additional delay. Some networks control the load by implementing a
Call Admission Control (CAC) and by policing flows according to previously announced traffic
parameters (for example the Integrated Services approach by the IETF [BCS94]). In such a
case, transmission rates of every stream are fixed or can only vary within a range described by
traffic parameters. Bandwidth for every flow is reserved in advance via a Resource Reservation
Protocol (RSVP). Thus, this is an open-loop control approach. This type of approach has a
significant disadvantage. Every router has to keep track of all traffic parameters of every flow
passing through it. It also has to police every flow to ensure that the traffic parameters are not vi-
olated. This requires the storage of large amounts of state information, and therefore generates
scalability problems. Alternative concepts such as the Differentiated Services approach [LR98]
solve the scalability problem by focusing on traffic aggregates and by providing only Quality of
Service (QoS) classes, but cannot prevent overflows as single flows are not policed, and again
generally only an open-loop control approach is used to decide whether a new flow is accepted.
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Chapter 2: Congestion Control Background

So-called best effort networks do not keep any state information at all. There is no guaran-
tee that a packet is delivered. There are no upper bounds for delays, and re-routing is possible.
These networks always accept new traffic, but in case of overload, packets are discarded. Gen-
erally, best effort networks perform well while the load is clearly below the network’s capacity.
Without any congestion control, every user would try to use the full bandwidth he needs. But
since overload of the network is very likely, such behavior on the part of all users would at
some stage lead to a congestion collapse (cf. Figure 2.1.2). In case of a congestion collapse,

Figure 2.1.2: Congestion collapse

the effective throughput becomes worse, although the offered load is increased. For this reason,
congestion control is necessary to ensure reduction in load before a congestion collapse can
occur. For best effort networks, a closed-loop control approach is used. Whenever a source
notices packet loss due to overload, it will reduce load on the network by reducing its trans-
mission rate. Thus, packet losses are negative feedback signals in the congestion loop. The
advantage of this type of congestion control is its scalability. It is solely implemented in the
sender and receiver. No network interaction is needed — besides the packet drops in case of
overflowing queues. Additionally, because of the closed-loop control, reactions to changing
network conditions are possible. This approach to congestion control has been implemented in
the Transmission Control Protocol (TCP) [Pos81c], the dominant transmission layer protocol
on the Internet and other Internet Protocol (IP) [Pos81a] based networks.

2.2 Elastic Traffic vs. Inelastic Traffic
Throughout the dissertation, two types of traffic will be distinguished: elastic traffic and in-
elastic traffic [She95]. Inelastic traffic cannot change its transmission rate. For example, voice
traffic is encoded at a certain data rate and thus requires a matching transmission rate. For this
kind of traffic, a Call Admission Control (CAC) is usually employed. In telephony networks,
the call admission control prevents overloading of the networks and ensures reliable service,
but sometimes a telephone call is blocked and the caller hears a special busy signal. On the
Internet, however, call admission controls do not exist. Until now, this was not a problem, as
the predominant traffic type is elastic traffic. Elastic traffic can adjust its rate and therefore re-
spond to congestion. E-mail is an example for an application that generates elastic traffic. If the
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2.2 Elastic Traffic vs. Inelastic Traffic

network is overloaded, the e-mail will be transferred at a lower speed. It does not really matter
whether it takes two seconds or one minute for the e-mail to arrive, however, a faster arrival is
better than a slower arrival.

Both types of traffic can be described by utility functions. They show the relationship be-
tween the rate at which traffic can be transmitted and the user’s corresponding utility. Obviously,
for inelastic traffic the user’s utility is zero when the available rate is below the required rate.
The utility is 100% when the available rate rate matches the required rate, and it will not in-
crease when the available rate exceeds the required rate. This is modeled by a step function as
shown in Figure 2.2.1a. For elastic traffic, however, the utility will increase as the available rate
increases. Usually it is assumed that for elastic traffic the utility function is concave. Under this
condition, the user’s utility increases at slower pace than the transmission rate. This is shown in
Figure 2.2.1b.

0   100%
0  

100%

transmission rate

ut
ili

ty

(a) Inelastic traffic

0  100% 
0 

100%

transmission rate

ut
ili

ty

(b) Elastic traffic

Figure 2.2.1: Utility functions for inelastic and elastic traffic

Since the Transmission Control Protocol (TCP) [Pos81c] adjusts its transmission rate au-
tomatically, it is a good transport layer protocol for elastic traffic, but bad for inelastic traffic.
Thus, TCP is usually used by applications and corresponding protocols such as web browsers
(HTTP [FGM+99]), e-mail (SMTP [Pos82]) , news readers (NNTP [KL86]), and file down-
loads (FTP [PR85]). TCP is still the dominant protocol on the Internet, accounting for more
than 95% of the bytes transmitted [Sch03]. Even according to the estimated number of flows,
TCP dominates with 65 – 70%. Consequently, to optimize the use of network resources, it is
important to optimize TCP’s congestion control algorithms.

The remaining 5% of bytes transmitted are due to the User Datagram Protocol (UDP)
[Pos80]. UDP is a simple protocol that neither adjusts the transmission rate nor ensures relia-
bility of the transmissions. It is predominantly used for short transfers such as name resolution
(DNS [Moc87]) and time updates (NTP [Mil92]). However, since it does not control the trans-
mission rate, UDP is also used for all types of inelastic traffic including multimedia streams.
An increase of UDP’s bandwidth share can therefore be expected in the future, as multimedia
applications are becoming more popular in IP networks.
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Chapter 2: Congestion Control Background

2.3 Congestion Control Mechanisms in Conventional TCP
Variants

2.3.1 Properties of TCP

As mentioned in the previous Section 2.2, TCP is the dominant transport layer protocol on the
Internet. Usually, TCP is used by an application through a byte-stream socket. The payload is
automatically segmented such that it can be stored in an IP packet. The size of each payload
segment is at most the Maximum Segment Size (MSS), which depends on the Maximum Data-
gram Data Size (MDDS) or the respective Maximum Transfer Unit (MTU), that the network
can support [Pos83]:

MTU = MDDS+ sizeo f (TCP-header)
= MSS+ sizeo f (TCP-header) + sizeo f (IP-header).

Additionally, in contrast to UDP, TCP opens a virtual connection between both hosts and en-
sures reliable and ordered data transfer by sorting received segments and retransmitting lost
segments (cf. Figure 2.3.1).

Figure 2.3.1: UDP vs. TCP

Figure 2.3.2 shows the structure of a TCP packet. To ensure reliability, all segments are
numbered and the reception is acknowledged. The sequence number is the number of the last
byte of the payload. Whenever the receiver correctly receives a TCP packet, an acknowledgment
is generated that contains the first byte of missing (or expected) payload. For the purpose of this
dissertation, the unit bytes for segment and acknowledgment numbers is not used. Instead, just
use ordinal numbers are used. If all packets are using the maximum payload size, both values
are related by the maximum segment size (MSS). Additionally, in contrast to the standard, the
acknowledgment acknowledges the last segment that was received in order and correctly, not
the next expected one. This is done to simplify explanation without changing functionality, and
a common practice found in textbooks on networks.
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Figure 2.3.2: Structure of a TCP packet

TCP is a sliding window protocol. The sliding window, the so-called transmission window,
limits which segments may be transmitted. Only segments that lay within the transmission
window may be transmitted. When a segment at the lower end of the window is acknowledged,
the window will slide such that a new segment enters the window and may be transmitted.
The size of the transmission window is determined by the congestion window (CWND). Again,
according to the standard, window sizes are given in bytes. Here the number of segments is
used instead. Congestion window sizes can be translated from number of segments to number
of bytes by using

cwndbytes = MSS · cwndsegments.

The maximum window size without special options is 64 kilobytes. For simplicity, a MSS of 1
kByte is used; thus in the presented examples the maximum window size is 64 segments.

Since the matching acknowledgment for a transmitted segment is received roughly one
round-trip time later, the window size is approximately equivalent to the number of segments
that can be transmitted during one round-trip time. Thus the sending rate can be estimated by:

x(t) ≈ cwnd(t)
RTT (t)

. (2.3.1)

This relation will be used throughout the dissertation.

2.3.2 TCP’s Fundamental Algorithms

In this subsection, the conventional algorithms that change the size of the congestion window
[APS99] and hereby adapt the transmission rate will be presented.
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Chapter 2: Congestion Control Background

Slow Start (SS)

When a new connection is established, the size of the congestion window is set to one segment,
and the slow start threshold (SST) is set to 32 segments. As long as the size of the congestion
window is below the slow start threshold, the slow start algorithm is used. For every segment
that is correctly acknowledged, the congestion window size will be increased by one segment.
Thus, after one round, when a full window of segments has been transmitted and acknowledged,
the congestion window size, and thus also the depending transmission window size, would have
doubled (cf. Figure 2.3.3). Although the exponential growth of the congestion window size

Figure 2.3.3: Growth and advancement of the transmission window

should perhaps be called “fast”, the slow start algorithm is named “slow start” because the
congestion window size is initially one. If the receiver uses so-called delayed ACKs [Cla82,
Bra89], generally only every second segment is acknowledged, thus leading to a growth of the
congestion window that is only half as fast as without delayed acknowledgments.1

When a segment is lost, it will not be acknowledged. The absence of the acknowledgment
will then be detected by a timeout, the so called Retransmission Timeout (RTO). After such a
timeout, the slow start threshold is set to half of the current congestion window size, but never
less than two segments, and slow start is entered again.

Congestion Avoidance (CA)

As soon as the congestion window size reaches the slow start threshold, another algorithm,
the congestion avoidance algorithm, is entered. In this case, the congestion window is only
increased by one segment when a full window of segments has been acknowledged. Thus, the
growth is now linear as shown in Figure 2.3.4. When packet loss is detected by a retransmission
timeout, the slow start threshold is adjusted to half of the current congestion window size, and
slow start is entered.

Fast Retransmit

With fast retransmit, the sender utilizes the fact that the receiver acknowledges all segments that
it receives. For each segment that arrives after a lost one, the receiver will again acknowledge

1Some TCP implementations will detect that the acknowledgment covers two segments and increase the con-
gestion window just like two acknowledgments would have done. This is an option that was added later to fight ma-
nipulated TCP stacks that would try to increase the sending rate by generating additional acknowledgments [All03].
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Figure 2.3.4: Schematic progression of the congestion window

the last segment that was received before the lost one. For example, the sender sends segments
1, 2, and 3. Segment 1 is received and triggers an acknowledgment for itself. Segment 2 is lost,
but segment 3 is received. Segment 3 cannot be acknowledged, since segment 2 is still missing.
Instead, segment 1 is acknowledged again. Because of this, the sender can detect the missing
packet by the duplicate acknowledgments. Usually, a retransmission is triggered when the third
duplicate acknowledgment arrives. This is called fast retransmit. Since the previously used re-
transmission timeout (RTO) is significantly larger than a round-trip time (RTT), fast retransmit
will detect packet losses much faster than the timeout mechanism. However, since three dupli-
cate acknowledgments are required for fast retransmit to work, the congestion window must be
at least the size of four segments (cf. Subsection 2.4.1). After a fast retransmit, the slow start
threshold is set to half of the current congestion window, and slow start is entered.

Fast Recovery

The fast recovery algorithm modifies the behavior after a fast retransmit. Previously, after a
retransmission, the congestion window was reduced to one segment and slow start was entered.
With fast recovery, however, the congestion window is halved and congestion avoidance is
entered after reception of an acknowledgment of the retransmitted segment. Additionally, while
the retransmitted segment is still unacknowledged, the sender stays in the fast recovery phase.
During this phase, the congestion window is also increased for every duplicate acknowledgment
because an acknowledgment indicates that some packet was received and thus left the pipe. This
is called inflation of the congestion window, and will speed up recovery. It is important to note
that fast recovery is only entered after a fast retransmit. Thus, packet loss must be detected by
duplicate acknowledgments. Retransmission timeouts still significantly degrade throughput.
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TCP SACK option

The Selective ACKnowledgment (SACK) option is another solution to the multiple packet loss
problem. Using an optional TCP header, the receiver can tell the sender exactly which acknowl-
edgments were received after a missing one. It was proposed in 1996 [MMFR96].

2.3.3 Important Variants of TCP
After describing the fundamental algorithms of TCP, the conventional TCP variants will be
briefly introduced:

TCP Tahoe

TCP Tahoe appeared in 1988 in the 4.3 BSD Tahoe release. This was the first release that used
the fast retransmit algorithm in addition to slow start and congestion avoidance. There are also
TCP Tahoe versions that do not implement the fast retransmit algorithm. In the remainder of
this dissertation, these versions will be referred to as “old” Tahoe. Most Windows operating
systems use “old” Tahoe.

TCP Reno

TCP Reno adds the fast recovery algorithm to TCP. It was implemented in the 4.3 BSD Reno
release of 1990. Most UNIX operating systems use this variant. TCP Reno is the first TCP
variant that fully implements an “additive increase multiplicative decrease (AIMD)” strategy
of the congestion window. When an acknowledgment is received, the congestion window is
increased linearly by adding 1

cwnd (congestion avoidance algorithm). But when the loss of a
packet is detected, the congestion window is halved, thus the decrease is multiplicative. This
behavior is depicted in Figure 2.3.5. Note that the increase is only roughly linear. Since the
round-trip time (RTT) increases when the queue size increases, the congestion window update
rate does not grow as fast as the congestion window, leading to a concave curve.

TCP NewReno

TCP NewReno, first proposed in 1995/1996, is identical to TCP Reno, however, it uses an
improved fast retransmit algorithm. The fast recovery algorithm allows TCP to recover more
quickly from multiple packet losses. With normal TCP Reno, the fast recovery phase ends with
the first acknowledgment that acknowledges new data, and the congestion window is deflated.
In case of multiple packet losses, this acknowledgment will only acknowledge the segment
before the second segment that was lost. This is called a partial acknowledgment. The modified
fast recovery algorithm will only partially deflate the congestion window and continue the fast
recovery phase, if the received acknowledgment is a partial acknowledgment [FH99]. This
version is used in most modern operating systems.

TCP Vegas

While the classical TCP variants Tahoe, Reno, and NewReno detect congestion by packet loss,
TCP Vegas, proposed in 1994/1995, uses an entirely different approach. TCP Vegas measures
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Figure 2.3.5: AIMD property of TCP Reno

the current round-trip time (RTT) at a high resolution and also keeps the encountered minimum
RTT. Full queues will increase the round-trip time, thus this can be taken as measurement of
congestion.

Similar to (2.3.1), the current transmission rate is calculated as follows:

xactual =
cwnd

RTTcurrent
.

At the same time, the expected transmission rate is calculated:

xexpected =
cwnd

RTTmin
.

If the difference xexpected − xactual is greater than a threshold β, the congestion window is re-
duced. It is increased if the difference is smaller than a threshold α [BP95]. While this approach
is very appealing as it reduces transmission rate when delay increases and before packet loss
occurs, there are significant problems related to round-trip time changes caused by possible
rerouting and load balancers, as well as fairness issues [MLAW99]. TCP Vegas has never been
widely employed, but can optionally be activated in Linux since the kernel version 2.6.6 (2004).
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2.4 Drawbacks of TCP and Proposed Extensions

2.4.1 Major Drawbacks of Conventional TCP Implementations

The transmission rate reduced only after a segment has been lost due to overload.

Except for TCP Vegas, all other conventional TCP versions will reduce the transmission rate
only after a segment has been lost. Thus, overload had already occurred. A good TCP variant
should be able to avoid overload conditions.

Lost segments have to be retransmitted, thus causing a reduced goodput.

Packet losses are used to signal overload. The source will reduce the sending rate, but has
to retransmit the lost segments. In case of overload, packet losses are more likely, and more
packets must be retransmitted, adding additional load to the bottleneck link. Thus, from a
certain threshold, goodput will drop again as overall load increases.

The detection of lost segments is slow or requires a minimum congestion window size.

Generally, lost segments are detected by a retransmission timeout (RTO): If the corresponding
acknowledgment does not arrive before the retransmission timer expires, the segment is consid-
ered lost. Such a timeout is usually very slow (� RTT ) to allow arrival of the acknowledgment
even in cases of delay. Thus, reaction to congestion is slow, too. Alternatively, a lost seg-
ment is detected by three duplicate acknowledgments acknowledging the last correctly received
segment. For this to be possible, the congestion window size must be at least four:

1. Lost segment; no acknowledgment is generated

2. Correctly transmitted segment, generating first duplicate acknowledgment of the previ-
ously received segment

3. Correctly transmitted segment, generating second duplicate acknowledgment

4. Correctly transmitted segment, generating third duplicate acknowledgment

Most TCP versions do not recover well from multiple packet losses.

Conventional router queues for the Internet are drop-tail queues. They will drop every packet
that arrives when the maximum queue capacity is exceeded. Since TCP tends to send in bursts, it
is relatively likely that more than one packet is dropped during a period of congestion. Without
SACK option, however, TCP can only detect the first packet that was lost. Subsequently lost
segments can only be detected after the first retransmitted segment has been acknowledged,
which adds additional delay to the detection and recovery process. Also, there must still be
enough packets in transit that three duplicate acknowledgments can be triggered. Otherwise,
retransmissions will only occur after a slow retransmission timeout.
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TCP cannot distinguish between losses due to congestion and due to transient errors.

Packet loss is always interpreted as a congestion signal. However, transient packet losses due
to transmission errors are also possible. For conventional wire based networks, this is not a
problem as congestion losses are much more likely than transient losses. With modern networks
this poses a problem. The TCP transmission rate in bytes per second, BW , as a function of the
packet loss probability p and the maximum packet size in bytes B is given by [FF99]:

BW ≤
1.5
√

2
3 B

RTT
√

p
. (2.4.1)

Thus, for networks that allow high transmission rates, the packet loss probability must be
very low. In high speed networks it therefore is possible that the transient loss probability is in
the same order of magnitude as the congestion loss probability. In such a case, the sources will
unnecessarily reduce the transmission rate instead of just retransmitting the segment that was
lost due to the transmission error. Even worse, in wireless networks transient losses are much
more likely. Thus, conventional TCP is neither suitable for networks with very high capacities
nor for wireless networks.

The rate allocation depends on the round-trip time.

The TCP bandwidth formula (2.4.1) also reveals another property: the bandwidth allocation is
inversely proportional to the round-trip time (RTT). Thus, if two connections compete for the
same bottleneck link and one connection has a larger round-trip delay, it will receive a smaller
share than the other connection. This property does not only introduce unfairness, but can also
lead to starvation of connections with large round-trip times if load is high while the other
connections have significantly smaller round-trip times.

Deterministic drops may lead to the global synchronization problem.

Conventional drop-tail queues drop packets deterministically when the capacity is exceeded.
For this reason, it is likely that several packets from different connections will be dropped at the
same time. All these connections will halve their transmission rate at the same time, causing
the queue to empty again. If the round-trip times are also roughly equivalent, all these connec-
tions will then increase their transmission rate at the same speed until the overload condition
is reached again. This type of synchronization leads to severe low frequency oscillations (cf.
Figure 2.4.1). Using control theoretic models, this intuitive explanation of global synchroniza-
tion can also be shown mathematically. In Chapter 6, such a control theoretic model will be
presented.

Direct coupling of the packet loss probability or queue size and the congestion measure is
problematic.

With conventional TCP, the packet loss probability is used as congestion measure. Further,
the reaction to a congestion signal is fixed. The transmission rate of a single source is always
halved. If many sources use one bottleneck link queue, the overall reaction to packet loss will
be less than if only a few sources use the bottleneck link queue (cf. Figure 2.4.2). Thus, the
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Figure 2.4.1: Oscillations caused by global synchronization
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Figure 2.4.2: Change in resulting rate when reaction to packet loss is the same regardless of the
number of sources (as in TCP Reno)
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congestion measure must be “stronger” if many sources share the same link. A “stronger”
congestion measure in this case is a higher packet loss probability, leading to bad utilization.
Even with so-called Active Queue Management (AQM), where packets are dropped randomly
before the queue becomes empty, the dropping probability usually depends on the queue size.
This leads to increased persistent queue size if many sources share the link.

TCP and drop-tail queues will lead to full queues and high variance.

Since all conventional TCP versions, except for TCP Vegas, only reduce the transmission rate
after packet loss has occurred and otherwise further increase the transmission rate, it is normal
that conventional drop-tail queues will exceed capacity. Thus, drop-tail queues in front of a
bottleneck link will usually maintain a persistent queue size and therefore a persistent queuing
delay. This behavior is not desired. The sole purpose of queues in the core network is to provide
a possibility to temporarily store bursts of packets until the outgoing link becomes free again.

Further, since TCP is designed to reduce the transmission rate in a conservative manner by
halving, it is very likely that the queue size will become small before the next congestion cycle
begins. A high variance of the instantaneous queue size is therefore likely (also cf. Figure
2.4.1). As consequences, bottleneck link utilization will degrade if the queue runs empty; and
queuing delay varies, introducing jitter which is bad for real-time multimedia applications.

The optimal queue capacity is difficult to tune.

Since conventional TCP variants tend to fill queues, large queue capacities will also lead to large
average queue sizes if the link is a bottleneck link. If the queue capacity is too small, packet loss
is likely. Lost packets have to be retransmitted, leading to decreased goodput. Further, multiple
packet losses will cause timeouts, leading to under-utilization of the bottleneck link. If the queue
runs empty, utilization will also degrade. Thus, a network operator has to choose between good
bottleneck link utilization and low queuing delays. Achieving both is not possible. Commonly,
network providers choose queues with large capacities in front of bottleneck links to increase
utilization. As a trade-off for improved utilization and throughput, persistent delay is increased.

TCP does not allow service differentiation or Quality of Service (QoS).

The current TCP/IP based networks are best-effort networks: all traffic is treated the same, and
there is no guarantee that a packet will be received. However, since different applications have
different demands on the network, this may not be sufficient. New applications require Quality
of Service (QoS) guarantees or at least service differentiation.

2.4.2 Explicit Congestion Notification

Explicit Congestion Notification (ECN) [RFB01] was proposed in order to solve the problems
related to packet loss as a congestion measure. Packet loss as a congestion signal is replaced
by codepoints in the IP header: When a router detects congestion, and the source supports Ex-
plicit Congestion Notification (ECN), which is indicated by the ECN-Capable Transport (ECT)
codepoint in the IP header, the router will set the Congestion Experienced (CE) codepoint, but
not drop the packet. The receiver of a packet that has the CE codepoint set will then send a TCP
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acknowledgment with the ECN Echo (ECE) flag being set and continue to set the ECE flag in
all subsequent acknowledgments. When the original sender receives such an acknowledgment,
it will reduce the sending rate just like if the packet was lost, but not retransmit that segment.
It will also set the Congestion Window Reduced (CWR) flag in the next outgoing segment to
indicate that it has received the ECE flag and has reacted. When the receiver receives a segment
with the CWR flag set, it will discontinue to set the ECE flag in the acknowledgments. Such
a handshake procedure increases robustness against loss of acknowledgments, but only allows
for one congestion event per round-trip time.

The ECT and CE codepoints consist of two bits in the IP header which formally used to be
part of the Type-of-Service (TOS) field. The use of two bits allows the signaling of four states:

1. Non-ECN-Capable flow

2. ECN-Capable flow

3. ECN-Capable flow, Congestion Experienced (1)

4. ECN-Capable flow, Congestion Experienced (2)

Although there are several proposals that use the second two states to signal different severities
of congestion, the original proposal argues that full TCP compatibility is required to accommo-
date the incremental deployment of ECN [RFB01]. Since many core network devices are not
yet ECN-aware and modify the TOS field in an incompatible manner, two equal Congestion
Experienced codepoints are necessary to detect such incompatible modifications.

Nevertheless, other researchers argue that a congestion signal that causes a lesser reduction
of transmission rate will be an incentive to deploy the new algorithms [Wel02]. M. Kwon and S.
Fahmy [KF02] proposed an ECN(α/β) algorithm that only requires changes to the TCP source
algorithm and modifies TCP’s increase/decrease behavior to change the congestion window less
aggressively when ECN congestion signals are received. Focusing on fairness, T. Hamann and
J. Walrand [HW00] changed ECN to improve fairness with regard to round-trip time (RTT)
dependency.

It becomes obvious that ECN alone cannot solve the major problems of conventional TCP.
Notably, it adds a new means of transporting congestion information to the source that can be
used for future congestion control algorithms. Such an approach will be introduced in Chapter
5. The original Explicit Congestion Notification is presented and analyzed more in detail in
[Büc01].

2.4.3 Active Queue Management
Active Queue Management (AQM) was proposed to tackle the problem where transmission rate
is only reduced after congestion, i.e. overflow of the queue has occurred. Further, as shown
before, deterministic packet drops or congestion signals often lead to the global synchronization
problem. AQM is also based on a first-in-first-out (FIFO) queue, but unlike drop-tail queues,
packets are dropped or congestion signals are generated in a probabilistic manner before the
queue’s capacity is exceeded. Depending on the implementation, the packet drop probability
depends on the instantaneous or the average queue size, and a certain threshold. Alternatively
to dropping, packets can be marked if the transmission protocol supports congestion indication
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by marks (cf. Explicit Congestion Notification). Only the most commonly known AQM variant,
which is already implemented in modern routers, will be introduced here:

Random Early Detection (RED)

The Random Early Detection (RED) AQM algorithm, originally called Random Early Discard,
changes the packet dropping or congestion signal generating probability depending on the av-
erage queue size of the FIFO queue [FJ93]. When the average queue size is below a minimum
threshold, all packets will enter the queue. When the average queue size grows beyond the
minimum threshold, new packets entering the queue are dropped or marked with a certain prob-
ability pa(pb). The probability pb increases linearly with the average queue size if the average
queue size is between a lower and an upper threshold, and becomes 1 if the upper threshold
is exceeded (cf. Figure 2.4.3). The marking or dropping probability pa is then calculated as

Figure 2.4.3: RED gateway: General principle

follows:

pa = min

([
pb

1− count · pb

]+
,1

)
,

where count is the number of packets that were received after the last packet that was dropped or
marked, and [x]+ = max(0,x). This is done to make the marking/dropping probability a uniform
random variable. Note that RED requires four parameters to be tuned: minimum threshold
thmin, maximum threshold thmax, maximum probability pmax, and weight of the moving average
qw.

Although a carefully tuned RED queue can reduce average queuing delay while keeping
utilization high, and can avoid the global synchronization problem, it does not adapt well to
changing network conditions. Figure 2.4.4 shows the development of the queue size over time.
During the first 15 seconds, many sources are active and compete for the bottleneck link’s
capacity. Then, between the 15th and 30th second, some sources are turned off, thus reducing
competition for the bottleneck link. After 30 seconds, again, many sources compete for the link.

Since every source is greedy and tries to send as much as possible, the bottleneck link should
always be fully saturated, independent from the number of competing sources. Optimally the
sum of all transmission rates should not exceed the bottlenecks capacity, thus leading to a low
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(a) RED settings too aggressive (b) RED settings too conservative

Figure 2.4.4: Tuning of RED parameters

average queue size at all times. Figure 2.4.4a shows a RED queue where the RED parame-
ters were chosen aggressively, such that marking probability is high and queue overflows are
avoided. When the number of active sources is reduced between the 15th and 30th second, the
queue runs empty, leading to under-utilization. If the RED parameters are changed such that
under-utilization is avoided when only a few sources are active, the queue will overflow during
periods where many sources are active (Figure 2.4.4b). Thus, while RED can be tuned for a
certain network condition, it does not scale well with regard to the number of active sources.

Many other drawbacks of RED have been identified in the meantime, and several vari-
ants have been proposed. Some of them are given in [OLW99, FKSS99, MBDL99, FGS01,
HMTG01a]. RED’s characteristics are not in the scope of this dissertation, however, since RED
is currently considered “best practice”, it will be used to benchmark the performance of the
proposed algorithms.

2.4.4 Time-stamp Option

To save resources on the end systems, TCP uses only a single counter for the measurement of
the round-trip time (RTT) and the expiry of the retransmission timeout (RTO) timer. This single
counter is incremented with a resolution of 500 ms, thus allowing only very rough estimates.
To optimize retransmission timeout behavior, a time-stamp option [JBB92] was introduced that
allows recording of the send time. It is then echoed by the receiver when sending the acknowl-
edgment. This option, however, is not commonly implemented. Instead, modern TCP stacks
use the old single counter with a resolution of 100 ms. The advantage of a high resolution timer
is an optimized retransmission timeout. With a resolution of 500 ms, a retransmission time-
out would at least last one second, leading to severe degradation of throughput when multiple
packet losses occur.

This option will be used, as Congestion Pricing relies on good measurements of the round-
trip time.
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2.5 Conclusions
In this chapter the most important congestion control algorithms and TCP variants were pre-
sented. Several drawbacks exist, of which some have been addressed by extensions to TCP
and the introduction of Active Queue Management. However, all of these improvements are
only singular fixes to TCP. As a whole, TCP is not modified. Each proposal was developed
and evaluated as single component because of the lack of a mathematical model that describes
the full control loop including the sources, multiplexing, queuing, and congestion signaling.
Evaluation for a network is possible using simulations, which can only be conducted in simple
topologies as a result of computational limitations. To address the issues holistically, a math-
ematical framework is needed. Congestion Pricing is such a framework. In the remainder of
this dissertation, the Congestion Pricing framework, modifications to TCP that use Congestion
Pricing, and a control theoretic model describing the full control loop will be presented.
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Chapter 3

Congestion Pricing Framework

In the previous chapter some important features and problems of current TCP implementations
were presented. While several additions have been proposed each of which solve a single prob-
lem, their interdependence is often not well understood. For better insight and design of con-
gestion control loops, it is advantageous to describe all parts, source algorithms, signaling and
link algorithms, in a single model. Such a holistic model can be derived from the Congestion
Pricing framework that will be introduced in this chapter.

3.1 Introduction and Motivation

A network should be designed in such a way that source and link algorithms work together to
steer the network to a desirable operating point. Such a desired operating point refers to optimal
utilization at low or even zero average buffer occupancy in the router queues. Thus, congestion
control can be viewed as an optimization problem. Such optimization should be applicable in
practice. While a central optimization method that maximizes overall utilization and minimizes
queuing delay could easily be thought of, it could not be used in practice because it relies on
instantaneous information of all users’ demand for bandwidth, current use of bandwidth and
buffer lengths. Even if one could signal this information to the centralized optimizer, scalability
would still be a problem. Thus, another approach to the optimization problem is needed. The
key idea in Congestion Pricing theory is that the resource sharing problem can be viewed as a
distributed game. In this game, each user is a “selfish” participant that tries to maximize his own
profit. If the game is designed correctly, this selfish behavior will lead to the optimal solution
for all participants of the game and thus to the optimal solution of the resource sharing problem.

Problems like this are not only known from game theory, but also from economics. For
example, pollution of the environment often does not impose a cost on the polluter, but on the
general public. A financially selfish person therefore will not hesitate to cause pollution if it
increases his profits. Similarly, on a network, overload will impose costs on every user, not just
on the person who utilizes the capacity intensively. A selfish user will thus try to maximize his
or her own transmission rate at the cost of all users. The key idea is now to charge each user for
his share of the congestion: Each user does some “damage” to the network by injecting data.
The overall damage can be expressed in terms of “congestion costs” and is usually a function
of integrated excess input rate or queue size at the network nodes. Without packet loss, a user’s
contribution to the congestion costs is entirely external to the user. He does not have to pay for
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it, and will not even notice it until congestion is so high that packet loss cannot be avoided. It
is therefore necessary to internalize these costs. If all users “pay” for the “damage” they do to
the network, they will take the costs into account when deciding how much bandwidth they use.
This price is the so-called Shadow Price.

These Shadow Prices are part of the distributed game and can be viewed as taxes. This is
also the solution to the aforementioned pollution problem. If a tax is imposed on every polluter
reflecting the increase of damage to the environment (Shadow Price), the costs are internalized.
The polluter can still freely choose how much he pollutes the environment, but he is obliged
now to take the fee into consideration. Thus, he will in his own self-interest optimize the benefit
from polluting (for example by being able to produce profitable goods) minus the costs that are
attached to it. Let us assume that the pollution will cause smog, which is not desired by any
participant. Furthermore, assume that the taxes are designed in such a way that the government
wants to maximize profits under the condition that no smog occurs. If risk of smog is high,
taxes will be high to reduce pollution. If, on the other hand, the risk of smog is very low, the
government will decrease taxes. Then more people will decide to produce goods and cause
pollution, and – under certain mathematical conditions – overall tax income will grow. This
form of market game between polluters and government will lead to optimal use of resources,
i.e. optimal tax income, optimal production, and no smog. People who are willing to spend
more money can produce more, causing more pollution, and run a higher risk of generating
smog. This is the second advantage of the market game as it allows for service differentiation
depending on the budget or willingness to pay of each participant.

The same applies to a network: it should be used optimally but not overloaded. When the
network is empty, “congestion taxes” are low and users will use more bandwidth than when
the network is busy and “congestion taxes” are high. As will be shown mathematically in the
following section, this market game will lead to an optimal solution of the bandwidth sharing
problem, the so called Nash bargaining solution. This desirable property of the market game
has motivated a growing body of research [MMV95,Kel97,KMT98,GK99,Key01,LL99,AL00,
Low00].

One could think of a network design where customers actually pay those “congestion taxes”.
Real money is an incentive for the users to play the game correctly. However, real money
is not necessary for the game to work. One could think of a fictitious currency that is part
of a service level agreement (SLA) between network operator and user. Or, the game is just
viewed as a solution to the optimization problem and it is just assumed that all users follow the
rules. This is not unrealistic if the rules of the game are hidden in the TCP stack so that only
experts could manipulate them. The Explicit Congestion Notification (ECN) proposal, which
is already deployed on the Internet, also allows manipulation. Even conventional TCP stacks
can be manipulated such that the user receives higher data rates at the cost of everyone else.
However, until now such manipulations have not been a measurable problem. It remains an
open question if TCP stack manipulation will become a problem on the Internet in the future.
If, alternatively, real money is used, what happens to the money, considering it was earned by
the network operator in a situation where the network’s capacity was not large enough? It seems
contradictory that money is earned because the capacity was too small. This problem could for
example be solved by refunding this money equally to the customers. Furthermore, users like to
know in advance what network usage will cost. For these reasons, the usage of virtual currencies
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is suggested. The virtual currency can still be part of a service level agreement that is paid for
in real money. Also, the network provider could install policers that enforce “fair-play”.

The great advantage of this market game is that it can easily be implemented for a network.
The decision making, i.e. the intelligence, is placed in the end hosts of the network. The network
has the only to generate the tax signals. Since these signals only depend on the congestion state
and not on single flows, no flow state information has to be kept at the network nodes. This
allows for simple routers and good scalability – a great advantage for the Internet. Additionally,
since the decision making happens at the end hosts, users can freely decide how they spend their
money. There is no need for the network to know an application’s bandwidth demand profile
or to recognize users that should receive a higher service level than the other others. All this
is taken care of at the end systems. Thus, Congestion Pricing allows for service differentiation
that is much simpler than the Differentiated Services (DiffServ) [BBC+98] or the Integrated
Services (IntServ) [BCS94] approach by the IETF. The implementation issues will be described
more in detail after the introduction of the mathematical model.

As mentioned before, Congestion Pricing does not imply charging of real money. However,
many people associate money with the term “Congestion Pricing” and therefore object to this
idea. Therefore the more positive term “Resource Marking” will be used synonymously in this
dissertation. Resource Marking implies that Congestion Pricing theory can be applied without
actually charging anything. Again, Resource Marking and Congestion Pricing refer to the same
mathematical model, but their connotation is different.

3.2 Mathematical Model and Important Properties

3.2.1 Basic Model Without Delays

A network and its resources can be viewed as a set of links L . Attached to the network is a set N
of source–sink pairs. Suppose that each source n ∈ N is associated with a user, and that user has
a utility Un(xn) when the source is sending at rate xn. This utility function characterizes the user’s
preference for bandwidth and is assumed to be an increasing, strictly concave, and continuously
differentiable function for xn > 01. This is true for elastic traffic (cf. Section 2.2). An example
utility function is depicted in Figure 3.2.1. The utilities are assumed to be additive, therefore
the aggregate utility of rate allocation x = (xn, n ∈ N ) can be written as ∑n∈N Un(xn). The flow
of data from each source-sink pair consumes resources along a path through the network. These
paths consist of links l ∈ L . A 0–1 incidence matrix A = (Aln, l ∈ L ,n ∈ N ,Aln ∈ {0,1}) indicates
whether a link l is used by source n or not. Each link l has a maximum capacity cl . Let further
be c = (cl , l ∈ L).

1Inactive sources are eliminated from the set N .
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Figure 3.2.1: Utility function for elastic traffic

Global Optimization Problem

The optimization problem for the entire system to globally find the optimal rates is then:

maximize ∑
n∈N

Un(xn) (3.2.1)

under the constraint Ax ≤ c (3.2.2)
over x > 0 (3.2.3)

The constraint says that the total of all rates through a link cannot be greater than its capacity.
In [Kel97], a solution using Lagrangian methods is presented, which is shown here in a slightly
simplified form:

L(x,y,λ) = ∑
n∈N

Un(xn)+λT (c−Ax− z), (3.2.4)

where λ = (λl , l ∈ L) is a vector of Lagrangian multipliers and z = (zl , l ∈ L) is a vector of
positive slack variables. Then

∂L
∂xn

= U ′
n(xn)− ∑

l∈L
Alnλl

For x > 0, λ ≥ 0, and λT (c−Ax) = 0 at the optimum, the following first-order condition must
be satisfied [BSMM99]:

U ′
n(xn) = ∑

l∈L
Alnλl (3.2.5)

The interpretation of the Lagrange multipliers λl as marginal costs or shadow prices2 of
additional capacity at link l leads to a different view of the problem: The charge per rate or
congestion price pn for each source n is then given as:

pn = ∑
l∈L

Alnλl (3.2.6)

2The shadow price has the unit cost, the “cost” could be anything, e.g. lost packets, delay or money. Here the
unit 1 is used.
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Hence, at the social optimum, the derivative of a user’s utility function exactly matches the sum
of the shadow prices of all resources along the user’s route:

U ′
n(xn) = pn. (3.2.7)

Distributed Optimization Problem

As described in the introduction, the global optimization problem requires knowledge of all
users’ utility functions. This is not mathematically tractable for larger networks. F. Kelly has
suggested considering two simpler optimization problems: The user problem and the network
problem. If the price pn is “charged” to the user per rate, and if the user is allowed to freely
vary its rate xn, the user will try to solve the following optimization problem:

maximize Un(xn)− pnxn (3.2.8)
over xn > 0 (3.2.9)

The network, on the other hand, will try to optimize its revenue:

maximize ∑
n∈N

pnxn (3.2.10)

under the constraint Ax ≤ c (3.2.11)
over x > 0 (3.2.12)

F. Kelly proves in [Kel97] the existence of a price vector p = (pn, n ∈ N ) such that the vector
x = (xn, n ∈ N ) of unique solutions to the user problems (3.2.8)–(3.2.9) also solves the network
problem (3.2.10)–(3.2.12). In this case, the vector x also solves the system’s optimization prob-
lem (3.2.1)–(3.2.3).

3.2.2 Relaxed Model (Penalty Approach)

In the system problem, constraint (3.2.2) implies that the total of all rates through a link cannot
be greater than its capacity. Consider a network that has buffer space at the network nodes. In
such a network, rates can temporarily exceed the capacity of the link. However, if the buffer fills
up, there is an additional delay or — even worse — packet loss. So the constraint (3.2.2) should
be replaced by a penalty or cost function Cl(yl) that is assumed to be convex and describes
the undesired increase in delay or packet loss probability when link l ∈ L has a load yl . The
relaxation of the system problem is then [GK99]:

maximize ∑
n∈N

Un(xn)− ∑
l∈L

Cl( ∑
n∈N

Alnxn) (3.2.13)

over x > 0 (3.2.14)

This leads to the identification of the shadow prices with the derivative of the cost function:

λl(yl) = C′
l(yl)

Since Cl(yl) is assumed to be a convex function, λl(yl) is greater than zero and increasing.
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Thus the equation
pn = ∑

l∈L
Alnλl(yl) = ∑

l∈L
AlnC′

l(yl) (3.2.15)

describes, how the path price is determined from the cost function (“path price algorithm”).

3.2.3 User’s Rate Adaptation

Putting everything together, a rule for each user to update his rate can be found that will lead
to convergence to the optimal solution x∗n. F. Kelly proposes the following rate differential
equation [KMT98]:

d
dt

xn(t) = κn(xn(t)U ′
n(xn(t))− pn(t)xn(t)) (3.2.16)

with the strictly positive gain κn > 0. In the remainder of this dissertation, such a user’s rate
adaptation rule will be referred to as “source algorithm”. A system using this adaptation rule
has been proven to converge to the optimum and to be stable, but instantaneous price updates
are assumed. It is obvious from (3.2.16) that in optimum

d
dt

xn(t) = 0 =⇒U ′
n(x

∗
n) = p∗n,

which is identical to requirement (3.2.7). Note that this algorithm is independent from the
actual shadow price calculation, which is derived from the cost function Cl(yl). The differential
equation (3.2.16) is designed such that the transmission rate xn(t) will converge to the optimal
value x∗n.

3.2.4 Stability and Convergence with Delays

So far, price updates were assumed to be instantaneous. In a real network, however, there will
be a delay until a source receives pricing information. Stability and convergence of the system
in the case of delays were examined by L. Massoulié [Mas00]. He has proven based upon work
by Johari and Tan [JT01] that for delayed price updates the system is stable if:

κn(pn + ∑
l∈L

Alnλ′ly
∗
l ) < 1, (3.2.17)

where y∗ is the equilibrium vector of loads: y∗l = ∑n∈N Alnx∗n; and κn := κnRTTn, where κn is the
gain used in (3.2.16).

More general and detailed mathematical proofs for stability in the case of delays and for
specific implementations can also be found in [YL01, IB01, WP02, LWG03]. They are omit-
ted here, but stability and convergence speed of actual implementations will be a re-occurring
concern in the following chapters. In Chapter 6, stability will be examined using control theory.

3.2.5 Duality Model and Gradient Projection Method

An alternative solution to the optimization problem (3.2.1)–(3.2.3) using duality theory was
presented by S. Low and D. Lapsley in [LL99]. While the solution to the original problem
is a vector of rates x∗, in the dual problem, the vector of shadow prices λ∗ is required. Thus
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rates xn(t) are regarded as primal variables and shadow prices λl(t) as dual variables. The dual
problem to the primal problem (3.2.1)–(3.2.3) is:

minimizep≥0 D(p) := ∑
n∈N

Bn(pn)+ ∑
l∈L

λlcl , (3.2.18)

where
Bn(pn) = max

xn>0
Un(xn)− pnxn. (3.2.19)

S. Low and D. Lapsley proposed to use the gradient projection method by adjusting the link
prices to solve the dual problem:

λl(t +1) =

[
λl(t)+ γ

∂D
∂λl

(p(t))
]+

,

where γ > 0 is a step size, and [x]+ := max(0,x). As shown in [LL99],

∂D
∂λl

(p) = cl − yl(p),

which is used to derive the shadow price update rule for link l:

λl(t +1) = [λl(t)+ γ(yl(p(t))− cl)]
+ . (3.2.20)

Thus, in this case the calculation of the shadow prices is not derived from a cost function Cl(yl)

as in Subsection 3.2.2, but from the gradient projection method that can be used to solve the
dual problem (3.2.18)–(3.2.19). The Random Exponential Marking (REM) method that will be
introduced in Section 5.2 was designed using this approach.

3.2.6 Logarithmic Utility Functions and Proportional Fairness

Suppose that each user’s utility function is of the form

Un(xn) = wn ln(xn) (3.2.21)

where wn ≥ 0 is a scalar that is often called weight or willingness to pay3. This class of user’s
utility functions (3.2.21) has the advantage that it leads to a proportionally fair rate allocation
at the social optimum as well. This was proven in [Kel97, KMT98]. A proportionally fair
rate allocation maximizes the sum of all logarithmic utility functions. Take, for example, three
users (A,B,C) having identical utility functions. Also consider a double bottleneck link topology
(Figure 3.2.2), where the two core links have the same capacity. If user A uses only the first
link of the network, user B only the second, and user C uses both links, a proportionally fair rate
allocation will then give each of the first two users a share of α times a link’s capacity, and user

3Unit rateo f budget, here pkts
s
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Figure 3.2.2: Double bottleneck link topology

C a share of (1−α) times a link’s capacity, where α = 2
3 is established solving (3.2.1)–(3.2.3):

maximize ∑
n=1,2,3

U(x∗n) = 2w ln(αC)+w ln((1−α)C)

under the constraint α < 1

over α > 0

=⇒ 2
α
− 1

(1−α)

!
= 0

=⇒ α =
2
3
.

Note that this allocation is different from max-min fairness, where each user would receive half
of a link’s capacity. Also note that a proportionally fair rate allocation is independent of the
connections’ round-trip delays, which is in contrast to conventional TCP.

A more formal definition was given by F. Kelly and M. Biddiscombe [Bid]. A rate allocation
x is proportionally fair if it is feasible and if for any other feasible vector x∗ the aggregate
proportion of changes is non-positive:

N

∑
n=1

x∗n − xn
xn

≤ 0. (3.2.22)

Such a vector x is also the Nash bargaining solution. By choosing the willingness to pay wn, one
can give weights to each connection. The rates are then weighted proportionally fair [LA00] or
equivalently the rates per unit charge are proportionally fair [KMT98]:

N

∑
n=1

wn
x∗n − xn

xn
≤ 0. (3.2.23)
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3.3 Conclusions
In this chapter the mathematical model of Congestion Pricing theory was presented. Mathemat-
ically, Congestion Pricing is a distributed optimization problem. If solved, the global optimiza-
tion problem will also be solved. Thus, Congestion Pricing seems to be ideal for application on
a network where distributed intelligent sources are connected to a network of relatively simple
core elements. Mathematically, such a network would always operate optimally.

However, in a real network information cannot be transmitted instantaneously. Delays in
the transport of shadow prices could lead to stability problems [Mas00]. Further, networks are
usually packet–oriented. They do not use a continuous transmission rate, instead they use a
transmission rate of packets or even congestion windows such as TCP. Thus, the problem is
discrete. Also protocols have to be developed that allow the transportation of the shadow prices
to the sources. This leads to compatibility issues if such a protocol should operate on a network
that already exists — such as the Internet. These are the main problems that this dissertation
focuses on.
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Chapter 4

Implementation of Congestion Pricing
Based TCP

In the previous chapter the mathematical framework of Congestion Pricing theory was intro-
duced. Now in this chapter a TCP implementation that makes full use of Congestion Pricing
theory will be presented. It is a direct adaptation of the theory to packet based networks and
TCP’s congestion window principle, using full pricing information. Although this algorithm
is based on TCP, it requires significant changes to the network and to both TCP sender and
receiver. It will show that these modifications are honored with superior performance.

4.1 Implementation Issues

So far some important properties of Congestion Pricing theory were presented. When it comes
to implementation, however, three important questions still have to be answered:

1. How do sources update their rates? (“source algorithm”)

2. How do network nodes calculate the current shadow prices? (“link algorithm”)

3. How is the path price calculated and transmitted to the sender? (“path price transport”)

For example, because real networks are packet based, rate updates of all users are not syn-
chronous and continuous, but asynchronous and discrete. In the next section these three issues
will be addressed whereby a direct adaptation of the algorithms that were presented in Chapter
3, is developed. The resulting TCP variant will then be called Congestion Pricing-TCP with
Explicit Price Feedback (CP-TCP/EPF). The Explicit Price Feedback (EPF) method with di-
rect congestion window updates is the most straightforward adaptation of Congestion Pricing
theory to TCP. All network nodes will calculate congestion costs and add the shadow prices to
an options field in the IP header. The receiver then returns the sum of all shadow prices, the path
price, to the sender, which will then interpret this information to update its congestion window.
The performance of the implementation will be evaluated by means of simulation.
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4.2 Congestion Pricing-TCP with Explicit Price Feedback
(CP-TCP/EPF)

4.2.1 Source Algorithm (Direct Window Update Algorithm)
The source algorithm is based on F. Kelly’s rate differential equation (3.2.16). Further, a loga-
rithmic utility function of the type Un(xn) = wn ln(xn) is assumed, where wn is user n’s willingness
to pay. As will be shown later, the willingness to pay can be used to give priorities to certain
users. Since U ′

n(xn) = wn
xn , the rate differential equation (3.2.16) can be translated to a rate update

rule:
xn(t +T ) := xn(t)+κnT (wn − pn(t)xn(t)) , (4.2.1)

where T is the time between two updates, and κn is the gain per update interval.
Additionally, this rule must be modified to work with window based algorithms such as

TCP. The congestion window (cwnd) controls the amount of data that can be injected into the
network before it is acknowledged by the receiver. Instead of rate updates, the source algorithm
has to update the size of the congestion window. If the assumption is made such that the round-
trip time (RTT) is approximately constant for small time intervals, the following approximation
can be made:

∂(cwnd)

∂t
∼= RTT · ∂xn

∂t
.

Insertion of this formula in (4.2.1) yields:

cwndn(t +T ) := cwndn(t)+κnT ·RTTn · (wn − pn(t)xn(t)) .

This source algorithm assumes rate adjustments every T seconds. Without timeouts, TCP only
adjusts its congestion window when an acknowledgment is received, which happens approxi-
mately at a rate of cwnd

RTT
1. The update rate has to be taken into consideration when calculating

the size of the window adjustment. Thus:

T (t) =
RTT (t)
cwnd(t)

.

The source algorithm is then modified accordingly:

∆cwndn(t) = κn ·
RTTn(t)
cwndn(t)

·RTTn(t) ·
(

wn− pn(t) ·
cwndn(t)
RTTn(t)

)
(4.2.2)

∼= κ̄n

(
wn ·

RTTn(t)
cwndn(t)

− pn(t)
)

, (4.2.3)

where κ is the gain per update interval; and κ̄n = κn ·RTTn is defined as gain. pn(t) is the path
price as seen by source n at time t. Units are shown in Table 4.2.1. Since pn can take any value
and the amount of congestion window size change directly depends on the value of pn, this
source algorithm will be called Direct Window Update Algorithm.

1Note that this is a window update rate, units are thus 1
s , not pkts

s . cwnd is used to denote the different unit
1. In the later sections units will be ignored and the numerically identical cwnd will be used only. In actual
implementations, cwnd is usually measured in bytes instead of packets, thus cwnd and cwnd are also numerically
different.
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Table 4.2.1: Units of variables in source algorithm

Variable Unit

cwndn pkts

cwndn 1
κ 1

s

κ 1
RTTn s

wn
pkts

s

pn 1

4.2.2 Link Algorithm

Several link algorithms have been proposed. They depend on the particular cost function being
considered. Some of them will be presented and evaluated in Subsection 5.4.4. Here, a link
algorithm that has been proposed by S. Athuraliya and S. Low will be used. For their Random
Exponential Marking (REM) [AL00] they suggested three different shadow price computation
rules (PC1, PC2, and PC3) of which they identified PC3 as the most promising one:

λl(t +1) = [λl(t)+ γ(αl(bl(t)−b0)+ ŷl(t)− cl)]
+ , (4.2.4)

where cl is the capacity of the link, b0 is the desired equilibrium queue size, αl > 0 is a small
constant that weights the influence of the instantaneous queue size on the shadow price, and
γ > 0 is the step-size, which must be sufficiently small to ensure convergence to the unique
optimal rates [LL99]. This algorithm was derived from the shadow price update rule (3.2.20).
Shadow prices must be non-negative as indicated by []+. ŷl(t) is the link’s estimated aggregate
input rate in average sized packets per sample interval at time t, given by:

ŷl(t +T) = (1−δ)ŷl(t)+δ
(

bytes/mean_packet_size
T

)
, (4.2.5)

where T is the sample interval. In the following simulations, a sample interval of 1 ms and
weight δ = 0.9 will be used.

4.2.3 Path Price Transport

Finally, all shadow prices on the path have to be added up and transported to the sender. Here,
a fictitious new IP options field2 is used. Each router then adds the local shadow price to the
old value in that field. The receiver of the IP packet reads this value and echoes it back to the
sender in a TCP options header field. Thus, two new options have to be introduced to TCP/IP.
Since pricing information is completely transmitted, this type of implementation is referred to
as Explicit Price Feedback. The advantage of Explicit Price Feedback is that no information is
lost. This allows stronger reactions by the sender when the price has changed significantly, and

2An actual implementation could also use the 16-bit identification field when the Don’t Fragment (DF) flag bit
is 1. With newer TCP implementations, this is commonly the case.
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smaller adjustments of the sending rate when the price difference is small. However, both TCP
and IP have to be modified to carry the pricing information.

4.3 Performance Evaluation

4.3.1 Simulation Setup (Double Bottleneck Link Network)

By means of simulation, the superior performance of Congestion Pricing based TCP with Ex-
plicit Price Feedback (“CP-TCP/EPF”) over conventional TCP variants such as TCP Tahoe,
TCP Reno, and TCP NewReno is demonstrated. Since the congestion avoidance algorithms
shall be compared without the influence of retransmissions and timeouts, the simulation setup
is designed in such a way that packet loss can completely be avoided. For this reason, CP-
TCP/EPF is compared to a “state-of-the-art” TCP NewReno implementation that uses the ECN
extensions (cf. Subsection 2.4.2) and RED as the Active Queue Management strategy (cf. Sub-
section 2.4.3). The performance of TCP NewReno with a conventional drop-tail queue that is
most commonly in use at present will also be shown. The simulation setup described here is
used throughout the dissertation to compare different algorithms and approaches.

Simulations were performed using the UCB/VINT Network Simulator 2 (ns-2) [UCB]. Two
simulation scenarios are used to focus on two different aspects of performance. The first sce-
nario “Rate Allocation” is used to evaluate the capability of the TCP variants to establish a
weighted proportionally fair rate allocation at the steady-state. The second experiment “Dy-
namics” focuses on the dynamic behavior of the algorithms when network conditions change.
In the “Dynamics” scenario, additional flows are turned on and off at certain times during the
simulation. Both simulations make use of a “double bottleneck link” topology (cf. Figure
4.3.1). It consists of two bottleneck links with a bandwidth of 96 Mbps each. All other links

R 1 R 2 R 3

S 1 S 3 S 4S 2

S 5 S 6

III

III

96Mbps, 1ms 96Mbps, 15ms

Figure 4.3.1: Double bottleneck link topology

have a bandwidth of 1000 Mbps and are therefore not limiting the rates. For the performance
analysis, the positions of the bottleneck links are not significant. Thus, this topology is a real-
istic representation of the Internet, where usually the access link and at most one other link are
limiting the transmission rate.
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The delay of all links is 1 ms except for the second core link, which has a delay of 15 ms.
This allows the evaluation of the influence of different round-trip times. The three paths on
the network are denoted as path I through path III. TCP’s congestion avoidance algorithm as
implemented in ns-2 was modified to reflect the final source algorithm (4.2.3). Slow start and
TCP’s normal reaction to packet loss were left unchanged. Similarly, the link algorithms and
packet classes were replaced to implement the explicit price feedback. Table 4.3.1 shows the
chosen parameters for the simulations.

Table 4.3.1: Link algorithm parameters

Algorithm Parameters

CP-TCP/EPF φ = 1.06, γ = 0.001, α = 0.1, b0 = 2
RED κ = 0.01, γ = 0.8305, b0 = 2

First Simulation: Rate Allocation

Each path carries 12 flows from greedy sources with different willingness to pay parameters wn

(cf. Table 4.3.2). Since TCP NewReno does not use a willingness to pay parameter, it is omitted

Table 4.3.2: Simulation setup

Flow id Path # Bottleneck links RTT [ms] wn

1 - 4 I 1 6 100
5 - 8 I 1 6 200

9 - 12 I 1 6 400
13 - 16 II 1 34 100
17 - 20 II 1 34 200
21 - 24 II 1 34 400
25 - 28 III 2 36 100
29 - 32 III 2 36 200
33 - 36 III 2 36 400

for conventional TCP. A proportionally fair rate allocation will allocate 2
3 of the capacity of the

first link to the connections using path I, and 1
3 to the connections using path III, as was described

in Subsection 3.2.6. The rate allocation for the second link is analogously, 2
3 of the capacity to

connections using path II, and 1
3 to the connections using path III.

All connections were started with a congestion window of one at time zero. The number
of packets each connection could transfer during the following 60 seconds was then measured
to determine throughput. Since packet losses were avoided, no packets had to be retransmitted.
Goodput and throughput are therefore identical.
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Second Simulation: Dynamics

The second simulation scenario is used to examine the ability of the algorithms to cope with
changing network conditions. For the first 20 seconds, the simulation setup is identical to the
first simulation. However, after 20 seconds the number of flows per path is doubled. Then
every 20 seconds the network conditions change again (cf. Figure 4.3.2). In order to avoid

Time [s]

0 20 40 60 80 100

12 flows

6 flows

6 flows 6 flows

Figure 4.3.2: Start and stop times of flows per path

under-utilization of the bottleneck links after some of the sources are turned off, and to avoid
additional queuing delay and congestion when additional sources are turned on, the congestion
windows should be adapted inversely to the changes in load: From (2.3.1)

cwnd∗n = x∗n ·RTT ∗
n ,

where the available transmission rate x∗n is inversely proportional to the load factor f , which
determines the number of active sources N = f · (N1 +N2 +N3) :

x∗n =
1
f

wn
N1w1 +N2w2 +N3w3

cl .

This is the result from the use of a logarithmic utility function (cf. Subsection 3.2.6) with three
different willingness to pay values w1, w2, w3.

Figure 4.3.3 displays such an idealized progression of the congestion window. In an actual
network, there will always be a delay until the changes in load are fed back to the sources,
thus the progression of the congestion windows will differ and temporary under-utilization and
congestion cannot completely be avoided. Nonetheless, the tendency should be similar to the
ideal case.

4.3.2 Simulation Results
Rate Allocation

The resulting rate allocation is shown in Figure 4.3.4 for CP-TCP with Explicit Price Feedback.
In comparison, the resulting rate allocations of TCP NewReno with drop-tail queues and RED
active queue management are given in Figure 4.3.5.

The horizontal lines indicate the rates that correspond to a weighted proportionally fair
rate allocation. Since conventional TCP implementations such as NewReno do not achieve a
weighted proportionally fair rate allocation, the lines are only relevant to the Congestion Pricing
based TCP implementations. The same plot types will be used later for other TCP variants.
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1 5 9 13 17 21 25 29 33  
0

200

400

600

800

1000

1200

1400

1600

1800

2000
rate allocation (EPF)

ra
te

 [k
B

yt
e/

s]

flow id
|  path I | path II | path III |

 

mean link utilization
core link 1: 93.4%
core link 2: 92.6%

Figure 4.3.4: Rate allocation of Congestion Pricing TCP [Zim03]

39



Chapter 4: Implementation of Congestion Pricing Based TCP

1 5 9 13 17 21 25 29 33  
0

200

400

600

800

1000

1200

1400

1600

1800

2000
rate allocation (NewReno/DropTail)

ra
te

 [k
B

yt
e/

s]

flow id
|  path I | path II | path III |

 

mean link utilization
core link 1: 96.5%
core link 2: 87.5%

(a) TCP NewReno/Droptail

1 5 9 13 17 21 25 29 33  
0

200

400

600

800

1000

1200

1400

1600

1800

2000
rate allocation (NewReno/RED)

ra
te

 [k
B

yt
e/

s]

flow id
|  path I | path II | path III |

 

mean link utilization
core link 1: 95.1%
core link 2: 89.9%

(b) TCP NewReno/RED
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[Zim03]

40



4.3 Performance Evaluation

Optimally, the actual rate allocation shown by the cross marks should match the theoretical
values indicated by the horizontal lines. For the longest path III, there is a nearly perfect match
(cf. Figure 4.3.4). But even for the other two paths, the Congestion Pricing based TCP variant
nearly achieves a weighted proportionally fair rate allocation. It is not surprising that in total the
actual rate is slightly lower than the theoretical values because the theoretical values represent
perfect 100% utilization all the time, which is not achievable in a real network with feedback
delays. The achieved bottleneck utilization for all three variants are shown in Table 4.3.3.

Table 4.3.3: Bottleneck link utilization

TCP variant Utilization of core link 1 Utilization of core link 2 Average core link utilization

TCP NewReno+drop-tail 96.5 % 87.5 % 92.0 %
TCP NewReno+RED 95.1 % 89.9 % 92.5 %

CP-TCP/EPF 93.4 % 92.6 % 93.0 %

Note that for example the rates assigned to the sources on path I and II only depend on
the willingness to pay, but not on the delay assigned to the links. This is different with TCP
NewReno. The sources on path II received a lower bandwidth share than the sources on path
I (cf. Figure 4.3.5a). Furthermore, while for CP-TCP/EPF all four flows of the same source
receive nearly identical bandwidth shares, there are significant differences for TCP NewReno
as well as with drop-tail queues and RED queues. Thus, fairness between identical flows can
only be achieved with Congestion Pricing.

Included in the figures are also 95% confidence intervals for the resulting rate allocation.
Since TCP NewReno with drop-tail queues and CP-TCP/EPF work entirely deterministically,
for every run the same rate allocation will result. This is different for TCP NewReno with
RED, which introduces a random component and thereby changes rate allocations. The large
confidence intervals shown in Figure 4.3.5b also indicate that the rate allocation is somewhat
random leading to unfair rate distributions.

These rate allocation experiments have shown that CP-TCP with Explicit Price Feedback
yields the desired weighted proportionally fair rate allocation nearly perfectly. The willing-
ness to pay parameter can be used to implement relative Quality of Service (QoS) without the
need for central policers or bandwidth reservation. Resulting rate allocations closely match the
theoretical values.

Dynamics

Additional to the rate allocation, it is important how the TCP algorithm behaves over time. The
dynamics of the congestion window for CP-TCP/EPF in comparison to TCP NewReno with
drop-tail and RED queues are shown in Figure 4.3.6; the corresponding dynamics of the queue
sizes are shown in Figure 4.3.7.

Since the load on the network is varied over time, the size of the congestion window should
inversely follow the load as was theoretically shown in Figure 4.3.3. For CP-TCP/EPF displayed
in Figure 4.3.6c, this is exactly the case. It is the only TCP variant that neatly adapts to the
changes of the conditions. The other two variants, TCP NewReno with drop-tail queue and
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Figure 4.3.6: Congestion windows (flows 1, 5, 9) [Zim03]
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Figure 4.3.7: Queue sizes at core link of router R1 [Zim03]
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TCP NewReno with RED, also react to the load changes, but there are strong oscillations visible.
Further looking at the queue size, CP-TCP/EPF is the only variant that is able to maintain low
queue sizes over time also when the network conditions change. Even though the queue size
remains much lower, the link utilization is still clearly above 90% and thus very good (cf. Table
4.3.3).

4.3.3 Conclusions

Two very important properties of CP-TCP/EPF were shown by the simulations. CP-TCP/EPF
establishes a weighted proportionally fair rate allocation, and the sources adapt well to changing
network conditions. While it is debatable what type of rate allocation is “fair” or “good”, from
a point of traffic engineering it is important to be able to calculate resulting rate distributions.
With CP-TCP, this is possible. Further in an actual network, conditions and demands change all
the time. The congestion control algorithm should thus be able to adapt and work well over the
full range of possible demands. Again, CP-TCP does this much better than conventional TCP
variants.

4.4 Scalability and Fairness

4.4.1 Simulation Setup (Parking Lot Network)

In the previous section it was already shown that CP-TCP/EPF can adapt to changing network
conditions. However, scalability of the algorithm with regard to the number of bottleneck links,
delays, and network capacity is also important. This aspect shall be dealt with using a different
simulation setup with a more realistic simulation scenario. The second simulation setup utilizes
a multi-link “parking lot” topology (cf. Figure 4.4.1). Most published simulations so far were

R1 R2 R3 R4 R5

S2 S4 S6 S8 S10

S12

S5 S9S7 S11S3

S1

Figure 4.4.1: Parking lot network topology

conducted using only a small number of flows. For this reason a simulation scenario using
a relatively large number of flows is additionally considered here. To evaluate scalability of
Congestion Pricing based TCP with regard to the number of active flows and network capacity,
the number of flows and the link capacities is scaled up without changing any of the other
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parameters. For good scalability, no further parameter changes should be necessary. Fairness
between users is also evaluated.

In a “few flows” simulation scenario, up to 64 active flows are competing for bandwidth,
while in a ”many flows” simulation scenario up to 6400 competing flows are used. The link
capacities are dimensioned in such a way that only the core links are limiting. All core links
have a capacity of 48 Mbps and a delay of 8 ms, except for the link between routers 2 and 3,
which has a delay of 24 ms. The edge links have a capacity of 1000 Mbps and a delay of 1 ms.
Forward and reverse paths are symmetric. These capacities allow a theoretical average of five
packets in transit per connection.

For this simulation, a slightly changed source algorithm is used. The modified source algo-
rithm limits the amount of congestion window change to 1 per acknowledgment (5.2.7). This
is basically a limitation of the step size at which the steady-state is reached. The modification
is done to make the results comparable to the Random Exponential Marking (REM) variant,
which will be presented in detail in Section 5.2. The link algorithm parameters are γ = 0.1 and
α = 0.0023, with the willingness to pay being 20 for all sources. All sources are greedy and use
a packet size of a 1000 bytes.

Eight different flow paths with different hop counts and with different minimum round-
trip delays are considered, as shown in Table 4.4.1. Each one of the eight sources (S1-S7,

Table 4.4.1: Connections and minimum round-trip time

Connection S3→S5 S5→S7 S7→S9 S9→S11

hop count 2 2 2 2
min. RTT 20 ms 52 ms 20 ms 20 ms

Connection S2→S6 S4→S8 S6→S10 S1→S12

hop count 3 3 3 5
min. RTT 68 ms 68 ms 36 ms 100 ms

S9) produces up to eight flows, yielding a maximum of 64 flows simultaneously active on the
network.

For the “many flows” scenario, the number of flows is scaled up by a factor of 100. To
accommodate the increased load, the capacities of the links are also scaled up by a factor of
100. Everything else remains unchanged. To examine the dynamic behavior, the number of
active flows per source is again varied over time by turning on and off several flows every
20 seconds (cf. Figure 4.4.2 and Table 4.4.2). As explained before, optimally the congestion
window should react inversely to the number of active flows (cf. Figure 4.3.3). The desired
target queue size b0 is chosen such that the corresponding queuing delay equals 3 ms. Thus for
the “few flows” scenario: b0 = 18 and for the “many flows” scenario: b0 = 1800.

3Although a larger value for α was suggested in [AL00], the current queue size is weighted less here because
oscillations were observed for larger α.
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Figure 4.4.2: Start and stop times of the TCP flows per source

Table 4.4.2: Active flows at each edge node during the different time intervals

0–20 s 20–40 s 40–60 s 60–80 s 80–100 s

Few flows scenario 2 8 4 8 2
Many flows scenario 200 800 400 800 200

4.4.2 Simulation Results

Figure 4.4.3a shows the variation of a congestion window over time for the “few flows” sce-
nario. It follows nearly ideally the change of load as was seen before in the double bottleneck
link topology (cf. Figure 4.4.3c). Figure 4.4.3b shows the trajectory of the instantaneous queue
size at router R3 for the “few flows” case. Corresponding link performance measures are given
in Table 4.4.3. Utilization is nearly perfect while the average queue size is only slightly larger

Table 4.4.3: Link performance measures for queue R3 (“few flows” scenario)

Time interval 0–20 s 20–40 s 40–60 s 60–80 s 80–100 s

Utilization 98 % 100 % 99 % 100 % 98 %
Avg. backlog 20 pkts 30 pkts 20 pkts 26 pkts 20 pkts

than the target queue size. Only when network conditions change and additional flows are
turned on or off, the queue size increases for a short time until it returns to the desired equilib-
rium. Also note that in the time intervals 20–40 s and 60–80 s, there are oscillations visible at a
low frequency. This is a sign of instability which will be examined more in detail for a different
TCP variant in Chapter 6 using a control theoretic model. But even with these oscillations,
performance is nearly perfect and by far better than with conventional TCP variants.

Figures 4.4.3c and 4.4.3d show the corresponding plots for the “many flows” scenario. The
link performance parameters are shown in Table 4.4.4. With the scaled up number of flows
and capacity, more oscillations are visible, but on average the behavior is still similar to the
“few flows” case. The link utilization is well above 90% (cf. 4.4.4) and the average backlog is
acceptable and even below the target. Thus, CP-TCP/EPF scales with regard to the number of
flows over a wide range without adaptation of parameters.
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Figure 4.4.3: Congestion window and queue size (no slow start) [ZHK01]

Table 4.4.4: Link performance measures for queue R3 (“many flows” scenario) [ZHK01]

Time interval 0–20 s 20–40 s 40–60 s 60–80 s 80–100 s

Utilization 94 % 94 % 94 % 94 % 95 %
Avg. backlog 279 pkts 840 pkts 471 pkts 830 pkts 283 pkts
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4.4.3 Fairness
In order to evaluate fairness between different users qualitatively, the numbers of the arriving
acknowledgments at the sources were also recorded over time. Each arriving acknowledgment
indicates the successful transmission of a segment with a size of 1000 bytes. Thus, for optimal
fairness, the acknowledgment number should grow at the same speed for all flows that are
using the same path. This is displayed in Figure 4.4.4: Time is shown on the x–axis, and for
two exemplary flows the acknowledgment numbers are shown on the y–axis modulo 2000 for
better readability. This notation results in parallel lines, where the slope is steeper for higher
transmission rates. If the slope is the same for both flow 0 and flow 1 of the same source, both
flows will receive the same rate. Rate distribution is then fair. When the load on the network
changes, the transmission rate is adapted and thus the slope of the parallel lines changes too.
Figure 4.4.4 also indicates that CP-TCP/EPF results in a perfectly fair rate distribution between
flows of the same source even if network conditions change.

The results of the these experiments have been published more in detail in [ZHK01].

4.5 Conclusions
Congestion Pricing based TCP with Explicit Price Feedback (CP-TCP/EPF) is a practical imple-
mentation of Congestion Pricing theory for actual packet networks. It outperforms conventional
TCP by far, even if modern Active Queue Management algorithms such as RED are used. CP-
TCP/EPF can quickly adapt to changing network conditions and exhibits less oscillations. At
the same time, the average queue size is much lower than with conventional TCP, while the link
utilization is well above 90%. The rate allocation of CP-TCP/EPF is weighted proportionally
fair, allowing the user to use different priorities for different applications. And in contrast to
the conventional TCP variants, each user using the same parameters and network links receives
the same rate, thus yielding fairness between users. CP-TCP/EPF is a very powerful congestion
control implementation that does not only optimally use resources, but can also support traffic
engineering by its calculable rate allocation.
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Chapter 5

Single Bit Marking Strategies

As was shown in the previous chapter, a Congestion Pricing based TCP implementation with
Explicit Price Feedback and Direct Window Updates (CP-TCP/EPF) performs much better than
conventional TCP variants. However, since it requires significant changes to all existing layer
2 and 3 protocols on the Internet, it is highly impractical to deploy. For this reason, other
implementation possibilities were proposed that require fewer modifications of the network and
in the end hosts. The greatest problem is the encoding of the pricing information in the IP
header. Without any changes to current ECN-enabled IP [RFB01], only one bit can be used to
convey that information. The challenge is to create a TCP variant that uses Congestion Pricing
and needs only a single bit to convey the pricing information. In this chapter, two proposals
to solve this problem are presented. Their performance is then compared to CP-TCP/EPF. The
first proposal, discussed in Section 5.1, is R. Gibbens’ and F. Kelly’s Virtual Queue Mechanism
(VQM), which only allows 0 and 1 as the path price. Therefore, it does not allow transmission of
the sum of the shadow prices. S. Athuraliya and S. Low, on the other hand, proposed a Random
Exponential Marking (REM) strategy to convey the sum of the shadow prices using only a
single bit. This second approach is discussed in Section 5.2. Finally, beginning with Section
5.4, the “Single Bit Resource Marking” approach developed by the author of this dissertation is
presented.

5.1 Virtual Queue Mechanism (VQM)

5.1.1 VQM Algorithm

Path Price Transport

This implementation, referred to as “Virtual Queue Mechanism”1, was initially proposed by R.
Gibbens and F. Kelly [GK99]. It uses a single bit for marking, in other words the path price
can only take two values: zero and one. For this reason, the path price is no longer a measure
of the amount of rate change that is required, it can only signal the direction. The consequence
is a violation of the additive path price property expressed in equation (3.2.15). For VQM, that

1R. Gibbens and F. Kelly presented in [GK99] a marking method that uses a “virtual” queue. However, they
did not name it. Here the name VQM was chosen to refer to their method.
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equation becomes:
pn = max

l∈L
Alnλl(yl), (5.1.1)

where λl ∈ {0,1}. Thus, one can expect that VQM will “punish” connections that have more
than one bottleneck link on their path.

Link Algorithm

R. Gibbens and F. Kelly proposed the use of a “virtual queue” for marking packets [GK99]. The
packets are marked as follows: For every queue in a network node, a second “virtual queue”
is run with a scaled down capacity and a lower service rate but identical packet input. If this
virtual queue exceeds its capacity, all packets in the real queue are marked until the virtual
queue becomes empty. The scaling factor is defined as follows:

fscale =
virtual servicerate
actual servicerate

=
virtual queuecapacity
actual queuecapacity

.

The maximum queue size qmax defines the actual capacity of the queue.
The Virtual Queue Mechanism was derived from a cost function C(yl) that represents the

rate of loss.

Source Algorithm

VQM was initially proposed for synchronous networks where sources can directly set their
rates. The original source algorithm is:

xn(t +1) := xn(t)+κ(wn − pn(t)xn(t)) ,

where pn = 1 if the packet was marked, 0 otherwise. For a TCP/IP based packet network, the
source algorithm must be changed. To make VQM applicable for packet based, asynchronous
networks, the source algorithm must be modified accordingly. This was already done in Sub-
section 4.2.1 for CP-TCP/EPF. There, equation (4.2.3) was derived:

∆cwndn(t) ∼= κ̄n

(
wn ·

RTTn(t)
cwndn(t)

− pn(t)
)

.

In this case, however, the path price pn can only take the values 0 and 1. For this reason,
following a suggestion by P. Key [Key01], the window update algorithm was slightly modified
and implemented it as follows:

For every received non-marked acknowledgment, the congestion window is increased by:

∆cwnd = κ · RTT
cwnd

·wn (5.1.2)

and for every marked acknowledgment, differing from (4.2.3), the congestion window is de-
creased by:

∆cwnd = κ . (5.1.3)
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This way of implementing the source algorithm more closely resembles current TCP vari-
ants that use the Additive Increase Multiplicative Decrease (AIMD) property (cf. Subsection
2.3.3). This property describes the development of the congestion window for every full round,
thus for every full window of acknowledgments and under the assumption of roughly constant
round-trip time (RTT).

In actual TCP implementations, in congestion avoidance, the congestion window is only in-
creased after a full window of acknowledgments has been received, thus cwnd remains constant
for one full round-trip time (RTT). If the same is applied here, for every full congestion window
of unmarked acknowledgments, the congestion window update becomes:

cwndnew = cwndold +κ ·RTT ·wn (full window of unmarked acknowledgments),

which clearly shows the additive increase property. For a full window of marked acknowledg-
ments, on the other hand, from (5.1.3) and under the condition 0 < κ < 1 the window becomes:

cwndnew = (1−κ) · cwndold (full window of marked acknowledgments),

which shows the multiplicative decrease property. For example, for κ = 0.5 the congestion
windows is halved. Again, this is similar to current TCP variants using the ECN addition,
that halve the window for the first marked acknowledgment and then ignore marks for a full
round-trip time [RFB01].

This implementation was also chosen for another reason: Note that pn can be 1 at most. In
order for the original source algorithm (4.2.3) to be applicable, the following requirement must
be met:

wn ·
RTT ∗

cwnd∗

!
< 1.

Thus, one must be careful not to choose too large willingness to pay parameters. This is not
a requirement for the alternative source algorithm (5.1.2)–(5.1.3). It is therefore more robust
against bad parameter choices.

However, there is a side-effect to these advantages: The modified implementation is based
on a slightly changed utility function. In equilibrium,

U ′(x∗n) = p∗n, (5.1.4)

as can be derived from the derivative of (3.2.8)–(3.2.9). With the original source algorithm
(4.2.3), in equilibrium ∆cwnd = 0, and thus in equilibrium:

wn = p∗nx∗n. (5.1.5)

Inserting (5.1.5) into (5.1.4) yields:
U ′(xn) =

wn
xn

,

which finally leads to the desired logarithmic utility function

U(xn) = wn ln (xn) .
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However, when using the modified source algorithm (5.1.2)–(5.1.3), which can be rewritten
as:

∆cwnd = κ · RTT (t)
cwnd(t)

(
(1− pn(t))wn − pn(t) ·

cwnd(t)
RTT (t)

)
,

in equilibrium
wn − p∗nwn = p∗n · x∗n,

and thus
U ′(xn) =

wn
xn +wn

,

which leads to a slightly different utility function

U(xn) = wn ln(xn +wn) .

This also has impact on the resulting rate allocation. Using the same double bottleneck link
scenario as in Subsection 3.2.6, and using the modified utility functions with equal willingness
to pay w, the rate allocation is established solving (3.2.1)–(3.2.3):

maximize ∑
n=1,2,3

U(x∗n) = 2w ln(αC +w)+w ln((1−α)C +w)

under the constraint α < 1

over α > 0

=⇒ 2wC
αC +w

− wC
(1−α)C +w

!
= 0

=⇒ α =
2+ w

c
3

.

For this reason, the modified implementation only leads to proportionally fair rate alloca-
tions for w � c. Nonetheless, proportionally fair rate allocation is a reasonable assumption as
commonly, capacity c is very large and w should be chosen such that

∑
n

wn

!
< cbottleneck.

For realistic network scenarios and in the simulations conducted, this is the case.

5.1.2 Performance of VQM (Double Bottleneck Link Network)

For performance evaluation, the same double bottleneck link simulation setup that was pre-
sented in Subsection 4.3.1 is used. As before, two different scenarios are investigated to evaluate
the resulting rate allocation and the dynamic behavior. For the VQM simulations, the following
parameters were chosen: fscale = 0.9, qmax = 300.

Rate Allocation

The established rate allocation is shown in Figure 5.1.1. Again, the horizontal lines indicate the
theoretical values of a weighted proportionally fair rate allocation. Flows on path III, the one
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Figure 5.1.1: Rate allocation using VQM [ZK02]

that uses two bottleneck links, receive a significantly lower rate than the theoretical weighted
proportionally fair rate allocation. This is an expected result of the changed path price property
(5.1.1). The remaining bandwidth is then distributed to the paths that use only one bottleneck
link. On the other hand, VQM is still able to establish a service differentiation using different
willingness to pay parameters. Also, there is only slight dependency on round-trip time as the
similar rate allocations on paths I and II indicate. Thus, VQM has some significant advantages
over conventional TCP variants at comparable bottleneck link utilization (cf. Table 5.1.1).

Table 5.1.1: Bottleneck link utilization

TCP variant Utilization of core link 1 Utilization of core link 2 Average core link utilization

TCP NewReno+drop-tail 96.5 % 87.5 % 92.0 %
TCP NewReno+RED 95.1 % 89.9 % 92.5 %

CP-TCP/EPF 93.4 % 92.6 % 93.0 %
VQM 94.1 % 87.8% 90.9%
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Because the connections on path III receive a much lower bandwidth share than expected,
there is a risk that these connections will suffer from starvation. Even a larger willingness to
pay does not prevent starvation (cf. Figure 5.1.1, flows 33–36). If more bottleneck links are
used, this risk will become even worse. This is a significant disadvantage, as for this reason
VQM does not scale to larger networks with many (potentially congested) links. Therefore the
parking lot topology is omitted here. VQM was evaluated in a parking lot network in [Ham01].
Some representative results are summarized in Section 5.4.4.

Dynamics

To evaluate the dynamic behavior, the number of active flows over time was again changed as
was described in Subsection 4.3.1. The resulting congestion windows for flows 1, 5, and 9 are
shown in Figure 5.1.2. Since different willingness to pay parameters are used for the three flows,
the congestion windows must be of different size. Just like CP-TCP/EPF (cf. Figure 4.3.6c),
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Figure 5.1.2: Congestion window (flows 1, 5, 9) [ZK02]

the changes of the window size are smooth. The exact behavior depends on the parameter κ.
Note, however, that VQM allows changes of the congestion window that are only a fraction of
the packet. Such a change will not change the sending rate because TCP will only be able to
send an additional packet if a full packet (of maximum segment size) fits into the congestion
window.

Figure 5.1.3 shows the size of the queue of the core link at router R1. Similarly to CP-
TCP/EPF (cf. Figure 4.3.7c), the queue size is very low even though utilization is around 90%
(cf. Table 5.1.1). Peaks are visible only at times when additional flows are turned on. Because
of the delay in the control loop, such peaks cannot be avoided.
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Figure 5.1.3: Queue sizes at core link of router R1

5.2 Random Exponential Marking (REM)

5.2.1 REM Algorithm

Path Price Transport

Random Exponential Marking (REM) was suggested by S. Athuraliya and S. Low [AL00,
ALLY01]. It uses a single bit in the IP header to encode the shadow price. The key idea of
REM is the use of an exponential marking function. The shadow price λl(t) is encoded using
the marking probability ml(t) at time t:

ml(t) = 1−φ−λl(t). (5.2.1)

An exponential function was suggested because it has the desirable property that the comple-
ment function of the end–to–end marking probability

mn(t) = 1− ∏
l∈L(n)

(1−ml(t))

yields the aggregate path price:

pn(t) = − logφ (1−mn(t)) = ∑
l∈L

Alnλl . (5.2.2)

Thus, by estimating the marking probability m̂n(t), the source can calculate the path price p̂n(t),
which is an estimate of the sum of the shadow prices λl on the path as required by (3.2.15).
As opposed to the Virtual Queue Mechanism (VQM), the path price can still take any value,
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although only one bit is used to convey that information. However, for this to work, all network
components must use an identical marking function ml(λl). This implies that they all must agree
on the same φ. Additionally, as the authors have shown, the performance is best if 0.2 < mn <

0.97.

In order to estimate the end–to–end marking probability m̂n(t) required for the calculation
of the path price p̂n, a history of several packets is needed.

Link Algorithm

REM’s link algorithm, the shadow price computation rule PC3 (4.2.4), was already introduced
in Subsection 4.2.2. According to that rule, each link’s shadow price λl is increased or decreased
using two components: the current difference in input rate and capacity of the link, and the
instantaneous queue size. The other two proposed price computation rules PC1 and PC2 only
use one of these components [AL00]:

PC1: λl(t +1) = [λl(t)+ γ(ŷl(t)− cl)]
+ (5.2.3)

PC2: λl(t) = [γ(bl(t)−b0)]
+ (5.2.4)

PC3: λl(t +1) = [λl(t)+ γ(αl(bl(t)−b0)+ ŷl(t)− cl)]
+ . (5.2.5)

PC1 only uses the excess input bandwidth to compute the current shadow price. Thus, the
congestion measure is completely decoupled from performance measures such as queue length.
Such coupling of congestion and performance measures is not desired, as was described in
Subsection 2.4.1. However, PC1 in equilibrium only ensures that input and output rates match.
It cannot ensure that this equilibrium happens at zero queue size. PC2 can be derived from PC1
as the queue size is an integrated measure of excess input bandwidth. Here, in equilibrium the
queue size will be b0. PC2, however, couples congestion measure and performance measure.
PC3 finally combines both approaches. Since PC3 is the recommended algorithm by the original
authors, it will be used for the purpose of performance evaluation of REM. Later, in Subsection
5.4.4, results from simulations including all three variants will be presented.

Source Algorithm

S. Athuraliya and S. Low [AL00, ALLY01] initially proposed to derive the REM source al-
gorithm from the TCP Vegas source algorithm. TCP Vegas, in congestion avoidance, either
decreases, stays constant, or increases the congestion window by one segment, depending on
some threshold for the difference of current and minimum round-trip time [BP95]. In [LPW01]
the idea was presented to use the willingness to pay wn, instead, as a threshold for the current
charge p̂n(t)x̂n(t). This is motivated by the first order condition of the social optimum (3.2.7)
and the use of a logarithmic utility function (3.2.21): In equilibrium

wn

!
= p∗nx∗n. (5.2.6)
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Thus, in order to make the congestion window converge such that (5.2.6) is fulfilled, from
(2.3.1) the update rule (run once per round-trip time) becomes:

cwnd(t +RTT ) :=





cwnd(t)+1 if p̂n(t)x̂n(t) < wn
cwnd(t)−1 if p̂s(t)x̂n(t) > wn

cwnd(t) if p̂n(t)x̂n(t) = wn

(5.2.7)

where wn is the willingness to pay, x̂n is the estimated sending rate for source n ∈ N , and p̂n is
the estimated path price for source n. This source algorithm will, in the following sections, be
referred to as “Vegas/CP”.

5.2.2 Performance of REM (Double Bottleneck Link Network)
Again, to evaluate REM/PC3’s ability to establish the correct rate allocation and to cope with
changing network conditions, simulations are performed in a double bottleneck link network (cf.
Subsection 4.3.1). The TCP Vegas implementation in the ns-2 network simulator was modified
to use the new Vegas/CP window update rule (5.2.7). TCP Vegas also uses a special Slow Start
algorithm [BP95], which was retained. For both simulations, the following parameter settings
were chosen: φ = 1.06, γ = 0.001, α = 0.1, b0 = 2. A history of 50 packets was used to estimate
the end–to–end marking probability. Because of the different source algorithm, the willingness
to pay parameters were chosen differently from the values shown in Table 4.3.2. Here, 1, 2, and
4 are used respectively.

Rate Allocation

Because REM uses random marking, the rate allocation simulation was repeated 30 times using
different seeds for the random number generator. In Figure 5.2.1, the resulting mean rates
and 95% confidence intervals are shown. Like before, the horizontal lines in the plots show
the theoretical values for a weighted proportionally fair rate allocation. As can be seen from
the results, REM can establish the theoretical rate allocation and separate the service classes
according to the willingness to pay extremely well. It also achieves the highest bottleneck link
utilization (cf. Table 5.2.1). Thus, at the steady-state, REM is a very good replacement for

Table 5.2.1: Bottleneck link utilization

TCP variant Utilization of core link 1 Utilization of core link 2 Average core link utilization

TCP NewReno+drop-tail 96.5 % 87.5 % 92.0 %
TCP NewReno+RED 95.1 % 89.9 % 92.5 %

CP-TCP/EPF 93.4 % 92.6 % 93.0 %
VQM 94.1 % 87.8% 90.9%
REM 94.9% 93.2% 94.1%

CP-TCP/EPF.
However, the first four flows receive slightly higher rates than they should. This is caused

by the source algorithm: Since REM can only increase and decrease the congestion window by
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Figure 5.2.1: Rate allocation of REM with PC3 [ZK02]

one segment per round-trip time, it cannot establish the correct rates for the first four flows. The
congestion window oscillates between one and two, causing the flows to receive more than their
fair share of bandwidth. This effect becomes more obvious when the capacity of the core links
is reduced. However, this problem is a result of the window based rate control, not necessarily
of REM. Also, it can be observed that the rate allocation does not depend on the round-trip
time; for both paths I (6 ms) and II (34 ms) the rate allocation is approximately identical. Thus,
REM does establish a nearly weighted proportionally fair rate allocation.

Dynamics

Figure 5.2.2 shows the resulting congestion windows for flows 1, 5, and 9 when varying the
number of active flows over time. Again, since different willingness to pay parameters are
used for the three flows, the congestion windows must be of different size. This is the case
even though the congestion window sizes are subject to oscillations. The oscillations are partly
caused by the source algorithm because it adjusts the congestion window size by one full packet
almost every round-trip time. Minor modifications to the source algorithm could lead to a more
stable window. However, the oscillations are also caused by instability. The general impact of
instability will be discussed more in detail in Chapter 6.

60



5.2 Random Exponential Marking (REM)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
congestion window (REM)

cw
nd

 [p
ac

ke
ts

]

time [s]

Figure 5.2.2: Congestion window (flows 1, 5, 9)

These oscillations are also visible in the queue trajectory of the core link at router R1, which
is shown in Figure 5.2.3. Obviously, this is not desired as it introduces jitter and high peaks in
the instantaneous queue size. On the other hand, higher queue sizes also lead to better bottleneck
link utilization (cf. Table 5.2.1).

Thus, although REM can establish average throughput very well, it has weaknesses in its
dynamic behavior. In particular, oscillations cannot completely be avoided. Compared to CP-
TCP/EPF, this is a significant disadvantage.

5.2.3 Evaluation of REM’s Path Price Estimation, Scalability and Fair-
ness (Parking Lot Network)

Ways to Improve REM

As was shown, the reduction of pricing information to a single bit caused significant disadvan-
tages in dynamic behavior when compared to the explicit price feedback used before. While
VQM only allows a single bit of information, REM encodes the full path price in a special
way. However, even REM has some problems in the dynamic behavior, as was shown. To im-
prove REM, the encoding mechanism and transport algorithm of the path price were studied.
Their impact on performance were evaluated in [ZHK01]. Here the significant findings and
conclusions are summarized.

Marking Probabilities and Path Price Estimation

Because REM has to estimate the marking probability in order to recover the path price, a
history of packets is needed. This introduces additional delay before the source can react to

61



Chapter 5: Single Bit Marking Strategies

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
queue size (REM)

qu
eu

e 
si

ze
 [p

ac
ke

ts
]

time [s]

Figure 5.2.3: Queue size at core link of router R1

changed path prices. Additionally, if the path price estimation is wrong, this will result in
incorrect rate allocation. Therefore, using the “parking lot” topology and flow scenarios that
were introduced above in Subsection 4.4.1, the path price estimation was examined by means
of simulation. The results gained from the simulations to evaluate scalability with regard to
the number of active sources and fairness were used and compared to the results derived with
the CP-TCP/EPF in Subsection 4.4.1. As a compromise between full pricing information and
single bit marking, a multi-bit variant was also suggested and implemented in [ZHK01].

The performance of REM significantly depends on the end–to–end marking probability es-
timation. For very low or very high marking probabilities, the algorithm performs suboptimally
and high oscillations can be observed [AL00]. While in small networks the parameter φ can be
adjusted to get optimal marking probability, in large networks with highly fluctuating numbers
of sources this will be a very difficult task. To overcome this problem, one could think of an
adaptive version where the parameter φ is adjusted dynamically. However, this would require
that all network components and sources agree upon the same φ(t) for all t ≥ 0. Such a solution
can hardly be implemented. Alternatively, a multi-bit variant could be used, where each bit is
encoded using a different φ. Using four different values for φ, the shadow price at each link is
translated into four different marking probabilities. The source then estimates the end–to–end
marking probability for each bit and only selects the bit with an estimated probability in the
“good range” where the algorithm performs well. To keep the algorithm as simple as possible,
the bit with the marking probability closest to 0.5 was chosen for the calculation of the estimated
path price.

The different variants of REM were then simulated in a parking lot network in order to
examine different marking strategies and to compare S. Low’s original proposal for a single
bit marking scheme with an extended version using four bits as described before. For these
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simulations, a history of 50 packets was used to estimate the end–to–end marking probability.
The following parameters were used: for the single bit case φ = 1.007, for the four bit case
φ1 = 1.06, φ2 = 1.007, φ3 = 1.001, φ4 = 1.00015.

Simulation Results

Figure 5.2.4 shows the estimated and actual path prices at source 1 over time for the standard
single bit REM and the proposed four bit variant. This simulation confirms the problem with
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(b) 4 bit marking (few flows)
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(c) 1 bit marking (many flows)
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(d) 4 bit marking (many flows)

Figure 5.2.4: Price tracking [ZHK01]

the estimation of the path marking probability: Since a history of 50 packets is used to esti-
mate the marking probability, an additional delay is introduced before the source can react to
changed path prices. This is a problem especially if a source has only a small number of pack-
ets in transit. Thus, rate updates could be delayed several round-trip times. If the number of
competing flows is increased, larger path prices are observed. If φ is not adjusted, the single bit
variant cannot follow into these higher price regions. While the four bit variant cannot solve
the delay introduced by the marking probability estimation, it allows the path price to be esti-
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mated correctly even if the number of flows is greatly increased (cf. Figure 5.2.4d). Thus, better
performance of the 4 bit variant could be expected.

Congestion windows and queue lengths are shown in Figures 5.2.5 and 5.2.6. For both
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(c) 1 bit marking (many flows)
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Figure 5.2.5: Congestion window size [ZHK01]

marking strategies and for both the “few flows” and the “many flows” scenario, the congestion
window inversely follows the change of load. Also note that the oscillations are reduced in
comparison to Figure 5.2.2. This is a result of the greater overall congestion window size where
oscillations of one are not as visible. Further, an optimized parameter set was used.

Tables 5.2.2 and 5.2.3 show the link performance parameters for both marking strategies.
The four bit marking scheme can on average establish a slightly higher throughput, and its
average backlogs are closer to the target value. However, the differences are only marginal.
Even though the single bit variant cannot track congestion prices as well as the four bit variant,
performance values are similar. Considering only these parameters, the single bit variant seems
sufficient even if network conditions change significantly.

In the Subsection 4.4.1, the performance of CP-TCP with Explicit Price Feedback was eval-
uated in the same network topology. Since full pricing information was used in this case, better
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(a) 1 bit marking (few flows)
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(b) 4 bit marking (few flows)
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(c) 1 bit marking (many flows)
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Figure 5.2.6: Queue size [ZHK01]

Table 5.2.2: Link performance measures for queue R3 (“few flows” scenario) [ZHK01]

Time interval 0–20 s 20–40 s 40–60 s 60–80 s 80–100 s

Utilization (1 bit) 99 % 96 % 97 % 97 % 96 %
Utilization (4 bit) 99 % 98 % 97 % 98 % 97 %
Avg. backlog (1 bit) 21 pkts 51 pkts 33 pkts 43 pkts 27 pkts
Avg. backlog (4 bit) 22 pkts 44 pkts 35 pkts 42 pkts 20 pkts

Table 5.2.3: Link performance measures for queue R3 (“many flows” scenario) [ZHK01]

Time interval 0–20 s 20–40 s 40–60 s 60–80 s 80–100 s

Utilization (1 bit) 95 % 86 % 90 % 86 % 94 %
Utilization (4 bit) 96 % 87 % 95 % 87 % 95 %
Avg. backlog (1 bit) 405 pkts 1738 pkts 638 pkts 1568 pkts 359 pkts
Avg. backlog (4 bit) 458 pkts 1769 pkts 739 pkts 1655 pkts 419 pkts
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performance could be achieved. In the “few flows” scenario (cf. Table 4.4.3 for CP-TCP/EPF
and Table 5.2.2 for REM), however, the link utilization is almost the same for both CP-TCP/EPF
and REM. The average backlog, on the other hand, is on average 45% larger than in the case
of CP-TCP/EPF. Especially in the case of many active flows REM performs worse. The same
holds for the “many flows” scenario (cf. Table 4.4.4 for CP-TCP/EPF and Table 5.2.3 for REM),
where the average backlog is on average 53% larger in the case of REM. Additionally, the link
utilization is lower than with Explicit Price Feedback. Thus, though REM has the advantage of
using only a single bit for path price transport, it results in a certain degradation in performance
parameters as well. Nonetheless, REM still performs very well and can achieve much higher
utilization at much lower average queuing delay than any of the conventional TCP variants.

Fairness

To evaluate fairness qualitatively, the acknowledgment sequence number plots shown in Figure
5.2.7 are used. These plots display the increasing sequence numbers of the arriving acknowledg-
ments over time (cf. Subsection 4.4). Since additional flows (not shown) are activated during
certain periods (cf. Figure 4.4.1b), the share of bandwidth that each flow receives and thus the
slope of the parallel lines changes over time.

The plots can be used to evaluate fairness between different flows on the same path (here
flow 0 and flow 1 are examined for each path displayed), to evaluate rate distribution qualita-
tively between flows on different paths (here four different paths are shown), and to evaluate
qualitatively the rate and fairness changes when the network conditions change (i.e. change in
the number of active flows over time). The source/sink pairs and the corresponding round-trip
delays are shown in Table 4.4.1.

As expected from the proportional fairness criterion (3.2.22), the flows on the paths with the
smallest network resource usage receive the highest rate (cf. Figure 4.4.1a), and the flows with
the largest network resource usage receive the smaller rate (cf. Figure 4.4.1d). Also, both flows
0 and 1 of the same source receive the same rate. However, there is an exception: Simulations
have revealed a few cases where a fair rate allocation between different flows from the same
source cannot be established. An example is shown in Figure 5.2.7b: While flow 1 reduces
its rate almost immediately when the additional flows are turned on at time 60 s, flow 0 only
decreases its rate at a lower degree. This effect could only be observed in the “many flows”
scenarios and is explained as follows: During the time interval [40–60 s] 400 flows are active.
Then additional 400 flows are turned on. This causes the queues to fill up quickly as shown in
Figure 5.2.6c. Since this significantly increases the round-trip time, the retransmission timer of
almost all of the old flows expire before the acknowledgment is received. As a consequence,
the congestion window is reduced to one. Only flow 0 of Figure 5.2.7b does not encounter a
retransmission timeout and only slowly reduces the congestion window. Since the other 199
flows reduced their rates immediately, the congestion price decreases — allowing flow 0 to
continue sending at a higher rate.

Conclusions

The idea of exponential marking allows REM to establish the correct average rates efficiently.
However, as was demonstrated, the correct estimation of the path price is delayed because many
packets are needed to estimate the marking probability. Together with the source algorithm, this

66



5.2 Random Exponential Marking (REM)

flo
w

 1

 Arriving ACK Seq# Source S9

0 20 40 60 80 100

flo
w

 0

Time [sec] →

(a) Source 9

flo
w

 1

 Arriving ACK Seq# Source S5

0 20 40 60 80 100

flo
w

 0

Time [sec] →

(b) Source 5

flo
w

 1

 Arriving ACK Seq# Source S2

0 20 40 60 80 100

flo
w

 0

Time [sec] →

(c) Source 2

flo
w

 1

 Arriving ACK Seq# Source S1

0 20 40 60 80 100

flo
w

 0

Time [sec] →

(d) Source 1

Figure 5.2.7: Acknowledgment sequence number plots (high number of competing flows)
[ZHK01]
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could lead to severe oscillations. Therefore, as the simulations have shown, REM parameters
have to be carefully tuned for best performance. As mentioned initially, this is difficult for
changing network conditions. Also with regard to the dynamic behavior, REM performs much
worse than CP-TCP/EPF and VQM.

When the number of active flows is significantly increased, REM cannot maintain a link
utilization above 90 % without adaptation of the parameters. Also, fairness between flows using
the same resources is not always achieved. Nonetheless, REM is good approach to CP-based
TCP that allows for service differentiation and can allocate rates better than TCP NewReno.

5.3 Summary of VQM and REM Simulation Results

Both REM and VQM are good candidates for Congestion Pricing based TCP implementations.
They have different strengths and weaknesses, though. Similarly to CP-TCP/EPF, the Virtual
Queue Mechanism (VQM) displays low queue sizes while maintaining high bottleneck link
utilization. The congestion window also inversely follows the changes in load as is desired to
keep utilization high and delay low. Even though VQM needs only a single bit for path price
transport, it performs well. However, the rate allocation differs from the theoretical weighted
proportional fair rate allocation. Thus, it is not possible to calculate rate distributions on a
network. Even worse, flows that use more than one bottleneck link receive very small rate
shares. If several bottleneck links are used, these connections can suffer from starvation. This
is not tolerable in larger networks and therefore a very significant disadvantage of VQM.

REM, using its smart exponential encoding scheme, can establish the desired proportion-
ally fair rate allocation very well. Multiple bottleneck links are not a problem, just like with
CP-TCP/EPF. However, the estimation of the end–to–end marking probability introduces a sig-
nificant delay in reaction to changed network conditions. Furthermore, REM has to be carefully
tuned, as it tends to oscillate. VQM is easier to tune and shows smoother behavior leading to
less fluctuating queue sizes. Both proposed implementations can be used with service differen-
tiation by using different willingness to pay variables.

5.4 Single Bit Resource Marking (SBRM)

5.4.1 Motivation

In the previous sections two Congestion Pricing based TCP variants were introduced that only
use a single bit to encode and transport the path price. They have different strengths and weak-
nesses (cf. Section 5.3). In this section, a new and practical TCP variant is proposed that
combines the strengths of REM and VQM. This proposal is less complex and uses also only a
single bit in the IP header, thus is perfectly compatible with the TCP Explicit Congestion No-
tification (ECN) [RFB01] extension. Since the name “Congestion Pricing” is often associated
with payments, the name “Resource Marking” is preferred here. It still synonymously refers to
the same Congestion Pricing framework that was presented in Chapter 3, but emphasizes that
the framework is used for congestion control only and not for charging users.
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5.4.2 Algorithms
Path Price Transport

A single bit is used to transport the shadow prices. Marking is exponential just like the REM
proposal, thus the additive exponent property can be utilized to recover the path price (cf.
Subsection 5.2.1).

Marking Algorithm

Since extensive simulations have shown that REM’s three price computation rules PC1–PC3 on
average do not differ significantly (cf. Subsection 5.4.4), for SBRM complexity is reduced as
far as possible by basing the marking algorithm on the instantaneous queue size only.

Each packet leaving the queue is marked with the probability ml(t), where:

ml(t) = 1− exp
(
−γ [bl(t)−b0]

+) , (5.4.1)

and γ is a scaling factor. To decrease feedback time, leaving packets are marked instead of
entering packets. This will also cause the first packet of a burst of packets to be marked with a
higher probability than the following packets. The underlying shadow price is calculated using
the current queue size bl(t) minus a threshold value b0, and can only be positive as indicated by
the brackets []+.

Simulations conducted by the author of this dissertation have also shown that basing the
marking on the instantaneous queue size only reduces oscillations significantly. However, this
decision will cause a coupling of the congestion price and the queue length (cf. Section 2.4.1).
Thus, if more flows share the link, the average queuing delay will increase. This will be demon-
strated in Section 5.5. By choosing optimal parameter values, this undesired effect can be
greatly reduced. Considering the strengths of SBRM, this drawback is acceptable. Furthermore,
this property is common to most other proposed Active Queue Management (AQM) strategies
such as RED, which will be also shown in Section 5.5.

Just like in other AQM strategies, the network operator can use the threshold value b0 to set
a desired target queue size. A high target queue size allows temporary bursty arrivals without
punishing connections, and it will reduce times where the queue becomes totally empty even if
there is still demand for bandwidth. This increases utilization of the following link. On the other
hand, the payoff is an increased mean queue size and thus increased average queuing delay. It
should be up to the network operator to chose a good value. For example, a router could have
two queues: one for low latency traffic with a target queue size of zero, and one with a threshold
b0 > 0 to keep the utilization of the link close to 100%. b0 could also be adapted dynamically,
however, this is out of the scope of this investigation.

The marking algorithm (5.4.1) is similar to S. Athuraliya’s and S. Low’s Price Computation
Rule 2 [AL00], but it differs in the use of the natural logarithm as fixed base for the exponential
function. This eliminates the problem that a common φ must be agreed upon by all sources and
network gateways. The simulations have shown that this value works well over a wide range of
the number of bottleneck links and active sources. Here the scaling factor γ is chosen such that
marking probability is 99% at maximum queue size. Using the two parameters b0 and γ, the
network operator can control the range in which the average queue size is located. However, as
the application of control theory will show (cf. Chapter 6), it is a better choice to set γ ≈ 1

c .
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Source Algorithm

The source algorithm of SBRM is based on the source algorithm (5.1.2)–(5.1.3) that was already
used for VQM:

For every received non-marked acknowledgment, the congestion window is increased by:

∆cwnd = κ · RTT
cwnd

·wn

and for every marked acknowledgment, differing from (4.2.3), the congestion window is de-
creased by:

∆cwnd = κ .

As was described for VQM in Section 5.1, this algorithm was chosen for practical reasons
because it also works with incorrect choices of the willingness to pay parameter wn. Alterna-
tively, a second variant of SBRM can be implemented that uses the original source algorithm
(4.2.3). In both cases, the path price pn is assumed to be either zero or one, depending on
whether the packet was marked or not.

For the simulations described in the following subsections, TCP’s congestion avoidance
algorithm implemented in the UCB/VINT Network Simulator 2 (ns-2) [UCB] was modified to
reflect SBRM’s source algorithm. TCP’s normal reaction to packet loss was unchanged.

5.4.3 Performance Evaluation (Simulations)

Rate Allocation

Again, the achieved rate allocation is evaluated using a double bottleneck link topology that
was already described in Subsection 4.3.1. Since SBRM uses a random component, each sim-
ulation was repeated 30 times using different seeds to be able to calculate confidence intervals.
In Figure 5.4.1, the resulting mean rates and 95% confidence intervals are shown. Again, the
horizontal lines in the plots show the theoretical values for a weighted proportionally fair rate
allocation. Ideally, the actually achieved values should be on the horizontal lines. For SBRM,
there is no perfect match, but the resulting rate allocation is close to the desired weighted pro-
portionally fair rate allocation. Additionally, a bottleneck link utilization is established that is
on average higher than for any other evaluated TCP variant (cf. Table 5.4.1).

Table 5.4.1: Bottleneck link utilization

TCP variant Utilization of core link 1 Utilization of core link 2 Average core link utilization

TCP NewReno+drop-tail 96.5 % 87.5 % 92.0 %
TCP NewReno+RED 95.1 % 89.9 % 92.5 %

CP-TCP/EPF 93.4 % 92.6 % 93.0 %
VQM 94.1 % 87.8% 90.9%
REM 94.9% 93.2% 94.1%

SBRM 97.9% 92.0% 95.0%
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Figure 5.4.1: Rate allocation using SBRM [ZK02]

Also, service classes are established using three different willingness to pay settings. In
each service class are four flows. As shown in Figure 5.4.1, they approximately receive the
same bandwidth. Thus, fairness within a service class is achieved as desired. Although the rate
allocation established by SBRM is not as close to the targets as REM (cf. Figure 5.2.1), it is
much better than VQM (cf. Figure 5.1.1).

Dynamics

To evaluate dynamic behavior of SBRM, the number of active flows was again changed over
time (cf. Subsection 4.3.1). The results of these simulations are shown in Figures 5.4.2 and
5.4.3. Figure 5.4.2 shows the resulting congestion windows for flows 1, 5, and 9.

The congestion window is changed inversely proportional to the load, which is the desired
behavior. It is also more stable, and the oscillations seen with REM (cf. Figure 5.2.2) are not
present any more. As a consequence, the development of the queue size (cf. Figure 5.4.3)
remains almost constant at a low level. However, the average queue size is slightly higher than
with VQM (cf. Figure 5.1.3) because of the introduction of a target queue size b0. On the
other hand, SBRM achieves the highest average bottleneck link utilization in comparison to any
other TCP variant (cf. Table 5.4.1). Although the bottleneck link utilization of REM is close, it
suffers from strong fluctuations of the queue size (cf. Figure 5.2.3). The behavior of the queue
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Figure 5.4.2: Congestion window (flows 1, 5, 9) [ZK02]
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Figure 5.4.3: Queue sizes at core link of router R1 [ZK02]
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with SBRM is even better than with CP-TCP/EPF (cf. Figure 4.3.7). In Figure 4.3.7, also
conventional TCP variants are shown. They perform significantly worse than any Congestion
Pricing based TCP variant.

5.4.4 Comparison of SBRM With Other Approaches in a Parking Lot
Topology

Several different combinations of source, link, and path price transport algorithms were eval-
uated and compared to SBRM in [Ham01]. There, in a parking lot topology, the resulting
throughput of the sources, the utilization of the links and the average backlogs were recorded
for each combination for several simulation runs. Again, a scenario with a small number of
flows (“few flows” scenario) and a scaled up scenario with increased capacities and a larger
number of flows (“many flows” scenario) were used to evaluate scalability of the algorithms
with regard to the number of flows (cf. Subsection 4.4.1). A summary of the results is shown in
Figure 5.4.4. The displayed simulation type numbers are explained in Table 5.4.2.

The figures show significant variation of the resulting rate allocation in the “many flows”
scenario for all single bit marking strategies (simulation types 1, 8 ,15, 22, and 23, cf. Figures
5.4.4a and b) with the exception of SBRM (simulation types 24, 25, and 26). SBRM, on the
other hand, yields a rate allocation that is comparable to the strategies with full pricing infor-
mation (simulation types 3, 4, 5, 7, 10, 11, 12, 14, 17, 18, 19, and 21). The utilization of the
link is also well above 90% for SBRM at comparably low average backlogs (cf. Figures 5.4.4c
and d). In summary, SBRM has proven to be the best Congestion Pricing implementation while
using only a single bit for path price transport.

5.4.5 Conclusions
Single Bit Resource Marking (SBRM) is a simplified combination of the Direct Window Update
source algorithm (4.2.3) and REM’s price computation rule 2 (5.2.4) with some modifications
to both algorithms. SBRM can establish the desired weighted proportionally fair rate allocation.
Also, the dynamic behavior of the congestion window is as desired, leading to almost constantly
low queue sizes and average bottleneck link utilization around 95%. SBRM is therefore a
practical implementation of Congestion Pricing theory using only a single bit that performs
comparably to CP-TCP/EPF. SBRM by far outperforms the conventional TCP algorithms as
well (cf. Subsection 4.3.1). For these reasons, SBRM is the most promising approach to gain
superior performance in a TCP/IP based network by using Congestion Pricing theory.

5.5 Steady-state Analysis of SBRM
In this section a model will be presented for the analytical calculation of the steady-state of
SBRM in a single bottleneck link scenario. This model can be used to calculate average rates,
average backlog and average marking probability.

A single source solves the optimization problem stated by (3.2.8)–(3.2.9). Thus, in the
steady-state, U(xn)− px will be at its maximum. This leads to the first order condition:

U ′(xn) = p∗n. (5.5.1)
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Table 5.4.2: Legend to the simulation type numbers in Figure 5.4.4

Simulation Source Algorithm Link Algorithm Rate Estimation Slow Start

1 Vegas PC1 1 Bit RTT yes
2 Vegas PC1 4 Bit RTT yes
3 Vegas PC1 EPF RTT no
4 Vegas PC1 EPF RTT yes
5 Vegas PC1 EPF min. RTT no
6 Direct Window Update PC1 1 Bit RTT yes
7 Direct Window Update PC1 EPF RTT no
8 Vegas PC2 1 Bit RTT yes
9 Vegas PC2 4 Bit RTT yes

10 Vegas PC2 EPF RTT no
11 Vegas PC2 EPF RTT yes
12 Vegas PC2 EPF min. RTT no
13 Direct Window Update PC2 1 Bit RTT yes
14 Direct Window Update PC2 EPF RTT no
15 Vegas PC3 1 bit RTT yes
16 Vegas PC3 4 bit RTT yes
17 Vegas PC3 EPF RTT no
18 Vegas PC3 EPF RTT yes
19 Vegas PC 3 EPF min. RTT no
20 Direct Window Update PC3 1 Bit RTT yes
21 Direct Window Update PC 3 EPF RTT no
22 Direct Window Update VQM 1 Bit RTT yes
23 Direct Window Update VQM n Bit RTT yes
24 Direct Window Update SBRM + PC1 RTT yes
25 Direct Window Update SBRM + PC2 RTT yes
26 Direct Window Update SBRM + PC3 RTT yes
27 TCP Reno RED n/a yes
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Since the utility function is strictly increasing, p∗n > 0. Therefore ∑l∈L(n)Cl(yl) > 0 and thus
b∗l > 0, where l is a bottleneck link. Because b∗l > 0, the aggregate rate in the steady-state at link
l cannot be less than the links capacity cl . Since it also cannot be larger than the link’s capacity,
y∗l = cl . Therefore:

y∗l = cl = ∑
n∈N (l)

x∗n. (5.5.2)

In case of logarithmic utility functions (3.2.21),

U ′(xn) =
wn
xn

. (5.5.3)

Inserting (5.5.1) and (5.5.3), (5.5.2) becomes:

cl = ∑
n∈N (l)

wn
p∗n

. (5.5.4)

Now a single bottleneck link is assumed. From the weighted proportional fairness criterion
(3.2.23), it is known that the available rate at the bottleneck link will be shared as follows:

x∗n =
wn

∑N
i=1 wi

· c. (5.5.5)

Thus, using (5.5.4) and (5.5.5) the average marking probability can be determined as:

m∗ = p∗ =
wn
x∗n

=
∑N

i=1 wi

c
. (5.5.6)

It follows that ∑N
n=1 wn ≤ cl , which was already discussed in Section 5.1.

The marking probability leads to the average queue length by using the inverse of (5.4.1):

b∗ = b0 −
1
γ

ln (1− p∗) (5.5.7)

This reveals a problem: As the number of sources increases without adjustment of each
source’s willingness to pay wn, the steady-state queue length will also increase. This prob-
lematic coupling of congestion and performance measure was already discussed in Subsection
2.4.1. But since the marking probability increases exponentially, linear increase in the number
of sources will only lead to a logarithmic increase in queuing delay.

Using (2.3.1), the steady-state congestion window can finally be calculated as follows:

cwnd∗n = RTT ∗
m · x∗n. (5.5.8)

Table 5.5.1 shows the steady-states in a single bottleneck link scenario for both TCP Reno
with RED queues2 and SBRM. The TCP Reno+RED model was taken from [Low00]. Again,
the table shows that the resulting average rate depends on the round-trip time (RTT) only for
TCP Reno.

2Assumption is made that the steady-state queue size is between minimum and maximum thresholds.
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Table 5.5.1: Steady-states of TCP Reno with RED queues and SBRM in a single bottleneck
link topology

TCP Reno+RED [Low00] SBRM

Average rate x∗n = 1
RTTn

1
∑N

i=1
1

RTTi

c x∗n = wn
∑N

i=1 wi
c

Mean marking probability p∗ = 2

2+c2


 1

∑N
n=1

1
RTTn




2 p∗ =
∑N

n=1 wn
c

Mean queue length b∗ = thmin + 1
ρ p∗ b∗ = b0 − 1

γ ln(1− p∗)

5.6 Compatibility with Conventional TCP

5.6.1 TCP-Friendliness

All flows on the Internet are supposed to be TCP friendly, i.e. under congestion they should
behave similarly to conventional TCP variants. RFC2309 [BCC+98] defines TCP-compatible
flow as follows: “A TCP-compatible flow is responsive to congestion notification, and in steady-
state it uses no more bandwidth than a conformant TCP running under comparable conditions
(drop rate, RTT, MTU, etc.)”. Instead of using the term TCP-compatible flow, the term TCP-
friendliness will be used here to refer to this feature. This term is also used in [FF99], where it
is analogously defined as: “We say a flow is TCP-friendly if its arrival rate does not exceed the
arrival of a conformant TCP connection in the same circumstances.”

Thus, according to these requirements, a newly proposed TCP variant such as SBRM or any
other Congestion Pricing based algorithm should respond to congestion signals by reducing the
transmission rate, and on average claim a bandwidth less or equal to the bandwidth claimed by
“conformant TCP flows”. However, it is not clearly defined what a “conformant TCP flow” is.
The conventional and common TCP variants Tahoe, Reno, and NewReno can vary significantly
in the bandwidth shares they claim. But even if the assumption is made that all of the con-
ventional TCP variants are “conformant”, the TCP-friendliness requirement is still debatable.
The definitions both refer to “conformant TCP” as an upper bound for the mean bandwidth of
a TCP-friendly flow. The authors of these definitions argue that TCP-friendliness is necessary
to avoid congestion or even a congestion collapse. However, in the opinion of the author of
this dissertation it is more important that a link is not overloaded and utilization is good. How
the capacity is distributed between the competing flows should not be of concern from a con-
gestion avoidance point of view. Thus, congestion could still be avoided even if flows claim
more bandwidth that the conventional TCP variants. In [FF99], the authors additionally argue
that taking more bandwidth than conformant TCP flows will also lead to unfairness: As the
non-conformant flows claim more bandwidth, all other TCP-friendly flows have to reduce their
share. While this is undoubtedly true, efficient usage of the network is more important than
fairness. Especially current TCP variants are highly inefficient when the available bandwidth is
very high.

77



Chapter 5: Single Bit Marking Strategies

In [FF99] the upper bandwidth of a “conformant TCP flow” in bytes per second is explicitly
defined by the following formula:

BW ≤
1.5
√

2
3B

RTT
√

p
,

where B is the maximum packet size in bytes, RTT is the round-trip time including queuing
delays, and p is the aggregate packet drop/marking rate of the considered link. To achieve a
sustained data rate of 10 Gbps with a RTT of 100 ms and a maximum packet size of 1500
Bytes, the packet drop probability must be less than 1.9 · 10−10. This is roughly equivalent to
one packet loss every 1 2

3 hours. It is commonly agreed that this is an unrealistic value. For this
reason, TCP in high capacity networks is an active field of research. A modified TCP, called
High-speed TCP, has been proposed to the IETF [Flo03].

SBRM, on the other hand, claims a bandwidth of:

BW =
wnB

p
,

where wn is the willingness to pay, and p is the aggregate packet marking rate. This formula
was derived from (5.5.5)–(5.5.6). To achieve a sustained transmission rate of 10 Gbps (wn =

1pkts
s ), the marking probability needs to be less than 1.1 · 10−6. This is roughly equivalent to

one congestion event every second. Figure 5.6.1 shows the bandwidth shares claimed by both
variants as a function of the marking probability.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
100

101

102

103

104

105

106

107

marking probability

ra
te

 [p
kt

s/
s]

conformant TCP
SBRM

Figure 5.6.1: Claimed bandwidth by SBRM in comparison to “conformant TCP” (RTT =

100ms, wn = 1 pkts/s)

78



5.6 Compatibility with Conventional TCP

Depending on the choice of parameters, SBRM will claim a significantly higher rate than
“conformant TCP” when the marking probability is low, and a lower rate when the marking
probability is high. For this reason, SBRM is better able to achieve a high data rate in high ca-
pacity networks while it is even more conservative than conventional TCP variants in congested
networks.

For these reasons, SBRM is a valid proposal although it violates the TCP-friendliness cri-
terion. The impact on fairness between the Congestion Pricing based and conventional TCP
variants is further examined in [Red02].

5.6.2 Compatibility with Existing TCP Sinks

Compatibility with current TCP is not an issue if Congestion Pricing based variants are being
implemented in a private network. But even deployment in the global Internet is possible us-
ing slight modifications. Here it is assumed that ECN will be fully deployed on the network.
For ECN-incapable networks, the conventional packet drop mechanism will be used. A future
TCP stack should thus be able to interpret both types of congestion signals. SBRM as pre-
sented before is not 100% compatible with current Internet standards. Therefore some minor
modifications are presented here in order to yield 100% compatibility.

Most of the Internet users receive more data than that what they send. This is also the as-
sumption behind asymmetric digital subscriber lines (ADSL) that are becoming very popular.
Additionally, most of the communications on the Internet are client/server based. Many clients
(most users) request data from a few servers (web servers, mail servers, file servers). For this
reason, to gain advantage from Congestion Pricing based TCP variants, it is sufficient to just
migrate the servers. However, this is only possible if the Congestion Pricing based TCP vari-
ants are fully functional with conventional TCP sinks. Since the Single Bit Resource Marking
(SBRM) proposal makes use of Explicit Congestion Notification (ECN) which is standardized
by the IETF, it is inter-operable with ECN-capable routers and sinks. However, the original
ECN standard [RFB01] requires that the TCP receiver echoes the ECN Echo (ECE) flag in ev-
ery acknowledgment until it receives a Congestion Window Reduced (CWR) flag. It will take
one round-trip time from echoing the first ECE flag until reception of the CWR flag. If no
Delayed-ACK algorithm is used [JB88], for every received packet the receiver will send one
acknowledgment. Thus, all acknowledgments will have the ECE flag set for one full congestion
window if one packet was marked. The reason for this algorithm was to avoid problems when
an acknowledgment gets lost.

SBRM must be modified to be compatible with this way of ECE signaling. Only minor
modifications are necessary, but to distinguish this fully TCP-compatible variant of SBRM, it
will be referred to as “TCP/RM” (TCP Resource Marking).

5.6.3 TCP/RM (Modified SBRM)

Source Algorithm

TCP/RM only modifies TCP’s congestion avoidance algorithm when Explicit Congestion Noti-
fication (ECN) is used. Otherwise it is identical to TCP NewReno. Also, TCP’s normal reaction
to packet loss is unchanged.
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For every received non-marked acknowledgment (no ECE flag set), the congestion window
is increased by:

∆cwnd = κ · RTT
cwnd

·wn, (5.6.1)

and for the first marked acknowledgment (ECE flag set) per round-trip time, the congestion
window is decreased by:

∆cwnd = κ · cwnd . (5.6.2)

Since ECN receivers continue to echo the ECE flag until a CWND flag is received, the sender
must ignore ECE flags for one round-trip time after it has reduced its congestion window. All
parameters are identical to those of SBRM (cf. Section 5.4).

Round-Trip Time Estimation

Since the source algorithm directly depends on the estimate of the current round-trip time
(RTT), it is important that the estimate is good. Generally, TCP’s original smoothed RTT esti-
mate can be used for this purpose. However, special care has to be taken with retransmissions.
Karn’s algorithm [KP87] forbids the use of RTT measurements of retransmitted packets be-
cause it is not possible to determine whether the acknowledgment refers to the original or to
the retransmitted segment. However, Karn’s algorithm does not solve the problem with the
timing of segments that were sent after the lost segment but before recovery and which thus
will produce duplicate acknowledgments. Such a segment can only be acknowledged when the
retransmitted segment has been received. This will introduce an additional delay which is not
part of the actual round-trip time. Therefore the author of this dissertation proposes to discard
RTT measurements of retransmitted segments and all following segments that were sent before
the lost packet was detected. To avoid this problem and for better accuracy, it is recommended
to use TCP time-stamp option [JBB92].

Marking Algorithm

The SBRM marking algorithm as presented in Section 5.4 is used. However, any marking
algorithm such as RED [FJ93] could also be used, TCP/RM will still work.

5.6.4 TCP/RM Simulations and HTTP Model

In the previous sections the rate allocation and dynamics of SBRM were analyzed with only
greedy sources. In this section the TCP/RM implementation is verified by using more realistic
traffic patterns. For this reason a single bottleneck link topology (cf. Figure 5.6.2) is considered
and implemented in the Ptolemy Classic simulator [PCB]. Ten bidirectional flows are installed
on each of the three paths: S1/S4, S2/S5, and S3/S6. Link capacities and delays are shown in
Figure 5.6.2. The minimum round-trip time (RTT) of the flows going from source node S1 to
S4 is 20 ms, from node S2 to S5 is 36 ms, and from S3 to S5 is 56 ms. Parameters for the
TCP/RM sources are κ = 0.1 and wn = 20. The SBRM queue scaling factor γ is chosen such that
marking probability is 99% at the queues maximum capacity.
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Figure 5.6.2: Single bottleneck link topology

Greedy model with SBRM queues

In the first experiment, greedy sources are used. The routers R1 and R2 use SBRM marking
queues with a capacity of 300 packets and the marking threshold b0 set to 30 packets. Simulated
time is 60 seconds.

Since ECN marks are used as a less strict congestion signal than packet drops in TCP/RM,
the congestion windows change less drastically with TCP/RM than with NewReno-ECN (cf.
Figure 5.6.3). In Figure 5.6.4, histograms of the aggregated congestion windows of all flows
on a path are shown. The leftmost columns are caused by the TCP receivers that keep their
congestion window at one segment size. In the case of TCP/RM, the histogram is more narrow
which suggests more stable congestion windows than with NewReno-ECN. It also implies better
fairness between flows on the same path. However, for fairness between flows on different
paths, the congestion windows should be significantly larger on the path S3-S6 than on the
path S1-S3 because of the greater round-trip time. The results are not as good as was shown
with SBRM [ZK02]. This is due to the low resolution (100 ms) of the smoothed round-trip time
estimate in the Ptolemy Classic Simulator. Figure 5.6.5 shows the histogram of the queue size at
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Figure 5.6.3: Run of the congestion windows (S2-S5)
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(c) NewReno-ECN, path S3-S6
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Figure 5.6.4: Greedy model with SBRM queues: histograms of congestion windows
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the SBRM marking queue at router R1 serving the bottleneck link. It can be seen from the figure

0 20 40 60 80 100 120
0

0.05

0.1

Buffer Occupancy [Packets]

P
ro

po
rti

on
 o

f S
am

pl
es

(a) NewReno-ECN

0 20 40 60 80 100 120
0

0.05

0.1

Buffer Occupancy [Packets]

P
ro

po
rti

on
 o

f S
am

pl
es

(b) TCP/RM

Figure 5.6.5: Greedy model with SBRM queues: histograms of buffer occupancies at R1

that on average the buffer occupancy is less variable and slightly lower with TCP/RM sources
than with TCP NewReno-ECN sources. Usually, choosing smaller queue sizes by adjusting
active queue management parameters leads to a trade-off with regard to link utilization. But
even with slightly lower average queue occupancy, bottleneck link utilization is significantly
higher with TCP/RM (cf. Table 5.6.1).

Table 5.6.1: Link utilization and mean buffer occupancy (R1)

NewReno-ECN TCP/RM

Link utilization 90% 94%
Mean buffer occupancy 30.0 packets 27.7 packets

Mean queuing delay 7.2 ms 6.6 ms

Greedy model with RED queues

The SBRM marking queue is replaced by a RED queue to examine the behavior of TCP/RM
in networks that do not use the SBRM queues. Parameters for the RED queues are thmin = 30,
thmax = 90, thus setting the desired queue size around 60. pmax is 0.2, and qw = 0.02. Maximum
capacity of the queue is 300 packets.

As with SBRM queues, the histogram of the congestion windows is narrower in the case
of TCP/RM (Figure 5.6.6). However, the histogram of the buffer occupancy using TCP/RM
has a local maximum at the desired equilibrium queue size of 60 packets (Figure 5.6.7). Also
bottleneck link utilization is slightly higher for TCP/RM. In this case it comes with the trade-off
of a higher mean queuing delay (Table 5.6.2).
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(b) TCP/RM, path S1-S4

Figure 5.6.6: Greedy model with RED queues: histograms of congestion windows

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Buffer Occupancy [Packets]

P
ro

po
rti

on
 o

f S
am

pl
es

(a) NewReno-ECN

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Buffer Occupancy [Packets]

P
ro

po
rti

on
 o

f S
am

pl
es

(b) TCP/RM

Figure 5.6.7: Greedy model with RED queues: histograms of buffer occupancies at R1

Table 5.6.2: Link utilization and mean buffer occupancy (R1)

NewReno-ECN TCP/RM

Link utilization 89% 92%
Mean buffer occupancy 28.8 packets 35.8 packets

Mean queuing delay 6.9 ms 8.6 ms
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HTTP model with SBRM queues

For realistic traffic patterns, a HTTP model is used here that was presented in [BK02]. It uses
a geometric distribution for the number of HTTP-objects per request (mean 6.55 objects), and
a truncated power-tail distribution for the objects’ sizes (mean 10 kBytes, minimum 100 Bytes,
maximum 10 MBytes). The mean off-time of the sources is 0.5 seconds. The number of flows
is increased to 200 per path to compensate for the off-times. Simulated time is 60 seconds.

Main Object In−line Obj. 1 In−line Obj. N Main Object...

HTTP OffHTTP On

...

time

Request
Main Obj.

... Request
In−line Objs.

Request
Main Obj.

Figure 5.6.8: HTTP model [Bel03]

In Figure 5.6.9 the histograms for the buffer occupancy are shown for TCP NewReno-ECN
and TCP/RM. Although mean buffer occupancy is slightly smaller with TCP/RM (cf. Table
5.6.3), both histograms look alike. The main reason is the effect of the slow start algorithm.
Since HTTP flows often last only for a few packets, congestion avoidance mode is often never
entered. Since both variants use the same slow start algorithm, they behave similarly. But still,
TCP/RM experiences fewer fast retransmits and — more important — fewer timeouts (Table
5.6.3). The mean throughput value shown is the inverse of the mean time needed to transfer an
average web page including all embedded objects from the server to the user.
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Figure 5.6.9: HTTP model: histograms of buffer occupancies at R1

Conclusions

In this section a practical way was presented to implement Congestion Pricing theory in TCP in
a backward compatible way using ECN. It was also shown that the modified TCP outperforms
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Table 5.6.3: Link utilization and mean round-trip time

NewReno-ECN TCP/RM

Link utilization 89% 85%
Mean buffer occupancy 95.8 packets 91.2 packets

Mean queuing delay 23.0 ms 21.9 ms
Mean throughput 15 kBytes/s 14 kBytes/s
Fast retransmits 1042 1032

Timeouts 6590 6438

TCP NewReno-ECN in a single bottleneck link scenario for greedy FTP-like traffic. With
realistic HTTP-like traffic, TCP/RM and TCP NewReno-ECN perform similarly. This is a result
of HTTP connections being usually much shorter than file downloads. TCP connections then
often never reach congestion avoidance mode. Thus, a modification of the slow start algorithm
also has to be taken into consideration. For HTTP traffic, the transmission rate must quickly
converge to the theoretical share. Oscillations are thus of less importance. One proposal is
to implement Quick-Start [JF02]. Alternatively, the author of this dissertation suggests to use
SBRM with an initially large κ̄, which is then slowly reduced to the optimal value to increase
stability.

5.7 Conclusions

Although SBRM and TCP/RM use only a single bit for path price transport, the rate allocation
is close to the desired weighted proportionally fair rate allocation. Also, there is only little
variation of the resulting rate for different simulation runs. To achieve a link utilization above
90%, the average backlog necessary can be chosen such that it is smaller than achievable with
any other single bit marking variant. Thus, while the performance of SBRM and TCP/RM is
close to the variants that use Explicit Price Feedback, SBRM and TCP/RM are compatible with
current networks that allow only one bit for path price transport. SBRM and TCP/RM also
allow the assignment of priorities of flows by choosing the willingness to pay parameter. This
allows the designation of priority traffic such as business critical or interactive applications.
SBRM and TCP/RM perform significantly better than any of the conventional TCP variants.
SBRM and TCP/RM can therefore be used to solve almost all of the problems of conventional
TCP that were mentioned in Subsection 2.4.1:

The transmission rate is only reduced after a segment has been lost due to overload.

Since Congestion Pricing information is used to signal overload, loss of segments is not required
to signal congestion. Further, the simulations have shown that the average queue size is much
lower than with conventional TCP variants at comparable utilization of the bottleneck link.
Thus, overflow of the queue is much less likely and can in most cases completely be avoided.
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Lost segments have to be retransmitted, thus causing a reduced goodput.

Since losses should only occur because of data corruption, retransmission is required, but much
less likely. Also, the necessity for retransmission is decoupled from network load.

The detection of lost segments is slow or requires a minimum congestion window size.

Since every segment is to be acknowledged, no minimum congestion window size is necessary
to use marking. Further, the congestion notification needs in most cases less than one round-trip
time.

Most TCP versions do not recover well from multiple packet losses.

Since packet losses are very unlikely with SBRM, the chances of multiple packet losses are
highly unlikely. Special handling of multiple packet losses is therefore not necessary.

TCP cannot distinguish between losses due to congestion and due to transient errors

Since SBRM leads to low queue sizes, queue capacities can be designed such that packet losses
due to overflow are extremely unlikely. Since long before such overflow happens all packets are
marked to indicate congestion, no special interpretation of the packet loss is necessary. SBRM
could be designed in such a way that lost segments are just retransmitted without reduction of
the transmission rate. This is necessary in high bandwidth or wireless networks where reduction
of transmission rate after packet loss would be the wrong reaction.

The rate allocation depends on the round-trip time.

SBRM leads to a weighted proportionally fair rate allocation which is in general independent
of round-trip time.

Deterministic drops may lead to the global synchronization problem.

SBRM marks probabilistically, thus avoiding global synchronization.

Direct coupling of the packet loss probability or queue size and the congestion measure is
problematic.

The queue size and the congestion measure (markings) are also coupled in case of SBRM. Thus,
this drawback cannot be solved by SBRM. Nonetheless, by adjusting the parameter γ, the grade
of coupling can be influenced.

TCP and drop-tail queues will lead to full queues and high variance.

Since SBRM begins to signal congestion after the queue size becomes larger than the thresh-
old b0, sources begin to reduce their transmission rates at this point. Thus, SBRM leads to a
queue size around that threshold which can be selected by the operator to ensure nearly perfect
bottleneck link utilization while keeping average queuing delay low.
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The optimal queue capacity is difficult to tune.

Queue capacity should be large enough to avoid packet losses. Since it is not used for signaling
congestion, no tuning is necessary. Tuning can be achieved by changing the queue threshold
parameter b0, which can easily be automated.

TCP does not allow service differentiation or Quality of Service (QoS).

Since SBRM uses the willingness to pay parameter wn, each user can select their preference
for bandwidth. The bandwidth allocation is weighted proportionally fair and thus giving flows
with higher willingness to pay higher rates. This feature can be used for service differentiation
or relative QoS (i.e. Class of Service).
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Chapter 6

Control Theoretic Analysis

In this chapter control theory is applied to the Congestion Pricing framework. Using a control
theoretic model, scalability of the implementations can be examined in terms of delay, number
of sources and link capacity. Here a control theoretic model is presented for SBRM that can be
used to further understand the algorithm and for further improvement.1

6.1 Motivation
Historically, Internet protocols were designed by network specialists and not by control theo-
reticians. Although the cycle of packet marks or drops and rate adjustments can be viewed as
a closed-loop feedback system, it was believed that the system is too complex for theoretical
analysis. Design of protocols and queue management algorithms was mostly done by means
of simulation. Later, the development of fluid flow models for TCP and the Congestion Pric-
ing framework allowed the analytical evaluation of the network protocols on the flow level.
The algorithms presented in the previous chapters can for example be used to calculate the
equilibrium rates, packet marking probability, queue sizes, and delay (cf. Section 5.5). Us-
ing these values, rate allocation and fairness at the steady-state can also be evaluated. This
resulted in the possibility to view the rate control problem as an optimization problem. Us-
ing these models, the goodput and the use of network resources can be optimized. However,
because the algorithms in the fluid-flow models are still very complex, their usefulness is lim-
ited. Especially the evaluation of stability with consideration of delays on the network only
became possible recently with new studies on the application of control theory to fluid flow
models [HMTG01a, LPW+02, SLD02, WP02, FPL03]. The common idea behind the applica-
tion of control theory is the determination of stability of the network at the steady-state. When
observing queue sizes, very often oscillations at low frequencies can be seen that suggest some
form of instability. These oscillations not only lead to jitter, but also to under-utilization of the
link when the queue runs empty. Using the results from the application of control theory, bound-
ary conditions for parameters of already existing protocols can be determined, and fully scalable
algorithms can be developed in the future. For example, in [HMTG01a, LPW+02, SLD02] it
was shown that current TCP variants in combination with RED queues will lead to unstable
networks when the round-trip delay grows beyond a certain bound, or even when the capacity
of the links becomes very large. These findings are extremely important because both causes

1This chapter is an extended version of [ZK04].
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for instability are very likely in future networks as network capacity can be expected to grow
further. The growing importance of wireless communications — especially over long distances
or even interstellar communications — will also introduce additional delays to the network.
Generally, a network protocol should be designed in such a way that only parameter settings
which can be controlled by the network operator could lead to instability.

6.2 Limitations of Control Theoretic Models

Control theoretic models for networks are still an active area of research. A major difficulty
is the complexity of the models. For example, there is a loop dependency of the delay: The
reaction of every source depends on the delay which in turn depends on all the sources’ reac-
tions on the same path. In [LPW+02] it was shown that earlier control models that assumed
the delay to be constant [HMTG01a, HMTG01b] yield incorrect results. Furthermore, as the
algorithms involved are very complex, linearization around the equilibrium state is used. Thus,
these models can only be used to evaluate linear stability around the stable operation point.

There is also a controversy among researches on how important stability is for networks
and whether a stable operation point can be maintained at all. Although instability leads to
oscillations on the network and thus to jitter and degradation in throughput, the network may
still be in operable condition. This will be demonstrated in the following sections. Additionally,
network conditions are changing constantly as new connections are established and older ones
are discontinued. Thus, the stable operation point is constantly moving. Even worse, as every
connection is a separate control system, a larger network basically consists of thousands and
millions of control loops. All of these loops depend on the other loops, and thus a drift away
from a desired operating point could have many causes. Nonetheless, stability is a requirement
for the applicability of fluid-flow models that are used to optimize network usage. Even with
these difficulties, application and examination of control theoretic models is very important. In
Section 6.7 the impact of instability on performance parameters such as utilization and jitter
will be demonstrated.

Additionally, to realize optimal stability, the rate adjustments of the sources must depend
on the distance from the optimal operation point and the number of reacting sources (cf. Figure
2.4.2). However, this information is usually not available in current networks as the number
of sources is not conveyed to every source. Moreover, single bit marking strategies can only
indicate the direction of the required rate adjustment and not the amount. To achieve optimal
stability, explicit price feedback has to be used or any other analog measure that gives the
necessary information. While other researchers have started to design stable algorithms that
either use additional information not yet available in IP based networks [KHR00], make use
of delay information like TCP Vegas [FAS03], or use an exponential encoding scheme of the
explicit price [ALLY01, LPW+02], a simpler algorithm is implemented here where only the
direction of the rate adjustment is known. The author of this dissertation opines that a sub-
optimal solution can be accepted in favor of compatibility with current protocols because small
oscillations around the steady-state at the packet level are not harmful and cannot be avoided
in an active network with changing conditions. Furthermore, all control theoretic models are
based on fluid-flow models and do not consider oscillations at the packet level. Thus, to some
extent oscillations are normal, and therefore their existence must be accepted. By introducing
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this limitation, algorithms can be designed that are compatible with existing IP networks and
only require changes on the server side. For example, as was shown in the previous chapter,
SBRM is completely compatible with existing TCP receivers (cf. Subsection 5.6.3).

S. Low’s FAST (Fast AQM Scalable TCP) [FAS03] on the other hand is an approach that
also is compatible with existing IP networks and that uses an analog measure to convey the
distance from the equilibrium point to the sources. S. Low picked up on the idea of using
the delay as a congestion measure, which was first introduced with the TCP Vegas proposal
[BOP94]. Thus, FAST changes the amount of the rate adjustment depending on the distance
from the equilibrium point. However, arguments that have been brought against TCP Vegas also
hold for FAST: In order to measure the congestion, the round-trip time without queuing delays
must be known. Usually, the minimum measured round-trip time is used for that. If the route
changes and the minimum round-trip time becomes greater, the algorithm will fail [LWA99,
MLAW99]. In current wired networks, a change of route within a connection’s duration seems
to be somewhat unlikely. But with wireless access technology becoming more important in the
future, roaming will be a significant issue. Unfortunately, roaming usually involves variation of
propagation delays.

For these reasons it is difficult to design a stable TCP variant that will perform optimally in
every scenario. With SBRM a variant was chosen that will perform sub-optimally, but well in
most network conditions and always better than the current TCP implementations.

6.3 Method

In Chapter 4 the Congestion Pricing based TCP algorithms (source, link, and price feedback
algorithms) were derived using the differential equations that were the result of the Congestion
Pricing framework (cf. Chapter 3). These equations were then further used in a fluid-flow
model to determine the steady-state (cf. Section 5.5). The control theoretic model is also
based on these equations. However, since the fluid-flow model is very complex, the differential
equations will be linearized around the equilibrium point. By transforming these differential
equations to the Laplace domain, transfer functions can be found for every part of the network.
The Nyquist criterion will be applied to the transfer function model to determine stability.

Figure 6.3.1 shows a block diagram of a single component of a control system. For example,

Figure 6.3.1: Block diagram of a component of a control system in Laplace domain

the SBRM queue algorithm could be modeled as such a component. Assuming continuous time
and a fluid flow model, the instantaneous queue length would be modeled as input xin(s). The
SBRM link algorithm F(s) then transforms this input into a marking probability xout(s).

A control system commonly includes a negative feedback. This is displayed in Figure 6.3.2.
The transfer function that describes the closed-loop control system can be determined as fol-
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Figure 6.3.2: Block diagram of a closed loop control system

lows:

Lclosed(s) :=
xout(s)
xin(s)

=
(xin(s)− xout(s)G(s))F(s)

xin(s)

=
F(s)

1+F(s)G(s)
.

The corresponding open-loop transfer function is obtained by cutting the loop at any point.
Thus if one cuts to the right of G(s):

Lopen(s) :=
xout(s)
xcut(s)

=
−xcut(s)G(s)F(s)

xcut(s)
= −F(s)G(s)

The zeros of the characteristic equation 1 + F(s)G(s) are the poles of the closed-loop system,
and its poles are the poles of the open-loop system.

The Nyquist diagram is the contour plot of the mapping of L(s) := F(s)G(s) to the complex
plane where s = jω. Note that this is the shifted plot of the characteristic equation. P is defined as
the number of open-loop poles enclosed by the Nyquist contour, N as the number of clockwise
encirclements of the (−1,0) point minus the number of counter-clockwise encirclements of the
(−1,0) point, and Z as the number of real, positive poles of the closed-loop system. If Z is
a positive, nonzero number, the closed-loop system is unstable (stability condition). For the
systems discussed here, Z = 0. According to the Nyquist stability criterion, the closed-loop
system is stable if and only if the Nyquist diagram of L(s) encircles the (−1,0) point in the
complex plane P times in the counter-clockwise direction, thus if and only if P+ N = 0. Since
one can further assume all single components of the control system and therefore the open-loop
L(s) to be stable, the characteristic equation 1 + F(s)G(s) has no poles in the right-hand plane,
and thus P = 0. The Nyquist stability criterion then states in particular that the closed-loop
system is stable if and only if the Nyquist diagram of L(s) does not encircle the (−1,0) point
(cf. Figure 6.3.3) [Unb97]. Furthermore, the critical frequency fcrit is defined as the frequency
at which the contour plot is closest to the (−1,0) point.

Stability for the type of systems used here can also be evaluated in Bode diagrams. For the
system to be stable, the magnitude (gain) in dB must be negative at the critical frequency, where
the phase becomes -180◦, and the phase must be greater than -180◦ at the frequency where the
magnitude in dB changes from positive to negative values (cf. Figure 6.3.4). Both criteria are
interchangeable. The gain and phase margins describe the distance of the actual values to the
maximum values for the system to still be stable. The larger they are, the less likely the system
will become unstable due to small changes. Using Bode diagrams, it is possible to evaluate the
influence of different parameters on the stability of the closed-loop control system.
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Nyquist Diagram
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Figure 6.3.3: Example Nyquist diagrams

6.4 Non-linear Model of SBRM

6.4.1 Window Evolvement under SBRM

For control theoretic analysis of SBRM, the source algorithm given by (4.2.3) and the marking
algorithm given by (5.4.1) will be used. A fraction of 1− pn(t) of all incoming acknowledgments
will increase the congestion window by

∆cwndn(t)+ = κ ·wn ·
RTTn

cwndn(t)
,

where pn(t) is the end-to-end marking probability observed at source n, 0 < κ < 1 is a constant
gain, wn is the willingness to pay, RTTn is the round-trip time, and cwndn(t) is the current con-
gestion window. Since acknowledgments are arriving at a rate of xn(t −RTTn(t)), where xn(t) is
defined as rate of source n at time t:

xn(t) =
cwndn(t)
RTTn(t)

, (6.4.1)

the rate and amount of increase equals

cwnd′n(t)+ = κ ·wn · (1− pn(t)) ·
RTTn(t)
cwndn(t)

cwndn(t −RTTn(t))
RTTn(t −RTTn(t))

.

Similarly, a fraction of pn(t) of all incoming acknowledgments will decrease the congestion
window by

∆cwndn(t)− = κ ·
(

wn ·
RTTn

cwndn(t)
−1
)

at a rate of
cwndn(t −RTTn(t))
RTTn(t −RTTn(t))

· pn(t).
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Thus the differential equation becomes:

cwnd′n(t)− = κ ·
(

wn ·
RTTn

cwndn(t)
−1
)
· pn(t) ·

cwndn(t −RTTn(t))
RTTn(t −RTTn(t))

.

Put together, congestion window under SBRM evolves according to:

cwnd′n(t) = κ ·
(

wn ·
RTTn(t)
cwndn(t)

− pn(t)
)
· cwndn(t −RTTn(t))

RTTn(t −RTTn(t))
. (6.4.2)

Figure 6.4.1b shows a block diagram of SBRM’s congestion control. In comparison, Figure
6.4.1a shows TCP Reno’s congestion avoidance algorithm with Explicit Congestion Notifica-
tion (ECN).

6.4.2 SBRM Queue

An SBRM queue marks packets at each link l ∈ L(n) with a probability ml(t), where L(n) is the
set of all links that are used by source n. The end-to-end marking probability is then

pn(t) = 1−Πl∈L(n)

(
1−ml(t − τb

ln(t))
)

,

where τb
ln(t) is the backward delay from link l to source n. Assuming that ml(t) is small, it is

approximated:
pn(t) ∼= ∑

l∈L(n)

ml(t − τb
ln(t)). (6.4.3)

All flows aggregate at link l to a load of

yl(t) = ∑
n∈N (l)

xn(t − τ f
ln(t)), (6.4.4)

where τ f
ln(t) is the forward delay from link l to source n. Thus RTTn(t) = τ f

ln(t)+ τb
ln(t) for any

l ∈ L(n). It can be modeled as propagation delay dn plus queuing delay of all queues on the
path:

RTTn(t) = dn + ∑
l∈L(n)

bl(t)
cl

, (6.4.5)

where cl is the capacity of link l and bl(t) denotes the instantaneous queue size at link l. For
bl(t) > 0 the queue length evolves according to

bl(t)
′ = yl(t)− cl . (6.4.6)

Each packet leaving the SBRM queue is marked with the probability:

ml(t) = 1− exp
(
−γ[bl(t)−b0]

+) , (6.4.7)

where γ > 0 is a scaling factor [ZK02].
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Figure 6.4.1: Block diagrams of TCP’s congestion control (source algorithm)
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6.5 Linear Model of SBRM

6.5.1 Linearization

These equations are now linearized to study its stability around equilibrium. The time-varying
round-trip delay is approximated by its equilibrium value except for the window-rate relation
(6.4.1), where the time-varying delay (6.4.5) must be used [LPW+02].

The steady-state is determined by cwnd ′(t) = b′l(t) = 0, thus from (6.4.2):

wn
RTT ∗

n
cwnd∗n

= p∗n.

This is also equivalent to (5.5.1). Variation around the equilibrium is then given by:

δcwnd′n(t) = κn ·
(

cwnd∗n
RTT ∗

n
·
(

wn ·
1

cwnd∗n
·δRTTn(t)−

wn ·
RTT ∗

n

cwnd∗2
n

·δcwndn(t)−δpn(t)

)
+0

)

= κn ·
 wn

RTT ∗
n
·


 ∑

l∈L(n)

δbl(t − τ f
ln)

cl


− wn

cwnd∗n
·δcwndn(t)−

cwnd∗n
RTT ∗

n
·δpn(t)


(6.5.1)

Aggregated link rates are linearized using (6.4.1), (6.4.4) and (6.4.5) [LPW+02]:

δyl(t) = ∑
n∈N (l)

δxn(t − τ f
ln(t))

= ∑
n∈N (l)


δcwndn(t − τ f

ln)

RTT ∗
n

− cwnd∗n
RTT ∗2

n
· ∑

k∈L(n)

δbk(t − τ f
kn)

ck


 , (6.5.2)

where N (l) is the set of all sources that use link l, and where the round-trip time around the
equilibrium is derived from (6.4.5):

δRTTn(t) = ∑
l∈L(n)

δbl(t)
cl

. (6.5.3)

Similarly, the buffer process is linearized: From (6.4.6):

δb′l(t) = δyl(t) (6.5.4)

Using (6.4.3) and (6.4.7), the linearized SBRM marking algorithm finally is described by:

δml(t) = γl · e−γl([b
∗
l −b0]+) ·δbl(t) (6.5.5)

δpn(t) = ∑
l∈L(n)

δml(t − τb
ln) (6.5.6)
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6.5.2 Linear Model in the Laplace Domain

The system described by differential equations (6.5.1–6.5.6) can also be written in the Laplace
domain as:

δcwndn(s) = ∑
l∈L(n)

κ · wn
RTT∗n

·∑k∈L(n)

(
δbk(s)

ck
· e−τ f

kns
)
−κ · cwnd∗n

RTT∗n
·δml(s) · e−τb

lns

s+κ · wn
cwnd∗n

(6.5.7)

δyl(s) = ∑
n∈N (l)


δcwndn(s)

RTT ∗
n

· e−τ f
lns − ∑

k∈L(n)

cwnd∗n
RTT ∗2

n
· δbk(s)

ck
· e−τ f

kns


 (6.5.8)

δbl(s) =
δyl(s)

s
(6.5.9)

=
∑n∈N (l)

δcwndn(s)
RTT∗n

· e−τ f
lns

s+∑m∈N (l) ∑k∈L(m)
cwnd∗m
RTT∗2

m
· 1

ck
· δbk(s)

δbl(s)
· e−τ f

kms
(6.5.10)

δml(s) = γl · e−γl([b
∗
l −b0]+) ·δbl(s) (6.5.11)

6.5.3 Single Bottleneck Link Model with Heterogeneous Sources

The system of equations in the Laplace domain (6.5.7–6.5.11) is now simplified for a single
bottleneck link model with heterogeneous sources:

δcwndn(s) =
κ · wn

RTT∗n
· δb(s)

ck
· e−τ f

n s −κ · cwnd∗n
RTT∗n

·δm(s) · e−τb
ns

s+κ · wn
cwnd∗n

(6.5.12)

:= δcwnddelay
n (s)+δcwndmark

n (s)

δy(s) = ∑
n∈N

(
δcwndn(s)

RTT ∗
n

· e−τ f
n s
)
−

∑
n∈N

(
cwnd∗n
RTT ∗2

n
· δb(s)

c
· e−τ f

n s

)
(6.5.13)

:= δyrate(s)+δydelay(s)

δb(s) =
δyrate(s)+δydelay(s)

s
=

δyrate(s)

s− δydelay(s)
δb(s)

(6.5.14)

=
∑N

n=1
δcwndn(s)

RTT∗n
· e−τ f

n s

s+∑N
m=1

cwnd∗m
RTT∗2

m
· 1

c · e−τ f
ms

δm(s) = γ · e−γ([b∗−b0]+) ·δb(s) (6.5.15)

Using equations (6.5.12)–(6.5.15) the transfer functions is written as:
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P
sourcemark

n
(s) =

δcwndmark
n (s)

δmn(s) · e−τb
ns

= −
κ · cwnd∗n

RTT∗n
s+κ · wn

cwnd∗n
(6.5.16)

P
sourcedelay

n
(s) =

δcwnddelay
n (s)

δbn(s) · e−τ f
n s

=
κ · wn

RTT∗n
· 1

c

s+κ · wn
cwnd∗n

(6.5.17)

Pbu f f er(s) =
δb(s)

δyrate(s)
=

1

s+ 1
c ∑N

i=1
cwnd∗i
RTT∗2

i

· e−τ f
i s

(6.5.18)

Paqm(s) =
δm(s)
δb(s)

= γ · e−γ([b∗−b0]+) (6.5.19)

Note that all of these transfer functions have poles on the left-hand plane, i.e. the real parts
of the poles are negative. Thus, each component of the open-loop is stable [Unb97].

The complete control system is depicted in Figure 6.5.1.
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delay
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delay
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1
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Figure 6.5.1: Single bottleneck link model with heterogeneous sources

The overall transfer function of the control system is now calculated:

F(s) =

∑N
n=1

(
e−τb

ns ·P
sourcemark

n
(s) · e−τ f

n s
RTT∗n

)
·Pbu f f er(s)

1−∑N
n=1

(
Paqm(s) · e−τb

ns ·P
sourcemark

n
(s) · e−τ f

n s
RTT∗n

+ e−τ f
n s ·P

sourcedelay
n

(s) · e−τ f
n s

RTT∗n

)
·Pbu f f er(s)

:=
∑N

n=1 G(s)

1−∑N
n=1

(
Paqm(s) ·G(s)+H(s)

)
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To determine stability of the system, the open-loop transfer function L(s) must be determined.
L(s) is defined as:

L(s) := −
N

∑
n=1

(
Paqm(s) ·G(s)+H(s)

)

= −
N

∑
n=1


Paqm(s) · e−τb

ns ·P
sourcemark

n
(s) · e−τ f

n s

RTT ∗
n

+ e−τ f
n s ·P

sourcedelay
n

(s) · e−τ f
n s

RTT ∗
n


 ·

Pbu f f er(s)

=
N

∑
n=1


γ · e−γ(b∗−b0) · e−τb

ns ·
κ · cwnd∗n

RTT∗n
s+κ · wn

cwnd∗n
· e−τ f

n s

RTT ∗
n
− e−τ f

n s ·
κ · wn

RTT∗n
· 1

c

s+κ · wn
cwnd∗n

· e−τ f
n s

RTT ∗
n


 ·

1

s+ 1
c ∑N

i=1
cwnd∗i
RTT∗2

i

· e−τ f
i s

=
N

∑
n=1


κ · cwnd∗n · e−RTTns −κ ·wn · 1

c · e−2τ f
n s

RTT ∗2
n

(
s+κ · wn

cwnd∗n

)


 ·

γ · e−γ(b∗−b0) · 1

s+ 1
c ∑N

i=1
cwnd∗i
RTT∗2

i

· e−τ f
i s

(6.5.20)

The Eigenvalues are then −κ wn
cwnd∗n

and −1
c ∑N

i=1
cwnd∗i
RTT∗2

i

e−τ f
i s. Since they are negative and

nominators are non-zero, all components of the open loop are stable.

6.5.4 Single Bottleneck Link Model with Homogeneous Sources

Loop gain for a single bottleneck link model with homogeneous sources becomes:

LSBRM(s) = N · κ · cwnd∗ · e−RTTs −κ ·w · 1
c · e−2τ f s

RTT ∗2
(

s+κ · w
cwnd∗

) · γ · e−γ(b∗−b0) · 1

s+ N
c

cwnd∗
RTT∗2 · e−τ f s

. (6.5.21)

Stability criteria can now be applied to this transfer function. As validation will prove, the
Nyquist criterion is applicable.

For comparison, the corresponding loop gain for TCP Reno+RED is [LPW+02]:

LRED(s) = N · 1
RTT ∗ · p∗ (RTT ∗s+ p∗ · cwnd∗)

· α · c ·ρ
s+α · c ·

1

s+ N
c

cwnd∗
RTT∗2 · e−τ f s

· e−τ f s, (6.5.22)

where 0 < α < 1 is a RED parameter for calculation of the moving average of the queue size,
and ρ = pmax

thmax−thmin
is derived from the remaining RED parameters.

100



6.6 Evaluation of the Control Theoretic Model

6.6 Evaluation of the Control Theoretic Model

6.6.1 Evaluation of the Stability

Utilizing the derived loop gain for a single bottleneck link model with homogeneous sources
(6.5.21), the stability can be determined for arbitrary sets of parameters. Using a set of param-
eters as shown in Table 6.6.1, the Nyquist diagram is plotted for several round-trip times from

Table 6.6.1: Parameters

TCP version Parameter Value

SBRM κ 0.2
SBRM w 20
SBRM γ 0.006
SBRM b0 50

Reno+RED thmin 50
Reno+RED thmax 550
Reno+RED pmax 0.1
Reno+RED gentle true

50 ms to 102 ms in steps of 4 ms. Then the round-trip time is determined at which the contour
of the Nyquist plot is closest to (−1,0). This is roughly the round-trip delay at which the system
becomes unstable: If the round-trip delay is larger than this value, the system will oscillate (cf.
Section 6.3). This point will be referred to as critical delay dcrit .

Figure 6.6.1 shows examples for SBRM, and Figure 6.6.2 shows examples for TCP Reno
with RED queues. The RED model used here was taken from [LPW+02], in which a similar
derivation of a control theoretic model was published for TCP Reno with RED queues. This
model is used to benchmark the proposed SBRM approach. Additionally, the simulations used
for validation of the model in [LPW+02] were re-conducted.

Further, the frequency is determined at which the Nyquist contour crosses the x–axis closest
to (−1,0). This is also the frequency at which the phase becomes −180◦ in the Bode plots (cf.
Figure 6.6.3), and thus the frequency at which the system will oscillate. This frequency will
be referred to as the critical frequency fcrit . The well known property that the constant gain at
f0 = 0 strongly depends on the round-trip time for TCP Reno, is also visible in the Bode plots.

As can be derived from Figure 6.6.1b, for SBRM this critical delay is 86 ms, and for TCP
Reno+RED the critical delay is 62 ms (cf. Figure 6.6.2b). Table 6.6.2 summarizes the critical
delays and frequencies for a different number of sources and link capacities.

The results show the tendency that the critical round-trip time decreases as the capacity of
the link increases. This is a significant finding for actual networks. While in the past the back-
bone network was mostly the limiting factor, nowadays the access link is often the bottleneck.
The readily available capacity of the access link has increased in the last 15 years from 2400
bps to more than 8 Mbps. In the future, even higher access link capacities will be available. The
round-trip delay, on the other hand, cannot be decreased arbitrarily. It consists of the compo-
nents transmission delay, packet assembling delay and queuing delay; only the queuing delay
will decrease as the capacity increases. Thus, from these findings, instability will be become a
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Figure 6.6.1: Nyquist plots: Determination of critical delay (SBRM, N=30, c=10)
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Table 6.6.2: Critical delays and critical frequencies of TCP Reno+RED and SBRM

N c [pkts/ms] dcrit [ms] dcrit [ms] fcrit [Hz] fcrit [Hz]

Reno+RED SBRM Reno+RED SBRM

20 8 62 102 0.66 1.50

20 9 54 94 0.75 1.63

20 10 50 86 0.82 1.78

20 11 � 50 78 n/a 1.97

20 12 � 50 70 n/a 2.19

20 13 � 50 66 n/a 2.32

20 14 � 50 62 n/a 2.48

20 15 � 50 58 n/a 2.65

30 8 78 � 102 0.59 n/a

30 9 70 98 0.65 1.56

30 10 62 86 0.74 1.78

30 11 54 78 0.84 1.96

30 12 50 74 0.90 2.07

30 13 50 66 0.92 2.32

30 14 � 50 62 n/a 2.47

30 15 � 50 58 n/a 2.65

40 8 90 � 102 0.55 n/a

40 9 78 102 0.63 1.50

40 10 70 90 0.70 1.70

40 11 66 82 0.75 1.87

40 12 58 74 0.85 2.07

40 13 54 66 0.91 2.19

40 14 50 62 0.98 2.47

40 15 � 50 58 n/a 2.64

50 8 102 � 102 0.51 n/a

50 9 90 102 0.58 1.50

50 10 82 90 0.64 1.70

50 11 74 82 0.70 1.87

50 12 66 74 0.79 2.07

50 13 62 70 0.84 2.19

50 14 58 62 0.90 2.47

50 15 � 50 58 n/a 2.64

60 8 � 102 � 102 n/a n/a

60 9 98 102 0.56 1.50

60 10 90 94 0.61 1.63

60 11 82 82 0.67 1.87

60 12 74 74 0.74 2.07

60 13 66 70 0.82 2.19

60 14 62 66 0.88 2.33

60 15 58 58 0.94 2.64
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significant problem. For example, typical round-trip delays on the Internet are between 20 ms
(national connections) and 150 ms (international connections). Assuming a bottleneck capacity
of 100 Mbps, RED queues, packet sizes of 1500 bytes, and 50 active sources, the system will be
unstable for round-trip delays roughly larger than 100 ms. Also, for TCP Reno with RED, the
critical delay strongly depends on the number of active sources. If only 20 sources are active,
instability will already occur when the round-trip exceeds 60 ms. For SBRM, there is only a
slight dependency on the number of sources.

Figure 6.6.4 shows the stability regions that can be derived from the analysis. The stable
region is in the lower left corner. As the capacity of the link increases, the round-trip delay must
decrease to maintain stability. The figure also shows clearly that for TCP Reno+RED there is a
strong dependency on the number of sources. The fewer the number of sources, the smaller the
stability region. This dependency is significantly reduced for SBRM.

Generally, control theoretic models can also be used to calculate the parameters of the RED
or SBRM algorithm to ensure stability for the environment in which it is being deployed. For
example, stability should be ensured for all round-trip delays that are typical on the Internet. A
network operator can thus utilize the model to calculate queue parameters such that the stability
region is large enough for the network. Such a model could also be used to change the source
algorithm altogether as was done for the FAST [FAS03] proposal.

6.6.2 Recommendations for SBRM

To increase stability without completely changing the algorithms, the parameters should be
chosen such that the gain margin or phase margin becomes greater (cf. Figure 6.3.4). In SBRM,
four parameters can be modified: κ, w, γ, and b0. The effect of changes to these parameters can
be examined using the transfer function model given by (6.5.21). Figures 6.6.5 and 6.6.6 show
the resulting Bode plots for the variation of these parameters.

To improve stability, κ should be as small as possible. On the other hand, this also has an
impact on the convergence speed, which should be high enough to react to changing network
conditions. As already discussed in Section 6.2, good stability is not the primary goal, conges-
tion avoidance and fast reaction to changing network conditions are more important. Therefore
the author of this dissertation suggests choosing a larger κ for new connections, then reducing
it after a few round-trip times (also cf. Subsection 5.6.4). cwnd∗ also increases the gain in
(6.5.21), thus κ could also dynamically be adjusted to compensate the gain increase by cwnd∗.
Both dynamic adjustments can be implemented in the source without the need for modification
in the rest of the network. The impact of the willingness to pay on convergence is minimal, it
should be chosen according to bandwidth preferences.

A network operator, on the other hand, can select the values for b0 and γ. The choice of b0
has little impact on stability: The larger the b0, the larger the gain margin is. However, it is more
important to choose b0 to optimize utilization and average queue length. Note that the control
theoretic model was based on the assumption that the queue does not run empty. Therefore
b0 should be chosen large enough to avoid completely empty queues when greedy sources are
attached. The parameter γ should be small for optimal stability. A practical value is the inverse
of the capacity of the link, γ = 1

c .
The optimal choice of all parameters depends on the number of sources sharing the single

bottleneck link. While this can be used to analytically derive limits for stability, in practice it
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is not feasible as the number of sources using a bottleneck link is not known. However, in the
queue it could be possible to build a hash table of source IP addresses to count the number of
sources. This information could then be used to adjust γ. Since significant changes are necessary
to derive implementable bounds for the parameters to ensure stability, this will be left for future
research.

6.6.3 Validation of the Linearized Model

To validate the results obtained in the stability analysis using the linearized model, the original
non-linear model given by the differential equations (6.4.2)–(6.4.7) was simulated in Simulink.
Again, for comparison, a model for TCP Reno+RED was also implemented, which was taken
from [LPW+02]. The implemented models are shown in Figure 6.6.7.

The development of the queue length over time was then recorded for the same sets of
parameters used in the previous analysis. Figure 6.6.8 shows the queue size trajectory of the
Simulink model for SBRM. The corresponding plots for TCP Reno+RED are shown in Figure
6.6.9. Up to a certain minimum round-trip delay the system is stable. If the delay becomes
larger, the system will be unstable. The difference between a stable and an unstable system is
clearly visible.

Using the queue plots, for each parameter set the critical delay was determined at which
the system changes from stable to unstable. These values were then compared to the critical
delays obtained previously from the Nyquist plot analysis. For each parameter set, the critical
delays from the model (x–axis) were plotted vs. the simulation (y–axis). Good matches are
scattered around the identity line (cf. Figure 6.6.10a). The frequency of the oscillations (critical
frequency) was also determined for both model and simulation and plotted them (cf. Figure
6.6.10b). Considering a resolution of 4 ms, the figures show a nearly perfect match for critical
delay and critical frequency. Thus, the simulation corroborates the transfer function model
(6.5.21) with respect to characteristic instability parameters. Therefore, linearization is a valid
approach for stability analysis. Similarly, this conclusion also holds for TCP Reno+RED, as
shown by Figure 6.6.11.

These results were also validated using actual implementations of SBRM and TCP
Reno+RED in the ns-2 network simulator [UCB]. Since these simulations are packet based,
there will be differences to the continuous transfer function models. The queue size will always
change when a packet arrives. Furthermore, the sources only send packets when an acknowl-
edgment arrives. These effects will introduce additional types of oscillations to the queue.

After an initial phase to allow reaching of the steady-state, the instantaneous queue size was
sampled at 20 Hz and recorded for 60 seconds. Again, the number of active sources, the link
capacities and the round-trip delays were varied. Then a Fast Fourier Transform (FFT) was
used to calculate the frequency spectrum of the queue trajectory. However, since sampling was
done at 20 Hz, in the FFT only frequencies can be seen that are much lower than the packet
arrival frequency, which ranges from 8 kHz to 15 kHz as the capacity ranges from 8 pkts/ms
to 15 pkts/ms. Packet arrival frequencies of individual sources, which range from 133 Hz (60
sources, 8 pkts/ms link capacity) to 750 Hz (20 sources, 15 pkts/ms link capacity), are also
filtered.

However, because of the other components introducing oscillations, it is difficult to clearly
determine the critical delay, especially if the loop gain is low. To overcome this problem,
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Figure 6.6.8: SBRM queue trajectory (Simulink simulation)
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Figure 6.6.9: TCP Reno+RED queue trajectory (Simulink simulation)
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only simulations at the critical delay were considered. For these simulations the Fast Fourier
Transform was calculated from the instantaneous queue size. Figure 6.6.12 shows the queue
trajectories and FFT plots for TCP Reno+RED. In all subfigures, oscillation due to the discrete
packet arrivals are visible. In Figure 6.6.12f, however, a low frequency oscillation is obvious.
This frequency is about 0.8 Hz. At this frequency, a peak in the FFT is clearly visible. To sup-
port the analysis, the MUSIC pseudospectrum was also plotted using MATLAB. The MUSIC
pseudospectrum identifies sinusoidal components of a time-discrete signal [Mar87]. It shows
a strong peak at the frequency identified before. The MUSIC plots were used to automatically
detect this frequency by a MATLAB script.

Figure 6.6.13 shows the analogous plots for SBRM. The same process as described above
was used to identify the frequencies of the oscillations. Figures 6.6.12 and 6.6.13 also show that
the amplitudes of the oscillations are much higher for RED than for SBRM. This property can
also be calculated for from the loop-gain models (6.5.21) and (6.5.22), or be seen in the Bode
plots for both SBRM and RED (cf. Figure 6.6.3).

To validate the control models, the critical frequencies determined from the transfer function
models of SBRM (6.5.21) and RED (6.5.22) were compared against the critical frequencies
collected from the ns-2 simulations. This is shown in Figure 6.6.14a for SBRM and in Figure
6.6.14b for RED respectively. Good matches are scattered around the identity line.

Taking into account the additional effects introduced by packet arrivals, the figures show a
good match between the control theoretic models and actual implementations in ns-2 for SBRM
as well as TCP Reno+RED. Thus, validity of the control theoretic models is supported by this
analysis.

6.7 Impact of Instability
In the previous section it was shown that instability will lead to low-frequency oscillations of
the queue size. In this section, the impact of instability is analyzed for actual networks. It is not
only instability that impacts performance parameters: Since the instantaneous queue size will
change at every packet arrival, high frequency fluctuations are naturally introduced. Further,
each source will react at a frequency inverse to the round-trip delay, introducing another type of
fluctuation to the queue size. For these reasons, the low-frequency oscillation due to instability
might not have a direct impact on performance parameters until its amplitude becomes very
large. Until then, instability might actually not be a problem at all. Therefore the impact of
instability on fluid-flow model predictions of the steady-state and on performance parameters is
examined.

6.7.1 Impact of Instability on Validity of Fluid-flow Model Predictions
Fluid-flow models are only applicable when the system is stable. To evaluate how fluid-flow
model predictions differ from the actual values when the system becomes unstable, the mean
queue size and the average congestion windows were calculated for both the steady-state model
and the simulation. The steady-state model is described by the the formulas shown in Table
5.5.1. Simulations of the continuous differential equation model (6.4.2)–(6.4.7) were carried
out in Simulink. Simulations of actual implementations of SBRM and TCP Reno+RED were
performed in the ns-2 network simulator [UCB]. The same parameter sets as in the previous
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Figure 6.6.12: TCP Reno+RED queue trajectory and spectral analysis (ns-2 simulation)
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Figure 6.6.13: SBRM queue trajectory and spectral analysis (ns-2 simulation)
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Figure 6.6.14: Critical frequencies of model and ns-2 simulation
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section were used. For each parameter set, the prediction for the model (x–axis) was plotted vs.
the corresponding result from the simulation (y–axis). Good matches are scattered around the
identity line.

Figure 6.7.1 shows the average congestion windows and average queue sizes of the steady-
state model and the Simulink simulations for TCP Reno with RED queues. As long as the
system is stable, the match is nearly perfect (black dots). However, as soon as the system be-
comes unstable, differences between model and simulation are increasing (gray dots). While the
mismatch between the model and simulation is only small for the average congestion window,
it becomes very large for the average queue size. In both cases, the values of the simulations
are smaller than the predictions made by the model. This is problematic because lower mean
queue sizes further increase the chances that the queue runs empty, causing under-utilization
of the link. Even worse, too low average congestion windows result in a lower sending rate
than possible, also indicating under-utilization. Analogously, Figure 6.7.2 shows the average
congestion windows and mean queue sizes of the steady-state model vs. the ns-2 simulations.
For the unstable region, this plot confirms the findings of Figure 6.7.1. However, for the stable
region the mean queue sizes achieved by the ns-2 simulation tend to be smaller than the ones
predicted by the model. This finding is also confirmed in [Pat03]. This discrepancy is most
likely a result of the queue sometimes running empty, which is not considered in the fluid-flow
model [LPW+02], and thus not visible in the previous plots.

The corresponding plots for SBRM are shown in Figures 6.7.3 and 6.7.4. With SBRM, the
average size of the congestion window even then matches the prediction by the model when the
system is unstable. Thus, average transmission rate roughly stays the same as the theoretical
value — maintaining high utilization as will be shown later. However, the mean queue size
becomes smaller than the prediction, similar to RED.

6.7.2 Impact of Instability on Performance

As mentioned before, oscillations will degrade utilization of the link: as the amplitude of the
oscillation grows, the queue is more likely to run empty. Additionally, oscillations will intro-
duce jitter which is especially bad for interactive multimedia traffic. These effects are visible in
Figure 6.7.5, where mean queue size, standard deviation and link utilization derived from the
30 ns-2 simulation runs per parameter set are shown for RED. An analysis of adaptive RED (a-
RED) [FGS01] is also considered that was proposed to improve some of the previously known
shortcomings of RED (cf. Figure 6.7.6). For adaptive RED, the parameters were chosen ac-
cording to the suggestions made in [FGS01] (cf. Table 6.7.1). The adaptive RED algorithm
is designed such that the average queue size is maintained half way between thmin and thmax.
Since a mean queue size of roughly 50 packets was desired, the values 25 and 75 were chosen
for these parameters. Figure 6.7.7 shows the corresponding plots for SBRM.

As previously demonstrated in Figure 6.6.3, gain at critical delay and thus standard deviation
of the queue size increases as the round-trip delay increases. The mean queue size, on the other
hand, decreases as the queue runs empty. This can be seen in Figures 6.7.5a, 6.7.6a, and 6.7.7a.
At first, the decrease in mean queue size could be thought of as something positive, since mean

queuing delay also becomes smaller. However, this is an unwanted result of the oscillations. It
is only because the amplitude of the oscillations is so high that the queue runs empty, hence the
mean queue size becomes smaller. At the same time the utilization of the link drops (cf. Figures
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Figure 6.7.1: TCP Reno+RED: Average queue and congestion window sizes of model and
Simulink simulation

121



Chapter 6: Control Theoretic Analysis

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

ns
−2

 s
im

ul
at

io
n 

[p
kt

s]

Model [pkts]

RED: average congestion window (stable and unstable)

stable
unstable

(a) Average congestion window size (model vs. ns-2)

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

ns
−2

 s
im

ul
at

io
n 

[p
kt

s]

Model [pkts]

RED: average queue size (stable and unstable)

stable
unstable

(b) Average queue size (model vs. ns-2)

Figure 6.7.2: TCP Reno+RED: Average queue and congestion window sizes of model and ns-2
simulation
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Figure 6.7.3: SBRM: Average congestion window and queue sizes of model and Simulink sim-
ulation
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Figure 6.7.4: SBRM: Average congestion window and queue sizes of model and ns-2 simulation
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Figure 6.7.5: Bottleneck queue characteristics (RED)
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Table 6.7.1: Parameters used for adaptive RED simulations

TCP version Parameter Value

Reno/adaptive-RED thmin 25
Reno/adaptive-RED thmax 75
Reno/adaptive-RED top 0.5
Reno/adaptive-RED bottom 0.01
Reno/adaptive-RED alpha 0.01
Reno/adaptive-RED beta 0.9

6.7.5b, 6.7.6b, and 6.7.7b). Low utilization will reduce the revenue for the network operator and
the overall goodput. Furthermore, at the same time as the mean queue size becomes smaller,
the standard deviation becomes larger. High standard deviation is a sign for strongly fluctuating
queue sizes and thus fluctuating queuing delays, which will in turn cause jitter. This is clearly
something that is not wanted on a network. If the network operator did not know the control
theoretic model to choose parameters enabling a stable system, he might try to increase the
target queue size. This could lead to better utilization, but at the same time increase persistent
queuing delay.

At some point the standard deviation becomes smaller again as round-trip time increases
(cf. Figure 6.7.5a). For higher round-trip delays the queue regularly runs empty. Mean queue
size is now so low such that the amplitude becomes smaller, too. Also note that the control
theoretic model for RED presented in [LPW+02] is valid only if the mean queue size is between
minimum and maximum thresholds. Since this is not the case any more, conclusions on the
amplitude of the oscillations cannot be drawn from the model.

Figure 6.7.6 shows the corresponding plots for adaptive RED (a-RED). A significant im-
provement is visible, utilization worsens at a much lower rate. However, again the standard
deviation of the queue size is growing, indicating oscillations. Adaptive RED suffers from sim-
ilar problems as RED, but the impact of instability is significantly lower than with conventional
RED. SBRM, shown in Figure 6.7.7, also suffers from instability, but can maintain the target
queue size and perfect utilization at a much larger range of round-trip delays than the other two
variants. For the full range simulated, the amplitude of the oscillations is much smaller than
with RED and a-RED. Thus, even though SBRM also is not scalable for any round-trip delay,
it is stable for a much larger range and will maintain high utilization even in case of beginning
instability.

6.8 Conclusions

In this chapter, a control theoretic approach was derived to evaluate scalability and stability of
SBRM. The model revealed stability problems for SBRM as well, which have to be considered
when choosing the correct parameters. However, the impact on performance parameters such
as utilization is much lower than with RED and even lower than with adaptive RED. It was
also shown that instability will lead to low frequency oscillations of the queue size and to jitter.
While the resulting under-utilization of the link could partly be compensated by the network
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operator by setting a larger target queue size, oscillations and related jitter can only be removed
by ensuring stability. Especially in the future, for networks with increasing capacities and new
applications that rely on quality parameters such as delay and jitter, this will become important.

Nonetheless, as discussed initially, stability should not prevent an algorithm from reacting
quickly to network congestion. Since most flows on the Internet are short-lived, stability is of
lesser concern as long instability will not cause congestion. From these results it can be con-
cluded that instead of congestion, instability will cause oscillations and thus under-utilization of
the link. Taking also into account the disadvantages of congestion control algorithms that cannot
only rely on binary congestion information and require full pricing information or differential
delay measurements, SBRM is a good choice that performs much better than any conventional
TCP variant that is being used today.
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Chapter 7

Congestion Control for Inelastic Traffic

In the previous chapters, the focus was on elastic traffic that can adapt its rate according to the
network’s current congestion state. In this chapter, congestion control issues related to inelastic
traffic will be discussed. Inelastic traffic is characterized by its inability to continuously gain
advantage from growing available bandwidth. In the worst case, the required transmission rate
is fixed and independent of available bandwidth. This property is modeled by a step utility
function. If available bandwidth is below the required bandwidth, nothing can be sent and the
user’s utility will be zero. If required and available bandwidths match or even more bandwidth
is available, only the required fixed bandwidth will be used and the user’s utility is constant. On
the Internet, usually media streams generate inelastic traffic.

7.1 Relevance of Congestion Control for Inelastic Traffic

Media streams commonly use the Real-time Transport Protocol (RTP) [SCFJ96], which in turn
uses the User Datagram Protocol (UDP) [Pos80] for data transport. Without additional pro-
tocols, neither a Call Admission Control (CAC) nor closed-loop congestion control are im-
plemented. Since UDP traffic currently makes up less than 5% of a backbone’s traffic vol-
ume [Sch03], a congestion control or a Call Admission Control is generally not required. In-
stead, usually the user can select a stream bandwidth matching his access link rate. However,
the importance of media streaming will grow and a need for protection of the network against
overload is anticipated. Additionally, currently elastic traffic and inelastic traffic are not sepa-
rated in the routers’ queues. This could also change in the future to allow bounds on quality
parameters such as delay and jitter. Without such bounds, real-time duplex streams such as
Internet telephony cannot be offered at acceptable quality of service levels. Thus, congestion
control and Call Admission Control for inelastic traffic are likely to become necessary in the
future.

Two approaches to prevent network congestion will be examined. The first approach is the
implementation of a Call Admission Control for inelastic traffic. Since the Internet is too large
for a centralized Call Admission Control, an approach based on congestion signals, yielding a
distributed Call Admission Control is presented here. Such a Call Admission Control will be
further described in Section 7.2.

Sometimes a viewer of a video stream could prefer changes in quality over a blocking prob-
ability at the beginning of the stream. Thus, a congestion control may be useful where the data
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rate of the stream can be changed, for example by changing the quality of the stream. Usually
this results in a step utility function with several steps. The application of Congestion Pricing
theory to congestion control for inelastic streams will be presented as a second approach in
Section 7.3.

7.2 Call Admission Control for Inelastic Traffic

7.2.1 Background

Call Admission Controls are well known from telephony networks and from ATM. For IP-
networks, there also exists the Integrated Services (IntServ) framework [BCS94] that makes use
of the Resource Reservation Protocol (RSVP) [ZBHJ97]. Using this framework, senders can
ask the routers for resources, which will then be guaranteed for the duration of the connection if
the reservation is successful. However, applications and routers must support RSVP, which cur-
rently is not the case. Implementation of IntServ requires a turnaround from the original policy
to keep network core elements and routers very simple. The relative simplicity of the routers
was a major contributor to the fast and successful growth of the Internet. Additionally, IntServ
routers would have to manage state information and reservations for several thousands of flows.
This immediately raises the question of scalability. The necessary major architectural changes
and open scalability issues prevented the broad implementation of the IntServ framework on
the Internet. IntServ is mostly employed in local networks.

Thus a different approach to Call Admission Control is proposed. In the previous chapters
it was shown that the Congestion Pricing framework is effective in controlling the load on a
network. The same framework can be used to decide whether a new flow will be accepted or
not. Since the previously presented implementations of Congestion Pricing utilize only a sin-
gle bit for path price transport, and because there is a delay until the path price is signaled to
the source, this approach will be less accurate than a centralized Call Admission Control. On
the other hand, this type of Call Admission Control can be implemented in each source, thus
establishing a distributed Call Admission Control. This is important for scalability. Further-
more, no bandwidth reservation protocol is necessary. The distributed Call Admission Control
could be built into the applications. Alternatively, just like Differentiated Services (DiffServ),
a border router could also be the Call Admission Control gateway policing outgoing and in-
coming flows. While Call Admission Controls based on Congestion Pricing were proposed
in the past [KG99, KKZ00], an actual and working implementation will be presented here to
demonstrate that the application of Congestion Pricing is feasible.

Two different variants are examined: A passive, non-probing Call Admission Control (non-
probing CAC), and an active, probing Call Admission Control (probing CAC). The passive Call
Admission Control monitors the path prices for several paths and stores them. If a new flow is
established, the passive, non-probing CAC will read the stored path price for that destination
and then decide whether to accept the new flow or not. The probing CAC, on the other hand,
will send probe-packets to the destination after detection of a new flow. The destination will
echo these probe-packets back, thus providing information on the path price. The disadvantage
of the probing CAC is the additional delay introduced by the probing, however, it will provide
current information on the congestion state of the path. The non-probing CAC, on the other
hand, can utilize already stored information to make an immediate decision. On the other hand,
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the stored information might be outdated. In practice, both types could be combined such that
the network is only probed when the stored information on path prices is older than a certain
threshold. Probing CACs have been proposed before, for example in [Kel01, BKS+00]. A
discussion of different approaches is given in [AP03]. While most of the approaches include
several performance measurements such as loss probability and queuing delay, in this disserta-
tion the focus will be on the marks from the Active Queue Management algorithm indicating the
congestion price. It will be shown that this is sufficient for an effective CAC. Further, a probing
CAC can be placed at each source, thus no additional signaling or flow detection is necessary.
While a non-probing CAC can also be placed at each source, it is most advantageous as gateway
CAC where it can monitor several flows and therefore gather and re-use information for several
sources (cf. Figure 7.2.1). However, a gateway CAC must be able to detect a new flow. Simple

Figure 7.2.1: Call Admission Control gateway

timeout strategies can be used to distinguish different streams from the same source to the same
destination in case of video streams because it is valid to assume that a video stream has ended
if no frames have been sent for more than a certain amount of time. For example, at a frame
rate of 25, a packet should be sent on average every 40 ms. This is different for other types of
traffic such as HTTP. While such a CAC gateway could theoretically also be applied to elas-
tic traffic such as HTTP, a web browsing session usually consists of several page requests and
variable-length pauses in between. Since a user would not like a page request to a web server
to be blocked after he has already received some pages, additional algorithms have to be imple-
mented to detect HTTP requests that belong to the same session. The author of this dissertation
proposes to use the Referer-Header that contains the last page visited. If the Referer-Header
contains the same server name as the current request, the new request will be considered part
of the web browsing session that was already accepted. If sessions can be distinguished, the
proposed CAC can be used for any type of traffic. Nonetheless, since elastic traffic can already
be covered by the previously described congestion control, a CAC should primarily be useful
for inelastic traffic types.

7.2.2 Implementation
To demonstrate practical feasibility, both types of Call Admission Controls, non-probing and
probing CAC, were implemented using the Ptolemy Classic network simulator [PCB]. A bi-
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directional single bottleneck link model was used to simplify routing (cf. Figure 7.2.2). Only

Figure 7.2.2: Single bottleneck link topology

basic results will be presented here to demonstrate the feasibility of such a CAC. Thorough
examinations including multi-link topologies were performed in [AP03].

A commonly used standard for digital video compression is ISO MPEG-4 [Gro99]. It al-
lows the choice of different qualities when encoding the source. MPEG-4 video streams were
implemented using trace files provided by [FR01]. Every 40 ms a frame from the trace file
is read, then a RTP header is added, and the packet is sent via a UDP stack, which fragments
the frame if necessary. To model different users, a Poissonian call generator activates such an
MPEG source whenever a new call is started. The duration of the MPEG streaming phase is
chosen randomly using an exponential distribution. The sources are designed such that they are
independent.

Congestion signals generated by a RED queue are used to determine the blocking probabil-
ity. RED queues were chosen because they are already readily available on the Internet. While
RED queues can also be used within a Congestion Pricing framework, a better choice would be
an algorithm that was specifically designed for this purpose, such as SBRM. Here it will only
be demonstrated that a distributed Call Admission Control is feasible and can be effective and
efficient. The optimization of the source and link algorithms is left for further studies.

The non-probing CAC would simply record the average marking probability and block rates
if it is above a certain threshold. This can be derived from a logarithmic utility function where
U ′(x) = w

x = p (cf. Formula 3.2.7) in equilibrium. Since this is not elastic traffic, a logarithmic
utility function cannot directly be applied. Therefore, the admission criterion is designed such
that a flow is allowed if p < w

x , where p is the marking probability, and w
x is the admission

threshold. Thus a flow is allowed if an elastic traffic source had to increase its transmission rate
to reach that equilibrium, and it is blocked if an elastic source had to decrease its transmission
rate. Similarly, the probing CAC would measure the average marking probability by sending out
probe packets. In [AP03], a call will be blocked if at least one of the probe packets is marked.
Thus, the admission threshold w

x = 1
numberO f ProbePackets . The number of probe packets is there-

fore inversely proportional to the willingness to pay. By choosing the number of probe packets,
weights can be given to each source. From Congestion Pricing theory, the inverse blocking
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rates should then be distributed according to the weighted proportional fairness criterion. This
is demonstrated in [AP03].

7.2.3 Simulations and Results

The average data rate of the MPEG streams is 24.36 kBytes/s. Since the bottleneck link’s
capacity was chosen to be 100 Mbps, about 513 streams can be supported at the same time. A
realistic target load of this link should be less than the maximum capacity to avoid persistent
or strongly fluctuating queuing delays. In this case, about 90% of the maximum capacity, i.e.
a target load of 460 concurrent streams, was chosen. An effective CAC should thus not allow
more than 460 streams. An efficient CAC should on average not block a new call if less than
460 streams are active. The ideal blocking probability for this setup is given by the Erlang-B
formula. The proposed CAC is therefore effective if its blocking probability is never above the
blocking probability given by the Erlang-B formula. It is efficient, if it matches the Erlang-B
formula.

The blocking rates for the passive, non-probing CAC, and for the active, probing CAC are
shown in Figure 7.2.3 in comparison to Erlang-B. Both non-probing CAC and probing CAC
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Figure 7.2.3: Comparison of blocking rates with Erlang-B

generate blocking rates close to the theoretical values given by Erlang-B. However, there is a
tendency that the blocking rate is too high for loads up to 550 Erlang (over control) and too
low for very high loads above 600 Erlang (insufficient control). Since a network should be
dimensioned in such a way that very high overload is improbable, the focus will be on the range
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up to 10% average overload equaling to roughly 560 Erlang. Within this range the blocking rate
is slightly higher than the optimal Erlang-B blocking rates. Thus, the proposed distributed CAC
algorithms are effective in preventing overload. The distributed CACs can therefore be used
to replace a centralized optimal CAC algorithm for the prevention of network overload. The
trade-off is a slight reduction in efficiency. In the worst case, average throughput is reduced to
85% [AP03]. Since scalability is extremely important for the Internet, this loss of efficiency is
considered tolerable. This is valid even more as without CAC an average throughput of 100%
cannot be achieved either.

Figure 7.2.4 shows throughput and average queue size over time at a load of 460 Erlang if
no Call Admission Control is used. The same scenario, but with non-probing Call Admission
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Figure 7.2.4: Without call admission control (load: 460 Erlang) [AP03]

Control is shown in Figure 7.2.5. While the offered load is on average lower than the maximum
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Figure 7.2.5: With non-probing call admission control (load: 460 Erlang) [AP03]
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supported load of roughly 513 Erlang, the lack of a CAC leads to temporary over-load condi-
tions. These cause a significant increase of the average queue size, temporarily growing above
3,000,000 Bytes (cf. Figure 7.2.4b). At a bottleneck capacity of 100 Mbps, this corresponds to
an average additional delay of more than 240 ms which is not tolerable for interactive multime-
dia streams. Even worse, had there been a limit on the maximum queue length, a large amount
of packet loss would have occurred. In both cases, all users of that link would have been nega-
tively impacted. Additionally, strong variations in queuing delay have to be compensated by a
large playback buffer. With CAC, on the other hand, the average queue size never grows above
6000 Bytes, corresponding to an acceptable queuing delay of half a millisecond. Utilization, on
the other hand, is on average only slightly less than without CAC and varies less (cf. Figures
7.2.4a and 7.2.5a). Thus, a distributed CAC can effectively prevent packet loss and network
congestion while keeping utilization nearly constant at a high value.

More complex network topologies, where different clients received video streams from dif-
ferent servers using different paths, were examined in [AP03]. In a parking lot topology with
four bottleneck links, the distributed CAC also worked effectively and nearly efficiently. Using
a probing CAC, the utilization of all bottleneck links was on average roughly 92% [AP03]. Dif-
ferent admission thresholds were used for different sources. Since Congestion Pricing theory
was applied, the blocking rates were distributed such that weighted proportional fairness was
achieved. This was explained in Subsection 7.2.2. Thus, by choosing the willingness to pay,
certain streams can be prioritized analogously to congestion control for elastic traffic.

7.3 Rate-adaptive MPEG Streaming

7.3.1 Motivation

For the encoding of video streams, several video codecs are available today. Most of them com-
press the original digital information, for example by only transmitting differences between two
consecutive picture frames. While this does not lead to loss of information as long as the previ-
ous picture frame is known, there are also several video codecs that utilize lossy compression.
Depending on the compression level desired, the quality of the video stream will become worse.
Thus, video streams are not entirely inelastic. If the viewer is willing to accept a lesser quality
in case of network congestion, an otherwise necessary Call Admission Control (CAC) could
be replaced by some real-time rate-adaptation algorithm that responds to changes in network
congestion. This second approach will be examined in this section.

7.3.2 Implementation

Approach

Generally, there are different ways to change compression levels and thus transmission rate and
quality of a video stream. These are:

• Adaptive encoding

• Hierarchical encoding

137



Chapter 7: Congestion Control for Inelastic Traffic

• Switching between pre-encoded video streams

When using adaptive encoding, the compression levels are changed on-the-fly for every recipi-
ent of the video stream according to the network load [BT94]. This method, however, requires
strong computational power and thus does not scale well. While this method might be feasible
with specialized hardware or only a single stream, it cannot be used for video servers that serve
a large number of clients. This disadvantage is addressed by the hierarchical encoding. With
this method, the video stream is encoded in several layers, where each layer adds more detailed
information and thus improves quality [RHE00]. In case of congestion, only the lower level
layers are transmitted. If the network load goes down, more additional layers will be added
improving the quality of the stream. However, the additional layers are only useful if the un-
derlying layers are received correctly and completely. Furthermore, this method is still very
complex, requires much computational power and can only be used with special codecs.

The third option is the switching between several pre-encoded video streams of the same
video, but using different qualities. This requires more storage capacity on the server, but only
in relation to the number of videos offered and not in relation to the number of users. Thus,
this method will scale well. Today this is a commonly used approach. Before starting the video
stream, the user is asked what type of access technology he uses. He can commonly choose
between a high speed connection (LAN), a medium speed connection (ADSL, SDSL), or a
low speed connection (Modem, ISDN). Depending on the answer, a different quality will be
presented. In this example, however, this decision by the receiver is made only once — before
the stream is started — and under the assumption that the access link is the limiting bottleneck.

Each of the three methods described before can be used for congestion control for video
streams. The third approach is most promising, since switching between pre-encoded video
streams seems the most feasible and acceptable method in current networks. Nonetheless, the
results obtained and problems described later in this section also apply to the other methods.

Video Sources

The same MPEG-4 sources that were presented in Subsection 7.2.2 are used here. Whenever
the next frame to be sent is a full-size frame containing complete information of the next picture
(“P frame”), a choice is made whether the transmission rate should be changed and a different
trace file with a different quality of the same video stream should be used.

Quality Selection

The decision regarding which quality is to be used is based on the average transmission rates of
each quality and the available bandwidth on the network according to the Congestion Pricing al-
gorithm. Since three different quality levels are used here with one corresponding transmission
rate each, the utility function applicable in this case is shown in Figure 7.3.1. Obviously, such
a utility function violates the concavity requirement (cf. Subsection 3.2.1). For this reason, the
target rate was determined analogously to SBRM (cf. Section 5.4) using a logarithmic utility
function:

xtarget (t +T ) := xtarget (t)+κT
(
w− p(t)xtarget(t)

)
, (7.3.1)

where T is the time between two updates and κ is the gain per update interval, p is the path
price, w is the willingness to pay. Note that this rate update rule is identical to (4.2.1).
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The quality is then switched as follows:

if xtarget > xbetterQuality · fincr then select better quality
else if xtarget < xcurrentQuality · fdecr then select worse quality (7.3.2)

else keep current quality

where fincr is a factor describing by how much the target rate must exceed the rate of the next
better quality before increasing quality, and fdecr is a factor describing by how much the target
rate must be lower than the rate of the current quality before decreasing quality. A variant was
also implemented that completely stops transmissions when the target rate becomes lower than
the worst available quality.

Marking and Price Feedback

Since the calculation of the target rate depends on the pricing information given by the network,
a mechanism must be implemented to signal that information to the source. UDP lacks a re-
transmission algorithm and therefore does not provide reliable transfer. For this reason, packet
loss and loss of pricing feedback information must also be taken into account. As a solution,
counters were implemented at the source and sink. The source counts total packets sent, the
sink counts total packets received and number of packets marked. These two counters are then
sent back to the source in regular RTP quality reports. From these counters, the source can
calculate the fraction of packets marked and the fraction of packets lost. For the calculation of
the target rate no difference is made on whether a packet was marked or lost. It would be easy,
however, to implement a different reaction to packet loss than to packet marks. The path price
p is thus calculated as follows:

p =
(numsentPackets −numreceivedPackets)+nummarkedPackets

numsentPackets
. (7.3.3)
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7.3.3 Simulations and Results
Setup

Simulations were performed using the Ptolemy Classic [PCB] simulator. A single bottleneck
link topology shown in Figure 7.3.2 was used to evaluate performance of the rate control. Three

R1 R2

S3 S6

S5

S4S1

S2 100 MB/s, 8 ms

100 MBit/s, 10 ms 100 MBit/s, 10 ms

100 MBit/s, 1 ms100 MBit/s, 1 ms

100 MBit/s, 5 ms 100 MBit/s, 5 ms

Figure 7.3.2: Single bottleneck link topology with three different round-trip delays

paths share the same bottleneck link, but use different delays, resulting in three different round-
trip delays: 20 ms, 36 ms, and 56 ms. At each source node (S1, S2, S3) twenty video streams
are constantly served. The parameters of the algorithms are shown in Table 7.3.1. Again, RED

Table 7.3.1: Simulation Parameters

Source algorithm Queue algorithm (RED)
Parameter Value Parameter Value

WTP wn 20000 bytes
s thmin 6000 bytes

κ 0.005 thmax 60000 bytes
rateweight 0.1 pmax 0.4

fincr 1.1 qweight 0.01
fdecr 0.95 gentle true

gateways are used for the simulations because they are more common on the Internet today. For
optimal results, SBRM gateways could be used instead.

Overall Load (Effectiveness)

To measure the effectiveness of the rate control, the offered load was changed by increasing
the number of MPEG-4 sources. The average queue size was then measured as an indicator
for the actual load of the network. Figure 7.3.3 shows the average queue size as a function of
the number of active sources. Three different curves are shown. The first plot applies if no
rate control is used. As expected, the average queue size as an indicator for the actual network
load grows nearly linearly to the offered load. The second plot shows MPEG sources using rate
control, but without interruptions of the stream. For this reason, each source will transmit at
least at the minimum quality. This mechanism can reduce the actual network load, but it will
still grow as each additional source will add more packets injected into the network. Finally,
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Figure 7.3.3: Network load (mean queue size) as function of offered load (number of sources)

the third plot displays sources that are interrupted if the network load becomes too high. In this
case, overloading of the network can effectively be avoided.

Thus, the proposed rate control algorithm for MPEG streams without interruptions cannot
completely avoid network congestion. This would have been possible if stream interruptions
were acceptable. Since users do not want unexpected interruptions in their viewing of the video
stream, the proposed rate control can only reduce the impact of offered load on the network
congestion (second curve in Figure 7.3.3). It is still effective to increase the number of streams
supported by the network if demand is high. Combining it with the Call Admission Control
(CAC) presented in Section 7.2 is recommended in order to avoid a congestion collapse. This
combination could be used by network operators to offer a low-class service to those users
willing to accept worse quality if the demand is high in exchange for a higher call admission
rate.

Dynamics

To further evaluate the performance of the rate-control algorithm, the target rate xtarget as a
function of time was recorded for 100 seconds. Additionally, the quality used at any point in
time and the average queue size over time were recorded. The results are shown in Figure 7.3.4.
From 7.3.4a the algorithm seems to work perfectly. Even though the round-trip time is different
for the different sources, the target rate is determined equally. Thus, the algorithm is fair, every
source gets roughly the same rate. Also, after an initial phase to allow convergence, the average
queue size is almost steady over time (cf. Figure 7.3.4c). However, in order to achieve these
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Figure 7.3.4: Rate control for MPEG streams with three different qualities
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desirable properties, the average target rate has to be maintained by switching between two
qualities. This will lead to fluctuating qualities of the video stream (cf. Figure 7.3.4b). It is
reasonable to assume that an average viewer would not enjoy such behavior. Flipping between
two qualities can be reduced by increasing the factor fincr (cf. Formula 7.3.2). This is shown
in Figure 7.3.5. With the modified parameter settings, the target rate has to grow higher before
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Figure 7.3.5: Rate control for MPEG streams with three different qualities and fincr = 2.0

the quality is increased (cf. Figure 7.3.5a). This will lead to a reduced number of changes (cf.
Figure 7.3.5b). Since response to changing network conditions is reduced, the average queue
size will not be constant over time (cf. Figure 7.3.5c). Thus, while this second approach is
better for the viewer of a movie as the number of visible quality changes is reduced, from a
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network operator’s perspective, there are notable disadvantages. Therefore a third approach is
proposed that will solve both problems at the cost of fairness.

Improved Quality Selection Algorithm (With Random Increase)

The quality selection algorithm (7.3.2) is changed as follows:

if xtarget > xbetterQuality · fincr and f lag then select better quality at a probability of 0.5,
and set f lag = f alse. (7.3.4)

else if xtarget < xcurrentQuality · fdecr then select worse quality, set f lag = true (7.3.5)
else keep current quality

Note that the rate is only increased at a probability of 50% when the target rate xtarget be-
comes higher than the rate of the better quality stream xbetterQuality times the increase factor
fincr. Obviously, this will cause unfairness.

The simulation results are shown in Figure 7.3.6. As visible in Figure 7.3.6b, the number of
quality changes is greatly reduced. Furthermore, the mean queue size (cf. Figure 7.3.6c) does
not fluctuate as much as before. Thus, this MPEG rate control algorithm (7.3.5) is much better
from a user’s perspective than the previously suggested algorithm (7.3.2). The disadvantage is
unfairness between users. One user (source 2, user 7) receives a better rate than the other users
(source 1, user 3, and source 3, user 13).

7.4 Conclusions
In this chapter two approaches to avoid congestion in the case of inelastic traffic were presented.
The first approach is the implementation of a distributed Call Admission Control. Although fur-
ther research is needed, the results presented here already prove that a distributed Call Admis-
sion Control based on Congestion Pricing theory is feasible. No modifications to the network
core devices are necessary, thus deployment on the Internet is possible. It can be implemented
at gateway routers or even in the sources themselves to avoid scalability problems. Even though
such a distributed CAC does not work as perfectly as a centralized CAC could, it is effective
within the interesting load range and very efficient. When used, it keeps utilization and average
queue size nearly stable and thus prevents congestion and packet loss. Thus, a distributed Call
Admission Control will improve overall performance of the network.

Congestion Pricing can also be applied to rate-control MPEG streams, which is the second
proposal. Since streams are usually not elastic, Congestion Pricing will lead to oscillations
between two rate steps in order to achieve the desired average rate. While this is effective in
avoiding congestion and optimal utilization of network resources, a user would not like the
changes in quality that are related to the rate changes. To overcome this problem, a random
component was included before the transmission rate could be increased. This will lead to an
unfair rate allocation, but avoid the aforementioned oscillations between two rate steps. A Call
Admission Control is still necessary, unless rate reductions to zero during the streaming are
tolerable.
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Figure 7.3.6: Rate control for MPEG streams with random increase

145





Chapter 8

Conclusions

In this dissertation, the existing congestion control algorithms for TCP/IP and their problems
were presented. Congestion Pricing theory was applied to TCP in an attempt to solve these
problems. Congestion Pricing is a mathematical framework derived from economics and game
theory, and can be used to optimize traffic loads on a network and thus avoid congestion. The
strength of Congestion Pricing is the distribution of the optimization problem to the sources.
Furthermore, each user can define his preference for bandwidth. This feature can then be used
to implement different service classes without the need for the storage of state information in
the network nodes or special scheduling algorithms.

While in theory these are very useful features, the Congestion Pricing framework assumes
no delays and also assumes continuous fluid-flow or time-slotted networks. Since this does
not apply to packet based networks such as the Internet, a specific adaptation had to be devel-
oped to be able to apply Congestion Pricing to TCP. Using this adaptation, which was named
“CP-TCP/EPF”, it was shown that the congestion control algorithm can be improved to better
utilize the available resources, maintain low queue sizes, and prioritize streams according to
the settings. “CP-TCP/EPF” by far outperforms current TCP variants, and can better adapt to
changing network conditions. Thus, oscillations, inherent to conventional TCP with drop-tail
queues can be avoided. CP-TCP/EPF is therefore a base for scalable and efficient congestion
control.

However, even though CP-TCP/EPF works in packet based networks, it requires changes to
the IP header and every router. Since IP is the fundamental protocol of the Internet, it is very
improbable that it can be modified. Similarly, replacement of all routers cannot be expected.
Instead, a way was presented to deploy Congestion Pricing based TCP on the Internet with
minimal modifications. A main problem is the transportation of the feedback signals, since
current standards only allow a single bit for congestion information in the IP header. Different
proposals to encode congestion prices in a single bit were presented and compared by means of
simulation. The insights from these simulations lead to the development of a new algorithm, the
Single Bit Resource Marking (SBRM) proposal. SBRM only needs a single bit for the encoding
of the congestion prices, but still provides all significant characteristics of Congestion Pricing
theory. Simulations have shown, that SBRM — just like CP-TCP/EPF — can establish high
utilization of the bottleneck link with low queue sizes. It reacts well to changing network con-
ditions, and its parameters work well over a wide range of network conditions. And, of course,
it by far outperforms any conventional TCP variant. SBRM therefore also provides scalable
and efficient congestion control. Making some minor additional changes to SBRM, it can be
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employed with current TCP receivers. Only the sending side — usually the servers — must
be modified. This fully compatible variant was named “TCP/RM”, and it was demonstrated
that it even works with drop-tail and RED queues that are commonplace on the Internet today.
TCP/RM is the fastest and easiest way to bring the advantages of Congestion Pricing to the
Internet.

The application of control theoretic models to congestion control algorithms is a relatively
new field of research. Such a model was also developed for SBRM to examine linear stability.
SBRM is stable in most network conditions. Its stable areas of operation are much larger than
those of conventional TCP. However, SBRM can also become unstable under certain condi-
tions. Using the control theoretic model, additional modifications to SBRM can be made in the
future to ensure stability for all possible modes of operation. Nonetheless, even when SBRM
is unstable, it yields good results. Though a drop in link utilization can be observed, persistent
congestion is still avoided. In this dissertation a worst case scenario with constant demands
and synchronized sources was examined, in an actual network the impact of instability will be
lesser still. In the opinion of the author of this dissertation a greater problem still to solve is
the start-up phase of new flows, which is important since most flows are still short-lived (e.g.
HTTP traffic).

Congestion Pricing can also be applied to multimedia streams. Although theoretically the
Congestion Pricing framework does not apply because a concave user’s utility function cannot
be found for inelastic traffic, this problem was solved by working with a virtual “target rate”.
This can then be used as the admission threshold for a distributed Call Admission Control
or to select different qualities of the multimedia stream. Since the share of inelastic traffic
on the Internet is slowly increasing, these approaches are promising for the future. However,
problems with the application of Congestion Pricing theory associated with inelastic traffic
were also shown. These problems can be solved by abandoning the requirement of fair and
equal rate distribution between similar users. Future research is still necessary to improve these
algorithms.

The approaches and algorithms presented in this dissertation are focused on congestion
control for the Internet, but can be applied to any kind of network or where the use of resources
has to be optimized. The use of Congestion Pricing information for routing decisions is also
anticipated. Many routing algorithms consider “link costs” when they make a routing decision.
Basing these link costs on Congestion Pricing theory could lead to better utilization and also to
the possibility of using different classes of service depending on the user’s demands.

Also, peer-to-peer applications are growing in demand. The operation of some servers is at
present very costly due to the amount of traffic (for example Usenet servers), in such as case
peer-to-peer networks might be used as replacement for classical client-server based applica-
tions in the future and therefore gain even higher shares on the Internet. While the presented
algorithms can already be used to control the transmission rates between peers when transmit-
ting files, Congestion Pricing can further be used to “route” traffic or requests for file fragments
between peers. Further, at the top layer it could be used to decide which clients are prioritized.

The future will also introduce completely new applications to communication networks.
Optimization will be important for almost all of them, and Congestion Pricing theory is appli-
cable. For example, currently Voice-over-IP is growing strongly, and the introduction of Call
Admission Controls is the natural next step to avoid quality problems. Voice traffic should be
prioritized over the data because it is delay critical. As was shown in this dissertation, Conges-
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tion Pricing can be used to solve both problems in a decentralized and thus scalable and simple
way.
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