470 | Oktober 1986

SCHRIFTENREIHE SCHIFFBAU

Karl Wieghardt

Zur Struktur turbulenter Strömungen

Zur Struktur turbulenter Strömungen

K. Wieghardt, Hamburg, Technische Universität Hamburg-Harburg, 1986

© Technische Universität Hamburg-Harburg Schriftenreihe Schiffbau Schwarzenbergstraße 95c D-21073 Hamburg

http://www.tuhh.de/vss

INSTITUT FÜR SCHIFFBAU DER UNIVERSITÄT HAMBURG

Bericht Nr. 470

Zur Struktur turbulenter Strömungen

K. Wieghardt

Oktober 1986

÷

ISBN 3 - 89220 - 470 - 5

Copyright Institut für Schiffbau Universität Hamburg Lämmersieth 90 D-2000 Hamburg 60

1. Einleitung und Übersicht.

Die dreidimensionale Ausmessung der mittleren Strömung am und hinter dem Heck des Doppelmodells eines völligen Schiffs im Windkanal hat Aussagen über die Struktur des Geschwindigkeitsfeldes ermöglicht, d.h. über die Geschwindigkeitsgradienten erster und zweiter Ordnung; allerdings konntenur in Wandabständen von mindestens drei mm gemessen werden $\lceil 1,2 \rceil$. Die weitere Analyse der Messdaten ergibt nun drei recht allgemeine Aussagen: a) das überraschend schnelle Abklingen der Wirbelkennzahl nach außen, b) die Gleichung rot $[\vec{v} \times \vec{\omega}] = 0$ mit \vec{v} = mittlere Geschwindigkeit und $\vec{\omega}$ = rot \vec{v} gilt sowohl im Außenbereich der noch anliegenden Grenzschicht wie auch überall in der später abgelösten Grenzschicht; c) im ganzen Messbereich ist die Arbeit der turbulenten Reibungskraft stets negativ, während die der fiktiven laminaren Strömung für das gleiche mittlere Geschwindigkeitsfeld an einzelnen Stellen positiv ist, so daß dort die skalare "eddy viscosity" negativ wird.

2. Das Abklingen der Wirbelkennzahl.

Als dimensionsloses Maß für die Rotation definiert Truesdell [3] $W_{K} = |\vec{\omega}|/d$, mit d = Deformationsrate aus $d^{2} = 2(u_{x}^{2}+v_{y}^{2}+w_{z}^{2})+(w_{y}+v_{z})^{2}+(u_{z}+w_{x})^{2}+(v_{x}+u_{y})^{2}$ mit u,v,w Geschwindigkeitskomponenten in x,y,z-Richtung und $u_{x} = \partial u/\partial x$ usw.

Für Grenzschichten und grenzschichtähnliche Strömungen wie Freistrahlen und Nachlauf erscheint das Abklingen von $W_K \rightarrow 0$ für $r \rightarrow \infty$ (mit r = Achs-bzw.Wandabstand)fast trivial. Es wird aber von keiner der bekanntenÄhnlichkeitslösungen genau erfüllt, da die dort gemachten Grenzschichtvernachlässigungh@ am Strömungsrandnicht mehr zutreffen [4]. Nur in exakten Lösungen der Navier-Stokes-Gleichungen wie in der Staupunktsströmung und beim runden Strahl ist das der Fall. Allerdings klingt W_K beim runden Laminarstrahl erst beim Radius von etwa 6.7 Halbwertsbreiten auf W_K = 0.5 ab, wo die Längsgeschwindigkeit nur noch 0.003 der Achsgeschwindigkeit ist, - also in einem praktisch unin**g**teressanten Außenbereich.

In unserer Heckumströmung ist dagegen W_K= 0.5 schon dort erreicht, wo u/U = 0.9 (mit U= Anströmgeschwindigkeit) und \longrightarrow die Rotation $\vec{\omega}$ noch durchaus messbar ist. Dagegen springt in einer turbulenten Grenzschicht W_{v} vom Wert 1 auf Null am Rand, wenn man ein Außengesetz annimmt. Natürlich kann man spekulieren, daß am Grenzschichtrand wegen der Intermittenz der Turbulenz die "wahre" Deformationsrate viel größer sei als die aus dem mittleren Geschwindigkeitsfeld berechnete Rate d. Es bleibt aber merkwürdig, daß sich allein aus gleichartigen Messungen des mittleren Felds so unterschiedliche Strukturen der Randströmung ergeben sollen. Freilich schließt sich bei der Heckumströmung die Außenströmung wieder, und es wird durch ihre Querströmung viel drehungsfreie, turbulenzarme Flüssigkeit herangeführt, die sich mit der drehungsbehafteten Flüssigkeit der noch anliegenden oder später abgelösten Grenzschicht vermischt.

3. Zur Gleichung rot $[\vec{v} \times \vec{\omega}] = 0$.

Wenn man fragt, ob die Beschleunigung $\vec{a} = \text{grad } \vec{\forall}^2/2 - \vec{\forall} \times \vec{\omega}$ ein Potential besitzt, genügt es offenbar zu untersuchen, ob das Feld des "Lamb-Vektors $\vec{L} = \vec{\vee} \times \vec{\omega}$ " (in der Bezeichnung von Truesdell [3]) rotationslos ist oder nicht. In einem großen Außengebiet der Heckumströmung hatten nun die Messungen von J.Kux die Gleichung rot \vec{L} = 0 erfüllt, wie schon in [2] gezeigt. Dort wird auch berichtet, daß erst in der bereits abgelösten Grenzschicht mit großen Messwerten von $\vec{\omega}$ und \vec{L} die Längskomponente von rot \vec{L} plötzlich auf große negative oder positive Werte springt. Eigentlich ist es aber gar nicht sinnvoll, von einer dimensionsbehafteten Größe zu sagen, sie sei groß oder klein. Wenn man insbesondere von einem Vektorfeld \vec{L} , das nur aus fehlerbehafteten Messdaten bekannt ist wie hier, wissen möchte, ob es drehungsfrei ist oder nicht, kann man aber ein Maß $\vec{\mu}$ dafür definieren durch

$$\vec{\mu} = \vec{i} \frac{L_{3y} - L_{2z}}{|L_{3y}| + |L_{2z}|} + \vec{j} \frac{L_{1z} - L_{3x}}{|L_{1z}| + |L_{3x}|} + \vec{k} \frac{L_{2x} - L_{1y}}{|L_{2x}| + |L_{1y}|}$$

Denn für die dimensionslosen Komponenten von $\ddot{\mu}$ gilt

 $-1 \le \mu_{1,2,3} \le +1.$

Wenn diese Zahlen klein gegen 1 sind und das Vorzeichen wechseln, wird man sagen können, das Feld \vec{L} ist - zumindest in guter Näherung - drehungsfrei und es existiert ein Potential P für \vec{L} = grad P.

Wie in Abb.1 gezeigt, wurde nur in einigen Spantebenen x = const gemessen, in diesen aber in einem engen y,z-Quernetz mit 3 mm Maschenweite. Daher genügt schon das linearisierte Zirkulationsintegral zur Berechnung der x-Komponente von rot \vec{L} , über die wir vor allem berichten. Hierfür wurden nur die Komponenten L₂ und L₃ benötigt, die zudem meistens größer sind und auch genauer als L₁; denn gewöhnlich gilt für die Geschwindigkeit u>v,w und für die Rotation $\omega_{2,3} > \omega_1$.

In der Tabelle I sind für die Spantebene x = -19 mm und in Kielnähe die Werte $L_{2,3}(y,z)$ in 1/m angegeben. Da alle Geschwindigkeiten dimensionslos gemacht worden waren mit der Anströmgeschwindigkeit U = 27 m/s, hat hier \vec{v} keine Dimension, $\vec{\omega}$ und \vec{L} die Dimension 1/m und rot \vec{L} $1/m^2$ (statt $1/s^2$). Aus diesen $L_{2,3}$ in je vier Nachbarpunkten wurde für den Mittelpunkt bei (y+3)/2 und (z+3)/2 berechnet

 $(\operatorname{rot} \vec{L})_{1} = \left\{ L_{2}(y,z) + L_{2}(y+3,z) + L_{3}(y+3,z) + L_{3}(y+3,z+3) - L_{2}(y+3,z+3) - L_{2}(y,z+3) - L_{3}(y,z+3) - L_{3}(y,z) \right\} / 0.006$ sowie $\mu_{l} = 100 (\operatorname{rot} \vec{L})_{1} / (\sum |L_{2,3}| / 0.006) \text{ in } \%.$

Nur in 9 von 44 Punkten ist $|\mu_1\rangle$ 1%.

Zur Veranschaulichung der Strömung dort zeigt Abb.2 Längsisotachen bei $\mathbf{x} = -19$ und Abb.3 Linien konstanter Querrotation (quer zur Geschwindigkeit $\vec{\mathbf{v}}$). Unter dem Kiel, d.h. für $\mathbf{z} = -42$ und 45 bei $\mathbf{y} = -9$ bis +9 ist die Rotation am größten und die linearisierte Berechnung von (rot $\vec{\mathbf{L}}$) etwas gewagt; trotzdem bleibt $|\mu_i| < 3.3\%$ überall. Daß hier negative Werte etwas überwiegen, kann an systematischen Fehlern bei der Messung oder der Differentiation (für $\vec{\mathbf{w}}$)liegen; auch die Abweichungen von der Kontinuitätsgleichung waren dort am größten und verliefen systematisch wie in Abb.7 in [2].

Tabelle II gibt weitere Werte von $L_{2,3}$ und $(rot \vec{L})_1$ sowie μ_1 ebenfalls für x = -19 aber für 19.5 $\leq z \leq 28.5$ mm im Wirbelgebiet in der Hohlkehle des Spants, wo W_k bis auf Werte über 2 ansteigt nach Abb.16 in [2]. Nur in 16 von 56 Punkten ist $|\mu_1\rangle$ 1%; der Maximalwert ist hier -4.4% in einem Randpunkt.

Als letztes Beispiel zeigt Tabelle III alle drei Komponenten von rot \vec{L} mit den zugehörigen $\mu_{1,2,3}$ für das Gebiet zwischen den Spantebenen x = -73 und -63, wo die Grenzschicht noch anliegt. Für die y- und z-Komponente von rot \vec{L} senkrecht zu den rechteckigen 3 mal 10 mm großen Seitenflächen eines Quaders wurden hier etwas größere Werte für $\mu_{2,3}$ gefunden, da die linearisierte Berechnung des Stokes-Integrals über 10 mm Länge wohl doch unzureichend ist. Jedoch ist der Mittelwert aller μ_2 bzw. μ_3 kleiner als 1%. Die x-Komponente bzw. $|\mu_1|$ für die 3 mal 3 mm Stirnflächen bei x = -73 und -63 ist auch wieder meistens kleiner als 1%. Und auch an anderen Orten im Meßbereich (mit Wandabstand > 3 mm) wurde stets rot \vec{L} = 0 gefunden.

Wenn übrigens die Stromlinien parallele Geraden sind wie z.B. im Rohr, oder konzentrische Kreise wie beim Wirbel, so verschwindet rot \vec{L} schon aus kinematischen Gründen. In turbulenter Strömung bei großer Reynoldszahl ist die Laminarkraft je Volumeneinheit $\forall \mathbf{y} \Delta \vec{\mathbf{v}}$ meist vernachlässigbar gegen die turbulente Kraft $\vec{K}_t = -\text{grad} \vec{\mathbf{v}}^2/2 + \mathbf{v} \vec{\mathbf{v}} \cdot \vec{\mathbf{x}}^{\dagger}$. Wenn das Feld \vec{L} oder das der Beschleunigung \vec{a}

- 5 -

(des mittleren Geschwindigkeitsfelds) drehungsfrei ist, müsste daher auch die turbulente Kraft \vec{k}_t ein Potential besitzen, im Gegensatz zur Laminarkraft in laminarer Strömung. In isotroper Turbulenz muss sogar schon $\vec{v}' \times \vec{\omega}' = 0$ gelten, da es sonst eine charakteristische Richtung gäbe. Zur direkten Bestätigung der Vermutung rot $\vec{k}_t = 0$ auch in anisotroper Turbulenz bereiten J.Kux und T.Knaack eine LDA-Vermessung des vollständigen Tensors der Reynolds-Spannungen in speziellen Gebieten unserer Modellströmung vor.

4. Zur Arbeit der turbulenten Reibungskraft.

Außerhalb enger Wandnähe kann man bei großer Reynolds-Zahl die laminare Reibungskraft gegen \vec{k}_t vernachlässigen. \vec{k}_t ergibt sich dann aus dem mittleren Geschwindigkeitsfeld zu

 $\vec{k}_{+} = \text{grad } g - 9 \vec{v} \times \vec{\omega} \text{ mit } g = p + 9 \vec{v}^2/2 = \text{Gesamtdruck.}$

Diese Kraft leistet je sec und Volumeneinheit die Arbeit A' = $\vec{v} \cdot \vec{K}_t = \vec{v} \cdot \text{grad} \ g = \text{div} \ g\vec{v}$ - In laminarer Strömung ist A' = $\gamma \cdot \vec{v} \cdot \Delta \vec{v}$, und es ist hier A' meistens negativ aber durchaus nicht immer. Denn die Kraft $\gamma \wedge \Delta \vec{v}$ kann ja nichts"wissen" von der örtlichen Richtung der Geschwindigkeit. Erst die Differenz der Arbeit der Spannungen A minus A' ergibt die Dissipation, die aus thermodynamischen Gründen stets positiv ist.

In turbulenter Strömung erschiene es unerwartet, wenn A' örtlich positiv wäre, denn dann würde dort die turbulente Nebenbewegung den Gesamtdruck oder die Energie der mittleren Strömung erhöhen. In der Tat konnte bei unseren Messungen keine Stelle mit A'> O gefunden werden. Obwohl z.B. im Nachlauf das erste Glied in Längsrichtung u $\partial g/\partial x$ positiv ist, überwiegen stets die seitlichen negativen Terme v $\partial g/\partial y + w \partial g/\partial z$. Allerdings muss es z.B. im Zentrum des Nachlaufs hinter einem Drehkörper wohl doch eine kleine Umgebung mit **A**'> O geben. Unsere Messungen beziehen sich nur auf ein Viertel des Nachlaufs hinter dem symmetrischen Doppelmodell ohne das Zentrum einzuschließen.

Im k, \mathcal{E} -Modell für turbulente Strömung wird angenommen, der Austauschkoeffizient von Boussine q, jetzt eddy viscosity \mathcal{V}_{t} genannt, sei ein Skalar. Für die Komponente in Längsrichtung konnten wir neben der turbulenten Kraft K_{t1} auch die fiktive Laminarkraft $-g_{\mathcal{V}}(\operatorname{rot} \vec{\omega})_{1}$ aus dem mittleren Geschwindigkeitsfeld berechnen und daraus das Verhältnis

 $v_t / v = - K_{t1} / \varsigma v (rot \vec{\omega})_1.$

Es ergaben sich stark streuende Werte der Größenordnung 10³ wie erwartet. Wir fanden aber auch zwei Gebiete, in denen nicht nur in isolierten Einzelpunkten v_t/v negativ ist, da dort die turbulente Kraft fast entgegengesetzt der Geschwindigkeit ist, die Laminarkraft aber nicht, wie in [5] ausgeführt. Das erinnert an die Warnung von Prandtl [6] im Allgemeinen die eddy viscosity nicht als Skalar anzusetzen sondern als Tensor.

5. Turbulente Plattengrenzschicht.

Da uns keine anderen dreidimensionalen Messungen gleicher Präzision zur Verfügung stehen, vergleichen wir noch mit der ebenen Plattengrenzschicht. Speziell für die Reynoldszahl Re = 10^7 benutzen wir eine Annäherung an die Messungen von Winter und Gaudet [7] wie in [8] erläutert. Die Zahlenwerte, insbesondere für die Kármán-Konstante ($\kappa = 0.387$) sind vielleicht etwas unorthodox; doch ist das unwesentlich für die hier interessierenden Folgerungen. Für die Stromfunktion Ψ wird angesetzt mit U = Anströmgeschwindigkeit

 $\Psi/U = y + g(x) \delta(x) F(\gamma)$, mit $\gamma = y/\delta$, $\delta = \text{Grenzschichtdicke} = 0.085 \text{ x Re}^{-0.1}$ und für die Schubspannungsgeschwindigkeit $g = u_{g}/U = 0.123 \text{ Re}^{-0.0765}$.

- 7 -

Ferner sei

$$\begin{split} \mathbf{F}(\gamma) &= \frac{1}{\kappa} \boldsymbol{\eta} (\ln \eta - 1) - \boldsymbol{\alpha} \boldsymbol{\eta} + 0.619 + \boldsymbol{\beta} \left[\boldsymbol{\eta} - \frac{\gamma}{\pi} \sin \frac{\pi}{\gamma} (\boldsymbol{\eta} - 0.13) \right]. \\ \text{Dabei ist } \kappa &= 0.387, \boldsymbol{\alpha} = 1.694, \boldsymbol{\gamma} = 0.717 \text{ und } \boldsymbol{\beta} = 0 \text{ für} \\ \boldsymbol{\eta} < 0.13 \text{ aber } \boldsymbol{\beta} = 0.95 \text{ für } 0.13 \leqslant \boldsymbol{\eta} \leqslant 1. \text{ Die Konstante} \\ 0.619 \text{ für Re} &= 10^7 \text{ erfüllt die Randbedingung } \mathbf{v}(\boldsymbol{\eta} = 1)/\mathbf{U} \\ &= d\boldsymbol{\delta}_{\mathbf{\eta}}/d\mathbf{x} \text{ mit } \boldsymbol{\delta}_{\mathbf{\eta}} = \text{Verdrängungsdicke.} \\ \text{ Daraus folgt das Wangesetz für } \boldsymbol{\eta} < 0.13 \text{ mit } \boldsymbol{y}_{\mathbf{\eta}} = \boldsymbol{u}_{\mathbf{\tau}} \boldsymbol{y}/\boldsymbol{\gamma} \end{split}$$

Daraus folgt das Wangesetz für $\eta < 0.13$ mit $y_{\tau} = u_{\tau} y/\nu$ $u/U = g(x)f(y_{\tau})$ und $f = \frac{1}{\kappa} \ln y_{\tau} + 3.70$. Wegen $v_x \ll u_y$ wird nun (rot $\vec{L})_3 = -(u\omega_x + v\omega_y) = uu_{xy} + vu_{yy}$ und somit (rot $\vec{L})_3 = (U^3/\nu) g^2 \frac{dg}{dx} \cdot 2ff' \neq 0$ für jedes $f \neq \text{const.}$ Da sowohl u_{xy} wie u_{yy} negativ ist, wird hier μ_3 nicht klein sondern gerade gleich -1! Im wandnahen Teil der Grenzschicht - so lange $u/u_{\tau} = f(y_{\tau})$ gilt - kann also rot $\vec{L} = 0$ nie genau sondern höchstens näherungsweise gelten.

Will man ein weniger scharfes Maß λ für die Größe oder Kleinheit von rot \vec{L} einführen, so kann man dazu wie bei der Rotation die Deformationsrate d benutzen und definieren $\lambda = (\text{rot } \vec{L})_3/d^2$. Dabei kann man hier setzen $d^2 = \vec{\omega}^2 = u_y^2$; denn die Differenz $d^2 - \vec{\omega}^2 =$ $4(v_x u_y - v_y u_x) = 2 \text{ div } \vec{a} \text{ (mit } \vec{a} = \text{Beschleunigung) ist}$ selbst bei $\gamma = y/\delta = 0.98$ rechnerisch noch vernachlässigbar gegen $\vec{\omega}^2$. Somit wird $\lambda = -0.6375 \text{ Re}^{-0.9235}2\text{ff'}$ und für Re = 10⁷ und $y/\delta < 0.13$ oder $u_r y/v < 790$ gilt $-0.0028 \leq \lambda < 0$.

Für das ganze Profil der Plattengrenzschicht bei Re = 10⁷ zeigen die Abb.4 und 5 den Verlauf von $(x^2/U^2)(\text{rot } \vec{L})_3$ und von $\lambda = (\text{rot } \vec{L})_3/d^2$ über $\eta = y/\delta$ für das obige Profil u/U = 1 + g F'(η) sowie für das einfache Potenzgesetz u/U = $\eta^{1/8}$. Für das benutzte Außengesetz für $\eta > 0.13$ steigt λ für $\eta > 0.6$ sogar auf beliebig hohe Werte an, während beim einfachen Potenzgesetz - $0.03 < \lambda < 0$ gilt. Ferner wurde das Ausgangsprofil u/U = 1 + g F' noch angenähert durch $F' = -7 e^{-4\eta^2} f \ddot{u} r y/\delta > 0.2$. Nach Abb.4 ist der Verlauf von (rot \vec{L})₃ über η nur wenig verändert. Danach wurde versucht ein Profil zu finden, für das wenigstens am Rand der Grenzschicht (rot \vec{L})₃ = 0 gilt. Mit den obigen Potenzgesetzen für $u_{\sigma}/U = g$ und δ/x erhält man zunächst für das Außengesetz bei Re = 10⁷

$$(\operatorname{rot} \vec{L})_3 = uu_{xy} + vu_{yy}$$

= $-\frac{U^2}{x^2} \left\{ (2.064 + 0.074 F')F'' + (1.902 + 0.0624 F)F''' \right\} = 0.$

Diese Differentialgleichung werde linearisiert, indem man F'=0 annimmt und F = F($\gamma = 1$) = -2.577. Dem entspricht als Näherung am Grenzschichtrand u/U = 1 oder F'=0 und v/U=-(g δ)_xF + g $\delta_x \gamma$ F'= v(1)/U = d δ_1 /dx=0.00129. Dann kann man integrieren und die zwei noch freien Konstanten zur Anpassung an das gemessene Profil benutzen. Es ergibt sich so z.B. das Profil in Abb.4

 $\mathbf{F'} = -\frac{3}{\alpha} \left[(\gamma - \beta)^{-\alpha} - (1 - \beta)^{-\alpha} \right],$

mit $\alpha = 0.085$ und $\beta = 0.0845$. Für dieses F' verschwindet $(\operatorname{rot} \vec{L})_3$ nach der obigen vollständigen Gleichung wenig-stens am Rand.

Sicher könnte man mit mehr Aufwand eine Funktion F finden, die noch weiter an die Wand heran $(rot \vec{L})_3 = 0$ erfüllt und doch das gemessene Profil annähert.

Dagegen konnten wir keine asymptotisch abklingende Funktion für F' finden, die das Abklingen von $W_K(\eta
ightarrow 0)
ightarrow 0$ darstellt, auch wenn in der Rotation v_x nicht mehr gegen u_y vernachlässigt wird. In den gezeigten vier Profilen bleibt stets $W_K \geqslant 1$, während in den dreidimensionalen Messungen $W_K^{=}$ 0.5 schon bei $u/U \approx 0.9$ erreicht wird, wie oben schon erwähnt.

Für praktische Anwendungen ist es natürlich belanglos, ob die Struktur des Geschwindigkeitsfelds bis zu den zweiten Ableitungen richtig beschrieben wird oder nicht. Aber zumindest Numeriker, die von den Euler-Gleichungen ausgehen, dürfte es erfreuen, daß auch in turbulenter Strömung rot $\vec{L} = 0$ zumindest in guter Näherung gilt.

Schrifttum

1 Wieghardt, K. und Kux, J. Nomineller Nachstrom auf Grund von Windkanalversuchen. Jahrbuch der Schiffbautechn. Ges. Vol. 74, 1980, 303

- 9 -

- 2 Wieghardt,K. Zur Kinematik einer Nachlaufströmung. Z.Flugwiss.und Weltraumforsch.Vol.7, 1983, 149
- 3 Truesdell, C. The Kinematics of Vorticity, Indiana Univ. Press, Bloomington, Indiana, USA, 1954
- 4 Wieghardt, K. Transition of Rotational Flow into Outer Irrotational Flow. In Recent Contributions to Fluid Mechanics, Ed.W.Haase, Springer, 1982
- 5 Knaack, T., Kux, J., Wieghardt, K. On the Structure of the Flow Field on Ship Hulls. Osaka Internat. Colloquium on Ship Viscous Flow, October 1985
- 6 Prandtl,L. Über ein neues Formelsystem für die ausgebildete Turbulenz, Nachr.Ges.Wiss.Göttingen, 1945, 6.
- 7 Winter,K.G. and Gaudet,L. Royal Aircraft Est. TechnRep. 70251, 1970
- 8 Wieghardt, K. Über den Reibungswiderstand an der Platte. Inst.f.Schiffbau Hamburg, Ber. 291, 1973.

*	31	g		y	•••••
33	-2.30 -4.56 56	-3.91 -3.74 8 56	- 5.04 - 4.47 55	-5.44 -4.71 -4.71	- 4.75 - 4.54
30	-1.75 -6.11 52 21 52 4	- 2.89 - 5.06 - 5.06	- 3.77 - 5.20 3 - 30 54	-4.24 -4.67 -4.67 -4.67 -4.67 -4.67	- 3.52
27	-1,27 -6.99 24 .3	- 5.79	-1.78 - 5.57 - 5.57 - 27 - 41	-1,84 -4.66 -7 55 -7 55 -1.6	-1.47 -2.85 m
24	-7.67 -7.19 -7.19 -7.19		74 -5.51 2 -29 346		-2.67 -2.67 L2.3 Va
21	-7.12	- 6,18 - 6,18 - 1,3 - 1,5 - 1,		37 -4.50 2 34, 5 .85 1.9	42 -2.93 nten
18	-7.62 5 33.	- 6.01 - 6.01	- 5.55 - 5.55 7 - 19 3 - 27	-4.79 -4.79	-3.02 -3.02 Wurden
15	-11.01 -11.01 -13.01 -11.01 -13.01 -1	- 6.75 - 6.75 - 6.75	- 5:94 - 5:94 	-5.15 -5.15 -5.15	.36 -3.05 d 2- K knet
12	- 22,66 + 50,50	5.18 - 10,67 36 - 3	- 6:45 - 6:45	- 5,37	.36 -3.25 y- uni
6	40.18 -40,27 - 182 - 182	-25.08 -25.08 -25.08 +30	4.90 - 10.00	- 6:31 - 6:31 - 6:31 - 1-	-3.83 -3.83 9 die ot I)
9	= [[]]] = []] = []]] = []]]]	-58.82 -58.82 1207 3.3	21.06 -28.17 5.5 -14 5.5 -14		1,05 -4,91 X=-
ĸ	1 - 1 - 2 - 2 - Z		- 53.87 - 53.87 73 - 73 78 - 12 18 - 12	6.56 -14.97 8 40. 6 .15	.88 -6.13 C bei ns de
0	um 61		+6.53 -66.36 3,5 -39 3,5 -39	+2,61 -22,63 -22,63 -2.63 -2.63	-6.74 Luake
-3	n X		-6.92 -71.56 5.0 19 7.4	-5.32 -20.92 1,1 -86 1,7 -,15	-1.04 -6.25 Ju Kie Z = VX
- 6			-20,56 -57,35 1.0 -73 5011 40 -2.1	-4.90 -13.46 1.2 -86 1.2 -86	-1.41 -5.18 b.L.
6-			-22.68 -31.12 65 -2.	- 3,23 - 8,48 - 13 - 67 - 1,6	-1,53 -4.18 Ta
>	-36	- 39	- 42	- 45	-48

	an in	2			
57	3.30 L -4.75 L b (rot Z)	3.26	3.00	2.63	2,36 -5,50
54	-4.78 -4.78 33.56 33.17	3.76 -5.42 7 22. 53 .12	3.33 - 5.71 - 5.71 - 5 5	3.1 - 5.42 - 7 45, - 2	3.50
51	- 4.76 - 4.76 - 7 35 - 1 35	+.76 - 5.62 - 5.62	5,08 -5,68 5,7 -31 5,7 -31 3,2 -1	-5.09 -5.09 3 45	-5.10 -5.10
48	5,43 -4,42 -4,42	- 5.13 5 4	7.67	- 4,23 - 4,23 - 4,23	9.86 -4.27
45	- 3,35 - 3,35 1,	- 3.72 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	9.74 -2.70 55.5 - 86 - 28	-2.77	13.07 -2.95 A L3 L 0/0.
42	- 1:82 - 1:82 - 1:82 	8,58 -1,78 1,3 -13 53 - 0	10.69 51 	12.71 73 73 73 73	1491 -1.02 -1.02 -1.02 -1.02
39	6.61 - 101 - 23 - 1,5 53 - 1,5	8,53 4,40 5,3 - 5 5,3 - 5 2,4 - 1,1	10.46 1.66 7.5 -125 7.2 -125 7.2 -125 32 -1.	12,20 1.62 1.62 53 - 16	14.27 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26
36	5.86 1.95 1.95 15 - 79	7.36 2.34 2.34	8,59 3.27 3.27 3.27	9.59 3.41 15 - 30 15 - 30	loupo 3.09 Kompo
33	4.61 3.40 3.40 493 493	3,60	5.87 5.87 4.05 35 - 6	6,17 6,17 4,31 5 5 5 5,5,	6.80 4.14 die net n
30	2.94 3.94 3.99 1.1 1.1	3,30 4.24 4.24 210 396	3.38 4.52 4.52 79 5 -1.	3.39 4.75 55 - 5 4	3.44 4.69 4.69 X=-19 beyech
27	1.41 4.14 3 61 3 61	4.28	144	1.10 + + 84 + 1.10 - 17 17	.69 4.63 4.63 t bei
24	58 4.03 50 49	,36 4.06 3 14 4 15	205 1 1 1 2 0 1 8 1 1 2 0 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37 +.+9 56 -0	-,66 4.21 egebi
21	3,38	3.53 3.53 5.53	47 3.70 65 .80 44 22	51 4.09 8 20 56 .1	52 4.18 Wirb.
18	2,40 2,40 2,61 ,5 -3 4 -1,4	1.65 2.93 4 .11	1.28 3.42 5 43 30 .2	11-12	1.07 4,28 11 . Jm
15	4.64 2.62 - 174 - 31	4.20 2,77 - 94 - ,20 - 22	3,85 3,41 -,1 -,2	3,57 3,97 - ,96 - ,96	3,29 4.10 Tab. J
Ra N	30	27	24	21	18

Z	37.5	40,5	43.5	46,5	49.5	52,5	55.5	58.5	x=-68
3		-56.5 -2.4	-199.8 - 5.5	- 138.3 - 2.5	6.2	-4.5 1	<i>19.</i> 3 •3	196.2 _9.2	(rot I) 1/m2 M2 in %
0	-103,3 -42	-251.6 -7.3	-10.0 -,2	34 8 .8 5.3	359.3 5.4	351.5 5.9	166.2 3.4	48.0 1.2	
-3	-113,2 -3,2	- 37.5 7	332.0 5.1	93.0 1.3	90.2 1.4	(57.8 4.7	129.7 3.1	19.3 ,6	

¥	39	42	45	48	51	54	57	x = - 68
4.5		65.7 1.6	-184.7 -3.3	-187.2 -2.5	-124.3 -1.6	-63.0 9	-145.8 -2.5	(rot I)3 1/m2
1.5	95.8 2.4	-106.7 -2.0	-163,2 -2,2	5.8 ./	-40.5 5	71, 8 1.1	72.5 1.4	
-1.5	-75.6 -1.5	28,5 •4	140,2 1.6	35.3 •4	-28.3 -,4	-99.5 -1.7	-62.2 -1.5	
-4,5	-53.3 8	200,8 2,4	-174.2 -1.9	3.5 .04	31.3	-104,7 -2.1	- 168.5 - 4,5	

L Y	39	42	45	48	51	54	57	x=−73
3	· · ·	160 2.4	107 1.0	-68 4	-273 -1.5	-282 -1.6	-98 -,6	(rotZ), ;
0	252 4.4	168 1.8	67 .5	-153 -18	- 198 - 1.0	-113 7	10 .0 ₇	
3	292 3.3	248 1.8	190 1.0	37 •2	27	-15 1	102 .8	

1/m2

2	39	42	45	48	51	54	57	×=-63
3		63.3 .6	26.7 .2	93.3 .5	41.7 .2	88.3 ,6	40,0 •4	(rot Z), 1/m2 1 1, in %
0	171.6 1.8	-186.7 -1.2	-/18,3 6	-90,0 -,5	-131.7 -,8	-66.7 -,5	-45.0 5	
3	83,3 .6	-410 -2.1	-60.0 -,3	-60,0 -,3	00	61.7 .5	115 1.3	

Tab. III Alle komponenten von rot Z und ju zwischen X=-73 und -63;

z senkrecht (positiv nach oben)

<u>Abb. 3</u> Linien Konstanter Querrotation in der Spantebene x = -19

der Plattengrenzschicht bei $Re=10^7$

