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Abstract. In this paper we apply a minmax characterization for nonoverdamped nonlinear
eigenvalue problems to a rational eigenproblem governing mechanical vibrations of a tube bundle
immersed in an inviscid compressible fluid. This eigenproblem is nonstandard in two respects: it
depends rationally on the eigenparameter, and it involves non-local boundary conditions. Compar-
ison results are proved comparing the eigenvalues of the rational problem to those of certain linear
problems suggesting a way how to construct ansatz vectors for an efficient projection method.
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1. Introduction. In this paper we study a model which governs the vibrations of
a tube bundle immersed in a inviscid compressible fluid under the following simplifying
assumptions. The tubes are rigid, assembled in parallel inside the fluid, and elastically
mounted in such a way that they can vibrate transversally, but they can not move
in the direction perpendicular to their sections. The fluid is assumed to be contained
in a cavity which is very long along the generating lines of the tubes. Due to these
assumptions three dimensional effects are neglected, and the problem is studied in
any transversal section of the cavity.

The mathematical model describing the dynamical behaviour of this system was
obtained by Planchard in [9] and was studied in [2], [3], e.g. It is an elliptic eigenvalue
problem with non-local conditions on the boundaries of the tubes which depend non-
linearly on the eigenparameter and which can be transformed to a rational eigenvalue
problem.

Using methods from linear functional analysis Conca, Planchard and Vanninathan
[3] proved that this problem has a countable set of eigenvalues which are positive and
real and which converge to infinity. To this end they transformed the rational eigen-
problem to a linear compact eigenproblem on a Hilbert space which is nonselfadjoint
but can be symmetrized easily.

In this paper we prove that the eigenvalues of the underlying rational eigenprob-
lem can be characterized as minmax values of a Rayleigh functional, from which we
immediately obtain the existence of countably many real and positive eigenvalues.
Moreover, considering the nonlinear problem as perturbation of suitable linear eigen-
problems we obtain inclusion results for the eigenvalues. These comparison theorems
at the same time suggest how to determine ansatz spaces for projection methods
yielding efficient methods to solve the nonlinear eigenvalue problem numerically.

The paper is organized as follows. Section 2 briefly summarizes variational charac-
terizations of the eigenvalues of symmetric nonlinear eigenvalue problems. In Section
3 we present the mathematical model which describes the problem governing free vi-
brations of a tube bundle immersed in an inviscid, slightly compressible fluid, and
show that the eigenvalues are minmax values of a Rayleigh functional, and in Section
4 the comparison results are derived. Finally, in Section 5 we propose a projection
method based on the comparison results of Section 4, and we demonstrate its efficiency
by a numerical example.
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2. Characterization of eigenvalues of nonlinear eigenproblems. We con-
sider the nonlinear eigenvalue problem

T (λ)x = 0(2.1)

where T (λ) is a selfadjoint and bounded operator on a real Hilbert space H for every
λ in an open real interval J . As in the linear case λ ∈ J is called an eigenvalue of
problem (2.1) if equation (2.1) has a nontrivial solution x �= 0. Such an x is called an
eigenelement or eigenvector corresponding to λ.

We assume that

f :
{

J ×H → R

(λ, x) �→ 〈T (λ)x, x〉(2.2)

is continuously differentiable, and that for every fixed x ∈ H0, H0 := H \ {0}, the
real equation

f(λ, x) = 0(2.3)

has at most one solution in J . Then equation (2.3) implicitly defines a functional p
on some subset D of H0 which we call the Rayleigh functional.

We assume that

∂

∂λ
f(λ, x)

∣∣
λ=p(x)

> 0 for every x ∈ D.(2.4)

Then it follows from the implicit function theorem that D is an open set and that p
is continuously differentiable on D.

For the linear eigenvalue value problem T (λ) := λI − A where A : H → H
is selfadjoint and continuous the assumptions above are fulfilled, p is the Rayleigh
quotient and D = H0. If A additionally is completely continuous then A has a
countable set of eigenvalues which can be characterized as minmax and maxmin values
of the Rayleigh quotient by the principles of Poincaré and of Courant, Fischer and
Weyl.

For the nonlinear case variational properties using the Rayleigh functional were
proved for overdamped systems (i.e. if the Rayleigh functional is defined on H0) by
Duffin [4] and Rogers [10] for the finite dimensional case and by Hadeler [5], [6], Rogers
[11] and Werner [15] for the infinite dimensional case, and for nonoverdamped systems
by Werner and the author [14], [13]

In this section we assemble the results of [14] concerning the minmax charac-
terization of the nonlinear eigenvalue problem (2.1) corresponding to the Poincaré
principle.

We denote by Hj the set of all j-dimensional subspaces of H and by V1 := {v ∈
V : ‖v‖ = 1} the unit sphere of the subspace V of H.

We assume that for every fixed λ ∈ J there exists ν(λ) > 0 such that the linear
operator T (λ) + ν(λ)I is completely continuous. Then the essential spectrum of T (λ)
contains only the point −ν(λ), and every eigenvalue µ > −ν(λ) of T (λ) can be
characterized as maxmin value of the Rayleigh quotient of T (λ). In particular, if λ is
an eigenvalue of the nonlinear problem (2.1), then µ = 0 is an eigenvalue of the linear
problem T (λ)y = µy, and therefore there exists n ∈ N such that

µn(λ) := max
V ∈Hn

min
v∈V1

〈T (λ)v, v〉 = 0.(2.5)
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In this case we call λ an n-th eigenvalue of the nonlinear eigenvalue problem (2.1).
The following results were proved in [14]
Theorem 2.1. Under the conditions given above the following assertions hold:
(i) For every n ∈ N there is at most one n-th eigenvalue of problem (2.1) which

can be characterized by

λn = min
V ∈Hn

V ∩D �=∅

sup
v∈V ∩D

p(v).(2.6)

The minimum is attained by the invariant subspaceW of T (λn) corresponding
to the n largest eigenvalues of T (λn), and supv∈W∩D p(v) is attained by all
eigenvectors of (2.1) corresponding to λn. The set of eigenvalues of (2.1) is
at most countable.

(ii) If

λn = inf
V ∈Hn

V ∩D �=∅

sup
v∈V ∩D

p(v) ∈ J(2.7)

for some n ∈ N then λn is the n-th eigenvalue of (2.1) and (2.6) holds.
(iii) If there exists the m-th and the n-th eigenvalue λm and λn in J and m < n

then J contains the k-th eigenvalue λk for m < k < n and

inf J < λm ≤ λm+1 ≤ . . . ≤ λn < supJ.

(iv) If λ1 ∈ J and λn ∈ J for some n ∈ N then every V ∈ Hj with V ∩D �= ∅ and
λj = supu∈V ∩D p(u) is contained in D, and the characterization (2.6) can be
replaced by

λj = min
V ∈Hj
V1⊂D

max
v∈V1

p(v) j = 1, . . . , n.(2.8)

The characterization of the eigenvalues in Theorem 2.1 is a generalization of the
minmax principle of Poincaré for linear eigenvalue problems. In a similar way as in
[14] the maxmin characterization of Courant, Fischer and Weyl can be generalized to
the nonlinear case (cf. [13]).

3. A rational eigenvalue problem in fluid structure interaction. This
section is devoted to the presentation of the mathematical model which describes the
problem governing free vibrations of a tube bundle immersed in a slightly compressible
fluid under the following simplifying assumptions: The tubes are assumed to be rigid,
assembled in parallel inside the fluid, and elastically mounted in such a way that they
can vibrate transversally, but they can not move in the direction perpendicular to their
sections. The fluid is assumed to be contained in a cavity which is infinitely long, and
each tube is supported by an independent system of springs (which simulates the
specific elasticity of each tube). Due to these assumptions, three-dimensional effects
are neglected, and so the problem can be studied in any transversal section of the
cavity. Considering small vibrations of the fluid (and the tubes) around the state of
rest, it can also be assumed that the fluid is irrotational.

Mathematically this problem can be described in the following way (cf. [9], [3]).
Let Ω ⊂ R

2 (the section of the cavity) be an open bounded set with locally Lipschitz
continuous boundary Γ. We assume that there exists a family Ωj �= ∅, j = 1, . . . ,K,
(the sections of the tubes) of simply connected open sets such that Ω̄j ⊂ Ω for every
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Fig. 1: Domain Ω0

j, Ω̄j ∩ Ω̄i = ∅ for j �= i, and each Ωj has a locally Lipschitz continuous boundary Γj .
With these notations we set Ω0 := Ω \⋃K

j=1 Ωj . Then the boundary of Ω0 consists of
K + 1 connected components which are Γ and Γj , j = 1, . . . ,K.

We denote by H1(Ω0) = {u ∈ L2(Ω0) : ∇u ∈ L2(Ω0)2} the standard Sobolev
space equipped with the usual scalar product

(u, v) :=
∫
Ω0

(u(x)v(x) + ∇u(x) · ∇v(x)) dx.

Then the eigenfrequencies and the eigenmodes of the fluid-solid structure are governed
by the following variational eigenvalue problem (cf. [9], [3])

Find λ ∈ R and u ∈ H1(Ω0) such that for every v ∈ H1(Ω0)

c2
∫
Ω0

∇u · ∇v dx = λ

∫
Ω0

uv dx +
K∑

j=1

λρ0

kj − λmj

∫
Γj

unds ·
∫
Γj

vn ds.(3.1)

Here u is the potential of the velocity of the fluid, c denotes the speed of sound
in the fluid, ρ0 is the specific density of the fluid, kj represents the stiffness constant
of the spring system supporting tube j, mj is the mass per unit length of the tube j,
and n is the outward unit normal on the boundary of Ω0.

The eigenvalue problem is non–standard in two respects: The eigenparameter λ
appears in a rational way in the boundary conditions, and the boundary conditions
are non-local.

In Conca et al. [3] it was shown that the eigenvalues are the characteristic values
of a linear compact operator acting on a Hilbert space. The operator associated with
this eigenvalue problem is not selfadjoint, but it can be symmetrized in the sense that
one can prove the existence of a selfadjoint operator which has the same spectrum
as the original operator. Hence, the set of eigenvalues is a countably infinite set of
positive real numbers that converge to infinity.

Obviously λ = 0 is an eigenvalue of (3.1) with eigenfunction u = const. We reduce
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the eigenproblem (3.1) to the space

H := {u ∈ H1(Ω0) :
∫
Ω0

u(x) dx = 0}

and consider the scalar product

〈u, v〉 :=
∫
Ω0

∇u(x) · ∇v(x) dx.

on H which is known to define a norm on H which is equivalent to the norm induced
by (·, ·).

By the Lax–Milgram lemma the variational eigenvalue problem (3.1) is equivalent
to the nonlinear eigenvalue problem

Determine λ and u ∈ H such that

T (λ)u := (−I + λA +
k∑

j=1

ρ0λ

kj − λmj
Bj)u = 0(3.2)

where the linear symmetric operators A and Bj are defined by

〈Au, v〉 :=
∫
Ω0

uv dx for every u, v ∈ H(3.3)

〈Bju, v〉 :=
( ∫

Γj

unds
)
·
( ∫

Γj

vn ds
)

for every u, v ∈ H.(3.4)

A is completely continuous by Rellich’s embedding theorem and w := Bju, j =
1, . . . , k, is the weak solution in H of the elliptic problem

∆w = 0 in Ω0,
∂

∂n
w = 0 on ∂Ω0 \ Γj ,

∂

∂n
w = n ·

∫
Γj

unds on Γj .

By the continuity of the trace operator Bj is continuous, and since the range of Bj is
twodimensional spanned by the solutions wi ∈ H of

∆wi = 0 in Ω0,
∂

∂n
w = 0 on ∂Ω0 \ Γj ,

∂

∂n
w = ni on Γj , i = 1, 2,

it is even completely continuous. Hence, the general conditions of Section 2 are
satisfied.

Rayleigh functionals corresponding to problem (3.2) are defined by the real func-
tion

f(λ, u) := 〈T (λ)u, u〉

= −c2
∫
Ω0

|∇u|2 dx + λ

∫
Ω0

u2 dx +
K∑

j=1

ρ0λ

kj − λmj

∣∣∣
∫
Γj

unds
∣∣∣2.(3.5)

Since

∂

∂λ
f(λ, u) =

∫
Ω0

u2 dx +
K∑

j=1

ρ0kj

(kj − λmj)2

∣∣∣
∫
Γj

unds
∣∣∣2 > 0 for λ �= kj

mj
(3.6)
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for every interval J ⊂ R such that kj

mj
�∈ J for j = 1, . . . , k there exists a Rayleigh

functional corresponding to the eigenvalue problem (3.2) and the results of Section
2 apply: if the open interval J ⊂ R+ does not contain kj

mj
, j = 1, . . . ,K then all

eigenvalues of problem (3.2) in J are minmax values of the Rayleigh functional defined
by (3.5).

4. Comparison Results. We now assume that the quotients kj

mj
are ordered

by magnitude

0 =:
k0

m0
<

k1

m1
≤ k2

m2
≤ . . . ≤ kK

mK
< ∞ =:

kK+1

mK+1
.

If k�−1
m�−1

< k�

m�
for some $ ∈ {1, . . . ,K+1} then problem (3.1) has a Rayleigh functional

p� corresponding to the interval J� := ( k�−1
m�−1

, k�

m�
) which is defined in the domain of

definition denoted by D�.
For κ ∈ J� we consider the linear eigenvalue problem
Find λ ∈ R and u ∈ H0 such that for every v ∈ H0

c2
∫
Ω0

∇u · ∇v dx +
�−1∑
j=1

ρ0κ

κmj − kj

∫
Γj

unj ds ·
∫
Γj

vnj ds

= λ
(∫

Ω0

uv dx +
K∑

j=�

ρ0

kj − κmj

∫
Γj

unj ds ·
∫
Γj

vnj ds
)
,(4.1)

and we denote by

Rκ(u) :=

c2
∫
Ω0

|∇u|2 dx +
�−1∑
j=1

ρ0κ

κmj − kj

∣∣∣
∫
Γj

unj ds
∣∣∣2

∫
Ω0

u2 dx +
K∑

j=�

ρ0

kj − κmj

∣∣∣
∫
Γj

unj ds
∣∣∣2

the Rayleigh quotient of problem (4.1).
Lemma 4.1. Assume that κ ∈ J� and Rκ(u) ∈ J� for some u ∈ H0. Then u ∈ D�,

and

min(κ,Rκ(u)) ≤ p�(u) ≤ max(κ,Rκ(u)).(4.2)

Proof. From

f(Rκ(u), u) = −c2
∫
Ω0

|∇u|2 dx−
�−1∑
j=1

Rκ(u)ρ0

Rκ(u)mj − kj

∣∣∣
∫
Γj

unj ds
∣∣∣2

+
K∑

j=�

Rκ(u)ρ0

kj −Rκ(u)mj

∣∣∣
∫
Γj

unj ds
∣∣∣2 + Rκ(u)

∫
Ω0

u2 dx

= −c2
∫
Ω0

|∇u|2 dx−
�−1∑
j=1

κρ0

κmj − kj

∣∣∣
∫
Γj

unj ds
∣∣∣2



RATIONAL SPECTRAL PROBLEM IN FLUID-SOLID VIBRATION 7

+Rκ(u)
( K∑

j=�

ρ0

kj − κmj

∣∣∣
∫
Γj

unj ds
∣∣∣2 +

∫
Ω0

u2 dx
)

+
�−1∑
j=1

( κρ0

κmj − kj
− Rκ(u)ρ0

Rκ(u)mj − kj

)∣∣∣
∫
Γj

unj ds
∣∣∣2

+Rκ(u)
K∑

j=�

( ρ0

kj −Rκ(u)mj
− ρ0

kj − κmj

)∣∣∣
∫
Γj

unj ds
∣∣∣2

= ρ0(Rκ(u) − κ)
�−1∑
j=1

kj

(Rκ(u)mj − kj)(κmj − kj)

∣∣∣
∫
Γj

unj ds
∣∣∣2

+Rκ(u)ρ0(Rκ(u) − κ)
K∑

j=�

mj

(kj −Rκ(u)mj)(kj − κmj)

∣∣∣
∫
Γj

unj ds
∣∣∣2

{ ≤ 0 for Rκ(u) ≤ κ
≥ 0 for Rκ(u) ≥ κ

and

f(κ, u) = −c2
∫
Ω0

|∇u|2 dx−
�−1∑
j=1

κρ0

κmj − kj

∣∣∣
∫
Γj

unj ds
∣∣∣2

+
K∑

j=�

κρ0

kj − κmj

∣∣∣
∫
Γj

unj ds
∣∣∣2 + κ

∫
Ω0

u2 dx

= (κ−Rκ(u))
( ∫

Ω0

u2 dx +
K∑

j=�

ρ0

kj − κmj

∣∣∣
∫
Γj

unj ds
∣∣∣2)

{ ≥ 0 for Rκ(u) ≤ κ
≤ 0 for Rκ(u) ≥ κ

.

it follows that in both cases u ∈ D� and

min(κ,Rκ(u)) ≤ p�(u) ≤ max(κ,Rκ(u)).

From Lemma 4.1 we obtain comparison results. First we consider the case $ = 1
because in this case infu∈D1 p1(u) ∈ J1, and even the characterization (2.8) of the
eigenvalues in J1 holds.

Lemma 4.2.

inf
u∈D1

p1(u) > 0

Proof. The proof is given by contradiction. Assume that infu∈D1 p1(u) = 0, and
let {uν} ⊂ D1 such that

c2
∫
Ω0

|∇uν |2 dx = 1 and lim
ν→∞ p1(uν) = 0.



8 HEINRICH VOSS

We consider the comparison problem (4.1) for κ = 0.5 minj
kj

mj
. Then for the smallest

eigenvalue µ1 and for every u ∈ H0 Rayleigh’s principle yields

c2
∫
Ω0

|∇u|2 dx ≥ µ1

( ∫
Ω0

u2 dx +
K∑

j=1

ρ0

kj − κmj

∣∣∣
∫
Γj

unj ds
∣∣∣2),

and for p1(uν) < κ we obtain the contradiction

0 = −c2
∫
Ω0

|∇uν |2 dx + p1(uν)
( ∫

Ω0

u2
ν dx +

K∑
j=1

ρ0

kj − p1(uν)mj

∣∣∣
∫
Γj

uνnj ds
∣∣∣2)

≤ −c2
∫
Ω0

|∇uν |2 dx + p1(uν)
( ∫

Ω0

u2
ν dx +

K∑
j=1

ρ0

kj − κmj

∣∣∣
∫
Γj

uνnj ds
∣∣∣2)

≤ −c2
∫
Ω0

|∇uν |2 dx + p1(uν)
c2

µ1

∫
Ω0

|∇uν |2 dx

= c2
(p1(uν)

µ1
− 1

) ∫
Ω0

|∇uν |2 dx −→ −1 for ν → ∞.

Theorem 4.3. Let κ ∈ J1. Assume that the comparison problem (4.1) has r
eigenvalues

µ1 ≤ µ2 ≤ . . . ≤ µr

in J1. Then the rational eigenvalue problem (3.1) has r eigenvalues

λ1 ≤ λ2 ≤ . . . ≤ λr

in J1, and for the m-th eigenvalue λm of (3.1) the following inequality holds

min(µm, κ) ≤ λm ≤ max(µm, κ), j = 1, . . . , r.(4.3)

Proof. We first show that there exist r eigenvalues of problem (3.1) in J1. Since
by Lemma 4.2 infv∈D1 p1(v) ∈ J1 we only have to prove that there exists W ∈ Hr

such that W0 ⊂ D1 and supv∈W0p1(v) ∈ J1.
Let W ∈ Hr be the invariant subspace of problem (4.1) corresponding to µ1, . . . , µr,

i.e.

µr = min
V ∈Hr

max
v∈V0

Rκ(v) = max
v∈W0

Rκ(v) < min
j

kj

mj
.

Then Rκ(v) ≤ µr < minj
kj

mj
for every v ∈ W0, and it follows from Lemma 4.1

W0 ⊂ D1, and

p1(v) ≤ max(κ,Rκ(v)) ≤ max(κ, µr) < min
j

kj

mj
.
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Hence, the rational eigenproblem (3.1) has (at least) r eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λr

in J1.
We now prove the inequality (4.3). For m ∈ {1, . . . , r} let Z ∈ Hm such that

µm = min
V ∈Hm

max
v∈V0

Rκ(v) = max
v∈Z0

Rκ(v).

Then Z0 ⊂ W0 ⊂ D1, and from p1(v) ≤ max(κ,Rκ(v)) for every v ∈ Z0 we obtain

λm = min
V ∈Hm
V0⊂D1

max
v∈V0

p1(v) ≤ max
v∈Z0

p1(v) ≤ max(κ,max
v∈Z0

Rκ(v)) = max(κ, µm),

which proves the upper bound of λm in (4.3).
To obtain the lower bound let Y ∈ Hm such that Y0 ⊂ D1 and

λm = min
V ∈Hm
V0⊂D1

max
v∈V0

p1(v) = max
v∈Y0

p1(v).

For every u ∈ Y0

0 = f(p1(u), u) = −c2
∫
Ω0

|∇u|2 dx + p1(u)
∫
Ω0

u2 dx +
K∑

j=1

p1(u)ρ0

kj − p1(u)mj

∣∣∣
∫
Γj

unj ds
∣∣∣2,

and for p1(u) ≤ κ it follows

0 ≤ −c2
∫
Ω0

|∇u|2 dx + p1(u)
( ∫

Ω0

u2 dx +
K∑

j=1

ρ0

kj − κmj

∣∣∣
∫
Γj

unj ds
∣∣∣2),

from which we obtain p1(u) ≥ Rκ(u).
Hence, if p1(u) ≤ κ for every u ∈ Y0, then

λm = max
u∈Y0

p1(u) ≥ max
u∈Y0

Rκ(u) ≥ min
V ∈Hm

max
u∈V0

Rκ(u) = µm.(4.4)

If µm ≤ κ then the first part of the proof implies p1(u) ≤ λm ≤ max(κ, µm) = κ for
every u ∈ Y0, and (4.4) yields λm ≥ min(κ, µm).

For µm > κ the lower bound in (4.3) follows by contradiction, since from λm < κ
we again would get λm ≥ µm > κ from (4.4).

Theorem 4.4. Let κ ∈ J�, $ = 2, . . . ,K +1 and assume that the m-th eigenvalue
µm of the comparison problem (4.1) satisfies µm ∈ J�. Then the rational eigenvalue
problem (3.1) has an m-th eigenvalue λm ∈ J�, and

min(µm, κ) ≤ λm ≤ max(µm, κ).(4.5)

Proof. We prove that
(i) there exists V ∈ Hm such that V ∩D� �= ∅ and supu∈W∩D� p�(u) ≤ max(κ, µm)
(ii) supu∈V ∩D�

p�(u) ≥ min(κ, µm) for every V ∈ Hm such that V ∩D� �= ∅.
Then

λm := inf
V ∈Hm

V ∩D� �=∅

sup
u∈V ∩D�

p�(u) ∈ J�,
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i.e. λm is an m-th eigenvalue of problem (3.1), and inequality (4.5) holds.
Let W ∈ Hm and w ∈ W0 such that

µm = max
u∈W0

Rκ(u) = Rκ(w).

Then by Lemma 4.1 w ∈ D�, i.e. W ∩D� �= ∅. Rκ(u) ≤ µm for every u ∈ W0 yields

−c2
∫
Ω0

|∇u|2 dx+
�−1∑
j=1

κρ0

kj − κmj

∣∣∣
∫
Γj

unj ds
∣∣∣2+

K∑
j=�

µmρ0

kj − κmj

∣∣∣
∫
Γj

unj ds
∣∣∣2+µm

∫
Ω0

u2 dx ≥ 0.

For σ := max(κ, µm) it follows

−c2
∫
Ω0

|∇u|2 dx +
K∑

j=1

σρ0

kj − σmj

∣∣∣
∫
Γj

unj ds
∣∣∣2 + σ

∫
Ω0

u2 dx ≥ 0,

and therefore p�(u) ≤ σ for every u ∈ D� ∩W . Hence, for W ∈ Hm it holds

W ∩D� �= ∅ and sup
u∈W∩D�

p�(u) ≤ max(κ, µm).(4.6)

(ii) is shown by contradiction. Assume that there exists V ∈ Hm such that V ∩D� �= ∅
and supv∈V ∩D�

p�(v) < min(κ, µm). Let uV ∈ V such that Rκ(uV ) = maxv∈V0 Rκ(v).
Then Rκ(uV ) �∈ J�, for otherwise it follows from Lemma 4.1 uV ∈ D�, and p�(uV ) ≥
min(κ,Rκ(uV )), i.e.

sup
u∈V ∩D�

p�(u) ≥ p�(uV ) ≥ min(κ,Rκ(uV )) ≥ min(κ, µm).

For σ := min(κ, µm) (≤ min(κ,Rκ(uV ))

f(σ, uV ) = −c2
∫
Ω0

|∇uV |2 dx +
�−1∑
j=1

σρ0

kj − σmj

∣∣∣
∫
Γj

uV nj ds
∣∣∣2

+
K∑

j=�

σρ0

kj − σmj

∣∣∣
∫
Γj

uV nj ds
∣∣∣2 + σ

∫
Ω0

u2
V dx

≤ −c2
∫
Ω0

|∇uV |2 dx +
�−1∑
j=1

κρ0

kj − κmj

∣∣∣
∫
Γj

uV nj ds
∣∣∣2

+
K∑

j=�

Rκ(uV )ρ0

kj − κmj

∣∣∣
∫
Γj

uV nj ds
∣∣∣2 + Rκ(uV )

∫
Ω0

u2
V dx = 0.

For fixed u ∈ V ∩ D� let w(t) := tu + (1 − t)uV and φ(t) := f(σ,w(t)). Then φ is
continuous on [0, 1], and

f(σ, uV ) = φ(0) < 0 < φ(1) = f(σ, u)

yields the existence of t̂ ∈ (0, 1) such that f(σ,w(t̂)) = 0. Hence, w(t̂) ∈ W ∩D� and
p�(w(t̂)) = min(κ, µm).
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5. A projection method. For linear sparse eigenvalue problems the most effi-
cient methods are iterative projection methods, where approximations of the wanted
eigenvalues and corresponding eigenvectors are obtained from projections of the eigen-
problem to subspaces which are expanded in the course of the algorithm (Lanczos,
Arnoldi, Jacobi-Davidson, e.g.)

Generalizations of this approach to the nonlinear eigenvalue problem T (λ)x =
0 are contained in recent papers by Ruhe [12] and Hager and Wiberg [8], [7] who
updated linear eigenvalue problems which approximate the projection of the nonlinear
eigenproblem to a Krylov space of T (σ)−1T (λ) for some shift σ and varying λ, and for
symmetric nonlinear problems having a Rayleigh functional by Betcke and the author
[1] who constructed ansatz vectors for a projection method by a Jacobi-Davidson type
approach.

The comparison results in the last section suggest to derive an ansatz space for a
projection method for the numerical solution of problem (3.1) in the following way:

1. Choose a small number of shifts κ1, . . . , κr ∈ J�.
2. For j = 1, . . . , r determine the eigenvectors ujk, k = 1, . . . , sj , of the linear

problem (4.1) with shift κj corresponding to eigenvalues in J�.
3. Let U be the matrix with columns ujk, j = 1, . . . , r, k = 1, . . . , sj . Determine

the QR factorization with column pivoting which produces the QR factor-
ization of UE where E denotes a permutation matrix such that the absolute
values of the diagonal elements of R are monotonely decreasing.

4. For every j with |rjj | < τ · |r11| drop the j-th column of Q where τ ∈ [0, 1) is a
given tolerance, and denote by V the space that is spanned by the remaining
columns of Q.

5. Project the nonlinear eigenvalue problem (3.1) to V and solve the projected
problem by inverse iteration with variable shifts.

As a numerical example we consider the rational eigenvalue problem (3.1) where Ω
is the square (−5, 5)×(−5, 5), and the tubes are defined by Ω1 = (−3,−2)×(−3,−2),
Ω2 = (2, 3)× (−3,−2), Ω3 = (−3,−2)× (2, 3), Ω4 = (2, 3)× (2, 3). We assume c = 1,
ρ0 = 1, kj = 1 for all j, m1 = 5, m2 = 5, m3 = 2 and m4 = 1.

We discretized this eigenvalue problem with linear elements obtaining a matrix
eigenvalue problem

Ax = λBx +
λ

1 − 5λ
C1x +

λ

1 − 5λ
C2x +

λ

1 − 2λ
C3x +

λ

1 − λ
C4x(5.1)

of dimension n = 23597. Problem (5.1) has 8 eigenvalues λ1 ≤ . . . ≤ λ8 in the
interval J1 = [0, 0.2), 6 eigenvalues λ̃5 ≤ . . . ≤ λ̃10 in J2 := (0.2, 0.5), 6 eigenvalues
λ̂9 ≤ . . . ≤ λ̂14 in J3 := (0.5, 1.0),and 10 eigenvalues λ̄13 ≤ . . . ≤ λ̄22 in J4 = (1, 2).
Notice that (5.1) is not just a small perturbation of the linear eigenproblem Ax = λBx
which has only 4 eigenvalues in each of the intervals J1, J2, and J3.

To approximate the eigenvalues in J1 we solved the linear eigenvalue problem
(
B +

1
1 − 5κ

C1 +
1

1 − 5κ
C2 +

1
1 − 2κ

C3 +
1

1 − κ
C4

)
x = µ(A + σB)x

by Lanczos’ method with complete reorthogonalization for different parameters of κ
obtaining approximations to eigenvectors of problem (5.1). We added σB on the right
hand side with a small σ > 0 since A is singular.

With 4 parameters κ1 = 0.1, κ2 = 0.15, κ3 = 0.175 and κ4 = 0.1875 and
tolerances τ1 = 1e−1, τ2 = 1e−3, and τ3 = 0 we obtained eigenvalue approximations
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Fig. 2: relative errors; eigenvalues in (0,0.2) and (0.2,0.5)

to λ1, . . . , λ8 the relative errors of which are displayed in Figure 2 on the left. The
dimensions of the projected eigenvalue problems were 13, 20 and 23, respectively.

On an Intel Pentium 4 with 2 GHz and 1 GB RAM it took 19.34 seconds to
solve the 4 linear eigenvalue problems, and 0.20 seconds for the QR factorization with
column pivoting. To solve the projected nonlinear eigenvalue problems by safeguarded
inverse iteration it took 0.61, 0.84 and 0.94 seconds, respectively.

To approximate the eigenvalues in J2 we solved the linear problem(
B +

1
1 − 2κ

C3 +
1

1 − κ
C4

)
x = µ

(
A +

κ

5κ− 1
C1 +

κ

5κ− 1
C2 + σB

)
x

for 4 parameters κ1 = 0.3, κ2 = 0.4, κ3 = 0.45, and κ4 = 0.475, and with the same
tolerances as before we obtained the relative errors in Figure 2 on the right. The
dimensions of the projected problems are 17, 23 and 27, respectively. The CPU times
in this run were 32.34 seconds for the linear eigenproblems, 0.27 seconds for the QR
factorization, and 0.69, 0.89, and 1.05 seconds for inverse iteration.

Figure 3 shows the relative errors of eigenvalues λ̂j , j = 9, . . . , 14, in the interval
J3 = (0.5, 1) which were obtained with shift parameters κ1 = 0.7 and κ2 = 0.9,
κ3 = 0.95 and κ4 = 0.975, and the relative errors of λ̄13, . . . , λ̄22 in the interval (1, 2)
obtained with shifts κ1 = 1.25, κ2 = 1.5 and κ3 = 1.75. For the eigenvalues in J3 the
dimensions of the nonlinear projected problem were 18, 23, and 30, respectively, and
the CPU times were 47.05 seconds for the linear eigenproblems, 0.33 second for the QR
factorization, and 1.03, 1.23, and 1.80 seconds for inverse iteration. For the eigenvalues
in J4 we needed 67.16 seconds to solve the linear eigenproblems, 0.61 seconds for the
QR factorization, and 1.03, 1.23 and 1.80 seconds to solve the projected problems of
dimensions 25, 30, and 42, respectively.

The Jacobi-Davidson type method proposed in [1] achieved the same accuracy as
our method for τ = 0 for the eigenvalue approximations in J1, . . . , J4, respectively,
projecting problem (5.1) to a rational eigenproblem of dimension 21, 22, 32, and
48, and requiring 114.06, 100.53, 130.95 and 152.13 seconds, respectively. Hence,
the method considered here is more efficient than the method from [1] which on the
other hand applies to a much wider class of nonlinear eigenproblems, including non-
symmetric problems.
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Fig. 3: relative errors; eigenvalues in (0.5,1.0) and (1.0,2.0)
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