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1. Introduction 

Optical fibers and waveguides are gradually substituting the metal wire 

connections [1]. They provide larger bandwidth at high interference immunity and lack 

of emission. As the data transmission rate is increasing the optical connection moves 

from long range to enterprise network [2] and it is even on the way to enter the domain 

of chip-to-chip and on-chip communication [3]. This trends strengthen the demand for 

miniaturization and integration of optical signal transmission components, which 

include waveguides, modulators, photodetectors, switches and Wavelength-Division-

Multiplexing (WDM) elements. Many of these components are based on the phase 

properties of optical signals. Tunable phase shift is the basis for Mach-Zehnder 

interferometers, which constitute optical switches and modulators [4]. Tunable time 

delay is necessary for the optical buffering in routers and synchronization components 

[5], where an optical signal should be stored and released after a certain period of time. 

And the dispersion accumulated in the optical fiber should be compensated in dispersive 

elements with opposite sign of dispersion [1]. 

As will be shown in this thesis the small group velocity of light in certain 

structures can be used to dramatically decrease the size of phase shift, time delay, and 

dispersion compensation components. These structures, also called as slow light 

structures, have received a lot of attention in recent years [6][7][8][9][10][11]. Going in 

parallel with the development of Electromagnetically Induced Transperency (EIT) 

[12][13][14], the slow light structures demonstrate larger bandwidth [15] and proven 

microscale implementation [7][16][17]. The functional length of the optical components 

can be decreased proportional to the group velocity reduction. Thus, where conventional 

units require several centimeters long structures, the tenfold group velocity reduction 

decreases their lengths to millimeter length. 

1.1 Photonic crystal line defect waveguides in SOI 

Different slow light structures were presented recently including Bragg stack at 

the band edge [10], coupled cavity waveguides [18] and photonic crystal line-defect 

waveguides [6][7]. Every of the named structures has its advantages and disadvantages. 
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We discuss in this thesis the photonic crystal line-defect waveguides which demonstrate 

some superior properties. Photonic Crystals (PCs) are periodically structured dielectric 

materials with period in the range of the photon wavelength [19][20][21][22]. Line-

defects in photonic crystals can guide light due to the photonic band gap effect 

[6][23][24], different to the conventional total internal reflection. The recent advantages 

in manufacturing techniques lead to substantial loss reduction in such waveguides to 

approximately 1dB/mm [16][25][26]. Since the slow light effect was first time 

demonstrated in line-defect waveguides by Notomi et al. [6] many publications 

appeared concerning different possible applications. They correspond to the areas 

named above: increased phase shift [17][27], large tunable time delays [7][8][15][28], 

large dispersion [29]. 

On the other hand, PC line-defect waveguides can be implemented in the 

Silicon-on-Insulator (SOI) system, which has many advantages. First of all, the index 

contrast of silicon to air is sufficient for a pronounced Photonic Band Gap (PBG) effect. 

In this PBG frequency range there is sufficient place for the line-defect modes with 

engineered dispersion relation. And the same index contrast in the vertical direction 

opens enough space below the light cone [30]. Secondly, the SOI system is compatible 

with conventional silicon chip manufacturing technology and allows simple integration 

of optical and electronic components on the same chip [31][32]. There are already 

successful examples of optical modulators [17][33], Raman lasers [34] and Wavelength 

Division Multiplexing (WDM) components [35] integrated in SOI. Slow light in SOI 

structure would be an important accomplishment of this technology [7]. 

1.2 Goals and outline of this thesis 

1.2.1 Goals 

The goal of this work is to investigate different aspects of small group velocity 

in PC line-defect waveguides. Based on various simulation approaches and theoretical 

approximations four major issues of slow light are considered: 

- small group velocity with vanishing dispersion 

- large second order dispersion 

- coupling to small group velocity modes 

- disorder induced losses 

More specifically, the first goal was to understand the mechanism responsible 

for small group velocity in line-defect waveguides and the ways to control it. This 

understanding opens possibilities for the tunable phase shift and time delay. At the same 

time it is important to keep the second order dispersion low at small group velocity 

bandwidth. Otherwise the impulse distortion will deteriorate the small group velocity 

device performance. The aim for time delay was approximately 1 ns in a 1 mm long 

structure on a 100 GHz bandwidth. This requires the propagation velocity equal to 

0.003 speed of light in vacuum. 



1.2. GOALS AND OUTLINE OF THIS THESIS 

3 

The second goal was to investigate the possibilities for dispersion compensation 

in line-defect waveguides of millimeter length. The typical length between reproducers 

in the optical long distance network is 100 km. The dispersion accumulated in a 100 km 

fiber equals approximately to 2000 ps/nm. To compensate the effect of the fiber 

dispersion a compensator is required with -2000 ps/nm/mm dispersion. The same as for 

time delay device the higher order dispersion should be avoided. Two approaches are 

discussed in this thesis. The dispersion is caused by the different time delay of the 

adjacent wavelengths. This time delay difference can be achieved by different 

propagation velocity or different propagation length, which require modified dispersion 

relation or chirped structure correspondingly. 

The third goal was to find an efficient coupling approach from strip dielectric 

waveguide into a slow light line-defect waveguide. The direct butt-coupling of such 

waveguides leads to extensive losses and reflections. Thus, a special mode converter 

should be designed, where the strip waveguide mode would be adjusted to the slow light 

mode. 

The last goal of this thesis was aimed at the imperfection tolerance of the slow 

light structures. Inaccuracies, defects and boundary roughness in the PC structures due 

to imperfect manufacturing can lead to scattering losses of the propagating optical 

mode. The effect of this scattering on the transmission and time delay properties of the 

slow light waveguides was investigated.  

All the above named goals should be fulfilled on the bandwidth of a single 

WDM channel of approximately 100 GHz (0.75 nm). 

1.2.2 Outline 

The slow light issues discussed in the previous paragraph will be presented in 

the following chapters: 

In chapter 2, the background information about PC line-defect waveguides and 

their simulations is discussed. Line-defect waveguide parameters and dispersion 

relations are presented. Three simulation approaches are described: Transfer Matrix 

Method (TMM), Eigenmode Expansion Method (EEM), and Finite Integration 

Technique (FIT). This methods are presented with a self-written code for TMM, 

freeware CAvity Modeling FRamework (CAMFR) for EEM, and commercial software 

Microwave Studio (MWS) of CST for FIT method. 

In chapter 3, the slow light line-defect waveguide is presented. An approach is 

discussed to achieve small group velocity with vanishing second and third order 

dispersion. An example of the waveguide is given with group velocity 0.02 speed of 

light on the bandwidth of approximately 1 THz. The group velocity reduction is 

explained through power flow redistribution. 

In chapter 4, large second order dispersion is demonstrated near the anticrossing 

point in single and coupled line-defect waveguides. Theoretical estimations are given 

for maximal achievable dispersion. Quasi constant positive and negative dispersion is 

predicted in the order of 100ps/nm/mm on the bandwidth of 100GHz. 



CHAPTER 1.     INTRODUCTION 

4 

In chapter 5, an approach is developed to estimate the time delay of Bloch mode 

propagation in chirped periodical structures. The approach is demonstrated on high 

index contrast chirped Bragg mirrors and complex photonic crystal waveguide 

structures, including coupled waveguides and a slow light waveguide. It allows simple 

design of time delay and dispersion compensation waveguides in chirped PC structures. 

In chapter 6, an approach is presented to couple light into a slow light mode of a 

PC line-defect waveguide. Two stage coupling is proposed, where strip waveguide 

mode is coupled to the “index guided” mode of the PC waveguide and the “index 

guided” mode is butt-coupled or adiabatically changed into a slow light mode. A 

comparison with one dimensional structure at the band edge is provided which 

demonstrates the advantage of the line-defect waveguides. 

In chapter 7, characteristics of disordered Bragg stacks and line-defect 

waveguides are simulated. The backscattering effect on transmission and time delay is 

estimated. First, the reflection at a single defect is calculated and then the results are 

used to estimate reflection intensity in the disordered structure with statistical 

distribution of defects. The dependency of the backscattering intensity on the group 

velocity and disorder amplitude are investigated.  

In chapter 8, the results of the previous chapters are summarized and the outlook 

for further investigations is given. 
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2. Background 

The background information about PC line-defect waveguides and their 

simulations is presented. Three simulation approaches are described: Transfer Matrix 

Method (TMM), Eigenmode Expansion Method (EEM), and Finite Integration 

Technique (FIT). This methods are presented with a self-written code for TMM, 

freeware CAvity Modeling FRamework (CAMFR) for EEM, and commercial software 

Microwave Studio (MWS) of CST for FIT method. 

2.1 Photonic crystal line-defect waveguides 

Photonic crystal is a dielectric material or a set of different dielectric materials 

with periodical distribution of refractive index. An introduction to photonic crystal 

theory can be found in the book of Joannopoulos, Meade and Winn [36]. We will 

concentrate on the two dimensional triangular lattice photonic crystals with cylindrical 

air holes in silicon. The line-defect is obtained by leaving out a row of holes along the 

KΓ  direction, which corresponds to the direction to the first nearest neighbor holes. 

2.1.1 2D structure 

The essential properties of the line-defect waveguide can be investigated on the 

2D structure. In this case the third dimension is disregarded as if the photonic crystal is 

infinite in this direction. In Fig. 2.1 a schematic picture of a line defect is shown with 

one row of holes missing in the KΓ  direction. Several parameters define the waveguide 

structure. Lattice constant a  is equal to the distance between closest holes. W is the 

waveguide width, it is measured relative to a single row missing waveguide 3aW = . 

Radius of the holes is r . All the dimension parameters are usually normalized to the 

lattice constant. The structure can be scaled to operate at any required frequency by the 

adjustment of the lattice constant, as can be derived from scaling properties of Maxwell 

equations [36]. The refractive index of the silicon matrix is taken as 3.5. 
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Fig. 2.1: Schematic picture of the W1 line-defect waveguide. A periodical unit is 

highlighted with dark grey color. The direction of mode propagation is shown with a 

grey arrow. 

A triangular lattice of holes can have a complete band gap for light polarized in 

the plane of periodicity, which is usually defined as TE polarization. At this frequency 

range, called also as Photonic Band Gap (PBG), light is completely reflected and the 

photonic crystal behaves as an omnidirectional mirror. Thus line-defect waveguide 

effectively consist of two photonic crystal mirrors. If some modes can fit between these 

two mirrors then these modes propagate along the line-defect. The wider is the 

waveguide the larger is the number of guided modes. The dispersion relation of these 

modes can be found from an eigenmode problem, which can be defined for the 

periodical unit of the line-defect waveguide highlighted in the Fig. 2.1. Due to the Bloch 

theorem the electric field on the left and right side of this unit are related by the 

following equation: 

ikazxazx eEE ),(),( =+  (2.1) 

where k  is the wavenumber. Applying different simulation approaches the eigenmodes 

can be found that fulfill the Maxwell equations and the Bloch boundary conditions. The 

eigenvalue of this problem is the frequency of the mode. Thus the dispersion relation 

can be obtained by scanning the eigenmode frequencies for different wave numbers. 

Such dispersion diagram, also called “band diagram”, is presented in Fig. 2.2a. The 

frequencies and wavenumbers are presented in normalized units. Thus the band diagram 

is in this case lattice constant independent. 
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Fig. 2.2: (a) The band diagram of a 2D PC line-defect waveguide with one row of holes 

missing ( ar 3.0= , W1, 5.3=n , TE polarization). (b) The amplitude of the magnetic 

field of mode 2υ , mode 1υ  and the odd mode (mode with a node on the line defining the 

lateral symmetry)  are presented. 

In Fig. 2.2 the modes of W1 waveguide are presented by thick lines. The radius 

of the holes is ar 3.0= , which is a typical value. Much larger holes are not possible due 

to the fact that the silicon walls between adjacent holes become to thin for lithography 

manufacturing. Thin dotted lines in Fig. 2.2a correspond to the modes outside PBG 

region, they are guided in the bulk PC and hence are not confined to the line defect. 

There are two continuous dispersion curves in the PBG region with different lateral 

symmetry of eigenmodes. The symmetry of eigenmodes is defined by its magnetic field 

in respect to the lateral plane in the waveguide center along z direction and normal to x 

direction (see Fig. 2.1). The amplitude of magnetic field is presented in Fig.2b. The odd 

mode has mode profile with a node in the middle of the line defect. The even mode has 

two different field distributions at the regions signed by 1υ  and 2υ . Though the line-

defect modes are complicated they still remind the modes of a conventional dielectric 

waveguide, where 2υ  looks like a fundamental mode, odd mode looks like a first mode 

and 1υ  like a second mode. But due to the periodicity the modes are mixed and do not 

follow in the typical order. 

The group velocity of the modes can be calculated as a dispersion relation 

derivative: 

dk

d
g

ω
υ =  (2.2) 

Thus the flatter the curve the smaller the group velocity. In the Fig. 2a the 1υ  region 

corresponds to a very flat dispersion curve with very small group velocity. The 

investigation of this mode will be done in chapter 3. 
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2.1.2 2D slab structure 

There are two ways to obtain line-defect modes in three dimensional structures. 

One of them is the complete three dimensional waveguide with a line defect [37][38]. 

But the manufacturing of such structures is still difficult from a technological point of 

view. Another approach is an extension of the 2D structure where total internal 

reflection is used to guide light in the vertical direction [6][23][24][30]. This 2D slab 

structure has properties very similar to the ideal 2D structure. 

xz

y

xz

y

 

Fig. 2.3: A periodic unit of the 2D slab line-defect waveguide. Air cladding is added 

above and below slab. The slab has finite thickness ah 5.0= . The mode propagates 

along z axis. 

In the Fig. 2.3 the slab structure is presented. The thickness of the slab is 

ah 5.0= . This a typical value for the high index contrast structures like silicon. At this 

value the slab is still monomode but at the same time light is strongly confined in the 

material. Below and above the slab sufficient air cladding is attached so that light can 

not tunnel out. The boundaries of the simulation volume should be sufficiently away 

from the waveguide center in x  and y  directions. In this case conductor boundary 

condition can be applied to these boundary planes. Along z  direction Bloch boundary 

conditions are used similar to the discussed in the previous section. The band diagram 

of the presented structure is shown in Fig. 2.4a. The same odd and even modes are 

observed in the PBG region, though the PBG region is now at higher normalized 

frequencies. This can be explained by the fact that 2D slab modes penetrate into air 

claddings and thus propagate effectively in the medium with smaller refractive index. 

The main difference is the appearance of the radiation modes above the k=ω  line, also 

called light line (presented with a grey line). The modes above the light line do not 

fulfill the total internal reflection condition and are scattered vertically. Thus only the 

modes below the light line are available in the 2D slab structure. The magnetic field 

amplitude of the 1υ  mode is presented in Fig. 2.4b. The field is taken on the xy  planes 

and xz  planes. On the xz  plane the mode is very similar to the 2D mode presented in 

Fig. 2.2b. 
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Fig. 2.4: (a) The band diagram of a 2D slab line-defect waveguide with one row of 

holes missing ( ar 3.0= , W1, 5.3=n , ah 5.0= ). The grey line corresponds to the light 

line of the slab (b) The amplitude of the magnetic field of the mode 1υ  is presented. The 

field is confined in the lateral and vertical directions. 

2.2 Transfer Matrix Method 

2.2.1 Approach 

Transfer Matrix Method (TMM) is an approach to calculate transmission and 

reflection properties of 1D structures as a multiplication of transfer matrices. The TMM 

can be also extended to 2D and 3D structures but that will not be considered in this 

chapter. There are many possible ways to define transfer matrices, we will follow the 

approach presented in Ref [39]. The electric field at certain frequency ω  in any layer 

inside the 1D structure can be considered as a sum of forward and backward 

propagating plane waves: 

( ) ikzikz eEeEzE −−+ +=   (2.3) 

where z  is the propagation direction and k  is the wavenumber. The forward 

component corresponds to +E  taking the time factor as ti
e

ω− . The electric field sum can 

be presented in a vector form: 









=










=

−

+

b

f

E

E
E

  

(2.4) 

Then the propagation in the media can be described by a propagation matrix Π : 

)()()( δδ +−Π= zz EE  (2.5) 
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− δ
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where δ  is the propagation distance. 

At the interface between two media the Fresnel transmission and reflection 

coefficients can be applied to connect fields on the left and right side of the interface. 

For the light falling from the left side the transmission LRt  and reflection LRr  

coefficients are: 

RL

L

LR
nn

n
t

+
=

2
, 

RL

RL

LR
nn

nn
r

+

−
= , where LRLR tr =+1 , (2.7) 

Ln  and Rn  are refraction indices of left and right media correspondingly. The interface 

transition can be also presented as a matrix RLn ,∆  that connects electric field on the left 

LE  and right RE  sides: 

RRLL n EE ⋅∆= ,  (2.8) 









=∆

1

11
,

LR

LR

LR

RL
r

r

t
n  (2.9) 

The field at the input of the structure with N  layers can be thus connected to the 

field at the output by a following matrix multiplication: 

outin MEE =     with       NNNNNN nnnM Π∆Π∆Π∆Π= −−−− ,111,222,11 K  (2.10) 

 

1Π

...

12n∆

2Π 3Π 1−Π N NΠ

23n∆ NNn ,1−∆

+

3E
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3E

1

r
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Fig. 2.5: Schematic presentation of the transfer matrix method. Every layer is presented 

by its propagation matrix Π  and every transition between two layers is presented by 

matrix n∆ . The structure is excited from the left side. 

The multilayer is also shown schematically in Fig. 2.5. If transfer matrix M  is 

known, then the reflection r  and transmission t  coefficients can be found as follows:  
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On the other hand when reflection and transmission amplitudes are known the matrix 

coefficients 11M  and 21M  can be found. The invariance under time reversal can be used 

to define 12M  and 22M  [39] from the time reversed equations (2.11): 









=









*

0

1

*

t
M

r
,     so    

1

22*
−

= Mt      and    12

1

22* MMr
−

= , (2.12) 

where *r  and *t  are complex conjugated reflection and transmission coefficients. 

Complex conjugation follows from time reversal of equation (2.3): 

( )( ) tiikzikzti eeEeEezE ωω )*)(*)((* +−−+− +=  (2.13) 

Thus the transfer matrix can be presented in general form as: 














=

*
1

*
*1

tt
r

t
r

tM  (2.14) 

Accordingly, the reflection and transmission coefficients related to intensity are given 

by ratios of power flows: 

2

2

1

2

1
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En
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in
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==
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−

, 
2

1

2

1

2

t
n

n

En

En
T N

in

outN
==

+

+

, and 1=+ TR  (2.15) 

It should be mentioned that transmission intensity is not just the transmission amplitude 

squared, but also multiplied by the refraction index of the medium. The determinant 

)det(M  is equal to 1 only in the case when input and output media have the same 

refraction index. The phase information is contained in the reflection and transmission 

coefficients as follows: 

ti
ett

ϕ= , ri
err

ϕ=  (2.16) 

Thus transmission and reflection amplitude and phase can be obtained for every 

frequency point. 

2.2.2 Bloch modes 

The periodical structure has eigenmode solutions, also called Bloch modes. This 

eigenmodes within the TMM approach can be presented as eigenvectors. The Bloch 

mode boundary condition (2.1) can be rewritten in a vector form: 
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where Bk  is the Bloch mode wavenumber. On the other hand, the periodical unit can be 

described by its transfer matrix aM  and the Bloch boundary condition leads to an 

eigenvalue problem: 

az
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aik
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 (2.18) 

Taking into account that 1)det( =aM , the dispersion relation can be found [40]: 

( ) ( ) 1
4

1

2

1 2

22112211 −+±+=− aaaaaik
MMMMe B  (2.19) 

The frequency is contained in the propagation matrices Π . Two eigenvectors can be 

found from the equation (2.18) [40]: 
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They present forward and backward propagating Bloch modes: 
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2.2.3 Bloch mode excitation, reflection and transmission 

Bloch modes found in the previous section are the eigenmodes of the periodical 

stacks. They propagate in the ideal periodical structure without change and can be 

scattered at any periodicity fault. To investigate this scattering it is important to have a 

periodical stack with defect and absorbing boundary conditions at the input and output. 

The absorbing boundary in this case should absorb Bloch modes without reflection as if 

there is an infinite periodical stack attached to the boundary. This boundary condition 

can be obtained by considering excitation, reflection and transmission as Bloch modes: 
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where Br  and Bt  are Bloch mode reflection and transmission coefficients. By solving 

the matrix equation these coefficients can be calculated: 
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where 
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 (2.27) 

The intensity of the reflected and transmitted Bloch modes can be again found from the 

power flow ratios: 
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(2.28) 

where power flow in the backward direction is subtracted from the power flow in the 

forward direction. The slow light modes near band edge have very small group velocity 

due to the fact that forward and backward power flows are almost equal. Thus to 

transmit the same power flow the amplitude of the forward and backward plane waves 

should be very high. Again the amplitude and phase of the reflected and transmitted 

Bloch waves can obtained similar to equation (2.16) 

2.3 Eigenmode Expansion Method 

2.3.1 Approach 

The eigenmode expansion method (EEM) is a method to calculate transmission 

and reflection properties of arbitrary structures presented as eigenmodes of input and 

output cross sections. Any structure can be considered as a sum of z-invariant layers 

which are stacked together. We will concentrate on 2D structures schematically 

presented in Fig. 2.6. Any section from 1 to N  is invariant in z direction, thus they 

guide z-invariant eigenmodes that propagate undisturbed until they meet an interface to 

the next layer. The field excited from the left can be presented as a sum of eigenmodes 

in layer 1. The eigenmodes should be orthogonal to allow unambiguous representation. 
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They are obtained as solution of 1D eigenmode problem which can be solved with a 

TMM method. There is generally an infinite number of eigenmodes when modes with 

imaginary propagation constants are included. The number should be truncated at some 

point Nm  to allow numerical implementation of the method. This truncation is possible 

because higher order modes have very high frequency of field oscillation along x  axis 

and they have very small value of the overlap integral with the propagating field. At the 

same time these modes have large imaginary propagation constants, thus they decay 

substantially in the layer and do not propagate to the next layer. 

The eigenmodes propagate in the layers with phase shifts corresponding to their 

propagation constants or decay if their propagation constants are imaginary. At the 

interface they excite reflection as eigenmodes propagating in opposite direction and 

transmission as eigenmodes of the adjacent layer. When eigenmodes are known the 

transmission and reflection coefficients can be found from overlap integrals [41]. 
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Fig. 2.6: Schematic presentation of the structure separated in the z-invariant layers. 

Different color corresponds to different dielectric constants. In every layer the field can 

be presented as a sum of forward and backward propagating eigenmodes. 

The forward and backward propagating fields in every layer can be represented 

as vectors consisting of the amplitudes of eigenmodes: 
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Thus the transmission and reflection coefficients build transmission and reflection 

matrices LRT , LRR , RLT , RLR . They connect the forward and backward propagating 

fields in left and right layers. When all eigenmodes and interface matrices are know the 

transmission and reflection characteristics of the entire stack can be obtained. The TMM 
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method described in the previous chapter is a special case of the EEM with only one 

eigenmode in every layer. 

The details of the eigenmode expansion implementation will not be discussed. 

This is described in the literature concerning simulation method CAvity Modeling 

FRamework (CAMFR) [41][42][43], which was also applied in this thesis. It should be 

mentioned that, contrary to the TMM method where transfer matrix is obtained as a 

multiplication of interface and propagation matrices, CAMFR makes use of the 

scattering matrix method which is calculated in a recursive form. The scattering matrix 

combines outgoing waves on both sides of the structure with input waves: 
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The cascade of two scattering matrices aS  and bS  is obtained not by multiplication but 

by the following procedure, as can be shown by direct multiplication of the matrix 

elements: 
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(2.31) 

where cS  is the matrix of the cascaded structure and I  is the unit matrix. The scattering 

matrix approach is more stable than the transfer matrix as discussed in Ref. [41]. When 

the scattering matrix is obtained the reflection and transmission matrices N1T , N1R , 

1NT , 1NR  can be derived: 

2111 bRfTf NNN += ,       21111 bTfRb NN +=  (2.32) 

They can be rewritten as a transfer matrix M : 
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 (2.33) 

2.3.2 Bloch modes 

The Bloch modes of the structure periodical in z direction can be found as a 

solution of the following eigenvalue problem: 









⋅=









b

f
M

b

f
aika Be  (2.34) 

where aM  is the transfer matrix of the periodical unit and Bk  is the propagation 

constant of the Bloch modes. The transfer matrix has dimensions NmNm 22 × , thus 

Nm2  eigenmodes will be found. These eigenmodes can be separated in Nm  forward 
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and Nm  backward propagating modes, where direction is defined by the power flow of 

the Bloch modes. We will distinguish forward and backward propagating Bloch modes 

with sign “+” and “–”. The field in any layer can be presented as a sum of Bloch modes. 

The Bloch modes amplitudes build also a vector which can be converted to the cross 

section eigenmode representation by a matrix transformation: 
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 (2.35) 

where B  stands for “Bloch” and BEG  consists of the Bloch modes obtained from the 

eigenvalue problem (2.34): 
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2.3.3 Bloch mode excitation, reflection and transmission 

Similar to the reasons discussed in TMM method an approach is required to 

excite Bloch modes and consider reflection and transmission as Bloch modes too. 

Equation (2.33) can be transformed to the Bloch mode representation at input and 

output with the help of equation (2.35): 
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In case of known amplitudes of excitation Bloch modes i  the equation appears as 

follows: 

B

out

BE

B

inp

BE 







=









0

t
GM

r

i
G  (2.38) 

There are all together Nm2  unknowns in the reflection r  and transmission t  vectors 

which can be found with the Nm2  equations in the matrix equation (2.38). Thus when 

matrix M  is known any excitation and outcoupling scheme can be simulated without 

recalculation of the transfer matrix. 

2.4 Finite Integration Technique 

In this thesis the program “Microwave Studio” was used which was designed for 

microwave electromagnetic simulations and is based on the FIT method. The 

simulations at optical frequencies were possible due to the scalability of Maxwell 

equations [36]. This program is produced by the Computer Simulation Technology 

(CST) company and is commercially available. Many examples of the application of 

this software to photonic crystal problems can be found in the thesis of G. Boettger [44] 
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2.4.1 Approach 

Finite Integration Technique (FIT) is a numerical method to simulate 

electromagnetic problems in time and frequency domain. The simulation volume is 

discretized with two orthogonal rectangular grids (see Fig. 2.7). A primary grid is used 

to calculate the electric voltages e  and the magnetic fluxes b . The secondary or dual 

mesh is shifted by half the lattice vector and is used to calculate magnetic voltages h  

and dielectric fluxes d . The voltages are defined as line integrals on the edges of the 

grids, for example electric voltage ie  is calculated as iL drE∫ , and fluxes are defined as 

surface integrals on the corresponding facets, for example nSn dnBb ∫∫= , where nn  is 

the vector normal to the facet. 
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Fig. 2.7: The unit cells of the primary and secondary grids used for the discretization in 

FIT method. The electric voltages e  and magnetic fluxes b  are defined on the edges 

and facets of the primary grid which is shown by solid lines. And magnetic voltages h  

and dielectric fluxes d  are defined on the edges and facets of the secondary grid which 

is shown by dashed lines.  

The curls ×∇  and divergences ∇  operators in the Maxwell equations can be 

presented as matrix operators on the grid vectors. For example, a well known equation, 

a differential form of Faraday’s law of induction: 

BE
t∂

∂
−=×∇  (2.39) 

can be presented at the facet n  (see Fig. 2.7) as: 

nlkji b
t

eeee
∂

∂
−=−−+  (2.40) 

and in matrix form for the entire volume: 

•

−= bCe  (2.41) 
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where C  corresponds to the curl operator and contains only {-1,0,1} numbers. It 

defines for every facet in the structure the right order of the summation on the closed 

paths around the facets. The remaining three Maxwell equations can be presented in the 

corresponding way and all together they form the Maxwell Grid Equations (MGE) 

[44][45]: 

0=bS  (2.42) 

hCdj
~

=+
•

 (2.43) 

qdS =
~

 (2.44) 

where j  are the electric currents through facets and q  are the electric charges in grid 

cells, S  corresponds to the divergence operator and tilde sign “~” corresponds to the 

operators in the secondary grid. This grid equations should be supplemented by material 

equations which can be also presented in matrix form: 

eDd ε=  (2.45) 

hDb µ=  (2.46) 

SjeDj += σ  (2.47) 

where εD , µD , σD  correspond to the material permittivity, permeability and electric 

conductivity tensors, and Sj  is the currents of the excitation sources. 

2.4.2 Time domain simulations 

The grid equations (2.41) and (2.43) contain time derivatives. When initial fields 

are specified the time evolution can be calculated via the so called leapfrog scheme. The 

time is discretized with intervals t∆  and the fields are updated from previous magnetic 

fluxes and electric voltages which are shifted in time by 2/t∆ . First, electric voltages 

are obtained at time step 21+n  from previous magnetic fluxes n
b  and electric 

voltages 21−n
e : 

( )n

S

nnn
t jbDCDee +∆+= −−−+ 112121 ~

µε  (2.48) 

And afterwards the magnetic fluxes are updated from n
b  and 21+n

e : 

211 ++ ∆−= nnn t Cebb  (2.49) 

These equations can be obtained from the MGEs as shown in [45]. The procedure can 

be repeated until the specified number of steps is reached, which is, for example, 

corresponds to the propagation time of the optical signal through the structure. From the 

grid vectors the magnetic and electric fields can be calculated at any time. Time 

dependences can be converted to frequency domain by Fourier transformation. Thus the 

complete spectral dependencies can be obtained within one simulation run. 
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2.4.3 Bloch modes 

The Bloch modes of the periodical structure can be calculated with the 

eigenmode solver based on FIT method. The time derivatives can be eliminated from 

the Maxwell equations by considering the time harmonics )exp( tiω− . Thus typical 

eigenmode equation is obtained: 

EE εω
µ

21
=×∇×∇  (2.50) 

which can be presented in matrix form as: 

eDCeDC εµ
ω 2

1

~
=−  (2.51) 

The boundary conditions are directly implemented in the eigenmode problem. In case of 

Bloch mode calculations the Bloch boundary condition is defined (see (2.1)). The phase 

shift between two boundaries ka=ϕ  can be varied from 0 to π . The eigenfrequencies 

found for every phase shift build the dispersion relation of the Bloch modes which are 

presented, for example, in Fig. 2.2 and Fig. 2.4. 

2.4.4 Bloch mode excitation, reflection and transmission 

The direct Bloch mode excitation is not possible in the time domain FIT 

simulations. The FIT method is very similar to the propagation of electromagnetic fields 

in real structures. Thus to excite Bloch modes the couplers should be designed, similar 

to the real experiment, that converts plane waves or dielectric waveguide modes into 

Bloch modes of the periodical structure. The recalculations similar to presented in 

TMM and EEM methods are not possible in time domain method, because the 

excitation is not monochromatic. 
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3. Slow light waveguides with 
vanishing dispersion 

Small group velocities near the band edge are observed in any waveguide with 

periodical corrugation, though the unavoidable group velocity dispersion is present. 

Thus optical signals, propagating through such waveguides will be strongly distorted. In 

this chapter we have examined PC line-defect waveguide modes and revealed the 

possibility to control the dispersion at small group velocities. Modes of photonic crystal 

line-defect waveguides can have a small group velocity even away from the Brillouin 

zone edge. This property can be explained by the strong interaction of the modes with 

the bulk PC. An anticrossing of "index guided" and "gap guided" modes should be taken 

into account. To control the dispersion the anticrossing point can be shifted by the 

change of the PC waveguide parameters. An example of a slow light waveguide is 

presented with vanishing second- and third order dispersion. 

3.1 Introduction 

PC waveguides were already proved to exhibit small group velocities down to 

cg 02.0=υ  [26]. We will mostly concentrate on obtaining a dispersionless waveguide, 

though this approach can be also used to achieve high quasi constant dispersion and 

therefore can be applied to compensation of the chromatic dispersion of optical fibers. 

There are also coupled cavities waveguides [29][46] where constant small group 

velocities are obtained. However, in slab waveguides [30] coupled cavity modes will lie 

above the light line and will thus exhibit high intrinsic losses. The coupled cavity 

waveguides are also more sensitive to disorder as discussed in chapter 7. 

Silicon air-bridge structures with a triangular lattice of holes are considered, 

where a  is the lattice constant, r  is the radius of the holes, 5.3=n  is the slab refractive 

index, and ah 5.0=  is the thickness of the slab. The vertical component of the magnetic 

field is used to define the symmetry of the modes. Only vertically even TE-like modes 

are calculated, because they correspond to the fundamental slab mode and demonstrate 

photonic band gaps (PBGs) [30]. A line-defect waveguide is formed by leaving out a 
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row of holes in the KΓ  direction and shifting the boundaries together. The width is 

defined as the distance between the hole centers on both side of the waveguide. It is 

measured in percentage of W a3= . 

3.2 Index guided and gap guide modes 

The band diagram and field distribution of a 2D W1 waveguide are presented in 

Fig. 2.2. First, the modes at frequencies inside the PBG can be separated by their lateral 

symmetry of magnetic field (with respect to a plane along the propagation direction and 

vertical to the slab) to even and odd modes. The even mode of such waveguides can be 

categorized with respect to their field distribution as "index guided" 2υ  or "gap guided" 

1υ  [6]. An index guided mode has its energy concentrated inside the defect and interacts 

only with the first row of holes adjacent to the defect. Its behavior can be simply 

represented by a dielectric waveguide with periodical corrugation [47]. As can be seen 

from Fig. 2.2b, a gap guided mode interacts with several rows of holes, thus it is 

dependent on the symmetry of the PC and its PBG. The names "index guided" and "gap 

guided" don't specify exactly the guidance mechanisms (in the PBG region all modes 

are gap guided) but mainly describe the resemblance in terms of the modal field 

distribution. 

Any mode of the periodical waveguide generally shows a small group velocity 

near the band edge which eventually vanishes at the Brillouin zone edge. A simple 

parabolic approximation can be considered: 
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 ∆
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 (3.1) 

where ω  is the mode frequency, 0ω  is the mode frequency at the Brillouin zone edge, 

k∆  is the wave vector difference to its value at the Brillouin zone edge, α  is a function 

of the corrugation strength and depends mostly on the index contrast and the hole radii. 

The stronger the corrugation the flatter the mode becomes near the band edge. The first 

derivative over the wavevector is the group velocity: 
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the second derivative over the frequency is the dispersion: 
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So the stronger the corrugation the smaller is the dispersion at the same group velocity. 

In any case, the cubic dependency on the inverse group velocity makes the application 

of small group velocities difficult due to the large signal distortion. 
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Fig. 3.1: Schematic band structure of a triangular lattice line-defect waveguide. 

Appearance of the folded K point is shown in the inset. The laterally odd mode has a 

negative slope between the folded K and K' points. The laterally even mode is formed as 

an anticrossing of index guided and gap guided modes. Two cases are possible: (a) the 

gap guided mode has a negative slope and the PC mode has a monotonous dependency; 

(b) the gap guided mode has positive slope and the PC mode can have a non-

monotonous dependency with two wavevectors for one frequency. To be truly guided all 

modes should stay below the light line. 

Gap guided modes of the PC line defect waveguide show a complicated 

behavior. Due to the introduction of the line-defect in the triangular lattice the symmetry 

is broken and the edge of the Brillouin zone is shifted to the K' point (see inset Fig. 3.1). 

Thus the M point is folded back to the Γ point and the K point appears as a folded K 

point between the Γ and K' points. Group velocity can vanish also at the folded K point. 

A laterally odd mode has a node in the center of the PC line-defect waveguide and a lot 

of its energy is located in the PC lattice. Thus this mode is similar to the folded bulk PC 

mode from K' to M points with a maximum at the folded K point. Between the folded K 

and K' points one observes negative group velocity (positive group velocity in the 

unfolded band diagram) and a point of zero dispersion. But a laterally odd mode is 

difficult to couple with a monomode dielectric waveguide due to the symmetry 

mismatch. Thus we will concentrate on laterally even modes. 

3.3 Anticrossing point shift 

There is an intrinsic interaction of even gap guided and index guided modes 

(Fig. 3.1) [6]. This interaction forms two supermodes, which are represented by the sum 

of gap guided and index guided modes in phase and in anti-phase. Due to the fast 

change of group velocity at the anticrossing point, the group velocity dispersion has a 

maximum there. This effect is very similar to the coupling of two dissimilar waveguides 

[48][49] except that here two modes from the same waveguide are coupled. The 
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anticrossing corrupts the flat region of the gap guided mode and should be avoided to 

achieve constant group velocity. One of the possibility is to shift the anticrossing point 

to the left of the band diagram. This was achieved by changing the waveguide width to 

W0.7. An example of the band diagram, group velocity and dispersion at the 

intersection point is shown in Fig. 3.2. The radius of the holes ar 275.0=  defines the 

value of the group velocity as will be discussed later in this chapter. At this waveguide 

width the anticrossing point with maximum dispersion is shifted to normalized 

frequency 0.313. 
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Fig. 3.2: The wave vector, group velocity and group velocity dispersion of the PC 

waveguide as functions of frequency ( ar 275.0= , ah 5.0= , W0.7, air bridge 5.3=n ). 

Normalized frequency is used, 465=a nm corresponds approximately to 200 THz mode 

frequency (1500 nm wavelength). Group velocity c02.0−  has a bandwidth of constant 

value (approx. 1 THz), dispersion is almost zero throughout this bandwidth. 

The anticrossing point shift can be explained by different sensitivity of the index 

guided and gap guided modes to waveguide width. A decrease of the waveguide width 

moves up both the gap guided and index guided modes in the band diagram (Fig. 3.3). 

However, the gap guided mode moves faster. This is similar to the modes of the mirror 

waveguide: the higher order modes are more sensitive to waveguide dimensions 

whereas the frequency of the fundamental mode approaches a constant value nk=ω . 

Thus, the anticrossing point shifts to smaller wave numbers (Fig. 3.4). The gap guided 

mode alone would have a maximum of its group velocity somewhere between the 

folded K and K' points. In the W1 waveguide the anticrossing takes place before this 

maximum is achieved. By shifting the anticrossing point to the left a maximum of group 

velocity is obtained. The group velocity dispersion is zero there (see normalized 

frequency 0.312 in Fig. 3.2). The anticrossing can be adjusted in a way that even the 

third order dispersion is zero (approx. at W0.7) and thus the bandwidth of constant 
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group velocity is increased. To keep the group velocity in the 10% accuracy limits the 

deviation of the waveguide width should be not more than 0.01W what corresponds to 

the 8 nm precision in holes positioning. 
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Fig. 3.3: Schematic band diagram of the W0.7 and W1 waveguides. The line-defect 

modes are shown with thick black lines. Thin black lines correspond to the imaginary 

index guided and gap guided modes taking part in the anticrossing process. The 

anticrossing point is shifted to the left and group velocity maximum is obtained in W0.7 

waveguide. 
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Fig. 3.4: Group velocity as a function of a wavenumber for ar 275.0=  with different 

waveguide widths. The inset shows group velocity at the 488.0=k  point, absolute value 

of group velocity has minimum at W0.85. The point of anticrossing with an index guided 

mode shifts gradually to the left with decreasing waveguide width. A bandwidth of 

constant group velocity is obtained at W0.7. 
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3.4 Group velocity variation 

The group velocity of the gap guided mode is a function of structural 

parameters. It can even have different sign as shown in Fig. 3.1 by even.a and even.b 

modes. In the presented waveguide the folded branch of index guided mode has 

negative group velocity. Thus it is important to obtain negative group velocity of the 

gap guided mode too. Otherwise there exist two modes at one frequency what makes the 

coupling problematic. Here we return to the important issue of the PC symmetry. As 

was already discussed, the odd gap guided mode, which interacts strongly with the PC, 

has zero group velocity at the folded K point and a negative group velocity between the 

folded K and K' points. The even gap guided mode concentrates most of its energy in 

the unstructured part of the waveguide. The strength of the PC, namely the radius of the 

holes, becomes important. The weaker the PC the deeper the even gap guided mode 

penetrates into PC and the stronger it feels the 2D periodicity. Depending on the radii of 

the holes, the group velocity between folded K and K' points can change from positive 

to negative (Fig. 3.5). To manufacture a structure with a group velocity within 10% 

accuracy limits the radius of the holes can deviate not more than a005.0  what 

corresponds to approximately 2 nm. 
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Fig. 3.5: Group velocity as a function of a wavevector for the even W0.7 waveguide 

mode with different radii of the holes. For large radii the gap guided mode has positive 

group velocity. As the radius decreases the group velocity becomes negative. A 

breaking point appears at ar 3.0= . 

It is interesting to have a look at the energy flow of the gap guided and index 

guided modes [50]. As can be seen from Fig. 3.6 the gap guided mode has a power flow 

through adjacent holes opposite to the power flow in the line-defect. The group velocity 

is defined as 
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where zS  is the projection of Poynting vector on the z axis, EW  and MW  are the 

energies of the electric and magnetic field correspondingly in the unit cell of length a . 

Thus the group velocity is decreasing due to the partial opposite power flow. The power 

flow through adjacent holes changes with the radius of the holes (see Fig. 3.7). And the 

integral over the waveguide cross section defines the group velocity. In case of the 

waveguide with radius of the holes a35.0  the group velocity changes direction. 
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Fig. 3.6: Power flow distribution of index guided and gap guided modes in 1W  

waveguide at wavenumber 3.0=k  and 4.0=k . 
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Fig. 3.7: Power flow distribution of gap guided modes in 7.0W  waveguides with radius 

of the holes a25.0 , a30.0 , a35.0 . The modes are calculated at normalized 

wavenumber 4.0=k . The penetration depth decreases with larger radius of the holes. 

The group velocity changes its direction. In the a35.0  waveguide the direction of group 

velocity is opposite to the power flow in the middle of the waveguide. 

The depth of light penetration into the PC also changes with the waveguide 

width due to the shift in frequency. This also leads to the change of group velocity with 

waveguide width (see inset of Fig. 3.4). The change from W1 to W0.7 width shifts the 
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even modes from the lower to the upper edges of the PBG. Close to the PBG edges the 

penetration depth is large. Thus the gap guided modes follow the symmetry and exhibit 

quite large negative group velocity. In the middle of the PBG (W0.85) the penetration 

depth is smaller and the group velocity absolute value is decreasing. 

3.5 Conclusion 

In conclusion, we have thoroughly investigated the group velocity dispersion of 

PC line-defect waveguides in a triangular lattice slab. The importance of the PC 2D 

symmetry on the waveguide properties was shown. The influence of the penetration 

depth on the group velocity was demonstrated, where the penetration depth was 

controlled by the radii of the holes. It was shown that a simple PC waveguide with 

altered waveguide width W0.7 offers enough degrees of freedom to achieve a 1THz 

bandwidth of constant group velocity c02.0  with vanishing second- and third- order 

dispersion. We have introduced an approach to explain the dispersion relation of PC 

waveguide and how it can be modified. In this chapter we considered the most simple 

case, namely the width change, which is also favorable for manufacturing. To keep the 

group velocity in the 10% accuracy limits the deviation of the waveguide width should 

be not more than 8 nm and deviation of the radius of the holes not more than 2 nm. 

The high index contrast of silicon to air material system and the vertical 

symmetry of the air-bridge structures are compulsory for the discussed applications. 

Only in this case the mode with constant group velocity stays below the light line 

throughout the bandwidth. The hole radii should be smaller than a3.0 , otherwise a 

bistable mode is formed, which has two states at the same frequency: index-guide and 

gap guided. There will be a problem to couple from a conventional waveguide mode 

into the gap-guided mode, because due to the impedance match most of the energy will 

couple to the index guided mode. In the case of radii smaller than a3.0  the mode 

function has a monotonous behavior and adiabatic coupling can be applied (see [51] and 

chapter 6). 
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4. Waveguides with large 
positive and negative 
dispersion 

A concept for dispersion compensation in transmission is proposed, based on 

modes anticrossing in photonic crystal line-defect waveguides. A quasi constant 

positive and negative dispersion is demonstrated in the order of 100ps/nm/mm on the 

bandwidth of 100GHz. 

4.1 Introduction 

Dispersion compensation plays a significant role in high-bit-rate long distance 

optical communication. Apart from conventional dispersion compensation fibers, which 

are several kilometers long, many concepts have been proposed and developed recently 

with their advantages and disadvantages. Chirped fiber Bragg gratings [52] operate in 

reflection and thus need 3dB couplers or circulators. All-pass filters [53][54] are tunable 

solutions, though obtained at a quite high complexity. Bragg gratings in transmission 

[55] and coupled cavities [29][46] operate at the band edge where higher order 

dispersion becomes a problem. Supermodes in coupled waveguides [48] or coupled 

fiber modes [49] can be used, but the achievable values of dispersion are not very high. 

Recently, chirped PC waveguides were investigated for their time delay properties 

[56][28]. Such waveguides can also be applied for dispersion compensation, where a 

single waveguide operates in reflection and coupled waveguides in transmission. 

The applicability of uniform PC line-defect waveguides to chromatic dispersion 

compensation is investigated here, where the accumulated second order dispersion is 

simply scaled with length. In section 4.2 we consider two possible ways to achieve a 

high second order dispersion. For a device of a one centimeter length which addresses a 

single channel of the WDM scheme, dispersion at the anticrossing point is shown to 

have superior properties in comparison to dispersion at the band edge. Two concepts are 

proposed. First of them is described in section 4.3 and utilizes a single PC waveguide 



CHAPTER 4.     WAVEGUIDES WITH LARGE POSITIVE AND NEGATIVE 

DISPERSION 

30 

where the mode in the PBG region is optimized to show a maximum of group velocity 

dispersion. Section 4.4 is devoted to the second concept were two coupled PC 

waveguides are used. Section 4.5 concludes the paper with the discussion of the 

proposed concepts. 

4.2 Theoretical limits and approximations 

4.2.1 Group velocity dispersion 

Dispersion can be presented as a time delay change τ∆  over a wavelength 

(frequency) change λ∆  ( ω∆ ). The time delay is proportional to the length and inverse 

proportional to the group velocity, so it is more convenient to consider dispersion per 

unit length: 
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where L  is the length, 1υ  and 2υ  are the group velocities at 1λ  and 2λ , where 

λλλ ∆=− 12 . To achieve high values of dispersion we need a rapid change of the group 

velocity in the bandwidth of one channel. The largest possible value the group velocity 

can take is limited by the speed of light divided by the refraction index. At the same 

time the smallest group velocity can be arbitrary decreased in the periodical structures. 

When 2υ  is much smaller than 1υ , the dispersion is determined by the smallest group 

velocity: 
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The bandwidth of interest is 0.75 nm (100 GHz), which corresponds to one WDM 

channel, and a feasible group velocity limit is around c01.0  speed of light [6]. With 

such parameters we obtain 400 ps/nm/mm dispersion, where approximately 5mm of 

such negative dispersion will compensate for the propagation in the 100 km long fiber. 

Negative dispersion is needed for compensation, thus group velocity should decrease 

with decreasing wavelength (increasing frequency). 

4.2.2 Dispersion at the band edge 

Modes of any periodical structure generally have small group velocities near the band 

edge which eventually vanish at the Brillouin zone edge. A simple parabolic 

approximation can be considered (see (3.1)). It follows from equation (3.3) that 

dispersion is strongly frequency dependent. The dispersion change D∆  across the 

bandwidth of one channel should be taken into account. This effect is due to the third 

order dispersion, which can be expressed with group velocity and dispersion: 
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The relative change of the dispersion should be small to avoid signal distortion, ratio 

25.0/ ≈∆ DD  can be taken as an acceptable value [55]: 
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For the bandwidth 75.0=∆λ  nm and group velocity c01.0  we get a maximum 

tolerable value of dispersion around 40 ps/nm/mm. This value is much smaller than the 

theoretical limit (4.2). From this analysis we can conclude that any concept of 

dispersion compensation at the band edge will incur such problems and. A higher 

relative change of dispersion will inadvertently lead to strong pulse distortion. 

4.2.3 Dispersion at the anticrossing point 

Two originally isolated modes form two supermodes when interaction between 

them is allowed. The dispersion relation of these supermodes has an anticrossing 

behavior at the point where original dispersion curves intersect. If two original modes 

have a different sign of group velocities then a local band gap is formed and the 

behavior of the dispersion as derived for the band edge can then be observed in the 

vicinity of the anticrossing point. If the two original modes have different group 

velocities of the same sign, then each of the supermodes display a strong change of 

group velocity near the anticrossing point with a dispersion maximum exactly at the 

anticrossing. Applying the concepts of [48] from conventional waveguide modes to PC 

defect modes: 
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where ω~  is the normalized frequency, δω  is the characteristic bandwidth and χ  is the 

coupling constant, 1υ  and 2υ  are group velocities of the original modes taking part in 

anticrossing. Taking into account 25% dispersion change on the bandwidth of interest 

we come to following estimation: 
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Dispersion is approximately 6 times higher than the one achievable at the band edge 

(4.5). For the same bandwidth 75.0=∆λ  nm and group velocity c01.0  dispersion is 

around 200 ps/nm/mm. This value of negative dispersion would allow to compensate 

the total chromatic dispersion of 100km of an optical single mode fiber within a device 

length of 10 mm. 

4.3 Coupled modes in single PC waveguide 

A typical band diagram of TE modes in the 2D PC with line-defect is presented 

in Fig. 2.2. The index guided mode at small frequencies is guided due to the index 

contrast, it is folded back into the first Brillouin zone due to the periodicity in the 

propagation direction. The index guided mode has most of its energy concentrated in 

the waveguide. The gap guided mode extends deeper into PC. It can propagate at much 

smaller group velocities as compared to the index guided mode as was investigated in 

chapter 3. The gap guided mode itself can have a large second order dispersion near 

band edge but with unavoidable third order dispersion as discussed in the previous 

section. The anticrossing point on the other hand allows to obtain a dispersion 

maximum with zero third order dispersion, thus a large and constant dispersion over the 

single channel bandwidth. The following concept relates to the coupled waveguides 

approach [49], however, in our case, instead of two modes of different waveguides two 

modes of the same waveguide are coupled. 

In the W1 waveguide the anticrossing occurs close to the Brillouin zone edge, 

there is no sharp change of group velocity and thus no distinct dispersion maximum is 

observed. Decreasing the waveguide width moves both the index guided and the gap 

guided modes upwards but the gap guided mode moves faster and thus anticrossing 

point shifts to the smaller wavenumbers. A W0.75 waveguide shows a substantial 

dispersion maximum as depicted in Fig. 4.1. The bandwidth can be easily estimated 

from the normalized frequency bandwidth, taking into account that 00 // ωωλλ ∆−=∆  

and 1500/75.0/ 0 =∆ λλ . The minimum group velocity is c01.0 , but the bandwidth is 3 

times larger ( 600/1/ 0 ≈∆ ωω ), thus the dispersion values are smaller than estimated. 

The bandwidth is a function of the coupling constant which, in our case, cannot be 

changed independently from group velocity of the gap guided mode. 
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Fig. 4.1: The wave vector, group velocity and group velocity dispersion of the PC 

waveguide as functions of frequency ( 360=a nm, ar 3.0= , W0.75, 5.3=n , TE 

polarization). The structure is presented in the inset. Dispersion has a maximum of 55 

ps/nm/mm at the normalized frequency ≈ω 0.2504. Dispersion stays within 25% of the 

maximum value on the bandwidth of 300GHz. 

The extra bandwidth of the previous structure can be used to increase dispersion. 

This can be achieved in a waveguide with smaller group velocity of the gap guided 

mode. The gap guided mode is very sensitive to the parameters of the waveguide. It 

penetrates into bulk PC deeper than index guided mode. Thus changing the distance 

between the row of holes adjacent to the waveguide and the row next to it, as shown 

schematically below the wavenumber graph in Fig. 4.2, the gap guided mode can be 

altered without significant shift of the index guided mode. In Fig. 4.2 the characteristics 

of the waveguide are shown, where the distance between second rows of holes is 

changed from W1.75 to W1.72. The gap guided mode is pushed to higher frequencies, 

its group velocity decreases to c005.0  and the bandwidth of the anticrossing range 

becomes two times smaller, however, still large enough. Thus the dispersion maximum 

is approximately 4 times larger (230 ps/nm/mm). 

Unfortunately the sign of the dispersion is positive. To obtain the negative sign 

the supermode should be used where index guided and gap guided modes interact in 

anti-phase (anti-symmetric supermode). The gap guided mode has negative group 

velocity only between 0.33 and 0.50 normalized wavenumbers. In W0.75 waveguide 

anticrossing takes place near to the 33.0=k . The anticrossing point should be shifted 



CHAPTER 4.     WAVEGUIDES WITH LARGE POSITIVE AND NEGATIVE 

DISPERSION 

34 

closer to the Brillouin zone edge, but in this case the anti-symmetric supermode is 

pushed out of the PBG region. More freedom to shift the anti crossing point is available 

in the coupled waveguides system as will be discussed in the next section. 
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Fig. 4.2: The wave vector, group velocity and group velocity dispersion of the PC 

waveguide as functions of frequency ( 360=a nm, ar 3.0= , first row W0.75, second 

row W1.72, 5.3=n , TE polarization). The distance between first and second rows of 

holes is changed (see schematic figure below the wavenumber graph). Dispersion has a 

maximum of 230 ps/nm/mm at the normalized frequency ≈ω 0.2516. Dispersion stays 

within 25% of the maximum value on the bandwidth of 150 GHz. 

4.4 Coupled PC waveguides 

Dispersion compensation in coupled conventional dielectric waveguides was 

already investigated [48]. Two waveguides are coupled with different group velocities 

of guided modes. Two supermodes are formed at the anticrossing point, which consist 

of initial waveguide modes interacting in phase and in antiphase. These modes will be 

referred as symmetric and antisymmetric correspondingly. The symmetric mode shows 

a maximum of positive dispersion and the antisymmetric mode a maximum of negative 

dispersion. Maximum dispersion is inverse proportional to the coupling constant 

(4.6)(4.7) which exponentially decreases with distance between two waveguides. The 

bandwidth of the quasi constant dispersion is proportional to the coupling constant. 

Thus by taking the waveguides apart the dispersion maximum is increased and the 

bandwidth is decreased. But the inverse group velocity difference between two 
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dielectric waveguides cannot exceed certain values, because minimal group velocity is 

limited by approximately 5.3/c , where 3.5 is the maximum refractive index available. 

For the bandwidth of 100GHz dispersion values for conventional waveguides stay well 

below 10ps/nm/mm. In contrast to conventional waveguides, PC waveguides can be 

designed to have very small group velocities, what allows to achieve much higher 

dispersion values. 

In the Fig. 4.3 characteristics of the coupled PC waveguides are presented. Two 

waveguides of different waveguide widths are coupled. W0.75 waveguide at the 

operation frequency exhibits an even mode with very small group velocity and W047 

waveguide has even mode with moderate group velocity. Coupling strength is 

controlled by the number of rows between two waveguides. In the presented example, a 

high negative dispersion is obtained (-150ps/nm/mm) on the bandwidth of 100GHz. By 

controlling the group velocities and the coupling strength arbitrary dispersion values 

and bandwidths can be obtained, limited only by the estimation (4.9). 
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Fig. 4.3: The wave vector, group velocity and group velocity dispersion of the anti-

symmetric supermode in the PC coupled waveguides system as functions of frequency 

( 360=a nm, ar 3.0= , W0.75 and W0.47, 5.3=n , TE polarization). The structure is 

presented in the inset, 5 rows of holes separate the coupled waveguides. The symmetric 

supermode is shown with the gray line. Dispersion has a maximum of -150 ps/nm/mm at 

the normalized frequency ≈ω 0.2492. Dispersion stays within 25% of the maximum 

value on the bandwidth of 100GHz. 
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The main disadvantage of the coupled waveguides is the existence of both 

symmetric and anti-symmetric supermodes. There is a problem of coupling to the 

supermode of opposite symmetry. In [48] a special detuned coupler is applied which 

splits the energy equally between two waveguides and excites only the anti-symmetric 

supermode. This detuned coupler can be adjusted only for one frequency and will not 

work properly for other frequencies, unless additional limitations on the bandwidth are 

made. This fact makes the application of such a coupler not useful especially for PC 

waveguides where modes are very different even for a narrow bandwidth of 100 GHz. 

Adiabatic coupling can be used similarly to the one used for conventional coupled 

waveguides [57]. The outline for the coupler will look as follows. First, adiabatic 

coupling is used from the dielectric waveguide to excite light in W0.47 waveguide. 

Then, parallel to the W0.47 waveguide, the W0.7 waveguide is introduced, which has 

an anticrossing point at higher frequencies. The W0.7 waveguide can be gradually 

changed to W0.75 waveguide. It can be shown that the energy from W0.47 waveguide 

will be adiabatically transformed into anti-symmetric supermode. 

4.5 Discussion and Conclusion 

All effects discussed in this chapter occur due to the 2D periodicity of the PC. 

Thus 2D calculation are sufficient to show the validity of the approach. The extension to 

2D PC slab structures which have to be treated as 3D volumes will shift the 

characteristics but will not change the concept. The only issue to be taken into account 

is the operation below the light line. To insure this the air-bridge concept should be used 

with air cladding on both sides of the slab waveguide (for example [6]). In such a 

structure there is enough space below the light line to adjust the anticrossing, still 

avoiding the lossy regime in the light cone . The mode will be strongly confined in the 

vertical direction and coupling loss is expected to be influenced mostly by the mode 

mismatch in the horizontal plane. In other words, the mode mismatch in the vertical 

direction will be much smaller compared to the mode mismatch in the lateral direction. 

A variation of the core thickness in this case can be used to shift the operational 

frequency but it doesn’t influence the anticrossing behavior. 

The modes anticrossing has been proven to have higher quasi-constant 

dispersion in comparison to the dispersion at the band edge. On the other hand 

dispersion at the band edge can be easily tuned by changing one of the PC waveguide 

parameters. An index change with temperature or carrier injection in silicon [31][32] 

will shift the band and thus will change the dispersion value. In case of anticrossing any 

change shifts the maximum from the frequency of operation. To change the dispersion 

value at least two tunable parameters are needed: one to change the dispersion value and 

another to shift the maximum back to the operational frequency. 

We have demonstrated that a single line defect waveguide in the triangular 

lattice PC can have very high values of quasi-constant dispersion (230 ps/nm/mm for 

150GHz bandwidth was shown). This dispersion is obtained at the anticrossing point of 
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index guided and gap guided modes. Unfortunately, there is no straightforward solution 

to obtain negative dispersion, because the anticrossing point cannot be arbitrarily shifted 

in a single waveguide and every parameter influences both index guided and gap guide 

modes. More freedom to adjust the anticrossing point is obtained in the coupled PC 

waveguides system, though at the cost of increased complexity. A high negative 

dispersion was shown (-150 ps/nm/mm). 
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5. Linearly chirped 
waveguides 

The Bloch mode propagation through the chirped periodical structure is defined 

by its local dispersion relation. In a slowly varying structure its time delay is the integral 

of the local inverse group velocity along the propagation direction. The integration can 

be strongly simplified for linearly chirped structures if the assumption is made that the 

local dispersion relation is just a scaled and shifted version of the dispersion relation at 

the input. This assumption leads to exact solutions for the structures with locally 

uniaxial deformation and provides a good approximation for arbitrary structures with 

small chirps. The approach is demonstrated for high index contrast chirped Bragg 

mirrors and complex photonic crystal waveguide structures, including coupled 

waveguides and a slow group velocity waveguide. 

5.1 Introduction 

Chirped one-dimensional periodical structures like Fiber Bragg Gratings (FBGs) 

[52] and Bragg mirrors [58][59] are applied for dispersion compensation of optical 

signals. This devices operate usually in reflection so as to use nonminimum phase 

response of the optical filters [60]. One-dimensional filters in transmission have 

minimum phase response and the dispersion is usually achieved only near the edge of 

transmission band, where dispersion is highly nonlinear [55]. Recently, chirped PC 

structures have been introduced [56][28] were orders of magnitude size reduction can be 

expected in comparison to chirped FBGs. Taking into account additional flexibility as 

for example coupled waveguides [61][62][63][64], the chirped structures can be also 

designed to operate in transmission [28][8]. 

The conventional approach to chirped periodical structures involves the coupled 

mode theory [65][40]. It provides excellent results for low index contrast structures like 

silica based FBGs [52]. But it needs some nontrivial adjustments of the detuning 

parameters and coupling constants in case of high index contrast Bragg mirrors 

[59][66][67][68]. It is also difficult to extend for more complex structures like PC line 
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defect waveguides. A more consistent approach probably would be a Bloch mode 

description, which uses the eigenmode propagating in a periodical structure. This Bloch 

mode approach was already introduced for the explanation of light propagation in 

uniform [19] and non-uniform PC structures[69][51]. 

In this chapter a simplified approach is outlined to predict the time delay and 

pulse propagation in the slowly varying linearly chirped PC structures. As it was 

already discussed in [69] the Bloch mode propagates in every intermediate point of the 

chirped structure with a local group velocity, that can be defined from the local band 

diagram. The time delay in this case can be estimated as a path integral of inverse group 

velocity along the propagation direction. We consider only certain changes of the local 

band diagram, which allow direct analytical integration. These are linear scaling 

(proportional change of wavevector and frequency) and frequency shift. It is, thus, 

straightforward to predict time delay properties of the slowly varying chirped structure 

from the band diagram calculations without any limitations on its complexity. This 

approach provides exact solutions for the case of uniaxial deformation, due to 

scalability of Maxwell equations, and can be also used as an approximation for small 

chirps. 

In section 5.2 we present the approach, discussing its main difference to the 

coupled mode theory, its approximations and limitations. A one dimensional example of 

a chirped Bragg grating is given in section 5.3 with a comparison to simulation results 

obtained with transfer matrix method (TMM). In section 5.4 the approach is applied to a 

rather complex chirped structure of coupled PC waveguides. An explanation is given for 

the pulse propagation observed with the time domain simulation in [28]. In section 5.5 

we discuss the possible application of chirped small group velocity waveguides to 

dispersion compensation. Orders of magnitude size reduction is expected compared to 

the conventional chirped FBGs. The results are summarized in section 5.6. 

5.2 Approach 

We consider structures, that have periodical modulations of the refractive index 

in the direction of propagation. This can be a one dimensional Bragg grating or a line 

defect in two and three dimensional PCs. The chirp can be obtained by the gradual 

change of structural parameters [56],[70]. Examples of one and two dimensional 

structures are given in Fig. 5.1. In the Bragg stack both the lattice constant and the 

thickness of the high index layer are changed, in the PC line-defect waveguide the 

waveguide width is changed. Different wavelengths are thus reflected at the different 

locations within the chirped structure, producing a frequency dependent time delay. 
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Fig. 5.1: Two examples of chirped periodical structures: (a) a Bragg stack with the 

increasing lattice parameter and (b) a PC line-defect waveguide with decreasing 

waveguide width. Different frequencies are reflected at different positions in the chirped 

structure. 

5.2.1 Bloch modes propagation versus coupled modes equations 

The usual approach to the chirped periodical structure is the coupled mode 

theory [65][40]. Two modes are considered with coupling due to the modulation of the 

index profile. The strongest coupling is observed when the half wavelength of the light 

equals the lattice constant of the periodical structure. This method is very flexible what 

concerns the chirp profiles and apodizations. In some cases even useful analytical 

solutions can be obtained. But this approach originally uses the assumption of low index 

contrast, where approximation of two coupled, however, unchanged modes is 

acceptable. In the standard coupled mode theory the coupling coefficient is constant and 

is determined by the first Fourier coefficient of the periodic refractive index function. In 

the case of a strong modulation the coupled mode approximation basically does not 

apply. But the mathematical similarity between the exact analytical solution for the 

Bragg stack and solution of coupled mode equations can be used to redefine the 

coupling constant and the detuning parameter to account for the strong index contrast 

[66][68]. This new parameters can be used afterwards in the calculation of chirped 

structures [59][67]. 

A completely different approach to the problem is provided with the eigenmodes 

of the periodical structure. These eigenmodes, also called as Bloch modes, appear as 

solutions of Maxwell equations with Bloch periodical boundary conditions, where the 

wavevector defines the phase shift between the Bloch boundaries and the eigenvalue 

gives the frequency of the mode [40]. As soon as excited in the lossless media the Bloch 

wave propagates without change through the unperturbated periodical structure [19]. 

Thus, propagation of light through any periodical structure is split into the plane wave 

to Bloch waves and vice versa coupling at the interfaces and the Bloch wave 



CHAPTER 5.     LINEARLY CHIRPED WAVEGUIDES 

42 

propagation between them. The reflection at the interfaces can be calculated separately. 

The transmission characteristics in this case will be modified by the interference 

between the light reflected at the input and inside the chirped structure [71]. To avoid 

this interference the reflection should be as small as possible, what can be achieved, for 

example, by adiabatic coupling [51] as is presented in chapter 6. We should mention 

from the beginning that the goal of PC structures should be the separation of input and 

output channels. This will make the reflection less a problem due to the fact that the 

wave should be twice reflected to interfere with the output signal. 

5.2.2 Band diagram approximation 

We would like to propose a simple model of light propagation in a slowly 

varying chirped structure, that at the same time accounts for complicated dispersion 

relations of PC waveguides. It can be derived from the Hamiltonian optics approach to 

nonuniform photonic crystals developed in [69]. We will not consider the complete 

Hamiltonian formalism and will show a simple derivation of the time delay in a chirped 

periodical structure. We start from the Bloch wave already in the periodical structure 

thus leaving the plane to Bloch conversion to a separate discussion. The propagation of 

this Bloch wave through the slowly varying chirped structure can be described as a 

gradual transformation of the Bloch mode, following the adiabatic theorem [51]. 

Backscattering and possible scattering in the cladding are neglected in this case. In 

reality the first one leads to the appearance of ripples on the time delay function and the 

second increases the losses.  

In every point there is an “instantaneous” periodical structure [51] and from the 

band diagram of this structure the wave vector can be found. The local wave vector of 

the mode with frequency 0ω  can be written as ),( 0 zk ω , where z  is the direction of 

propagation. Thus the phase shift for the frequency 0ω  at any position in the structure 

can be defined as: 

∫=

z

dzzkz
0

00 ),(),( ωωϕ  (5.1) 

The phase shift of an arbitrary structure can be found when all intermediate band 

diagrams are known. We would like to consider a special case of k  functions. It is 

known that Maxwell equations are scalable, thus if all geometrical parameters of the 

periodical structure are defined relative to the lattice constant a  then the band diagram 

is just scaled with relative change of lattice parameter [36]. The relative change 

parameter is defined as 

0

)(
)(

a

za
z =α  (5.2) 

where 0a  is the lattice constant at the input. In normalized coordinates  

)2/()( canorm πωω =  (5.3) 
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)2/()( πakknorm =  (5.4) 

the band diagram )( normnorm kω  stays the same and the normalized frequency changes 

with z . Due to the scalability, local dispersion relation can be expressed through the 

dispersion relation at the input: 

( ))(
)(

1
),( 000 zk

z
zk αω

α
ω =  (5.5) 

where 0k  is the dispersion function at the input. We will also take into account the 

possible shift of the entire band diagram in frequency )(zshiftω∆  due to some change of 

parameters different from uniaxial deformation. Though no change of parameters will 

lead to an ideal shift of the dispersion relation without a change of its shape, in case of 

small parameter changes that can be a good approximation. Basically, we should look at 

the band diagram at the input and at the point of maximum change, and check how good 

it can be approximated by a simple shift. Thus, the wave vector dependency can be 

changed to: 

( ))()(
)(

1
),( 000 zzk

z
zk shiftωαω

α
ω ∆−=  (5.6) 

Now we substitute this relation into (5.1): 

( )∫ ∆−=

z

dzzzk
z

z shift

0

000 )()(
)(

1
),( ωαω

α
ωϕ  (5.7) 

The time delay can be calculated as a first derivative of the phase response: 

∫ ′=
∂

∂
=

z

dzzkz
0

0

0

))(()( ω
ω

ϕ
τ  (5.8) 

)()()( 0 zzz shiftωαωω ∆−=  (5.9) 

The new frequency )(zω  describes the shift of the band diagram, where the mode 

frequency 0ω  stays the same. The dependency of the integral argument is completely 

concentrated in the argument of the wavevector derivative, which corresponds to the 

local inverse group velocity. Thus, it is sufficient to know the band diagram at the input 

to calculate the time delay. In case of a monotonous dependency of )(zω  on z  

coordinate, which is generally the case, we can change the integration parameters: 

∫ 
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We will consider a particular case of a linear chirp: 
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where L  is the length of the chirped structure and ωωω ∆−∆=∆ 00 )/( aachirp . Thus, the 

derivative dzd /ω  is a constant and simple integration is possible: 

chirp

kk
Lz

ω

ωω
τ

∆

−
=

))()((
)( 000  (5.14) 

The lattice constant change and the frequency shift are summarized together in the 

parameter chirpω∆ , which defines the maximum frequency shift of the band diagram, it 

is also the maximum operational bandwidth of the chirped structure. From (5.14) it is 

possible to see that the time delay is basically proportional to the wavevector change. 

Taking into account, that ω  is also linearly proportional to the coordinate change 

(5.13), it is possible to show that the time function )(zt  is just a linearly scaled 

dispersion relation with factor chirpL ω∆/ . Thus, the pulse propagation as a function of 

time has the same curve as the dispersion relation at the input and any maximum or 

minimum corresponds to the turning point. In Fig. 5.2a we show an example of a band 

diagram where 1)( ≡zα  and 0<∆ω . The band diagram is gradually shifted down with 

the position in the grating. The group velocity decreases until the turning point is 

reached for the frequency 0ω . Afterwards the group velocity becomes negative, the 

band diagram moves up again and light goes out of the structure. We can also consider 

the band diagram at the input and scan it with the frequency ω  (5.9), as it is shown in 

Fig. 5.2b. 
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Fig. 5.2: The schematic band diagram shift and light propagation in a chirped 

periodical structure. (a) Band diagram is gradually shifted at different positions in the 

structure as shown with dashed lines. Light does not propagate in the part where there 

is no states. (b) Group velocity changes the sign at the turning point. Pulse propagation 

as a function of time is just the scaled dispersion curve. 

Now we can derive the time delay as a function of the frequency 0ω . The light is 

traveling from input to the output, thus the full time delay is: 

( )
chirp

inputoutput kk
L

ω

ωω
τ

∆

−
=

)()( 00
 (5.15) 

where inputk  and outputk  are wavenumbers at input and output of the chirped structure 

correspondingly. The mostly used property of the chirped periodical structures is the 

second order dispersion. We can directly use the derivative of (5.15): 
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where υ  is the group velocity. The dispersion can be directly obtained as: 
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Thus, dispersion depends on the group velocity difference at the input and output and 

the relative frequency shift of the band diagram. 
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5.3 Example of a high index contrast Bragg mirror 

A high index contrast Bragg mirror is a problem were the conventional coupled 

mode theory fails to give correct results. In this section we will demonstrate our model 

on a quarter wave stack silicon/air with the index contrast 3.5 to 1. The relative chirp of 

the structure is achieved by the geometrical scaling 

%1
00

=
∆

=
∆

ω

ωchirp

a

a
 (5.18) 

The band with maximum is excited similar to shown on Fig. 5.2a. We start with the 

TMM calculation of a chirped Bragg stack 250 periodical units long excited from the 

air. The phase response of the structure is directly obtained from the reflection 

coefficient. The time delay is found as the first derivative over frequency. The time 

delay shows strong oscillations (Fig. 5.3a) due to the reflection at the input. This can be 

avoided by a special apodized coupling section [59]. We have also excited the structure 

with the Bloch mode directly. The reflection was calculated as the Bloch wave too, 

which is quite simple to calculate in transfer matrix formalism (see section 2.2). The 

conventional incident and reflected plane waves can be considered as a sum of incident 

and reflected Bloch waves: 
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where q  is a constant and r  and Br  are the plane wave and Bloch wave reflection 

coefficients correspondingly. When the reflection coefficient r  of the plane wave is 

known, the reflection coefficient of the Bloch wave can be easily derived: 

** arb
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−
=  (5.20) 
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Fig. 5.3: Time delay response of a linearly chirped quarter wave stack 250 lattice 

parameters long with the 1% lattice constant chirp. (a) The grey line corresponds to the 

direct excitation from air and the black line corresponds to the excitation with a Bloch 

mode. (b) The black line is the band diagram prediction of the time delay, the grey line 

is the time delay response simulated with the Bloch wave excitation. 

0.199 0.200 0.201
0

20

40

60

80

ti
m

e
 d

e
la

y
 (

p
s
)

ω (2πc/a
0
)

 

 

 

Fig. 5.4: Time delay response of a linearly chirped quarter wave stack 1000 lattice 

parameters long with the 1% lattice constant chirp. The black line corresponds to the 

band diagram prediction of the time delay and the grey line is the time delay response 

simulated with Bloch wave excitation. The band diagram gives a very good 

approximation of the time delay. 
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Reflection of the same stack excited with a Bloch wave is shown with a black 

line in Fig. 5.3a. The oscillations of time delay are strongly reduced, though still 

present, especially near the cut off frequency. Our approximation does not explain the 

residual slight oscillation. When Bloch mode excitation is used, no ripple would be 

expected. But this discrepancy is directly connected to the limitation of the adiabatic 

theorem. Basically, the ripples appear when the adiabatic theorem is not fulfilled and 

there is some coupling to the backward propagating Bloch mode. This is confirmed by 

the fact that the amplitude of oscillations decreases when a longer structure is calculated 

(Fig. 5.4). This can be explained by the reduction of the Bloch mode mismatch in the 

chirped structure, which is proportional to Lchirp /ω∆ . The residual reflection can be 

also explained as the first derivative mismatch at the input discussed in [59]. Time delay 

approximation of the long structure, 1000a, almost exactly corresponds to the TMM 

calculations (Fig. 5.4). 

5.4 Example of chirped coupled line-defect 

waveguides 

In this section we will investigate the structure proposed in [28], which consist 

of two coupled PC line defect waveguides. Coupled PC waveguides have already been 

discussed as directional couplers [61][64] and dispersion compensators (see chapter 4). 

The dispersion relations of the symmetrical and anti-symmetrical supermodes change 

dramatically with the number of rows that separate two waveguides [62][63]. There is 

also a possibility of decoupling, in this case symmetric and anti-symmetric modes have 

the same wavevector and frequency [64][62]. In [28] two waveguides were considered 

in a triangular lattice of holes (hole radii ar 3.0=  and refraction index 963.2=n ). 

They have original bands with opposite slopes and the same band edge frequency (Fig. 

5.5). One of the waveguides has W0.85 width ( a3W = ) and the other has the same 

width but contains an additional row of holes ( ar 2525.0= ) in the middle section (see 

the inset of Fig. 5.5). To match the band edges of the two modes the precision of the 

holes radii in the additional row should be below one nanometer, otherwise the 

trimming procedure is needed after the manufacturing. By the chirp of the structure the 

modes are shifted gradually along the waveguides. At the point where frequency of the 

wave corresponds to the band edge frequency the light in the first waveguide is 

supposed to localize and couple to the second waveguide. The pulse propagation and 

time delay was calculated in Ref. [28].with a direct FDTD simulation. 
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Fig. 5.5: The newly calculated band diagram of the coupled waveguide system from 

[28]. The black line is the dispersion relation of the coupled waveguides and the grey 

lines correspond to the dispersion relations of the single waveguides. The interaction of 

the waveguides leads to a dramatic change of the dispersion relation. 

We would like to explain the complicated pulse propagation observed in the 

FDTD simulation and present a general equation for the time delay. First we calculated 

the band diagram of the coupled waveguides (Fig. 5.5). There are two points of weak 

coupling between two waveguides along the wave number axis. One at the normalized 

wave number approximately 0.43 and the other directly at the Brillouin zone edge. 

More important for our discussion is the decoupling at the band edge, that was already 

observed, for example in [61]. This decoupling occurs due to the π  phase shift between 

the two standing waves in waveguides 1 and 2. The sum of these two standing waves 

can be considered as a propagating mode, thus the group velocity doesn’t decrease to 

zero near the Brillouin zone edge. If we now unfold the band diagram, the dispersion 

relation goes smoothly through the Brillouin zone edge with finite slope. This is true 

only for the case of exact matching of the band edges, otherwise there is a small band 

gap. 
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Fig. 5.6: The unfolded band diagram of coupled waveguides and pulse propagation in 

the chirped structure are shown with the black line. Black arrows show the time 

evolution of the transmitted signal and grey arrows follow the reflected signal. The 

pulse changes the direction of propagation four times.  

We show the unfolded band diagram in Fig. 5.6. The chirp in [28] was achieved 

assuming an index change from 2.963 to 2.850 on the length of the structure. We use an 

approximation that the band diagram in this case only shifts in frequency by 

)/2(01.0 acπω ⋅≈∆  without changing its shape, which means that 1)( ≡zα  in (5.6). As 

it was already discussed the function )(tz  is a scaled band diagram with a scaling factor 

ω∆/L . Thus light propagating through such coupled waveguides structure has four 

turning points due to the sign reversal of the group velocity. The delay is therefore 

achieved not due to the light localization but due to the multiple back and forward 

propagation. This shouldn’t be confused with the multiple reflections in the Fabry-Perot 

resonator. In the discussed structure at every turning point as group velocity reverses its 

sign perfect reflection takes place. This description exactly corresponds to the simulated 

pulse propagation shown in [28]. Some reflection back to the input can also be observed 

when the modes of two waveguides are not exactly matched at the Brillouin zone edge 

and the light will have to tunnel through a small potential barrier. The reflected light 

follows the path shown with a grey line in Fig. 5.6. 

The time delay of this structure is proportional to the wavevector shift 

)/2(3.0 ak π⋅≈∆  corresponding to the frequency chirp ω∆ : 

c

Lk
L 30≈

∆

∆
=

ω
τ  (5.21) 

Thus the average group index is 30. If mL µ100=  is taken, we obtain a time delay 

ps10=τ  which exactly matches the pulse propagation time obtained from FDTD 

simulation in [28]. Thus the exact shape of the modes near the band edge is not 

important, though initial modes should be flat to provide a large wavevector shift 

corresponding to a small frequency shift. The accumulated second order dispersion 
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depends on the difference of inverse group velocities at the input and output (5.17). It is 

favorable to have the same group velocities at the input and output, which makes the 

dispersion vanish. Such structures provide time delay of the signal without distortion 

and can be used for tunable time delay lines by chirp variation. 

5.5 Dispersion compensation with chirped slow light 

waveguides 

The chirped periodical structures are conventionally used for dispersion 

compensation [52][58]. In this chapter we will limit the discussion to the structures 

operating in reflection, where input coincides with output, to have direct comparison to 

chirped FBGs and Bragg mirrors. The light is traveling to the turning point and back, 

thus the full time delay from (5.15) is: 
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Thus, dispersion depends only on the group velocity at the input: 
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At the input always the mode with positive group velocity is excited, and the sign of 

dispersion is defined only by the sign of the frequency shift. For example in Fig. 5.2a 

the band diagram moves down and the ω∆  is negative. Thus from (5.14) chirpω∆  is 

positive and dispersion is positive. It means that by operating with a mode that has a 

maximum we get positive dispersion and operating with a mode that has a minimum we 

get negative dispersion. 

Dispersion can be increased near the band edge of a one-dimensional structure, 

where group velocity is small. A certain bandwidth of constant dispersion is needed for 

the application, unfortunately the inverse group velocity near the band edge is highly 

nonlinear (see chapter 3): 

2/1)(

1
~

1

ωωυ −edgebandg

 (5.24) 

As you can see from Fig. 5.4 the slope of the time delay becomes very steep near the 

band edge, but second derivative is not zero also, that leads to high third order 

dispersion. The second derivative decreases away from the band edge but slope also 

becomes flatter. 

We will use the property of the PC line-defect waveguide to guide a mode with 

quasi constant small group velocity (see chapter 3). We will consider a 2D system so as 

to reduce the simulation volume und thus calculate longer chirped structures. The 
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results can be easily extended to 2D slab structures, the modes will still lie below the 

light line. The wavevector and the effective index of the guided mode in such PC 

waveguide are presented in Fig. 5.7. There is a bandwidth of about 0.5% of relative 

frequency where the group velocity is constant and 50 times slower as in air. Thus, we 

expect constant dispersion in the linearly chirped structure on this bandwidth. To 

demonstrate the uniqueness of the PC line-defect waveguide we show the wavevector 

and the effective index of a quarter wave stack with contrast of silicon to air. Though it 

has quite a flat band near the band edge compared to the structures with low index 

contrast [69], its effective index is still much smaller and highly nonlinear compared to 

PC line defect waveguide. The bandwidth of the group index 50 in the one dimensional 

structure will be far too small to be useful. 
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Fig. 5.7: (a) Band diagrams of a small group velocity PC line-defect waveguide (black 

line) and a quarter wave stack (grey line). Both have refractive index contrast of silicon 

to air (3.5 to 1). PC waveguide is formed in a triangular lattice of holes with radii 

ar 3.0=  and waveguide width 0.7W. The band diagrams are normalized to the lattice 

parameter of the PC waveguide. The lattice parameter of the quarter wave stack is 

chosen to match the band edges of two structures. (b) Effective indices calculated as 

speed of light divided by the group velocity. The PC waveguide mode has a bandwidth 

of constant small group velocity. 
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We simulated the proposed structure using FIT software, Microwave Studio, 

CST. The lattice parameter was chosen to be 0.4µm, thus the operational frequency is 

close to 200 THz. The chirped section of the PC waveguide was 200  lattice constants 

long. The line-defect waveguide was created in a triangular lattice of holes with radii 

ar 3.0= . The waveguide was chirped by the width change from 0.71W to 0.69W 

( a3W = ) which corresponds approximately to a linear shift of the band diagram 

THz2.3=∆ω . The small shifts of the adjacent holes along the waveguide can not be 

resolved with the mesh lines of the finite integration method, but the average dielectric 

constant of the mesh cells changes and that produces the required chirp. It is difficult to 

provide Bloch mode excitation in the time domain simulations. We assumed normal 

butt-coupling from dielectric waveguide into PC waveguide. Strong time delay 

oscillations are observed, though the average delay follows the dependency predicted by 

the band diagram (see Fig. 5.8). If time delay ripples are suppressed there is a 

bandwidth of constant negative dispersion equal to 1 ps/nm. A hundred times longer 

structure with narrower bandwidth of 100GHz accompanied by further group velocity 

reduction can allow the 2000 ps/nm dispersion within 1cm length. 
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Fig. 5.8: Time delay response of linearly chirped PC line defect waveguide of 200 

lattice constants long with chirp parameter ω∆  of approximately 3.2 THz. The black 

line corresponds to the time delay predicted by the approximation and grey line is the 

time delay from the finite integration simulation. The oscillations on the time delay 

appear due to the reflections at the input. 

Several measures can be taken to decrease the reflections. The adiabatic 

coupling can be used to couple from the index guided mode into the slow group velocity 

mode as described in chapter 6. Though in any case it is difficult to expect reflections 
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smaller than in apodized FBGs. Another more favorable solution would be a PC 

structure where input and output channels are separated, thus the reflected signal will 

not interfere directly with outgoing signal. PC waveguides are much more flexible in 

this case as FBGs. 

5.6 Conclusion 

We have developed a novel and efficient approximation to predict time delay 

and dispersion of linearly chirped PC structures. Based on the assumption of linear 

scaling and shift of the band diagram along the chirped structure we have managed to 

obtain a simple dependency between the band diagram and the pulse propagation. It was 

shown that time delay and dispersion depend on the wave vectors and group velocities 

differences at the input and output of the chirped structure correspondingly. Thus, to 

obtain a bandwidth of constant time delay we need to use waveguides with a constant 

wavevector difference at the input and output. To obtain a bandwidth of constant 

dispersion we need waveguides with constant difference of group velocities at the input 

and output. These considerations show the problem of the high index contrast Bragg 

stack application to dispersion compensation. Though there is a large group velocity 

difference at the input and output, this difference changes strongly with frequency and 

large third order dispersion is accumulated, that will distort the signal. 

The presented approach can be applied to rather complex structures as for 

example coupled waveguide systems. It allows time delay predictions already from the 

band diagram obtained with much smaller computational effort as the exact calculation 

of the chirped structure. We also described the pulse propagation and explained some 

nontrivial phenomena as multiple pulse reflection within the chirped structure. 

Based on the band diagram of a small group velocity PC waveguide we 

proposed a chirped structure with exceptionally large dispersion. Negative dispersion of 

2000 ps/nm required for compensation of chromatic dispersion of the 100 km fiber can 

be obtained in a 1cm linearly chirped PC waveguide. It is approximately 10 times 

shorter than the chirped fiber Bragg grating with comparable dispersion due to group 

velocity reduction. Additional advantage can be obtained if the input and output 

channels could be separated. This could possibly be achieved with coupled PC 

waveguides. 
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6. Coupling to slow light 
waveguides 

An efficient approach is presented to couple light into a slow light mode of a 

photonic crystal line-defect waveguide. The two stage coupling is proposed where a 

dielectric waveguide mode is first coupled into an index guided mode of a line-defect 

waveguide and the index guided mode is butt coupled or gradually changed into the 

slow light mode. The first stage can be optimized with adjustment of the boundary cut 

to have less than -35dB reflection. And the second stage with butt coupling to group 

velocity 0.02c demonstrates only -20 dB reflection. The second stage can be more 

efficient with adiabatic change of the structure. Coupling is demonstrated to slow light 

mode with group velocity 0.007c on 20 lattice constant long adiabatic coupling with 

overall reflection losses less than -32 dB. A comparison with one dimensional structure 

at the band edge is provided which shows the advantage of line defect modes. 

6.1 Introduction 

An important issue of slow light applications is the efficient coupling from 

dielectric waveguides [10][72][73][74]. We would separate two possible situations: 

coupling to “index guided” modes with group velocity and mode profile similar to the 

strip waveguide mode and coupling to slow light “gap guided” modes where the Bloch 

mode is very different from the strip waveguide mode. The adiabatic, gradual change of 

the structure is proven to be possible in any case [51][75]. But much shorter couplers 

were designed for index guided modes by adjustment of transparent resonance condition 

at the boundary [76][77] similar to anti-reflection coating applied in conventional 

optics. The bandwidth of such resonances is quite broad to be applied for WDM signals. 

This approach was also investigated for slow light modes [72]. Though the increase of 

transmission was registered for certain terminations of the photonic crystal interface, the 

measured transmission is still below -5dB and reflections approach 50% of the intensity. 

We propose to use the resonant approach for coupling light into PC line-defect 

waveguides and then transfer the “index guided” mode into slow light mode. The light 
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in this case can not be scattered from the junction as in the case of the coupling from 

dielectric waveguide and only reflection or coupling to other guided modes is possible. 

The adiabatic change of the structure will be investigated for the second junction similar 

to the discussed in Ref. [10]. 

Line-defect modes are considered in triangular lattice photonic crystal structures 

[6][25]. Normally the guidance in vertical direction is achieved due to the total internal 

reflection. We will consider only 2D models and disregard the third dimension in this 

chapter. The coupling losses occur mainly due to the mismatch in the 2D plane of the 

PC waveguide and thus the results obtained for 2D structures can be generally applied 

to the 3D slab PC structures. Though some additional vertical loss can be produced at 

the coupling interface, this loss is considered to be negligible in comparison to the one 

caused by the 2D mode mismatch. We are going to simulate structures with small 

reflections thus the boundary conditions of the simulation approach are becoming very 

important. We decided to use the Eigenmode Expansion Method implemented in the 

modeling tool CAMFR (see section 2.3). The 1D structure near the band edge are also 

calculated for comparison reasons. They are simulated with Transfer Matrix Method 

(see section 2.2). 

The butt coupling approach to coupling at first and second stages will be 

discussed in section 6.2. Section 6.3 presents the adiabatic coupling model and 

simulation results. The results are summarized in section 6.4. 

6.2 Butt coupling 

The coupling to small group velocity cg 02.0=υ  in W0.7 waveguide presented 

in chapter 2 will be considered through a stage of W0.8 waveguide with group velocity 

cg 25.0=υ . In 2D calculations the radius was changed from ar 275.0=  in the chapter 

2 to the ar 3.0= . Coupling to the slow light in W0.7 waveguide at wave number 

4.0=k  will be considered (see Fig. 6.1). Thus the excitation frequency will be taken at 

approximately 0.263. The W0.8 mode is much steeper at this frequency as can be seen 

from the band diagram. The dielectric waveguide with the width equal to the line-defect 

waveguide will be considered and the cut to the photonic crystal will be varied with 

parameter az /=τ  (see Fig. 6.2), similar to the presented in Ref. [76]. 
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Fig. 6.1: The band diagrams of the W0.7 and W0.8 waveguides are presented. At the 

frequency 0.263, where W0.7 waveguide demonstrates small group velocity, the 

dispersion curve of the W0.8 waveguide is much steeper. 
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x

z  

Fig. 6.2: The schematic picture of the junction between a dielectric waveguide and a 

PC line-defect waveguide. The boundary between two waveguides can be shifted in z 

direction, which is described by parameter τ . 

The results for the direct coupling into W0.7 waveguide are presented in Fig. 

6.3. Very strong reflection is observed for most of the boundary terminations. There are 

two points near 0=τ  and 2.0=τ  where reflection is small but at the same time 

transmission intensity is very low 0.2T ≈ . Thus when reflection is small the scattering 

loss at the junction is increasing also. This can be explained by the fact, that slow light 

mode profile (see Fig. 2.1) is very different from the dielectric waveguide mode. The 

butt coupling into W0.8 waveguide is expected to be more efficient due to the better 

mode profile match. 
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Fig. 6.3: The transmission T and reflection R intensities at the butt coupling to W0.7 

waveguide from dielectric waveguide. Strong overall reflection is observed. At 

reflection minima the transmission is also low what corresponds to large scattering 

losses. 
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Fig. 6.4: The reflection intensity at the butt coupling to W0.8 waveguide from dielectric 

waveguide. Distinct reflection minimum is observed close to the boundary cut 8.0=τ  

The results of butt coupling to the W0.8 waveguide are presented in Fig. 6.4. 

Strong reflection reduction to -35dB is observed at 82.0=τ . Transmission intensity is 

about 0.96 at this point. Thus almost perfect conversion from dielectric waveguide 

mode into photonic crystal mode is achieved. The light in W0.8 waveguide can be now 

transmitted into W0.7 waveguide with the butt coupling approach also. As shown in 

Fig. 6.5 the index guided mode is transformed into gap guided mode at the junction 

between two waveguides. the interface does not go directly through the holes. The holes 

on the line between two waveguides in Fig. 6.5 belong to W0.8 waveguide and the next 
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row of holes belongs already to W0.7 waveguide. The advantage of coupling from a 

line-defect waveguide is the absence of scattering losses due to the photonic band gap 

effect. Thus at the W0.8-W0.7 boundary only reflection is possible. The calculation 

gives the reflection intensity less than -20dB and transmission of 95% which is a very 

good result for such a simple coupling. These values were obtained for a single 

frequency calculation. The frequency scan shows that, though the reflection slightly 

increases close to the band edge of the W07 waveguide, it stays within -20dB on the 

100GHz bandwidth. These coupling results are sufficient for the devices operating in 

transmission. But the reflection amplitude of 10% can still lead to strong ripple in the 

characteristics of reflection operating devices due to the Gires-Tournois interference. 

The second transition can be done adiabatically to decrease reflection to -40 dB as will 

be discussed in the next section. 

8.0W

x

z

7.0W8.0W

x

z

7.0W  

Fig. 6.5: The field distribution in the optimized double stage coupling. First light is 

coupled into W0.8 waveguide and then after 6 lattice constants it is coupled into W0.7 

waveguide. The amplitude of the field in the W0.7 waveguide is large due to small 

group velocity. 

6.3 Adiabatic coupling 

6.3.1 Structures 

The PC waveguide presented in Fig. 2.2 can be discretised with stair case 

approximation. For adiabatic coupling the model will be simplified to make possible a 

calculation of long structures. Square holes will be considered instead of cylindrical, 

thus decreasing the number of different cross sections in a single unit cell to two (Fig. 

6.6). This simplification does not change significantly the properties of PC waveguide. 

Waveguide with square holes still demonstrates a bandwidth of constant small group 
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velocity discussed in chapter 3. By adjustment of the waveguide width to W0.8 the 

small group velocity of 0.007c is obtained on the 0.1% bandwidth. The group velocity is 

small in the gap guided mode region and increases at higher frequencies gradually 

changing to index guided mode. We will concentrate on coupling to the center 

frequency of slow light bandwidth 2357.0=ω . 
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Fig. 6.6: The group velocity and the structure of a square hole triangular lattice PC 

line-defect waveguide ( ar 25.0= , W0.8, 5.3=n , TE polarization). The holes are 

shown by grey color. There is a relative bandwidth of 0.1% with group velocity 

approximately c007.0 . 

A one dimensional Bragg stack also shows small group velocity near the band 

edge. We are going to consider this structure for comparison reasons. The one 

dimensional transfer matrix method (TMM) is applied to calculate the reflections. With 

parabolic approximation of the dispersion relation near the dielectric band edge we 

obtain that group velocity has the following frequency dependency (see chapter 3): 

2/1

0 )(~ ωω
ω

υ −=
kd

d
g  (6.1) 

where 0ω  is the band edge frequency. This corresponds to the direct calculation of the 

group velocity near band edge for the quarter wave stack (Fig. 6.7). The bandwidth of 

small group velocity decreases quite rapidly. We choose the normalized frequency 

0.2007 where group velocity is 0.035c. This group velocity is 5 times larger than the 

one calculated in the presented PC line-defect waveguide. The group velocity changes 

dramatically even on the relative bandwidth of 0.1%. Dispersion compensation is 

needed for the operation of such slow light mode as proposed in Ref [10]. 
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Fig. 6.7: The group velocity and the structure of a quarter wave stack of silicon and air 

( 5.3=n /1). The air gap is shown by the grey color. Group velocity 0.034c at frequency 

0.2007 is calculated. 

The input waveguide should have an index guided mode at the slow light 

frequency 0.2557. To keep the number of cross sections the same this waveguide is 

obtained with deformation along the propagation direction (Fig. 6.8a). The stretch factor 

is chosen to be 1.05. The band diagram of the deformed line-defect waveguide is quite 

similar to the original with the dispersion relation shifted to lower frequencies. The 

group velocity is approximately c13.0  at normalized frequency 0.2557. The same 

approach is used to couple slow light mode in a Bragg stack. A structure with smaller 

lattice constant has larger group velocity and can be resonantly coupled from 

homogeneous medium [77]. 

(a) (b)

aa ∆−

(a) (b)

aa ∆−

 

Fig. 6.8: The transitions between index guided and gap guided modes in a line defect 

waveguide and a Bragg stack. A symmetrical half of the line-defect waveguide is 

presented with the channel close to the bottom of the picture. The index guided mode 

propagates in the deformed waveguide on the left sides of figures (a) and (b). 

Both discussed methods CAMFR and TMM allow boundary conditions of half-

infinite periodical structure at the input and output. Thus it is possible to have Bloch 

mode excitation and to obtain transmission and reflection as Bloch modes too. This is 

done by presenting the Bloch modes in terms of slice eigenmodes and following 
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recalculation of the transmission and reflection matrices at input and output (see 

sections 2.2 and 2.3). 

6.3.2 Theoretical model 

The adiabatic coupling can be described by a simplified theoretical model. The 

adiabatic transition can be considered as a stepwise change from one ideal photonic 

crystal structure to the other. At every small step reflections occur that summate at the 

input with different accumulated phase shifts: 

∑
= =







 ∆∑∆∆=

N

n

k

n

k
kn zirr

1 1

exp β  (6.2) 

where nr  is the reflection at a step n , kz∆  is a distance between two steps and kβ∆  is a 

wavevector difference between forward and backward propagating modes. This is a first 

order approximation that doesn’t take in to account second order reflection. It is 

applicable only for small reflection amplitudes. The sum can be also presented as an 

integral where gradual change of the photonic crystal structure is assumed [51]: 

dzdzzi
z

r
r

L z

∫ ∫ 









∆

∂

∂
=

0 0

')'(exp β  (6.3) 

In case of constant β∆  the integral is the Fourier transformation of a truncated function. 

If zr ∂∂ /  is also constant, then the larger the truncation region L  the narrower the peak 

around zero in spatial frequency and thus the smaller the reflection value at the same 

β∆ . This is a simplified prove of the adiabatic theorem. We can also rewrite the 

integral with the normalized length parameter Lzs /= : 

( )dssLisfr ∫ ∆=
1

0

exp)( β  (6.4) 

where srsf ∂∂= /)( . In the case of constant reflection along the taper we obtain a sinc 

function in reciprocal space and thus with a longer taper the reflection amplitude 

decreases on average as )/(1 Lβ∆ . There are also some taper lengths when the sinc 

function and thus the reflection is zero, but this is a resonant phenomena and will have a 

narrow bandwidth. Better results can be achieved if the derivatives are matched at the 

input and output. Using the integration by parts, integral (6.4) can be presented as an 

infinite sum: 
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Li

fLif
r

β

β

β

β
 (6.5) 

Thus every matched derivative of the order m  leads to the asymptotic reflection 

decrease proportional to 1)/(1 +∆ mLβ . In practice, the taper of final length with minimal 

reflection is needed. The required reflection function can be directly taken from the 

table of apodization (or window) functions that are used to suppress side lobes in the 
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Fourier spectra. The analytical approach is more complicated in case of not constant 

)(zβ∆ , the taper should be changed slower at the parts where β∆  is small. 

Alternatively an optimization calculation can be done similar to presented in Ref. [10]. 
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Fig. 6.9: The normalized inverse reflection on a deformation step is presented for a 

line-defect waveguide (a) and a Bragg stack (b). The Bragg stack demonstrates stronger 

reflection at the band edge with exactly inverse dependency on the frequency. 

6.3.3 Reflection at the structural step 

The reflection at a structural step is strongly frequency dependent. This 

dependency is determined by the group velocity and wavevector difference between 

forward and backward propagating modes as discussed in Ref [51]: 

)()(

1
~

ωυωβ g

r
∆

∆  (6.6) 

This can be demonstrated by the direct calculations of a Bragg stack and a PC line-

defect waveguide reflection at deformation step of 510/ −=∆=∆ aaε . The reflection is 

proportional to ε∆  and a normalized reflection value is considered ε∆∆ /r . In a one 

dimensional structure the wavevector difference is proportional to the square root of the 

frequency 2/1

0 )(~ ωωβ −∆  same as the group velocity (see (6.1)). Thus the inverse 

reflection is a linear function of frequency )(~/1 0ωω −∆r  what corresponds to the 

dependency in Fig. 6.9b. The reflection values of 1D and 2D structures can be 

compared. The Bragg stack shows much stronger reflections at the same group 

velocities. Even without calculation of the adiabatic tapers we can state that slow light 

modes of PC line defect waveguides will be much easier to couple at the same group 

velocities. The reason for this result can be explained by the β∆  of these structures. The 

Fig. 6.10 shows the band diagrams of the line-defect waveguide and the Bragg stack 

near the band edge. First of all the slow light mode of the line-defect waveguide is 

further from the Brillouin zone edge than the Bragg stack mode, thus the β∆  has less 

influence on the reflection. The β∆  is calculated as )5.0(2 k−  and for the slow light in 

line-defect waveguide it is approximately 0.15 and in the Bragg stack it is 0.02. This 
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makes up for almost an order of magnitude difference in reflection for the same group 

velocity (see eqn. (6.6)). 
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Fig. 6.10: The band diagrams of the line-defect waveguide (a) and the Bragg stack (b). 

The wavevector of the Bragg stack is much closer to the Brillouin zone edge as the line-

defect waveguide. 

6.3.4 Results and discussion 

Different taper functions 0/)()( azaz ∆=ε  can be investigated. The function 

zr ∂∂ /  from (6.3) can be written as a multiplication )/()/( dzdr εε ⋅∆∆ . The first part 

was calculated in the previous section. We will approximate the deformation of the 

lattice as a shift of the band diagram. The band diagram of the waveguide with 

deformation 05.00 =ε  is shifted by the relative normalized frequency 02.0/ ≈∆ ωω  in 

comparison to the band diagram of 0=ε  waveguide. At the slow light part of the taper 

the normalized reflection ε∆∆ /r  is very large and it should be compensated by smaller 

taper derivative dzd /ε  (see Fig. 6.11). We have considered a general form of the taper 

with parameter n  

n

L

zL
z 







 −
⋅= 0)( εε  (6.7) 
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Fig. 6.11: Examples of taper functions )(zε  are presented. The grey line corresponds to 

linear taper. A slower taper at the slow light region should be applied as shown by the 

black line. 

The reflection intensity in the line-defect waveguide for different tapers is 

presented in Fig. 6.12. Reflection at the transition without taper is less than 2%. The 

upper curve corresponds to the linear taper 1=n  and the curve under it corresponds to 

the quadratic taper 2=n . The black line corresponds to the 3=n  taper. The linear and 

quadratic tapers do not show any ripples on the reflection dependency. It means that the 

reflection at the input is much smaller than at the slow light output and there is no 

interference of two reflections. When the taper at the slow light region is sufficiently 

smooth than the two reflections become comparable and the Fabry Perot interference is 

observed as in the 4,3=n  tapers. The difference between the 3=n  and 4=n  is not so 

large. To achieve better results we should then optimize the taper following the 

procedure described in Ref. [10], but we don’t expect to achieve dramatic taper length 

reduction. The cubic taper shows reflection reduction up to -40dB at the length of the 

taper approximately a20 . 
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Fig. 6.12: Reflection intensity of the adiabatic taper in the line-defect waveguide as a 

function of taper length for the parameters 4,3,2,1=n top down. The reflection is less 

than 2% without taper. It can be decreased to -40dB in a cubic taper a20  long. 

The results for the Bragg stack adiabatic coupling are shown in Fig. 6.13 for 

comparison. At the input the structure is chosen with group velocity cg 13.0=υ  equal 

to the group velocity of the index guided mode of the line-defect waveguide. The slow 

light mode is to be excited at the normalized frequency 2007.0=ω  with group velocity 

cg 035.0=υ . The lattice deformation in this case changes from 0135.00 =ε  to 0=ε . 

The tapers with 3,2,1=n  are calculated. The taper lengths should be an order of 

magnitude longer to achieve the same reflection suppression as with line-defect 

waveguides. Without taper more than 30% reflection is observed. The Fabry-Perot 

ripples are visible even for the linear taper. This is a sign for the strong reflection even 

at the input where group velocity is large. 
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Fig. 6.13: Reflection intensity of the adiabatic taper in the Bragg stack as a function of 

taper length for the parameters 3,2,1=n  top down. The reflection is less than 2% 

without taper. It can be decreased to -40dB in a cubic taper a300  long. 
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Fig. 6.14: Reflection intensity of the cubic taper a20  long. The reflection changes 

linearly from -32dB at 2356.0=ω to -52dB at 2358.0=ω . 

The adiabatic taper should allow coupling to a bandwidth of frequencies 

corresponding to the slow light mode. It extends from normalized frequency 0.2356 to 

0.2358 as follows from Fig. 6.6. The relative bandwidth of this region is approximately 

0.08% what corresponds to 170 GHz bandwidth for 1.5µm wavelength. The cubic taper 

of a20  long was calculated with result presented in Fig. 6.14. The reflection changes 

linearly from -32dB at 2356.0=ω to -52dB at 2358.0=ω . The maximum reflection 

amplitude in this case is below 2.5%. This value can be decreased by using a longer 

taper. 
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6.4 Conclusion 

The double stage coupling to the slow light waveguide has demonstrated very 

good transmission and reflection characteristics. The reflection at the first stage was 

reduce to -35dB by the proper adjustment of the W0.8 waveguide boundary termination 

82.0=τ . The second transition from W0.8 to W0.7 demonstrates reflection less than 

-20dB. The scattering loss in the second section is absent. Though in case of three 

dimensional structure some additional vertical scattering can occur, this scattering is 

expected to be small. 

Adiabatic tapers can be used to decrease reflection at the transition to the slow 

light mode. The taper should change more slowly at the small group velocity region, 

thus different nonlinear functions are investigated. With 20 lattice constant long cubic 

taper the reflection of coupling from c13.0 group velocity to the c007.0  group velocity 

was decreased to the -32dB on the 170 GHz bandwidth. Further reflection reduction can 

be achieved with longer tapers and optimization of the taper function. 

The slow light in the line-defect waveguides is much easier to couple to than in 

the one dimensional Bragg stack structure. The slow light in the 1D structure is 

achieved close to the Brillouin zone edge. Thus the difference in wave numbers of the 

forward and backward propagating modes is very small what leads to strong reflection. 
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7. Disorder induced 
backscattering 

Disordered Bragg stacks and line-defect waveguides in two dimensional 

photonic crystal structures are considered. First, the reflection at a single defect is 

calculated and the results are used to estimate the reflected intensity in the disordered 

structure with statistical distribution of defects. The dependencies of the backscattering 

intensity on the group velocity and disorder amplitude are investigated. The 

backscattering puts strong limitations on the length of slow light waveguides. 

7.1 Introduction 

Small propagation loss is an essential condition for the application of slow light 

phenomenon. Disorder induced losses in the slow light waveguides are investigated 

experimentally [25][78] and theoretically [79][80][81]. They consist of two parts: 

vertical scattering and backscattering into the guided mode propagating in the opposite 

direction. The vertical scattering is considered to be dominant for the not slow light 

modes of line-defect waveguides. This loss was estimated by Gerace and Andreani 

[79][82]. And their results showed good agreement with experimental results of McNab 

et al. [25]. The loss was estimated to grow proportional to the inverse group velocity 

and thus dramatically increase for slow light modes. But the vertical scattering does not 

lead to the additional reflection and in-line amplification can be used to compensate for 

the losses. On the other hand, the backscattering loss is predicted to increase with 

inverse group velocity squared [83][80], what makes it a dominant loss factor at small 

group velocities [81]. At the same time, the backscattering can lead to strong coupling 

between forward and backward propagating modes in strongly disordered structures. 

This coupling results in localization effects similar to known in other disordered media 

[84]. This localization will destroy the phase information of the signal and thus will 

fundamentally limit the slow light application to optical communication systems. Thus, 

if the vertical loss intensity can be much larger than the output intensity of the device, 

the backscattering loss should be always significantly smaller than the output intensity. 
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Amplification will not help in this case, because both forward and backward 

propagating waves will be amplified. Taking into account the crucial effect of 

backscattering on the future applicability of slow light structures, we decided to 

concentrate on the backscattering calculation for the simplified one and two 

dimensional structures without consideration of vertical losses. 

In section 7.2 we describe the simplified slow light structures. Section 7.3 

presents the model to estimate the backscattered intensity. The disorder induced 

reflection in 1D and 2D structures are calculated in section 7.4. The results are 

discussed in section 7.5 and summarized in section 7.6. 

7.2 Disordered slow light structures 

The structures presented in section 6.3.1 are used for the simulations. The 

disorder is introduced in the structure by the random shifts of the boundaries. This 

corresponds to the manufacturing inaccuracies appearing due to the deviations of the 

electron beam from the prescribed lines. In the line-defect waveguide shifts of the 

longitudinal and lateral boundaries are considered as shown in Fig. 7.1a, defined as shift 

1 and 2. In the one dimensional structure the boundaries between all layers are shifted. 

(a) (b)

d∆1

2

(a) (b)

d∆1

2

 

Fig. 7.1: The boundary shifts of the disordered 1D and 2D structures. (a) A symmetrical 

half of the line-defect waveguide is presented with the channel close to the bottom of the 

picture. In the line-defect waveguide the boundaries 1 and 2 were shifted. (b) In the 

quarter wave stack the boundaries between air and silicon were shifted. 

7.3 Theoretical model 

The small boundary variations in the periodical structures lead to Bloch modes 

scattering. If reflections are small then the second order reflections can be neglected. All 

scattered waves build a reflected wave at the input which can be mathematically 

described as a sum of reflections at every boundary with corresponding phase shift: 
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where nr∆  is the reflection at the boundary n , nz  is a distance to the boundary from the 

input and β∆  is a wavevector difference between forward and backward propagating 

modes. N  corresponds to the number of defects in the structure. For an arbitrary 

structure the reflection can vary, depending on the distribution of the defects. We will 

be interested in the mean value of the reflected intensity to estimate the effect of group 

velocity on the reflection intensity. The average reflection intensity can be calculated as: 

( ) ( )∑∑
==

⋅∆∆⋅∆−∆=⋅=
N

k

kk

N

n

nn zirzirrrR
11

expexp* ββ  (7.2) 

The sums in the brackets can be multiplied. The mean value of the reflection amplitude 

is zero 0>=∆< r . Thus, only multiplication terms from the same boundaries will 

remain: 

>∆<= 2rNR  (7.3) 

Thus average reflection intensity is just the sum of the average intensities reflected from 

every boundary. This corresponds to the summation of multiple incoherent sources. In 

this case, it is sufficient to find reflections from single defects to get an estimation of the 

reflected intensity. It should be mentioned that this estimation is valid only for the small 

reflection intensity when second order reflections can be neglected. 

Another important parameter for slow light applications is the time delay ripple 

due to the disorder. The ripple can be explained as an effective interference of an output 

signal with the second order backscattered light. The simplest estimation would be a 

Fabry Perot interferometer with small reflections at the interfaces equal to R . The 

average relative group delay ripple can be estimated in this case as: 

R2<
∆

τ

τ
 (7.4) 

Thus to keep the delay ripple smaller than 1 percent a backscattered intensity should be 

smaller than half percent. 

As discussed in papers [83][80][85] the reflection amplitude from a single defect 

is proportional to inverse group velocity gυ/1 . Thus reflection becomes strongly 

frequency dependent. At the same time the reflection amplitude will be proportional to 

the boundary shift d∆  presented in Fig. 7.1. Thus, generally we will define a 

normalized parameter )/( dar ∆∆ . A dimensionless parameter α  connects normalized 

reflection at the defect with the inverse normalized group velocity: 

cd

a
r

g /υ

α
≈









∆
∆  (7.5) 
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The larger α  the stronger the reflection with the same boundary shift and the same 

group velocity. It effectively describes how strong the field is concentrated at the defect. 

When α  is known, the reflections from the defects can be directly found from the 

boundary shifts and group velocity. 

7.4 Results 

7.4.1 Bragg stack 

We start from the calculation of the average reflected intensity in the disordered 

1D structure 500 lattice constants long. The reflection intensity was averaged on 100 

structures for every frequency point in the range near the band edge. Afterwards the 

frequency dependency was presented as a group velocity dependency. The disorder was 

introduced with normal distribution of the boundary shifts with three different standard 

deviations of boundary shifts ad /∆ : 0.001, 0.0005, 0.00025. These values are not 

determined by the manufacturing accuracies but are considered for demonstrational 

reasons. The reflection graphs are presented in Fig. 7.2 with largest reflection 

corresponding to the largest boundary shift. At small reflection intensity there is a clear 
2

/1 gυ  dependency. This corresponds well to the theoretical predictions of [85]. The 

approximation is not valid for larger reflection intensity where strong coupling between 

forward and backward propagating waves takes place. 

The calculated intensities can be estimated with the model developed in the 

previous section. The inverse normalized reflection amplitude from a single boundary 

shift rad ∆∆ //  is presented by a line in Fig. 7.3. This dependency is exactly 

proportional to the group velocity as can be seen by comparing to the Fig. 6.7. The 

parameter α  of equation (7.5) is approximately 2.0. The average reflection amplitude 

was also recalculated from the disordered structures with the help of equation (7.3) and 

plotted as grey dots in the same figure. The number of defects in the structure was taken 

as 1000 taking into account two boundaries in one lattice constant. The estimation of the 

reflection amplitude fits to the direct calculation. Only at the band edge where the 

approximation is not valid any more there is some discrepancy between two graphs. 

These results allow the conclusion that any long disordered structure can be evaluated 

from the reflection behavior of a single defect. 
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Fig. 7.2: The average reflection intensity of 100 disordered structures 500 lattice 

constants long as a function of group velocity. Three values of root mean square of the 

boundary shift are taken 00025.0,0005.0,001.0/ =∆ ad . The curve with the largest 

reflection corresponds to the largest disorder. 
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Fig. 7.3: A normalized inverse reflection amplitude at a single boundary shift of a 

quarter wave stack structure as a function of normalized frequency. The black line 

corresponds to direct calculation of a single defect. Points are calculated from the data 

in Fig. 7.2 and equation (7.3). 

The next parameter to be investigated is the time delay ripple of the disordered 

structure. The relative time delay ripple of a single structure 500 lattice constant long 

with 0005.0/ =∆ ad  is presented with a thick black line in Fig. 7.4. The Fabry-Perot 

estimation of the time delay ripple given by equation (7.4) is presented by the thin black 
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lines. The estimated values are larger than the average calculated ripple. This can be 

explained by the distributed nature of the disorder induced reflection. The effective 

resonator length is thus smaller as the waveguide length and the phase and time delay 

oscillations have also a smaller value as estimated. 
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Fig. 7.4: Time delay ripple in the 1D disordered structure 500 lattice constants long 

with 0005.0/ =∆ ad . The estimation of the maximal time delay ripple given in the 

equation (7.4) is presented as a thin black line. 

The reflection intensity near the band edge is demonstrated in Fig. 7.5. At 

frequency 0.200845 there is a transmission maxima with Q-factor approximately 

200000. This resonance can be explained by the strong localization behavior at small 

group velocities. The localization length is decreasing at smaller group velocities, thus, 

at some point, it becomes smaller than the structure length and transmission can occur 

only through localized modes at certain resonant frequencies. 
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Fig. 7.5: Reflection intensity of a 1D disordered structure 500 lattice constants long 

with 0005.0/ =∆ ad . The dependency close to the band edge at very small group 

velocity is presented. Narrow minima are observed that correspond to transmission 

through localized modes. 
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7.4.2 Slow light line-defect waveguide 

Reflection at boundary shifts 1 and 2 are considered in 2D waveguides as shown 

in Fig. 7.1. The normalized inverse reflections rad ∆∆ //  at these defects are presented 

in Fig. 7.6. The upper curve corresponds to the shift of boundary 1 and lower curve to 

the shift of boundary 2. The reflection has clear group velocity proportionality. The 

parameter α  from equation (7.5) is equal to 0.23 for the boundary 1 and 0.84 for the 

boundary 2. As can be expected the shift of the boundary 2, which is the closest to the 

waveguide channel, is crucial for the backscattering. The reflection intensity in his case 

is more than 13 times larger than from the defect of the boundary 1. 
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Fig. 7.6: A normalized inverse reflection amplitude at boundary shifts in 2D line-defect 

waveguide as a function of normalized frequency. The upper curve corresponds to the 

shift of boundary 1 and lower curve corresponds to the shift of boundary 2. 

7.5 Discussion 

The discussion section will be divided in three parts. We will compare 1D and 

2D structures, discuss the effect of field concentration on the backscattering intensity 

and estimate the maximal length of the disordered structures. 

7.5.1  2D versus 1D structures 

The α  parameters should be considered to compare 1D and 2D structures. We 

can see that the reflection at the boundary shift of the 1D structure is more than two 

times larger than the reflection at the shift 2 in the channel waveguide. This difference 

results in more than 4 times stronger reflection intensity in 1D structures at the same 

root mean square of the boundary shift and at the same group velocities. This can be 

explained by a smaller interaction with the defects in the channel waveguide. The large 

portion of the field is concentrated in the channel and doesn’t interact with photonic 

crystal walls whereas in the one dimensional structure the shift of the boundary effects 

the entire field. Thus the 2D PC channel waveguide is generally less sensitive to 

disorder than the 1D structure. However, this two times difference of α  is not very 
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large and thus slow light line-defect does not have strong advantage over 1D structure 

near the band edge. 

7.5.2 Field concentration 

As discussed in Ref. [85] the reflection from the defect is proportional to the 

amplitude of the field squared: 

2~ Er∆  (7.6) 

Thus at small group velocities the amplitude of the field should be low at the places of 

possible disorder. This idea was already demonstrated in the calculations of Gerace and 

Andreani [86]. They shifted the waveguide walls outwards and thus decreased the 

amplitude of the field on the hole boundaries. However, this approach was applied only 

to index guided modes and it is difficult to follow for slow light modes, where strong 

interaction with the PC holes is intrinsic. But this consideration can be used to compare 

different slow light structures. 

It is interesting to compare coupled cavities waveguides [18] with line-defect 

waveguides on the basis of equal group velocity and disorder. The field concentration 

arguments allows to draw a clear conclusion in favor of line-defect waveguides. Taking 

the power flow definition of the group velocity: 

Λ+
=

/)( ME

g
WW

flowPower
υ , (7.7) 

where power flow through waveguide cross section is taken, and EW  and MW  are the 

energies of the electric and magnetic field correspondingly in the unit cell of length Λ . 

Both types of waveguides are taken with the same power flows and group velocities. 

Thus the average energy per unit length should be equal for coupled cavity and line-

defect waveguides. We will consider a coupled cavity waveguide with periodicity 

ma=Λ , where m  is an integer. The field is mostly concentrated in the central section 

of length a  within this period Λ . If the field energy is almost entirely concentrated in 

the center, then the intensity of the field is m  times larger there than in the line defect 

waveguide. That leads to m  times larger reflection amplitude at the defect due to the 

equation (7.6). Taking into account that coupled cavity waveguide has m  times less 

scattering points, it follows from the equation (7.3): 

LDCC
Rmrm

m

N
R >=∆⋅<= 2)( , (7.8) 

where CCR  and LDR  are reflection in disordered coupled cavity and line-defect 

waveguides correspondingly. Coupled cavities waveguides will have approximately m  

time stronger reflection for the same disorder. Thus, to decrease the reflection, the 

concentration of the field along the waveguide should be avoided. 
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7.5.3 Maximal length 

The maximal length of the disordered structures is limited by the scattered 

reflection and maximal time delay ripple. We set a limit of the reflected intensity to 

1.0max =R . Combining equations (7.3) and (7.5) an equation can be obtained that 

connects maximal number of periods and group velocity: 

2

22
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α
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∆
=  (7.9) 

Thus the smaller is the group velocity the smaller is the maximal length of the structure. 

The parameter 84.0=α  is taken for the boundary shift of the line-defect waveguide. 

We plot the length over group velocity for three shift parameters nm2,1,5.0=∆d in 

the Fig. 7.7. The lattice parameter was estimated by 500nm. From the figure it is 

possible to see that the normalized group velocity around 0.01 allows only very short 

structures. The reflection intensity of 10% is achieved already within several lattice 

constants. 
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Fig. 7.7: The length of the disordered structure measured in lattice constants as a 

function of normalized group velocity. At these lengths the reflection intensity due to the 

back-scattering reaches 10%. The root mean square of boundary shifts are 2, 1, and 0.5 

nm 

These results can be compared to the vertical scattering estimated from the paper 

of Andreani et al. [82]. They varied the radius of the holes what is quite similar to the 

boundary shift in our investigation. For the radius deviation of 1nm the vertical 

scattering loss in the W0.7 waveguide with group velocity 0.02 is approximately 

4dB/mm (approximately 60% scattering loss in a2000  structure). At the same disorder 

and group velocity, 10% reflection due to backscattering is achieved in the structure 
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shorter than 20 lattice constants. Thus the backscattering loss is a dominant scattering 

factor at small group velocities. It also corresponds to the results obtained by 

Kuramochi et al. [81]. 

7.6 Conclusion 

The inverse proportionality of the reflection amplitude at the defect to the group 

velocity of the mode was confirmed. At the same group velocity the line-defect 

waveguide modes are less sensitive to the disorder than those in 1D quarter wave stacks. 

This is achieved due to the smaller amplitude of the field at the scattering defects. The 

further conclusion from this consideration is the advantage of the line-defect waveguide 

over coupled cavity waveguides. The field is distributed uniformly along the line-defect 

waveguide in contrast to strong field concentration at the cavity sites in the coupled 

cavity waveguides. 

The length of the slow light waveguide is strongly limited by the backscattering. 

At maximal reflection intensity of 10% and 1nm shift of the hole boundaries the 

normalized group velocity should be larger than 0.05 to allow useful lengths of 100 

lattice constants. These results make difficult the application of slow light to optical 

buffers. The time delay in this case cannot exceed several picoseconds, which is far to 

small to delay a packet of data. Though 100 lattice constants can be still sufficient for 

phase shift application in miniaturized Mach-Zender interferometers [17]. The current 

precision of photonic crystal manufacturing can be estimated from the work of Gerace 

and Andreani [79]. At radius of holes variation equal to 5nm the propagation loss is 

calculated to be approximately 2,7dB/mm for normal group velocity waveguide which 

correspond well to experimental results of McNab et al. [25]. The best reported 

propagation loss results at the moment are around 0.6dB/mm [26]. Taking into account 

that propagation loss scales with the square of the radius deviation, we can estimate the 

current radius variation to be approximately 2,5nm. The progress in the last two years 

was quite small, what can be attributed to the fact that 0,6dB/mm is already a 

sufficiently low loss for optical waveguides. But for slow light applications the 

precision should be further improved to allow long structures and large delays. At 

precision of 1 angstrom the structure can be already 400 lattice constants long with 

group velocity 0.01 speed of light. There are some other reasons to expect longer slow 

light structures. The calculations presented in this article are based on the 2D 

approximations. In real case some intensity will be lost vertically or absorbed. When 

these losses are larger than backscattering, then the localization effects can be avoided. 

Thus, large time delays are feasible though at increasing losses. 

Further investigations are needed to determine the experimental limits of group 

velocity reduction. The backscattering in this case is a most important effect that should 

be taken into account. 
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8. Conclusion and outlook 

8.1 Conclusion 

This thesis combines a complete theoretical investigation of the slow light 

phenomenon in line defect photonic crystal waveguides starting from dispersion 

characteristics of the ideal structures and finishing with coupling design and 

backscattering loss discussion. A commercial finite integration software was 

extensively used to check the theoretical models. Several useful supplementary models 

based on transfer matrix method and eigenmodes expansion are developed to describe 

the Bloch mode propagation and reflection in photonic crystal structures. 

First, the effect of small group velocity in photonic crystal line-defect 

waveguides was investigated. As was originally shown the interaction with the 

triangular lattice photonic crystal structure of the waveguide walls leads to a strong 

group velocity reduction. An approach is presented for the first time to obtain small 

group velocity line defects waveguide with vanishing second and third order dispersion 

on a finite bandwidth. For example, for the group velocity 0.02c the bandwidth of 1THz 

can be obtained. The group velocity can be further decreased with approximately 

proportionally decreasing bandwidth. Remarkable is the fact that these properties are 

obtained by simple variation of the waveguide width and radius of the holes. It should 

be mentioned that quasi constant group velocities are not tunable and can be adjusted 

only for certain normalized frequencies. Any parameter variation changes not only the 

group velocity but also the normalized frequency of the mode. The operational 

frequency can be adjusted by the lattice parameter of the structure, but it cannot be 

tuned afterwards. But for the time delay or phase shift tuning purposes simply the length 

of the slow light region can be arbitrary decreased by shifting the slow light bandwidth 

from the operational frequency. 

Large positive and negative dispersion can be obtained due to the modes anti-

crossings in single and coupled line-defect waveguides or by introduction of linear chirp 

on single or coupled line-defect waveguides. It was demonstrated in this thesis that in 

line-defect waveguides there are sufficient structural parameters to design various 

dispersion characteristics. 
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In this thesis a very efficient coupling approach to slow light modes is presented. 

The coupling from dielectric strip waveguide through a section of a line-defect 

waveguide with index guided mode is used. This allows a dramatic reduction of the 

scattering loss with reflection about -20dB and transmission of almost 95% for 0.02c 

group velocity. These results can be achieved with a line-defect waveguide about five 

lattice constants long which has a somewhat larger waveguide width and the same 

radius of the holes. Any further improvement is probably not necessary for most of the 

applications. But when a smaller reflection intensity is required, adiabatic coupling can 

be applied. With a proper taper function the dramatic reflection reduction can be 

achieved already within 20 lattice constants. 

Slow light in a waveguide without dispersion and coupling losses would be a 

perfect candidate for many applications if it were possible to manufacture structures 

without inaccuracies. Disorder can be a most important problem for implementation of 

slow light waveguides. Disorder induced losses originate from vertical and 

backscattering of the waveguide modes. The vertical scattering was not investigated in 

this thesis but it is expected that backscattering is a dominating loss mechanism at small 

group velocities. Accordingly strong backscattering was estimated at small group 

velocities. The localization phenomena were also discussed which are even more 

problematic than just intensity losses. Further experimental and simulation 

investigations are required to address the effects of backscattering and localization. 

Though from results obtained in this thesis and other publications it is difficult to expect 

slow light structures longer than 100µm. 

The dispersion of -2000ps/nm with bandwidth of 100GHz can be obtained in a 

structure smaller than 1cm. This dispersion is sufficient for 100km fiber dispersion 

compensation. However, these considerations are valid only for ideal waveguides 

without disorder. In the dispersion compensation structure different frequencies 

propagate with different group velocities. Thus there is strong frequency dependent loss 

that can lead to additional signal distortion. Time delay of 0.3ns on 100GHz bandwidth 

is theoretically possible in an ideal photonic crystal structure of 1 mm. This can be 

achieved in a single slow light waveguide or chirped coupled waveguide structure. But 

once again the disorder limits the lengths of the structures dramatically. Thus the 

application of slow light waveguides to dispersion compensation and time delay 

depends on the future disorder reduction. Fortunately, the scattering intensity scales 

with disorder parameter squared. Thus double precision leads to four times loss 

reduction. 

8.2 Outlook 

The slow light investigations presented in this thesis can be extended in different 

directions. Some of the possible experiments and concepts are proposed further in this 

section. Though it should be mentioned again that most of the application of slow light 

strongly depend on the disorder induced losses. 
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Slow light demonstration: The measurement of slow light in line-defect waveguides 

with optimized double stage couplers is a very promising experiment. It will be a first 

demonstration of small group velocity in a line-defect waveguide with vanishing 

dispersion and very small coupling loss. The group velocity can be measured from the 

periods of MZI interference similar to the method applied in the paper of Vlasov et al. 

[7]. 

 

Scattering loss measurements: This measurement is very important for the following 

application of slow light waveguides. The scattering loss can be estimated from a cut 

back method [25]. If the double stage coupler is used the coupling loss can be neglected. 

 

Tunable time delay: The time delay can be tuned with a variation of the group velocity 

or propagation length. A simple approach would be a single waveguide with length 

variation. The slow light waveguide with vanishing dispersion can be used where the 

length of the slow light section can be changed with, for example, temperature or 

deformation. In the section with changed parameters the mode is shifted from slow light 

bandwidth into “index guided” bandwidth. Thus time delay will be mostly defined by 

the slow light section, the length of which can be changed. The transition parts from 

index guide into slow light section and back will be automatically adiabatic due to the 

distributed nature of temperature or deformation tuning. Another possibility for length 

variation is the coupled waveguides scheme. Slow light and normal line-defect 

waveguides can run parallel to each other. The coupling between them is achieved only 

at two points where parameters are shifted. By changing the distant between the 

coupling points the length variation is achieved. 

 

Tunable dispersion compensation: Chirped periodical structures are most promising 

for dispersion compensation. The difficulty of a single waveguide structure is that input 

coincides with input waveguide. It is favorable to design coupled waveguides structure 

where input and output are separated. That would eliminate time delay ripples appearing 

due to the Gires-Tournois interference and would allow operation without optical 

circulators. 

 

Miniaturization of Mach Zehnder interferometer : Small parameter variations of 

slow light waveguide lead to the change of accumulated phase proportional to group 

velocity. Thus the length of a MZI switch can be reduced proportional to the group 

velocity reduction. The concept similar to presented in [17] can be used, but with quasi 

constant group velocity and optimized coupling. 

 

Integration with slot waveguide: The recently presented concept of electrooptical 

tuning with slot waveguides [87][88] can be enhanced with slow light waveguides. 

First, the line-defect waveguide provides electrical coupling to the waveguide center 
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through photonic crystal claddings. At the same time light deceleration leads to 

amplitude increase, which is favorable for the electrooptical interaction. 
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