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Abstract—Wind-induced flutter of bridges occurs

uncoupled torsional oscillation. Bridges with bluff,

flutter. Prediction of torsional flutter on the basis

as coupled torsional and vertical oscillation, or
non-streamlined sections are prone to torsional
of measured aecrodynamic derivatives essentially

corresponds to the prediction of coupled flutter, although, compared to the latter, it can be largely
simplified. The theoretical background is discussed and the given formulae are checked against
empirical data. It is found that simplification is recommendable only up to a certain degree.

NOTATION

half chord of bridge deck

complex aerodynamic derivative function

real and imaginary parts of ¢,,

damping coefficient for rotational (or torsional)
oscillation

mass moment of inertia per unit length
imaginary unit

reduced frequency

rotational stiffness

mass per unit length

set of real numbers

reduced mass radius of gyration

time

(critical) wind velocity

rotational displacement

amplitude of rotational oscillation

relative density

damping ratio-to-critical for rotational (or tor-
sional) oscillation

density of air

circular frequency (of flutter)

natural circular frequency of rotational (or tor-
sional) oscillation
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INTRODUCTION

Wind-induced flutter of bridges with streamlined
cross-section is a coupled motion of torsion and
vertical bending. Its analytical prediction by means
of a two-dimensional analytical model with two
degrees of freedom requires simultaneous solution
of the generalized equations of rotational and
vertical motion (a complex second-order eigenvalue
problem). In these equations, aerodynamic forces
are described by six or eight real aerodynamic
derivative functions which are analytically or ex-
perimentally determined.!? If the vacuum—
vibration mode shapes of bending and torsion are
strongly non-affine (i.e. different), utilization of a
two-dimensional model may be inadmissible. This
case requires a more refined, spatial modeling, e.g.
by means of finite elements,”* which leads to an
eigenvalue problem of higher order.
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For bridges with bluff cross-section, e.g. non-
streamlined box or channel-shaped section, the
aerodynamic forces may be such that torsional and
vertical motions remain nearly uncoupled, and
flutter in a mainly torsional mode occurs.>®
Theoretical evaluation of the aecrodynamic deriva-
tive functions for such sections is not yet possible.
Determination must be made through wind-tunnel
measurements on sectional models. Due to missing
or extremely weak coupling, however, analytical
prediction based on experimentally found deriva-
tives can be enormously simplified. Firstly, the
number of derivatives can be drastically reduced;
the procedure described in Ref. [2], e.g., requires
measurement of only one real derivative function.
Secondly, mode shapes and, by this, system spatial-
ity, are of little relevancy. Generalization by means
of a two-dimensional analytical model is largely
relieved of uncertainty in regard to spatiality.
Solution of merely one equation of motion is
required.

In the following section, the theoretical fun-
damentals of simplified prediction methods with
application to torsional flutter are elucidated. Dis-
cussion is limited to the two-dimensional model.
For verification of the given formulae, example
calculations and comparisons are made using
measurements provided by other authors. It is
found that simplification is expedient only up to a
certain degree. The recommended analytical proce-
dure requires measurement of two real aerody-
namic derivative functions.

SIMPLIFIED FLUTTER PREDICTION

The uncoupled equation of rotational motion
when employing the exponential solution function
a = ae'’, leads to:

[(A+ig,) ko— * (I + mpbic))@=0. (1)
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The complex (i.e. bivalent) aerodynamic deriva-
tive:

Caa = Coa T iCia @
is a function of the reduced frequency:
b
k=22 ker 3)
v

It corresponds to the nonstationary aerodynamic
coefficients according to Scanlan’ (c., = 9r A%,
Coa =192 A%; cf. Ref. [3]). The structural damping
force is introduced as being a fraction (damping
coefficient g,) of the elasticity-induced restoring
force and in phase with the structural velocity.®’
The damping coefficient g, defined in this way
corresponds to 2£,, i.e. twice the damping ratio-to-
critical.

Equation (1) represents an eigenvalue problem
for a system with one degree of freedom. Nontri-
vial solution is possible only when the
determinant—here the term in brackets—vanishes.
Through application of this condition to real and
imaginary parts and limitation to weR (at the
critical point simple harmonic motion occurs), the
real equations:

) . ka w5
w —3 —1 ,
I+ mpbicl, 1+ & 4)
ur
, - Baka W, Y
Con = apht = (T) Za AT (5)

are obtained. Eliminating w by substitution leads
to:

Coa = 8a (WP + Clea)- (6)
The dependent parameters appearing here are
defined as follows:

wi =—; w, — natural circular
frequency of
rotational motion

m

o= 5 — relative density
wpb

1\/7_
po— L
b m

!
:>“r = 3

r ()

— reduced mass
radius of
gyration

— relative pitching
inertia.

It has been proposed to assume the flutter frequen-
cy of torsional flutter w as being identical to the
natural frequency of rotational (i.e. torsional) mo-
tion w, [10]. As can be seen in Eq. (4), this
corresponds to neglecting derivative ¢,,. Hence,
conditional Eq. (6) reduces to:

(8)

This equation is solved for k. The critical wind
speed v can then be determined by means of the
fundamental relation (3). If the simplified assump-
tion referring to ww is not used, k is obtained by
solving the more intricate Eq. (6). With k, w
follows from Eq. (4) and v can ultimately be
calculated from Eq. (3).

In both cases, determination of £ is affected by
only two structural system parameters: the damping
coefficient g, and the relative pitching inertia ur?.
The expression:

Cha = Ba BT,

2¢,1

, 9
b ©)

B ppr” =

corresponds to the mass-damping parameter de-
fined elsewhere (cf. Ref. [11]), for which the
denomination “Scruton number” has recently been
proposed.

In the case of vanishing structural damping
(g, = 0), both conditional equations reduce to the
simple requirement:

Coe = 0. (10)
Consequently, k is obtained solely as a function of
cross-section geometry and becomes independent
from structural system parameters.

Recent experimental studies,'>!® which have
been confined to the measurement of ¢, (there:
A*,) and structural damping, tacitly assume validity
of Eq. (8). The critical wind speed calculated in this
way deviates from the measured value by only 10%
for torsional flutter of a Ll-section. In such cases, a
particularly simple expression for critical wind
speed may be given:

w, b

— 11
k(Coa = ar?) v

vy =

The respective influences of system parameters
become clear in this formula. In particular, it can
be inferred that flutter stability improves with
increasing natural frequency in torsion and growing
deck width.

EMPIRICAL CHECK

In Ref. [14], wind-tunnel tests which investigate
the flutter behaviour of various bridge deck section-
al models are described, and the aerodynamic
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derivative functions are measured and completely
documented. Expressions (6), (8) and (10) are
reviewed by means of this empirical data. In order
to facilitate numerical evaluation, Eq. (6) is used in
rearranged form:

2 1
Caa Caa

o

= ur. (6a)

Derivatives c,, and c’/, for various k&, and the left
side of Eq. (6a) are numerically presented in Table
1. In order to determine & (and if necessary, cl.),
linear interpolation between the specified data is
effected. System parameters and results of com-
putation are compiled in Table 2. Deviations of k
and v are given in percent—on grounds of better
comparability in reference to the results of accurate

Table 1. Input data for simplified flutter prediction (according to Ref. [14])

Section A Section C
l/gcx C:;a ~ Caa l/ga Cgta - Cc’rat
k Coar Coc Case 1 Case 2 Cha Coax Case 1 Case2 Case3
0.075 14.1 4.05 32.8 38.6 25.9
0.100 5.23 9.15 1.45 7.63 9.71 5.16
0.150 -32.7 3.44 96.1 -0.21
0.200 —18.5 2.60 66.4 69.9
0.250 -11.7 2.07 52.6
Table 2. Simplified flutter prediction for sectional models
System parameters
Model Parameters ® r 8o w,[%]  b[m] ur? Zu ur?
A Case 1 258.2  0.5076  0.0543 50.2 0.100 66.5 3.61
Case 2 258.2  0.5076  0.0506 45.5 0.100 66.5 3.37
Case 1 1059  0.359 0.0864 25.2 0.102 13.6 1.18
C Case 2 1059  0.359 0.0769 25.7 0.102 13.6 1.05
Case 3 105.8  0.359 0.1013 26.3 0.102 13.6 1.38
Evaluation according to Egs (6) respectively (6a), and Eq. (4)
Model Parameters k Cha [ ¥%] v{™4] Dev. k Dev. v
Case 1 0.200 —18.5 59.1 29.6 -4% 5%
A Case 2 0.210 -17.1 52.8 25.1 —4% 5%
Case 1 0.094 10.3 19.0 20.6 -20% 16%
C Case 2 0.097 9.74 19.6 20.6 —24% 22%
Case 3 0.090 11.1 19.5 22.1 —18% 13%
Evaluation according to Eq. (8), i.e. with w = @,
Model Parameters k Chee ol %] v[™4] Dev. & Dev. v
Case 1 0.145 0 50.2 34.6 —-30% 23%
A Case 2 0.154 0 45.5 29.5 -30% 23%
Case 1 0.108 0 25.2 23.8 -8% 34%
C Case 2 0.112 0 25.7 23.4 —13% 39%
Case 3 0.102 0 26.3 26.3 —8% 35%
Evaluation according to Eq. (10), i.e. for g, = 0; with & = w,
Model Parameters k Cla o[ %] A Dev. k Dev. v
A Case 1 no 0 50.2 — — —
Case 2 solution 0 45.5 — — —
Case 1 0.144 0 25.2 17.9 23% 1%
C Case 2 0.144 0 25.7 18.2 12% 8%
Case 3 0.144 0 26.3 18.6 30% -5%
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evaluation [3], rather than in reference to the
respective flutter tests.®

Equation (6) yields fairly good results for section
A (H-section), but provides only moderate accura-
cy for section C (truss-stiffened section). This
finding corresponds to the respective degree of
dominance of the rotational motion component,
which is reasonably distinct for section A only.? For
both sections, evaluation by means of Eq. (8)
results in greater inaccuracy for values of v. Equa-
tion (10) is not applicable to section A, for cl, does
not vanish in the investigated (and plausible) range
of k. In this case, a lower limit of the critical
velocity range cannot be established. The good
agreement for sectton C with respect to v should
therefore be regarded as accidental. This view is
supported by strong deviations and scattering rela-
tive to k.

CONCLUSIONS
The following conclusions can be drawn:

® For certain bluff cross-sections, simplified eva-
luation according to Egs (6) and (8) provides
rough approximation of the critical wind speed.

® Good approximation can be expected only for
sections which are prone to nearly uncoupled
torsional flutter, but only if, in addition to ¢,
derivative c,, is included [Eq. (6)].

® In contrast to the coupled flutter situation,
structural damping has a substantial effect on
uncoupled torsional flutter and should be consid-
ered for flutter prediction.

The given formulae can be applied directly to

spatial bridge systems. The implied generalization

is exact when structural and aerodynamical system

parameters are uniform along span. Variability

occurring in practice is generally of little influence.
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