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Symbol or Letter

Explanation

A... Z
a...z
a...C

usually matrices

usually vectors

in general scalars

derivative

derivative with respect to the time ¢

the transpose of a matrix A

the complex conjugate of the transpose of
the matrix

imaginary unit ¢ = /—1

indices

zero matrix

identity matrix

denotes the B-inner product for v,w €
cr,

i.e. (v,w)p :=w’Bv

norm of the vector (unless stated other-
wise it means the euclidean norm)

the induced norm by (-, -)p.

matrix norm (unless stated otherwise it
means the euclidean norm)

eigenvalue

the spectrum (set of all eigenvalues) of the
matrix A

the set of all eigenvalues in the domain of
the nonlinear eigenvalue problem
singular values of an matrix A € C"™*" in
descending order

smallest non-zero singular value

the canocial basis of the R™ or C", respec-
tively

If D is a closed set, that int D = D\ 9D,
if D is an open set int D = D.

Set of polynomials with maximal degree n
{peCllp—A <7}

all nonnegative real numbers
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Chapter 1

Introduction

Linear eigenvalue problems occur in many applications in physics and engineering.
When analyzing dynamic systems, the determination of eigenvalues and their eigen-
vectors is an important task. The location of the eigenvalues in the complex plane
gives information about the stability of the system. Furthermore, eigenfrequen-
cies and their eigenmodes are highly relevant for all vibrating systems. It must be
guaranteed that no external vibrations are in neighborhoods of the system’s eigen-
frequencies.

Nonlinear eigenvalue problems result from more complex systems. If, for instance,
the system has a time delay or a damping part, then the resulting eigenvalue problem
becomes nonlinear. To consider these problems in the most general form, nonlinear
eigenvalue problems are described by

where T': C D D — C™" is a family of matrices, A\ € D is the eigenvalue and
x € C™\ {0} is an eigenvector.

Determining the eigenvalues of a linear n x n eigenvalue problem is equivalent to
finding the roots of a polynomial with degree n. Once the eigenvalue is known, the
eigenvector can be obtained by the solution of a linear system. However, for root
finding the analytical solution is only possible for special cases or n < 4. Thus,
many numerical methods have been developed to obtain approximations for the
eigenvalues and eigenvectors. For nonlinear eigenvalue problems, there even exist
very low dimensional problems, which cannot be solved analytically.

The bottleneck of many numerical methods is solving a linear system which is
required in every iteration step. The power method avoids this expensive opera-
tion, but it can only be used to determine the largest eigenvalue in magnitude of
a linear eigenvalue problem. Other methods, like the QR-algorithm, require a QR
decomposition in every iteration step, which is even more expensive than solving
a linear system. Hence, it is suggested to replace the solution of the linear system
by an inezact solution for large! n. This inexact solution is computed by using an
iterative method to solve the linear system. The nonlinear Arnoldi method deter-
mines a subspace extension by replacing the linear system by simplification where
the occurring matrix is replaced by a preconditioner.

An important question in this context is how accurate the inexact solution has
to be in order for the eigenvector iteration to converge (more or less) quickly to an

H.e. n > 1000



Chapter 1 Introduction

eigenpair. This question was discussed by Smit and Paardekooper in [68] for sym-
metric matrices. Additionally, there are papers by Simoncini and Eldén [64] and
Notay [52] discussing the same context. Berns-Miiller and Spence present conver-
gence results for non-symmetric problems in [7].

In [27] and [51], Hochstenbach and Notay discuss stopping criteria for inner iter-
ations.

The main problem of these methods is the growing number of necessary inner
iterations with the convergence of the outer iteration, i.e. if we are close to the
solution, many inner iterations are required to solve the corresponding linear system
to obtain a better new iterate.

Procedures to stabilize the outer iteration process by a special preconditioning
technique were suggested by Freitag and Spence in [15, 16, 17, 18].

Szyld and Xue analyzed an inexact method for nonlinear eigenvalue problems in
[70].

In this thesis, we consider, in general, nonlinear eigenvalue problems; since linear
eigenvalue problems are special cases of the nonlinear ones.

Voss developed a theory in [77] about the robustness of search space expansions.
Here, the case is considered where a current eigenvector approximation is expanded
by a correction to a two-dimensional search space. The search space expansion
has to be chosen orthogonal to the current subspace to minimize the influence of
perturbations.

A typical method which provides an orthogonal search space expansion is the
Jacobi-Davidson method which was introduced by Sleijpen and Van der Vorst in
[66]. This method is motivated by Newton’s method where the Newton correc-
tion is orthogonalized against the current iterate. We regard the Jacobi-Davidson
method more generally as a procedure to stabilize an iterative method to determine
eigenvalues and eigenvectors of a linear or nonlinear eigenvalue problem.

Based on this theory, we will discuss the question how a perturbed search space
influences the convergence behavior of the iterative projection method. Therefore,
we do not distinguish between linear and nonlinear eigenvalue problems, but we con-
sider those cases where special structural properties (like minmax characterization
or local symmetry) can be exploited.

The good convergence results are reasoned by the use of Rayleigh functionals, if
these are available. Their stationarity at eigenvectors results in very good approx-
imation properties. Motivated by excellent numerical results, we analyze a special
class of nonlinear eigenvalue problems with two real parameters?. These problems
are caused by analyzing dynamic systems with time-delay for critical frequencies.
We present different kinds of functionals and prove their stationarity at eigenvectors.

This thesis is structured into six chapters, first being this introduction.

In the second chapter we give important preliminaries about the theory of nonlin-

2instead of one complex eigenvalue



ear eigenvalue problems from the literature. We then introduce the most common
numerical methods to solve these problems. Moreover, inexact methods and their
convergence theories are presented. The chapter is finished with a numerical exam-
ple, which reveals the problems caused by inexact solutions of the linear systems
during the iteration.

The third chapter introduces the Jacobi-Davidson method. After briefly describ-
ing the history of this method, the Jacobi-Davidson algorithm is given. We discuss
the Jacobi-Davidson method without Subspace Acceleration and the convergence the-
ory for its inexact version. This has been obtained by Szyld and Xue in [70]. For
the robustness against perturbations we regard the theory published by Voss in [77].
Finally, we give a very general version of the Jacobi-Davidson method, which can
be constructed based on every vector iteration to determine eigenvalues.

In Chapter 4 we analyze the convergence behavior for two-dimensional search
spaces which have been rotated by an angle e. We present a convergence proof
for the smallest eigenvalue of Hermitian problems whose eigenvalues can be min-
max characterized. Furthermore, a different approach for the convergence to inte-
rior eigenvalues and its eigenvectors is given. Therefore, we answer the question
where Ritz vectors are located in the two dimensional search plane after solving the
projected problem. Moreover, we consider real non-symmetric matrices where no
minmax characterization can be applied and we give a convergence proof for this
case. At the end, the numerical example from Chapter 2 is reconsidered. Here, the
advantages of the Jacobi-Davidson method are shown. Furthermore, an example for
a nonlinear problem is presented.

In the fifth chapter, the two-parameter eigenvalue problem is considered. We in-
troduce methods to solve this kind of nonlinear eigenvalue problems for small dense
problems as well as large sparse matrices. Finally, we present different variants of
Rayleigh functionals and analyze their properties.

Chapter 6 includes a summary and the conclusions of this thesis. We will review
the most important results and state some open questions. Lastly, we give an out-
look on possible projects in the future.

The appendix gives deeper information about the three dimensional geometric
approach to prove the convergence in Chapter 4.






Chapter 2

Nonlinear Eigenvalue Problems

In this chapter we give an introduction to the field of nonlinear eigenvalue problems.
Nonlinear eigenvalue problems can be seen as a generalization of linear eigenvalue
problems. Further information about the theory of linear eigenvalue problems can
be found, for instance, in [3], [20], [57], and [83].

To begin with, nonlinear eigenvalue problems are introduced and the variational
characterization of eigenvalues is explained. Afterward, the Rayleigh functional is
considered with respect to its approximation properties. Additionally, error mea-
sures for numerical methods seeking one or more eigenpairs are presented. Finally,
different numerical methods to compute eigenvalues and eigenvectors, their advan-
tages and disadvantages, as well as their costs, are discussed.

2.1 Problem Description

The nonlinear eigenvalue problem is given by the following definition.

Definition 2.1. Let
T { CoDb — (Cr»

A TN

be a continuous function, which maps a parameter A\ onto a family of matrices.
Every A € D satisfying that
T(A)v =0 (2.1)

has a nontrivial solution is an eigenvalue. Every nontrivial solution v € C" of (2.1)
is called (right) eigenvector. Analogously, each nontrivial solution w € C" of

wT(\) = 07 (2.2)
is called left eigenvector.

The hereby defined eigenvalue problem is the most general representation. Possi-
ble cases are shown in the following remark.
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Remark 2.2. Possible examples for T are:
« the linear eigenvalue problem: T'(\) = Al — A,

the generalized linear eigenvalue problem: T'(\) = AB — A,

the quadratic eigenvalue problem: T'(\) = \2C' + AB — A,

the polynomial eigenvalue problem: T'(\) = A\"A,, + ... + AA; + Ao,

the delay eigenvalue problem: T'(\) = A — AB + exp(A7)C,

o the rational eigenvalue problem: T'(A\) = —K + AM + Z?Zl Uj’\_/\C'j.

A good overview about nonlinear eigenvalue problems can be found in [19], [25],
[46], and [81]. Further theory about the quadratic eigenvalue problem is given in
[72].

Similar to the linear eigenvalue problems, the eigenvalues of (2.1) have also alge-
braic and geometric multiplicities. A simple eigenvalue is defined as follows.

Definition 2.3. Let \ be an eigenvalue of (2.1) and 9 a corresponding right eigen-
vector. The eigenvalue A is called (algebraically) simple, if and only if

d
3 det TV, # 0.

The geometric multiplicity is defined analog to the linear eigenvalue problems:

Definition 2.4. Let A be an eigenvalue of (2.1) and 9 a corresponding right eigen-
vector. The geometric multiplicity is defined as for the linear eigenvalue problems
by

The following two theorems proven by Schreiber in [62] provide the geometric
multiplicity and one further property.

Theorem 2.5 ([62]).
Let X\ be an algebraically simple eigenvalue of (2.1). Then, the eigenvalue A is

~

geometrically simple, i.e. rank (T (\)) =n — 1.

Theorem 2.6 ([62]).
Let X be a geometrically simple eigenvalue of (2.1), i.e., det(T()\) = 0 and

dim ker T(\) = 1, ker T()\) = span{d}, ker T\ = span{w},
with [|0]], = |||, = 1, and let T be differentiable. Then we have

\ is algebraically simple < uAJHT’(S\)@ # 0.



2.2 Variational Characterization of Eigenvalues

2.2 Variational Characterization of Eigenvalues

Variational characterization is known for self-adjoint linear operators on a Hilbert
space H. By using it, the eigenvalues can be localized within a bounded interval.
Furthermore, variational characterization is a good tool to compare eigenvalues,
interlacing eigenvalues and to prove the convergence of numerical methods. In this
section, we will briefly introduce the generalization of variational characterization
for nonlinear eigenvalue problems. In Chapter 4 we will use this tool for convergence
proofs. We restrict this introduction to H = C".

Assumption 2.7 ([82]). Let J C R be an open interval and T'(\) = TH(\) for all
A € J. Define the function

fOuz) =2"T(\N)x, MNeJ, xeCm (2.3)
We assume, that for every fivzed x € C™\ {0} the real scalar equation
f(\z) =0 (2.4)
has, at most, one solution X\ =: p(x) € J.
This defines the Rayleigh functional

p:{D(p)CC; : zi(x)'

The domain D(p) is a subset of C" satisfying that:
« 0¢ D(p),
e (2.4) has exactly one solution A € J for every z € D(p).

For generalized linear eigenvalue problems, (Av = ABv), minmax characterization
of the eigenvalues is only possible for Hermitian matrices A and Hermitian positive
definite matrices B (cf. [57]). The definiteness of B is generalized for nonlinear
problems in the following assumption.

Assumption 2.8 ([79]). Let f be defined as in (2.3). We assume, that for every
x € D and every A € J with X\ # p(z),

(A =p(2)) f(A2) >0 (2.5)
holds.

Firstly, we consider and define overdamped problems and secondly, an approach
for non-overdamped eigenvalue problems is presented.
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2.2.1 Overdamped Nonlinear Eigenvalue Problems

Definition 2.9. A nonlinear eigenvalue problem is called overdamped if D(p) =
C™\ {0}. Otherwise, the problem is called non-overdamped.

The name originates from the quadratic eigenvalue problem
T\ =X NM+MC+K, M,C,KcR™ symmetric positive definite.
The function f, defined in (2.3), is obtained by
fO2) = 2o Ma + X\’ Co + 2" K.

Taking the roots of this polynomial yields

1
20H Mz

pe(z) = (IHCI:E\/(IHCI)2—4$HKI'IHMSL’>.
Let J, and J_ be the images of the two functionals p, and p_.
If
(:EHC':E)Q—4$HK$-$HM$>O, Ve € R™\ {0}, (2.7)

J. and J_ are real disjoint intervals, containing all eigenvalues of 7T'(-). This
implies only real and negative eigenvalues which yields descending solutions without
any oscillations for the corresponding system of ordinary differential equations, M+
D¢+ Kq=0.

Duffin [12] shows Poincaré’s minmax characterization for overdamped quadratic
eigenvalue problems and Rogers [58] for general nonlinear overdamped eigenvalue
problems. Here it is suggested to enumerate the eigenvalues in their usual order
beginning with the smallest eigenvalue.

2.2.2 Non-Overdamped Nonlinear Eigenvalue Problems

For non-overdamped problems, Voss and Werner introduced the minmax character-
ization in [82]. With J from Assumption 2.7 they defined for j € N and A € J :

pj(A) == sup min v7T(N\)v, (2.8)
dim(V)=j ||5\|62‘i1

which yields that p;(A) denotes the j-th largest eigenvalue of the linear eigenvalue
problem

T(No(A) = p(A)o(d). (2.9)

To be able to define a minmax characterization for nonlinear eigenvalue problems
we define the following enumeration of eigenvalues

Definition 2.10. A € J is a k-th eigenvalue of T(+) if pp(X) =0 for 1 < k < n.

The following lemma was proved in [82] for differentiable 7'(-) and in [79] for the
non-differentiable case.



2.3 Rayleigh Functional

Lemma 2.11. Under the conditions of Assumptions 2.7 and 2.8, let A € J, and
assume that V is a subspace of C" satisfying V N D(p) # 0. Then

<

o vIT(\)w
= sup  p(v) & min ————
~ | veVND(p) veVA{0}  vYW

VoIl A
o

Using Lemma 2.11, Voss and Werner presented in [82] the minmax characteri-
zation for non-overdamped nonlinear eigenvalue problems. But they required T'(-)
to be differentiable. In [79] Voss presented a proof where 7'(-) does not have to be
differentiable with respect to A anymore. This is presented in the following theorem.

Theorem 2.12 (Minmax Characterization).
Let Assumptions 2.7 and 2.8 be satisfied. Then for every m € N there exists at most
one m-th eigenvalue in J, and the following characterization holds:
Ap = min sup p(v),
m D(\;)Eff&niw vg\:}r;oD(p) ( )
and
s Ay b <m =3\, k< j<m,

where S, denotes the set of all m-dimensional subspaces of H.

The maxmin characterization from Courant, Fischer and Weyl is generalized in
[73]. Similarly to the minmax characterization, a proof for maxmin characterization
was presented by Voss in [79], where T'(-) does not have to be differentiable with
respect to A anymore.

Theorem 2.13 (Maxmin characterization).
Assume that the Assumptions 2.7 and 2.8 are satisfied. If there is an m-th eigenvalue
Am € J of problem (2.1), then

An = max inf v
m VeSm—1 wvevLinD(p) p< )7
vLnD(p)#£0 v#0
and the mazimum is attained by W := span{u',... ,u™ '} where v/ denotes an

eigenvector corresponding to the j-th largest eigenvalue pj(Amy) of T'(Ap).

The numerical method Safeguarded Iteration was developed from this characteri-
zation. It is described in Section 2.5.

2.3 Rayleigh Functional

In the previous section, we introduced the Rayleigh functional to characterize the
eigenvalues (cf. Theorem 2.12 and Theorem 2.13). However, this is not the only
useful property of a Rayleigh functional. Since evaluating the Rayleigh functional
at an eigenvector yields the eigenvalue, the Rayleigh functional can be used to
determine a good approximation for the eigenvalue, if an approximation for the
eigenvector is available.
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2.3.1 Generalized Definition

In Section 2.2 we defined the Rayleigh functional, if Assumptions 2.7 and 2.8 are
fulfilled. In this section a broader definition by Schwetlick and Schreiber ([63]) is
discussed such that the Rayleigh functional can be applied, even if the eigenvalues
cannot be characterized by minmax characterization. The domain of the Rayleigh
functional is reduced to a n-dimensional cone around the sought eigenvector.

Before we can define the Rayleigh functional the following assumption for 7'(-) is
needed.

Assumption 2.14. Let A € C be a simple eigenvalue of (2.1) and let T(-) : C D
D — C™™ be a matrix valued function. Suppose that there is a radius T > 0 such
that the disc S(\,7) := {\ € C | |\ = \| < 7} is contained in int D and that T is
holomorphic on S(A, 7).

If T and \ are real, we can consider T : R > D — R™" instead, and 5'(5\,%)
is an open interval. In this case, we assume that T" exists and that T" is Lipschitz
continuous in S(\, %) with some constant L > 0, i.e. that

IT'N) =T’ (Wl S LIX—p| forall A peSA7).

Using this assumption we can now define the Rayleigh functional.

Definition 2.15 ([63]). Let Assumption 2.14 be satisfied for some 7 > 0, K. (

{reC"| 4L (x,0) <e} and 0 < e < 7, then a functional p : K. (0) — S(A\,#)cC
fulfilling for all = € K.(0)

(i) plax) =p(z), YaeC\{0},
(i) =T (p(z))x =0,

(iii) 27" (p(x)) x # 0,

defines a Rayleigh functional.

Remark 2.16. Let p be a Rayleigh functional as defined in Definition 2.15, then for
every eigenpair (\;, v7), ‘
p(v’) = A;

is satisfied.

2.3.2 Stationarity

For this subsection we assume, in addition to Assumption 2.14, that
p: K. ()= JCR and T\ =TH(\) VieJ

holds.
Similar to the Rayleigh quotient, the Rayleigh functional provides a good approx-
imation for the eigenvector, if a vector close to a corresponding eigenvector is given.

10



2.3 Rayleigh Functional

This approximation quality of the Rayleigh functional is improved, if it is addition-
ally stationary at eigenvectors. (cf. [62]) Therefore, we will consider the gradient
and Hessian of real Rayleigh functionals and refer to the definition of stationarity
for the complex case. The following lemma describes the gradient of the Rayleigh
functional.

Lemma 2.17. Let T : R D J — R™™ p: K (9) — R be the corresponding Rayleigh
functional and T(\) = TT(N), VA € R. Furthermore, let T(-) be differentiable with
respect to A. Then the gradient of this Rayleigh functional is given by

2

V) = = ) @

T (p(x)) .

Proof. We consider
2T (p(x))x = 0.

Computing the derivative with respect to x yields

27 (p(x)) x + Vp(x) (27T (p(x)) x) = 0 (2.10)
SVp(z) = —MCT (p()) z. (2.11)
]

Corollary 2.18. The eigenvectors v’ are stationary points of the Rayleigh functional
.

Since the expression 2T (\)x is not holomorphic with respect to x, the station-
arity for complex vectors cannot be proven by showing that the gradient is zero as
it was done in Lemma 2.17 and Remark 2.18. Schwetlick and Schreiber showed in
[63] and [62] the stationarity of a Rayleigh functional at eigenvectors. Therefore,
they defined stationarity as follows.

Definition 2.19. A complex function f : C* D D — C is called stationary at
z €int D if
fz+Az) = f(2) = o([| Az]).

The Hessian of the Rayleigh functional in real arithmetic will be of interest, too.
Therefore, we introduce a further lemma.

Lemma 2.20. Let T :R D J — R™™ p: K (9) — R be the corresponding Rayleigh
functional and T(\) = TT(X), VA € R. Furthermore, let T(-) be twice differentiable
with respect to \. Then the Hessian of the Rayleigh functional is given by

I S
2T (p(x))x

+2 Vp(a)2"T' (p(x)) + (2" T" (p(x)) x) Vp(z) Vp<x>T). (2.12)

V2p() = (2T (b)) + 2T (p(a)) = V()"

11



Chapter 2 Nonlinear Eigenvalue Problems

Proof. Differentiating (2.10) with respect to z yields

2T (p(x)) + 21" (p(x)) x V()"
+Vp(a) (¢ T" (p(x)) 2 Vp(2)" + 22T (p(x)))
+ 27T (p(x)) x V?p(x) = 0. (2.13)

Exploiting 27 T" (p(x))  # 0 we can solve this equation for V?p(x) which yields the
result. O

Remark 2.21. The Hessian evaluated at an eigenvector z = 0 yields

2T (p (9))

VPO =T ey

At the end of this chapter, numerical methods are presented which exploit this
property of the Rayleigh functional.

2.3.3 Approximation Properties

The stationarity of Rayleigh functionals at eigenvectors improves the approximation
property for the eigenvalue. This is discussed in detail by Schwetlick and Schreiber
in [63, Cor. 18 and Th. 21]. They prove that

O (tan? (Kiuﬁ))) if T(-) is Hermitian (2.14)

Ip(u) = A :{ O (tan (£(u,9))) else

holds, if T'(+) is holomorphic and u is sufficiently close to the eigenvector o.

2.3.4 Generalized Rayleigh Functional

Evaluating the Rayleigh functional requires the solution of a scalar nonlinear equa-
tion. This might be expensive. Therefore, this step can be replaced by one Newton
step applied to the nonlinear equation

H
(x(kﬂ)) T()\)x(k+1) L 0,

thus "
(x(k:—i-l)) T(}\(k))x(k+l)

(aj(kJrl))H T (A0 g k+1) ’
This simplification is called generalized Rayleigh functional (][40, 60]).

AEHD) — (k)

2.3.5 Two-sided Rayleigh Functional

Based on Ostrowski’s two-sided Rayleigh quotient in [55, 56|, there also exists a two-
sided Rayleigh functional, which can be used if T'(\) is not Hermitian for A € D.
This was defined by Schreiber and Schwetlick in [63]:

12



2.4 Error Measure

Definition 2.22. Let A be an simple eigenvalue of (2.1). Let © and @ be a right
and a left eigenvector corresponding to A. The map

p: Ke(d) x K. () — p(z,y) € SCC

defines a two sided-Rayleigh functional if, and only if, the following properties are
fulfilled:

(i) plax, By) = p(z,y), Va,B € C\{0},
(it) y"T (p(z,y)) z =0,
(iii) y™T" (p(z,y)) x # 0.

Schreiber and Schwetlick proved the existence and stationarity of two-sided
Rayleigh functionals at eigenvectors. For the two-sided Rayleigh functional,

Ip(x,y) — Al < C tan £ (,9) tan £ (y, ©) (2.15)
holds.

2.4 Error Measure

When analyzing the numerical method for its convergence rate, it is necessary to
have a measure for the error.! The first idea is to use the norm of the error vector,
which is used, for instance, to measure the error of nonlinear systems of equations.
But for eigenvalue problems, all nonzero multiples of an eigenvector are eigenvectors
of the problem as well. Therefore, the distance between the vectors is not a suitable
measure for the error.

2.4.1 Angles vs Distances

Measuring the approximation error of an eigenpair by angle is usually much more
effective than measuring by distance.

Definition 2.23. The angle between two nonzero vectors with respect to an inner
product (-, -} is defined by

£(u,v) == arccos <<“”>> : (2.16)

el ]l

where ||-|| is the norm induced by (-, ).

!Measuring the error requires that the exact solution of the (nonlinear) eigenvalue problem
is known. Therefore, the content of this section is only used for theoretical considerations
(e.g. How fast the error tends to zero in the iteration process?).

13



Chapter 2 Nonlinear Eigenvalue Problems

We usually use the standard inner product. If the eigenvectors can be chosen B-
orthogonal for a given Hermitian positive definite matrix B, the corresponding inner
product, (-, -)p, is chosen for the angle as well. Additionally, the induced B-norm is
used here.

The angle between x*) and ¢ can be used if a simple eigenvalue is sought. For

the linear eigenvalue problem
Av = v,

where A is normal?, the eigenvectors can be chosen to be orthogonal. Then the
current eigenvector approximation x(*) with norm 1 can be decomposed into a com-
ponent in the direction of the eigenvector and a direction w, which is orthogonal to
the eigenvector.

2®) = cos(¢™)d + sin(¢p™)w, (2.17)

where ¢, := £ (2 d), ”:r(k)H = ||9|| = ||lw|]| = 1 and © L w. Here w is a linear
combination of all other eigenvectors except .
For the generalized Hermitian linear eigenvalue problem

Av = \Buw, with A= A" and B=BYhpd?

the current approximation #*) is decomposed as in (2.17), but the angle is chosen
with respect to the B-inner product. This choice will be used later for convergence
proofs.

Unfortunately, eigenvectors cannot always be chosen to be orthogonal. This occurs
for non-Hermitian linear problems and usually for nonlinear eigenvalue problems.
Hence, there exists alternative decompositions to (2.17), which result in a generalized
sine, cosine and tangent. Those decompositions can be found, for instance, in [70]
and will be introduced next.

2.4.2 Generalized Angles

For linear Hermitian eigenvalue problems the eigenvectors can be chosen to be or-
thogonal. With this and the decomposition of the current iterate z(*) in (2.17) the
convergence behavior can then be analyzed. But for non-Hermitian matrices or for
nonlinear eigenvalue problems this property cannot be exploited any longer. There-
fore, an alternative decomposition is required. Such a decomposition of the current
eigenvector approximation corresponding to a simple eigenvalue s given by Szyld

and Xue in [70]. While they showed it only for C' = T"(\), we give a more general
decomposition for any non-singular matrix C' € C™*™ satisfying

w?Co # 0

where w denotes now the left eigenvector corresponding to A. A vector z € C" can
be decomposed similarly to (2.17) into a component of the direction of an eigenvector
v and another direction g, by

z = (ch+ sg), (2.18)

2ie. AAH = AH A
3Hermitian positive definite

14



2.4 Error Measure

with
wt )
= Czx| 2.19a
! H (W{I—l 2 ( )
[waCa|
§i= "2 (2.19Db)
8
HO
ci= 2T (2.19¢)
g
1/1
g=- (x — c@) : (2.19d)
s\
where w is scaled to satisfy
wiCo =1,

and W,_; € C™ (1 is a matrix consisting of an orthonormal basis of the orthogonal
complement of span{Cv}.

The following lemma elucidates important properties regarding this decomposi-
tion.

Lemma 2.24. Let x be decomposed as in (2.18) and C € C™™ non-singular. Fur-
thermore, 7y, s, ¢ and g are defined as in (2.19). Then the following is satisfied:

(i) wiCg =0,

(ii) |[WiL,Cg|, =1,
(iii) ¢+ s* = 1.
Proof. All three parts can be easily proven by inserting the definitions from (2.19).
Note that v > 0 and s > 0 are implied by the definition. O]

The value v in (2.19a) is a norm on C™:

U)H
(i)

Similar to the decomposition (2.17), ¢ can be interpreted as the generalized cosine
of the angle between x and ¥ and as s as its generalized sine. Alternatively, the
generalized tangent is considered to measure the rate of convergence, which we
denote by

2

ty = f, if ¢ #£ 0.
c
We will now summarize how the generalized angle is related to the angle induced
by the Euclidean inner product.
Szyld and Xue additionally showed in [70] that

. oy < lsally _ llglls
sin £ (x,0) < —2 = t, 2.
0 lelly 1ol
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Chapter 2 Nonlinear Eigenvalue Problems

9]l can be bounded by

1 1
— = Z
ey = 19l = o

where o; (W7 ,C) denotes the j-th and 0,,;,(W,7;C) denotes the smallest nonzero
singular value of W/ ,C. Inequality (2.20) shows that ||g||, can be bounded inde-
pendently of s and c.

Finally, if |s| < |c|, then the tangent of the angle between z*) and 9 can be
approximated by

(2.20)

Isgull, —_  ll(ssin(x))gll,

tan £ (z,0) = [0+ sg,  lled + (scosx)gll,

~ t,sin(x).

Here g is decomposed into g = g| + g1 where g| is the orthogonal projection of g
onto span{?d}, g, , that part of g which is orthogonal to o, and y denotes the angle
between g and o. If y > 0, then there exist constants C; and C5, such that

City < tan 4 (z,0) < Coty (2.21)
holds. For x = 7 the generalized tangent and the real tangent are the same.
Corollary 2.25. For the special linear eigenvalue problem where

T\) =X —-A  with A= A"
and C = I, the generalized sine, cosine, and tangent are identical to the sine, cosine
and tangent of the angle according to (2.16).
Proof. Obvious. n
In the following section and especially in Chapter 4, the convergence behavior of
the methods is analyzed. We have to distinguish between two different cases:

1. Hermitian linear problems like Ax = ABx, where A = A and B = B is
positive definite. Here the eigenvectors can be chosen B-orthogonal, and, thus,
the decomposition (2.17) with (-, )5 can be used.

Here, C' = B yield that the decompositions in (2.17) and (2.19) are identical.

2. All other problems (non-Hermitian linear problems and nonlinear problems).
Here the generalized decomposition (2.18) is used.

The following corollary combines the generalized angles with the approximation
properties of the Rayleigh functional.

Corollary 2.26. With the help of (2.21), the approzimation property of (2.14)
can be extended to the generalized tangent. Thus, if x = £(0,g) is not too small in
magnitude, the error between evaluated Rayleigh functional and the sought eigenvalue
behaves as

p(u) = A = O ((t,)?), if T()" =T(),
Ip(u) — 5\| =0 ((ty)), otherwise

where t, denotes the generalized tangent between u and 0.
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Proof. From (2.14) we have

Q O (tan? (L(u,?))) if T(-) is Hermitian
[p(u) = Al = { O (tan (£(u,v))) otherwise.

Combining this result with the property
tan (£ (u,0)) < Ct,

from (2.21) completes the proof. O

2.4.3 The Residual

In this subsection we consider some properties of the residual
rk) = (AR k), (2.22)

The residual can be used to measure the quality of the current iterates for the
eigenpair. But a residual with a small norm does not guarantee that this iterate is
close to the solution of the eigenvalue problem.

Some results about the residual of a nonlinear eigenvalue problem are summarized
in the following proposition.

Proposition 2.27. Let T': D C R — C"*" be Lipschitz continuous with respect to
X in a neighborhood U(N) of a simple ezgenvalue )\ Moreover, let \*¥) € U(X), the
left eigenvector, W, not orthogonal to Cv and x*) € C™ be sufficiently close to the
corresponding eigenvector 0, and let the residual be defined as in (2.22). Then,

(i) Hr(k)H2 = O(s,) + O(X® — \|), where s, denotes the generalized sine of x(*)
compared with the eigenvector v.

(ii) If \®) = p(x®)) is chosen, then r® L z*)

Proof. The orthogonality in (ii) is obvious, since the second condition in Definition
H
2.15, (:v(k)> T (p(x(k))) ¥ =0, is satisfied.

We consider

r® = T(A®)2® = (T(A®) — T(}) + T(1)) 2
= (T(®) = 7(3) 2® + T(1)a®.

For the latter term we apply the decomposition from (2.18) to z(¥.

T(A®)2® = (T(AD) = T(X)) 2® + TNy (exd + s19P)

(TO®) = T(2) 2P + 70 e, T(N)o +4F 5, T (A)g*

=0

17



Chapter 2 Nonlinear Eigenvalue Problems

By exploiting the Lipschitz continuity of 7', we finally obtain
[N, = (T =TM) 2 +49sT (g
<[re®) - TR, | H +9Ws T Rg]
< L]A® \ H*”SWV g, (2.23)

In (2.20) it was shown that the Hg(’“) H can be bounded independently of s;. There-
fore, the second part of (2.23) behaves as follows,

Finally, inserting (2.24) into (2.23) yields
[r®||, =0 (A® = X)) + O (s).
[

The following lemma considers the dependence of the residual on the sine of the
angle between the current vector iterate and an eigenvector.

Lemma 2.28. LetT: D CR — C™™ be Lipschitz continuous with respect to X\ in
a neighborhood U(X) of an eigenvalue X. Moreover, let \® € U(N) and z® e Cm
be sufficiently close to the corresponding eigenvector © and the residual defined as in

(2.22). Then,
(i) Hr(k)H2 = O(sin(¢r)) + O(A®) = A|), where ¢y, denotes the the angle £(x® ).

(ii) If \®) = p(x®)) is chosen, then r® L z*)

Proof. This lemma is proven in the same way as Proposition 2. 27 We only use the
decomposition from (2.17) for () which means here that © 1 gi®) and v = 1. O

Corollary 2.29. Let all prerequisites of Proposition 2.27 be fulfilled.
1 If [IAN®) — X| = O (sy) is satisfied?, then

], =0t
2. If IN®) — X| = O (sin(¢y)) is satisfied, then

[r®]|, = O(sin(g)).

Proof. Tnsert |A\®) — X| = O (s;) and |A® — \| = O (sin(¢y,)) into Proposition 2.27
or Lemma 2.28, respectively. This completes the proof. O

4This can be assumed, cf. (2.14), Corollary 2.26.
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2.5 Numerical Methods for Nonlinear Eigenvalue Problems

2.5 Numerical Methods for Nonlinear Eigenvalue
Problems

Now we will give an overview of numerical methods for eigenvalue problems. The
following aspects should be considered for the selection of a suitable method.

Is the eigenvalue problem linear, generalized linear or nonlinear (polynomial)?

« Do the matrices have a special structure (e.g. Hermitian)?
o Are the matrices full or sparse?

o Are we interested in one, k < n or all eigenpairs?

2.5.1 Classical Methods

We will now consider numerical methods for nonlinear eigenvalue problems. To
begin with, methods based on Newton’s method are presented, followed by special
methods for nonlinear eigenvalue problems. Finally, an overview of methods for
large and sparse nonlinear eigenvalue problems is given.

Newton-like methods

One possibility to solve equation (2.1) is to append a scaling equation and solve the

nonlinear system
[ TNz \ o : (=
G(z) = (le 7 1) =0 with z= (A) (2.25)

using Newton’s method. Here, [ € C" denotes a scaling vector which has to fulfill
"9 # 0°. This approach is similar to inverse iteration for linear eigenvalue problems.
Hence, the resulting method is called Inverse Iteration for Nonlinear Eigenvalue
Problems.

5Even though the eigenvector is usually unknown we can assume that this condition is fulfilled,
since in finite precision on a computer it is nearly impossible to obtain a vector I which is
orthogonal to the sought eigenvector.
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Chapter 2 Nonlinear Eigenvalue Problems

Algorithm 2.1: Inverse Iteration for Nonlinear Eigenvalue Problems

input : initial guess for the eigenvector and eigenvalue y(® € C*, A\® € C, a
scaling vector [ € C™ with 9 # 0
output: approximation (/\(k)7 x(k)) to a solution A and v of (2.1)

}©) — [Hy)(0)

[y

Y

2 JJ(O) = %;
3 for k=0 to convergence do
4 Solve T(AF))yk+1) = T"(XF)) () for ok+1).
5 r(E+1) — lHy(k-H);
6 NGB+ — \(k) ﬁ;
(k+1)
7 x(k—O—l) — Z(kJrl);
8 end for

Theorem 2.30.
Inverse Iteration for Nonlinear Eigenvalue Problems, cf. Algorithm 2.1, converges
locally quadratically to simple eigenvalues if Assumption 2.14 is satisfied.

Proof. See [54]. O

If a minmax characterization is available, Algorithm 2.1 can be accelerated by
using the Rayleigh functional to derive an approximation for the eigenvalue. There-
fore, the lines 5, 6 and 7 are replaced by

) y (kD)
ly® 1,

)\(k+1) — p(l’<k+1)).

2(

The resulting method is called Rayleigh functional iteration because of its similar-
ity to the Rayleigh quotient iteration, which is known for Hermitian linear eigenvalue
problems.

SThis replacement can also be applied if a functional with similar properties is available. But
the improvement of the method can only be guaranteed for a Rayleigh functional with minmax
characterization.
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Algorithm 2.2: Rayleigh functional Iteration

input : initial guess for the eigenvector ¥ € D(p)
output: approximations to a solution A and o of (2.1)
0 — _y© .
1 29 = ;
[[v1],
A — (),
for k=0 to convergence do
Solve T(AF))yk+1) = T/ \F)) () for ok+1).

k+1 . (k+1) .
e = e

A+ — p(x(k—i—l))

NIV M

(]

(=]

’

7 end for

Theorem 2.31 ([59]).
Let Assumptions 2.7 and 2.8 be satisfied and X\ a simple eigenvalue. Then the
Rayleigh Functional Iteration from Algorithm 2.2 converges locally cubically.

Because solving a linear system in every iteration step with a varying matrix
is expensive, Neumaier [49] introduced a method based on the simplified Newton
method, avoiding a varying matrix. This method, called Residual Inverse Iteration,
is shown in the following algorithm.

Algorithm 2.3: Residual Inverse Iteration

input : initial guess for the eigenpair (A, 2(?)) and a normalization vector
[ with [79 # 0 and [72(® =1
output: approximation to a solution A and v of (2.1)

1 for k =0 to convergence do
solve lHT(/\(O))*lT()\(kH))x(k) = 0 for A*+D):

2
3 | solve T(ANO)u®) = T(AF+D)®) for 4F);
o | o) = gy ®).

5 gkt = le(1k+1)U(k+1)§

6 end for

If T(-) is Hermitian, line 2 in Algorithm 2.3 can be replaced by evaluating the
Rayleigh functional p at ), thus A#+1) = p(2®). Although the quadratic con-
vergence had to be abandoned, the method is effective since a decomposition, like
Cholesky or LU, of T(A?) can be made at once with the beginning of the iteration
process.

The convergence behavior of Residual Inverse Iteration is, for instance described,
in [49] and [81]. If T'(-) is twice continuously differentiable and A is simple, the
Residual Inverse Iteration converges for every (A(O),x(o)) sufficiently close to the
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eigenpair with

Hx(kﬂ) —9 2 © 3
2
and
2
. (’)( k) — ¢ ) if T'(+) is Hermitian,
A0 5| = Hx UH2 if 7'(-) is Hermitian (2.27)

(@) (Hx(’“) — @H2> else.

Safeguarded Iteration

Let Assumptions 2.7 and 2.8 be satisfied and consider the parameter dependent
linear eigenvalue problem

Then for A\ = );, there exists at least one eigenvalue p;(A;) = 0. This prop-
erty is used by Voss and Werner to determine a minmax characterization for non-
overdamped nonlinear eigenvalue problem in [82]. Furthermore, they present a
method, where this property is exploited, since T(A®), where A®) is close to an
eigenvalue \;, has an eigenvalue p(A®) close to zero. This behavior is exploited in
the following algorithm:

Algorithm 2.4: Safeguarded Iteration

input : initial guess for an eigenvector #(*) € D(p)
output: the m-th eigenvalue and a corresponding eigenvector of (2.1)

[y

for k£ = 0 to convergence do

2 | AW =p@®);

3 determine the m-th largest eigenvalue and an corresponding eigenvector
z®) of TRz = pa;

4 end for

The properties and convergence behavior are summarized in the following lemma:

Lemma 2.32 ([50, 81]). If Assumptions 2.7 and 2.8 are satisfied, the Safequarded
Iteration from Algorithm 2.4 has the following properties:

(i) If \i := inf,epg p(z) and 29 € D(p), then the safequarded iteration with
m = 1 converges globally to A;.

(ii) If T(-) is continuously differentiable and A, is a simple eigenvalue, then the
safequarded iteration converges locally quadratically to \,,.

(7ii) Let T(-) be twice continuously differentiable, \,, be simple and T'(\,;,) be pos-
itive definite. If %) in step 2 is determined as the m-th largest eigenvalue
of the generalized linear eigenvalue problem T(A*x = pT'(A*¥)x, then the
Safequarded Iteration converges cubically.
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2.5 Numerical Methods for Nonlinear Eigenvalue Problems

The name of this method originates from the fact that we can determine, with
certainty, the k-th eigenvalue of the nonlinear problem. This guarantee is not given
in any other method.

The Safeguarded Iteration is used if one is seeking the m-th smallest eigenvalue
of a given problem. But for large n, the method is expensive because every iteration
step requires the solution of a linear eigenvalue problem. Solving a linear eigenvalue
problem for large n is a process where several iteration steps are necessary.

Rothe presented a simplification in [59] where the solution of the linear eigenvalue
problem in step 3 of Algorithm 2.4 is replaced by one step of Inverse Iteration” to
the linear eigenvalue problem T'(A*)x = pa.

-1 (k+1) _ yE )

This leads to the following algorithm:

Algorithm 2.5: Derivative-free Rayleigh functional Iteration

input : initial guess for an eigenvector z()
output: an eigenvalue and a corresponding eigenvector of (2.1)

1 for k =0 to convergence do

2 | AB = p(ah));

3 solve T(AR))y(-+1) = g (k) for 4 (k+1),
k1) (k+1) .

¢ | = = e,

5 end for

Theorem 2.33 ([59]).
Algorithm 2.5 converges locally quadratically if T(-) is real symmetric and twice
differentiable with respect to X\, and, additionally, A is a simple eigenvalue.

Theorem 2.33 shows that the convergence order of Algorithm 2.4 can be main-
tained for local convergence of Algorithm 2.5. But we had to abandon the global
convergence properties which are provided by the Safeguarded Iteration method.

If the iteration step of the Inverse Iteration is applied to the generalized eigen-
value problem T(A*)z = uT'(A\*)z, the algorithm reduces to Rayleigh functional
iteration as in Algorithm 2.2, which converges cubically as well.

Iterative Projection Methods

For sparse nonlinear eigenvalue problems of large size there exist iterative projection
methods, which are partially adapted from those for the linear eigenvalue problem.

The following algorithm describes generally an iterative projection method for
nonlinear eigenvalue problems:

"Here, the algorithm Inverse Iteration for linear eigenvalues is considered.
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Algorithm 2.6: Iterative Projection Method
input :a matrix V' containing a basis of an initial subspace in which the
eigenvectors are assumed, with VAV =T
output: eigenvalues and corresponding eigenvectors of (2.1)

[y

m = 0;
while m < number of wanted eigenvalues do

N

3 compute the wanted eigenvalue 6 and corresponding eigenvector y of the
projected problem VET(0)Vy = 0;

4 determine Ritz vector u = Vy and residual r = T'(0)u;

5 if ||7|| / ||u|]| < € then

6 accept approximate eigenpair \,, = u, ™ = u;

7 m=m-+1;

8 if m == number of wanted eigenvalues then

9 ‘ STOP;

10 end if

11 if number of columns of V' is too large then

12 ‘ restart;

13 end if

14 choose approximations p and u to the next eigenpair;
15 determine residual r = T'(0)u;
16 end if
17 determine a subspace expansion v;
18 v=uv—VVHy;
| 0=uv/|v[;
20 | V=I[V,7];
21 reorthogonalize V' if necessary;

22 end while

In line 3, the wanted eigenvalue has to be determined. If the dimension of the
subspace is greater than one, there might be more than one eigenvalue available.
Possible choices for the wanted eigenvalue are for instance

o the smallest/largest algebraic eigenvalue (if the eigenvalue is real),
o the smallest eigenvalue in magnitude,
o the closest eigenvalue to a given shift.

In line 12, a restart is executed. For this, the algorithm is started from the
beginning again with a new initial basis of V. The new initial basis can be obtained,
for instance, by dropping all Ritz vectors whose Ritz values are not close to the
wanted eigenvalue. Alternatively, an invariant subspace of the linear eigenvalue
problem 7T'(c) can be used as the new subspace, where o denotes a shift.

There exist different possibilities to determine a subspace expansion for line 13.
We choose a Ritz pair and apply one step of a vector iteration (cf. Algorithms 2.1,
2.2, 2.3, 2.5).
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2.5 Numerical Methods for Nonlinear Eigenvalue Problems

Voss suggests in [74] to expand the subspace by the correction obtained by Resid-
ual Inverse Iteration (Algorithm 2.3):

u®) = T(o) T (AEFD) R

where o denotes a shift for the eigenvalue. The method is called Nonlinear Arnoldi
method. Since solving the linear system

T(U)u(k) — T()\(k’ﬂ))x(k)

for u®) in every iteration step is too expensive for large matrices, a preconditioner
M =~ T(o)™! is used instead of T'(c)~!. Thus, the search space expansion is com-
puted by

v =MTA\F)z®), (2.28)

Further details for the Nonlinear Arnoldi method can be found in [46, 74].
Alternatively, the subspace can be expanded by the next iterate of a Newton-like
method. Unfortunately, these linear systems, like

T =™, for C € {T'(AV), 1},

might result in a subspace expansion v which is very sensitive. Small perturbations
in the subspace expansion might yield to greater changes in the subspace. This is
discussed in detail in Theorem 3.1.

Therefore, a simplification, as in (2.28), cannot be used. In Chapter 3, the Jacobi-
Davidson method is presented. This method is based on Newton-like methods and
provides the computation of a search space expansion in a more robust way.

2.5.2 Inexact Methods

We have seen that many methods (e.g. Inverse Iteration or Rayleigh functional
iteration) require the solution of the linear system

TAR)yFHD) = Oy k), for C € {T'(\"), 1,...}, (2.29)

in every iteration step. For methods like the Inverse Iteration or the Rayleigh
functional iteration, the matrix T(A\*)) varies in every k. So information, e.g. a
matrix decomposition, cannot be recycled.

For large matrices a decomposition is too expensive, especially if the matrix is
not available explicitly. Therefore, those methods have been modified such that in
every iteration step only an approximative solution of the linear system is used for
the next iterate.

In this context, we will call the iterations of the method to compute the eigen-
pairs outer iterations and, consequently, the iterations to solve the linear system
approximately inner iterations.

Firstly, we present inexact methods to solve linear eigenvalue problems. Then,
inexact methods for nonlinear eigenvalue problems are introduced.
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Chapter 2 Nonlinear Eigenvalue Problems

Linear Eigenvalue Problems

Algorithm 2.7: Inexact Inverse Iteration

input : initial guess for the eigenvector and eigenvalue y(, A(¥) a scaling
vector [ € C" with 19 # 0

output: approximations for an eigenvalue A closest to A and the
corresponding eigenvector v

1 KO = [Hy0),

0) _ y9.
L= Loy

3 for k=0 to convergence do
4 | Solve (A — A®) B)yk+1) = 3(*) for (k+1) approximately such that

(A= AW B0+ — 28] <

5 gD — [H oy (k41).
(k+1)

7 alb ) = Z(k+l);

s end for

The approximation for the eigenvalue can be improved by using the Rayleigh
quotient, which leads to the well known Rayleigh quotient iteration. For Hermi-
tian eigenvalue problems, it converges locally cubically. The following algorithm
describes its inexact variant:

Algorithm 2.8: Inexact Rayleigh quotient Iteration

input : initial guess for the eigenvector y(©, matrix A, initial residual
tolerance 7
output: approximations for A and v

1 for k=0 to convergence do
(k) — yF
™

(k) — (:U(k))H Az®):

if £ > 0 then
‘ Determine 7y;

end if

Solve (A — 6% B)y+1) = () for 1) approximately such that
[(A =60 B)yt+) — 20| < 7

s end for

2 T

N O oA W

The choice of the error bound 7, is an important part of the discussion about the
method described above, which can be found for different cases in [6, 7, 15, 16, 18,
21, 39, 52, 68].

The convergence of the Inexact Inverse Iteration with a fixed shift is discussed
by Smit and Paardekooper in [68], Freitag and Spence in [18] and by Lai, Lin and
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2.5 Numerical Methods for Nonlinear Eigenvalue Problems

Lin in [39] for the standard linear eigenvalue problem®. The convergence from the
“exact” case can only be maintained if 7 is chosen such that

To>T1> oo > Tk > Ty > ... >0

and
k — oo

T, —— 0.
Lai, Lin and Lin suggest choosing 75, ~ % and Smit and Paardekooper present a
formula in [68], proving that if

T < Ccos(dy) sin(¢py) with ¢ = 4(:1:(’“), )

is satisfied, then the convergence is maintained.

The Inexact Inverse Iteration (cf. Algorithm 2.7) is discussed in [5, 6, 7, 15, 16]
for the generalized eigenvalue problem. The results are outlined in the following
theorem.

Theorem 2.34.
Let (A©) 2 be a sufficiently good initial approzimation of the eigenpair (X, ),
then the Inexact Inverse Iteration (Algorithm 2.7) converges

e quadratically if 7, < C Hr(k)H‘
e linearly if 7, is constant.

Inexact Rayleigh quotient iteration is analyzed in [5, 68, 52]. As it has already
been shown for the Inverse Iteration, the convergence® can be maintained, if the
tolerance 7 for the solution of the linear system is chosen decreasing proportionally
to Hr(k)H. If 7®) = 7. is fixed, then the order of convergence is reduced by one.
Therefore, the Inexact Rayleigh quotient iteration still converges quadratically.

In [15, 18], Freitag and Spence present special preconditioning strategies to accel-
erate the algorithm to solve (2.29).

They suggest to solve

1
CA® ) D — L p k)
(A= 2B1r)y = P (2.30)

instead of (2.29). Here, P, denotes a modified preconditioner varying in every
iteration step. This preconditioner has to satisfy

Ppz® = Az®, (2.31)

8Az = M\
9Here the convergence is cubic.
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Chapter 2 Nonlinear Eigenvalue Problems

If the classical preconditioner!? is denoted by P, a tuned one can easily be deter-
mined with a rank one update.

Py =P+ f® (c)", (2.32)

where f) = Az®) — Px®) and ¢, is chosen such that (ck)Ha:(k) =1.
The inverse of this preconditioner can easily be applied by using the Sherman-
Morrison-Woodbury formula, if the inverse of P can be applied easily.

In [18] a different approach is presented. Here the preconditioner has to fulfill
Pz® = z*), (2.33)

A comparison of this preconditioner and another one for the Jacobi-Davidson
correction equation are provided by Freitag and Spence in [17]. They show that
the generated Krylov subspaces are very similar. Therefore, the modified precondi-
tioner from (2.33) can be considered as executing a preconditioned Jacobi-Davidson
method. A positive definite preconditioner for Hermitian eigenvalue problems is
introduced in [5] by Berns-Miiller, Graham and Spence.

As further improvements Freitag, Kiirschner and Pestana present choices of poly-
nomial preconditioners,

Poli=q((A—ol)), qellg,

in [14]. Here I1,; denotes the set of all polynomials of maximum degree d. Combined
with stopping criteria for the GMRES method they can achieve small numbers of
inner iterations. Such a polynomial q is chosen such that

(A—ol)q((A—ol)) =~ 1.

Freitag, Kiirschner and Pestana use a common construction process based on recip-
rocal Chebychev nodes. That process requires information about the location!! of
the spectrum of A. Depending on the matrix structure this might lead to further
computational costs.

Nonlinear Eigenvalue Problems

For nonlinear eigenvalue problems, the inexact methods can be adapted from the
methods presented in Subsection 2.5.1. This leads to the following algorithm for the
Inverse Iteration (Algorithm 2.1):

¢ g, incomplete LU factorization
Hj e. lower and upper bound of the real and imaginary part (if complex)
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2.5 Numerical Methods for Nonlinear Eigenvalue Problems

Algorithm 2.9: Inexact Inverse Iteration for Nonlinear Eigenvalue Problems

input : initial guess for the eigenvector and eigenvalue y(, A a scaling
vector [ € C" with 19 # 0
output: approximation to a solution A and ¢ of (2.1)
1 kO = [Hy0),

0) _ y9,
2 T — H(O),

3 for k=0 to convergence do
4 | Solve T(A®))y+1) = T"( X" 2(®) for y*+1) approximately such that

HT(/\(’“))y(kH) _ T’()\(k))x(k)H <7 HTI()\(k))x(k)H;

5 (k1) — lHy(k-i-l);

6 AEFD — \(R) R(k-1+1>§
(k+1)

7 :L“(k+1) — %;

8 end for

The same is done for the Rayleigh functional iteration (Algorithm 2.2).

Algorithm 2.10: Inexact Rayleigh functional Iteration

input : initial guess for the eigenvector y(©)
output: approximation to a solution A and ¢ of (2.1)

0 _ y© |
I

2 A0 = p(z);

3 for k=0 to convergence do

4 Solve T(A#))y*k+1) = T"(X\F))z(*) for y#+1) approximately such that
HT()\(k))y(kH) _ T’()\(k))x(k)H <7 “T/()‘(k))x(k)H5

1?[7(

k+1) _ _ y®th
5 Jf( ) = HZ;UCT)H’
6 /\(k+1) — p<x(k+1));
7 end for

A good overview of inexact Newton-type methods and their convergence is given
in [70]. Furthermore, the nonlinear Arnoldi method can also be seen as an inexact
method. In this case, the linear system is not even solved by an iterative solver, but
the system matrix is replaced by a preconditioner.

Szyld and Xue provide the following two theorems for the convergence of the Inex-
act Inverse Iteration (Algorithm 2.9) and the Inexact Rayleigh functional iteration
(Algorithm 2.10):
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Chapter 2 Nonlinear Eigenvalue Problems

Theorem 2.35 ([70]).

Let (5\, 0) be a simple eigenpair of the nonlinear eigenvalue problem (2.1). Letn >0
such that ||Jg(z) || < n, where Jg denotes the Jacobian of the function G from
(2.25). Then, for some sufficiently small r and Tpae, 29 € B(z.,r) and 7 <

A

A ) S

Timaz, > where C'is a constant independent of i, then Algorithm 2.9 converges at least
quadratically.

Theorem 2.36 ([70]).
Let (\, D) be a simple eigenpair of (2.1), and w!! the corresponding left eigenvector.
Assume that there exists a small v > 0 and ¢ > 0 such that |T"(p)x| < ¢ for all

Tmaz, Algorithm 2.9 converges to z, = (9) at least linearly. If T < C He(i)

(u,z) € B(zi,r) where z, = (g) Let (0 = ©) (c(o)f) - S(O)g(o)) (see (2.18)) be

a vector such that (p(m(o)),x(0)> € B(z.,7). For a given d € (0,|c9)), let Tyaz <

% be an upper bound for the tolerance for the inner solve of Algorithm 2.10.

Then, if 9 is close to ¥ in direction, and if 79 = T < Tias i an appropriately
small fized tolerance , Algorithm 2.10 with %) = p(x®) converges at least linearly
to (5\,@), and it converges at least quadratically if the local symmetry’® of T(N) is
present and the Rayleigh functional defined in Definition 2.15 is applied. In addition,
if 70 < CtD < 1w M for some C independent of 4, this algorithm converges at
least quadratically and at least cubically, respectively, if the local symmetry of T(X\)
is absent, or if it is present and the Rayleigh functional defined in Definition 2.15
is applied.

These two theorems show that the same results as in the linear case can be adapted
to nonlinear eigenvalue problems. Hence, the order of convergence can be maintained
if 7(¥) is decreased from one step to the next. Otherwise the convergence order is
reduced by one if 7 = 7(0),

2.6 Numerical Example

The following example shows the performance of Inexact Rayleigh functional itera-
tion from Algorithm 2.10:

FExample 2.37. We consider the 3D Quantum-Dot problem. This problem was
discussed by Voss in [76]. This nonlinear eigenvalue problem originates by the
Schrodinger equation

h2

where the wave functions ¢ and the energy levels A are sought. Here 2, C R3
denotes the domain occupied by the quantum dot and €2,, C R? a bounded matrix

2Here s() denotes the generalized sine of £(x("), %), cf. Subsection 2.4.2
Bie. T(A\) = TT()), for all A in a neighborhood of
1440 denotes the generalized tangent of £ (2", %), cf. Subsection 2.4.2
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2.6 Numerical Example

quantum dot matrix
Parameter Value | Parameter Value
P, 0.8503 | P, 0.8878
E,, 042 | By 1.52
A, 0.48 A, 0.34
Vq 0 Vin 0.7

Table 2.1: Parameters for the quantum dot problem example

of different material. Furthermore, A denotes the reduced Planck constant. The

effective mass of the electron is constant on €2, and €, for a fixed energy level \.
Therefore, m;(\) was defined by

1 1

m;i(A) " m(A z)

ey ) et
= 35 ) J q,my.
ven,  PA\AHEg =V, A+ By — Vit A
The confinement potential V; := V],eq, is piecewise constant and P; denotes the
momentum element, E, ; the band gap and A; the spin-orbit splitting in the valence
band for the quantum dot material and the matrix, respectively. The following
boundary conditions are chosen:

e homogenous Dirichlet boundary conditions ¥y = 0 on the horizontal part of

the outer boundary of €,,,
e Neumann boundary conditions g—:f = 0 on the vertical part of the outer bound-
ary of €,

e Ben Daniel-Duke condition on the interface between quantum dot material
and the matrix:

1o

mg Ong

_ 1w

My, ONyy,

, x € 00y N OK,.
m

09,

For this example a pyramidal quantum dot width 12.4 nm and height 6.2 nm
embedded in a cuboid matrix of size 24.8 nm x 24.8 nm x 18.6 nm is considered.
The parameters are chosen as given in Table 2.1 (cf [30]).

Discretizing (2.34) with FEMLAB by the finite element method with quadratic
Lagrangian elements on a tetrahedral grid yields the following nonlinear eigenvalue

problem (cf [43]).
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Chapter 2 Nonlinear Eigenvalue Problems

1 1

TNz =AMz — mﬁlqm TGN

Apr — Br =0, (2.35)

where

Aj= (/ﬂjv¢k'v¢ld$> , Jj€{q,m}

k,l
M= (foonds),

)

B=<V;/Qq¢k¢ldx+vm/9m¢k¢ldx> ,

k1l

where Q := Q,UQ,, and ¢; € H := {tp € H'(Q) | 1> = 0 on 99} are basis
functions of the ansatz space.

The sparsity pattern of A, 4+ A,, is shown in Figure 2.1 and the size of these
matrices is n = 96640.

0 1 2 3 4 5 6 7 8 9
nz = 4477782 %10%

Figure 2.1: The sparsity pattern of the matrix A, + A,,

We applied Inexact Rayleigh functional iteration (Algorithm 2.10) for computing
the smallest eigenpair. Since the smallest eigenvalue, which has been computed
before, has only a very small convergence radius, the starting vector 2(°) was chosen
with a very small angle to the eigenspace belonging to the smallest eigenvalue.
The linear system in each iteration step was solved with the MINRes method. As
preconditioner an incomplete Cholesky factorization T'(0) ~ RR was used for every
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2.6 Numerical Example

k sin(gr)  [AF) — Hr(k)H Hres(k)H inner iterations
0 0.012 0.0467 0.0488 0.094 61
1 0.017 1.183e-4  9.221e-5 0.092 168
2 2.366e-5 3.190e-10 2.203-8 0.098 358
3 3.877e-11 4.419e-14 6.041e-13 0.61* 603*
4 2810-10 4.430e-14 2.534e-11 n.a. n.a.

Table 2.2: Results of Inexact Rayleigh functional iteration with fixed 7

E o osin(gr)  [A®) — )| HT(k)H Hres(k)H inner iterations
0 0.012 0.0467 0.0488 0.094 61
1 0.017 1.184e-4  9.221e-5 2e-4 279
2  8.130e-6 3.285e-11  5.039e-8  0.095* 868*
3 1.099e-13  4.585e-14 5.908e-14 n.a. n.a.

Table 2.3: Results of Inexact Rayleigh functional iteration with decreasing 7

linear system. Firstly, we chose a fixed tolerance for solving the linear system, such

that
(07 ()2, <0 (1)

The results are shown in Table 2.2. The entries marked with stars denote re-
sults where the MinRes method terminated without convergence. We computed the
convergence rate based on this data and obtained

R fized ~ 2.5432.

This shows that the Algorithm 2.10 converges faster than quadratically. Theorem
2.36, which forecasts at least quadratic convergence for a fixed 7 if local symmetry
is provided, can be verified by it.

The decreasing tolerance for solving the corresponding linear system in each it-
-1

eration step is chosen by 71 = 0.1 and 7,41 = Tkiu W]
.
2

. Hence, the linear system

was solved such that

7 (X9)y = (A9) ], <7

T (x) =%,

was satisfied.
The results are shown in Table 2.3'°. Based on these results the convergence rate
was determined to be

Rdeer =~ 2.8932.

15The entries marked with stars denote again results where the MinRes method terminated without
convergence.
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107 - -——+-- constant t NN 1

-—©&-- decreasing t

-14 I I I

1 2 3 4 5
iteration step

Figure 2.2: Convergence behavior of the two different choices for 7

Theorem 2.36 forecasts cubic convergence, which is nearly reached according to
these results. Figure 2.2 illustrates the convergence behavior of Rayleigh functional
iteration for the two different properties for the tolerance 7.

Figure 2.3 illustrates the results from Table 2.2 and Table 2.3.

Example 2.37 shows that the forecasted convergence rates from Theorem 2.36
are achievable. But it also shows that these good convergence properties require
significantly high numbers of inner iterations for solving the linear system in each
iteration step. This costs additional computation time. Furthermore, if the angle
between the eigenspace and the current z*) becomes to small it is no longer possible
to solve the linear system to the desired accuracy. Therefore, no further (outer)
iteration step can be executed. Finally, the iteration breaks down at this point.

The following two chapters will present an alternative method to achieve a smaller
number of inner iterations. In addition, it will still be possible to execute further
iteration steps, even though the angle between 2*) and the corresponding eigenspace
is significantly small.
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no. inner iterations
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2.6 Numerical Example

600~
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300+
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100

-—*--constant t

--o--decreasing t

10° 107
sin(,)

Figure 2.3: Number of inner iterations for the Rayleigh functional iteration depend-
ing on the angle between #*) and the eigenspace
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Chapter 3
The Jacobi-Davidson Method

The Jacobi-Davidson method was introduced for linear eigenvalue problems by Slei-
jpen and van der Vorst in [66]. They presented an alternative way to expand the
current subspace based on ideas of Jacobi and Davidson.

The method was then adapted for generalized eigenvalue problems, polynomial
eigenvalue problems [67, 65] and general nonlinear eigenvalue problems [8, 78]. In
[45] Meerbergen, Schrioder and Voss presented a variant for two parameter eigenvalue
problems.

In the first section of this chapter the Jacobi-Davidson method is introduced. In
the second section the perturbation of search space expansions is discussed. Further-
more, the Jacobi-Davidson method is considered as a robust variant of an existing
iterative method. Finally, the (inexact) solution of the correction equation is dis-
cussed.

3.1 The Jacobi-Davidson Method

The idea of the Jacobi-Davidson method originates in combining and improving
Jacobi’s method ([31]) and Davidson’s method ([10]). The new method is used for
solving the special linear eigenvalue problem

Ax =Xz, x#0,

where A is a real symmetric matrix.

To improve the current iterate 2*) an orthogonal correction is sought. This cor-
rection vector is determined by solving the following linear system:

(120 (o)) (4= 300 (1= (o)) =, (a1

tLa®), :z:(k)H2 =1.

Here, r®) = Az®) — X(F) () denotes the residual after k steps.

For iterative projection methods, this correction vector is also a suitable subspace
expansion. This is described in Algorithm 3.1.

37



Chapter 3 The Jacobi-Davidson Method

Algorithm 3.1: Jacobi-Davidson method [66]
input : an initial nonzero vector x
output: an approximation of an eigenvalue # and a corresponding
eigenvector
w® -

Compute vM) = z/ ||z, wd = AvW hyy = (v(l)) ;
Set ‘/1 — [U(l)]7 Wl — [w(l)]’ Hl — [h’ll]7 m(l) - U(1)7 9(1) — h‘ll ;

=

2
3 Compute r() = ™ — M0

4 fork=1tom—1do

5 Solve (approximately) (3.1) for t;

6 Orthogonalize t against Vj, and expand Vj, with this vector v*+1) to Vi 1;
7 Compute w*+t1) = Ap*+D and expand W, with this vector to Wi 1;
8 Compute Vkﬁlw(k“) the last column of Hj ;

9 if A+# Af then

H
10 ‘ Compute (v(’”l)) W, as the last row of Hy1;
11 else
H

12 ‘ Take (Vkﬁlw(k“)) as the last row of Hj,1;

13 end if

14 Compute all eigenpairs of Hj,; and choose the desired one (§*+1 s)

with [sfl, =1
15 Compute the Ritz vector **D =V, 115, u = Az*+D = W, s and
P+ — gy G+ k1),

16 if Hr(k)H < ¢ then

17 ‘ STOP;

18 end if
19 end for

20 Restart: Set V) = [#*V] W, = [u], H; = 6 and go to 4;

The name of this method originates from the fact that the ideas of Jacobi and
Davidson are merged to a new method.

The idea can be adapted to the generalized Hermitian eigenvalue problem
Av=ABv, A=A" B=DBYand Bh.pd,

since with a Cholesky decomposition, B = C'C*, the problem can be transformed
into the Hermitian special linear eigenvalue problem

C'AC™ ™y = \y.

Consider the nonlinear eigenvalue problem (2.1) and assume furthermore that
T(-) allows a minmax characterization for its eigenvalues as well as inf,.cp p(z) € J
(cf. Section 2.2). The Jacobi-Davidson method to nonlinear eigenvalue problems is
presented by Voss in [75]. The following correction equation is presented:
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3.2 Global Convergence Behavior

q (x(m)H

] _
(20 ¢

T(A®) (1 _ k) (xw))H) t=—-TO®)z® 1 20 (3.2

This is a general approach which allows different choices for the vector q.
Since t L ) the right projector can be neglected and (3.2) reduces to

q (xw))H
I— = | TO®Yt = —T(A®)z ) g | 2™ (3.3)
(x®)" ¢

If A®) is not an eigenvalue of (2.1), T(A®)) is invertible and we determine the
solution of the homogenous equation

k)"
q(x
I-— 7( 2 T(A®t =0,
(™))" q
which is t;, = T(A®)~'q. A particular solution of (3.3) is given by ¢t = —a®).

Finally, we have an explicit expression for all possible solutions ¢:
t=BT(AW) g — 2™, (3.4)

To ensure that the next iterate of one step of inverse iteration or Rayleigh func-
tional® iteration is included in the next subspace, the vector ¢ is chosen by

q=T'(\®)z®), (3.5)

Furthermore, 8 # 0 has to be satisfied. The value of 3 is then determined by
inserting (3.4) into the orthogonality condition.

3.2 Global Convergence Behavior

Global convergence for the Jacobi-Davidson method for the real symmetric eigen-
problem
Av =X, AeR™"

was proven by Aishima in [1]. Aishima proved for Algorithm 3.1 that if the largest
Ritz Value 0 is always chosen, this Ritz value converges to an eigenvalue ); of
A. This proof assumes that (3.1) is solved exactly. Empirical tests show that the
largest Ritz value usually converges to the largest eigenvalue.

The global convergence property remains true for the restarted Jacobi-Davidson
method. But it does not provide a convergence rate.

The proof was generalized for iterative projection methods in [2].

for linear eigenvalue problems: Rayleigh quotient
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Chapter 3 The Jacobi-Davidson Method

3.3 Jacobi-Davidson Method Without Subspace
Acceleration

3.3.1 Basic Principle
Equations (3.4) and (3.5) imply that
®) 1t = T (AP (AR k),

This shows that the solution of the Jacobi-Davidson correction equation can also be
used to obtain the direction of the next iterate of inverse iteration (or Rayleigh quo-
tient /functional iteration respectively). This suggests the method Jacobi-Davidson
method without Subspace Acceleration. In the literature this method is also named
by Simplified Jacobi-Davidson method or Single Vector Jacobi-Davidson method
([17, 36, 52, 64, 70]).

The convergence behavior of the Jacobi-Davidson method without subspace accel-
eration is analyzed by Jia and Wang in [36] for linear eigenproblems. Szyld and Xue
present in [70] convergence proofs for nonlinear eigenvalue problems. Since large
linear system cannot be solved exactly within an appropriate computing time, the
influence of inexact solves of (3.2) is discussed.

Algorithm 3.2: Jacobi-Davidson method without Subspace Acceleration

input : an initial nonzero vector (¥ with unit norm
output: an approximation for an eigenpair (A, )

1 A0 = p(zO);

2 70 = T(A0)z0),

3 for k = 0 to convergence do

4 Solve (approximately) (3.2) for ¢;
5 g = ) 4 .

6 2+ — y(k+1)/ Hy(k—&-l) :

7| AR = petH);

8 r(k—i—l) — T()\(k+1))x(k+1);

9 Check r*+1 for convergence;

10 end for

Algorithm 3.2 describes the Jacobi-Davidson method without subspace acceler-
ation for the Hermitian nonlinear eigenvalue problem with a Rayleigh functional

D.
3.3.2 Inexact Jacobi-Davidson without Subspace Acceleration

For the inexact variant of the Jacobi-Davidson method without subspace accelera-
tion the approximate solution ¢ is considered. This vector still satisfies the orthog-
onality condition £ 1 2 with a bounded relative residual

pesl, N
W\T <1, (3.6)
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3.4 Robustness of the Jacobi-Davidson Process Regarding the Reduced Influence of Perturbations

where

H
TN 8 (50) )

res® .= [T — ( H) ( ) T(AR) (] — k) (m(k)>H> t4+T\®) k),
(@) T/ (A®)z®)

(3.7)

In [70] Szyld and Xue prove the convergence behavior for different settings and

properties. They assume that the initial vector () is sufficiently close to the sought

eigenvector and that the conditions of Theorem 2.36 are fulfilled. Those results

are summarized in Table 3.1. Here t; denotes the generalized tangent of £ (™) %)

and 7(®) denotes the stop criterion for the inner iteration while solving the Jacobi-
Davidson correction equation (3.2) inexactly (cf. (3.6)).

Nonnsymm. Symm.

k) — 1(0) 7= Ct® R =70 20 = 7R = Op,2
[res®] o) o) o) o) o)
Convergence Linear Quadratic Linear Quadratic Cubic

Table 3.1: Convergence behavior of the inexact Jacobi-Davidson method without
subspace acceleration

3.4 Robustness of the Jacobi-Davidson Process
Regarding the Reduced Influence of Perturbations

In this section we discuss how a perturbation in the subspace expansion influences
the new subspace. These perturbations originate from inexact solves of the corre-
sponding linear system in every iteration step.

In [77] Voss considers the influence of a perturbed subspace expansion. Here
the current iterate x is expanded by a vector v to a two dimensional plane E.
A perturbed expansion ¥ := v + e results in a perturbed plane E. The following
theorem yields the maximal possible angle ¥ between the planes E and E depending
on the angle ¢y := Z(z,v) and the length of the perturbation e.

Theorem 3.1 ([77]). )
The maximal possible acute angle between the planes E and E is

22 . .
(e, bo) :{ arccos \ /1 — g if €< | sin ¢ |

5 if &> |sin ¢
where € = ||e||2.

Regarding the case ¢ < |sin¢g|, we conclude that the angle v is minimal for a
fixed € if g9 = 7. This orthogonality condition is met if the search space expansion
is determined by solving the Jacobi-Davidson correction equation.
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Chapter 3 The Jacobi-Davidson Method

As a result of Theorem 3.1, it is obvious that a subspace expansion by the next
iterate of a vector iteration like Inverse Iteration or Rayleigh quotient iteration? is
much more sensitive to perturbations than the Jacobi-Davidson method, since ¢q
tends to zero when the method converges.

H
Alternatively, methods exist, which do not provide (a:(k)) v = 0, but a conver-
gence to zero, i.e.

(va))H o®

B Lt 3.8
o] ’ (3:8)

if k tends to infinity.
In [41] and [44] the Cayley transform is used to modify the subspace expansion
for generalized linear eigenvalue problems such that

te = (A—oB) Y (A - \®PB)z®,

which satisfies (3.8) for v = t¢.
For nonlinear eigenproblems, Voss shows in [78] that (3.8) is satisfied for the
nonlinear Arnoldi method if

tya = T(o)TTA®)z®
is used to expand the subspace instead of
trry = 2® — T(o) ' T(AF)2®).

Figure 3.1 illustrates that the perturbation of ¢ is much stronger than the one in
2*+1) to obtain the same perturbation angle between the planes E and FE.
In the following section we will present, how methods can be transformed into a

H
robust method, satisfying (x(k)) v = 0. We will see, that this is possible for every
vector iteration.

3.5 The Jacobi-Davidson Method Based on any
Iterative Method

In the previous section it was shown that the most robust way to expand a search
space is to have an expansion ¢, which is orthogonal to the current iterate x(®.
So far the Jacobi-Davidson method has been presented as a procedure to stabilize
the Newton method in order to solve the linear or nonlinear eigenproblem. In
this section we present another approach by Voss [80]. Each vector iteration to
determine an eigenpair can be stabilized by determining a subspace expansion in
a more robust way. The scheme originates from the same approach as the Jacobi-
Davidson method, which is why we will continue calling this group of methods
“Jacobi-Davidson method”.

2for nonlinear problems: Rayleigh functional iteration
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3.5 The Jacobi-Davidson Method Based on any Iterative Method

2

Figure 3.1: The desired subspaces vs the perturbed subspace
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Chapter 3 The Jacobi-Davidson Method

In Chapter 4 we will analyze the local convergence behavior when a stabilized
method is applied on a perturbed subspace. This will be based on the convergence
rates of the original method.

The considered iteration method to find an eigenvector can be described by

e ) = aMz® | a #0, (3.9)

where M, € C™™ is a matrix which performs a vector iteration from z®) to a
nonzero multiple of z(**1)  Additionally, a Rayleigh functional p : C* O U — C is
available. We consider the subspace spanned by the two iterates z*) and z*+1).

Possible methods are:

» Rayleigh quotient iteration for linear (generalized) eigenvalue problems

T(\) =A-AB, M= (A-p(«®) B)‘1 B, plz)= izgi

« Rayleigh functional iteration for nonlinear eigenvalue problems
My =T (AR) 1 (A¥)

« Derivative free variant of Rayleigh functional iteration (cf. [59])

-1

My =T (A®)

o Residual Inverse Iteration for nonlinear problems

My =1—T(0)'T (\W)

The idea is to obtain a vector t € C" such that
span {x(k), .CE(k+l)} = span {x(k), t} and t L x(k),

as a solution of a linear system.
The ansatz for the linear system is motivated by the Jacobi-Davidson correction
equation,

CpF) ) H (k) (W B
-2 ) S(I- ) t=—52® ¢ 1y (3.10)

where the matrix S is the matrix function 7'(-), evaluated at a certain value u® # A,
which may vary from step to step. If the eigenvectors can be chosen B-orthogonal,
this property can be exploited by expanding the search space by a B-orthogonal
correction instead of an orthogonal correction with respect to the standard scalar
product. Therefore, the matrix B is inserted into the right projector. If the eigen-
vectors cannot be chosen B-orthogonal, we set B = I.

We will discuss different choices for the matrix C'. We will see later that for
C = T'(A*®)) the standard Newton based methods as Inverse Iteration or Rayleigh
quotient / functional iteration are described.
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3.5 The Jacobi-Davidson Method Based on any Iterative Method

Although the matrices S and C' change after each iteration step, we neglect the

indices for a better readability.
The B-orthogonality between ¢ and *) simplifies (3.10) to

( C k) ()

— _¢..(k) (k)
x(k)ch(k)> St Szt Lga\,

which is equivalent to

W) g
X T
————

=8

Since S is invertible, ¢ can be obtained by

t=pStCx® — 20,

Then B has to be chosen, such that ¢t Lz z® holds.

Thus,
kH k
t= 10" B S710z™ — ),
e ®H BS-107k)

The newly obtained vector ¢ has to lie in span{z®, z(**1} so that

g* ) = 5710 ™) = A2 ™)

and, therefore,
M, =S7'C.

(3.11)

(3.12)

(3.13)
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Chapter 3 The Jacobi-Davidson Method

This leads to the following different kinds of the correction equations

» Rayleigh quotient iteration in the linear case:

H
Ba® (2) " MOMOLES

T onH e (A = A B) [ ==
(2T Bl 20 Ba(h)

— (A ABB) B b Ly

o Rayleigh functional iteration in the nonlinear case:

1 (\(K) (k). (k) H k) .(k)H
T (A®) 20z (30 [ e®a® = 1 (A0 b
@I T (A®)) k) W (k) ’

t 1 a®

o Derivative free Rayleigh functional iteration in the nonlinear case:
(k) (k) T (k) (k)T
W W
I——— | T(\®) [ - ——— |t =T (AXF) 2® ¢ 1 o®
( x(k)%(k)) ( ) 2 ®H k) ( )

¢ Residual Inverse Iteration:

(1 Sae- T(A(k)”x(k)“’w) 7(0) (1 - x(k’“‘““)H) = ~T(0)a®,
BT (T(e) — T(AO))a®

A

For Residual Inverse Iteration, one can also think about using the Nonlinear

Arnoldi subspace expansion

tya =T (o) tT(A®) k)

as basic iterative method. This would yield S = T(¢) and C = T(A®). But then
we would divide by zero in the left projector, since 27Cx = 0. Therefore, we had

to choose the matrices as above.
However, this approach is still quite theoretical, since for a small HT(O’) — T(AR) H

the left projector might cause some computational problems. Then the numerator
and the denominator become very small. It is still recommended to exploit the

stable properties as mentioned above of the Nonlinear Arnoldi method.
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3.6 The Correction Equation

3.6 The Correction Equation

We consider the general correction equation:

::SJD

xHCx

We assume, that S is invertible, i.e. the matrix function 7" is evaluated at any value
DY

Solving this equation efficiently is one of the largest challenges in the Jacobi-
Davidson method. In this section some properties of the correction equation are
presented. We will discuss the solution, preconditioning and the condition number
of the corresponding matrix.

H
(1__ Crxx )S(I—xxHB>t:_7"’ tlpz, and |z|z=1 (3.15)

3.6.1 Solution of the Correction Equation

Considering the left projector in (3.15)
Cxzt
P=1|1-
: ( zt C:L‘) ’

we see that its range — and hence the range of the complete product of matrices —
is the subspace z*. Furthermore, the right projector

P, = (1 _ :vaB)

projects onto the subspace z 18 = {z eC|28Bz = 0}.
Therefore, this map can be considered to be restricted to these two subspaces as
domain and range, and, thus,

S e — gt
ID - v — PSv.

The right projector P, can be neglected because of
Py =w, Vo € ztB,

The matrix S;p is singular, since S;pxr = 0. But if we consider the map S;p,
then the inverse map can be determined. We solve

(I— S;éi)S([—xxHB)v—w, t lpx, (3.16)
for v € x1# with any w € 2. Following (3.11) to (3.13) yields
v = —S_lem + S w
(e
=5t (I — %) w. (3.17)
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Chapter 3 The Jacobi-Davidson Method

Hence, the matrix

CxxBS—1 S~1Cxz" B
1 i e s
S (I xHBS—10x> (I xHBS—le> S

can be seen as the inverse of S;p restricted to the subspaces 2+ and z 2. This is
summarized in the following proposition:

Proposition 3.2. The inverse map of Syp is denoted by Sy} = v+ — 2% and

applied
S;I%(”) = S}_D’U>
with Contl BS-1
+ g1, Caz -
=5 (I xHBS—le> '

Proof. We obtain

SjDSJD =1—- ZL’Z‘HB,

and

Cxx

SipSty, =1— )

P2 HCx

Since
(I—xxHB)u:u, Yu € 18
and
C H
(I—$§2x>w:w, Yw € zt
the proof is completed. O

Note that we would never compute S, explicitly.
In Chapter 4, convergence analysis for this stabilization procedure will be pre-
sented.

3.6.2 Preconditioning

If the Jacobi-Davidson correction equation, (3.15), is solved with an iterative solver,
the method can be accelerated by using a preconditioner. We refer to [4, 23, 61]
for further details. For the solution of the Jacobi-Davidson correction equation, the
preconditioner has to be adapted, which we will explain in this section.

Let K ~ S be a preconditioner for the matrix S, then it can be adapted to a
preconditioner for S;p,

Cxxf
zHCx

Kp = (I— )K(I—m:HB).
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3.6 The Correction Equation

The inverse restricted to z+ is obtained using Proposition 3.2 and replacing S by
K, thus,
K- 'Cxx"B
Kipy=(—————"—"— -1
7D ( " BK —1C'x>

During the iteration process to solve the correction equation, this preconditioner
has to be applied to any vector u € C" in every iteration step.

We now present an efficient application of this preconditioner algorithmically.

In Algorithm 3.3 variables are computed which do not vary during the iteration
process. Algorithm 3.4 is performed before the first iteration starts.

Algorithm 3.3: Preprocessing to apply the Jacobi-Davidson preconditioner
input : K a preconditioner for S, the vector # and the matrices B and C
output: The vector z and the scalar 1 to be used in Algorithm 3.4

1 Solve Kz = Cx for z;
2 Compute n = 2 Bz;

The second algorithm is executed in every iteration step and uses the output from
Algorithm 3.3.

Algorithm 3.4: Application of the Jacobi-Davidson preconditioner to any
right hand side b € z+
input : K a preconditioner for S, the vector x, the right hand side b, n, z
and the matrix B
output: the result vector y = K7,b
1 Solve Ku =0 for u ;

H
T nBuZ;

2 Compute y = u —
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Chapter 4

Perturbed Subspaces

In this chapter we consider the nonlinear eigenvalue problem

T(A\)v = 0.

We generally assume that 7' is twice differentiable with respect A.

Different setups for this problem are considered: In Section 4.2 and Subsection
4.3.2 we require T'(A) to be real symmetric or Hermitian, respectively, for all A
in J C R for which we can use minmax-characterization. In Subsection 4.3.3 we
assume T'(+) to be a family of real matrices but do not require symmetry. We restrict
ourselves in analyzing the behavior of the convergence to simple eigenvalues.

_In Section 3.4 it was explained that the angle between the two subspaces E and
FE is minimized, if the subspace expansion is chosen orthogonal! to the current
eigenvector approximation k),

We consider the case that an existing search space is expanded orthogonally by a
further direction. For simplicity, we consider the k-th search space containing z(*)
as the one-dimensional subspace V), = span{z*)}. This subspace is then expanded
by a direction £*) £ 0 with {*® 1p 2® thus, Viyy = span{z®,{#)}. Then we
consider a perturbed search space expansion t*) still satisfying {*) 1 z®). The
perturbed search space, Vi1, is given by Vi1 = span{z® {1,

We chose this simplification to analyze the search spaces with a geometrical con-
sideration.

This simplification is summarized generically in the following algorithm.

! B-orthogonal, if the eigenvectors can be chosen B-orthogonal
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Chapter 4 Perturbed Subspaces

Algorithm 4.1: The Jacobi-Davidson with two dimensional subspaces

input : an initial nonzero vector z(®) with unit B-norm

output: approximations for an eigenpair (5\, 0)

Set A©) := p(z©);

Set (0 := T (A2,

for k = 0 to convergence do

Solve approximately (3.2) for ¢ and set t*®) 1 5 2® be the approximative
solution;

5 Set V := {x(k) HT’}
6 Choose either a left projector W € C"*2 satisfying W2 BV = I or set

AW N =

W=V;
7 Compute a solution (é, 2) of the projected eigenvalue problem
WHT(6)Vz = 0;

8 Set z*+D) .= V2,
9 Set /\ k+1) ( k+1 )
10 | Set r*+D .= T(AEFD) g+,

11 end for

The matrix B is used if the eigenvectors for the problem can be chosen to be
B-orthogonal to each other, otherwise B = I.

For the functional p in step 9 we choose the Rayleigh functional if 7°(-) is Hermi-
tian, otherwise p denotes a functional to extract an eigenvalue approximation if an
eigenvector approximation is given. Requirements for those kinds of functionals are
given in Assumption 4.23.

We begin in Section 4.1 with the condition numbers of eigenvalue problems. The
projected problem changes, if the corresponding subspace is perturbed. Hence, the
sensitivity of the eigenvalues towards these perturbations is analyzed. In Section
4.2 we will prove local convergence for the Ritz values on perturbed subspaces to-
wards the extremal eigenvalues using minmax-characterization. Furthermore, in
Section 4.3 we turn our consideration to interior eigenvalues. Finally, we will apply
the Jacobi-Davidson process to solve the problems from the numerical examples in
Chapter 2. The results will be compared with those determined by classical methods.

We usually consider the step from the k-th subspace expanded by t*) or ),
respectively, to the k& + 1-th subspace. Therefore, we skip the indices for ¢ for a
better readability.

4.1 Condition of Eigenvalues and Eigenvectors
Condition numbers are a very interesting tool in the field of numerical mathematics.
They measure the sensitivity of the result to perturbations of the input data.

For eigenvalue problems, the condition is also of interest. Here the sensitivity of
eigenvalue and eigenvector toward perturbations of the matrix is considered.
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4.1 Condition of Figenvalues and Eigenvectors

Firstly, the condition of linear eigenvalue problems is introduced, then it is ex-
panded to nonlinear problems. Thirdly, the condition number is described if the
perturbation in the matrix traces back to a perturbation of the search space.

4.1.1 Condition of Linear Eigenvalue Problems

Considering the real linear eigenvalue problem with a perturbed matrix A with n
distinct eigenvalues and a simple eigenvalue

(A+eF)x(e) = Ae)z(e),

where ||F|l, =1 and ||z(¢)|l, =1, Ve € R, the derivatives evaluated at 0 of A and
x are given by

H

., (w!) Fe(0)
w x

z(0)==>» ~~+———0
2 =)
14k

Here w* with HwkH2 = 1 denotes a left eigenvector belonging to the eigenvalue

M = A(0) and (N, v')=;. ., denote the eigenpairs of A.

The sensitivity of eigenvalues to perturbations in the matrix is presented for linear
problems in [20], in detail.

4.1.2 Condition of Nonlinear Eigenvalue Problems

The ideas from the linear eigenvalue problem can be transferred to nonlinear eigen-
value problems. This is, for instance, done in [71] for polynomial eigenvalue prob-
lems. A more general approach is presented in [62]. Here a perturbation vector
e € C? is introduced by ¢ = (6[)7:1. For linear eigenvalue problems the perturbed
matrix is expressed as a function of the parameters . Here, in the nonlinear case,
the matrix depends additionally on the eigenparameter A such that T'(\, ), where
T(A\0)=T(\), VAeD.
The condition number is then explained in Lemma 4.1 (cf. [62]).

Lemma 4.1. Let D C C and E C C? be open sets. Let T(:) : D x E — C™" be
continuously differentiable, and let AeD bea simple eigenvalue of T(-,0) and 0,0
be the corresponding right and left eigenvectors with unit norm. Let 7 > 0,& > 0 be
such that S(\,7) C D and S(0,¢) C E. Then, the first order perturbation expansion
of the eigenvalue is given by
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Chapter 4 Perturbed Subspaces

The normwise condition number for A is given by

k(A) := lim sup M H

lelam0 |l

2 7j=1

Proof. See [62]. O

The perturbation of the eigenvector can be considered similarly as for the eigen-
value, which is shown in Lemma 4.2.

Lemma 4.2. Let D C C and E C C? be open sets. Let T(-,+) : D x E — C™"

be continuously differentiable, and let NeDa simple eigenvalue and © the cor-

responding (right) eigenvector with unit norm of T(-,0). Furthermore, let T(),0)

be diagonalizable, i1, ..., 1, its eigenvalues and u', ..., u™ the corresponding right

eigenvectors with unit norm. Let | be chosen such that p; = 0°. Let w!, ..., w"

denote the left eigenvectors of T(,0) fulfilling (w')" v =1, i=1,...,n.
Moreover, we assume

<wl)Hx(5) =1, VeelF.

Then, the condition number of the eigenvector v can be bounded by

2

L OT . w T 0X
aei”(w) o oe| ]

>

U\ =1 J1|IUJ|2

Proof. Because x : C* — C" the Jacobian a‘z is a n X d-matrix. The spectral norm
can be bounded by the Frobenius norm.

oz ox
- g -
H Oe H Oe

The eigenvectors of the diagonalizable matrix T(j\ O) u',...,u" can be taken as a
basis of C". So we make the following ansatz for 2

e=0 .
A=A

86

ox
oe;

ad
=0 = z_:la]u (4.1)

Building the derivative with respect to ¢; of

2We are introducing an enumeration of the eigenvalues of T(S\, 0), even though it might not be
possible to order them (e.g. if there also complex eigenvalues). However, this enumeration is
only used to distinguish between one eigenvalue p; = 0 and n — 1 nonzero eigenvalues.
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yields
oT oT O\ Ox
—_— T = 4.2
85i$+ 2 88ia:+ ()\,s)agi 0, (4.2a)
H Oz
(w') 5 =0 (4.2b)

Evaluating (4.2a) at e = 0, A = A and « = © and inserting (4.1) yields

oT OT O\ o 4
= S |e=0 0+ o7 5|00 !
e e S ¥ e L ;T(A’ 0)aju’ . (4.3)
=ajpul

Because of the singularity of T(S\, 0) and the fact that \ is a simple eigenvalue, there
exists exactly one eigenvalue y; = 0. The parameters oy for £k = 1,...,01 — 1,1 +

1,...,n can be extracted by multiplying (4.3) by (w’“)H from the left. Hence,

()" gz; g0 ()" ?)fgj, =0+ ji@j:uj ()" =0
J#l :'jk

So ay, for k # [ can be determined by

To determine the parameter «;, we consider (4.2b) which yields

Zn:&j (wl>Huj:O. S o= — llH ; (wl>Huj:O.
=1 (W) 5 e
Finally, we conclude
SZ =7 zn: o’
Gl
- () G+ ()" Gt )
il
Therefore, the norm of g; =0 can be bounded by
‘ g; =2, z":mi' (w)" gg g0+ ( j)Hg?g); =0 (44)
il
The Frobenius norm of
- - )
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is given by
Ox ?
EEE (3
Combining (4.4) and (4.5) completes the proof. O

With the results of Lemma 4.1 and Lemma 4.2, the sensitivity of eigenvalues
and eigenvectors of a projected eigenvalue problem towards perturbations in the
subspace can be described.

In the following section, these condition numbers are determined for a perturbed
subspace by an angle ¥.

4.1.3 Condition Regarding Perturbed Subspaces

Now the concrete case is studied, where a search space is built by the current iterate
z®) and the orthogonal search space expansion obtained by the Jacobi-Davidson
method (cf. Chapter 3). So, a new better iterate z(*+1) is sought in the two dimen-
sional subspace spanned by 2 and M,z®. We concentrate on problems with real
matrices and regard only real eigenvalues®, where Assumption 2.14 is satisfied and
on Rayleigh-Ritz projections (i.e. left and right search space are equal), which leads
to the following projected 2 x 2-eigenvalue problem:

VIT(\)Vs =0 (4.6)

Let f be the exact solution of the Jacobi-Davidson correction equation (3.10).
Then a perturbation caused by an inexact solve of this equation can be described
by

£(9) = cos(¥) ;

+ sin(d)e, (4.7)

B

where e Lp span{z®),#} and |le|]|; = 1. Then the projected problem can be de-
scribed depending on ¥ by

VO TTNV(9) s =0, with 17(19):17+(0 (cos(ﬁ)—l)”;‘ +sin(19)e).

B

=Tp(A\,9)

Here V is given by

~ k t
V= <$() f)a
B

such that its range is the unperturbed search space.
With the derivative of V (1)),

V@) = <0 —sin(9) +cos(19)e>7

B

3The implicit function theorem cannot be used for complex equations, since the projected problem
T,(\,9)s = V()HIT(A\)V(9)s is not analytic with respect to o).
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the partial derivative of 7T, with respect to ¥ can be determined, thus,

T, _
o9
Evaluating F' at ¢ = 0 yields

Il TR0+ PO TR0
0 T/ Ty
- 1) TV +VIT(Ne (0 1),

since

V) = V
With the help of Lemma 4.1
. T Ty
MOy = 2 v ® (4.10)

A=A
9=0

B wT%(S\,O)S

is obtained where w denotes the corresponding left eigenvector of A. We assume
that the resulting Ritz vector is not orthogonal to the current iterate z(*), since 2*)
is already sufficiently close an eigenvector. Therefore, we scale the eigenvector s

such that s; = 1, thus,
B
S =
o
(cf. (4.19) in Subsection 4.2.1).

Then we obtain for the numerator of (4.10)

wTa;l;pg_és = (w1 wg) ((2) TNV +VTT(Ne (0 1)) (;)
= woeTT(N) (:c(k) +a Z: ) + awVIT(N)e (4.11)
According to Assumption 2.14, the eigenvalue \is simple, and, therefore, wT%lf — s #
0. Inserting (4.11) into the absolute value of (4.10) yields
MO) < Oy [V + Colal, €1, G20 (4.12)
In Lemma 4.5 in Subsection 4.2.1, we will see that
la| = O (sin (gb(k))) , (4.13)

where ¢p®) .= £ (x(k), 17).
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For the condition number of the eigenvector we obtain, with the help of Lemma

4.2,
1 T 0T, T 0T,
(0 < - 2 it 4 2 i
IO < 7 () Gcss + (w7)" 5
Here we consider only a 2 x 2-nonlinear eigenvalue problem, so there exist only two
(linear) eigenvalues p1, p1o of the matrix T'(A,0). We choose the numeration of these

eigenvalue, such that

NEY A(0)| : (4.14)

A=A
9=0 9=0

=10 and fo # 0.

The second summand of (4.14) can be bounded using (4.12). Considering the first
summand yields

<w2)TT19(5\, 0)s = wielr*tY 4 o (wQ)T VITAF)e,

thus,
NT 0T, A 21 (LGt 1)
‘(“’) Soloas| < lsl [0 + o). (4.15)
Finally, these results can be summarized in Theorem 4.3.
Theorem 4.3.

LetT : R D J — R™" be a family of real matrices, NeJa simple eigenvalue of T'(+)
and © € R™ a corresponding eigenvector. We consider an iteration process {x™)}2
converging to a nonzero multiple of 0. Let § > 0 such that T'(\) is diagonalizable
for all x € S(\,0). Let \O € S(\,0) VI > k.

We assume that ©®) is already sufficiently close to v and consider a two dimen-
sional subspace spanned by x*) and x5V and the resulting projected 2 x 2-nonlinear
Rayleigh-Ritz eigenvalue problem (4.6). For perturbations of the search space expan-
sion, cf. (4.7), the condition number behaves as follows.

AERD(0) = O (sin (M), (4.16a)
and
15(0)]| = O (sin (M), (4.16D)

where ¢F) = £ (at(k), f)).
Proof. Consider Lemma 4.1 and apply it to
T,(\0) = V() T(A\)V(9)s = 0. (4.17)

Then (4.12) and (4.13) complete the proof of (4.16a).
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For the second part of the proof, Lemma 4.2 is applied to (4.17). We need to
provide a scaling of left and right eigenvector such that

31:1
and
s =1

is fulfilled.
Since ¥ is sufficiently close to the sought eigenvector we can expect s; # 0
which allows us to scale the vector s such that s; = 1. The left eigenvector w is not

orthogonal to the right eigenvector s and therefore it can be scaled as well such that
wHs = 1. Lemma 4.2 yields (4.14). Finally, with (4.15), the proof is completed. [

Theorem 4.3 shows that the condition number of the eigenvalue and eigenvector
tends linearly to 0 with the angle £ (:z:(k’),@). Hence, the closer the Ritz pair is

to an eigenpair?, the smaller the influence of perturbations is in the search space.
Therefore, the perturbations do not need to be reduced, when the Ritz vectors
become closer to the eigenvector.

Unfortunately, this result cannot be used to prove the convergence of iterative
projection methods. It only confirms the guess that the Ritz values become more
robust against perturbations in the subspace expansion, when z*) is already close
to the eigenvector.

4.2 Error Estimation for Extremal Eigenvalues

In this section we analyze the influence of perturbed subspaces on the convergence
to the smallest eigenvalues. We begin with a general geometric consideration, which
can be used for linear as well as for nonlinear eigenvalue problems. We continue by
examining convergence properties for the generalized linear eigenvalue problem

Az = ABzx, A,B € C™" (4.18)

where A is Hermitian and B Hermitian positive definite. The results will, finally,
be generalized for nonlinear eigenvalue problems which satisfy Assumptions 2.7 and
2.8.

Through the entire chapter we use the numbering which is defined by the minmax
characterization for non-overdamped nonlinear eigenvalue problems®. Moreover, we
assume that the smallest eigenvalue is simple, i.e.

A< A <...< A\

4The distance between two eigenpairs can be measured, for instance, by the angle between the
Ritz vector and the eigenvector.
5cf. Definition 2.10
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Chapter 4 Perturbed Subspaces

4.2.1 Geometric Consideration of perturbed Subspaces

Throughout this subsection we use the notation for nonlinear eigenvalue problems,
although the results are used for linear and nonlinear eigenvalue problems.

Definition 4.4. We define the two planes E and E:
E = span{z® {}

E = span{z® i},
where £ denotes the solution of the J acobi-Davidson correction equation (3.10), which
satisfies (® L 5 t. For the perturbed subspace E we define

- ¢

t:=cos(¥)— +sin(d)e, withe Lg {z*),#} and ||, = 1.
t

B

Thus, ¥ denotes the angle between the planes E and E. The greater ¢ is in magni-
tude, the greater the perturbation of the subspace will be.
Note that ¢ is always scaled such that HfHB = 1, while Hﬂ‘B varies from step to
step®.
We scale %) to
=]l =1,

with B as defined in (4.18) for linear eigenvalue problems and B = I for nonlinear
eigenvalue problems.

The new iterate z**1 := yMx®) (cf. (3.9)) is described by

g* ) = ) ¢ (4.19)

with a suitable scaling factor v # 0.
Let 2#t1) € E be the Ritz vector corresponding to the smallest Ritz value of the
perturbed projected problem. Then we can estimate the error of the perturbed Ritz

values by .
‘p (j(kﬂ)) —-p (Ul)‘ < )p (g)—p (Ul) , VyeE. (4.20)

We define
k1) | e (4.21)

where « is chosen such that § € E. We can determine o geometrically. Consider-
ing Figure 4.1 where we start at z*+1) and go orthogonally to E along e until the
plane E is reached yields the result.

Y=

a= |t tan(d).” 4.22
[7] , tam(?) (4.22)
We determine Hf"B by considering Figure 4.1 to

7], = tan(s). (4.23)

The following Lemma describes the behavior of tan(d).

When z(*) converges to 0, HfHB — 0.
"Calculating the intersecting point of the line z(*+1) 4+ ae and F would yield the same result.
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2

Figure 4.1: The desired subspace vs the perturbed subspace
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Chapter 4 Perturbed Subspaces

Lemma 4.5. Let
2® D) = 4 Ma® C 3 #£0,2% € C, M, € C

describe an iterative method to determine an eigenpair of a linear eigenvalue prob-
lem or a nonlinear eigenvalue problem (cf. (3.9)). Let the angles ¢ and ¢py1 be
sufficiently small, i.e. |tan(¢y) tan(gre1)| < 1, then

| tan(d)| = O (| sin (k) |) + O (| sin (Px11) |)
holds, while ¢ == £ (x®, v)8.

Proof. From (4.23) we have
[ tan(3)| = [, (4.24)

Therefore, an estimation of the norm of ¢ is sought. The subspace expansion ¢ is
determined by solving the Jacobi-Davidson correction equation, (3.10). In chapter
3 an explicit expression for ¢ was developed resulting in (3.13),

=1

—_———
NG
. T x 1
b= ( H) —570a™® g =y g, (4.25)
(z®)" B S Ca®) = (=)™ By
::y

For this proof we will decompose each vector, ) and y, into a component into the
direction of v' and another direction orthogonal to v!'. This leads to an expression
of £, where it is decomposed into one direction parallel to v' and one orthogonal to
it. This result can be used to estimate the norm of .

We use the following decompositions®
z®) = cos (qﬁ(k)) v + sin (gb(k)) w® =: gt + spw® (4.26a)
y=rn (cos (gb(k“)) v' + sin (qb(k“)) w(k+1)>
=: n(cppvt + spw*tD), (4.26D)
with [[ot]|, = H’w(k)HB = Hw("““)HB =1 and {w®, w*+Y} 1 5 o', Without loss of

generality we assume

C,chr1 € C

Sk, Sk+1 € R}O-

The latter restriction can be made, since we could easily transform w® such that
sk € Ry, if s was complex.

spw™ = |sp| exp(i))w® = |sp|w®

8The angle is defined according to the B-inner product. B is either chosen such that each pair of
eigenvectors belonging to two different eigenvalues can be chosen B-orthogonal or B = I
9For nonlinear eigenvalue problems we set B = I
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With

(x(k))H By =n | ¢kCry1 + SkSk1 (w(k))H Buw*+D

and inserting (4.26a) and (4.26b) into (4.25) we end up with

n(crr1vt + sppw®t)

N(CkCri1 + SkSk+1V)

Ckt1 Sk4+1
— — Cp, vl + — whth — skw(k)
CrCk+1 T SkSk+1V CkCk+1 T SkSk+1V

t= — c;cv1 — skw(k)

1 1 Sk+1 (+1) )
=|—— — . 4.27
(Ck: + Sk k“V Ck) v CkCh+1 + 8k5k+1Vw okt ( )

The component into the direction of ¥ can be simplified to

=[s|?
k+1
1 1 — |exf? —skckaLy
— Cr =
e+ Sy * e+ Skt
2 _ Sk+1
_ |3k| SkChge
Sk+1
Cr, -+ Sk o1
Ckt1|Sk|® — Skr1SpCRV
_ kJi| k> — Skp18kch (4.28)
CrCk+1 + SkSk+1V
Inserting (4.28) into (4.27) yields
2
A Cka1|Sk|T — Skr1SkCrV 5
t= ki| d TR o — an wh D — 5 w®), (4.29)
CkCk+1 T SkSk+1V CrChk+1 T SkSk+1V
For having a nonzero denominator we need to show that
CiC
y £ — L (4.30)
SkSk+1
With the requirement
SkSk+1
| tan(¢y) tan(dpi1)| = || < 1,
CkCh+1
the product of the cotangents satisfies
1 CkCht1 CrCrt1
| cot () cot(Pri1)| = = = > 1
| tan (@) tan Q)| [ SkSke1| | SkSkr1
H
On the other hand, v = (w(k)> Buw*t1) L Hw(k)HB Hw(Hl)HB = 1. Thus, the
—_——
=1 =1

denominator cannot get close to zero.
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Chapter 4 Perturbed Subspaces

By taking the B-norm and applying the triangle inequality to (4.29) we obtain

2
2 Ck41S) — Sk+1SkCkV Sk+1
fl = ||k ot — WD g ™)
B CkCk+1 + SkSk+1V CkCht1 T SkSk+1V B
2
Ck41S), — Sk+1SkCkV Sk41
S|t vt — wkD| 4 Hskw(k)H
CkCht1 + SkSk+1V B CrCit1 + SESk+1V B B
2
Ck4+1S) — Sk+1SkCrV Sk41
= e o'l + = i A ]
CrCht1 + SkSk41V B |CkCri1 + SpSpav | 1B < B
=1 =1 =1
2
Ck41S), — Sk+1SkCgV Sk+1 +|8 |
= |—= — k
CkCht1 + SkSk+1V CrCha1 + SkSp41V
O(IszN+O0(Isksk+1l) =0(|sk+1l)
= O([sk41]) + O([sw) (4.31)
which completes the proof using (4.24). O

This result can be used to analyze the convergence behavior for linear and non-
linear eigenvalue problems.

4.2.2 Generalized Linear Eigenvalue Problems

In this subsection we consider the Rayleigh quotient instead of the Rayleigh func-
tional. Therefore, we denote it by R : C" \ {0} — R with

o Az
R — 4.32
(z) " Bx (4.32)

where A is Hermitian and B Hermitian positive definite.
For the next step of the error estimation the following relation is needed:

tan?(¢y) = o2 M — O(R(zW) — Ay) (4.33)

where 7 = w” Aw and w € C" is defined in (2.17).
This relation has been proven by Notay in [52]. It directly implies

sin?(¢) = O(R(z™) — \y). (4.34)

Now we consider (4.20) for the generalized linear eigenvalue problem, thus,

R(z*) = R(v') <R(@) - R(v'"), (4.35)
with 7 := 2**Y 4+ ae where a is determined from (4.22). We assume again that
Hx(k)HB = |le]|3 = 1. We can estimate the error to

R(j) - R (v") = R (z™ + ae) — Ay (4.36)
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4.2 Error Estimation for Extremal Figenvalues

We exploit the invariance towards scalings of the Rayleigh quotient, thus,

R (a:(k“) + oze) =R <WLH (x(k+1) + ae))

< 2k+1) o )
+ e
[EASaol PP | FA el [P

=R
R( (k+1) 4 ae)

where

(k+1)
(k+1D) T
[EaSand |
v O a
R P

Combining (4.36) and (4.37) we obtain

( (k+1) 4 H)

R(j) - R(v')=R
( (D) 1 e )" A (204 + Gie)
(¢
(@

_)\1

F0D) 4 qe) B (20D + ce)
’f“)) AF*+D) 4 95eH AzE+) 1 3267 Ae

|+ + &2

We use again the following decompositions

2% = cos (qﬁ(k)) v! + sin (gb(k)) w® = cpvt + skw(k)

D oog <¢(k+1)) v! + sin (¢(k+1)) wFD —. Ck+1U1 + Sk+1w(k+1)
With (4.40b) we have

ApHD) = ck+1Avl + skHAw(kH) = ck+1Ale1 + sk+1Aw(k+1).

Furthermore, we can exploit that e Lz F and therefore e L #*+1),

0=clBiktD) =B (ckHvl + Sk+1w(k+1)) )
This yields

Sk+1
el By' = —ZEL o H poyy(ktl)
Ck+1

— A1

(4.37)

(4.38a)

(4.38D)

(4.39)

(4.40a)
(4.40D)

(4.41)

Hence,

(4.42)
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Chapter 4 Perturbed Subspaces

With (4.41) and (4.42) the expression ef? A7+ can be simplified to
eH AFFHD = ¢ N e Bo' + s qeff Aw®* Y

= —3k+1>\1€HBw(k+1) + SkHeHAw(kH)

Spre (A =\ B) w*+Y

sl llelly 0™ O = A).

N

=1

(4.43)

The following proposition completes the estimation for the error R (:”ﬁ(k“)) —

R (v).

Proposition 4.6. Let |a] < 1, and 2%V, 20+D o 5.1, A and B as defined

above, then

R (i<k+1)) —-M <R (:l?(kﬂ)) — A1+ 2C1 [spa ]+ O(?).

Proof. We consider (4.35) and (4.39) to determine

H
(NH)) AFF+D o5l A7(R+D 4 §20H Ae
R ;z<’f+1>) M < — A
( 1 X - 1
14 a2

With,

o B o
lx0]

o= a2

from (4.38b) and (4.19) the requirement |«| < 1 implies || < 1.
Hence, we have

H
< <(z<’f+1>) AFtHD 4 ogeH AzHD) 4 dQeHAe) N
[0

= R (204)) 4+ 2de™ Az — ) + 0(a?).
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4.2 Error Estimation for Extremal Figenvalues

Inserting (4.43) into (4.46) completes yields

R (:i’(k+1)) - M <R (f(kﬂ)) — A1+ 201 s 1| + O(G2).

Exploiting
R(i‘(lﬁ_l)) — R($(k+1)),
Cy
C, =
' [0
and
& < Ja| (cf. (4.45))
we obtain
R (:i(k“)) -\ <R (x(k“)) — A1+ 20 als41] + O(a?).
This completes the proof. O

This proposition results in the following theorem:

Theorem 4.7.
We consider the generalized linear eigenvalue problem where A € C" " is Hermi-
tian and B € C™*" is Hermitian and positive definite. We assume the smallest
eigenvalue A\ to be simple. Let %) be a sufficiently good approzimation for a cor-
responding eigenvector, v', to the smallest eigenvalue Ay and 25V the neat iterate
of an iterative method with convergence order Kk > 1.

Then the iterative projection method, where the subspace E := span{z®) z*+1}
is perturbed by an angle ¥ (cf Figure 4.1) converges linearly for sufficiently small
perturbations v, thus,

AFED ) < AERD ) 4 O(tan(9) (AP — Ay))
where ATD = p(2¢HDY and XKD s the smallest Ritz value on E.

Proof. We use (4.22) and (4.23) to determine
a = tan(d) tan(d). (4.47)

For a sufficiently small angle ¥ we can assume that the requirement |o| < 1 for
Proposition 4.6 is satisfied. Applying Proposition 4.6 yields

S\(kJrl) - )\1 g 3\(k+1) — )\1 -+ 2018]€+10é + O(Oéz).
After inserting (4.47) we determine
AEFD N < AEFD Ny 4 20 5441 tan(8) tan(9) + O(tan?(0) tan®(9)).  (4.48)

Exploiting the convergence behavior of the iterative method yields

sin(¢r41) = O ((sin(¢x))") . (4.49)
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Chapter 4 Perturbed Subspaces

With (4.49) and Lemma 4.5, the behavior of tan(d) can be determined to
tan(d) = O (sin(¢y)) . (4.50)

Inserting (4.49) and (4.50) into (4.48) we determine

AEFD — x) < AEFD ) tan(9)O(sin? (6™M)). (4.51)

Lemma (4.34) completes the proof by replacing the last term in (4.51).
[

Theorem 4.7 points out that an iterative projection method on a perturbed sub-
space converges locally linearly for the extremal eigenvalues. This behavior is similar
to the result of Theorem 2.35 and Theorem 2.36. But in this case the local symme-
try does not lead to a higher convergence rate. On the other hand, a search space
expansion can be determined with less computational cost than the next iterate of
Inverse Iteration or Rayleigh functional Iteration.

4.2.3 Nonlinear Eigenvalue Problems

Now we will transform the results we have obtained in Subsection 4.2.2, for nonlinear
eigenvalue problems
T(MNx = 0.

In addition to Assumption 2.7 and Assumption 2.8 from Chapter 2, we make the
following assumption

Assumption 4.8. We assume that

A1 = inf p(v)

vED(p)

exists.

We assume that Assumption 2.7, Assumption 2.8 and Assumption 4.8 are satisfied
for the whole subsection. Moreover, we set B = I for the whole subsection. Thus,
the B-norm ||-|| 5 is replaced by the Euclidean norm ||-||,.

We begin with a general estimation of the error of the Ritz value on the perturbed
subspace and complete this section with its interpretation.

Proposition 4.9. Let T : R D D — C™ " be a family of Hermitian matrices and
p: D(p) = I CR be a Rayleigh functional fulfilling Assumption 2.7 and Assumption
2.8. Let

e ) = aMz®, Cs>a#£0, 20 eC, M, e CV™

be an iterative method to determine the first eigenvalue, A\, and a corresponding
eigenvector v* of

T(MNv =0.
We consider a perturbation of the search space as described in Figure 4.1. Let x(®)
be a sufficiently good approzimation for v' with s := sin (K(:U(k),vl)> and &1
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4.2 Error Estimation for Extremal Figenvalues

the Ritz vector on the perturbed subspace E (cf. Definition 4.4). Then the following
error estimation holds,

PEE) = M| < [spqal® + O (|sin(8)]) [tan(9) | i1
+ O (] tan?(9)|) tan?(v) . (4.52)

Proof. Similar to the linear case (4.20) yields
p(E*D) = A < p(§) — A

with § = 2**Y 4+ ae (cf (4.21)). Exploiting the approximation properties of the
Rayleigh functional according to (2.14) and the results from Schwetlick and Schreiber
in [63, Cor. 18 and Th. 21] yields

[p(®) = p(v")| = O ([tan’ £ (7,0")]) -
For sufficiently small angles £ (7, v'), the tangent converges like the sine, thus,
(@) = p(")| = O (Jsin* £ (7,0")|). (4.53)
We consider
< (5.0)] < [« (3.20)|+ [« (=, 01)].
The sine function is strictly monotonicly increasing around 0, therefore, the follow-

ing inequality is fulfilled if £ (g,v'), £ (ﬂ, kD) ) and £ ( (+1) U ) are sufficiently
small in magnitude.

sin (|4 (,0)|) < sin (| (7.24+0)| + M(“lﬂD
< sin (| (.2%)]) +sin (|£ (20+0,0))
— sin (|4 (7,2%49)) + sin (¢s1)
«(

= sin ( 7, ac(k+1)) ) + Spi1

According to (4.21), e L z**D and |le||, = 1 the sine of the angle between z+1
and gy can be expressed by

sin (& (y, (k“))) = a = O(«w).

[« + ae]]

And for ‘4 (g, x(k“))‘ < 7 we obtain

sin (‘A{ (gj,x(kﬂ))‘) = ‘Sin (L (gj,x(k“)))‘ = O(lal).
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Chapter 4 Perturbed Subspaces

Taking the square of |sin (£ (¢, v"'))| we end up in

i (4 (5:0"))] < (sn (< (7.27) [+ bin(or))
= Jsin (£ (3.27))

+2‘sm< ( k+1)))‘ E R

= O ([of) + O (la sin(@ep) ) + sl (454)

Inserting (4.54) into (4.53) and taking o = tan(J) tan(d) from (4.22) completes
the proof. n

Lemma 4.5 is used to estimate tan(J).

Furthermore, the angles ¢, and ¢, have to be estimated depending on the error
in the Rayleigh functional. For Hermitian linear eigenvalue problems in Subsection
4.2.2, this was done using (4.34). The following Lemma will show that a similar
relation is also applicable for Hermitian Nonlinear eigenvalue problems.

Lemma 4.10. Let T : R D D — C™" be a family of Hermitian matrices fulfilling
Assumption 2.7 and Assumption 2.8. Let p : C" — I C R be a Rayleigh functional
according to Definition 2.15. Then for x € C" with ¢ := £(x,v') sufficiently small,

sin(¢)” = O (Ip(x) — M)

holds, where (A\y,v') denotes the smallest eigenvalue and a corresponding eigenvec-
tor.

Proof. For p(x) with ||z||, # 0 the following equation is satisfied:
27T (p(x))x =0 (4.55)
Furthermore, we can use a Taylor expansion for T" and obtain
T(A) =T(A) + T (M)A = A1) +O(A = M) (4.56)
As in (2.17) x is decomposed into one component into the direction of v! and one
component w € {v'}",
x = cos(¢)v! + sin(¢p)w = cv' + sw (4.57)
Inserting (4.56) and A = p(z) into (4.55) yields

(T +T' M)A =)z = O(A = A )
25Tz + (A = \) 27T (\)a = O(]A — M%) (4.58)

70



4.2 Error Estimation for Extremal Figenvalues

With (4.57) we obtain

27T\ = (cvl + sw)H T(\) (cvl + sw)

- (cvl + sw)H (cT()\l)vl +3T()\1)w)

=0

=5 c(vl)HT(Al)—l—stT()\l) w
=0

= 2w T(\)w. (4.59)

Hence, (4.58) can be simplified by inserting (4.59).

TNz + (A= M) 27T (\)z = O(A = A %)
sSSwTT(A)w = =" T' (A)z(A = M) + O(]A = M [?)

(4.60)
For the smallest eigenvalue
w?T(A\)w # 0 (4.61)
holds for all w L v!. Thus, we end up in
Hr
2 7T (M) 2
=——— (A=A O(IX — M\ [%).
s wHT()\l)w( 1) +O(| %)
Replacing A = p(x) back and s = sin(¢) completes the proof.
[

Remark 4.11. The condition (4.61) is mandatory for proving Lemma 4.10. It is
equivalent to

p(w) # 1.

If this condition is satisfied for interior eigenvalues, this relation can be proven for
interior eigenvalues as well.

Lemma 4.10 and former considerations yield the following theorem:
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Theorem 4.12.
Let T : R D D — C™™ a family of Hermitian matrices. Let p : D(p) - I C R a
Rayleigh functional fulfilling Assumption 2.7 and Assumption 2.8. We consider an
iterative method

2D = aMz®, Coa#£0, 2% eC, M, e C"
converging to the smallest eigenvalue, A1, and a corresponding eigenvector v* of

T(MNv =0.

Let this method converge at least linearly. We consider a perturbation of the search
space as described in Figure 4.1. Let z®) be a sufficiently good approzimation for vj
with sy, 1= sin (A(a:(k), vl)> and #**Y) the Ritz vector on the perturbed subspace E

(cf. Definition 4.4). Then, the perturbed subspace reduces the convergence to linear
convergence, 1i.e.

pE*D) = A = O ([p(E* D) = A |) + O tan(9)] [p(x®) = ). (4.62)

Proof. Proposition 4.9 yields
pE*D) = M| < [sial* + O (Jtan(9) tan(9)]) i
+0 (| tan(9) tan®()|) (4.63)

The tangent of § can be estimated using Lemma 4.5. Then (4.63) changes to
[p@EH) = | < e[
+ [sk41] O ([tan(9)]) [0 (Isel) + O (Ise1]) + O (V/5k5k11)

+0 (jtan?()]) [O(15e]) + Ollswaal) + O (Vo) | (464

Assuming that at least spy1 = O(sg) is fulfilled, (4.64) simplifies to

pEHD) = A| < [seal® + O (| tan(9)]) O (|si[*)
+ O (tan’(®)) O (|si|*)
= [sk[* + O (| tan(9)]) O (| /*) (4.65)

Finally Lemma 4.10 is exploited, thus,

[s¢> = O (Jp(=™®) = A,

). (4.66a)

and

[si1]* = O (|p(a™) = \)). (4.66D)
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Inserting (4.66a) and (4.66b) into (4.65) yields

[pED) | = O(Ip(E*+) = ) + O ([ tan(®)]) O (p(a®) = Ar])
This completes the proof. O

Theorem 4.12 is proven using the assumption that the underlying iterative method
converges at least linearly to the smallest eigenvalue and a corresponding eigenvector.
However, it is not exploited if the convergence is faster than linear. The following
corollary will discuss the convergence on the perturbed subspace, if the underlying
iterative method converges quadratically or cubically.

Corollary 4.13. Let the assumptions of Theorem /.12 be satisfied. Then, the fol-
lowing convergence properties hold:

(i) If the underlying iterative method converges at least locally quadratically to the
etgenpair, then

pE*D) = A1 = O(Ip(E* D) = M) + O ([tan(@)]) o (Jp(x™) = M)
+ O (Jtan(®)]*) O (Ip(z™®) = M)
holds, if the subspace is perturbed by the angle .

(ii) If the underlying iterative method converges at least locally cubically to the
eigenpair, then

p(E*D) = | = O(Ip(E*) = M) + O (| tan(9)]) O (p(z®) = M)
+0 ([tan®(0)]) O (Ip(=™) = A1)

holds, if the subspace is perturbed by the angle .

Proof. We have to enhance the proof of Theorem 4.12. Therefore, we consider (4.64).
For proving part (i) we now assume that s;; = O (s;?). This yields

pEF) = M| < [spal’
+ [sie1| O (Jtan(9)]) (O ([se]) + O (|sx41]) + O (V/5r5k11))
+0 (|tan*(0)]) (O(|sk]) + Ollsks1]) + O (Vrsarn))

= |31~c+1|2

+ s> O (fran()]) (O (sil) + O (1) + 0 (1P )

+0 (1)) (Osel) + Ol + 0 (Vi) )
= [st[* + O (tan(9)]) O (|si]*)
+0 ([tan®(¥)|) O (Is?)
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Applying Lemma 4.10 gives

‘p(j(kJrl)) B )\1‘ — 0 (’ (33 (k+1) ) A ’)
+ O (tan(9)]) O (Isi]) O (Ip(z™®) = A
+ 0 ([tan*(9)[) O (Ip(z®) — \i]) (4.68)

Since s; is also decreasing towards zero we simplify

O (Ise) O (Ip(E™) = M) = o (Ip(E™) = Aul) . (4.69)
Inserting (4.68) into (4.69) completes the proof of (i).

The second part is proven similarly, but sgy1 = O (s;%) is inserted into (4.64).
Then we end up in

p(E*D) = M| < s

+ 1> O (tan(@)]) (O (lsel) + O (Isil?) + 0 (sh))
+0 (jtan*(@)]) (Osel) + Ollsil?) + O (@))2

= [sia” + O (jtan(9)]) O (|sil')
+0 ([tan’(¥)|) O (Is?) (4.70)
Applying Lemma 4.10 completes the proof for this second part. ]

Theorem 4.12 and Corollary 4.13 show that the perturbation of the search space
expansion in general reduces the convergence rate to linear convergence. This ap-
pears independently of the iterative method z*+1) = aMz® where the subspace
expansion has been adapted from.

Corollary 4.14. Let the requirements of Theorem 4.12 be satisfied, then the follow-
ing convergence properties are fulfilled:

[sin(£(FD, 01)] = O(|sin(3ED, 1)) + O(/[ tan(@))O(| sin2(z®, 01)))
+ O(/ltan(@))O(| sin(z®, o1))).
Proof. Follow the proof of Theorem 4.12 and consider (4.65)
pESD) = | < sk P+ O (| tan(@)]) O (|sel*) (4.71)

where 5541 = sin(2*+Y o) and s;, = sin(z®), 1),

Applying Lemma 4.10 to the angle £(#**V v') leads to
sin?(£ (34D, 01)) = O (Jp(E* D) = A ) . (4.72)
The equations (4.71) and (4.72) are combined to
sin?(£L (2% 0Y)) < Jspa]? 4+ O ([tan(9)]) O <|sk|2) :
Taking the square roots on both sides completes the proof. O
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We have shown the linear convergence to the smallest eigenvalue of a nonlinear
eigenvalue problem so far. For an error estimation of the largest eigenvalue A\, we
consider

p(**Y) = max p(z).
z€EE
Izl p=1
Hence, each vector g € E satisfies
p() < p(E*H).

Multiplying by —1 and adding A, = p(v™) on both sides yields
p(v") = p(@* ) < p(v") = p(p).

This is similar to (4.20). Replacing v! by v™ and A\; by ), leads to the same
convergence results as for the smallest eigenvalue.

4.3 Error Estimation For Interior Eigenvalues

In the previous section a convergence proof for real extremal eigenvalues is shown
that can be characterized by a minmax characterization, i.e. Assumptions 2.7 and
2.8 are satisfied. But in real applications eigenvalues of interest often are close to a
predefined value.!® Therefore, a different approach to estimate the perturbation of
the corresponding Ritz vector on a perturbed subspace is presented here.

For linear eigenvalue problems, the Rayleigh-Ritz projection method works well
for the extraction of well-separated exterior eigenvalues of Hermitian matrices. To
improve the extraction of interior eigenvalues, Morgan presented the approach of
“harmonic Ritz values” and “harmonic Ritz vectors” in [48]. Here the extremal Ritz
values of the matrix (A — 71)~! are investigated where 7 is a user defined target for
the interior eigenvalue. A refined method is given in [35] and convergence analysis
about harmonic Ritz values is presented in [84].

Hochstenbach and Sleijpen generalized the harmonic and refined Rayleigh-Ritz
method in [28]. They presented the “linearized harmonic Rayleigh-Ritz method for
polynomial eigenproblems” where the linearized harmonic Ritz vectors can finally
be extracted by solving a projected generalized linear eigenvalue problem, instead
of solving a projected polynomial eigenvalue problem. In this context “linearized”
means the linear part of a Taylor series of the nonlinear eigenvalue eigenvalue prob-
lem, i.e.

Ty = 0T"(AF) ),

is solved.

In this section we use the notation defined in Definition 4.4 for the planes E and F,
the vectors (¥ £, e, t and the angle ¥. The convergence progress is usually measured
by the angle between the sought eigenvector and the current approximation. If the

0For example: In mechanical engineering eigenvalues close to external excitation frequencies are
sought.
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Chapter 4 Perturbed Subspaces

“distance” between a vector and a subspace is mentioned, we determine the angle
between the vector and its projection onto the subspace.

In Section 4.2 we did not have to determine the exact location of the new Ritz
vector in E. The fact that the sought minimal eigenvalue is the global minimum
of the Rayleigh functional allowed us to estimate an upper bound of the error by
choosing any vector in the plane E. For eigenvectors belonging to interior eigenval-
ues, we cannot exploit this property anymore, therefore, we will determine a triangle
T in the plane E, in which the Ritz vector is located. 7 can be described by

span{z®™ 1} D T :={u € E | n < |tan(£L(z®, u))| < 1},
with > 7 > 0.

For an illustration see Figure 4.2.

Fk)

A

Figure 4.2: Position of Z**1 in the plane E

In [1] and [2] Aishima proves the global convergence for the Jacobi-Davidson
method for the real symmetric linear eigenvalue problem. Szyld, Vecharynski and
Xue present a convergence proof for a special variant of the nonlinear Jacobi-
Davidson method in [69]. We keep our consideration limited to a very general
approach where the Jacobi-Davidson method is regarded as a procedure to stabi-
lize a vector iteration in order to determine an eigenpair of a nonlinear eigenvalue
problem (cf. Section 3.5).

The assumptions for this section are summarized as follows.

Assumption 4.15. In this section we restrict our considerations to real'! nonlinear
eigenvalue problems.

Moreover, we assume that all eigenvalues under consideration are real and simple,
i.e. if \is a real eigenvalue with corresponding eigenvector 0, then @TT’(:\)ﬁ £ 0.

After a general geometric consideration, we will present convergence proofs for
different prerequisites. First, we consider eigenvalue problems where Assumption
2.7 and Assumption 2.8 are satisfied. Finally, the ideas are adapted for problems
where the eigenvalues cannot be minmax characterized anymore.

"' This means, that T : R O J — R™*", and we consider only real eigenvalues.
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4.3 Error Estimation For Interior Eigenvalues

4.3.1 A Geometric Approach

We consider the three dimensional subspace S C R”, which is spanned by 2(®) 2(-+1)
and the orthogonal perturbation direction'? e. Moreover, Definition 4.4 yields that

the vectors
t
{x<k>7 A }
t
B

provide an orthonormal basis of S and that E and E are subspaces of S. To deter-
mine the angles between z**1) and vectors in E we can apply geometric methods
to the coefficient vectors, as used in three dimensional vector calculus. We denote
these coefficient vectors by the subscript S and obtain the following vectors:

2% = (1,0,0)" (4.73a)
A A T
is = (0, i B,o) (4.73b)
es = (0,0,1)" (4.73¢)
G (1 ]g] 0)" (4.73d)
ts = (0, cos(19), sin(?)) (4.73e)
gs = (1.[f B,a)T (4.73f)

The vector ¢ is defined in (4.21) as
j=a® +1+ae,

and ¥ denotes the perturbation angle between the planes E and E (cf Definition
4.4). For estimating the error for extremal eigenvalues in Section 4.2, the vector g

and the inequality
p(E*Y) = p(0)] < [p(§) — p(0)]

were used. Here, for interior eigenvalues, we cannot expect that ¢ is a Ritz vector,
which solves the projected Rayleigh Ritz eigenvalue problem!® on the perturbed
subspace E. Hence, we consider all vectors in the affine space,

Ey = {y e ECR"| (x(k))TBy = 1} , (4.74)

as candidates for the sought Ritz vector. Here B € R™*™ denotes a positive definite
matrix, as defined in (3.10) in Section 3.5'.

Assuming that the sought Ritz vector is not orthogonal'® to z*), the manifold
E contains a multiple of the sought Ritz vector. Thus, the Ritz vector u can then
be described as

u =17+ (t, (4.75)

12The orthogonal perturbation vector is defined in Definition 4.4.

13This can be linear or nonlinear.

1Either B is chosen such that the eigenvectors can be chosen B-orthogonal or, if this is not
possible, we set B = I.

15This property is satisfied if (%) is sufficiently close an eigenvector.
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for a suitable ¢ € R. We will discuss later how ¢ can be determined. Using (4.73e)
and (4.73f) we obtain

1 0 1
us = s + (ts = HfHB +¢ (003(19)) = HfHB + ( cos(¥)
a in(v) a + ¢sin()

for the coefficient vector of w.

Proposition 4.16. We assume that Assumption 4.15 is satisfied. Let {x®)}2  be
iteration vectors converging to an eigenvector v of the nonlinear eigenvalue problem

T(A\)v =0,

and E and E are defined according to Definition 4.4. If k is sufficiently large, then
for a Ritz vector u as defined in (4.75) it holds

sin (£(z*D,u))| = O(la]) + O(I¢))-

(k+1)

Here a denotes the distance from x along e until e crosses the plane E, cf (4.22)

and Figure 4.1.
Proof. We use the fact that
£ (:E(k“),u) =4 (mgkﬂ), us) : (4.76)

In R? we can determine the sine of the angle between two vectors by the following
equation:

k+1)
i (¢ o .5)) | = 1 “”Xfl' -
2
We calculate
A R 1 HtAHB (v + ¢ sin(0))
xfgk“) X Uus = HtHB x|l T Ccos(¥) | = —av — (sin(0)
a + (sin(v) ¢ cos(1)).

The euclidean norm can be bounded by the 1-norm such that

H (k+1) k+1)

< usl, < [les™ < us

- H HB la 4 Csin(d)| + | — o — Csin(9)] + | cos(9)]
= O(la]) + O(I¢])-

The B-norm of f also converges to zero (cf. (4.23) and Lemma 4.5 in Chapter 4.2).
For the denominator of the right hand side of (4.77), we have

1+

], = [ > 1

(2
t
B
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and

usly = \/1 + (], + ¢ cos(®))? + (a+ ¢sin())? > 1.
Inserting these results into (4.77) yields
sin (< (25, us) )| < O(la]) + O(C)). (4.78)
By exploiting (4.76) we can convert (4.78) into
sin (< (z#4,u))| < O(la]) + O([¢]).
This completes the proof. O

Corollary 4.17. Proposition 4.16 provides two useful properties:

1. Using (4.22), (4.23) and Lemma 4.5 we obtain
sin (4 (2%, 4))| < O( tan())O(| sin(én)]) + O(1C]),

while at least sin(¢g1) = O(sin(¢y)) is assumed.

2. Using ( = 0 yields
sin (< (™, 5))| < O(|tan(9)])O(| sin(¢x)])-

Corollary 4.17 points out that no higher convergence rate than linear convergence
can be expected if the search space is perturbed by a non decreasing (for k — 00)
angle .

In [69] Szyld, Vecharynski and Xue assume for the perturbed Ritz vector #*+1)
that

sin (£(&"),0)) < Csin (£(E, ) (4.79)

is satisfied for a small constant C. With this assumption the results from the
convergence proof for the Jacobi-Davidson method without subspace acceleration
can be used to prove the convergence of the Jacobi-Davidson projection method
based on nonlinear inverse iteration.

We use this assumption in our more general context. This yields the following
theorem:
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Theorem 4.18.
Let {zM}2 , be a vector iteration which converges at least linearly to an eigenvector

v of
T(A\)v =0.

We assume that Assumption 4.15 is satisfied. Let x'®) be sufficiently close to an
(k) D)
eigenvector, i.e. there exists a small 6 > 0 with H( (3; )H < 0. Suppose that

the Ritz vector u on the perturbed subspace E fulfills
sin (£(&"),0)) < Csin (£(E, )

for a small constant C'.
Then Algorithm 4.1 converges locally linearly and

sin (L2, 8)) = O (| sin (£, )]) [) + O] tan(D))O(| sin())
is satisfied.

Proof. Since § € E we conclude

LG, 85+ £ (20 0). (4.80)

For sufficiently small angles, i.e. |£(g, 2%D)| +|£(#*+D 6)| < Z, the relation in
(4.80) remains valid, if the sine of the angles is taken on both sides. Thus,

sin (|4(E,9)|) < sin (|£(g, 28] + [£(@E, 0)]). (4.81)

Using the sine’s addition theorem, the right hand side of (4.81) can be estimated to
sin (|4(7.2%0)] + [£(@*,0)])

<sin (|4(g, 25D)]) + sin (J£(@5, 0)]) (4.82)

For an angle ¢ with |¢| < 7, sin(|¢|) = |sin(¢)| holds. Therefore, we can transform
(4.82) to

sin (|£(B,9)]) < [sin (£(7,2*))| + [sin (<@, 9)]). (4.83)
After applying Corollary 4.17 and inserting its result,
jsin (£ (2470, 5) )| = O(| tan(9) )O(| sin(@x) ).
into the right hand side of (4.83), we obtain
sin (|£(E,9)]) < |sin (<@, 9)])] + O(| tan(9)])O(| sin(¢x)])- (4.84)
Finally, we exploit the assumption for this theorem that

sin (£(&"),0)) < Csin (£(E,0)). (4.85)
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Inserting (4.84) into the right hand side of (4.85), we end up with

sin (£(@%,9)) = O (|sin (£(@*1,0)[) |) + O(] tan(9))O(| sin(¢x)])
= O(|sin(¢r)]).

The latter step can be executed since the vector iteration {x(k)}oo converges at

least linearly to an eigenvector.
This completes the proof. n

In the following sections we discuss under which conditions the assumption (4.79)
is satisfied.

4.3.2 Error Estimation for Real Eigenproblems with Minmax
Characterization

We assume that Assumption 2.7 and Assumption 2.8 are satisfied, and, moreover,
that T is at least once continuously differentiable with respect to A for this entire
subsection.

In the previous subsection we have shown that Algorithm 4.1 converges locally
linearly, if the assumption

sin (£(&"),0)) < Csin (£(E, 1)) (4.86)

is satisfied.

We will now show that this assumption is satisfied on perturbed two-dimensional
subspaces.

We define y, as a scaled projection of the desired eigenvector 9'® onto the subspace
E. We consider

Ppo=VVTo

r’\
T A~

) < (k) A> 4+ (t79)
= cos(¢p)z® + vt

where V = (z®),#) and the angles are taken from the orthogonal decomposition of
2 into components along © and orthogonal to it in (2.17).

Determining the direction of the Ritz vector of interest on this plane is challenging.
However, we will present an approach to determine an area in which a Ritz vector is
located. The area’s size decreases with the angle of the plane E and the eigenvector
0.

Hence, we define the vector

1 1 ~ -
Yp = ———Pp0 =

cos(oy) ¥ cos(¢x) v cos (o)

. (4.87)

Wyith [|8]|,, = 1
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Since we restrict the Rayleigh functional to the manifold £y, as defined in (4.74),
we define the following real scalar function as

JRDI — JCR
p'{ ¢ = plyy+Ch). (4.88)

Lemma 4.19. Let Assumptions 2.7, 2.8 and 4.15 be satisfied and T be at least once
continuously differentiable with respect to \. Let p be defined as in (4.88). Let E be
sufficiently close to the desired eigenvector v. Then

p'(é) =0& y, + 67? is a Ritz vector of the projected eigenvalue problem onto E.

Proof. We build the first derivative of p with respect to (.

P(¢) =T"Vply, + (f) (4.89)
According to Lemma 2.17 the gradient of p is given by

2

VP = = e

T(p(x))x.
Evaluation of Vp at y, + (f yields

QT(f(yp—l—(f)) (yp—irff) |
(9 +¢E) T (p (o +<E)) (9o + 1)

Vp (yp + ) = - (4.90)

After inserting (4.90) into (4.89) we obtain

2177 (p (yp + ¢F)) (yp + CF)

/(C) = - ~T R N
’ (50 + ) 7 (0 (3 + <)) (30 + CF)

According to Assumption 4.15 the denominator is not zero, since the Ritz vector

A~

is close to an eigenvector of T'(-). We conclude that p/(¢) = 0 implies

7 (p (yp + CE)) (o + CE) = 0. (4.91)
We consider three different cases which are equivalent to the condition (4.91):

(i) ¥ = 0: In this case the correction is zero and x*) has already converged to a
nonzero multiple of .

(ii) T (p (yp + ff)) <yp + ff) = 0: In this case y, + (i = 9, and, therefore, Yp + (i
is also a Ritz vector.

(iii) £ LT (p (yp + <)) (wp + CE)
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For the third case, we also consider the standard condition of the Rayleigh func-
tional evaluated at y, + ({,

(4o +CE) T (0 (3 + C0)) (5, + CF) = 0.

This and the condition of case (iii) is equivalent to
T (p (yp + éf)) (yp + éf) L span {f, Yp + éf} .

With the fact that span {f, Yp + (Af} = span {yp, f} — E, we conclude that the
Rayleigh Ritz condition

VIT (p(5+C0)) Ve =0, with V= (a0, 1),

where 2 is chosen such that Vz = Yp + f t, is satisfied.
This completes the proof. n

We cannot derive an explicit expression for the ¢ solving p/(¢) = 0. But we can
enclose the stationary point of p.

The following Lemma helps to enclose the stationary point of the real function p
on E.

Lemma 4.20. Let Assumptions 2.7, 2.8 and 4.15 be satisfied. Let 2®) be an suffi-
ciently good approximation for an eigenvector v of the eigenvalue \. Furthermore,
assume that [tTT(p(§))t| = C > 0 is satisfied. Then there exists a stationary point
of p (defined in (4.88)) at C with

I<I= OUIT(p(yp) 9 l,)-

Proof. For the proof, we first determine the value of 1 such that p(0) = p(n). We
will then use Rolle’s theorem to show the existence of a stationary point of p between
0 and 7.

The definition of p in (4.88) yields

p(0) = p(y, + 0t)

In general, we cannot expect a stationary point of p at ( = 0. We will show that
there is a stationary point of p in the neighborhood of ¢ = 0. Therefore, we are
seeking a value 0 # n € R fulfilling

p(0) = p(n). (4.92)

We can transform (4.92) into
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The unknown parameter n can be determined by solving

(v + 1) TCp(w) (5 + 1) =0 (4.93)
for . Expanding (4.93)'7 yields
Yo T(0(Yp))yp + 208 T(p(y,) )y + 17 T(p(yp))E = 0. (4.94)

We exploit ¢ T'(p(y,))yp = 0, since this is the condition for the Rayleigh functional
and exclude 7 from the remaining part of (4.94). This reduces (4.94) to

n (267 T(p(y))yp + 18" T (p(y,))E) = 0.

Hence, we determine one non trivial solution for 7:

287 T (p(yp))

Ty L

n=-

We consider three different cases:
(i) n>0
(ii)) n <0

(i) 7 =0

For the unlikely case of n = 0, we see that (4.91) is fulfilled, and, therefore, p has
a stationary point at y,'®. For cases (i) and (ii), we apply Rolle’s theorem'? to the
function p on the interval

;[0 ifn>0
stat == [n, 0], ifn < 0.

Thus, there exists a ¢ € Iyq, satisfying o (f ) = 0. The diameter of I, is given
by |n|. We conclude

¢l < Inl. (4.96)

For an estimation of |n| we consider (4.95). The denominator is bounded and does
not tend to zero. The numerator shows the inner product of the perturbed subspace
extension ¢ and the residual T'(p(y,))y,. It can be bounded with

T (0 ()l < [[]], 1T ()0l -

After inserting this expression into (4.96), we end up with

<1 = OUIT ()9 l,)-

This completes the proof. n
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F(k)

Figure 4.3: Position of 21 in 2(*-f(®) plane

Figure 4.3 illustrates the area where the sought Ritz vector can be located.
Lemma 4.20 leads us to the following theorem. This will finally show that the
assumption in (4.79) is satisfied for our two dimensional approach:

Theorem 4.21.
Let Assumptions 2.7, 2.8 and 4.15 be satisfied. Let '®) be a sufficiently good ap-
proximation for an eigenvector v of the eigenvalue A. Consider the closest Ritz pair

to the eigenpair (5\,@) and let %D € E be a corresponding Ritz vector.
Then,

sin(£(2*Y, 8)) < Csin(£(B, 0)).

Proof. Lemma 4.20 provides

1<l = OUIT(0(yp))ypll,)-

We now apply Lemma 2.28 and Corollary 2.29 to the residual T'(p(y,))y,:

HT(p(yp>>ypH2 = O(sin(¢y)), with @, 1= £L(y,, D).

Combining the last two equations leads to

| = O(sin(¢y))- (4.97)

However, the vector y, does not have unit length, but its length tends to 1 when
x®) converges to 0. Therefore, the behavior of the residual is not affected much by
the scaling. Thus, we have shown that the distance between Ritz vector and the
projection of y, onto F tends to zero with sin(¢,). For estimating the sine of the

angle £ (21 9), we split the vector Yp into two orthogonal directions, similarly to
(2.17) and (4.57).

1"The symmetry of T is exploited as well.

18We consider here the Rayleigh functional p restricted to the subspace E.

9Rolle’s theorem can be found in every book about one dimensional real analysis. A further
requirement of it, that p is continuously differentiable, is fulfilled since T'(-) is continuously
differentiable and, therefore, also p.
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Yp = p (cos(¢p,)0 + sin(¢,)w?)
with v, := |lypll,, w? L © and [|wP||, = 1. Thus, we can describe the Ritz vector
i,(lc—f—l) by
gD =y 4 (F
= 7, (cos(¢,)0 + sin(¢, )w?) + Ct
= ('yp cos(¢p) + 6@Tf> B+, sin(¢p)w? + C(I — 07T (4.98)

In (4.98) we have a decomposition of #**1) into the direction of © and a direction
orthogonal to it. This implies

o sin(@p)w? + (1 = 207,
o cos(y) +Co7E

Using (4.97), we see that the numerator in (4.99) tends to zero with O(]sin(¢,)|),
since |97 < 1. For the denominator we consider?

| tan(«£(z*4Y, 0))| =

(4.99)

Yo = llwpll, = [+® + 8], > 1

and the fact that ¢y is close to zero. Thus, |7, cos(é)| > |(87F| > 0 which assures
that the denominator does not tend to zero.
With |sin(£(z**1,9)))| < |tan(£(2*+Y,6))| we end up with

sin(£ (2% 9)) < C'sin(L(y,, 0)) = Csin(£(E, D). (4.100)
This completes the proof. O

Remark 4.22. Combining Theorem 4.21 with Theorem 4.18 yields the linear con-
vergence of Algorithm 4.1. Here linear convergence factor depends linearly on the
angle ¥ = L(E, F).

4.3.3 General Error Estimation if Minmax Characterization is
not Available

If no minmax characterization is given for the eigenvalue problem we cannot exploit

the fact that eigenvectors are stationary points of the Rayleigh functional as done so

far. We consider iterative methods to solve a real nonlinear eigenvalue problem?! as

described in (3.9). The assumptions for this method are summarized in the following
assumption:

Assumption 4.23. We consider the nonlinear eigenvalue problem

T(ANv=0

20cf. (4.87)
217(-) does not need to be symmetric.
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where T(+) is a family of real matrices.
The iterative method
2* D = o Mz ® (4.101)

is used determine an eigenpair (:\,@) € R x R" where the matriz M), describes the
mapping from the k-th vector iterate to a nonzero multiple of the k + 1-th iterate (cf
(3.9) ). Furthermore, the method converges at least linearly, e.q.

sin(£ (z*+) | 9))
sin(£(z®)9))

<C<«1.

Moreover, the method provides a functional

' R* — R
Py o)) AHD) — (kD))
satisfying
p(0) = A
and

p(e™) = A = O(|sin(£(™, 9))]).

Remark 4.24. There exist several approaches for the functional p in Assumption
4.23. Possible examples for p are:

« Standard Rayleigh functional: Solve (x(k))TT()\(k))x(k’) = 0 for \®) and
set p(z®) = Ak,

« One sided Rayleigh functional: Solve [TT(A\ +1))z*+1) = ( for A+ and
set p(x**+D) = \*+1 where I € R™\ {0} denotes a left scaling vector.

+ Two sided Rayleigh functional: Solve (D) T(AG+D)z(+) = 0 for

A and set p(z*F+Y)) = AEFD | where u*+1) denotes an approximation for a
left eigenvector belonging to the sought eigenvalue.

+ Residual Inverse iteration: Solve ["T(A©)~ 1T (AF+D)g(k+1) —  for \(=+1)
and set p(zF1)) = \(k+1) 22

If the eigenvalues can not be characterized as stationary points of the Rayleigh
functional, a Ritz vector cannot be determined by the solution of a scalar equation
like (4.91). Here the nonlinear system of equations resulting from the projected
nonlinear eigenvalue problems has to be considered.

For non-symmetric or non-Hermitian eigenvalue problems, the Petrov-Galerkin
approach can be used as an alternative to the Rayleigh-Ritz approach. In addition,
the Petrov-Galerkin approach is used for harmonic Ritz values and vectors (cf [35, 28,

22¢f. Algorithm 2.3.
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48, 84]). Here the left and right search space do not need to be identical. Therefore,
we consider the following projected problem

WIT(\Vs =0,  with V= (a™, 1), W = (u',w?) (4.102)

with rank(W)? = 2. This general representation covers the special case W = V|
which describes the Rayleigh-Ritz approach.

To determine a unique solution (A, s,) of (4.102), a scaling condition is required,
as already introduced in Section 2.5. We choose

(el)Ts =3 1.

This leads to the following nonlinear system:

G(z) = (ZT)Z(:)_‘?) L (8) . with 2= (i) . (4.103)

We consider the length of the component s;, which denotes the coordinate along
the direction of the search space expansion t. A possible way to obtain a bound for
this length is to consider

©) . 50
and estimate the error Hz(o) — 2,|| with the help of the convergence theory of systems
of nonlinear equations where
1 5 o7t
s = U= and AEFLO) . — (15O, (4.105)
v)’ cos(¢)

To distinguish between the inner (to solve this small projected problem) and outer
iteration we choose double indices.

The error can be bounded with Banach’s fixed-point Theorem ([53]). This is
summarized in Lemma 4.25.

Lemma 4.25. Let z, be a solution of
G(z)=0

and the Jacobian 5*|,—., be non-singular. Let U(z,) be a neighborhood of z. such

oG
%1
that, % is non-singular for each z € U(z,) and

B(z) =2 — @S) h G(2) (4.106)

fulfills the assumptions for Banach’s fixed-point Theorem.:
1. O U(z) = U(2y)

Z3For practical applications, the numerical rank should be considered.
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2. 0(=) — ()| <qll2 -2, g<1, V22 eU(z).

Furthermore, let the norm of the inverse of the Jacobian of G have an upper bound
such that
oG\ ™
(%)

Then the initial error can be bounded using the constant C' by

I

<p<oo, VzelU(z).

Ze — Z(O)H <Cu HG(Z(O))

for every starting value 2©) € U(z,).
Proof. The proof follows immediately from Banach’s fixed point theorem. O]

If the following assumption is fulfilled Lemma 4.25 can be applied for convergence
analysis of the projected problem.

Assumption 4.26. Let G be at least three times continuously differentiable with
respect to z. Moreover, we assume that 2, as defined in (4.104), fulfills 2 € U(z,)
such that ® (defined in (4.106)) on U(z.) fulfills the requirements of Banach’s fized

point theorem:
1. @ U(z) = U(zy)

2. |9z — @) < gl =2, g<1, V2,2 €U(z).

Remark 4.27. Ostrowski’s Theorem ([53]) ensures the existence of a neighborhood
U(z,) such that each z(®) € U(z,) converges to z.. Since the Jacobian ®'(z,) = O,
Ostrowski’s convergence theorem yields quadratic convergence to z,.

With this result, we can describe a Ritz vector as the solution of (4.102). There-
fore, a Ritz vector’s distance to the previous iterate can be estimated. This is shown
in Lemma 4.28.

Lemma 4.28. Let Assumptions 2.14, 4.23 and 4.26 be satisfied and (x(k), )\(k)) be

a sufficiently good approximation to the eigenpair (@,5\) Additionally, let ® be
decomposed to

as described in Section 2.4. Then the Ritz vector 25tV is a multiple of
U =Y, + 57?

where t denotes an inezact solution of the Jacobi-Davidson correction equation, 1y,
is defined in (4.87) and the real scalar ¢ can be bounded by

<1 = O (IT(w(yp)wpl) -
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A A T
Proof. Let ¢ and A\**+Y be chosen such that (1, v+, )\(k“)) solves (4.103). Taking
the starting values from (4.105) and applying Lemma 4.25 yields

a=](e) -G+

1 1
< v —|o+¢
p(Vs®))  \ e
—,(0) =2Zx
<on o]
For G (z(o)) we obtain
G (=) = (WTT(p(VS“Z))(x(’“) + ﬂf)) | (4.107)

When using (4.87):

2™ ot = Vs = Yp
we are able to simplify (4.107) to

G0 = (WTT(%(yp))yp> .

The norm of the residual G(2(?)) can be bounded by

HG (Z(O))H < T (p(yp))ypl| -

This completes the proof. O

Lemma 4.28 gives the same information on the Ritz vector’s direction as Lemma
4.20 does for problems with minmax characterization. If, additionally, Assumption

4.15 is satisfied, the convergence for this case can be proven in a similar way to
Theorem 4.21. This leads to Theorem 4.29.

Theorem 4.29.
Consider the nonlinear eigenvalue problem

T\ =0, with T:RDJ—R”"

Let Assumptions 2.14, 4.15 and 4.23 be satisfied. Let the pair (2, p(z®)) be
a sufficiently good approximation of the real eigenpair (0,)). Apply one step of
Algorithm 4.1, including solving the projected Petrov-Galerkin problem

WIT(\)Vs=0

for s, and X\, and set T+t = Vs,.
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Then the sine of £(Z*+Y) )% is bounded by

| sin(£ (2% 9))| < Csin(F, 1) (4.108)

Proof. Follow the proof of Theorem 4.21, but use Lemma 4.28 instead of Lemma
4.20. ]

4.4 Numerical Examples

In this section we consider different examples where the Jacobi-Davidson method is
applied.

Example 4.30. The example is taken from the Harwell-Boeing Collection, available
on the matrix market ([47]). It consists of a real symmetric sparse matrix A € R**"
with n = 4410 and the sparsity pattern of A can be seen in Figure 4.4.

500}

1000

1500}

20001

25001

30001

35001

40001

0 1000 2000 3000 4000
nz = 219024

Figure 4.4: Sparsity Pattern of the System Matrix A

We are seeking the smallest eigenvalue A\; = 0.8142.... The initial guess is chosen
by perturbing the computed eigenvector randomly, such that sin(¢g) = 0.08, where
¢r denotes the angle between the current iterate z*) and the eigenvector v'.

The problem is solved with two different families of numerical methods: the
Rayleigh quotient iteration (Algorithm 2.8) and the Jacobi-Davidson method.

24the angle between the Ritz vector and the direction of the sought eigenvector.
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koosin(gp)  [A® — )\ Hr(k)H W inner iterations
0 0.080 1.2e4 7.7¢5 0.0897 1
1 0.033 225.5  6.9e4  0.0947 2
2 0.023 24.17  6.5e3  0.0627 8
3 0.014 1.076  408.8 0.0937 18
4 0.012 0.074 38.32  0.0999 70
5 0.011 0.008 3.826  0.0992 277
6 0.005 3.7e-4  0.380  0.0996 538
7 0.001 9.7e-6  0.038  0.0998 487
8 1.9e-4 8.7e-8 0.004  0.0997 549
9 2.7e-5 1.5e-9 3.8¢-4  0.0995 659
10  1.1e-6 3.0e-11 3.7e-5  0.0987 641
11 2.9e-7 3.7e-11  3.7e-6  0.0998 670
12 1.1e-6 3.0e-11 3.7e-5  0.0987 641
13 1.0e-8 3.3e-11  3.7e-7 conv. conv

Table 4.1: Results of the Inexact Jacobi-Davidson method without subspace accel-
eration with fixed 7

For the inexact Rayleigh quotient iteration, we choose the threshold 7*) to stop
the inner iterations in two different ways:

1. 7® =01, for k=0,1,...,

(k)
2. 7 = 0.25, Tp = Mm_l, for k=1,2,...
2

We solve the linear system in every outer iteration step using the MinRes method
until the residual H(A — MO )kt x(k)H2 is less than the threshold 7.

For the Jacobi-Davidson method, we use the zero vector as initial guess for solving
the Jacobi-Davidson correction equation. The matrix A is preconditioned by an
incomplete Cholesky decomposition. We converted the preconditioner to a Jacobi-
Davidson preconditioner, cf. Subsection 3.6.2.

We apply two different variants of the Jacobi-Davidson method. Firstly, the
problem is solved using the inexact Jacobi-Davidson method without subspace ac-
celeration?®. The Jacobi-Davidson correction equation was always solved with the

(k)
MinRes method until the relative residual, H:’:md’

of iterations is not bounded?®. The results are displayed in Table 4.1.

Additionally, we solve the problem using Jacobi-Davidson method, where the
problem is projected with a Rayleigh-Ritz projection onto a subspace, then the
smallest Ritz value and the corresponding Ritz vector are used as the next iterates.

is smaller than 0.1. The number

25¢f. Section 3.3.
26This was only done for demonstration. In general, an upper bound of iterations is defined.
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ko osin(op)  [A® — A Hr(k)H W inner iterations
0 0.080 1.2e4 7.7ed5  0.0897 1
1 0.033 2245 6.5e4  0.0934 2
2 0.022 22,95 1.3e4 0.0854 )
3 0.016 2.140 1.0e3  0.0977 12
4 0.012 0.212  129.1 0.0947 27
) 0.013 0.026 11.05 0.0993 219
6 0.008 0.002 1.062 0.0997 281
7 0.003 6.6e-6  0.097  0.0995 586
8 2.9e-4 2.5e-7 0.009  0.0988 646
9 3.9e-5 4.5e-9 4.5e-4  0.0983 648
10 5.1e-7 5.4e-11  6.9e-5  0.0991 226
11 1.2e-7 5.5e-11  1.0e-5  0.0997 375
12 3.1e-8 5.0e-11 1.1e-6  0.0992 515
13 8.8e-10 5.4e-11  1.0e-7 conv. conv

Table 4.2: Results of the Inexact Jacobi-Davidson method with fixed 7

sin(¢,)
0 k
10 —
2
2 T - \E \Q\
10° + \\'"'B’\'\' H .
\ N =
\\ O . )
4 \ i =
10 \\\ \\'\ >D
* \ \
\
\
-6 \ )
10 \\ o
\\ )
\'\ . O
10° | | --%--in. RQl with fixed t |\
\
--©--in. RQIl with decr. 1 ! th
o JD without subsp. acc. | &
10 "r | & Jacobi-Davidson meth.
0 2 4 6 8 10 12 14
iteration

Figure 4.5: Convergence behavior of inexact Rayleigh quotient iteration compared

with the Jacobi-Davidson method
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# inner iterations
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Q T~ ~.
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Figure 4.6: The error in the eigenvalues vs. the number of inner iterations for all
four cases

The dimension of the subspaces is limited to 5. If this limit is reached, then the
subspace is reduced to span{u!, u*}, where u! and u? are the Ritz vectors belonging
to the two smallest Ritz values. The results are shown in Table 4.2.

The convergence behavior of all four computations is visualized in Figure 4.5. For
tables with detailed results, see Appendix B.

Considering Figure 4.5, we recognize that the inexact Rayleigh quotient iteration
converges after fewer outer iteration steps than the inexact Jacobi-Davidson method.
The difference of the convergence velocity between the Jacobi-Davidson method
without subspace acceleration and the iterative projection Jacobi-Davidson method
is neglectable.

Additionally, the number of inner iterations is illustrated depending on the conver-
gence progress with respect to the eigenvalue in Figure 4.6. We can see that solving
the Jacobi-Davidson correction equation requires significantly fewer inner iteration
steps than solving the linear system in the inexact Rayleigh quotient iteration.

Moreover, the total number of inner iterations is shown vs. the reached error
regarding the eigenvalues in Figure 4.7. We notice that much more inner iteration
steps are required in total to solve the problem by inexact Rayleigh quotient iter-
ation, although Rayleigh quotient iteration with a decreasing tolerance 7 achieves

the fastest convergence regarding the number of outer iteration steps.
We finally conclude, that in terms of total inner iteration steps and, therefore,

with respect to of computational costs, both Jacobi-Davidson iterations are better
than inexact Rayleigh quotient iteration.
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Figure 4.7: The error in the eigenvalues vs. the number of total inner iterations

Example 4.31. In this example, we consider the nonlinear eigenvalue problem result-

ing from the 3D Quantum-Dot problem again (cf. Example 2.37):
1 1
TNz = \Mzx — ——Ax — ——=Anr — Bx =0,
mg(A) ! M (N)

where

:(/Q.V(ﬁk'V@dm) ) jE{Q7m}

k,l
- (o),

)

- (vq/ﬂ S da:+vm/ﬂm i d:c)

We compute the smallest eigenvalue A; with the inexact Jacobi-Davidson method
based on the standard Rayleigh functional iteration, i.e. C' = T"(A\*¥)) and B = I.
Since for C' # B, the Jacobi-Davidson correction equation is not symmetric. The
correction equation is solved with the GMRes method in every iteration step. The
number of inner iterations is limited to 100. The tolerance for the relative residual
is set to 7 = 0.1. This means that for the subspace expansion ¢ fulfills

T (2"
(2T T (A®)) 2 (®)

k.l

TOW) (1 _® (x<k>)H) 0 < r ).

The preconditioner is determined with the help of an incomplete LU-decomposition
of T'(0) where o = 0 denotes the initial shift. The size of the subspaces is limited to
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5 and, after a restart, the current iterate for the eigenvector and one further vector
were resumed for the new subspace. Each projected nonlinear eigenvalue problem
is solved by Safeguarded Iteration (cf. Algorithm 2.4).

In Table 4.3 the results of the computation are illustrated.

We see that more than 20 seconds are required until the first iteration step could be
performed. This behavior is caused by the fact that the time for the incomplete LU
decomposition is included. Furthermore, we see that the number of inner iterations
decreases during the Jacobi-Davidson algorithm.

res(k)
[ NQIES W Hr(k)H HHr(k)H” inner iterations computation time [s]
1 0.648 0.24013 0.094 79 23.610
2 0.556 0.10625 0.094 o8 29.554
3 0.483  0.083210 0.095 37 33.443
4 0.440  0.026620  0.097 21 35.631
5 0.404  0.049776 0.085 28 36.773
6 0.358  0.014584 0.074 23 38.337
7 0.356  0.0019264 0.080 18 39.578
8 0.345  0.034228 0.098 16 40.532
9 0.286 0.0074241  0.087 16 41.396
10 0.248  0.042660 0.077 12 42.264
11 0.130  0.015478 0.085 13 42.906
12 0.009  0.011658 0.098 5 43.563
13 790e -5 7.33e—4 0.084 7 43.870
14 128e—-6 4.12e—-5 0.076 10 44.262
15 419¢e—-9 4.58e—6 0.082 8 44.786
16 1.36e —11 3.63e—7 0.086 7 45.223
17 1.27e —13 3.48e —8 0.080 7 45.617

Table 4.3: Results of (classical) Inexact Jacobi-Davidson method to compute the
smallest eigenvalue

Secondly, the problem is solved with the same initial guess but with the Jacobi-
Davidson procedure based on Derivative-free Rayleigh functional iteration (cf. Al-
gorithm 2.5). Here C' = I and since B = I, the Jacobi-Davidson correction equation
(3.10) is symmetric. Thus, we do not have to use a non-symmetric solver for the
linear systems. We perform both possibilities: we solved the correction equation by
GMRes and by MinRes as well. Since MinRes requires a symmetric positive definite
preconditioner, an incomplete Cholesky factorization of 7'(0) is computed and then
adapted to a Jacobi-Davidson preconditioner. The results are shown in Table 4.4
(with GMRes) and Table 4.5 (with MinRes).

Finally, we compare the computation results from the Jacobi Davidson method
and the nonlinear Arnoldi method (cf. [74], page 24). Since the nonlinear Arnoldi
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method does not have any inner iterations®”, the number of (outer) iterations is
larger than for the Jacobi-Davidson method. But each iteration step requires less
time. Therefore, the velocity of these methods is compared by considering the error
IA®) — \;| depending on the computation time in Figure 4.10.

BB — | Hr(’“)H Hﬁif,i?h“ inner iterations computation time [s]
1 0.648 0.240 0.093 17 23.980
2 0.414 0.039 0.095 73 24.879
3 0.348 0.029 0.092 30 30.209
4 0.335 0.029 0.074 27 31.848
5 0.241 0.012 0.093 10 33.301
6 0.067 0.016 0.096 5 33.844
7 4.25e—4 0.003 0.090 5 34.152
8 7.93e—6 1.34e—4 0.087 9 34.462
9 1.05e =7 1.16e —5 0.081 10 34.958
10 1.89¢ —10 1.44e—6 0.082 7 35.502
11 9.20e —13 5.97e -8 0.084 9 35.906
12 8.19e —14 5.21le —9 0.084 9 36.372

Table 4.4: Results modified Inexact Jacobi-Davidson method to compute the small-
est eigenvalue using GMRes

We used an incomplete LU-decomposition of T'(¢) with ¢ = 0, the same as for
the Jacobi-Davidson method.

We see that the nonlinear Arnoldi method converges faster than all variants of
the Jacobi-Davidson method, although more iteration steps are required.

But the results also show that the derivative free variant of the Jacobi-Davidson
method requires less computation time than the standard variant. The same behav-
ior can be seen if we compare the (outer) iteration steps.

Regarding the different variants of the Jacobi-Davidson method, we see clearly,
that using the derivative free variant of Rayleigh functional iteration as base method
results here in faster convergence. Exploiting its symmetry of the Jacobi-Davidson
correction equation, by using the MinRes method instead of the more expensive
GMRes method, accelerates the convergence even further.

2"Here only a preconditioner is applied instead of solving a linear system.
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res(k)
B A — )| Hr(’“)H w inner iterations computation time [s]
1 0.648 0.240 0.087 9 24.576
2 0.367 0.037 0.093 8 25.198
3 0.150 0.031 0.087 5 25.763
4 0.010 0.004 0.079 8 26.135
5 1.09e —4 3.09¢ — 4 0.075 9 26.704
6 520e—7 28le—5 0.099 9 27.324
7  849e—-9 4.0le—6 0.098 9 27.951
8§ T7.62e—11 347e—-7 0.092 7 28.597
9 5.75e—13 3.05e —8 0.086 8 29.115
10 6.76e —14 2.49e —9 0.080 10 29.700

Table 4.5: Results modified Inexact Jacobi-Davidson method to compute the small-
est eigenvalue using MinRes

A = |
0
0 re=F =& 3 F * + x 3_
~0 *

— % — classical JD \ *
—O— - mod. JD with GMRES O \
mod. JD with MINRES

0 2 4 6 8 10 12 14 16 18
iteration

Figure 4.8: The error in the eigenvalues depending on the iteration step
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Figure 4.9: The total number of inner iterations depending on the error in the eigen-
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Figure 4.10: The error in the eigenvalues depending on the computation time
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Chapter 5

Two-Parameter Eigenvalue Problems

In this chapter, we consider a special type of nonlinear eigenproblems:
T(w,7) =iwM+A+e ™ B=0, MABEeC”™, wreR, 7>0.

Here the family of matrices depends on two real parameters instead of one parame-
ter!. After a short introduction into the class of problems and numerical methods to
solve these problems, we discuss different approaches for functionals having similar
properties as the Rayleigh functional?.

This problem is discussed in detail in [22] where its solutions lead to Hopf bifur-
cations in systems of linear differential equations. Meerbergen, Schroder and Voss
discuss in [45] a variant of the Jacobi-Davidson method for a special class of these
problems. Using this method they obtained fast convergence which they assumed
to be quadratic. However we will show that it is only linear.

5.1 The Problem Description

Linear dynamic systems with a time delay 7 can be described by the following system
of delay-differential equations:

Mi(t) + Ax(t) + Bx(t — 1) =0,

where M, A, B € C"*" are given matrices describing the system and R> 7 > 0is a
given time delay. Using the standard ansatz function for systems of linear differential
equations, x(t) = exp(At) u, yields the following nonlinear eigenvalue problem

AMu + Au + e > Bu = 0.

For such nonlinear eigenvalue problems, each eigenpair (\;, u') depends on the delay
parameter 7. We are interested in those values of 7 for which an eigenvalue crosses
the imaginary axis, since then the system’s stability can change from stable into
unstable or vice versa (see for example [24]). Therefore, we set A = iw, w € R and
consider

iwMu + Au+ e ™7 Bu = 0. (5.1)

Lwhich might be complex.
2¢f. Section 2.3
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We denote this two parameter eigenvalue problem by
T(w,7)u =0, (5.2)

with
T(w,7) = iwM + A+e ™ B. (5.3)

The problem (5.2) is one example of a two (real) parameter eigenvalue problem.
Here, a pair of parameters (@, 7) is sought such that 7'(&, 7)u = 0 has a nontrivial
complex solution 4; whereas T : R x R — C™™ maps a pair of real parameters
to a family of complex matrices. Further details can be found in [22]. Moreover,
applications in other disciplines (e.g. hydrodynamics [11] and chemical engineering
[26]) exist where the second parameter, 7, describes other physical parameters.

We will keep our consideration on the concrete problem in (5.3).

Since we only consider simple eigentriples the simplicity of eigentriples for this
kind of eigenvalue problems is defined in the following definition.

Definition 5.1. A pair of eigenparameters (&, 7) is called simple if
rank(7(0, 7)) =n —1,

and U K has full row rank (which is two) with
T,a Ty i o
K — s U =

where T, and T, denote the partial derivatives of T', with respect to w and 7 and
are evaluated at the eigenparameters w and 7.

o
|

5.2 Numerical Methods for Delay Eigenvalue
Problems

We consider two different numerical methods to solve (5.2). Firstly, an approach is
presented where this problem is transformed into a quadratic eigenvalue problem.
Additionally, an approach for large problems is introduced where this problem can
be solved by an adapted Jacobi-Davidson method.

5.2.1 Transforming the Nonlinear Delay Eigenproblem into a
Quadratic Eigenproblem

The idea to transform the delay eigenvalue problem (5.2) into a polynomial eigen-
value problem is discussed in [9, 13, 32, 33, 42].
Equation (5.1) is combined with its conjugate complex counterpart,

—iwMu + Au + “"Bu = 0. (5.4)
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Additionally, A
po=e T (5.5)
is introduced. Since p is located on the unit circle in the complex plane,
1
p=- (5.6)
I

holds. Using (5.2), (5.4), (5.5) and (5.6) yields
0= —(iwMu) ® Mu— Mu® (—iwMu)

- 1
= (Au+ puBu) @ Mu+ Mu ® (Au+ Bu)
I

- ((A+MB)®M+M®<A+iB>>(u®U), (5.7)

=:R(u)

where ® denotes the Kronecker product. For further details see [29]. Multiplying
(5.7) by u yields the following quadratic eigenvalue problem:

P(u)z = > (BM)z+pu(A@M+ M@ A)z+ (M®B)z=0, z=u®7u. (5.8)

To determine eigentriples® (@, 7,) of (5.1), eigenpairs ({I, 2) of (5.8) have to be

determined. If the matrices B and M are regular, then B ® M is also regular, and,
hence, (5.8) has 2n? finite eigenvalues. We are only interested in those satisfying

Al = 1.
After p and z have been determined, w and 7 can be calculated directly by
Im ((Mu)" (Au + uBu))
T R o
__Im (1;1(/1))' (5.10)

To distinguish between the eigenvectors of (5.1) and those from (5.8), we denote
the eigenvectors of (5.1) by u € C™. The eigenvectors of (5.8) and (5.12) are denoted
by z € C.

Fassbender, Mackey, Mackey and Schroder present in [13] a structure preserving
eigenvalue solver for (5.8). Therefore, they transform the eigenvalues by a Mébius
transformation from p to 6 and the other way round.

=1

= 5.11
Z,u+1 (5.11a)
54
i+0
= 5.11b
b=y (5.11b)

3Since we are seeking the two real parameters w and 7 and a complex vector u, we call it
eigentriples instead of eigenpairs.
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We see that the unit circle is mapped to the real axis, thus, we can consider the
transformed quadratic eigenvalue problem

Q(0)z == 0% (Ay — Ay + Ag) 2+ 0 (2i Ay — 2iAg) 2 + (—As — A} — Ag) 2 = 0, (5.12)
with
C™*" 5 Ay =M ® B,
C”*" 34, =AM+ M® A4,
C™*" 5 A4, =BoM,

and seek for real eigenvalues 6.
Fassbender et al. exploit the property of the Kronecker product, that there exists
a symmetric permutation matrix P satisfying

A®B=P(B®A)P.

Finally, they end up in the following algorithm to solve (5.1).

Algorithm 5.1: Algorithm to compute the eigentriples of a delay-
eigenproblem

input : the matrices M, A, B € C"*"

output: approximations for all solution triples (wy, 74, u*)g=1... of (5.1)
1 A=MB, Ai=AM+M® A;
2 Construct a permutation matrix P;

s (1 P\ (A =PAP A\ (1 P\
2\ P —il Ay A \P —il)

4 Compute all eigenpairs (6, 27) of Re(C)xz = 0lm(C)x where 6; is real;
5 for j=1,... do

6 | W= T:Zj,

7 | 2= (I —z'P) 27

8 Compute v’ as the dominant singular vector of mat(27);
_ Im((Mw)H (A +pBud))

A BT ’

10 7= _Im(lsjw));

11 end for

e The permutation matrix can be constructed in MATLAB by using the follow-
ing commands:

1| p = reshape(reshape(1:n"2,n,n)’,1,n"2);
2l I = eye(n"2);
s) P =1(:,p);

o A possible solver for the linear eigenvalue problem in step 4 is the QZ-
Algorithm (see for instance [20]).
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o In step 4 a generalized linear eigenvalue problem has to be solved, where the
matrices have the size 2n? x 2n%. Therefore, this method might become very
time consuming for larger n.

o For steps 1 to 4 this algorithm has a computational complexity of O(nf).

An explicit representation of P can be found in [29]:

Pzi@j®fn®(ej)T:i@j)T@]n@ej. (5.13)

J=1 J=1

We recognize that this permutation depends only on the size of the matrices, n,
but not on the entries of the matrices A, B and M.

Proposition 5.2. Let a,b € C" and P the permutation matriz as defined in (5.13).
Then
Pla®b) =b® a.

Proof. We consider

I
7 N
/N
D
<
®
B
SN—
®
/N y
mh.
N— vﬂ N—
N——
—~
S
®
=
~

5.2.2 The Jacobi-Davidson Method for Delay Eigenproblems

We have seen that the costs of Algorithm 5.1 increase very fast. Solving, for instance,
a two parameter nonlinear eigenvalue problem n = 50, results in solving a linear
eigenvalue problem of size 5000. Therefore, more efficient methods are needed for
large n. Meerbergen, Schroder and Voss presented a variant of the Jacobi-Davidson
method (cf Chapter 3) in [45]. They constructed the following algorithm:
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Algorithm 5.2: Jacobi-Davidson method for two parameter eigenvalue prob-
lems
input : 7T:R xR — C™"
output: approximations for solution triples (wg, T, u*)x=1.. € R x R x C" of
T(w,T)u=0

Construct a suitable basis V' € C"*% VHV = [ of the initial search space;
for k = ko, ko+1,... do

N =

3 Solve the projected eigenvalue problem VT (w,7)Vz = 0 using
Algorithm 5.1 ;
4 Extract the eigentriples (w;, 77, 2°) with w;, 7; € R ;
5 Compute the associated Ritz vectors v’ = V2 ;
6 Check for convergence || T (w;, Ti)u'|| < &;
7 | if (w;, 75, u’) has converged then
8 if w; ¢ span(V') then
9 ‘ expand V' by w;;
10 end if
11 stop;
12 end if
13 Select an approximate eigentriple to continue the JD method;
14 Reduce space, if necessary;
15 Determine expansion direction ¢;
16 Orthogonalize ¢t against the columns of V/;
17 | Expand V = [V, Hi—”},
18 end for

Steps 8 to 10 can be skipped if the matrices M, A and B are not real. For real
matrices we can exploit the fact, that (—w;, 7;,u") is also an eigentriple after the
eigentriple (w;, 73, u') has been determined.

The reduction of the search space in step 14 is recommended if k£ becomes too

large, since the computational complexity of solving the projected problem in step
3 is O(kY), cf Algorithm 5.1.

The search space expansion is explained in detail in [45]. Based on Newton’s
method, an adapted Jacobi-Davidson correction equation is presented:

(1- K"K~ v") T (1-UU") (i) - (1= KUK U <Z>
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5.3 Rayleigh Functional for Delay Eigenvalue Problems

with
(2)
T := r O.
O T
T@qt T,
K=" 70
T ur Ty u

TO = T(wi, 1), TW =T, (w;, ) T = T (wi, 7)

w

Moreover, there are preconditioners presented and possibilities to implement an
efficient matrix-vector multiplication in order to solve the correction equation iter-
atively.

Very often, no Ritz pair can be found in the initial search space.* For this problem
in the first steps, Meerbergen, Schroder and Voss [45] present alternative search space
expansions. They suggest to solve the following minimization problem

min ||(A+ oB)Vz|.
zeCk

llzl1=1

Then u = Vz is used instead of a Ritz vector and the search space is expanded
such that (A+0B)~'Mu is included in the new search space. Therefore, the Jacobi-
Davidson correction equation can be adapted as we did in Chapter 3.

5.3 Rayleigh Functional for Delay Eigenvalue
Problems

In this section the question is discussed if projecting the problem onto a one-
dimensional subspace and solving the resulting nonlinear scalar equation for w and
7 defines a functional, which is comparable to the Rayleigh functional described in
Section 2.3. We will show that the conditions given in Definition 2.15 are fulfilled.
Furthermore, this functional is analyzed for its stationarity at eigentriples.

This question is motivated by the numerical results from Meerbergen, Schroder
and Voss in [45]. They solved problems with large matrices by projecting them
using Rayleigh-Ritz projections onto small subspaces. This method worked well
and it seemed that the method converged quadratically.

Since we are dealing with two eigenvalue problems, (5.1) and (5.12), whose solv-
ability and solutions are related to each other, we will also have three different
functionals. To point out this difference, we denote the functionals related to (5.1)
by p., and p, and the Rayleigh functional for the large quadratic eigenvalue problem
(5.12) by ®y.

41f, for instance, no information regarding the location of the eigenvalues is known, random vectors
are used to span initial search space.
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Chapter 5 Two-Parameter Eigenvalue Problems

5.3.1 Stationarity of the Polynomial Eigenproblem

We consider the polynomial eigenvalue problem (5.12). We multiply this equation
by zH = (u®u)" from the left and obtain

(@)™ (02 (Az — Ay + Ag) + 20 (A — Ag) + (— Ay — Ay — Ag)) (u® ) = 0.

Applying the rules for the Kronecker product yields

6? (bmamma—i—mb) + 210 (bmmb) + (bmammamb) =0,
—_———
=2Re(bm)—2Re(am) =2¢Im(bm) —2Re(bm)—2Re(am)

(5.14)
with

Ay = M®B, (5.15a)
Al = AM+ M A, (5.15b)
Ay = B®M, (5.15¢)
= u Au, (5.15d)
b = uBu, (5.15e)
m = u’Mu. (5.15f)

For a better readability we define
By := —2Re(bm) —2Re(am) = 2 (—Ay — A; — Ap)z, (5.16a)
B = —4lm(bm) = 2iz"(Ay — Ag)z, (5.16b)
ﬁg = 2Re(bm) — 2Re(am) = ZH(AQ - Al + Ao)Z (516C>

Thus, (5.14) simplifies to

320 + 10 + o = 0 (5.17)

The existence of such a functional depends on the question if (5.17) has at least
one real root 6. This condition has to be satisfied to be able to transform 6 to p on
the complex unit circle and finally evaluate p,, and p,.

Therefore, the following lemma gives conditions when (5.17) has real solutions.

Lemma 5.3. The roots of the polynomial in (5.17) 61 and 0y are real iff
| Re(ma)| < |mb|.

Furthermore,
|Re(ma)| = |mb| < 6, = 0,

holds.
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5.3 Rayleigh Functional for Delay Eigenvalue Problems

Proof. We consider

b1 Bo

Bol? 4+ 10+ By =060+ =0+ = =0.
B2 P
We apply the pg-formula, thus,
2
pae Py [ BB
20, 465 B

A real solution is equivalent to a non-negative discriminant, since fy, 51,52 € R.
Thus,

BBy

A3 B

Bt = 460f

16 Im(bm)* > 4 (—2Re((bm) — 2Re((am)) (2Re((bm) — 2Re((am))

Im(b7m)?

trete T
g
]

\\/\\/M\\/
|
£
3
|M
5
]
G

In case of equality, the discriminant vanishes, thus, the root has a multiplicity of
two.

O

Corollary 5.4. Let (©,7) be a simple pair of eigenparameters and @ a corresponding

. A e—iwr_ .
eigenvector of (5.1), then 0 := o I8 a oot of

(2Re(brn) — 2Re(ann)) 0 — 4Im(bin)0 + (—2Re(bi) — 2Re(bii)) = 0

with

Using Lemma 5.3 yields B -

| Re(ma)| < |mb).
Since m, a and b depend on u continuously, there exists a meighborhood around i
where the roots of the corresponding polynomial are real. Since the roots 61 and 60

are invariant to any nonzero scaling of u, the neighborhood can be seen as a cone
around the vector 4. We will denote this cone by

Ke(t) :={ueC"| L(u,0) <e}.
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Hence, the domain of the Rayleigh functional is given by K.(a).
Similarly, there exists a cone around 2 in C"**7* where we can define the two
unique Rayleigh functionals:

K:(2) — R
Dy, —B1 — /Bt — 4B0 S
z 25,
K:(2) — R
Py L —B + \/512 — 463
203

where 3y, f1 and [y are defined in (5.16).

If we further assume A, B and M to be Hermitian, the values a, b and m are real.’
Under this assumption and m # 0,5 (5.14) reduces to

2m(b —a)0®> —2m(b+a) = 0
s b—a)f?—(b+a) =
with the solutions
b+a
b—a
The stationarity in this special case is explained in Proposition 5.6. But first we
introduce Assumption 5.5.

0172 =+

(5.18)

Assumption 5.5. Let A, B, M € C™™ be Hermitian and Z a left and right eigen-

vector belonging to a real simple eigenvalue 6 # 0 of Q(0) from (5.12). Moreover,
let 2(Ay — Ay + Ag)z # 0 be satisfied for all 2 € K.(2).

Proposition 5.6. Let Assumption 5.5 be satisfied, then ®g_ and @y, define Rayleigh
functionals which are stationary at the eigenvector Z = 4 ® u for perturbations in
the way such that 2+ Az =: Z =01 Q 1.

The proof of Proposition 5.6 is very long and technical. We will present here a
short summary of the proof. The detailed proof can be found in Appendix A.1

Proof. We consider the scalar equation with Z = 2 + Az and 6 := 6+ A6.
0=27Q(h)z.

Expanding, reordering” and exploiting the fact that 2 is a right eigenvector of (5.12)
and that 27 is a left eigenvector yields the following polynomial in Ag:

A)HQ(0) Az
ZHQyZ
5They are real since for ||u]| = 1 they are the Rayleigh quotients from the corresponding matrix.

6If m = 0 (5.14) reduces to the zero polynomial which has roots for each z € C.
"Separating the parts with 2 and 0 from the other parts.

(A6)? + 2070 + (

= 0. (5.19)
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5.3 Rayleigh Functional for Delay Eigenvalue Problems

Assumption 5.5 assures that Z7Q,Z # 0. Af can be determined by taking the
roots of (5.19), depending on Az. Applying a Taylor approximation to the function
describing A#f yields

86 = O (j|az]l3)

5.3.2 From the Polynomial Problem to the Two Parameter
Eigenproblem

We want to prove the stationarity of the functionals p,, and p, evaluated at eigen-
vectors of (5.1). Therefore, we have to convert the result from Proposition 5.6 to the
two parameter eigenvalue problem (5.1). Proposition 5.7 describes how the error in
the eigenvectors of the large quadratic eigenvalue problem, ||z — Z||, is related to the
error in the eigenvectors of the two parameter nonlinear eigenvalue problem (5.1),
[ — a].

A

Proposition 5.7. Let & € C" be a solution of (5.1), u € K.(4), z :=u®u and 2
the solution of (5.8). Then,

(1)
Iz = 2ll, = O([Ju — all,),
(ii)
|sin (£(z, 2)) | < V2| sin (£ (u, 1)) |
holds.
Proof. The first part is proven by
2= 2l = |[(wem) —a e,

=@ +u-t)yeu-t0@+a-T),
= |liga+ -ty eu-icu+ic @-a),

=|(u—W) U+ a® (u—1

2
a® (u—1a)|,

N

l(u—a) @, +|

= Jlu = all, [all, + lall, |u—1al,

= O(flu —all).

For the second part we assume |4, = ||ul|, = 1, which implies H@HQ = ||, =1
and ||2]|, = |||, = 1. We consider
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With
sin (£(z,2))” =1 — cos (£(z, 2))
=1 —|cos (£(u,))[*
= (1= Jeos (£ (u, ))[*) (1 + |cos (£ (u, @))|*)
< 2(1 = [eos (£(u, @))[*) ,
thus,

|sin (£(2, 2)) | < V2| sin (£ (u,))].

This completes the proof.
O

For the functionals p, and p,, the parameters w and 7 have to be determined
from 6. Therefore, we consider the complex equation

u" T(w, 7)u = 0.
It can be transformed similarly into a quadratic polynomial as in Section 5.2.1,
uH T (w, T)u = iwm + a + e b = 0. (5.20)
Its conjugate complex equation is given by
—iwm +a+e*7b = 0. (5.21)

After multiplying (5.20) by m and (5.21) by m we obtain

iw|m|* +ma +e “Tmb = 0 (5.22a)
—iw|m|* + ma + e“™mb = 0 (5.22b)

with ‘
po=e T, (5.23)

and adding (5.22a) with (5.22b), we can eliminate the w from the two equations and
end up in

pmb + 2Re (ma) + @ mb = 0. (5.24)

Since |p| =1,
m=p
is satisfied.

After (5.24) has been multiplied by pu, the value of 1 can be determined by com-

puting the roots of the polynomial
p? mb + 2uRe (Ma) + mb = 0. (5.25)

With the assumption, that A, B and M are Hermitian and m # 0, (5.25) simplifies
to
bu? + 2au + b = 0.
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5.3 Rayleigh Functional for Delay Eigenvalue Problems

Hence, the first step evaluating the Rayleigh functionals p, and p, at u is to
evaluate @y at u ® T and apply the Mobius transformation from (5.11b).

After 0 = ®y(u @) has been computed, w can be derived by transforming (5.20)

into
. <a + ub)
w=1i ,
m

and 7 with the help of (5.23) by

Applying the Mébius transformation by inserting p = ¢ yields

i—0
,<a+§f§b>
w o= i|—
m

i

= - (0°(a—b) — 2i6b+ a +b)

m(l + 6%)
2b6
R CEYD) (5:26)
L, () 5.7

The latter simplification for w results from exploiting 02 = Zf—g from (5.18), which
is possible since we have Hermitian matrices.
This yields the two functionals p,, and p,:

Po Ko(0) = R
and
pr o Ko(u) - R

with

2u Bu ®y(u @ )
w = 5.28
i+®p(uRT)
In (i—@Z(um))

P (1)

pr(u) =i

(5.29)

Here we have skipped the “+” and the “-” for the functional ®4, because all
following ideas can be applied to both functionals, ®y, and ®4_.

Theorem 5.8 and Theorem 5.9 show that an eigenvector of (5.1), @, is a stationary
point of the functional p, and p., respectively.
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Theorem 5.8.
Let Assumption 5.5 be satisfied. Furthermore, let Z be a stationary point of ®g and
let the domain K.(1) of p,,, be chosen such that

uf’ Bu
uH Mu (14 ®p(u @ w)?)

<C < oo, YueK.(a).

Then, U is a stationary point of p,,, i.e.
Ipo (0 + Au) — py(a)] = O <||Au||§> ,YAu such that 4+ Au € KC.(4).
Proof. We consider

P (@ + Au) — po ()|
(i + Au)™ B (6 + Au) @y (0 4+ Au) ® (i + Au))

(it + Aw)" M (i + Aw) (1 + @ ((0+ Au) ® mAu))Q)

o B @0 ® 00)
A M (1+ @y ® 0)?)

=2

?

(i + Au)®y (@ + Au) @ (@ + Au)) — V(@) Py (0 @ )

with "
u” Bu
V(u) = — I
uH Mu (14 $p(u @ w)?)
Using
b= swp (W),
wEK: (0)
we obtain
A~ o A~ < T A~ T~ AN . A~ ~ )
D@+ Au) — po(@)] < 20| (i + Au) @ (@ + Au)) — By g @)l
Defining

Az =: (1 + Au) ® (@ + Au) — 2,
and applying Proposition 5.6 yields

. . 2
[P+ Au) — py(@)] = O (|| Az]]3)
Finally, Proposition 5.7 completes the proof, since

1A2]l, = O ([[Aull,) -
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Theorem 5.9.
Let Assumption 5.5 be satisfied. Furthermore, let Z be a stationary point of ®g and
let the domain of p,, K.(4), be chosen such that

u” Bu
u Mu (1 + ®p(u @ uw)?)

<C <oo, YueK.(q).

Then, u is a stationary point of p,, i.e.

Ip- (i + Au) = p,(a)] = O (||Aul3) ,Yu + Au € K.(a).

Proof. Since p;, is differentiable with respect to w and 6 we can apply Taylor expan-
sion such that

- Opr . .
Pr(@ -+ &) = pr () 4 ooy (Po(2 + A2) = @(2))
=Py (2

Ip- N X

~  |w=pw(l W A -
+ awlimpe (Pu(@ 4+ Au) — p(a))
+0o(|Pg(2 + Az) — 0y(2)])
+ 0 ([pu(@ + Au) — pu,(@)]) - (5.30)

The partial derivatives can be determined using (5.27).

op- 2

90— w(l+62) (5:31)
opr i 146

For further information regarding the partial derivative of p,, see Appendix A.2.
Equation (5.30) implies

P (6 + Au) — pr(0)] = O (|Py(2 + Az) — Py(2)])
+ O (|po (@ + Au) — p,(Q)]) .
Finally, Proposition 5.6, Proposition 5.7 and Theorem 5.8 complete the proof.
O

5.3.3 Conditions for Stationarity

The theory about stationarity of the Rayleigh functional that we have discussed so
far, depends on the question of whether Assumption 5.5 is satisfied. Specifically, the
requirement that 27 has to be a left eigenvector of Q(é) yields further conditions to
assure that Assumption 5.5 is satisfied. Therefore, we consider

QU(0)2 =02 (Ay— Ay + A" 2 —2i0 (A — A)" 24+ (A — A — A))" 2=0
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where the matrix polynomial @ is defined in (5.12).
With our assumption, that A, B and M are Hermitian, this property is transferred
to the large matrices Ag, A; and A,, thus,

A2 = Ag, A1 = A{{, and AO = Aé{

and
0% (Ay — Ay + Ag) 2 — 2i0 (Ay — Ag) 2+ (—Ay — Ay — Ag) 2 = 0.

Subtracting (5.12)
QUO)2 =07 (Ay — Ay + Ag) 2+ 2i0 (Ay — Ag) 2+ (—Ay — Ay — Ag) 2 =0,

yields A
—4if (Ay — Ag) 2= 0. (5.33)

After applying the rules of the Kronecker product, we confirm that (5.33) is equiv-
alent to

4i0 (M) ® (Bi) — (Ba) ® (M) = 0.

This equation is, in general, not fulfilled, since 0 # 0 for a simple eigenvalue. Even
if we assume M4 and Bu to be real, the second part is usually also nonzero, due to
the rules of the Kronecker product, which is not commutative.

Therefore, our assumption that A, B and M are Hermitian is not sufficient for
stationarity of the Rayleigh functional.

We will see in Example 5.16 that there exist cases where the Rayleigh functional
seems to be stationary, although 2% is no left eigenvector of (5.12). This observation
can be explained by considering the polynomial (5.12). The only matrix destroying
the Hermitian structure is the coefficient matrix of the linear part, Q1 = 2i(As— Ayp).
Hence, if 0 is very small or very large in magnitude, the influence of this non-
Hermitian part to the matrix Q(6) is comparably small. Thus,

|Q@) - Q"))
|Q()

and the behavior of the Rayleigh functional can be explained. A small or large
absolute value of f is equivalent to a 1 close to the real axis such that this behavior
can also be regarded with respect to the polynomial eigenvalue problem from (5.8).
Additionally, this implies a small value of @, such that the matrix T'(®, 7) is close to
being Hermitian. With this property the false assumption of quadratic convergence
behavior by Meerbergen, Schroder and Voss in [45] is explained.

Y

2

5.3.4 Two Sided and Complex Symmetric Approach

Similar to the standard nonlinear eigenvalue problem, we consider the idea of a
two-sided Rayleigh functional. Therefore, the equation

YT (w, T)u =0
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is solved for the two real parameters w and 7 for given y,u € C". Here u denotes
an approximation for the sought (right) eigenvector and y can be chosen differently,
which will be discussed later.

The following proposition shows the relationship between the Rayleigh functional
of the two-parameter eigenvalue problem and the Rayleigh functional of the poly-
nomial eigenvalue problem (5.8).

Proposition 5.10. The equation

with P and z from (5.8) and w :=y ® 7, is equivalent to
(bm)p® + (am + ma)u +mb = 0

with
m =y " Mu, a:=y"Au and b:=y"Bu.

Proof. Multiplying (5.8) by w = (y @ ) from the left leads to
12 (y@y) ! (B M) (u@u)+u(y@y) ! (A M+M @A) (u@t)+(y27)? (M@B) (uea) = 0

Applying the calculation rules for the Kronecker product (see [29]) leads to

2 |y Bu yEMu | + p |y Au yEMu+y" Mu yHAu | + |y Mu yHBu | =0
= =m =a =m =m =a =m =b
This completes the proof. n

Complex symmetric Rayleigh functional

If the matrices A, B, M € C™*™ are symmetric, the (complex) symmetry is preserved
for the family of matrices T'(w, )8, i.e.,

T(w,7)=T(w, )", VYw, 1R (5.34)

For symmetric matrices, the left eigenvector is always the conjugate complex of the
right eigenvector. Therefore, an approximation for the left eigenvector is available
without any further computation if an approximation for the right eigenvector has
been determined. Then, the following equation is considered to determine w and 7:

u' T(w, 7)u = 0.

Using the rules for the Kronecker product, we easily see, that for the polynomial
from (5.8),

P(p) = P(p)",

8In the Hermitian case, this property is not preserved.
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is satisfied if (5.34) is fulfilled.
For those problems, the left eigenvector of the quadratic eigenvalue problem (5.8)
is given by

A

w =

ol

We denote the symmetric Rayleigh functional for the problem (5.8) by ®7.
Schreiber discussed this special Rayleigh functional in [62]. It is shown that the
Rayleigh functional satisfies the following properties:

{ K.(2) — RcCS!
(I)T . N

z O (z)
or(2) = 4,
&r(B2) = @r(z), VAEC\{0)
A P(®r(2)z = 0
AP(Orp(2)z # 0,

where [i denotes an eigenvalue and Z a corresponding eigenvector. The set R
denotes an arc on the complex unit circle S'. Hence, two disjoint arcs on the unit
circle have to be chosen, then the uniqueness of this functional is satisfied.

In contrast to the standard Rayleigh functional, this Rayleigh functional &1 is
holomorphic in z. Thus, the stationarity of ®7 in 2 can be shown by building the
derivative ®/., with respect to z. Then the derivative of the Rayleigh functional is
derived as in Lemma 2.17 in Chapter 2. Thus, we derive

, 2
Y1) = TP (8, (2)) 2

This implies for an eigenvector 2,

P (Pr(2)) 2.

(%) =0.
Now, we define the functional

{ICa(ﬂ) — RcS!
Pur

u +— Or(u®ma). (5.35)

However, this functional is not holomorphic with respect to u anymore, because the
transformation from u to u ® @ includes the complex conjugate .
Therefore, Definition 2.19 is used here.

Lemma 5.11. Let the matrices A,B,M € C"™™ be symmetric and let (i =
pur(),2 = 4 ®a) be a simple eigenpair of (5.8). Then, for the functional p,,
defined in (5.35), there exists an € > 0 such that for every u € K.(4) the following
error estimation holds

[Py (u) = pur(@)] = O(|lu — al[3).
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Proof. We consider

(1) = pur(@)] = [r(u @ 7) — Or(d @ u)

= O(|lz - £]3).
Using Proposition 5.7, the error in z can be transferred to an error in u. Thus,
Pz () = pur(@)| = O|lu — al13).
This completes the proof. n

Remark 5.12. With (5.28) and (5.29), we define the functionals to determine the
parameters w and T:

[ Ke = J,CR
Pu,T - { N Z'UTAU—Z)%’X;[(S)UTBU, (536)
K. — J,CR
Prr { u s nur) (5.37)
pw,T(u)

Finally, the stationarity of these functionals is summarized in the following theo-
rem:

Theorem 5.13.

Let A, B, M € C™™ be complex symmetric. Furthermore, let (0, 7,1) be an eigen-
triple satisfying 94X M@ # 0 and &7 # £n. Then there exists € > 0 such that for all
u € K. () C C™ there exists the two functionals:

Puw,T ]C5<1AL) — Jw CR
prr @ Ke(t) = J. CR

satisfying
UTT(pw,T(u)apT,T(u))u = 07

and the additional properties of a Rayleigh functional, where T is given in (5.1).
The two functionals, p,r and p;r, are stationary evaluated at the eigenvector .

The proof is very long and technical. Therefore, we give a summary of the proof.
For further details see Appendix A.3.
Proof. Without loss of generality we consider only perturbations, Awu, which fulfill

4" MAu=0." (5.38)

9If this condition is not satisfied, we split Au into Au = ﬁﬁTT%Aﬁ“ﬁ + (I — Z“;i%) Au. The first

part is a multiple of the eigenvector and the latter part satisfies the above condition.
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We exploit the fact that p,r is holomorphic with respect to u. Applying Taylor
expansion to p, (4 + Au) yields

R . witt M A . N
pur (i ) = (i) +2 L2 O (I (0 + Bu) = i (@)]) + O AP,
=0

By using Lemma 5.11 we end up in
[P (4 Au) = por(@)] = O([|Aulf). (5.39)

For the functional p, 7, we use the same approach: We exploit that the complex
logarithm is holomorphic'® and apply a Taylor expansion to p, 7. Finally, we have

pr(i+Au) = pro(@)] = O(|por(i+ Au) = por(@)]) + O(|pur (@ + Au) — pur(@)]).
Lemma 5.11 and (5.39) complete the proof. O

Two sided Rayleigh functional

If the matrices A, B and M are not symmetric the approximation property of the
Rayleigh functional can be improved by choosing an approximation for the left
eigenvector, y. According to two-sided Rayleigh quotient iteration ([55, 56]) and
two-sided Rayleigh functional iteration (cf [62]), a two sided Rayleigh functional
fulfills the stationarity property at eigenvectors here, too.

To obtain approximations for the left eigenvector, a further linear equation
containing the varying matrix T(w® 7®)H has to be solved in every iteration
step.!!  Furthermore, we then have two different residuals. The right residual,

H
T(w®, 7)) u® and the left residual, (y('“)) T(w® 7)),

5.4 Numerical Examples

Ezample 5.14. This example is presented in [34]. We consider the partial differential
equation

ox(&,t)  0*x(&t)

+ ao(f)v(f, t) + al(é)v(ﬂ— - 5’ l— T)? (540>

o 0
with
0 0

Discretizing (5.40) with central differences'? with respect to ¢ yields the following
delay ordinary differential equation

Mz (t) + Ax(t) — Bx(t — 1) = 0,

10We consider the complex logarithm only on the unit circle, here it is holomorphic except at —1.
With the assumption &7 # 47, we excluded this case.
1 Alternatively, the adjoint Jacobi-Davidson correction equation has to be solved.

Zie a(t) := (21(t),...,2n(t))" with z;(t) = 2((j — 1)h,t)
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with
M = Ina
1 -1 Clo(O)
-1 2 -1 ao(h)
1 . . .
A= 7w . + . ,
-1 2 -1 ao(m — h)
-1 1 ap(m)
a1(0)
al(h)
B=— )
aq (7T — h)
ay(m)
s
h= n—1
With the well known ansatz, z(t) = e*u, we finally end up in the following

nonlinear eigenvalue problem, which depends additionally on the parameter 7.

M +A+eMB)u=0.
( )

In order to determine those values for 7 where an eigenvalue changes from the
stable to unstable state, or vice versa, we set A = 1w and end up in

(z'wM + A+ e_mB) u =0,

which has the same structure as (5.1). We choose

ap(§) = —2sin(§) and
a(€) = —1,¥¢ € [0,7]

to assure that 27 is a left eigenvector of (5.12). This is an assumption for Theorem
5.8 and Theorem 5.9. Hence, a; is chosen differently from [34] and [45]. They choose
a1(€) = 2sin(§) or a1 (§) = 2sin(§)+1. This causes a non Hermitian matrix B. Since
our goal is confirming the results of Theorem 5.8 and Theorem 5.9, we choose a very
rough discretization grid, i.e. n = 5. We compute four eigentriples with Algorithm
5.1 and choose the eigentriple

(0, 7,10)
with @ = 0.726... and 7 = 3.207....

We perturb the eigenvector by a random complex vector e with e4 = 0 and
lle|| = 0.1. The Rayleigh functionals are evaluated on vectors along {w € C" | w =
U+ e, a € (0,1] C R}.

The results are illustrated in Figure 5.1. These computations confirm Theorem
5.8 and Theorem 5.9, since ’pw (u(k)) — &1’ and ‘pT (u(k)) — %‘ have the same slope

as Hu(’“) — ﬁH2 in logarithmic scale.
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Figure 5.1: The error of the Rayleigh functionals vs. the error in the eigenvector

FExample 5.15. Secondly, we consider the same problem as in Example 5.14 but we
choose

ar(€) = 2sin(€) + 1,

according to [45]. We choose n = 15 and select the eigentriple
(O, 7,10)

with @ = 1.8140... and 7 = 0.9151... after all eigentriples have been computed using
Algorithm 5.1. Similar to Example 5.14, we perturb the eigenvector in a random
direction e which is orthogonal to @. Then we evaluate the standard Rayleigh func-
tional p,, and p, along the perturbed vector. Furthermore, the symmetric Rayleigh
functionals, p,, v and p.r, are evaluated.

In this example, 27 is no longer a left eigenvector of (5.12). Consequently, Theo-
rem 5.8 and Theorem 5.9 are not applicable. Therefore, we cannot expect p,, and p,
to be stationary at the eigenvector. But since A, B, M and all their complex linear
combinations are complex symmetric, we can expect the functionals p, 7 and p,r
to be stationary at the eigenvector, according to Theorem 5.13.

Figure 5.2 confirms these expectations. The slopes belonging to the symmetric
Rayleigh functionals p,, v and p, r are steeper and about to be parallel to the one of
||lu — ﬁ||§ The ones of the standard Rayleigh functional are less steep, as expected.

The observations from the logarithmic plots in Figure 5.2 are highlighted by the
convergence order. It can be determined by the slope in the logarithmic scale. Since
we expect that the error in the Rayleigh functionals behaves like

p(u) = p(@)] =~ Cllu—1l;,
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Figure 5.2: The error of the Rayleigh functionals vs. the error in the eigenvector

Rayleigh functional K
D 1.1127

. 1.2814

Por 2.0412

PrT 2.0037

Table 5.1: Convergence orders of the Rayleigh functionals

the values of C' and k can be determined by solving the least squares problem,

i (ln(C) + kln (Hu(j) - ﬁH2> —1In (’p(u(j)) — p(a) ))2 < min,

J=1

for different RS {pOJ?pT?pUJ,T)pT,T}'

The results for the four different Rayleigh functionals are noted in Table 5.1.

We recognize, obviously, that the error of the standard Rayleigh functionals tends
to zero almost linearly with the error in the arguments. This confirms our previ-
ous results in this chapter that the stationarity is not provided if 2 is not a left
eigenvector of (5.12).

But Table 5.1 also confirms that the complex symmetric Rayleigh functionals,
Pw,r and p, 7, are stationary at the eigenvector 4 as proven in Theorem 5.13.

Ezxample 5.16. The last example is also presented in [45]. It originates in the dis-
cretization of the following partial differential equation:

u =V ((1+2? + %) Vu) — a(l+ zy)u(t — ) =0, (5.42)

where u depends on the coordinates z and y as well as on time t. We consider a
discretization on 2 = (0, 1) x (0, 1) with Dirichlet boundary conditions, u = 0 on 02,
with respect to the positions x and y. We obtain a system of n = 104257 ordinary
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nz = 1193201

x 10°

Figure 5.3: The nonzero pattern of the discretized version of (5.42)

delay differential equations. This is transformed into a two parameter eigenvalue
problem as described at the beginning of this chapter. The nonzero pattern of
A+ B+ M is shown in Figure 5.3.

We choose o = 89, since the system becomes unstable for v > 22.6 and this is
what we were interested in. The problem is solved using Algorithm 5.2 and we select
the eigenparameters

w = 13.3004 and 7 =0.2274.

We perturb the eigenvector orthogonally as it has been done in Example 5.14 and
Example 5.15 and evaluate the Rayleigh functionals at the perturbed eigenvector.
Then the errors of the functionals are compared to the error in the vector.

The results are plotted in Figure 5.4.

We observe, that the slope of the error in the Rayleigh functionals is nearly equal
to the slope of the error in u squared. Table 5.2 confirms this observation.

Although this problem does not satisfy Assumption 5.5 the Rayleigh functionals
seem to be stationary at the eigenvector @. Even the calculated convergence orders
in Table 5.2 pretend this. This behavior can be explained by considering Section
5.3.3. We have i = —0.9931—0.1174% which yields 6 = 16.9697. Thus, the quadratic
part of Q(é) is dominant and therefore

o) - @7 é)

< e,
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Error Rayleigh Functional

lul-u]|

Figure 5.4: The error of the Rayleigh functionals vs. the error in the eigenvector

Rayleigh functional K
Do 2.0252
Dr 2.0671

Table 5.2: Convergence orders of the Rayleigh functionals
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Chapter 6

Conclusions and Qutlook

The Jacobi-Davidson Algorithm can be regarded as a procedure to make an existing
iterative method more robust against perturbations. These perturbations are usually
caused by an inexact solve of linear systems occurring in each iteration step. Pointing
out this fact is the most important aim of this thesis. In Chapter 3 we introduced a
very general approach of the Jacobi-Davidson method based on an iterative method.

For variants of this approach, we developed convergence proofs for the Jacobi-
Davidson method on a two-dimensional subspace. We were able to confine the Ritz
vectors’ location on a two dimensional plane. The influence of the orthogonal search
space expansion decreases the closer the Ritz vector is to an eigenvector. Thus,
the impact of a perturbed subspace expansion decreases in the same manner. As a
result, we proved that the perturbation of a Ritz vector decreases with the sine of the
angle between z*) and the target eigenvector. The convergence constant depends
linearly on the sine of the perturbation angle ¥ (cf. Theorems 4.7, 4.12, 4.18, 4.29).

This perturbation occurs independently to the original iterative method to solve
the (nonlinear) eigenvalue problem. Hence, less expensive methods like Derivative-
free Rayleigh functional iteration (cf. Algorithm 2.5) reduce the computational costs,
but provide nearly the same convergence behavior as more expensive methods like
classical Rayleigh functional iteration.

We restricted ourselves to two dimensional principles to demonstrate the conver-
gence behavior. Usually, the subspace dimension is limited by a greater number
than two. We can surely suppose that search spaces with a dimension greater than
two provide at least the same convergence rate as our two dimensional approach.
Further analysis can answer the question whether better convergence rates can be
proven for larger subspaces or not.

We pointed out that the orthogonal subspace expansion is much more robust
against perturbation than inexact variants of Rayleigh quotient iteration, Rayleigh
functional iteration or inverse iteration. Solving the linear system requires the more
inner iteration steps the closer we are at an eigenvector and eigenvalue for all these
methods. Usually the iterative solver for the linear system breaks down due to
the bad condition of the linear system at the end. The inexact Jacobi-Davidson
correction equation can be solved iteratively with an acceptable number of inner
iterations. And the outcome improves the current approximation of the eigenpair.

In Chapter 5 we considered a special class of two parameter eigenvalue problems.
We could present different approaches for a Rayleigh functional for this kind of
problems. The greatest challenge was to show the stationarity of this functional at
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eigenvectors (cf. Theorems 5.8 and 5.9). This property was proven under certain
assumptions for the matrices M, A and B. These assumptions (cf. Assumption 5.5)
are much more restrictive than for other problems, since, for instance, the matrix
M is multiplied by iw. Additionally, we introduced a symmetric Rayleigh functional
for the case of complex symmetric matrices (cf. Theorem 5.13). Here we exploit that
the left eigenvector is given by the complex conjugate of the right eigenvector, and
that the Rayleigh functional is holomorphic.

These observations and theory imply a possible question for future work: How
fast does the Jacobi-Davidson Algorithm for the two-parameter eigenvalue problem
converge if the correction equation is solved only inexactly?

Furthermore, the existence of a Rayleigh functional allows further methods to
solve this special eigenvalue problem. For instance, it can be analyzed if a special
version of Safeguarded Iteration (Algorithm 2.4) or Rayleigh functional iteration
(with derivative and without derivative, see Algorithm 2.2 and Algorithm 2.5) leads
to similar results as for conventional nonlinear eigenvalue problems.

There also exist quadratic eigenvalue problems with a time delay, like

(/\2A2 + A+ Ag + e‘”B) v =0.

By analyzing for critical delays and setting A = iw, we obtain the two-parameter
eigenvalue problem

(—w2A2 + iwA1 + Ao + e*i‘”B) v=20.
Numerical methods for problems of this type can be studied in the future.

Moreover, the robustness of a block-variant of the Jacobi-Davidson method can
be considered. Currently, the Jacobi-Davidson correction equation

k) (x(m)H

J— — N 7
(z®0)" Cx®)

S <I —z® (as(k)>H B> t=—Sa®

H
is solved such that (:v(k)) Bt = 0. But we can also find a search space expansion

which is B-orthogonal to all vectors of the current subspace. Let V € C*** contain
an orthogonal basis of the current k- dimensional subspace with k£ < n, then the
Jacobi-Davidson correction equation is adapted to

(1—cvvtiev)y V) s (1- vV B)t=-52® Vit =o. (6.1)

However, for C' # I, the matrix vector multiplication with this matrix requires the
solution of a k£ x k linear system. The same problem occurs if the preconditioner
for the Jacobi-Davidson correction equation is applied. Here, even for C = I a
k x k linear system has to be solved. The matrix VZCV is constant over all inner
iterations, thus, a decomposition can be made at the beginning of the iteration
process.
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Appendix A

Proofs

A.1 Proof of Proposition 5.6

Proposition 5.6. Let Assumption 5.5 be satisfied, then ®g_ and @y, define Rayleigh
functionals which are stationary at the eigenvector Z = U ® U for perturbations in
the way such that 2+ Az =: Z =01 Q 1.

Proof. We consider the following scalar equation with 2 = 2+ Az and 6 := 0+ AG.

= (" + A1) (Q(0) + Q(6) — Q(9)) (2 + Az)
= "+ AMQU)(2 + A2) + (27 + A2) (QO) - QD)) (2 +Az) (A1)

N——
zH Z

We exploit that 2 is the left and right eigenvector belonging to the eigenvalue 0.

0= (2" +A2) (@@2 +@(é>Az) + () (Q0) - Q) 2
= 21Q(0) Az +AQ(0) Az + 27 (Q(O) — QD)) 2
= A"Q(0)Az + 27 (Q(0) — Q(0)) 2 (A.2)
The polynomial @ is defined in (5.12), by

Q(0) = 6% (Ay — Ay + Ag) +0 (20 Ay — 2iAg) + (= Ay — Ay — Ay).
=:Q2 =:Q1 =:Qo

Moreover, we consider

Q(é) - Q(é) = 02Qa + 001 + Qp — é2Q2 — éQl - Qo
= (9~2 - éZ)QQ + (é - é)@y
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Thus, (A.2) simplifies to

0=AQ(0)Az+ 2" (Q(0) - QD)) 2
= AMQO) Az + 27 (02 - 0%)Q,

= AZTQUO)Az + (07 — 02" Qo7 + (0 — 0)27 Q4 2. (A.3)

The matrices M, A and B are assumed to be Hermitian, which implies that @ Mu
and @ Ba are real. With (5.14) we have

0 (A4)
as long Z can be built by Z = @ ® @. Thus, (A.3) reduces to
AZRQO)Az + (7 — 0°)2" Q2 = 0. (A.5)
Inserting 6 = 0 + A0, (A.5) yields
0=ATQ(O)Az + (7 — 6*)z7Q,2
= AZTQ(O)Az + (07 + 20A0 + AO* — 02)37Q,2
= 21 Q,2A0% + 2037 Q2200 + A2 Q(H) Az (A.6)

Hence, we end up in a polynomial in Af presented in (A.6). Its roots are the
sought perturbations of the Rayleigh functional, A#6.

According to Assumption 5.5, we assume 77 Qy7 # 0. and 2 # 0. Then (A.6) is
transferred to

(AG)? + 20A0 + szcggi =0, (A.7)

and can be solved by standard methods.
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A.2 Derivative of the Complex Logarithm

Solving (A.7) for Af yields

A ~ AZHQ(O)Az
Al o =—0+ 4|02 — ————————
b2 ZH(QyZ
A A A H 7
_ fa | pRAR0A:
62 ZHQ,z
A A H )
I I N P CL ORT
—~ 0% ZHQyZ
=sgn (0)0

02 31,5

=0 (1 + sgn(é)\l 1— (AZ)HQ(é)AZ) :

(A.8)

However, we obtain two solutions of (A.7). This originates from the fact that
(A.1) has two solutions for §. We are interested in a solution 6 in the neighborhood

of 0. Thus, we consider the solution A@;, if sgn(d) = 1. And, if sgn(0)
consider Af; instead. The case # = 0 is excluded by assumption.

With the help of the Taylor expansion of

| (=00,1) — Rt
I r = —14++1—=x

we easily obtain

A0 = O (J|Az]l;)

A.2 Derivative of the Complex Logarithm

We will prove (5.31):

opr 2
00 w(l+62)
In (5.27) we have
ANCEY
TTomiTe)
Inserting
_i+0
-
from (5.11b) yields .
i
=—1 :
r= L)

1, we

We recognize in (A.9) that u # —1, V8 € R. The complex logarithm is holomorphic
in the entire complex plane except the real negative axis. Since pu is always located
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on the unit circle, p = —1 is the only point we need to be aware of. But this point
is never reached. The derivative of the complex logarithm is given by

d 1

——1In(p) = —.

dp jz

Inserting (A.9) and determining the inner derivative yields

. (i+6\ _i=0 d (i+0
a0 "\iZe) T ixe do\i—0

i—0 (1—0)—(i+6)(-1)
i+0 (i —6)2
i—0 2
i+0 (1—0)2

21
(t+6)(i—0)

—21

1462

or i d (i+0
90 w do " \i—e
i =2

wl-+62
2

= ST

Finally, we end up with

A.3 Proof of Theorem 5.13

Theorem 5.13.
Let A, B, M € C™" be complex symmetric. Furthermore, let (&, 7,0) be an eigen-
triple satisfying 4F M # 0 and &7 # £n. Then there exists € > 0 such that for all
u € K. () C C" there exists the two functionals:

por : Ke(2) = J,CR

PrT ’C€<ﬁ> — J, CR

satisfying
UTT(pw,T (U), brT (’U,))U = 07

and the additional properties of a Rayleigh functional, where T is given in (5.1).
The two functionals, p,r and p,r, are stationary evaluated at the eigenvector 4.

Proof. Without loss of generality, we consider only perturbations, Awu, which fulfill

4" MAu = 0. (A.10)
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Lemma 5.11 yields
[P (@ 4 Au) — pur(@)] = O(|| Aul?). (A.11)
We consider
(0 + Au)TA(ﬁ + Au)

(@ + Aw)TM(a + Au)

=:\P1(ﬁ+Au)

Por(u+ Au) =1

(0 + Auw)TB(0 + Au)
(0 + Au)T M (0 + Aw)

=Wy (ﬂ-l—Au)

+ pur(t+ Au) (A.12)

Since ¥; and W, are holomorphic with respect to u, we can use Taylor expansion

at 4, thus,
Uy (0 + Au) = Ui () + V() Au, k=1,2,

with
T T T T
V\Ifl(u)T _ 2(u Mu) ul A — (u Au) ul M
(uT Mu)® ’
T T T T
V\PQ(U)T _ 2(u Mu) u'' B — (u Bu) U M‘
(uT Mu)®
Using (A.10), we obtain
N
T A o0 AAu
V(@) Au =25
N
T u' BAu
VU, (h)" Au = T

133



Appendix A Proofs

Hence, we can simplify (A.12) to

A . N T AAu . TBAu
Por(U+ Au) =i <\I/1(u) + ZW + pur(t + Au) <\IJ ) ATMA >> +0 ||Au||
= 1 (V1 (@) + ppur (@) V2() + ppur (@ + Au) Vo () — ppr (@) Va(
(AT AAu R . ATBAu
4 (2822 1 20y () — par () + pur 8+ B D )
+O([|Aull?)

=i (V1(@) + pur(@) V() + W2 (@) (pur(d+ Au) — pur(@))
AT (A+ p.r(d) B)Au AT BAu

+2i TUn + 2 “T1n (pur(t+ Au) — pur(Q))
O(||Au]®)
(AT Ad ' Bi AT (A+ pur() B)Au

- (aTMa * (@) ﬁTMA> i aTMa

+ O(|pur( + Au) — pur(@)]) + O(|| Aul?) (A.13)

We exploit now that 47 is a left eigenvector of (5.1), thus,
AT Ny —ioF AT _
wiu' M+a"A+ e " B =0,

=0A=p, T(a)

and, therefore,
ﬁTA + me(ﬁ)lALTB = —Z(IJZALTM

Inserting this result into the penultimate row of (A.13) and setting

. (At Ad L a'Ba
pw,T(u) = ATMA _'_pHT(u)a M'&

we end up in

. . O MAu .
Porr (i + Au) = por() + 27 == +O(pur (i + Au) — pr(@)]) + O([| Aul*).
=0
With (A.11), we end up in
[P (@ + Au) = pur(@)| = O(|| Aul?). (A.14)

For the functional p, 1 the proof is similar. We have

ln (pur(t+ Au))
Por(+ Au)

prr(t+ Au) =

Since the logarithm is holomorphic on the unit circle, except u = —1, (which has
been excluded), we can linearize with the help of a Taylor expansion.
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Therefore,

N _In(pur(@) + pur(@)(pur (@ + Au) — pur(@)) 2
pT,T(u + AU) =1 pw,T(@ + AU,) + O(”AUHQ)

and

e+ Au) = p (@) = | Per (D) +p“’T(i)((p“’T(ﬁ+ Aw) = pur(@)  In <pu,T<§‘>>|

Pu {0 + AU) pw,T(A
10 (9 (2)) + Py (@) (P (8 4+ D) = P ()] por ()
Por(+ Au) py (1)

. In (p,u,T(ﬁ)) pw,T(a + Au)
P (Ul + Au) py (1)
In(ppr(4)) (P, () — por(i+ Au))
P (U + Au)p, (1)

Pur (@) (P (@ + Au) — py (@) |
Do (i + Au)

= O(|pw,T(a =+ Au) - pw,T(a)D

+ O(|pur(t + Au) — pyr(a)]).

+

Finally, (A.11) and (A.14) yield

[prr(i+ Au) = prg(@)] = O (|| Aul*) .
This completes the proof.
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Further Results of Example 4.30

In this section we present further result tables of Example 4.30.

koosin(gr)  |A® — )| Hr(’“)H Hres(k)H inner iterations
0 0.080 1.2e4 7.7ed5  0.0987 85
1 0.177 350.2 2.5e3  0.0996 188
2 0.100 3.60 80.28  0.0983 1073
3 0.017 2.0e-3 0.508  0.0945 1108
4 1.34e-5 4.3e-10 1.97e-4 n.a. n.a.

Table B.1: Results of Inexact Rayleigh Quotient Iteration with fixed 7

In Table B.1 the linear system in the last step could not be solved anymore,
because the returned value was equal to the starting value.

koosin(ép) AR — )\ Hr("“‘)H Tk Hres(k)H inner iterations
0 0.08 1.2e4  7.7ed 0.25 0.2494 29
1 0.2713 710.00 3.96e3 1.3e-3 1.3e-3 1026
2 0.3658 101.60 318.20 1.03-4 9.71e-5 1149
3 0.2158 6.55  48.25  1.57e-5 1.4564e-5 1145
4 0.0417 0.0327 1.56  5.08e-7 3.2678e-4 1182*
5 6.42e-4 7.44e-7 1.4e-3 4.49e-10 13.74 1350%*

Table B.2: Results of Inexact Rayleigh Quotient Iteration with decreasing 7
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