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Abstract.

For the nonlinear eigenvalue problem T (λ)x = 0 we propose an iterative projection
method for computing a few eigenvalues close to a given parameter. The current search
space is expanded by a generalization of the shift-and-invert Arnoldi method. The
resulting projected eigenproblems of small dimension are solved by inverse iteration.
The method is applied to a rational eigenvalue problem governing damped vibrations
of a structure.
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1 Introduction

In this paper we consider the nonlinear eigenvalue problem

T (λ)x = 0(1.1)

where T (λ) ∈ Cn×n is a family of matrices depending on a parameter λ ∈ D ⊂ C.
As in the linear case T (λ) = λI−A a parameter λ is called an eigenvalue of T (·)
if problem (1.1) has a nontrivial solution x 6= 0 which is called a corresponding
eigenvector. We assume that the matrices T (λ) are large and sparse.
Iterative projection methods where approximations to the wanted eigenval-

ues and corresponding eigenvectors are obtained from projections to subspaces
which are expanded in the course of the algorithm are very efficient for linear
sparse eigenproblems. Methods of this type are the Lanczos algorithm for sym-
metric problems, and Arnoldi’s method and the Jacobi-Davidson method, e.g.,
for more general problems. Taking advantage of shift–and–invert techniques in
Arnoldi’s method one gets approximate eigenvalues closest to the shift. Ruhe
[8] generalized this approach. He suggested the rational Krylov method using
several shifts in one run, thus getting good approximations to all eigenvalues in
a union of regions around the shifts chosen.
In some sense, Ruhe [7], [9] and Hager and Wiberg [3], [2] generalized the

rational Krylov approach to sparse nonlinear eigenvalue problems by nesting the
linearization of problem (1.1) by Regula falsi and the solution of the resulting lin-
ear eigenproblem by Arnoldi’s method, where the Regula falsi iteration and the



2 H. VOSS

Arnoldi recursion are knit together. Similarly as in the rational Krylov process
they construct a sequence Vk of subspaces of Rn, and at the same time they up-
date Hessenberg matrices Hk which approximate the projection of T (σ)−1T (λk)
to Vk. Here σ denotes a shift and λk an approximation to the wanted eigen-
value of (1.1). Then a Ritz vector of Hk corresponding to an eigenvalue of small
modulus approximates an eigenvector of the nonlinear problem from which a
(hopefully) improved eigenvalue approximation of problem (1.1) is obtained.
Hence, in this approach the two numerical subtasks reducing the large dimen-
sion to a much smaller one and solving a nonlinear eigenproblem are attacked
simultaneously.
In this paper we suggest an iterative projection method for the nonlinear eigen-

problem where the two subtasks mentioned in the last paragraph are handled
separately. We order the eigenvalues in some way and determine them one after
another. If Vk denotes the subspace of Cn of small dimension k constructed in
the course of the algorithm we solve the projected nonlinear eigenvalue problem
V H

k T (λ)Vkz = 0 of dimension k by a dense solver to obtain approximations λk

and xk = Vkz to an eigenvalue and eigenvector, respectively. Thereafter we ex-
pand the ansatz space Vk to Vk+1 = [Vk, vk+1] and repeat the projection step.
Similarly as in the Jacobi–Davidson method the direction vk+1 is chosen such
that xk + αvk+1 for some α ∈ C has a high approximation potential for the
eigenvector we are just aiming at.
It is well known that inverse iteration converges quadratically to simple eigen-

values. Therefore, the expansion vk+1 = T (λk)
−1T ′(λk)xk would be a reason-

able choice. However, in this case we would have to solve a high dimensional
linear system in every iteration step where the coefficient matrix varies. The
way out is the residual inverse iteration suggested by Neumaier [5], and given
by xk+1 = xk − T (σ)−1T (λk)xk where σ is a fixed shift (not to far away from
the eigenvalue targeted at) and λk is the current approximation.
Although derived in completely different ways the rational Krylov method

and the Arnoldi method suggested here are closely related to each other. In
particular both methods employ the same vector to expand the ansatz space.
However, there are some differences. An advantage of Ruhe’s approach is the
fact that one only needs a procedure that yields the product T (λ)x for given
λ and given x whereas our methods needs the explicit form of the projected
family of matrices V H

k T (λ)Vk to which we apply a nonlinear eigensolver. On the
other hand, our method is much faster since the rational Krylov methods needs
a great deal of inner iterations to get an accurate linear approximation to the
nonlinear eigenproblem. Moreover, if the matrices T (λ) are symmetric and the
eigenvalues can be characterized as minmax values of a Rayleigh functional then
this property is inherited by the projected matrices and can be utilized to solve
the projected problems very efficiently. This is discussed further in [10], and in
[1] where the subspaces were expanded by a Jacobi–Davidson type approach.
Our paper is organized as follows: Section 2 derives the nonlinear Arnoldi

method, and discusses a strategy how to update the shift σ when the conver-
gence becomes to slow and a restart method to reduce the computational cost
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for solving the projected eigenproblems as the subspaces expand. Section 3
reviews methods for solving dense nonlinear eigenproblems, and Section 4 con-
tains numerical experiments demonstrating the efficiency of the Arnoldi method
when applied to a rational eigenvalue problem governing damped vibrations of
a structure.

2 Arnoldi’s method for nonlinear eigenproblems

Iterative projection methods (Lanczos, Arnoldi, Jacobi-Davidson, e.g.), where
approximations of the wanted eigenvalues and corresponding eigenvectors are
obtained from projections to subspaces which are expanded in the course of the
algorithm a very efficient for linear sparse eigenproblems. In this section we
propose a method of this type for the nonlinear eigenvalue problem

T (λ)x = 0(2.1)

where T (λ) ∈ Cn×n is a family of matrices the elements of which are continuously
differentiable functions of λ ∈ D ⊂ C.
We determine eigenvalues one after another and expand the approximating

space V by a direction which has high approximation potential for the next
wanted eigenvector. A suitable direction is given by inverse iteration v =
T (λ)−1T ′(λ)x where λ and x is the current approximation to the wanted eigen-
value and eigenvector, respectively. Inverse iteration is known to converge
quadratically to simple eigenvalues, and for symmetric eigenproblems it con-
verges even cubically. Its drawback however is that it is much to expensive for
large problems since in every iteration step one has to solve a linear system
where the system matrices vary.
Replacing v by a simplified version v = T (σ)−1T ′(λ)x with a fixed shift σ

leads to wrong convergence. It is easily seen that this iteration converges to an
eigenpair of the linear problem T (σ)x = γT ′(λ̃)x (γ 6= 0 and λ̃ depending on
the normalization condition) from which we cannot recover an eigenpair of the
nonlinear problem (1.1).

Algorithm 2.1 Residual inverse iteration

1: Let e be a normalization vector and start with an approximations σ and x1

to an eigenvalue and corresponding eigenvector of (2.1) such that eHx1 = 1
2: for ` = 1, 2, . . . until convergence do

3: solve eHT (σ)−1T (λ`+1)x` = 0 for λ`+1

4: compute the residual r` = T (λ`+1)x`

5: solve T (σ)d` = r` for d`

6: set y`+1 = x` − d`

7: normalize x`+1 = y`+1/e
Hy`+1

8: end for

Neumaier [5] introduced a variant of inverse iteration given in Algorithm 2.1
which he called residual inverse iteration and which does not have this unpleasant
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property. The update of the eigenvalue approximation in step 3. is motivated
by the fact that eHT (σ)−1 is an approximation to a left eigenvector of T (σ)
corresponding to the smallest eigenvalue in modulus obtained by one step of
inverse iteration. Theorem 2.1 proved in [5] describes the convergence of this
method.

Theorem 2.1. Let T (λ) be twice continuously differentiable. Assume that λ̂
is a simple eigenvalue of problem (2.1), and let x̂ be a corresponding eigenvector
normalized by eH x̂ = 1 where e ∈ Cn denotes a fixed vector. Then the residual
inverse iteration converges for all σ sufficiently close to λ̂, and it holds

‖x`+1 − x̂‖

‖x` − x̂‖
= O(|σ − λ̂|), and |λ`+1 − λ̂| = O(‖x` − x̂‖).(2.2)

The convergence properties of the residual inverse iteration method suggest
to expand the ansatz space V in a projection method in the following way. If
λ̃ is an eigenvalue of the projected problem V HT (λ)V z = 0 and x̃ = V z̃ is a
corresponding Ritz vector, then we choose as new direction v = x̃−T (σ)−1T (λ̃)x̃.
With this expansion we may expect that the projection method has similar
convergence properties as the residual inverse iteration given in Theorem 2.1.
In projection methods the new direction is orthonormalized against the pre-

vious ansatz vectors. Since the Ritz vector x̃ is contained in the span of V we
may choose the new direction v = T (σ)−1T (λ̃)x̃ as well. For the linear problem
T (λ) = A−λB this is exactly the Cayley transform with pole σ and zero λ̃, and
since (A − σB)−1(A − λ̃B) = I + (λ − σ)(A − σB)−1B and Krylov spaces are
shift-invariant the resulting projection method expanding V by v is nothing else
but the shift-and-invert Arnoldi method.
If the linear system T (σ)v = T (λ̃)x̃ is too expensive to solve for v we may

choose as new direction v = MT (λ̃)x̃ with M ≈ T (σ)−1, and for the linear
problem we obtain an inexact Cayley transform or a preconditioned Arnoldi
method. We therefore call the resulting iterative projection method given in
Algorithm 2.2 nonlinear Arnoldi method.
Since we are interested in all eigenvalues in some region and since the speed

of convergence is expected to depend crucially on |σ − λ̃| it will be advisable
to change the shift or more generally the preconditioner M in the course of the
algorithm if the convergence to the current eigenvalue becomes too slow. So
actually we obtain a method which generalizes the rational Krylov method for
linear problems in [8], and the name nonlinear rational Krylov method would be
appropriate, too. However, since Ruhe [9] already introduced a rational Krylov
method for nonlinear problems which differs from our method quite a bit we
prefer the name nonlinear Arnoli method. We will comment on the differences
of Ruhe’s and our approach at the end of this section.
A template for the preconditioned Arnoldi method for nonlinear eigenvalue

problems with restarts and varying preconditioner is contained in Algorithm
2.2. In the following we comment on some of its steps.

1. Here preinformation such as known approximate eigenvectors of problem
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Algorithm 2.2 Nonlinear Arnoldi Method

1: start with an initial pole σ and an initial basis V , V HV = I;
2: determine preconditioner M ≈ T (σ)−1, σ close to first wanted eigenvalue
3: k = 1
4: while m ≤ number of wanted eigenvalues do

5: compute appropriate eigenvalue µ and corresponding eigenvector y of the
projected problem TV (µ)y := V HT (µ)V y = 0.

6: determine Ritz vector u = V y and residual rk = T (µ)u
7: if ‖rk‖/‖u‖ < ε then

8: PRINT λm = µ, xm = u,
9: if m == number of wanted eigenvalues then

10: STOP
11: end if

12: m = m+ 1
13: if (k > 1) & (‖rk−1‖/‖rk‖ > tol) then

14: choose new pole σ
15: determine new preconditioner M ≈ T (σ)−1

16: end if

17: restart if necessary
18: choose approximations µ and u to next eigenvalue and eigenvector
19: determine residual r = T (µ)u
20: k = 0
21: end if

22: v = Mr
23: v = v − V V Hv ,ṽ = v/‖v‖, V = [V, ṽ]
24: reorthogonalize if necessary
25: update projected problem TV (µ) = V HT (µ)V
26: k = k + 1
27: end while

(2.1) or eigenvectors of contiguous problems can be introduced into the
algorithm.

If no information on eigenvectors is at hand, and we are interested in
eigenvalues close to the parameter σ ∈ D, one can choose an initial vec-
tor at random, execute a few Arnoldi steps for the linear eigenproblem
T (σ)u = θu or T (σ)u = θT ′(σ)u, and choose V by orthogonalizing eigen-
vectors corresponding to small eigenvalues in modulus. Starting with a
random vector without this preprocessing usually will yield a value µ in
step 5. which is far away from σ and will avert convergence.

2. In our numerical examples we used the LU factorization of T (σ) if this
could be determined inexpensively and otherwise an incomplete LU fac-
torization, but every other preconditioner is fine.

3. k counts the number of iterations for fixed m. This is only needed to mea-
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sure the speed of convergence and to decide whether a new preconditioner
is recommended in condition 13.

4. Every other stopping criterion can replace the requirement to determine
m eigenvalues.

5. Since the dimension of the projected problem usually is quite small one
can solve it by inverse iteration or by residual inverse iteration. However,
differently from the linear case there is no easy way to inhibit the algorithm
to converge to the same eigenvalue repeatedly. This is the crucial point in
the algorithm, and we discuss it in detail in Section 3.

13. Corresponding to Theorem 2.1 the residual inverse iteration with fixed pole
σ converges linearly, and the contraction rate satisfies O(|σ − λm|). We
therefore update the preconditioner if the convergence measured by the
quotient of the last two residual norms has become too slow.

In our numerical examples it happened that the condition in step 7. was
fulfilled in the first step after having increased m. In this case the quotient
of the last two residual norms does not say anything about the speed of
convergence, and we do not update the preconditioner.

14. The new pole should not be chosen to close to an eigenvalue of T (·) because
this would hamper the construction of the preconditioner. A general strat-
egy cannot be given, but the proper way to choose a new pole depends on
the problem under consideration and on the method in step 5. for solving
the projected problem.

For instance, in Section 4. we consider a rational eigenproblem governing
the damped vibrations of a structure. Due to the symmetry properties of
eigenvalues and eigenvectors it is reasonable to determine only the eigenval-
ues with negative imaginary part, and to compute them one after another
with decreasing imaginary part. In this case the new pole σ can be chosen
as a moderate multiple of the last converged eigenvalue, e.g. σ = 1.05λm−1.

17. As the subspaces expand in the course of the algorithm the increasing stor-
age or the computational cost for solving the projected eigenvalue problems
may make it necessary to restart the algorithm and purge some of the ba-
sis vectors. Since a restart destroys information on the eigenvectors and
particularly on the one the method is just aiming at we restart only if an
eigenvector has just converged.

Since some of the solvers of the nonlinear projected eigenproblems in 5.
take advantage of some enumeration of the eigenvalues it is natural to keep
the eigenvectors that have been converged in the course of the algorithm.
Otherwise this enumeration would be perturbed. We therefore continue
with an orthonormal basis of Xm := span{x1, . . . , xm}. If an approxima-
tion to an eigenvector wanted next is obtained cheaply (cf. 18.) we add it
to Xm.
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18. Some of the eigensolvers discussed in Section 3. can be used to get approx-
imations to the eigenvector and eigenvalue wanted next. In this case we
continue with these approximations. If no information on the next eigen-
value and eigenvector can be gained cheaply we continue with the current
approximations.

23. v is orthogonalized with respect to the current search space V by classical
Gram–Schmidt. In our implementation we replaced it by modified Gram–
Schmidt for stability reasons.

24. If in statement 23. the norm of v is reduced in the (classical or modified)
Gram–Schmidt process by more than a modest factor κ, say κ = 0.25, then
it is appropriate to repeat the Gram–Schmidt method once.

25. Often problem (1.1) has the form T (λ) =
∑N

j=1 fj(λ)Cj with differentiable

complex functions fj and fixed matrices Cj ∈ Cn×n. Then the projected
problem has the form

TVk
(λ) =

N
∑

j=1

fj(λ)V
H
k CjVk =:

N
∑

j=1

fj(λ)Cj,k,

and the matrices Cj,k can be updated according to

Cj,k =

(

Cj,k−1 V H
k−1Cj ṽ

ṽHCjVk−1 ṽHCj ṽ

)

.

Some comments on the relations between Ruhe’s approach and ours are in
order. Ruhe derived his method from Langrange interpolation

T (λ) =
λ− µk

σ − µk

T (σ) +
λ− σ

µk − σ
T (µk) + higher order terms

where σ is a fixed parameter und µk is close to the wanted eigenvalue. Neglecting
the higher order terms one obtains the linear eigenproblem

T (σ)−1T (µk)w = θw where θ =
λ− µk

λ− σ
(2.3)

which predicts a new approximation µk+1 = µk + θ(µk − σ)/(1 − θ) to an
eigenvalue of the nonlinear problem. Applying for each k = 1, 2, . . . one step
of Arnoldi’s method to the linear problem (2.3) and updating the Hessenberg
matrix in the Arnoldi process as µk varies one obtains a sequence of linear
eigenvalue problems which approximate the projection of the nonlinear problem
T (σ)−1T (λ)x = 0 to a subspace of small dimension. To improve this approxi-
mation one has to introduce inner iterations based on the regula falsi method
for every k.
An advantage of Ruhe’s approach upon ours is the fact that the method accepts

a function that evaluates the residual rk = T (σ)−1T (µk)xk for given µk and xk
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but it does not need the explicit form of a projected problem. On the other
hand the inner iterations which are necessary to adjust the linear approximation
to the nonlinear problem T (σ)−1T (λ)x = 0 and which are not needed in our
approach are very expensive.
Moreover, motivating the choice of the expansion v by the residual inverse

iteration it is obvious that T (σ)−1 can be replaced by a preconditioner M ≈
T (σ)−1 which is not clear from the derivation of Ruhe. Further, the convergence
result of Neumaier for the residual inverse iteration suggests a strategy when
to change the shift σ, and finally, if the matrices T (λ) are symmetric and the
eigenvalues can be characterized as minmax values of a Rayleigh functional then
this property is inherited by the projected matrices and can be utilized to solve
the projected problems very efficiently.

3 Solving the projected problems

A crucial point in iterative projection methods for general nonlinear eigenvalue
problems is to inhibit the method to converge to the same eigenvalue repeat-
edly. For linear eigenvalue problems this is no problem since Krylov subspace
solvers construct the basis of the ansatz space without employing approximate
eigenvalues, and if several eigenvalues are computed by the Jacobi–Davidson
method then one determines an incomplete Schur factorization thus preventing
the method from approaching an eigenvalue which was already obtained previ-
ously. For nonlinear problems a similar normal form does not exist.
If T (λ) is a family of real symmetric matrices and D is a real interval such

that the eigenvalues of problem (1.1) can be characterized as minmax value of a
Rayleigh functional (cf. [11]) then there is a close relation between the nonlinear
problem (1.1) and the symmetric linear eigenproblem

T (λ)u = µu (or T (λ)u = µT ′(λ)u if T ′(λ) is positive definite).(3.1)

In particular, if λ̂ ∈ J is an eigenvalue of (1.1) then µ = 0 is an eigenvalue of

(3.1) with λ = λ̂, and if µ = 0 is the m-largest eigenvalue of (3.1) then the so
called safeguarded iteration in Algorithm 3.1 converges locally and quadratically
(or even cubically) to λ̂.

Algorithm 3.1 Safeguarded iteration

1: Start with an approximation µ1 to the m-th eigenvalue of (1.1)
2: for ` = 1, 2, . . . until convergence do

3: determine eigenvector u corresponding to m-largest eigenvalue of (3.1)
4: solve uHT (µ`+1)u = 0 for µ`+1

5: end for

Since there is at most one m-th eigenvalue in D this result suggests to solve
the projected problem by safeguarded iteration. Arnoldi’s method for symmetric
nonlinear eigenproblems with safeguarded iteration as inner iteration to solve the
projected problems was discussed in [10].
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In the general case the following strategy is similar to safeguarded iteration.
Assume that we want to determine all eigenvalues of problem (1.1) in the vicinity
of a given parameter σ0 ∈ D, and that already m − 1 eigenvalues closest to σ0

have been determined. Assume that µ̃ is an approximation to the eigenvalue
wanted next.
A first order approximation of problem (1.1) is

T (λ)x ≈ (T (µ̃)− θT ′(µ̃))x = 0, θ = µ̃− λ.(3.2)

This suggests the method of successive linear problems introduced by Ruhe [6].

Algorithm 3.2 Method of successive linear problems

1: Start with an approximation µ1 to the m-th eigenvalue of (1.1)
2: for ` = 1, 2, . . . until convergence do

3: solve the linear eigenproblem T (µ`)u = θT ′(µ`)u
4: choose the eigenvalue θ such |σ0 − (µ` − θ)| is the m–smallest among the

eigenvalues
5: µ`+1 = µ` − θ
6: end for

Of course this method is not appropriate for the sparse problem (1.1), but the
dimension of the projected problem in step 5. usually is quite small, and every
standard solver for dense eigenproblems applies.
Quite often the nonlinear eigenvalue problem under consideration is a (small)

perturbation of a linear eigenvalue problem. In the next section we will consider
a finite element model of a vibrating structure with nonproportional damping.
Using a viscoelastic constitutive relation to describe the behaviour of a material
in the equations of motions yields a rational eigenvalue problem for the case of
free vibrations. A finite element model obtains the form

T (ω) :=



ω2M +K −

J
∑

j=1

1

1 + bjω
∆Kj



x = 0(3.3)

whereM is the consistent mass matrix, K is the stiffness matrix with the instan-
taneous elastic material parameters used in Hooke’s law, J denotes the number
of regions with different relaxation parameters bj , and ∆Kj is an assemblage of
element stiffness matrices over the region with the distinct relaxation constants.
The real part of an eigenvalue is the exponential rate with which the motion
described by the corresponding eigenvector x decays. The imaginary part is the
(damped) angular frequency with which the motion described by x oscillates
It is well known that often the eigenmodes of the damped and the undamped

problem do not differ very much although the eigenvalues do. Therefore, in
step 5. of the algorithm it is reasonable to determine an eigenvector y of the
undamped and projected problem (ω2V HMV + V HKV )y = 0 corresponding
to the m-largest eigenvalue ω2

m, determine an approximate eigenvalue ω̃ of the
nonlinear projected problem from the complex equation yHV HT (ω)V y = 0 or
eHV HT (σ)−1T (ω)V y = 0, and correct it by (residual) inverse iteration.
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Fig. 1: Trapezoidal plate / Eigenvalues

4 Numerical experiments

To test the Arnoldi method we consider the rational eigenvalue problem gov-
erning damped vibrations of a structure which was mentioned in the last section.

A trapezoidal plate {(x, y) : 0 ≤ x ≤ 5, 0.2x ≤ y ≤ 5 − 0.2x} (cf. Fig. 1) is
subject to plane stress, and is clamped at the side given by x = 0. The instanta-
neous Young’s modulus is set to E = 2.10∗1011, the instantaneous Poisson’s rate
is ν = 0.33, and the density is set to ρ = 7800. For the nonproportional damping
we use in addition the following parameters, ∆ν = 0.28, and ∆E = 7 ∗ 1010 for
0 < x < 1, ∆E = 6 ∗ 1010 for 1 < x < 2, ∆E = 5 ∗ 1010 for 2 < x < 3,
∆E = 4 ∗ 1010 for 3 < x < 4, and ∆E = 3 ∗ 1010 for 4 < x < 5. The relaxation
constant is set to b = 2 ∗ 10−5.
Discretizing this problem by linear Lagrangean elements we obtained the ratio-

nal eigenproblem (3.3) of dimension 9376. For symmetry reasons we determined
only eigenvalues with negative imaginary part, and we computed 50 of them one
after another with decreasing imaginary part. The nonlinear projected eigen-
problems were solved by inverse iteration with an initial guess obtained from the
corresponding undamped projected problem as explained at the end of Section
3.
The experiments were run under MATLAB 6.5 on a Pentium 4 processor with

2 GHz and 1 GB RAM. We preconditioned by the LU factorization of T (σ), and
terminated the iteration if the norm of the residual was less than 10−6.
The algorithm without restarts needed 258 iteration steps, i.e. an average of

5 iterations per eigenvalue, and a CPU time of 559.6 seconds to approximate all
50 eigenvalues with maximal negative imaginary part. With the tolerance tol =
10−1 in step 13. of the Arnoldi algorithm only 2 updates of the preconditioner
were necessary. Fig.2 contains the convergence history.
The dominant share of the CPU time, namely 359.4 seconds, was consumed

by the solver of the nonlinear eigenproblems. Fig. 3 demonstrates the develop-
ment of the CPU times of the entire iteration and of the share of the nonlinear
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eigensolvers. It demonstrates the necessity of restarts since the superlinear time
consumption is mainly caused by the eigensolver.
We restarted the Arnoldi process if the dimension of the ansatz space exceeded

80. Again all 50 eigenvalues were found by the method requiring 272 iterations
and 197.7 seconds where 19.4 seconds were needed to solve the nonlinear pro-
jected eigenproblems and 12.8 seconds to determine the 6 LU factorizations
necessary in this run. Fig. 4 contains the convergence history. It looks very sim-
ilar to the one without restarts, however, it demonstrates that after a restart the
speed of convergence is reduced. Typically, as for the method without restarts
an average of 5 iterations was needed to find the next eigenvalue, after a restart,
however, an average of 14 iterations was needed to gather enough information
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Fig. 3: Development CPU time consumption without restarts
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Fig. 4: Convergence history with restarts

about an ansatz space and to converge.
Fig.5 demonstrates the history of CPU time consumption for the entire Arnoldi

method, the nonlinear eigensolver and the LU factorizations where we termi-
nated the iteration if the norm of the residual was less than 10−4 (for 10−6 the
graph for the nonlinear eigensolvers and the LU factorization could not have
been distinguished from the x-axis).
The nonlinear Arnoldi algorithm showed a similar behaviour if the projected

eigenproblems are solved by the method of successive linear problems. To deter-
mine 20 eigenvalues in the vicinity of σ0 = −200−2000i it needed 101 iterations
and 82.4 seconds, and the LU factorization was updated once.
For comparison we determined 50 eigenvalues with maximal negative imag-
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Fig. 5: Development CPU time consumption with restarts
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inary part of the nonlinear eigenproblem (3.3) by the rational Krylov method
introduced by Ruhe [9] and worked out in detail by Hager [2] and Jarlebring [4].
The method found all 50 eigenvalue requiring 2160 (inner and outer) iterations,
a total CPU time of 1323.5 seconds and 8 LU updates.

Acknowledgement The author gratefully acknowledges the assistance of
Elias Jarlebring who provided the MATLAB implementation of the rational
Krylov method.
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