Algorithms for Verified Inclusions:
Theory and Practice

*
Siegfried M. Rump)

IBM Germany
Development and Research
Schoenaicher Strasse 220

7030 Boeblingen

West Germany

Summary. In the following basic principles of algorithms
computing guaranteed bounds are developed from a theore-
tical and a practical point of view. Some fundamental the-
oretical facts are repeated where, for more detailed
infermation, the reader is referred to the literature (e.qg.
[Ru83], [RuB87] and the references mentioned in these pa-
pers). -

Furthermore practical aspects are discussed, especially how
the process of computing a guaranteed result really works
out on a digital computer. The verification process 1is
performed by means of checking assumptions cof mathematical
theorems. This checking process is performed automat-
ically. The wvarious steps from the mathematical theorem
down to the practical verification are described in detail.

In contrast, standard fleoating-point algorithms usually
deliver good approximations to the solution of a given nu-
merical problem but there 1s neither a wverification or
guarantee about the quality of the approximation nor must
a solution to the given problem actually exist. There are
simple examples where the floating-point approximation is
drastically wrong.

A programming environment has been developed which allows
to specify commands to the computer in mathematical nota-
tion. Because the system (preliminary name CALCULUS) works
interactively, no type specification 1s necessary at all
allowing specifying algorithms like in a math book.

CALCULUS works right now on IBM System /370 machines under
VM operating system. It is planned to have a C version for
IBM System/2, SUN work stations and others available early
next year. Some examples demonstrating the system are pre-
sented. :

o WA e A e o R

present address: Informatik III, Technical University,
Eissendorfer Str. 38, 2100 Hamburg 90, West Germany

0. Introduction. The thecoretical basis for algorithms with
guaranteed results has been developed in a series of papers
since 1979. The algorithms are based on a so-called inclu-
sion theory providing necessary conditions for standard
problems of numerical analysis to be solvable and yielding
regions in a constructive way, where there is provably a
uniquely defined solution of the given problem. The basic
property of all those theorems 1s that the assumptions can
effectively be verified on digital computers.

The inclusion theory provides theorems for a large number
of standard numerical problems such as general systems of
linear egquations, sgpecial linear systems with band or sym-
metric matrix, matrix inversion, algebraic eigenproblems,
polyneomial zeros, polynomial evaluation, linear, gquadratic
and convex programming problems, evaluation of arithmetic
expressions, over- and underdetermined linear systems,
general nonlinear systems of equations, differential
equations and others. The key property of the algorithms
based on the inclusion theory is that every result is ver-
ified to be correct by means of the automatical proof, that
the preoblem is solvable (non-singularity) and by delivering
bounds for the solution. In case, a problem is not solv-
able (e.g. inversion of a singular matrix), a respecting
mesgage is given. .

A common approach to estimate the error of a floating-peint
computation is to evaluate in more than one precision and
compare the results. However, this doces not imply any
guarantee of the correctness of coinciding figures. Con-
sider the following example. Compute

£ = 333.75Db° + a? (1la?b? - b® - 121b* =~ 2) +
5.5b% + a/(2b)

for a = 77617.0 and b = 33096.0

To calculate the wvalue of the polynomial a FORTRAN program
has been written, the computer in use 1s a S/370 main
frame. All input data is exactly representable, the only
errors occurring in the computation are rounding errors and
mainly cancellation errors. In order to test the arithme-
tic rather than standard fuhctions every exponentiation is
replaced by successive multiplications. The program calcu-
lates the values for £ in single, double and extended pre-
cision eqguivalent to approximately 6, 17 and 34 decimal
digits precision. The obtained values are the following:

+ 1.172603 ...
+ 1.1726039400531 .
+ 1.172603940053178 ...

single precision £
double precision : f
extended precision £

o

All three wvalues agree in the first 7 figures, whereas the
true value for f is

exact wvalue : £ = = 0.827396059946821§
indicating that the first figures -0.827396... are guaran-

teed and the sixteenth figure afiter the decimal point is

between 3 and 4. This result was obtained by an ACRITH
algorithm yielding verified inclusions (cf. [ACR86]). It
is guaranteed to be correct.

Analyzing the expression above yields immediately the ex-
treme sensitivity with respect to the input data. The 8th
power of a 5-digit number yvields a 40 digit result and a 1
figure (left of the decimal point) result on a 34-digit
computer is by no means of any significance. On the other
hand the polynomial need not to occur at once, the input
data may be read from a file and the user can't analyze
every operation in a million operation program.

The interactive programming envircnment to be desg¢ribed and
used in chapter 3 adapts the mathematical notation as close
as possible. E.g., a complex number is written as 3-51 (as
an example), a tolerance can be specified by 5+/-.0001,
operators like matrix multiplication or scalar products are
directly accessible thru the multiplication operator etc..

The interactive programming environment CALCULUS has been
developed without knowing MATLAB. After all many notations
turn out to be very similar to the MATLAB notation (without
having known them before). This fact gives the author much
confidence that the notation is indeed very near. the math-
ematical notation and is easy to learn and to understand.

1. Basic theorems. We start with a brief description of
the mathematical basis, the inclusion theory. Consider a
system of nonlinear equations f(x) = 0O, where £:87 > P is

a continuously differentiable functicon in n unknowns. Con-
sider the Newton iteration

k+1 k 1
b4

= xF - e () ter(x™)

and the simplified Newton iteration

K o 2B L ores(x®y

where R is an approximate;inversejof the inverse of £' at

some fixed point x. Consider the function g:Rn > g% defined
by

g(x) = x -~ Ref(x)

If there is a set X, an element of the power set PR™ of

Rn, which is compact and convex such that g maps X in it-

self, then by the Fixed Point Theorem of Brouwer there is
a fixed point & of the function g in X.

To obtain a zeroc of the function £ from a fixed point of
the function g a contraction principle is used. Consider
the following theorem (cf. [RuB871}]):

Theorem 1. Let ZéEPRn be a set of vectors, CEZann be a

set of matrices and X ¢ PR be a compact set of vectors.
If then

Z + ¢ *X ¢ int(X) ,

then for every matrix Ce ¢ holds: p(C) < 1

Here int(X) denotes then interior of the set X. The oper-
ations in theorem 1 and throughout this chapter are the
rower set operations.

Previcus versions of +this theorem have been given in
[Ru83]. Note that in theorem 1 the set X is not supposed
to be convex. Theorem 1 allows to verify the contraction
property of a matrix on the computer. In fact, if the sets
are represented e.g. as intervals, then the convergence of
a matrix can be automatically verified on computers without
any norm estimation (which is, in general, an overesti-
mation).

Theorem 1 can be applied to systems of nonlinear eqgquations.
With the definition of a Jacobian for sets:

£(X) := { £'(x) | x€X}

for Xefwn we have the following theorem:

Theorem 2. Let £:87 > 8™ be a continuously differentiable
n

. . i X . n
function in n unknowns, Re&R be a matrix, xeXR be a

vector and X € PR be a compact set of vectors. If then
(1) x = Ref(x) + { Id - Ref'(xv X) } *(¥-x) ¢ int(X) ,

then the §ystem of nonlinear equations f£(x)=0 has a unigue
solution X in X.

Id denotes the identity matrix and v the convex union.
Theorem 2 verifies the existence and uniquehess of a sol-
ution of £(x}=0 in the inclusion X. There are correspond-
ing theorems for a large number of numerical standard
problems listed above with similar properties (cf. [Ru83]).

Note that theorem 2 does neither require additiconal infor-
mation on the matrix R nor on the function f such as R being
nonsingular or £ having a Zero nearby the approximation x.
All properties necessary prove thru assumption (1) which
can be verified con computers.

Theorem 2 applies directly to systems cof linear equations.
We mention a respective theorem explicitly because in the
subseguent examples we will deal with systems of linear
equations for the sake of simplicity. However, it should
be mentioned that also larger systems of nonlinear
equations have been treated with great success, i.e. very
sharp bounds for the solution have been computed (see

[Ru83] and [Ru87]). The examples in these papers include
ill-conditioned systems of nonlinear equaticns.

Theorem 3. Let Ae;Rnxn be a real matrix, bek” be a vector,

Re Rnxn be a matrix, xe Rn be a wvector and XePﬁ’n be a
compact set of vectors. If then

(2) Re{b-A*x } + { Id - R*A } *» X ¢ int(X) |,

then the matrices R and A are not singular, the linear
system A-xA: b is uniquely solvable and the soclution R
satisfies xe x+X.

The inclusion theory alsc allows to handle data afflicted
with tolerances. This will be illustrated by an example of
a theorem for systems of linear eguations.

X1

Theorem 4. Let 4 e PR be a set of matrices, be PRV be a

n

% . n
set of vectors, Re R ke a matrix, X €k be a vector and

X € PR” be a compact set of vectors. If then
(3) Re{ b=Asx } + { Id ~ R = 4 } X ¢ int(X) .,

then the folleowing is true: For every real matrix A with
AeAd and for every real vector b with be b the system of
linear equations A*x = b 1s uniquely solvable and the sol-
ution X satisfies X & x+X.

The capability of solving problems afflicted with toler-
ancesg 1s very important. As scon as a single (real)} problem
within the tolerances is net solvable due to a singularity
this fact is reported by the corresponding algorithm. There
are theorems like the one above for a large number of nu-
merical problems (cf. [Ru83]).

The theorems mentioned above apply as well to complex data
and to complex data afflicted with tolerances. For more
details see e.g. [Ru831}.

2. Practical verification on the computer. The power set
operations reguired in theorems 1 to 4 1in the previous
chapter are in general not executable on digital computers.
For the purpose of verifying the assumptions we will use
interval operations.

The basic property of interval arithmetic is isotonicity.
This property will be used several times in the following
discussions. For detalls abcut interval arithmetic see for
instance [AlHe83] or [Mo79].

In the following illustrations we will use a
3-decimal-digit computer with expcnent range large enough
to avoid over- and underflow. The number representation

will cover 3 significant decimal digits (3 digits in the
mantissa}.

An interval is a set of real or complex numbers, vectors
or matrices. In the feollowing we will use rectangles over
real and complex numbers. Then a real interval is a set
of the form

{ xeR | a<€£x<b} for some a,be & .

A complex interval is defined similarly using the induced
order relation:

{xe] a<x<b} for some a,be ¢

Interval vectors and matrices are defined to be vectors and
matrices of intervals, respectively. We denote the get of
intervals, interval vectors and interval matrices over real

numbers by IR, IR™ and IRnxn, those over the complex numbers
by IC, et and.ICnxn, respectively.

If the left and right endpoints of an interval are (real
or complex} floating-point numbers, we denote the set of

those intervals by 17, IF% , 1PV, ror, 1cr™ and rer™n,
respecitvely. In this case the two fleocating-peint bounds
describe a set of real or complex numbers on the computer.

On a 3~=decimal-digit computer the number = can be repres-
ented by [3.14,3.15] including the true number w=3.14159...

All basic operations can be performed over intervals, e.dg.
e € [9.85,9.83] obtained by multiplying the left and right
bounds, respectively. The bounds of the result are always
rounded outwards. Interval calculations do, in general, not
cover dependencies between variables. For instance

m-m¢€ [3.14,3.15] - [3.14,3.15] = [-0.01,+0.01]

introducing an overestimation. All standard functions can

be applied to intervals as well. E.qg.
sin(ﬂ)e,sin([S.lé,S.ISj) = [sin(S.lS),sin(3.l4)} ¢
[-0.00841,+0.00160]

using menotonicity properties of the sine function near .
In case of extrema within the argument interval special
care 1s necessary:

sin(wm/2) € sin([3.14,3.151,/2) ¢ sin(]1.57,1.58] ¢
[min{sin(1.57),sin(1.58)},1.00] ¢ [0.999,1.00]

With case selecticns all standard functions can be extended
to interval argument {(see [Br87] and [Kr87]).

The essential property of interval analysis, the
isotonicity, yvields that when replacing all operations in-
cluding standard functions by the corresponding interval
operations and interval standard functions the computed
result will definitely include the true result. Because of

the earlier mentiocned overestimation by interval operations
the functions to be evaluated have to be defined in a way
to minimize this overestimation. The formulas (1) to (2)
in thecrems 2 to 4 meet this requirement.

The evaluation of an inclusion of a function f:Rn'+Rn can
be split in the fellowing five steps:

1) f{x), x R with real operations over 2
2) (X)), X IF" with g(X):={f(x)]x X} and x X
3) h(X), X Faa PR™ replacing cperations in g by

rower set operations over e

43 H(X), X IF? Iya replacing coperations in h by
interval operations over Rn

5) F(X), X 7t replacing operations in H by

. . n
interval operations over F

We will illustrate the five steps in the following by means
of an example. Let

f(x) := (x + 71) » {(% - 71)

where we wish to calculate f(e), e being the base of the
natural logarithm. Obviously

f(x) = x* + ¢°
Therefore the result of the first step is a real number
1) f(e) = e* + 72 = 17.258G6... € R ,

which is in fact the true result. In the second step num-
bers which cannot be exactly representable on the computer
are replaced by the smallest interval (with floating-point
bounds) containing that number. In our example we have with
E=[2.71,2.72] and P=[3.14,3.15]:
2) 9(E) = { f(x) | x E, x R} = |
{ (atpei}e(a-p*i) | a E, p P} =
{ a?+p?* | a E, p P} =

{ = R | 17.2037 £ x £ 17.320

The evaluation makes use of the monotonicity of the sguare
function. This evaluation is not possible on computers be-
cause it reguires real operations within the computation
of the function values of f and requires a complete analy-
sis of the extrema of f.

In the third step the function g is evaluated by using
power set operations in a step by step mode, i.e. replacing
every operation 1in the formula for g by its corresponding
power set operation. This introduces an overestimation due
to wvarilabkles occurring more than once. In our example we
have for E=[2.71,2.72] and P=[3.14,3.15]:

3) h(E) =
{ (E+Pei}*(E-P*i} | +,-,* power set operations }
{ (al+plei)e(a2-p2*i) | al,a2 E, pl,p2 P,
+,~,* real operations }

The result is a belly out square. Regarding E+P+i and
E~P*i as complex intervals this curve can be sketched by
taking sample points on the boundary of the first interval
and multiplying them by the boundary of the second interval
(each product vyielding a rectangle) and pletting all
result-rectangles in one picture. The result (obtained by
CALCULUS) is the following:

8.50600

600 j ; ! : ; j ; i ' ; H ! i
17.2600 17.3300

In the fourth step the power set coperations used in step 3
are replaced by interval operations over F. That means the
ounds of the interval are real numbers. The result using
E=[2.71,2.72] and P=[3.14,3.15] (all operations are inter-
val operations over R} is:

4) H(E) = (E+Pei)s(E-Pei) =
(EsE + PeP) + ie{ PsE - E*P) =
([7.3441,7.3984] + [9.8596,9.9225]) +
is([8.5094,8.568] - [8.5094,8.568] =
[(17.2037,17.3209] + i¢[-0.0586,+0.0586]

There is no overestimation introduced in the real part be-
cause of the monotonicity c¢f the square function (over the
positive real axis). The imaginary part is overestimated
compared to step 2. :

The final step is replacing the interval operations over
the real numbers by interval operations over flocating-point
numbers. The result using E=[2.71,2.72] and P=[3.14,3.15]
(all operations are interval operations over F) is:

5) H(E) = (E+Pei)es(E-Pe*i) =
(E*E + PeP) + is(P*E - E*P) =
([7.34,7.40] + [9.85,9.93)) +
is([8.50,8.57] - [8.50,8.57] =
[17.1,17.4] + i¢[-0.07,+0.07]

This is the final result when replacing real numbers which
are not exactly representable by floating-pcint numbers by
the corresponding smallest fleating-point intervals and
replacing real operations by the corresponding interval
operations.

Clearly, the result of every step is included in the result
cf the succeeding step:

f(x) e g(X) ¢ h(X) ¢ H(X) ¢ F(X)
For f£(Y), where ¥ is element of PRn, an extra step has to

be introduced. We regard the calculation of f£(Y) as the
O-th step:

0) £(Y), Y PR™ with £(Y):=({f(y)ly Y}

1) £(2), Z IR with £(2):=(f(z)|z 2} and ¥ 2

2) g(X), X IFY with g(X):={f(x)Ix X} and 2 X
n

3) h(X), X IF PER™ replacing operations in g by

power set operations over g™

43 H(X), X 7" R® replacing operations in h by
interval operations over g™

5) F(X), X P replacing operations in H by

. . n
interval operations over ¥

Here steps 0 to 2 change the set of vectors Y (which is,
in general, not representable on computers) into the in-
terval vector X with floating-point endpoints.

Again, the result of every step is included in the result
of the succeeding step. If £ is the function occurring on
the left hand side of formula (1), (20 or (3) of the pre-~
ceding chapter, then F(X) ¢ int(X) implies immediately
f(X) ¢ int(X) proving the assumption of theorems 2, 3 or 4,
resp. from which ‘the assertions fellow. This is the proc-
ess of automatic verification on the computer, because
F(¥X) ¢ int(X) can inhdeed be checked on digital computers.

3. Interactive Programming Environment. An interactive
programming environment has been written with the following
objectives:

- All commands ¢lose to mathematidal notation

-~ support of all wvector and matrix operations

- support of real and complex numbers and intervals
-~ built-in precise scalar product

- accegs teo a larde subroutine library

- generic concepts in the definition of operators

The programming environment runs on all IBM 5/370 machines.
The interpretative part is written in PASCAL, all numerical
subroutines in FORTRAN. Access to LINPACK and EISPACK is
provided. The programming has been performed by Dirk
Husung in very short time with superb quality.

Although the syntax was defined without knowing MATLAB it
turned out to have a number of similarities. This gives the
author much confidence that indeed a definition has been
found close to mathematical terms.

Following we give some examples how to use the programming
environment. Due to limited space we can only give very
few highlights. The input lines (input from the console

or from a file) are marked by "I" at the far right hand

side, output lines are marked by an "O". All computations
are performed in /370 double precision, i.e. 14 hex or ap-
proximately 16-17 decimal digits. We start with some ex-

amples on accurate scalar products.

exec pascal(5,P), P I
P = (5,5)-real-dot-matrix O
O

2 3 4 5 6 0

3 6 10 15 21 O

& 10 20 35 56 0

5 15 35 70 126 0

=} 21 56 126 252 0

First we generate a 5x5 Pascal matrix, which is the top of
a Pascal triangle. Next we solve a linear system with ma-
trix P and right hand side b purely numerical, i.e. using
LINPACK routines.

=

b=(1:5)'; format £f10; x=P\b
X = (5,1)-real-dot-matrix

-1.5000000000
3.3333333333
-2.5000000000
1.0000000000
-0.1666666667

oNeNeNeRORONG

The residual P*x~b 1is calculated using two separate oper-
ations, the matrix-vector multiplication (the result of
which is rounded) and the vector-wvector subtracticn. Due
to cancellation few digits of the result will be correct.

P*x-b

—

ANS = 1E-14 * (5,1l)~real-dot-matrix

.1102230246
.1990408666
.1324274851
.3996802889
. 2442490654

OOk
oNoNoNORaRONG

As expected the residual is of small magnitude (common
factor 1E-14). Floating-point arithmetic displays just as
many figures as are asked for regardless how many figures
are correct. We can check on the accuracy of these
floating-point figures by calculating the residual using
interval arithmetic. The result will be as sharp as possi-
ble because there are no overestimatiocons: every variable
occurs only once.

ival P*x-b

=

ANS = 1lE-14 * (5,1)~real-interval-matrix

OCOoOHRP B
N b B
QOO0 QO0O0

In our interval format only as many digits are displayed
as are correct. To be precise: Adding and subtracting one
unit in the digit displayed immediately left to the left-
most underline-bar yields a correct inclusien interval of
the result.

Finally we calculate the residual using a precise inner
product. This is called just by placing an ! left to the
expresgsion to be evaluated. If the user wishes to store
the result using several residuals (Stetter c¢alls 1t
"staggered correction') he simply specifies k! where k de-
notes the number of residuals to be stored.

' {P*x-b)

]

ANS = 1E=14 % (5,1)-real-dot-matrix

1.1088352458
1.2032042029
1.13936683790
0.4080069615
0.2359223927

O0Q00OCOO0

These figures are all correct because an inner product is
calculated with maximum accuracy. As expected it shows that
only two figures of the fleoating-point result are correct.
Several other formats are available such as the i-format
showing left and right bounds of an interval, e-~format with
exponent for every number, h-format for hexadecimal output.

Next a non-contextfree feature of CALCULUS will be demon-
strated. If in an expression in CALCULUS at 1least one
variable is of type interval (scalar, vector or matrix),
then the entire expression will be evaluated using interval
operations (including solution of linear systems, matrix
inversion etc. using the inclusion algorithms).

Consider the exponential function of a matrix. The result
matrix can be calculated using a truncated Taylotr series
and Horner's scheme. Following is a small CALCULUS-program
for that purpose:

// C© = exp(A) evaluated by Horner's scheme (n terms)

module (n,A,C);
C = A;
for i=n:2:=-1 do C = (C/1i + Id } * A ;
C =C + Id;

HoH 1 H

Input parameters are the highest exponent n, the input ma-
trix A and the result matrix C. Within the program the ge-
neric variable Id is used, which is an identity matrix
adjusting its size automatically. This program is stored
in the file exp and called by its name.

Before applying this program we check on the eigenvalues
of P.

format £5; eig(P)

i

ANS = (5,1}-real-dot-matrix

0.00528
0.13946
1.58572
15.43123
332.83831

0000 CO0O

We change the matrix P such that the spectral radius is
less than one:

P=P/333; eig(P)

—

ANS = (5,1)~real~dot=-matrix

. 00002
.00042
. 00476
. 04634
.99951

oNoNoNoRe
OCOO0OQO00

The matrix P has been changed forced to be contracting.
Using the Tavlor series for the computation of exp(P) up
to n=20 therefore yields an error less than 1/20!'=4.1E-19
or at least 18 figures (with exact computations). We check
this result against the built-in exponential function for
matrices by calculating the norm of the difference matrix
(again the notation is very near to mathematical notation):

[

exec exp(20,P,C); D=exp(P); |C-DJ

ANS =

O0C

1.22663E-15

This is a purely numerical result without any guarantee
invelived. It suggests that the built-in exponential func-
tion for matrices (in this case) is accurate to 15 figures.
We can easily change this approximate result into a guar-
anteed result. We simply replace the matrix P by P+/-0
forcing the argument to be of type interval. This implies
all operations in the subroutine exp to be performed in
interval arithmetic with a result (interval) matrix of er-
ror less than 1E-19.

exec exp(20,P+/-0,C); D=exp(P}; [C-D| I
ANS = interwval 0]
O

1. E-15 O

The result shows that indeed the built-in matrix exponen-
tial functicon is at least accurate to 15 figures. This re-
sult is guaranteed to be correct.

CALCULUS supports tradltional statements such as for, loop,
if, exit etc. The syntax is much like as in so-called
Pseudo-programs fregquently listed in math papers.

Many of the constructs are generic. For example the colon
is used for matrix and vector arguments to switch from
standard mathematical operators to elementwise operators.
This is true for a number of operators such as +, -, *, /,
relational operators, all trig/exp/log functions, sgrt and
others. This is one concept the user has to learn once and

may apply it to many built-in routines.

Performing a sensitivity analysis using CALCULUS is wvery
simple. Consider the previously defined matrix P. We in-
vert the matrix P with a relative tolerance of 1E-8. That
means every matrix within a relative distance of less than
or egual 1E-8 will be inverted, the nen-singularity of ev-
ery such matrix will be shown and the set of all inverses
cf those matrices will be included. The result is displayed
below (here only the first three columns are shown; the
remaining two lock similar):

format £8; re(inv(P*(l+/-1le-8))) I
ANS = 1lE+04 #* (5,5)~real-interval-matrix O
O

0.5828 -1.166 1.049 O
-1.166 2.642 -2.564 .- - 0
1.049 -2.564 2.647 .. - O
-0.4662 1.199 -1.299 O
0.0833 -0.2220 0.2498 o

By changing the feormat to 'display 8 figures it 1s imme-
diately clear {from the number of underline bars displayed)
that approximately 4 to 5 figures are lost which means a
condition number of between 1.E4 and 1.E5. The conditicn
number can be (numerically, without guarantee) calculated
separately.

cond(P) I
ANS = O
0

63005.45737889 O

Finally we will mention an extremely ill-conditioned exam-
ple. Consider a Hilbert 15x15 matrix. We choose a right
hand side such that the solution consists of the components
1..15. For solving the linear system with Hilbert matrix

and that right hand side we use the ACRITH linear system
solver.

H

n=15; b=(1l:n)'; h=hilb(n); lss(h,h*b)

ANS = (15,1)-real-dot-matrix 0
0

1 o)
2 0
3 0
4 o}
5 0
6 e}
7 o}
8 0
9 o
10 0
11 o
12 O
13 e}
14 o)
15 O

Using a standard numerical algorithm gives an error message
that the linear system is too ill-conditicned.

However, there are cases where a standard numerical algo-
rithm produces drastically wrong results. Consider a lower
triangular matrix with all 1's in the diagonal and 2's be-~
low the diagonal (cf. [Neu87]):

2 I

for i=1:20 do for j=1:20 do if i>j then a(i,j)
_ 1 I

else if i==3 then a(i,j)=
Computing the eigenvalues of that matrix (which are all 1
and clearly very ill-conditioned) using EISPACK yields the
following result:

eig(A)

H

ANS = (20,1l)-complex-dot-matrix

.38726248 +0.075258361)
.38790457 ~0.071742661)
.32675171 +0.205816311i)
.32850272 -0.202835331)
.22516701 +0.295670671)
.10782683 +0.337211321)
.22762994 -0.2S%3513671)
.899507345 +0.336010921i)
.11063798 -0.335892051)
.89858074 +0.302993161)
.99804708 ~0.3354355691)
.82305723 +0.248975311)
.76913374 +0.182566561)
.901656407 -0.303136941)
. 73550008 +0.10996239i)
.72009005 +0.035251451)
.82619613 ~0.249948611)

oNeNoNoNoNoNoReNoNeRoRe RO N ReRONONO NG,

P P P N P A i, T
CO0O00C0O0OHDODRHREIHR

(0.72101034 -0.039424351) o)
{ 0.73783840 -0.,113198951) 0
(0.77212545 -0.184588221i) 0

Using a today inclusion algorithm will give an error mes-
sage that no inclusion could be computed because the prob-
lem is too ill-conditioned. It would definitely not give a
wrong result.

CALCULUS has been used in several courses and seminars. It
turned out to be extremely useful in a teaching environment
as well as a research tcol. It should not be used as a
preoduction 1like program. The next wversion of CALCULUS,
which will be programmed in C, will cover part of this.

Because of the extremely powerful operators, code written
in CALCULUS is wvery short, easy to read and easy to debug.
The number of lines of cede in a typical numerical appli-
cation program decreases by an order of magnitude using
CALCULUS instead of FORTRAN. When developing the code in
very short time using CALCULUS and then switching to
FORTRAN for production code there is the additional advan-
tage that CALCULUS is a specification in mathematical no-
tation which 1is executable, 1i.e. against which can be
tested.

4. References.

[ACRS86] ACRITH, High-Accuracy Arithmetic Subroutine Li-
brary, Program Description and User's Guide, IBM
Publications, Document Nunmber SC33-6164-3
(1986).

[A1lHe83] Alefeld, G. and Herzberger, J.: Introduction to
Interval Computations, Academic Press, 1983.
ACADEMIC PRESS, New Yorkf(1981).

[(Br87l Hochgenaue Standardfunktionen fuer reelle und
komplexe Punkte und Intervalle in beliebigen
Gleitpunktrastern, Ph.D., University of
Karlsruhe, 1987. .

[Kx87] Inverse Standardfunktionen fuer reelle und
komplexe Intervallargumente mit a priori
Fehlerabschaetzungen fuer beliebige
Datenformate, Ph.D., University of Karlsruhe,
1987. '

[KuMi&8l] Kulisch, U. and Miranker, W.L.: Computer Arith-

metic in Theory and Practice, ACADEMIC PRESS, New
York (1981).

[KuRu87]

[Mo79]

[Neu87]

[PAS87]

[Ru83]

[Rug4]

[Rus7]

[SIE86]

Kulisch, U. and Rump, S.M.: Rechnerarithmetik
und die Behandlung algebraischer Probleme, in
Buchberger /Feilmeier/ Kratz/Kulisch/Rump:
Rechnerorientierte Verfahren, B.G. Teubner
(1986).

Mocore, R.E.: DMethods and Applications.of Inter-
val Analysis, SIAM Studies in Applied Mathemat-
ics, (1979).

Neumaier, A.: Private communication.

Allendoerfer, Boehm, Bohlender, Gruener,
Kaucher, Kirchner, Klatte, Kulisch, Neaga, Rall,
Rump, Saier, Schindele, Ullrich, Wippermann,

Wolff von Gudenberg: PASCAL-SC General Informa-
tion Manual and User's Guide with Computer Soft~
ware, Teubner and John Wiley, 1987.

Rump, §.M.: 8Solving Algebraic Problems with High
Accuracy, in "A New Approach to Scientific Com-
putation”, Edts. U.W. Kulisch and W.L. Miranker,
ACADEMIC PRESS, p. 51-120 (1983).

Rump, S.M.: Scolution of linear and nonlinear al-
gebraic problems with sharp, guaranteed bounds,
COMPUTING Supplementum 5, 23 Seiten, (1984).

Rump, S.M.: New Results on Verified Inclusioens,
in "Accurate Scientific Computations", eds. W.L.
Miranker and R.A. Tcoupin, Springer Lecture Notes
in Computer Science 235, New York 1987.

ARITHMOS, Benutzerhandbuch, Siemens AG,
Bestellnummer U 2900-J-Z287-1, (1986).

