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Abstract

Abstract English:

The Peregrine Breather, an analytical solution of the Nonlinear Schroedinger Equation, is
modified to induce locally and temporally accurate, predefined extreme wave events in an
arbitrary directed sea state. To this end, a parameter study of the distortion term of the
unstable Peregrine modulation is performed to enforce form, height, and steepness of the rogue
wave. In addition, the phase modulation is identified to be the crucial perturbation for the
nonlinear Breather dynamic. With this knowledge, the inducing of a predefined rogue wave
in non-uniform carrier waves and even in irregular, directed sea states is presented, its limits
determined, and the Breather dynamics analyzed by spectral and phase evolution analysis in
time and space. The results are compared to the dynamics of real occurred extreme waves and
a reverse engineering as well as a forecast model for nonlinear real rogue waves are depicted
briefly.

Abstrakt Deutsch:

Der Peregrine Breather, eine analytische Lösung der Nichtlinearen Schroedingergleichung, wird
modifiziert, um punkt- und zeitgenau eine zuvor in Form, Höhe und Steilheit definierte nicht-
lineare Extremwelle in einen beliebigen gerichteten Seegang zu induzieren. Dazu wird zunächst
eine Parameterstudie des Störungsterms der instabilen Peregrine Modulation zur Formgebung
der Extremwelle durchgeführt. Dabei wird die Phasenmodulation als die entscheidende Störung
für die nichtlineare, wachsende Breather-Instabilität identifiziert. Mit diesem Erkenntnisstand
wird das Induzieren einer vorbestimmten Extremwelle in nicht uniforme Trägerwellen und sogar
irreguläre, gerichtete Seegänge dargestellt, die Grenzen ermittelt und die Dynamiken mittels
Phasen- und Spektralanalyse über Zeit und Raum analysiert. Die Ergebnisse werden mit einer
realen, auf der Nordsee gemessenen Monsterwelle verglichen und zudem wird sowohl ein Reverse
Engineering als auch eine Vorhersagemethode solcher nichtlinearer Extremwellen skizziert.
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1 Introduction

1.1 Motivation and Objective

Since mankind goes to sea, extreme waves have been reported as walls of water, three sisters,
monsters, ghosts, freak waves, and rogue waves. A long though not complete list of accidents
with high waves starting with the time of Christopher Columbus has been collected by Liu
[Liu07]. Even famous paintings and woodcuts like ’The Great Wave off Kanagawa’ by Hokusai
in 1829 documented those extreme events, though rejected as nautical yarn often. It needed the
first measured rogue wave occurring at the Draupner platform in the North Sea off the coast
of Norway on 1 January 1995 (Draupner Wave, [ATY+11] and [Hav04]) to prove the existence
of rogue waves finally, leading to intense researches and sensitivity in the construction of ships
and offshore structures.
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Figure 1.1: Draupner Wave Record on January 1st 1995 at 15:20:
Significant Wave Height 11.9m, Wave Height of Extreme Event 25.6m,
Norwegian North Sea with 70m water depth

Rogue waves are defined as extreme waves with a wave height (measured from crest to trough)
higher than twice the significant wave height, i.e. twice the mean wave height of the highest
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1 Introduction

third of the surrounding waves of the considered time series. Typically they appear suddenly
without any warning. They can cause massive damage to ships and other offshore structures and
disappear untraceable as they would have had never existed. [Wik18] claims that one ship longer
than 200m per month sunk in the last 20 years. Researchers believe that some sinkings may
be caused directly or indirectly by these high rogue waves. The Draupner platform registered
466 freak waves in twelve years, i.e. one extreme wave every ten days on average.

Beside the height of the rogue waves, those waves are very steep and have high velocities due
to nonlinear increases of the speed. Ships have high inertias and are not able to overrun these
extreme waves. The waves roll over the ships causing high pressures in the structures and
superstructures which are not designed for these high forces. In addition to this flooding, the
small wavelength of the wave peak is headed and followed by deep troughs. This may lead to
loads affected in one single point which may break the ship. Moreover, if the ship is hit by an
extreme wave sideways, it may flip over.

While rogue wave events due to linear theory are widely understood [KPS09a], the nonlinear
effects gaining automatically in importance with the wave steepness are unreasonable neglected
in here. Furthermore, linear theory alone can not explain the number of rogue wave events
in the world oceans and seas, underestimated up to hundreds of times [Mor04, Sta04, For03].
Therefore the nonlinear dynamics of rogue waves are still under intense research and have not
been fully understood yet, though the area of impact of extreme wave events is not limited to
gravity water waves only but also contains nonlinear optics, quantum mechanics, electrostatic
and electromagnetic physics.

Hence, this thesis is dedicated to analyzing analytical, nonlinear Breather solutions of the
Nonlinear Schroedinger Equation concerning whether they can be used to cause realistic rogue
waves in properties like shape, height, and steepness occurring in regular and non-regular sea
states. We question:

• How robust is the growing modulation instability of analytical Breather solutions, i.e. will
the inherent distortion term lead to growing amplitudes and rogue waves, ...

. ... even if the distortion term is modified severely? What are the limits?

. ... even if the distortion term is applied to irregular wave fields which are much closer
to the experimental reality of rogue wave phenomena in the open sea? Can we use any,
arbitrary, maybe even random directed sea state?

2



1.1 Motivation and Objective

• If so, can we modify the distortion term of the analytical Breather solutions to get prede-
fined rogue waves of various, targeted shapes? In that case, what are the limits in targeted
parameters like steepness and amplification factor?

• And how can we inject those specific rogue wave event in a predefined or random sea
state?

. Does this injection require much energy like an unrealistic amplitude modulation or is
it naturally ’undiscoverable’?

. Which effect has the carrier wave on the extreme event?

• Can we predict or even force the place and time of the occurrence of the extreme event
enabling scientists to perform targeted wave-structure-experiments like in [FCKDO12,
OPCK13]?

• And conversely, could we even enable scientists to forecast and rebuild the dynamics and
disruptive forces of real rogue waves, i.e. are we able to predict steep wave events and
subsequently reverse engineer a known rogue wave time series into an ’ordinary’ sea state
distorted by an ’undetectable’ Breather distortion for reconstructing real wave-structure-
impacts?

In case we can answer all these questions satisfactorily, we may understand better the dynamics
of nonlinear rogue waves in realistic open sea situations. Those answers will provide us with a
strong indication why nonlinear effects have to be taken into account to explain extreme wave
events in the world oceans and seas. They will show why Breather solutions of the Nonlinear
Schroedinger equation are relevant regarding extreme wave events in realistic sea states due to
natural distortions. But most of all this study will provide future scientists with a box of bricks
to reverse engineer known, real rogue waves and their impacts as well as to cause aimed space-
and time-located nonlinear breathing freak wave events in any predefined or random directed
sea state to investigate its dynamics and potential impacts in experimental, simulative, and
analytical studies. This will hopefully lead to improved designs of marine structures and new
approaches of forecasting extreme and possibly catastrophic events of water waves but also in
nonlinear optics, quantum mechanics, electrostatic and electromagnetic physics.
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1 Introduction

1.2 Current State of Research and Outline

State of Research

According to [KPS09a] ’there are various physical mechanisms generating rogue waves on the
sea surface’ but most of the researched effects are linear dynamics which are especially in steep
wave events neglecting the inherent nonlinear mechanisms. Rogue waves may occur due to
linear theory by

• wave-current interactions: Wind waves or swells which propagate against a current leading
to a Doppler effect maybe even strengthened by opposed wind forces.

• geometrical and spatial focusing: Underwater topography may cause Doppler effects,
branchings (see [YZHK11] and [HKS+10]) and caustics leading to superposed high waves.

• dispersive focusing: In a dispersive medium waves of different wavelengths propagate with
different group velocities according to the related dispersion relation. Longer waves may
catch shorter waves up and superpose to high waves.

• crossing seas: Two sea fields meet and interfere with each other leading to rogue waves.

and by nonlinear effects due to

• focusing of modulation instabilities: A Benjamin-Feir instability produces growing modu-
lations of the envelope of wave groups ending in a nonlinear focusing of the wave energy
by interactions of Fourier decomposed inherent uniform waves (which are independent in
the linear point of view) before getting demodulated again.

• crossing seas which exchange energy and by that build localized wave packets which may
be unstable to modulation instabilities.

• solitons (occurring from uniform wave trains under modulation instabilities) colliding with
each other, plane waves, or other wave groups.

All these phenomena have been discussed in [DKM08] and [KP03] already. Hence, the linear
theory does not explain all occurring rogue waves on the oceans solely. Furthermore, it does
neglect the correlation between superposed waves. So wave statistics and physical dynamics
are not met by linear theories in the chaotic and turbulent surface wave system.

Much research had been performed by various researchers who let the approach of inducing
predefined rogue waves in arbitrary, directed sea states by Breather distortion terms appear
promising: First of all, [CHA11] proved the existence of Peregrine Breathers in surface wave
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1.2 Current State of Research and Outline

dynamics by wave tank experiments. Also the robustness of the Peregrine Breather against
small perturbations and external wind forces has been showed by [ADA09], [CHB+13], and
[DT99]. Also, [Cha16] cut the standard Peregrine solution into an irregular wave field and
could see the persistence of the Breather dynamic.

On the other hand, [OOS02] and [OOSB01] were able to change the JONSWAP spectrum
parameters to increase the probability of occurring freak waves even if the parameters are
unusual for natural ocean wave fields. However, [FBL+16] proved that the main qualitative
behavior of real rogue waves can be described by weakly nonlinear equations and solutions (like
the NLS solutions), though they doubt the importance of unstable modulations for rogue waves
in real oceans. They analyzed several real occurred freak waves and found out that the ocean
wave field was partly regular.

All these researches indicate the possibility that the analytical, ’breathing’ NLS solutions may
be a key to induce spatially and locally accurate, predefined extreme waves in an arbitrary,
directed wave field. This will analyzed in the following chapters.

Outline

This thesis analyzes the nonlinear effects of causing Breather type steep wave events on the
basis of analytical solutions of the nonlinear Schroedinger equation (NLS). Therefore, in chapter
2 we first derive the NLS and discuss its limits. Furthermore, we reason the analytical Breather
solution called Peregrine Breather to be the basis of our rogue wave injections. In chapter 3 we
present the experimental facilities and the driving of wave fields of different types. We discuss
the nonlinear Stokes effects and the error of measured to targeted wave time series. Beside this
wave tank facilities, we extend our examination possibilities numerically by the simulation of
several governing equations and discuss their use cases in chapter 4. We also introduce a new
wave equation and some helpful analyzing tools.

With these facilities, we study the effects of variations in the Peregrine distortion term on
the Breather dynamics in chapter 5. We will find controlling parameters for the freak index,
maximal wave steepness, and the number of waves in the steep wave event. We will also find
a parameter to relocate the maximal peak in the rogue wave group and make out the phase
distortion as the crucial modulation for the induced nonlinear Breather dynamic. The latter
will be underlined by analyzing the spatial evolution of the local wavelengths.

After that, chapter 6 presents an experimental study on the robustness of the Breather dynamics
to changes in the carrier wave. The initially uniform carrier wave will be phase shifted as well as
amplitude shifted in time. Combining this so far gathered knowledge we will be able to induce
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1 Introduction

a Breather type dynamic using the Peregrine distortion term in an arbitrary, directed sea state
developed by a JONSWAP ocean spectrum. The results are compared to the Draupner wave
- a real occurred freak wave - by spectral analysis. This will lead to a depiction of the reverse
engineering of real ocean freak waves and a possible forecast model.

To extend the possibilities of inducing a nonlinear rogue wave to an irregular, directed carrier
wave, we show further options of injecting a Breather dynamic in chapter 7 and examine them
with a temporal and spatial spectral analysis. In chapter 8, we close with a summary and
conclusion of the performed studies and sketch possible directions for future works.

6



2 The Nonlinear Schroedinger Equation and its
Analytical Breather Solutions

The Nonlinear Schroedinger Equation (NLS) is the simplest equation describing the evolution of
weakly nonlinear deep-water wave trains. Evolution equation taking into account higher-order
nonlinearities are discussed in [Dys79, Osb10a, Slu05] and chapter 4.

Though relative simple, the NLS describes not only linear dispersion but also the nonlinear
evolution in time and space of wave packets propagating in (sufficient) finite and infinite depth,
as well as the phenomenon of Benjamin-Feir instability [Joh97a, New81] which is one of the
solid proofs of necessity of using nonlinear equations for surface gravity wave propagation.
Nevertheless, the NLS is still fully integrable [ZS72] and by this provides the possibility of
comparing experimental results to theory without effort. Furthermore, analytical solutions of
the NLS called Breathers are known which have a similar form of appearance as the reported
rogue waves in the ocean [AAT09], i.e. extreme high waves, appearing from nowhere and
disappearing without any trace. Those analytical solutions provide us with an initial starting
point for driving extreme wave events of predefined shape and location on arbitrary sea states.
Of course, using a just weakly nonlinear equation has some drawbacks which will be pointed out
in 2.1. However, several papers proved the qualitative sufficiency of the NLS for propagating
waves of moderate steepness [CSS92, Osb10a]. Comparing with fully nonlinear simulations and
experiments the analytic NLS solutions are found to describe the actual wave dynamics of steep
waves reasonably well [SPS+13, FBL+16]. In addition, the NLS is not only limited to gravity
water waves only but also includes nonlinear optics [SRKJ07], quantum mechanics [DMEG82],
electrostatic and electromagnetic physics [Lee12].

We will first show the derivation of the NLS and give some remarks to its limits in 2.1, followed
by section 2.2 with the motivation and mathematical description of the used breathing analytical
solution to solve our objectives in 1.1.
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2 The Nonlinear Schroedinger Equation and its Analytical Breather Solutions

2.1 Derivation and Limits of the Nonlinear Schroedinger
Equation

Derivation

According to [KP01], an irrotational flow of an inviscid, incompressible fluid can be described
by a scalar velocity potential function Φ and the Bernoulli’s equation:

u = ∇Φ (2.1)

∂Φ
∂t

+ 1
2
(
∇Φ>∇Φ

)
+ p

ρ
+ gz = const (2.2)

with u: velocity vector, Φ: scalar velocity potential function, ∇: the nabla operator
( ∂
∂x
, ∂
∂y
, ∂
∂z

)>, t: time, p: pressure at z = 0, ρ: constant density, g: gravity acceleration, and z:
vertical coordinate with z = 0 at the equilibrium level of the surface.

For describing the surface waves (see [Dys79]), we insert the irrotational flow (2.1) into the mass
continuity equation ∂ρ

∂t
+∇>(ρu) = 0 where ∂ρ

∂t
= 0, and ∇>ρ = 0 as ρ = const (incompressible

flow). Then we take the total time derivative of (2.2) as a boundary condition at z = ζ

where ζ(x, y) is the surface elevation associated with the wave motion at constant atmospheric
pressure. If we finally add the kinematic boundary condition at z = ζ as a second boundary
condition, we will get:

∇2Φ = 0, z ≤ ζ (2.3)

∂2Φ
∂t2

+ g
∂Φ
∂z

+ ∂

∂t
(∇Φ)2 + 1

2∇Φ>∇(∇Φ)2 = 0, z = ζ (2.4)

∂ζ

∂t
+ ∇Φ>∇ζ = ∂Φ

∂z
, z = ζ (2.5)

with ∇2 = ∇>∇, (∇Φ)2 = ∇Φ>∇Φ, and ∇ζ = ( ∂ζ
∂x
, ∂ζ
∂y
, 0)>.

Having in mind the slow evolution of a wave train, Dysthe developed Φ and ζ around a mean
flow Φ̄ and a mean surface elevation ζ̄ in [Dys79] and put this into the equations (2.3), (2.4),
and (2.5). These equations may be developed until a certain order in wave steepness ε = k0a,
where a is the wave amplitude averaged over one wavelength and k0 the wave number k0 = 2π

λ0

with averaged wavelength λ0 of the mean wave propagation direction.

If we neglect all terms of order ε3 or higher and assume x to be the spatial direction of the
mean wave propagation and y to be the perpendicular spatial direction to x, we will get the
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2.1 Derivation and Limits of the Nonlinear Schroedinger Equation

famous Nonlinear Schroedinger equation (NLS) for the complex envelope A(x, y, t) first derived
by Zakhorov [Zak68]

i(∂A
∂t

+ ω0

2k0

∂A

∂x
)− ω0

8k2
0

∂2A

∂x2 + ω0

4k2
0

∂2A

∂y2 −
ω0k

2
0

2 |A|
2A = 0 (2.6)

where the free surface elevation in first order is given by

ζ(x, y, t) = Re{A(x, y, t)ei(k0x−ω0t)} (2.7)

or in second order by

ζ(x, y, t) = Re{A(x, y, t)ei(k0x−ω0t) + 1
2k0|A(x, y, t)|2e2i(k0x−ω0t)} (2.8)

The NLS equation expresses a 2-dimensional weakly nonlinear flow around a main wave with
wave frequency ω0 = 2π

T0
and period T0 and wave vector k0 = (k0, 0)> with k0 = 2π

λ0
and

wavelength λ0 in x-direction. A different derivation of the Nonlinear Schroedinger equation
which will also lead to higher order NLS type equations is presented in chapter 4.

Beside linear dispersion and by that dispersive focusing, the NLS describes a weakly nonlin-
ear flow and by that is already capable of ’energy exchanging’ frequency interaction leading
to unstable growing modulations: By small perturbations in amplitude and phase of the uni-
form wave train solution of the NLS which recovers the Stokes wave ([Wik17]) the NLS may
predict unstable growth for specific wavelengths. For example, taking the Benjamin-Feir side-
band modulation ([YL82]) to the uniform wave train solution of the 1-dimensional NLS and
linearizing predicts unstable growth rate for 0 ≤ k ≤ 2

√
2k2

0a0 (see [Yue91]).

A deeper look into the NLS equation (2.6) let us determine the effects of each summand: ∂A
∂t

describes the (material) amplitude change in time while the second summand ω0
2k0

∂A
∂x

disappears
if the system of coordinates is defined as a moving reference of group velocity ω0

2k0
. ω0

8k2
0

∂2A
∂x2

and ω0
4k2

0

∂2A
∂y2 are diffusive terms who correlates to the dispersion, i.e. the spreading of wave

packets due to different propagation velocities of the inherent wave components. The last
term ω0k2

0
2 |A|

2A introduces the nonlinearity into the equation. It can be seen as an amplitude
dispersion effect as with this term the amplitude change depends cubically on the amplitude
itself.

The factors of the summands are also identified by a Taylor series of ω(k, |A|2) =√
g|k|+ g|A|2|k|3 (third order dispersion relation for long-crested deep water waves) about

9



2 The Nonlinear Schroedinger Equation and its Analytical Breather Solutions

k0 = (k0, 0)> and |A|2 = 0 according to [Deb94] and section 4.1, e.g. the group velocity
∂ω
∂kx
|(k0,0)> = ω0

2k0
.

If we neglect all terms of order ε4 or higher, we will get the Dysthe equations which are more
accurate and stable to modulation instabilities as shown in [SA13]. On the other hand, they
are more complex in simulation and numerical solving processes. Therefore in chapter 4 a
slightly different equation will be derived which tries to combine the simplicity in numerical
solving procedures with higher order truncation in ε. This equation will give us more accuracy
in locating the highest peaks of the rogue waves than the NLS without losing the simplicity of
the numerical simulation.

Limits of the Nonlinear Schroedinger equation

Beside the derivation assumptions (irrotational flow in an inviscid, incompressible fluid) there
are some limits of use for the Nonlinear Schroedinger Equation which has to be taken into
account when simulating wave evolution by this equation. First of all, by derivation, there
is no term in the NLS for introducing an external potential, wind excitement, or interaction
between the oceanic and atmospheric boundary layer. Second, as the NLS describes a weakly
nonlinear flow around a main wave with wave frequency ω0 and wave vector k0 = (k0, 0)> in
x-direction, it naturally comes along with some other limits:

• The NLS is narrow-band around the leading wave frequency ω0. Waves with a wide range
of frequencies will lead to inaccurate propagation calculations by the NLS.

• By this the NLS is also directed to the wave vector k0 = (k0, 0)>, i.e. the NLS is not
sufficiently capable of non-directed sea-states. A coupled system of NLS equations may
improve this, especially coupled systems of two NLS are under big research at the moment
to investigate the behavior of two crossing seas (see [Oka84, OO06]).

• The NLS is derived by developing an irrotational flow until (and including) the second
order of wave steepness ε. [Osb10a] showed the qualitative sufficiency of the NLS for
propagating waves of just moderate steepness, i.e. ε ≤ 0.15. A simple but effective
numerical trick for steep initial wave data is presented in [HPD99]: The NLS is scalable
in time and space and by that can adjust the initial wave steepness ε as the scaling
transformation x → cx, t → c2t, q → q

c
with c ∈ R leaves the NLS invariant. Therefore

the NLS is numerically not capable of waves evolving to very steep waves but for arbitrary
steep initial waves. For steep evolving waves it is advisable to use higher order equations.
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2.1 Derivation and Limits of the Nonlinear Schroedinger Equation

• [Su82] demonstrated experimentally that an initially symmetric wave packet evolves in
an asymmetric manner. This asymmetric development is accelerated as the wave steep-
ness (nonlinearity) is increased and can not be accounted for by the NLS which predicts
symmetric evolution. As shown in chapter 4 higher order equations may solve this.

• A reason of this asymmetric evolution is the nonlinear increase in group velocity of steep
envelopes. [HPD99] proved that the NLS does not account for this effect, i.e. for our
consideration of rogue waves the spatial locating of the highest peak will be unprecise if
done by the NLS. But as shown in chapter 4 higher order equations will solve this issue.

• An effect which correlates to the nonlinear group velocity increase by the dispersion re-
lation is the so-called frequency down-shifting. Related to rogue waves Tulin shows in
[Tul96] that a uniform wave with a growing modulation exhibits a longer wave period
temporary close to the maximum amplitude and with that a reduced frequency. Tulin
proves that the NLS is not capable of displaying this frequency down-shift. This effect has
to be taken into account while comparing theoretically NLS waves to measured waves or
considered by higher order equations like the Dysthe equations.

• Furthermore, the NLS overestimates the maximum peak of the extreme wave event modu-
lated by a growing perturbation modulation. [HPD99] and [SA13] analyze this effect and
compare the results to more accurate higher order equations.

• The NLS (2.6) is derived for deep water. Contrary to deep water, the contribution of
the mean flow velocity potential becomes very important in shallow water and can not be
neglected as done in the derivation above. [Joh97b] shows that the nonlinear coefficient of
|A|2A changes if kd >> 1 is not fulfilled (deep water constraint) with d: water depth. For
kd ≈ 1.363 the nonlinear coefficient turns to zero and thus the nonlinear effects just appear
in higher levels. If the critical value gets even smaller then the related coefficient will get
negative. Therefore the bifurcation value kd corresponds to a significant change in the
nonlinear wave dynamics. For instance, [KM83] proves that a Benjamin-Feir instability
modulation may not grow if the coefficient gets zero or negative. As we concentrate to
deep water cases we have to ensure that the deep water constraint is fulfilled in all our
NLS simulations and experiments.

• The NLS does not consider dissipation or wave breaking for steep waves.

Despite these drawbacks, the NLS is a numerically simple but powerful equation describing the
wave dynamics qualitatively reasonable well ([SPS+13]). So, [FBL+16] argues that the main
qualitative behavior of real rogue waves can be described by weakly nonlinear equations like

11



2 The Nonlinear Schroedinger Equation and its Analytical Breather Solutions

the NLS and its solutions. [HPD99] even proves that the NLS agrees excellently over a much
longer timescale than expected, particularly for lower steepness. Beside this, the NLS provides
us with analytical solutions of growing modulation instabilities which provide prototypes of
real nonlinear rogue waves as pointed out in 2.2. And whenever a limit of the NLS is met, or
quantitative values have to be forecasted we can ensure the NLS-data by higher order equations
as described explicitly in chapter 4.

12



2.2 Peregrine Breather Solution

2.2 Peregrine Breather Solution

Motivation of Basis Peregrine Breather Solution

As a starting point for our objectives outlined in 1.1 we need an analytical wave description
which we can modify according to our needs. As we like to inject a not discoverable distortion
to an arbitrary sea state to enforce a rogue wave event, this will not be the simple case of super-
posed waves leading to a dispersive focusing. [AAT09, HPD99] investigated several analytical
solutions of the NLS and compared them to real rogue waves. It turns out that the breathing
Peregrine solution also called the isolated Ma soliton ’is the most convenient approximation’
to several steep wave events. It does not only meet the qualitative behavior of appearing from
nowhere, surging to a high wave and disappearing untraceable. But also, it already fits very
well to wave records of real extreme wave events, though it is just a single distorted uniform
wave train solution.

150 200 250 300 350
−10

−5

0

5

10

15

20

time [s]

su
rf

ac
e 

el
ev

at
io

n 
[m

]

Figure 2.1: Draupner Wave (blue line) versus fitted Peregrine solution (dashed red line)

Exemplary, in figure 2.1 a ’best fit Peregrine model’ to the Draupner wave was determined by
the analysis tool presented in chapter 4. By reducing the relative error of the measured wave to
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2 The Nonlinear Schroedinger Equation and its Analytical Breather Solutions

the parameterized Peregrine, it ascertains a Peregrine model with wave number k = 0.023 rad
m

and steepness ε = ka (with a: amplitude) of the uniform carrier wave of 0.1373rad recorded
254.1m (almost one wavelength) before its maximum peak. We can see that the dashed red
distorted uniform wave captures the general form of the real waves quite well before the freak
event. Closer to the peak a temporary frequency down-shifting occurs. The Peregrine which
is a solution of the NLS is incapable of this effect and therefore will not meet the general wave
behavior after the steep wave event. Both, the Peregrine model as well as the wave record has a
slightly deeper trough after the peak than before - for the regular Peregrine an indicator for not
being in its maximum yet. The ’best fit Peregrine model’ analysis tool of chapter 4.1 forecasts
further wave height growth of 0.5m. Of course, a single distorted uniform wave will not model
all properties of a complex real sea state. Nevertheless, the agreement of Peregrine model and
Draupner wave is surprisingly strong. Chapters 6 and 7 will show how to model and compare
freak wave events in real, complex sea states.

The Peregrine Breather Solution

The Peregrine Breather first derived in [Per83] is a limiting case of two other well known
pulsating solutions: The time periodically breathing solution of Kuznetsov and Ma (see [Ma79,
Kuz77]) and the space-periodic solution of Akhmediev (see [AEK85, AK86]). The Peregrine
Breather represents those two solutions for an infinite breathing period, i.e. the Peregrine
Breather just pulsates once to a peak three times of the carrier wave amplitude and tends to
the plane wave for x→ ±∞ and t→ ±∞:

qp(x, t) = a0e
−

ik2
0a2

0ω0
2 t ∗

(
1− 4(1− ik2

0a
2
0ω0t)

1 + [2
√

2k2
0a0(x− cgt)]2 + k4

0a
4
0ω

2
0t

2

)
(2.9)

where t and x are the time and longitudinal coordinates, a0, k0 and ω0 = ω(k0) denote
the amplitude, wave number and the wave frequency of the carrier wave, respectively. ω0

and k0 are linked by the dispersion relation (see chapter 4). Accordingly, the group ve-
locity is cg := dω

dk
|k=k0 = ω0

2k0
. The surface elevation of the sea water is then given by

η(x, t) = Re
{
qp(x, t)ei(k0x−ω0t)

}
with phase velocity ω0

k0
= 2cg or in second-order η(x, t) =

Re
{
qp(x, t)ei(k0x−ω0t) + 1

2k0|qp(x, t)|2e2i(k0x−ω0t)
}
. Linear, second order, or even higher order

experimental driving is further investigated in section 3.2.

It is easily shown that (2.9) is an exact solution of the NLS (2.6). Looking at η(x, t) of order
one it is the uniform wave train disturbed by the unstable modulation term in brackets of (2.9).
As seen in figure 2.2 this disturbance moves at group velocity cg and focuses wave energy on
itself. The Peregrine solution is localized in space and time and as such describes a unique
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2.2 Peregrine Breather Solution

Figure 2.2: Peregrine Breather solution (2.9). Maximum amplitude amplification of three at
x+ cgt = 0 and t = 0. Minimum amplitude amplification of zero.
Note: Moving reference system in x.

rogue wave event multiplying the carrier wave by a factor of three. It only breathes once and
is untraceable afterward: ’A single wave of large amplitude that appears from nowhere and
disappears without a trace.’ Therefore it is a perfect prototype in qualitative behavior and
form for a nonlinear rogue wave in the ocean as also explained in [DT99] and [SG10]. More
analytical NLS solutions which are localized in space and time can be found in [AAT09].

Figure 2.3 presents the experiment of [CHA11] driving the Peregrine Breather Solution accord-
ing to (2.9) with a0 = 0.01m, k0 = 11.63 rad

m
, and ω0 = 10.7 rad

s
in a water wave tank. The

driven surface elevation is given by η(x, t) = Re
{
qp(x, t)ei(k0x−ω0t)

}
. We see that the initial

distortion focuses energy on itself growing to an extreme wave event with its maximal peak at
9.1m distance from the wave maker.
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2 The Nonlinear Schroedinger Equation and its Analytical Breather Solutions

Figure 2.3: Temporal evolution of the water surface height of a wave driven by the Pere-
grine Breather solution at various distances from the wave maker.
Figure from ’Rogue Wave Observation in a Water Wave Tank’ from [CHA11].

Considering the Peregrine solution as a uniform wave disturbed by an unstable modulation
term, we determine three main issues to achieve our objectives:

• Can we modify the carrier wave to an arbitrary sea state without destroying the growing
modulation character of the distortion term?

• Can we change the parameters of the distortion term preserving the growing modulation
character but shaping the rogue wave event in a specific predefined way in properties like
height, steepness, and speed?

• Can we still forecast the rogue wave event by our governing equations?

Next to the general question of how to inject those modulation instabilities to real wave fields
and the reverse engineering of real rogue wave events, we will answer these questions in chapter
5, 6 and 7 and will even sketch the results of the instability propagating into different wave
domains (neighboring waves) in the outlook of further studies in chapter 8.
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2.2 Peregrine Breather Solution

However, before that, we will have a closer look at how to produce waves in a wave basin to run
fine-tuned experiments in chapter 3 first. And second, we will specify the governing equations
and programmed analyzing tools in chapter 4.
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3 Producing Waves in the Wave Basin

3.1 Experimental Facilities

Wave Basin and Driving a Wave

Figure 3.1: Schematic illustration of the experimental facilities

All experiments took place at the small tank of the Hamburg Ship Model Basin (HSVA, see
figure 3.1). It has a water depth of 2.4m and a width of 5m. Ten individually drivable flaps
force the aimed wave motion. The waves have a free flow length of 53m until they meet the
beach: An object which tries to absorb the wave energy to avoid reflections and to reduce the
latency between two experiments.

The ten flaps are driven by an electric mechanical system of the Bosch Rexroth AG. The
related software allows the user to (1) parametrize a wave by a user interface. The chosen
wave is (2) transformed to a wave motion data file of data points of 25 Hz for each flap.
This file is (3) read by the driving facility and (4) converted by a transfer function H(s) =
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3 Producing Waves in the Wave Basin

∏m
l=1(1− is

Zl
)/∏n

k=1(1− is
Pk

) to flap motions for generating the aimed wave. The filter H(s)
determined by the complex poles Pk and complex zeros Zl changes the amplitudes and inserts
phase shifts increasing with radial frequency s (see [Del12]). From measurements it was possible
to compute those complex parameters, called the wave board characteristics, that define the
transfer function.

This thesis uses this process to drive arbitrary analytical wave functions: A Matlab file has
been created which transforms an analytical wave function to a file of wave data points of 25
Hz. We initiate a dummy wave by the standard Bosch software. Then, the related motion data
file of step (2) is replaced by the Matlab produced file. Therefore in step (3) the driving facility
reads the wave data points of our aimed wave function and transfers them to flap kinematics to
produce the targeted wave train. Furthermore, in this way we are also able to write individual
data points for each flap and by that drive every flap individually.

This procedure even allows us to extend the wave tank length artificially. To this end, we
measure the surface motion near the beach (but before affected by reflecting waves) with a
frequency of 25 Hz. These recorded data points are written to a wave motion file. This file
is used to trigger the driving facility of the flaps for the next run. By repeating this process,
we can prolong the wave tank theoretically to an arbitrary length (considering slight wave
dynamics changes due to the retriggering as shown in section 3.2).

All experiments are conducted in deep water conditions (see chapter 2.1), i.e. the water depth
2.4m times the wave number is always much larger than one.

Ultrasound Probes and Vicon System

The Hamburg Ship Model Basin provides two possibilities of measuring the surface motion:

• There are four free movable ultrasound probes. These gauges measure the surface elevation
with ultrasound frequency and return averaged data points of 50 Hz without influencing
the water. The recorded data points are written into a text file which can be analyzed as
explained in chapter 4. The four probes are free to move to arbitrary positions along the
wave tank.

• As a second measuring facility the Hamburg Ship Model Basin has a Vicon system. This
system consists of three tracking cameras, arbitrary positionable float objects, and an
analyzing software. The camera system captures optically the x (direction of tank length),
y (direction of tank width), and z (surface elevation) movements of almost arbitrary many
float objects in an area of 4m x 2m. The Vicon software converts those movements to 50
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Hz data points. With this measurement device, we can capture the surface elevation of
an area of 4m x 2m discretely.

3.2 Driving Uniform Waves, NLS Breather Solutions and
Arbitrary Directed Sea States

Uniform Wave Train

We take the plane wave solution uNLS = a0e
−

ik2
0a2

0ω0
2 t of the NLS with a0 = 0.02m, k0 = 5 rad

m
,

and ω0 determined by the deep water dispersion relation of first order ω0 =
√
gk0 with g:

gravitational constant (see chapter 4). We drive the flaps in first order with the surface elevation
η(x, t) = Re

{
uNLS(t)ei(k0x−ω0t)

}
at x = 0m.

Figure 3.2: Uniform Wave Driven with Order 1: Wave Record 1m behind flap (blue line)
versus Uniform Wave 1st Order (red dashed line)

Figure 3.2 compares the resulting wave in the wave basin 1m (not even 1 wavelength) after the
flap (blue line) against the theoretical first order driven wave η(1, t) (red dashed line). The
wave record is given by an ultrasound probe. We see some key features:

• The flap driving is started with a smooth transition from no movement to the full amplitude
and phase movement within 5s.

21



3 Producing Waves in the Wave Basin

• This starting process leads naturally to an initial overshooting of the amplitude.

• The comparison of the two waves returns an averaged absolute error
∑N

i=1 |η(1,ti)−f(ti)|
N

[in
m] of 5.5886e−4, with f(t): wave record and ti: N time steps starting at the first peak
after the overshooting crest for in total 50 wave periods. Though the agreement is already
very good, all crests of the measured wave are higher and all troughs flatter than the
theoretical wave. This is the typical nonlinear Stokes behavior (see [Wik17]) occurring
though the flaps are driven in order 1.

• Figure 3.3 compares the measured wave to the theoretical surface elevation η(x = 1, t) =
Re

{
uNLS(t)ei(k0x−ω0t) + 1

2k0|uNLS(t)|2e2i(k0x−ω0t)
}

of order 2. Therefore the crests and
troughs are met better reducing the averaged absolute error to 4.0731e−4. Visually it
is already hard to see a difference between the two wave lines after the overshooting peak.

• If we even drive the flaps by order 2, i.e. η(x = 0, t) =
Re

{
uNLS(t)ei(k0x−ω0t) + 1

2k0|uNLS(t)|2e2i(k0x−ω0t)
}
and compare the resulting wave to the

theoretical wave 1m behind the flap we will reduce the averaged absolute error to 3.5389e−4.

• A comparison to third order or even driving the flaps by the theoretical uniform NLS
solution with order 3 does not reduce significantly the averaged absolute error anymore.

Figure 3.3: Uniform Wave Driven with Order 1: Wave Record 1m behind flap (blue line)
versus Uniform Wave 2nd Order (red dashed line)
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We conclude that the generated wave is close to the theoretically driven wave. For the uniform
NLS wave driving and comparing of order 2 is sufficient and advisable.

The same key features are determined 30m behind the flap. Figure 3.4 compares the theoretical
uniform wave of order 2 against the measured wave driven by order 2. The transition zone from
zero to full movement and the overshooting amplitude grew due to dispersion. The averaged
absolute error after the transition zone is adequate with 3.9478e−4. Furthermore, the dissipation
is not noticeable: The amplitude attenuation of the wave trains in all experiments with regular
wave trains is not measurable or just marginal. However, if we drive an irregular wave field the
dissipation has to be taken into account as we will see in section 6.4 and chapter 7.
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Figure 3.4: Uniform Wave Driven with Order 2: Wave Record 30m behind flap (blue line)
versus Uniform Wave 2nd Order (red dashed line)

Nonlinear Schroedinger Equation Breather Solutions

We drive exemplary the Peregrine Breather solution according to equation (2.9) with first
order driving, i.e. η(x, t) = Re

{
qp(x, t)ei(k0x−ω0t)

}
with a0 = 0.01m, k0 = 7.3 rad

m
, and x =

−17.72m. We measure the highest peak after 27.98m and determine the ’best fit Peregrine
model’ according to chapter 4 which is η(−0.01m, t). Figure 3.5 presents the measured wave
elevation (blue solid line) and the ’best fit Peregrine model’ (red dashed line).

Beside the ’Stokes effect’ of higher crests and flatter troughs of the measured wave we can see
some of the constraints of the Nonlinear Schroedinger equation as described in section 2.1:
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Figure 3.5: Measured Breather Wave driven by η(x = −17.72m, t) after 27.98m in its Max-
imal Peak (blue solid line) compared to the ’Best Fit Peregrine Model’ (red
dashed line)

• Next to the horizontal asymmetry we also see the vertical asymmetry of the wave evolution.
The initially symmetric wave packet evolves partly due to the nonlinear increase of the
group velocity in an asymmetric manner. The NLS Peregrine Breather solution does not
map this.

• Furthermore, we see the frequency down-shifting of the real measured wave near its max-
imal peak. The NLS does not account for this.

• In addition, the maximal peak of the extreme wave is overestimated by the Peregrine
Breather model. Hence, the theoretical freak index of AI = 3 reduces to AI = 2.4. This
effect depends on the initial steepness ε0 = a0k0 of the wave as shown in [SA13].

• Moreover, the Peregrine was driven with x = −17.72m and should have its maximum
peak after 17.72m consequently. Yet, its maximal peak evolves after 27.98m which is in
agreement with the studies of [SA13]. The spatial locating can be improved by higher
order simulations of the Peregrine Breather model.

Nevertheless, we see the good alignment of the measured wave and the relating theoretical NLS
Peregrine Breather solution. However, to quantify changes by modification of the distortion
term in equation (2.9) and of the carrier wave, we will have to perform high order simulations
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3.2 Driving Uniform Waves, NLS Breather Solutions and Arbitrary Directed Sea States

or execute real wave tank experiments. Yet, we can use the NLS solutions to drive the targeted
wave as the wave field ’adjusts’ quickly to the related high order natural dynamics.

JONSWAP Wave and Extending Wave Tank Artificially

In order to test an arbitrary directed sea state as well as the procedure to extend the wave
tank length artificially (see section 3.1), we drive a wave field simulating a possible North Sea
state according to [HPBB+73]. To this end, we generate a JONSWAP spectrum by the Wave
Analysis for Fatigue and Oceanography (WAFO, based on [HPBB+73]) project: a toolbox
of Matlab routines for statistical analysis and simulation of random waves and random loads
[WAF09]. According to WAFO

’ the JONSWAP spectrum is assumed to be especially suitable for the North Sea [...].
It is a reasonable model for wind generated sea when 3.6

√
Hs < Tp < 5

√
Hs ’

, where Hs is the significant wave height, and Tp the peak wave period. To relate to our
standard experiment cases, we use a significant wave height of Hs = 0.04m, peak wave
period Tp = 2π√

gk
s with k = 5 rad

m
, and peak enhancement factor according to [TFH+84]

γ = e3.484∗(1−0.1975∗D∗T 4
p /(H2

s )) = 1.5729 with D = 0.036 − 0.0056 ∗ Tp/
√
Hs. The related ocean

wave spectra considering 256 wave frequencies is shown in figure 3.6.
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Figure 3.6: JONSWAP Ocean Wave Spectrum with significant wave height of Hs = 0.04m,
peak wave period Tp = 0.89714s, and peak enhancement factor γ = 1.5729.
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Let Sl be the spectral density to the wave frequency ωl, kl the related wave number determined
by the deep water dispersion relation of first order ωl =

√
gkl, dω the step width of the uniform

distributed wave frequencies, and θl ∈ [0; 2π) a random phase offset. We superpose the related
waves by

η(x, t) = Re
{∑

l

(
Ale

i(klx−ωlt−θl) + 1
2klA

2
l e

2i(klx−ωlt−θl)
)}

, with Al =
√
Sl ∗ 2dω (3.1)

or in the sense of the NLS the uniform wave solutions

η(x, t) = Re
{∑

l

(
ul(t)ei(klx−ωlt−θl) + 1

2kl|ul(t)|
2e2i(klx−ωlt−θl)

)}

, where ul(t) =
√
Sl ∗ 2dω e−

ik2
l

√
Sl∗2dω

2
ωl

2 t

(3.2)

η(0, t) gives us an analytical function to drive a wave. Figure 3.7 compares the measured
JONSWAP wave (3.2) 2m behind the flaps against the simulated wave evolution by a High
Order Spectral (HOS) method (see section 4.1). The averaged absolute error is 2.05e−3 which
is 5.1% of the significant wave height Hs. Indeed, in all experiments and HOS simulations of
irregular waves, we could determine an averaged error of roughly 5% of the significant wave
height Hs. Of course, this value is worse than for regular waves. Nevertheless, the main
properties and dynamics of the irregular wave are met, and the averaged error is still small.
We conclude we may even trigger irregular waves with an acceptable accuracy to perform
experiments in arbitrary directed sea states or to extend the wave tank artificially.
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Figure 3.7: Measured JONSWAP wave (blue line) against HOS simulated wave (red dashed
line) 2m behind flap.
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4 Governing Equations and their Use Cases

4.1 Temporal and Spatial versions of NLS, Dysthe, and
NLSType3

As pointed out in chapter 2.1 the Nonlinear Schroedinger Equation (NLS) (2.6) has some
drawbacks. For simulating and analyzing waves, it is in some cases advisable to use higher
order equations and simulation processes than given by the NLS. Following the used equations
and simulation implementations are presented:

Temporal and Spatial Nonlinear Schroedinger Equation

The NLS (2.6) and its spatial analog is used to be able to make a fast and numerical efficient
comparison of a measured and a theoretical wave:

• A ’best fit model’ analysis tool for the NLS to a measured wave is determined by minimizing
the averaged absolute or relative error of the recorded wave to a parametrized theoretical
NLS solution wave (e.g. Peregrine Breather). To this end, an iteration is run over the
parameters wave number, steepness, and either location or time. The averaged absolute
error of each iteration is then found by the sum of absolute errors divided by the number
of compared time steps or spatial steps, respectively.

• A split step ([WH86, Sua15]) based simulation of a given initial wave according to the
2D and 3D NLS has been implemented by Graphics Processing Unit (GPU) Computing
based on CUDA (see [NVI18a]). GPU Computing uses the real parallel nature of graphics
processing to accelerate the computational speed of a simulation as described in [NVI18b].
The standard (temporal) NLS delivers the possibility of time integrating an initial wave
given at a specific time over all spatial dimensions. To be able to evolute numerically a
given wave time series at a specific local point (e.g. wavemaker), we will need a spatial
analog to the temporal NLS. To this end, we adapt a simple, heuristic derivation of the
temporal NLS presented in [Yue91] and [Deb94]. For reasons of clarity and comprehensi-
bility, we present the one spatial dimensional case:
We determine the inverse function of the third order Stokes dispersion relation (see
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[Wik17]) ω =
√
gk + ga2k3 resulting in k(ω, a) and expand the wave number k to sec-

ond order in wave amplitude a and perturbation wave frequency (ω − ω0)

− (k−k0)+ 2k0

ω0
(ω−ω0)+ k0

ω2
0
(ω−ω0)2−k3

0a
2 = O(ap1(ω−ω0)p2), with p1+p2 ≥ 3 (4.1)

Recalling a direct correspondence between the dispersion relation and this equation, the
following associations can be made based on the theories of the Fourier transform: −i(ω−
ω0) → ∂

∂t
, i(k − k0) → ∂

∂x
. Thus, it can be argued that the operator to be applied to the

complex wave envelope function A takes the form

P̂ = i
∂

∂x
+ i

2k0

ω0

∂

∂t
− k0

ω2
∂2

∂t2
− k3

0a
2 (4.2)

Since a = |A|, we obtain a spatial analog to the (temporal) NLS (2.6) for A:

i

(
∂A

∂x
+ 2k0

ω0

∂A

∂t

)
− k0

ω2
∂2A

∂t2
− k3

0|A|2A = 0 (4.3)

A direct derivation of this spatial NLS out of the temporal NLS is presented in [LM85].

The ’best fit Peregrine model’ analysis tool provides a surprisingly useful tool to determine the
distance to the maximum of the growing modulation for regular and irregular waves distorted by
Peregrine type modulations. In addition, the simulation of an initial wave field by the temporal
or spatial NLS can provide the qualitative behavior of a growing instability. However, [SA13]
showed that the NLS forecasts the maximum peak of a Peregrine Breather too early and too
high. And of course, all other limits of the NLS presented in chapter 2.1 have to be taken into
account using these weak nonlinear governing equations.

Dysthe Equations and Third Order NLS Type Equation

If we take in the derivation using (2.3) to (2.5) in chapter 2.1 one more steepness order into
account than in the NLS, we will get the Modified Nonlinear Schroedinger Equations, also
known as Dysthe equations. It is a coupled system of equations which for clarity will be
presented here neglecting the flow direction perpendicular surface space coordinate y according
to [SD08]:

i(∂A
∂t

+ ω0

2k0

∂A

∂x
)− ω0

8k2
0

∂2A

∂x2 −
ω0k

2
0

2 |A|
2A− i ω0

16k3
0

∂3A

∂x3 + i
ω0k0

4 A2∂A
∗

∂x

+i32ω0k0|A|2
∂A

∂x
− k0A

∂φ

∂x

∣∣∣∣∣
z=0

= 0
(4.4)
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∂2φ

∂x2 + ∂2φ

∂z2 = 0 for (−h < z < 0) (4.5)

where A∗ is the complex conjugate of the complex envelope A(x, t), φ(x, z, t) is the potential of
the induced mean current, h is the water depth, and z the (x,y)-perpendicular space coordinate
in the direction of the water depth with z = 0 is the location of the free surface. These equations
may be subjected to the boundary conditions at the free surface and at the bottom:

∂φ

∂z
= ω0

2
∂|A|2

∂x
at (z = 0) (4.6)

∂φ

∂z
= 0 for (z → −∞) (4.7)

It is easily seen that the temporal NLS is recovered from the first four terms of (4.4). A spatial
version of the Dysthe equations is presented in [SD08], too. Nevertheless, the coupled equations
are a bit more complex and thus more time-consuming in simulation and numerical solving
process than the NLS. As the below presented more accurate High Order Spectral Method
(HOS) is highly parallelizable by GPU Computing and therefore already fast in simulation, the
Dysthe equation is more interesting in analyzing the effects of taking one order nonlinearity
more into account in comparison to the NLS. However, for comparing measured waves to
simulated data, the HOS is the more powerful tool.

Therefore a slightly different NLS type equation is derived to combine the simplicity in numer-
ical solving procedures with higher order truncation in steepness. As in the derivation of the
spatial NLS above, we expand the wave frequency ω taking the third order Stokes dispersion
relation ω =

√
gk + ga2k3 with k =

√
k2
x + k2

y. But this time, we expand analog to the Dysthe
equations derivation to third order in wave amplitude a and perturbation wave number:

−(ω − ω0) + ω0

2kx0

(kx − kx0)− ω0

8k2
x0

(kx − kx0)2 + ω0

4k2
x0

k2
y +

ω0k
2
x0

2 a2 + ω0

16k3
x0

(kx − kx0)3

− 3ω0

8k3
x0

k2
y(kx − kx0) + 5

4ω0k0(kx − kx0)a2 = O(ap1(kx − kx0)p2kp3
y ), with p1 + p2 + p3 ≥ 4

(4.8)
Again, we make following associations according to theories of Fourier transform: −i(ω−ω0)→
∂
∂t
, i(kx−kx0)→ ∂

∂x
, i(ky)→ ∂

∂y
. If we apply the resulting operator to the complex wave envelope

A(x,y,t), we will obtain a third order NLS type equation (NLSType3) for A:

i

(
∂A

∂t
+ ω0

2kx0

∂A

∂x
− ω0

16k3
x0

∂3A

∂x3 + 3ω0

8k3
x0

∂3A

∂y2∂x

)
− ω0

8k2
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∂2A

∂x2 + ω0

4k2
x0

∂2A

∂y2 −
ω0k

2
x0

2 |A|2A

+i52ω0kx0|A|2
∂A

∂x
+ i

5
4ω0kx0A

2∂A
∗

∂x
= 0

(4.9)
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Likewise, we can develop a spatial version of this (temporal) NLSType3 equation as for the
NLS (see above). The similarity to the Dysthe equations is apparent, except of the factors in
front of the two last terms and of course the missing potential of the induced mean current.

As Dysthe and the NLSType3 are still developed around a leading wave frequency ω0 and
wave number k0 = (k0, 0)>, both equations are still not capable of non-directed sea states and
wide ranges of frequencies. However, as we take one order in steepness more into account, the
equations are capable of steeper wave evolutions than the NLS.
Furthermore, both equations show a nonlinear dependency of the group velocity to the wave
steepness directly. While the group velocity of the NLS is given by ∂ω

∂kx
evaluated at the

expanding point giving ω0
2kx0

, Dysthe with (4.4) and NLSType3 with (4.9) add a nonlinear
steepness factor to ∂A

∂x
. In fact, the factors of the new nonlinear terms in (4.9) are determined

by ∂3ω
∂kx∂a2 which is interpretable as the change in the group velocity due to changes in the

amplitude a = |A|. This is also self-evident by analyzing the wave number domain step of the
split step method (presented here in one spatial dimension) to solve the NLSType3 equation:

Â(k, ti + 4t2 ) = Â(k, ti)ei
4t
2 (−cgk+cdiffk2−ccurvek3−cnl2k|Â(k,ti)|2) (4.10)

, where Â is the amplitude vector of the discrete Fourier transform of the complex wave envelope
A in the wave number domain specified by the wave vector k. 4t specifies the time step from
ti to ti+1, and cg = ω0

2kx0
, cdiff = ω0

8k2
x0
, ccurve = ω0

16k3
x0
, and cnl2 = 5

4ω0kx0 . While ccurvek3 adds
a fixed velocity depending on the wave numbers, cnl2k|Â(k, ti)|2 is a varying extra velocity
depending on the steepness of the actual wave. Therefore, Dysthe and NLSType3 are capable
of the nonlinear increase in group velocity of steep envelopes and by that also of the frequency
down-shifting presented in chapter 2.1. (The frequency down-shifting may be a persisting
effect which will be only detected in 3D volume models including the potential of the induced
mean current φ(x, z, t); see [HPD99, Tul96]). This may lead to an asymmetric evolution of an
initially symmetric wave packet of which the NLS is not capable. Therefore, both Dysthe and
NLSType3 are capable of determining the location of the maximum peak much more accurate
as the cubic NLS. Exemplary, [SD08] and [SA13] shows these feature differences by comparing
simulations of wave evolutions based on the NLS to the Dysthe equations. Nevertheless, the
NLSType3 lacks the detuning effect and restraining forces due to the spatially differentiated
potential of the induced mean current in the Dysthe equations. [Dys79] argued this detuning
effect leading to a more stable behavior of the modified NLS. Therefore, the NLSType3 is as
accurate as the Dysthe equations in determining the spatial location of the maximum peak but
- in contrast to the Dysthe equations - will still overestimate the amplitude of the maximum
peak in the same way as the NLS.
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4.2 Temporal and Spatial High Order Spectral Method

4.2 Temporal and Spatial High Order Spectral Method

For a high order simulation which is not limited to narrow-band domains and by this neither
to a directed sea state a high order spectral (HOS) method (see [Boy00]) is used. The HOS
simulates an irrotational flow of an incompressible, inviscid fluid. According to section 2.1 we
apply the potential flow theory leading to the Laplace’s equation (2.3) and following [Zak68] the
fully-nonlinear free surface boundary conditions are given by the dynamic boundary condition
(2.4) and the kinematic boundary condition (2.5).

In the most common way of the HOS, the scalar velocity potential function Φ(x, y, z, t) is
Fourier expanded in x and y with time-dependent Fourier coefficients and multiplied real expo-
nential functions in z (see [DBLTF07], for x,y,z: see figure 4.1). This leads to periodic boundary
conditions in x and y and solves (2.3) by construction. For every time step the expansion of
the velocity potential Φ(x, y, z, t∗) (with t∗ is the actual time step) is formed and the verti-
cal derivative ∂Φ

∂z
is determined order-consistently. The two surface quantities ζ(x, y, t∗) and

Φ(x, y, z = ζ, t∗) are then marched in time by an efficient temporal discretization scheme in
which the linear parts of the equations are integrated analytically.

The Ecole Centrale de Nantes has developed a 2D and 3D HOS simulation since 2007 free avail-
able at [Nan18]. As a temporal version, we use the HOS-ocean toolbox ([DBTF16, DBLTF07,
BDTF11]) which simulates the time evolution of an initial given wave field. The spatial version
is given by the numerical wave tank toolbox called the HOS-NWT ([DBTF12]) in which the
spatial evolution of a located wave time series is simulated.

Figure 4.1: Numerical wave tank (left) and wave maker (right) of the HOS-NWT toolbox.

To meet the need of this thesis, the time expensive calculation parts have been changed to a
GPU Computing version to accelerate the simulation. Furthermore, the HOS-NWT transfer
function of the wavemaker to the induced waves in the numerical wave tank has been adapted
to the HSVA facilities. Besides, the possibility of forcing a wave time series in a specific location
of the wave tank without a wave maker transfer function has been added. To complete the
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4 Governing Equations and their Use Cases

simulation possibilities, also a backward spatial evolution of a located wave time series and
a backward time evolution of an initial wave state have been implemented. By this, we can
determine a wave field temporally and spatially before a measured extreme wave.

Figure 4.2: Visual output of the HOS-NWT toolbox:
Wave maker at x=0m and beach with full absorption at x=40m.
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5 Effects of Variations in Peregrine Distortion
Term on Breather Dynamics

The Peregrine Breather solution (2.9) delivers an initial starting point for causing extreme
wave events of predefined shape and location. This chapter presents an experimental study on
the Breather distortion term. [ADA09] proved that the Peregrine Breather is robust against
small perturbations staying spatially and temporal localized, i.e. representing a modified single
steep wave event. Therefore, we question how robust is the growing modulation instability
against perturbations itself? What are the limits? Are we able to modify the distortion term
to get predefined rogue waves of targeted shapes, height, and steepness? To this end, in section
5.1, 5.2, and 5.3 we will determine three parameters of the distortion term to modify the
resulting extreme wave event according to our targeted wave shapes. After that, in section
5.4 we will observe that not the amplitude but the phase modulation is the key feature of the
growing Breather type instability. Hence, it is possible to induce a Breather modulation ’energy
conservatively’ and therefore so to say ’undiscoverable’.

5.1 Controlling the Freak Index and Maximal Steepness by
the Parameter of the Absolute Maximal Value of the
Peregrine Distortion Term

Following we consider the maximal steepness smax = max
i
{Hi

Li
} with i = 1, 2, ...,m and m :

number of crests in time series, Hi is the wave height to the ith wave crest and Li is the related
local wavelength. A wave height is defined as the vertical distance between a wave crest and
the deepest trough preceding or following the crest (see figure 5.1). The local wavelength Li is
determined by the related local wave period Tlocal of the ith crest by the deep water dispersion
relation ω =

√
gk.

Hint: We use the steepness definition s = H
L

depending on the wave height and wavelength
instead of ε = ak = a2π

L
to be more accurate in the term ’steepness’. However, both quantities

are linked by H ≈ 2a, i.e. sπ ≈ ε.
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5 Effects of Variations in Peregrine Distortion Term on Breather Dynamics

Figure 5.1: Visual Explanation of the Wave Height H and the Local Wave Period Tlocal re-
lated to the Peak Crest at Tp.

Furthermore, we consider the freak index AI defined as the quotient of the maximal wave height
Hmax of all considered waves to the significant wave height Hs which is the mean wave height
of the highest third of the waves in a time series. A rogue wave exceeds per definition at least
twice the significant wave height, i.e. AI > 2.

To control the steepness and freak index value, we investigate the theoretically maximal absolute
value of the Peregrine distortion term (at x = 0 and t = 0), i.e. we change the factor Γ in

qp(Γ, x, t) = a0e
−

ik2
0a2

0ω0
2 t ∗

(
1− Γ(1− ik2

0a
2
0ω0t)

1 + [2
√

2k2
0a0(x− cgt)]2 + k4

0a
4
0ω

2
0t

2

)
(5.1)

which recovers the Peregrine Breather solution for qp(Γ = 4, x, t). If we change the value of Γ
we will cause extreme wave events with higher or reduced maximal steepness smax and freak
index AI.

Figure 5.2 illustrates the change in the maximal steepness and freak index for wave tank ex-
periments with a carrier wave of a0 = 0.01m and wave number k0 = 7.3 rad

m
. The maximal wave

steepness in figure 5.2 is normalized by the experimentally determined wave breaking threshold
steepness 0.142. This value is in agreement with the wave breaking threshold for unidirectional
waves in [TBOW10]. Likewise, the freak index is normalized by the maximal experimentally
measured freak index AImax = 5.3 on the chosen carrier wave while changing Γ.
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5.1 Controlling the Freak Index and Maximal Steepness by the Parameter of the Absolute Maximal Value of the Peregrine Distortion Term

Figure 5.2: Experimental Parameter Study on Γ for carrier wave with a0 = 0.01m and wave
number k0 = 7.3 rad

m
:

Maximal Steepness smax = max
i
{Hi

Li
} (red stars) normalized by wave breaking

limit 0.142
Freak Index AI = Hmax

Hs
(blue open circles) normalized by AImax = 5.3

By varying the parameter Γ we detect a way to control the maximal steepness of the extreme
wave events in the experiments. It is possible to increase the maximal steepness until the wave
breaking limit of s = 0.142 for Γ = 5.2. On the other hand, a reduction of the Peregrine value of
Γ causes a reduced maximal steepness. A further reduction below Γ = 2.72 will even suppress
the distortion, i.e. there is no breathing modulation or growing instability anymore.
The same way the freak index is controllable. Considering the carrier wave with a0 = 0.01m
and wave number k0 = 7.3 rad

m
the maximal reached freak index in the experiments is 5.3.

It is remarkable that the same behavior is observed for negative values of Γ also, though
the range of values leading to a non-breaking breathing modulation is much smaller (Γ ∈
[−3.2;−1.71]). Moreover, in all our related experiments and simulations the maximal and
minimal value of Γ leading to a non breaking breathing modulation are connected by the
theoretical maximal absolute distortion value q0

dist(Γ) := | qp(Γ,x=0,t=0)
a0

|:
The maximal positive value of Γ before wave breaking is 5.2 leading to a maximal absolute
distortion value of q0

dist(5.2) = 4.2. On the other hand, the minimal Γ value before wave
breaking is −3.2 leading to a maximal absolute distortion value of q0

dist(−3.2) = 4.2 which is
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5 Effects of Variations in Peregrine Distortion Term on Breather Dynamics

the same value as for the positive range. However, this symmetry is not detectable for the non
breathing modulation thresholds: q0

dist(2.72) = 1.72 6= q0
dist(−1.71) = 2.71.

Qualitatively, these observations hold for any regular carrier wave in our experiments and sim-
ulations. However, quantitatively the behavior changes. Figure 5.3 presents the experimental
study on Γ for a less steep carrier wave with a0 = 0.01m and wave number k0 = 5.0 rad

m
.

Figure 5.3: Experimental Parameter Study on Γ for carrier wave with a0 = 0.01m and wave
number k0 = 5.0 rad

m
:

Maximal Steepness smax = max
i
{Hi

Li
} (red stars) normalized by wave breaking

limit 0.142
Freak Index AI = Hmax

Hs
(blue open circles) normalized by AImax = 6.4

The maximal wave steepness smax before wave breaking and the minimal wave steepness to
cause a breathing modulation are the same, i.e. 0.142 and 0.039 respectively. Also, the width
of the positive and negative Γ ranges causing non-breaking breathing modulations are alike.
However, the ranges are shifted to bigger absolute numbers of Γ (Γ ∈ {[−3.7;−2.2]∪ [3.2; 5.7]}).
But again, the maximal and minimal value of Γ leading to a non breaking breathing modulation
are connected by the theoretical maximal absolute distortion value q0

dist(Γ): q0
dist(5.7) = 4.7 =

q0
dist(−3.7). Like in the former case, this symmetry is not detectable for the non breathing
modulation thresholds: q0

dist(3.2) = 2.2 6= q0
dist(−2.2) = 3.2.

The maximal freak index AImax is raised to 6.4, i.e. the maximal wave height Hmax exceeds
the significant wave height Hs by 6.4. In all our experiments we observed that the less steep
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5.2 Controlling the Number of Waves in a Steep Wave Event by the Wave Steepness

the carrier wave is, the higher is the maximal possible freak index AImax before wave breaking.
This is in agreement with [CLSY81] who proves a higher growth rate of an unstable modulation
the smaller the carrier wave steepness is. In contrast, the freak wave probability indicator for
long crested wave fields (like in our experiments) called Benjamin-Feir index will not forecast
these possible ’super freak waves’ for small steepnesses as the index is proportional to the mean
wave steepness:

IBF =
√

2 εmean
4ω/ωp

(5.2)

, with εmean = arms∗kp: mean wave steepness as the product of the root mean-square amplitude
and the peak wave number, 4ω: spectral bandwidth, and ωp: peak wave frequency. IBF is
normalized here by the factor

√
2 such that a random (long crested) wave train is (said to be)

unstable if IBF > 1 (see [GT07]).

In the other direction, the restabilization of the system for sufficient high values of the steepness
mentioned in [CLSY81] is of interest for simulations only as the given stabilization threshold
value of ε0 = a0k0 > 0.5rad corresponds to s0 = H0

L0
> 0.159 (H0 : wave height of carrier

wave, L0 : wavelength of carrier wave) which is bigger than the wave breaking threshold s =
0.142 for unidirectional real wave dynamics anyways and even almost the value of the wave
breaking threshold for arbitrary sea states of εwave breaking = (a0k0)wave breaking ≥ 0.55rad which
corresponds to swave breaking = (H0

L0
)wave breaking ≥ 0.175 (see [TBOW10]).

5.2 Controlling the Number of Waves in a Steep Wave
Event by the Wave Steepness

To control the number of the waves in the steep wave event and to motivate the following
section 5.3, we follow [HPD99] and investigate the steepness of the carrier wave, i.e.

qp(ε0, x, t) = a0e
−

iε2
0ω0
2 t ∗

(
1− 4(1− iε2

0ω0t)
1 + [2

√
2ε0k0(x− cgt)]2 + ε4

0ω
2
0t

2

)
(5.3)

, with steepness ε0 = a0k0. This is not a change in the distortion term, solely. However, its
effect is to reduce the affected area of the (still) uniform carrier wave by the perturbation.
Recalling figure 2.2 to mind as the absolute value of the complex envelope of the analytical
Peregrine Breather solution (5.3) of the NLS, ε0 includes without limitation the control of the
number of waves of the related surface elevation in the distortion area.
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5 Effects of Variations in Peregrine Distortion Term on Breather Dynamics

Figure 5.4 shows four measured Peregrine waves in their maximal peaks with ε0 = 0.06rad,
ε0 = 0.073rad, ε0 = 0.1rad, and ε0 = 0.112rad, respectively.

Figure 5.4: Experimental Parameter Study on ε0 [rad]

It is easy to see from (5.3) that the less steep the carrier wave is, the more waves are included
in the ’significant’ distortion area leading to steep wave events with more included waves higher
than the significant wave height. In figure 5.4 the number of waves in the steep wave event
rises from four waves for ε0 = 0.06rad to three waves with less and less high neighboring waves
(ε0 = 0.073rad and ε0 = 0.01rad) to two waves for ε0 = 0.112rad. The maximal local wave
steepness in case of ε0 = 0.112rad is smax = 0.14, i.e. close to wave breaking. It is possible
to go even further and reduce the number of waves higher than Hs to a single wave only, but
this leads to a slightly breaking freak wave with foam which is not measurable adequately with
the ultrasound probes. Therefore, a picture of an experiment with this so-called ’White Wall’
event for a carrier wave with ε0 = 0.12rad is presented in figure 5.5. It is a very steep wave
with white capping followed by a deep trough. An interesting fact is that this slightly wave
breaking seems to stabilize the steep wave event leading to a qualitatively longer time period
of the maximal wave peak. This effect has to be analyzed further in proceeding experiments.
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5.2 Controlling the Number of Waves in a Steep Wave Event by the Wave Steepness

Figure 5.5: ’White Wall’ event for Peregrine Breather with Carrier Wave of ε0 = 0.12rad

Another typical eyewitness report is the case of the ’Three Sisters’: Three high waves succeeding
one another with narrow troughs preventing the buoyancy for ships which will be overrun by
the second or latest third wave, therefore. This event may relate to the three waves in figure
5.4 with a carrier wave of ε0 = 0.073rad.

It is to underline that the number of high waves in the steep wave event relates to the steepness
ε0 of the carrier wave and not to the amplitude a0 or the wave number k0 only. A change in
the wave amplitude or wave number does not change the qualitative behavior of the freak wave
event if the steepness is constant.

To quantify the change of the steep wave event (SWE) by changing the steepness ε0 we measure
the surface of the freak wave, i.e.

ASWE =
tright∑
tleft

|η(ti)|∆t
Hs/2

tleft : first ti with |η(ti)| > Hs/2 in SWE, tright : last ti with |η(ti)| > Hs/2 in SWE
(5.4)

, with η(ti) is the surface elevation to the ith sampling time ti and ∆t = 1/fUltrasound Probe the
reciprocal of the ultrasound probe sampling rate. Exemplary, figure 5.6 presents the surface
elevation considered in ASWE by the dashed red line.

Figure 5.7 shows the experimentally determined steep wave event surface ASWE for different
carrier wave steepnesses ε0. Analogously to the four pictured waves in figure 5.4, we see that
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Figure 5.6: Explanation of ASWE: Considered Surface Elevation (dashed red line)
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Figure 5.7: Experimental Parameter Study on ε0: ASWE against carrier wave steepness ε0
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5.3 Relocating of the Maximal Wave Peak by theWave Number of the Peregrine Distortion Term

the number of waves measured by the surface of the rogue wave event reduces more and more.
Therefore, the steepness parameter ε0 of the carrier wave is an easy way to control the number
of waves in the steep wave event.

The problem remains that this is not a change in the distortion term, solely. If the carrier
wave has a given, fixed steepness or if it is even an arbitrary directed sea state, we can not use
this parameter. Furthermore, the steepness influences the effect of the Γ shaping parameter of
section 5.1. Therefore, we will determine a similar, but distortion term only shaping parameter
in the following section.

5.3 Relocating of the Maximal Wave Peak by the Wave
Number of the Peregrine Distortion Term

Next, we question if we can produce phenomena like White Walls without changing the steep-
ness of the carrier wave and if we can increase freak indexes and maximal steepnesses without
changing the maximal value of the Peregrine distortion term. Furthermore, we like to control
the range widths of reduced wave amplitudes before and after the steep wave event. To this
end, we investigate the wave number k1 in the Peregrine distortion term, i.e.

qp(k1, x, t) = a0e
−

ik2
0a2

0ω0
2 t ∗

(
1− 4(1− ik2

1a
2
0ω1t)

1 + [2
√

2k2
1a0(x− cg1t)]2 + k4

1a
4
0ω

2
1t

2

)
(5.5)

with ω1(k1) =
√
gk1 according to the dispersion relation, and cg1 = ω1

2k1
. qp(k1 = k0) recovers

the Peregrine Breather solution. By changing the value of k1, we change the wavelength and
by that the steepness value of the distortion term only. This allows us to shift the maximum
peak of the steep wave event in time within the distortion area (figure 5.8) or even into the
domain of the not amplitude reduced uniform carrier wave (figure 5.9). In this manner, we may
increase the maximal peak, change the amplitude reduced range width, and produce different
wave shapes like a White Wall.

Figure 5.8 pictures two steep wave events in their maximal peaks for different k1 values (carrier
wave with a0 = 0.02m and k0 = 5 rad

m
). We see that the number of waves in the non-uniform

wave range remains but the maximal peak is shifted for k1 = 0.5k0. By this we prolong the
reduced amplitude range behind the peak, increase the freak index AI from 2.31 to 3.32 as well
as the maximal wave steepness smax from 0.0882 to 0.1133. Furthermore, the rogue wave shape
for k1 = 0.5k0 looks similar to figure 5.4 in case of ε0 = 0.112rad, i.e. a White Wall.
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Figure 5.8: Experimental Parameter Study on k1: Two Examples

Analogously, we can increase k1 so that k1 > k0. In that case, the peak is shifted to the right
on the time axis prolonging the reduced amplitude range width in front of the peak.
For the experimentally analyzed modulation instabilities it exists a threshold number ϑε0 ∈
{R|ϑε0 > 1} depending on the steepness ε0 of the carrier wave. In case of k1

k0
6∈ [1/ϑε0 ;ϑε0 ],

there is no amplitude reduced range in front (ϑε0k1 < k0) or behind (k1 > ϑε0k0) the maximal
peak, but we introduce a triangle shape of the wave envelope from the maximal peak to the
persisting reduced amplitude area. Figure 5.9 pictures two steep wave events in their maximal
peaks with carrier wave amplitude a0 = 0.01m and wave number k0 = 7.3 rad

m
. In case of

k1 = 3k0, there is no reduced amplitude area behind the peak but a prolonged one before the
peak. Furthermore, due to the case of ’entering’ the uniform wave train, a triangle envelope
shape between reduced amplitude area and the maximal peak occurs. The freak index AI is
increased from 2.64 to 4.28 as well as the maximal wave steepness smax from 0.068 to 0.1125.

In the experiments, the behavior of k1 = ck0 with c ∈ {R|c > 1} is qualitatively symmetric to
k1 = 1

c
k0 in the sense of the maximal peak is shifted in the same way to the right (for k1 > k0)

as to the left (for k1 < k0) on the time axis. Quantitatively, this is shown in figure 5.11 which
presents the experiments qp(k1 = ck0, x, t) on carrier waves with ε0 = 0.073rad (blue stars) and
ε0 = 0.1rad (red open circles). To be able to quantify the changes in the reduced amplitude
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5.3 Relocating of the Maximal Wave Peak by theWave Number of the Peregrine Distortion Term

Figure 5.9: Experimental Parameter Study on k1: Two Examples

area widths we introduce the surfaces of the reduced amplitude areas before and behind the
maximal peak of the steep wave event, i.e.

AbeforePeak =
tright1∑
tleft1

|η(ti)|dt
Hs/2

tleft1 : first ti with ’is local extremum’ and |η(ti)| < 0.85Hs/2
tright1 : first ti > tleft1 with |η(ti)| > 0.9Hs/2

(5.6)

and AafterPeak analogously, whereby the values 0.85 and 0.9 are chosen as experienced values.
Exemplary, figure 5.10 presents the contours of both surfaces visually. We take the value of
n1( AafterPeak

AbeforePeak
) where n1 indicates the normalization of the surface quotient for k1 = k0.

As already seen in figure 5.8 and 5.9 the surface of the reduced amplitude area before the
maximal peak decreases for k1 < k0 and increases for k1 > k0. In the opposite way the area of
the reduced amplitude after the maximal peak is controllable. The thresholds to terminate the
reduced amplitude areas are ϑ0.073 = 2.41 and ϑ0.1 = 2.7. The values AafterPeak

AbeforePeak
for c = 1

ϑε0
are

not displayed in figure 5.11 as AafterPeak
AbeforePeak

→∞ for c→ 1
ϑε0

.

It has not been analyzed yet whether the connection of the thresholds terminating the reduced
amplitude areas before (k1 < 1

ϑε0
) and behind the maximal peak (k1 > ϑε0) for the cases

ε0 = 0.073 and ε0 = 0.1 are always reciprocal values for ε0 6∈ {0.073, 0.1}.

As an explanation of the k1 parameter effect, we may interpret the Breather dynamic as the
nonlinear interactions of an envelope soliton with a background plane wave (see [KPS09b]).
Therefore, the change of the wave number k1 (and by this the change of the ’group velocity’
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Figure 5.10: Visual Explanation of Included Sampling Points in AbeforePeak and AafterPeak
(red dashed line)

of the distortion) can be also interpreted as the modification of the soliton velocity leading to
the described dynamics. Furthermore, the soliton interacts with more or fewer waves. Thus, a
simulation and comparison of solitons with different velocities on plane waves is envisaged in
proceeding studies.

5.4 Pure Phase Modulated Rogue Waves and Their
Dynamics

Next, we question whether the amplitude and phase modulation of the Peregrine distortion term
is both necessary to cause a Breather dynamic or if the phase or amplitude modulation solely
is sufficient to provoke a growing modulation instability. In case of the pure phase modulation,
we would be able to induce Breather dynamics ’energy conservatively’ and therefore so to say
’undiscoverable’. To this end, we define the pure phase modulated Breather

qphase(x, t) = a0
qp(x, t)
|qp(x, t)|

(5.7)

with qp(x, t) according to (2.9).
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Figure 5.11: n1( AafterPeak
AbeforePeak

) versus Factor c in qp(k1 = ck0, x, t) for a carrier wave with ε0 =
0.073 (blue stars) and a carrier wave with ε0 = 0.1 (red open circles)

In figure 5.12 we present the order 1 flap triggering of qphase for a carrier wave of a0 = 0.02m
and k0 = 5 rad

m
(blue solid line) and the carrier wave without distortion (red dashed line).

Indeed, this leads to a Breather dynamic as shown in figure 5.15, whereas

• x is the direction of the propagation.

• The measurements to x = 50m and x = 80m are done by an artificially extending of the
wave tank. For this purpose, the recorded surface elevation in x = 40m is retriggerred
into the wave flaps in a separate experiment (see section 3.2).

Of course, we have to analyze whether this effect is mainly a dispersive focusing dynamic
rather than a nonlinear modulation instability. If we plot the local wavelengths over the time
of qphase(x = flap position, t) relating to figure 5.12 we see that shorter waves are followed by
longer waves which looks like a upcoming dispersive focusing process. Figure 5.13 pictures the
local wavelengths of the flap triggering by determining numerically the local wave periods Tlocal
leading to the local wavelengths by Llocal = T 2

localg

2π (with g : gravitational acceleration) according
to the dispersion relation of first order.

However, if we plot the local wavelengths for different locations (see figure 5.14) we see that
the ’potential of the dispersive effect’ grows and the wave length modulation area is almost
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Figure 5.12: Flap Triggering: Pure Phase Modulated Breather (blue solid line) against Car-
rier Wave (red dashed line); both Driven with Order 1

20 25 30 35 40 45
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

time [s]

lo
ca

l w
av

e 
le

ng
th

s 
[m

]

Figure 5.13: Local Wavelengths over Time for qphase(x = flap position, t)
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constant until the maximal peak at x = 26m. (Hint: The vibrating of the local wavelength in
the picture of x = 26m right in front of the peak is a numerical effect of the very small wave
hook right in front of the peak in figure 5.15.) Hence, the nonlinear effects of the Peregrine
model phase modulation do not only suppress the dispersive effects but also raise the ’dispersive
potential’.

Figure 5.14: Local Wavelengths over Time for qphase(x = flap position, t) (stars in blue) and
Different Measurement Locations (red open circles)
Hint: Wavelengths for Measurement Locations are Shifted in Time for Better
Comparison

This is a nonlinear effect as the short waves have not been ’overrun’ by the long waves, the
width of the distortion area is constant until the maximal peak. To validate this, we simulated
qphase(x = flap position, t) in a linear and nonlinear Schroedinger equation. The simulations
showed that the peak rising due to the dispersive effect would need much longer: The emergence
of the maximal peak due to dispersive focusing needs 6.73 times longer than the emergence in
the nonlinear case. Actually, the linear Schroedinger equation has no quantifiable amplitude
increase at the location of the maximal nonlinear peak. Furthermore, the linear Schroedinger
equation forecasts a freak index of AI = 1.2 in its (much later occurring) maximal peak while
the nonlinear peak has AI = 2.665 in the simulation and AI = 2.1 in the real wave tank
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experiment. Therefore, the pure phase modulated Breather is (mainly) driven by nonlinear
effects.

However, right behind the location of the maximal peak (x = 26m) the dispersive focusing
starts to act (see figure 5.14), the smaller and longer wavelengths are no longer in balance so
that a wave is ’dispersed’ in the others which may higher/stabilize the remaining waves and
the peak for a longer distance before the dispersion leads to a decaying of the peak.

It should be mentioned that the evolution of the local wavelengths in different locations are
qualitatively the same for the standard Peregrine Breather, though the Peregrine Breather has
already its maximal wavelength and the ’dispersed’ wave fully developed in its peak while the
pure phase modulated Breather is still in the process of a growing maximal wavelength and
of dispersing a wave after its peak. This may imply a higher maximal wave peak in case of
the amplitude and phase modulation but a longer ’peak survival’ in case of the pure phase
modulated Breather which will be seen in the wave evolution analysis below, indeed.

Besides, already in x = 34m, we can see some additional very small wavelength outliers. These
slight outliers will persist, drive apart, and get smaller and smaller until just a slight ’pumping’
remains (see figure 5.15 for x = 80m) which we also notice in the Peregrine Breather dynamic.
This may be minor unstable Stokes waves according to Benjamin-Feir (see [BF67, BF72])
leading to quasiperiodic slight pumping wave modulations.

If we have a deeper look to the evolution of the pure phase modulated Breather in figure 5.15,
we see that the Breather evolution is qualitatively similar to the related standard Peregrine
Breather. The rogue wave occurs, breaths once, has three waves in its steep wave event, and
remains with a slight wave ’pumping’ after decaying.
However, there are also differences to the related standard Peregrine Breather dynamic, of
course. First of all, the freak index AI = 2.1 of the maximal peak reached at x = 26m is much
smaller which will be affiliated with the missing amplitude distortion. However, sections 5.1
and 5.3 gives us parameters to allow us to increase the freak index and maximal steepness.

Another change in the dynamic is how fast the peak rises to its maximum. While the related
standard Peregrine qp(xflaps, t) (with xflaps < 0 theoretical position of the flaps before the
maximal peak at x = 0) for a0 = 0.02m and k0 = 5 rad

m
for the smallest possible initial modula-

tion with experimentally resulting Breather dynamic (xflaps := xmin) needs 65.12m (after 51.82
wavelengths) to reach its final peak, the related pure phase modulated Breather reaches its max-
imal peak already at x = 26m (after 20.69 wavelengths) as if it had been driven with a much
higher initial modulation, i.e. qphase(xmin+∆x, t). The pure phase modulated Breather behaves
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5.4 Pure Phase Modulated Rogue Waves and Their Dynamics

Figure 5.15: Pure Phase Modulated Breather Measured in Different Locations

here like a Peregrine Breather on a much steeper carrier wave (ε0 = 0.1rad→ ε̂0 = 0.1337rad).
However, this has to be quantified still in proceeding studies.

On the other hand, the peak ’survives’ in the pure phase modulated Breather much longer than
in the related Peregrine Breather. If we compare the spatial range width of all x with a peak
of at least 90% of the maximal rogue peak, i.e. all x ∈ {x∗|maxt η(x∗, t) ≥ 0.9 ∗maxx,t η(x, t)},
we will see that for the related standard Peregrine Breather the width is 10.38m while for the
pure phase modulated Breather the width is 20m (for all x ∈ [14m; 34m]). This is almost
double as long as for the related standard Peregrine Breather or in terms of the wavelength:
The related standard Peregrine Breather has a peak of at least 90% of the maximal peak for
8.26 wavelengths while the pure phase modulated Breather can keep this high peak for 15.916
wavelengths. Therefore, the pure phase modulated Breather behaves like a Peregrine Breather
on a much less steep carrier wave (ε0 = 0.1→ ε̂0 = 0.0805).

As described above, it could be suggested that a dispersive focusing after the maximal peak
stabilize the pure phase modulated Breather in its high peak distance. Anyway, the quanti-
tative differences of the local wavelengths over time in different spatial positions between the
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pure phase modulated Breather and the related Peregrine Breathers will have to be analyzed
further in proceeding studies to determine whether this explanation is a complete answer to
the occurrence of a longer ’high peak life’.

Both effects of rising faster to the maximal peak and ’surviving’ longer in its high peak combined
with the control parameters of section 5.1 and 5.3 enable steep wave events with even more
risks to marine structures than the standard Peregrine Breather.
The possibility of combining the control parameters with the pure phase modulated Breather
has been proven by experiments on carrier waves of ε0 = 0.1rad and ε0 = 0.073rad but has
to be still quantified in processing studies. Especially, that the parameter Γ (see section 5.1)
increases the maximal peak is surprising as the factor mainly amplify the amplitude modulation
which does not work for a pure phase modulated Peregrine. But if we compare the pure phase
modulated Breather with Γ = 4 and Γ = 5 in figure 5.16 and 5.17 we see that the area of
distortion is widened, though not amplified. But the widened distortion relates to the behavior
of a less steep carrier wave (see section 5.2) which may cause higher growth rates of the unstable
modulation according to [CLSY81]. Even if this has still to be validated and deeper analyzed
the wider area of distortion indicates an increased modulation.
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Figure 5.16: Flap Triggering: qphase(Γ = 4, x = flap position, t) (red dashed line) against
qphase(Γ = 5, x = flap position, t) (blue solid line)
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Figure 5.17: Local Wavelength over Time for qphase(Γ = 4, x = flap position, t) (blue stars)
and qphase(Γ = 5, x = flap position, t) (red open circles)

Pure Amplitude Distortion
It seems natural to question whether a pure amplitude distortion is also able to cause a growing
modulation instability. Therefore, we define

qamplitudeV1(x, t) = |qp(x, t)| (5.8)

, with qp(x, t) according to (2.9) and

qamplitudeV2(x, t) = a0e
−

ik2
0a2

0ω0
2 t

∣∣∣∣∣
(

1− 4(1− ik2
0a

2
0ω0t)

1 + [2
√

2k2
0a0(x− cgt)]2 + k4

0a
4
0ω

2
0t

2

) ∣∣∣∣∣ (5.9)

Driving the flaps with η(x, t) = Re
{
qamplitudeVi(x, t)ei(k0x−ω0t)

}
or η(x, t) =

Re
{
qamplitudeVi(x, t)ei(k0x−ω0t) + 1

2k0|qamplitudeVi(x, t)|2e2i(k0x−ω0t)
}
, i ∈ {1, 2} will not cause

a Breather dynamic. Even high driven modulations with η(x∗, t), x∗ ≈ −5 ∗
wave length of carrier wave do not lead to an increasing peak but the modulation dis-
perse in time and space. Therefore, the phase modulation is the key feature of the Peregrine
Breather distortion term and is even sufficient to cause a growing modulation instability solely.
This will be reasoned and further analyzed in chapter 6.
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6 Experimental Study on Robustness of Breather
Dynamic to Changes in the Carrier Wave

One of the striking differences of the so far analyzed Breather dynamics to real freak waves is
the carrier wave: Up to now, we have assumed them to be uniform. But a natural sea state is
at least slightly aperiodic or even irregular and turbulent. Furthermore, natural directed sea
states have not uniform crested waves, but its crests also change in the perpendicular direction
of the mean wave propagation. [ADA09], [CHB+13] and [DT99] analyzed the robustness of
the Peregrine model to initial small perturbations and forcing wind. The results show the
persistence of the Breather evolution dynamics.

Therefore, in this chapter, we analyze whether it is possible to change the carrier wave in a
designated forced way with a persisting predefined localized Breather dynamic. To this end, we
will analyze a smooth phase shift (section 6.1) and a smooth amplitude shift (section 6.2) over
time in the carrier wave of the standard Peregrine Breather model as well as the combination
of both, phase and amplitude shift (section 6.3) as a feasibility study of the robustness of the
growing modulation instability injected by the Peregrine distortion term. This will lead to a
fundamental prerequisite of the carrier wave for injecting a growing modulation instability by
the (modified) Peregrine Breather distortion term.

With this knowledge combined with the studies of chapter 5 we will be able to inject a Breather
dynamic on an arbitrary directed carrier wave modulated by the JONSWAP spectrum and
compare the results to real occurred extreme waves and even indicate a forecast model for this
type of nonlinear rogue waves (section 6.4).
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6.1 Robustness of Peregrine Breather Dynamics to Phase
Shifts in the Carrier Wave

First, we analyze whether it is possible to change the phase of the carrier wave, i.e. an ’energy
conservatively’ change of the carrier wave. [CHA12] has already shown that by changing the
carrier wave by an angle of φ = π we cause - instead of a high peak - a rogue wave hole:

ηhole(x, t) = Re
{
qp(x, t)(x, t)ei(k0x−ω0t)eiφ

}
with φ = π (6.1)

which is also interpretable as the change of the sign in the distortion term of qp(x, t) according to
(2.9). Actually, in all experiments, this angle change led always to an ’upside down’ qualitatively
behavior of the related Breather with angle φ = 0. Also, all other φ did not destroy the Breather
dynamic which will be comprehensible after the following analysis.

For a feasibility study of changing the carrier wave by a temporal phase shift without losing
the Breather dynamic, we define a smooth phase change transition of the carrier wave directly
in the Peregrine distortion domain:

ηφ(φ, n, x, t) = Re
{
qp(x, t)ei(k0x−ω0t)e

i

(
(1+tanh

3(t−tpeak)
nT0

)φ
)}

(6.2)

, with tpeak is the time point of the maximal peak of qp(x, t), T0 is the period of the carrier
wave, and n ∈ R is a parameter to control the width of the phase shift.

Figure 6.1 shows a flap driving of ηφ(π4 , 1,−40.865, t) (blue solid line) for a0 = 0.02m and k0 =
5 rad
m

compared with the related standard Peregrine Breather ηp without phase shift in the carrier
wave (red dashed line) and the resulting phase shift over time Φ(t) =

(
(1 + tanh 3(t−tpeak)

nT0
)φ
)
.

Neither the HOS-NWT simulations (see section 4.2) nor the experiment can identify a Breather
dynamic. Even if we trigger the flaps with a already high developed distortion, i.e. ηφ(π4 , 1,−5∗
wavelengths, t) or with different parameters φ or n, a Breather dynamic is not detectable as
long as the phase shift is ’noticeable’ (n << ∞, φ > 0) in the distortion area. Limits of this
’noticeable’ have not been analyzed yet.

The destroying of the Breather dynamic is not surprising as the crucial instability modulation
of the Peregrine Breather distortion is the phase modulation (see section 5.4). If we just change
the phase by a constant phase over all time like in [CHA12], the Breather dynamic is persistent.
But a change of the phase distortion by a phase shift Φ(t) changing in time destroys the growing
modulation instability feature of the Breather dynamic and results in a decaying behavior, only.
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Figure 6.1: Flap Driving ηφ(π4 , 1,−40.865, t) (blue solid line) compared to the Related Pere-
grine Breather ηp without Phase Shift in Carrier Wave (red dashed line), and
resulting Phase Shift over Time Φ(t) (cyan solid line)

In this sense, the temporal phase shifted Stokes wave is a dispersive wave group leading to a
detuning effect of the Peregrine distortion term. If we drive the Stokes wave with the temporal
phase shift solely, i.e.

StokesWaveφ(φ = π

4 , n = 1, x = −40.865, t) = Re
{
ei(k0x−ω0t)e

i

(
(1+tanh

3(t−tpeak)
nT0

)φ
)}

(6.3)

, we can picture the local wavelengths over time of different spatial positions. Exemplary, figure
6.2 compares the local wavelengths for two spatial positions with 12m distance to each other.
(The plot for the second spatial position is time-shifted for better comparison.)

We see that this ’carrier wave’ has a dispersive wave group in the area of the targeted Breather
distortion injection: The phase shift distortion width increases and the local wavelength in
here decreases in space. This dispersive wave group will detune the phase modulation of the
Breather perturbation and therefore prevent a Breather dynamic. Calling section 5.4 to mind,
this is not surprising as the phase modulation of the Peregrine distortion is the key feature to
cause a growing modulation instability. Therefore, also a temporal phase shift not exactly at
the maximal distortion peak will destroy the Breather dynamic. Nevertheless, the limits of a
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Figure 6.2: Measured Local Wavelengths of StokesWaveφ for a position x∗ (blue stars) and
a position 12m further on in the wave tank (red open circles)

maximal possible phase shift without suppressing the growing modulation instability have to
be determined in further studies still.

6.2 Breather Dynamics on Amplitude Shifted Carrier Waves

If the key feature of the Peregrine Breather distortion is the phase modulation (see section 5.4),
we question if it is possible to perform an amplitude shift in the carrier wave without losing the
Breather dynamic. To this end, we define a smooth amplitude transition of the carrier wave
directly in the Peregrine distortion domain:

ηδA(δA, n, x, t) = Re
{

(a0 + ∆A(t))qpnorm(x, t)ei(k0x−ω0t)
}

∆A(t) = δA

2

(
1 + tanh 3(t− tpeak)

nT0

) (6.4)

, with tpeak is the time of the maximal peak of qpnorm(x, t) = qp(x,t)
a0

, T0 is the period of the
carrier wave, and n ∈ R is a parameter to control the width of the amplitude shift.

Figure 6.3 shows a flap driving of ηδA(0.0037, 1,−40.865, t) (blue solid line) for a0 = 0.01m and
k0 = 7.3 rad

m
compared to the related standard Peregrine Breather ηp without amplitude shift
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in the carrier wave (red dashed line) and the resulting amplitude shift ∆A(t) over time. Like
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Figure 6.3: Flap Driving ηδA(0.0037, 1,−40.865, t) (blue solid line) compared with Related
Peregrine Breather ηp without Amplitude Shift in the Carrier Wave (red dashed
line), and resulting Amplitude Shift over Time ∆A(t) (cyan solid line)

this, the carrier wave of ηδA increases its steepness from ε0 = 0.073rad to ε0 = 0.1rad.

If we measure the surface elevation after 64.57m behind the flap (done by artificially prolonging
the wave tank; see section 3.2) we see that the Breather dynamic occurs (figure 6.4; blue solid
line). Actually, at this spatial position, we measure the highest peak of the amplitude shifted
Breather. The peak has a freak index of AIε0=0.073 = 3.505 relating to the carrier wave with
steepness ε0 = 0.073 and a freak index of AIε0=0.01 = 2.61 relating to the carrier wave with
steepness ε0 = 0.01.

Furthermore, figure 6.4 pictures the measurement of a stokes wave (driven in order 1; red dashed
line) with the related amplitude shift solely, i.e. the measurement at x = 64.57m for the flap
triggering

StokesWaveδA(δA, n, x, t) = Re
{

(a0 + ∆A(t))ei(k0x−ω0t)
}

(6.5)

, with δA = 0.0037, n = 1, x = −40.865. If we compare the measured surface elevation with ηδA
(blue solid line) we will see that the Breather distortion changes the dynamics in a localized
area. Though the shape of the maximal steep wave event is changed by the amplitude shift,
we see the persistence of the Breather dynamic.
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Figure 6.4: Measurement of ηδA in Maximal Occurring Peak (blue solid line) and Amplitude
Shifted Stokes Wave at the Same Position (red dashed line)

Hints:

• The temporal amplitude shifted carrier wave does not add any dispersive effects of first
order as an amplitude shift does not change the wavelengths / phases.

• So, the analysis of the local wavelengths of ηδA over time in different spatial locations
determines a constant temporal width in all x until the spatial position of the maximal
Breather peak.

• If we consider higher order dispersion relations like ω =
√
gk + ga2k3 and the group

velocity cg = ∂ω
∂k
, the phase velocity cp = 2cg, as well as the Taylor series derivation of

the NLS according to [Deb94] (the factor in front of the diffusive term ∂2a
∂x2 correlates to

∂2ω
∂k2 , the factor of the ’nonlinear amplitude dispersion’ |a|2a correlates to ∂ω

∂|a|2 ), we realize
that the amplitude is taken into account only in higher orders, e.g. an amplitude shift
in a may lead to (additional) dispersion but ’just in higher orders’. This is the reason,
why smooth amplitude shifts (or even a forced constant wave height according to the pure
phase modulated rogue waves of section 5.4) preserve and phase shifts destroy the growing
modulation instability in simulations and wave tank experiments.

• Hint: The ’2π phase loop’ in the distortion area of figure 6.4 is typical for the perturbation
in qp in (2.9).
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6.3 Phase and Amplitude Shifted Breather Dynamics

This feasibility study of changing the carrier wave of the Peregrine solution by a temporal
amplitude shift without losing the Breather dynamic can be executed successfully for different
n and δA. Likewise, the change from a higher amplitude to a reduced one does not suppress the
growing modulation instability. Also, a temporal amplitude shift not exactly at the maximal
distortion peak will preserve the Breather dynamic. Hence, a smooth amplitude change of the
carrier wave does not destroy the Breather dynamic though it changes its shape and peak height
(freak index and steepness). To quantify these changes and limits more experiments will have
to be executed in further studies.

6.3 Phase and Amplitude Shifted Breather Dynamics

We saw in section 6.1 that a temporal phase shift of the carrier wave may destroy a growing
modulation instability. However, a moderate amplitude shift in the carrier wave of a Breather
in the area of the distortion will keep the growing modulation instability, though it will change
the shape of the steep wave event. Therefore, we question whether it is possible to combine an
amplitude with a phase shift in time so that they ’balance’ the dispersive and detuning effect of
the phase shift on the one hand, and maybe even stabilize the steep wave event shape relating
to the corresponding standard Peregrine Breather. For that reason, we define an amplitude
and phase shifted Breather according to

ηa(t)(δA, n, x, t) = Re
{
a(t)e−

ik2
0a(t)2ω0

2 t ∗
(

1− 4(1− ik2
0a(t)2ω0t)

1 + [2
√

2k2
0a(t)(x− cgt)]2 + k4

0a(t)4ω2
0t

2

)
ei(k0x−ω0t)

}

a(t) = a0 + δA

2

(
1 + tanh 3(t− tpeak)

nT0

)
(6.6)

, with the same parameters as in section 6.2. This leads to a smooth amplitude and phase shift
transition in the main peak of the related standard Peregrine Breather ηp. In figure 6.5 we see
the flap driving of ηa(t) (blue solid line) for a0 = 0.01m and k0 = 7.3 rad

m
compared to the related

Peregrine Breather ηp without amplitude and phase shifts (red dashed line) as well as the time
depending amplitude change ∆A(t) = a(t)− a0 (cyan solid line). The amplitude as well as the
related phase shift to the standard Peregrine Breather is visible though cannot be interpreted
as a change in the carrier wave only.

If we measure the surface elevation in its maximal peak behind the flap, we picture the steep
wave event (figure 6.6; blue solid line). The shape, maximal steepness, and freak index is very
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Figure 6.5: Flap Driving ηa(t)(0.0037, 1,−40.865, t) (blue solid line) compared with Related
Peregrine Breather ηp without Shifts in Carrier Wave (red dashed line), and
∆A(t) = a(t)− a0 over Time (cyan solid line)

close to the related Peregrine Breather with ε = 0.073rad (red dashed line), but the frequency
down-shifting is much higher after the peak.

Therefore, in figure 6.7 we compare the amplitude and phase shifted Breather ηa(t) (blue solid
line) with the related Peregrine Breather with ε = 0.1rad ≈ (0.01m+ δA) ∗ 7.3 rad

m
(red dashed

line). This time we see the difference in the shape of the steep wave event (freak index,
maximal steepness) but we realize the almost equivalent phase behavior in time. Therefore, the
amplitude and phase shifted Breather ηa(t) behaves like a combination of the related Peregrine
Breathers with ε = 0.073rad (for the steep wave event shape) and ε = 0.1rad for the phase
behavior in time (e.g. frequency down-shifting).

If we change a(t) to shifting from the higher amplitude to the smaller, the resulting Breather
behaves in the opposite way: It behaves in the steep wave shape (freak index, maximal local
wave steepness) like the related Peregrine Breather with ε = 0.1rad and phase-wise like the
related Peregrine Breather with ε = 0.073rad. In the end, this enables us to combine several
Peregrine models to one extreme wave event.

Again, this feasibility study can be executed without losing the Breather dynamics and even the
freak wave shape for different n and δA. So, a smooth amplitude change in the whole Peregrine
Breather (2.9) leading to a combined temporal amplitude and phase shift does not destroy the
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ηp with ε0 = 0.073rad (red dashed line)
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Breather dynamic but even retain its shape (freak index and maximal local steepness) and
frequency down-shifting properties. However, the limits have to be quantified in proceeding
studies still.

Yet, it is interesting that this specific temporal phase shift does not prevent the Breather
dynamic and does not even change the Breather peak shape. A look to the wavelengths over
time measured in different spatial positions shows that the distortion width is despite the
extra phase modulation constant until the maximal rogue wave peak. Furthermore, the phases
behave almost like the related Peregrine with ε = 0.1rad as also seen in figure 6.7 who is also
’non-dispersive’ until its maximal peak. We conclude that a temporal phase shift may be stable
with respect to the growing modulation instability if it is performed with a balancing temporal
amplitude shift. This ’balancing’ is defined by the Peregrine perturbation term.

Therefore a non-dispersive carrier wave group or at least a non-dispersive distortion area after
the modulation with the (modified) Peregrine perturbation term is the fundamental prerequisite
to preserve this growing modulation instability and is the proof of the nonlinear effects. The
limits of this ’non-dispersive wave group’ (necessary number of proceeding waves with the same
phase, possible phase perturbation until growing instability modulation is prevented) has still to
be determined by further studies but the following section 6.4 will give a guidance for injecting
a steep wave event by the (modified) Peregrine Breather perturbation even in irregular carrier
waves, i.e. in arbitrary directed sea states.

6.4 Using an Arbitrary Directed Sea State as Carrier Wave
for the Breather Dynamic

Following, we will show how to inject a nonlinear Breather dynamic in an arbitrary directed
sea state by the results from the sections and chapters before. To this end, we will first recap
the basic idea of a JONSWAP spectrum to simulate an irregular directed wave field (subsection
6.4.1). This wave field is then taken as the carrier wave which will be disturbed according to
the Peregrine Breather to cause a steep wave event (subsection 6.4.2). To classify how realistic
this nonlinear rogue waves in real oceans are, we proceed with a comparison to real occurred
freak waves and even indicate a reverse engineering and a new forecast model of/for this type
of nonlinear rogue waves in subsection 6.4.3.
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6.4 Using an Arbitrary Directed Sea State as Carrier Wave for the Breather Dynamic

6.4.1 JONSWAP: A Simulated North Sea

In order to use an arbitrary directed sea state as carrier wave we produce a wave field simulating
a possible North Sea state according to [HPBB+73]. We recap section 3.2 shortly:

First, we generate a JONSWAP spectrum by the Wave Analysis for Fatigue and Oceanography
(WAFO, based on [HPBB+73]) project: a toolbox of Matlab routines for statistical analysis
and simulation of random waves and random loads [WAF09]. According to WAFO

’ the JONSWAP spectrum is assumed to be especially suitable for the North Sea [...].
It is a reasonable model for wind generated sea when 3.6

√
Hs < Tp < 5

√
Hs ’

, where Hs is the significant wave height, and Tp the peak wave period. To relate to our
standard experiment cases, we use a significant wave height of Hs = 0.04m, peak wave
period Tp = 2π√

gk
s with k = 5 rad

m
, and peak enhancement factor according to [TFH+84]

γ = e3.484∗(1−0.1975∗D∗T 4
p /(H2

s )) = 1.5729 with D = 0.036 − 0.0056 ∗ Tp/
√
Hs. The related ocean

wave spectra considering 256 wave frequencies is shown in figure 6.8.
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Figure 6.8: JONSWAP Ocean Wave Spectrum with significant wave height of Hs = 0.04m,
peak wave period Tp = 0.89714s, and peak enhancement factor γ = 1.5729.

Let Sl be the spectral density to the wave frequency ωl, kl the related wave number determined
by the deep water dispersion relation of first order ωl =

√
gkl, dω the step width of the uniform
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distributed wave frequencies, and θl ∈ [0; 2π) a random phase offset. We superpose the related
waves by

ηJONSWAP(x, t) = Re
{∑

l

(
Ale

i(klx−ωlt−θl) + 1
2klA

2
l e

2i(klx−ωlt−θl)
)}

, with Al =
√
Sl ∗ 2dω (6.7)

or in the sense of the NLS the uniform wave solutions

ηJONSWAP(x, t) = Re
{∑

l

(
ul(t)ei(klx−ωlt−θl) + 1

2kl|ul(t)|
2e2i(klx−ωlt−θl)

)}

, where ul(t) =
√
Sl ∗ 2dω e−

ik2
l

√
Sl∗2dω

2
ωl

2 t

(6.8)

ηJONSWAP(0, t) gives us an analytical function to drive a wave train in the wave tank with an
averaged error about roughly 5%.

6.4.2 Causing a Rogue Wave in the JONSWAP Wave by the Peregrine
Distortion Term

The natural first try to inject a Breather dynamic into the JONSWAP sea state is to multiply
the Peregrine distortion term to the analytical JONSWAP wave, i.e.

ηdist(x, t, ad, ωd) = Re
η̂JONSWAP ∗

1− 4(1− ik2
da

2
dωdt)

1 + [2
√

2k2
dad(x− ωd

2kd
t)]2 + k4

da
4
dω

2
dt

2

 (6.9)

, with η̂JONSWAP is the complex version of (6.7) or (6.8). If ηJONSWAP is measured and just
available as a real-time series, we apply η̂JONSWAP = H(ηJONSWAP) which indicates the trans-
formation of the time series to an analytical signal by taking the Hilbert transform of the real
part as the imaginary part.

The wave number and wave frequency are linked by kd = ω2
d

g
(g: gravitational constant) ac-

cording to the deep water dispersion relation of first order. Hence, the main question is how to
choose ad and ωd. We have driven experiments with ad = Hs

2 and ωd = 2π
Tp

as well as parameters
according to spectral analysis of the Draupner wave in [ATY+11] who determined a second
peak wave frequency ωsecond = 2π

Tsecond
next to the main frequency of the Draupner wave field

(see figure 6.15). None of the experiments led to a Breather dynamic. Which is understandable
if we recap that the phase distortion of the Peregrine perturbation is the crucial property to
inject a growing instability modulation. The arbitrary wave field destroys the phase shape of
the perturbation and by that suppresses the Breather dynamic.
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If the Peregrine distortion is multiplied to the wave field so that the main distortion acts on an
’almost regular wave group’, the Breather dynamic occurs in our experiments if driven with an
already highly developed modulation, i.e. ηdist(x = −5 ∗main wavelength = −5T

2
p g

2π , t,
Hs

2 ,
2π
Tp

).
Though interesting, this case limits the injection to an ’almost regular wave area’ (which cor-
relates mainly to the phase regularity as we will see below) and to unrealistic high injection
modulations. However, it intuits the way to inject a Breather dynamic in an arbitrary directed
sea state with the knowledge of the preceding chapters and sections:

We take the JONSWAP wave at the spatial position of injecting a Breather modulation (e.g.
flap position). Then we decide for a wave area which should evolute a freak wave and determine
its main roots for as many waves as manipulated by the Peregrine distortion term comparing

ηp(xflap, t) = Re
{
qp(x, t)ei(k0x−ω0t)

}
and ηuniform(xflap, t) = Re

{
a0e
−

ik2
0a2

0ω0
2 tei(k0x−ω0t)

}
accord-

ing to section 2.2. Figure 6.9 visualize this process.
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Figure 6.9: Main Roots (blue dots) of JONSWAP Wave (red solid line) of Addressed Area;
Shifted in Time to have Targeted Rogue Wave Area at t = 0s

After that, we calculate the averaged wave period Taver and stretch/condense the time axis of
the chosen waves locally to get waves with equal wave periods (see figure 6.10). By this, we
will get a wave area which has equalized phases (time periods). Therefore, a multiplication
of the Peregrine phase distortion keeps the necessary phase modulation to initiate a Breather
dynamic. The amplitudes are not the key feature of the perturbation and even amplitude shifts
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Figure 6.10: JONSWAP with temporally Uniform Wave Area (blue solid line) and related
JONSWAP Wave (red dashed line)

in time do not destroy the growing instability according to section 6.2. Though in this case, the
amplitude changes in the periodic uniform wave area are severe, the run HOS-NWT simulations
showed that even these heavily amplitude changes do not suppress the Breather dynamic (but
can cause formative modification of the steep wave event shape, of course).

In concrete terms, we multiply the Peregrine distortion term to the uniformed wave area, i.e.

ηuni-dist(xflap, t) = Re
η̂JONSWAP uniform(xflap, t) ∗

1− 4(1− ik2
da

2
dωdt)

1 + [2
√

2k2
dad(x− ωd

2kd
t)]2 + k4

da
4
dω

2
dt

2


(6.10)

, with η̂JONSWAP uniform is the complex version of the JONSWAP wave ηJONSWAP uniform phase-
uniformed in the chosen temporal area. Furthermore, ωd = 2π

Taver
, kd = ω2

d

g
, and ad = Hs

2 or if
this leads to a too steep breaking wave ad = εaimed

kd
.

Figure 6.11 compares the initial JONSWAP wave field to the distorted one for a Peregrine
modulation with x = −40.865. Also the pure phase modulation according to section 5.4 is
applicable (and will lead to the qualitatively same wave evolution).

In the end, this whole process of injecting a distortion to the JONSWAP wave field is just
a phase modulation (with an associated amplitude modulation if the pure phase modulation
according to section 5.4 is not taken) of an existing localized wave group. This modulated
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Figure 6.11: JONSWAP with Distortion (blue solid line) and related JONSWAP Wave (red
dashed line)

JONSWAP wave will evolute a rogue wave in the targeted wave area. Figure 6.12 shows a
HOS-NWT simulation of the JONSWAP with distortion in its uniformed wave area (blue solid
line) in its maximal peak and the related, original JONSWAP wave (red dashed line) at the
same spatial position.

ηuni-dist has a maximal freak index of AImax = 2.23. Before and after the distortion area the
waves of ηuni-dist and ηJONSWAP are very similar. If we compare figure 6.9 with figure 6.12 we
realize that the distortion area width has almost not changed until the spatial position of the
maximal peak. Its width is nearly constant: An indicator for a nonlinear, non-dispersive effect.

Figure 6.13 presents the HOS-NWT simulation of the distorted JONSWAP ηuni-dist (blue solid
line) and the related JONSWAP ηJONSWAP (red dashed line) in different spatial positions x∗.
We see that the temporal distortion width (indicated by the two vertical blue lines) stays
almost constant until the maximal peak in x∗ = 18.42m. This is in agreement with studies
of [AT14] who showed a local reduction of the dispersive effects for nonlinear rogue waves
in irregular, directed sea states. They simulated rogue waves with linear, weakly and fully
nonlinear potential solvers and concluded that ’the difference in the shape of the wave group
under nonlinear evolution is dramatic’ leading to more localized and less spread rogue waves
with longer spatial durability. Though the steep wave event has already a freak index of
AI > 2 two meters before and behind the maximal peak, the increasing and decreasing is
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Figure 6.12: JONSWAP with Distortion (blue solid line) in its Maximal Peak x∗ = 18.42m
and related JONSWAP Wave (red dashed line) at the Same Spatial Position

faster than for the standard Peregrine Breather and in the experiments of the previous sections
and chapters (see section 5.4). Again, this is in agreement with [AT14] who proves a much
faster development of the maximal peak and shorter durability of rogue waves in the presence
of irregular sea states comparing to uniform, unidirectional carrier waves. Nevertheless, the
durability is higher than in weakly nonlinear simulations. However, this dynamic change has
to be quantified still, especially in real wave tank experiments.

As expected, the distortion area grows after the maximal peak due to predominant dispersive
effects until the distortion ’get lost’ in the irregular JONSWAP wave leading to isolated phase
shifts (blue circles and blue box) which will disperse more and more from each other. This may
refer to the ’wave pumping’ for a Breather with a uniform carrier wave (see section 5.4).

As already mentioned also the pure phase distortion will lead to a Breather dynamic as well
as the use of the modification parameters of chapter 5. Nevertheless, further studies should be
performed to

• quantify the change of the Breather dynamic for changes of the distortion term according
to the parameters of chapter 5 and the pure phase modulated growing instability/ies.
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Figure 6.13: JONSWAP with Distortion (blue solid line) and related JONSWAP Wave (red
dashed line) in Different Locations (HOS-NWT Simulation)

• measure the impact of the irregular carrier wave to the steep wave event shape and qual-
itative behavior. Does the Breather dynamic occur on every irregular carrier wave by the
described injection? What about JONSWAP spectra with different parameters?

• analyze whether the perturbation according to section 6.3 may enable (more) form stable
Breather dynamics and maybe even deal with not uniformed irregular carrier waves. A
time-varying of ω(t) and k(t) in the distortion term could be needed, too.

• check whether the Breather dynamic occurs for all kd > kp, kd < kp, and kd = kp.
Simulations for all three cases of kd have been performed and delivered a Breather dynamic
always. However, there will be limits to kd as it defines the steepness (wave breaking)
and the ’energy’ of the modulation. So [Dui99] argued that a ’Benjamin Feir instability
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is depressed when the local wave group velocity [ of the instability ] increases and is
intensified when the group velocity [ of the carrier wave ] becomes smaller.’

However, this injection of a growing modulation instability is promising and - as shown in the
next subsection - may provide an explanation of the many real ocean rogue waves which are
not explainable (see section 1.1) by linear theory.

6.4.3 Reference to Real Extreme Waves

The injection of a Breather dynamic by the process described in subsection 6.4.2 is a phase
modulation (with an associated amplitude modulation if the pure phase modulation according
to section 5.4 is not taken) of an existing localized wave group, in the end. This specific
phase property may occur by external wind forces, currents, or just by statistical coincidence.
[Alb78, AS78, FBL+16] argue that typical, measured sea wave parameters result in stable (and
due to dispersed waves in the swell area outside of the fetch slightly regular) wave trains which
are the base of the here presented Breather distortion. Even crossing seas are known to build
such localized stable wave packets (see [AT14]). By all means, it does not seem unrealistic that
these phase property may be formed in an oceanic wave field now and then. This may answer
some of the hundreds of times more arising rogue waves in the world oceans than forecasted
by the linear theory and its statistics ([Mor04, Sta04, For03]). Therefore, we will compare the
created Breather wave of subsection 6.4.2 to the Draupner wave ([Hav04]) and try to analyze
whether this steep wave event is explainable by the nonlinear injection according to equation
(6.10), now.

Comparing the Time Series and Spectra of the Draupner Wave

[WTT04] realized that the Draupner rogue wave (see figure 1.1) is unusually steep and its
wavelengths in the peak, as well as the troughs, are short followed and preceded by longer waves.
Furthermore, the whole extreme wave looks lifted. A linear rogue wave would rather either have
a ’set-down’ of the extreme wave or at least direct troughs with low frequency, i.e. with long
wavelengths. [ATY+11] analyzed the Draupner extreme wave further. They realized that the
spectra with and without the Draupner wave area have a prominent difference: The spectrum
including the steep wave event has a second peak at frequency fp2 next to the main peak at fp.
[WTT04] and [ATY+11] conclude that this is the result of ’two wave-groups crossing, whose
mean wave directions were separated by about 90◦ or more’ so that ’the nonlinear interactions
between the two systems becomes negligible.’
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Another explanation delivers us subsection 6.4.2. The typical Breather shape (see e.g. figure
3.5) is steep, has troughs and a peak of short wavelengths compared with the longer preceding
and following waves due to the frequency down-shifting effect. Furthermore, the absolute peak
amplitude is much higher than the troughs ones. This may explain the observed unusual
properties of the Draupner Wave by [WTT04].

For explaining the spectral characteristics found by [ATY+11], we compare the spectrum of the
HOS-NWT simulation of ηuni-dist (blue solid line) and ηJONSWAP (red dashed line) from figure
6.13 one meter behind the flap (x∗ = 1.0m) in figure 6.14. The spectra are realized by taking
the times series and adding the Hilbert transform of the time series as the imaginary part
of the signal. This constructed analytical signal has no negative frequencies in its spectrum.
Then a Fourier transformation and a transformation according to formula (3.1) is processed
and averaged over ten consecutively wave frequencies.
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Figure 6.14: Spectra of ηuni-dist (blue solid line) and ηJONSWAP (red dashed line) One Meter
Behind the Flap

We see that the surface below the curves is almost the same (’energy’ of the wave field), but
the disturbed JONSWAP spectrum is increased in the main wave frequency and has a close
second peak. These enhancements are explainable due to the described injection process: The
uniformed wave group has - in this case - a slightly shorter wavelength Laver than the main
frequency one. In addition, the phase perturbation of the Peregrine distortion term leads to a
wavelength change of Laver as we can see in figure 5.12 and even more evident in figure 5.13.
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The uniformed, shorter waves and the modulated decreased wavelength waves reason the second
peak and the modulated increased wavelength waves reason the emphasized main spectral peak.
Furthermore, a third high-frequency peak is visible. This peak may be explained by the sever
amplitude differences in the uniformed wave area. The spectral decomposition needs high-
frequency waves to project this.

Exactly these three peaks are spotted by [SA13] for the standard Peregrine Breather (which
has also sever amplitude changes in the waves around the maximal peak) and by [ATY+11] for
the Draupner wave which is presented in figure 6.15.

Figure 6.15: Spectra of time records containing the Draupner wave. Data are windowed
using a Hann window. The data are smoothed by taking an average over 0.001
Hz to improve the clarity of the longer datasets. Black solid line, 2min dataset;
black dashed line, 5min; grey solid line, 20min dataset; black thin line, 120min
dataset.
All Copyrights belong to [ATY+11].

The spectrum of the HOS-NWT simulation of ηuni-dist and ηJONSWAP of figure 6.13 in the spatial
position of the maximal peak of ηuni-dist (x∗ = 18.42m) is presented in figure 6.16. We see again
that the surfaces below the curves are almost the same, though reduced as a whole due to
dissipation. The two main peaks separated from each other and the second peak is relatively
increased, i.e. some energy is focused in this shorter wavelength. This is the typical dynamic of
a Breather directly visible in the evolution of the wavelengths pictured in figure 5.14 (maximal
peak in x = 26m). (Hint: The increase of the wavelengths in figure 5.14 is not visible in the
spectrum of figure 6.16 as this increase is due to the frequency down-shifting of the uniform
carrier wave. The waves belonging to the wavelengths of the frequency down-shift have small
amplitudes shifting the main spectral peak just a bit to a smaller frequency.) Furthermore, we
do not have the - against the related JONSWAP - emphasized third peak anymore. [Osb10b]
interprets this dissolving of the third peak as a focusing of a second instability in the first
instability while developing the main wave peak. This third peak is still existing in the Draupner
spectra: an indicator that the Draupner wave peak at the measured position was not yet fully
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Figure 6.16: Spectra of ηuni-dist (blue solid line) and ηJONSWAP (red dashed line) in Spatial
Position of Maximal Peak of ηuni-dist

developed, as also determined by the ’best fit Peregrine model’ analysis tool in section 2.2.
Tracking the wave spectra of the HOS simulation of the Draupner Wave ascertains a further
growing of the peak for about one more wavelength.

In addition, if we have a deeper look at the wave periods of figure 2.1, we see that the ’best fit
Peregrine model’ and the Draupner wave have similar wavelengths until the peak and also after
the peak reminding that the constant phase shift is due to the NLS neglected - in irregular wave
fields persistent - frequency down-shift. This disproportionate number of waves with similar
wave periods may - as explained - cause the additionally second peak of the Draupner spectrum
and be the base for the Breather distortion according to subsection 6.4.2.

In the end, the alignment of real rogue waves with the theories (see section 1.2) of linear effects,
crossing seas, and nonlinear effects like the Breather injection due to subsection 6.4.2 can be
performed only, if we get the measured time series of a steep wave event like the Draupner
wave in more spatial positions in and perpendicular to the wave propagation direction added
by local ocean conditions, current strengths, and angular and spectral spread of the sea state.
This has not been available yet.
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Reverse Engineering of Steep Wave Events

The Breather injection process of subsection 6.4.2 also allows us to reverse engineer a real
occurred steep wave event with surrounding waves of nearly equal wavelengths like the Draupner
wave. To this end, we have to determine the theoretical spatial position of the extreme wave
by the ’best fit Peregrine model’ analysis tool as described in section 4.1, first. Then, the
wave frequency of the modulation has to be detected by the above described spectral analysis
and matched to the wavelengths of the surrounding waves of the maximal peak. With this
information we can take out the Breather distortion term according to equation (6.10) (or the
parametrized versions according to chapters 5, 6.2, 6.3) and reverse engineer the real freak
wave.

A new Forecast Model for Nonlinear Rogue Waves

If we compare the Benjamin-Feir index IBF (see section 5.1) for the irregular wave field
ηJONSWAP(xfalp + 1m) created by a JONSWAP spectrum and the distorted JONSWAP wave
ηuni-dist(xfalp + 1m), we will recognize a slightly increased index. In all run simulations this
increase was between 4% and maximal 10%. However, the Benjamin-Feir indexes have always
been around 0.5 and thereby smaller than one. Hence, this indicator index has never forecasted
an unstable wave train or better to say a high probability of a freak wave. And even if, the
Benjamin-Feir index would just predict a freak wave but does not determine the spatial or
temporal localization of the steep wave event anyway.

Hint: The Benjamin-Feir index IBF according to equation (5.2) needs the spectral bandwidth to
be calculated. The width at the half spectral maximum was taken as an estimate of this value
according to [OOS+06]. Furthermore, we counter-checked the values of spectral bandwidth and
IBF with a different way of determination using the spectral moments of the spectra presented
in [KPS09c] and [Del08].

[Cha13] has already mentioned a triangular spectrum as an indicator for an upcoming freak
wave. He even mentioned that the determination of phase-shifts might be used to forecast rogue
waves. This is to underline as the Breather dynamic injected by the process of subsection 6.4.2
is clearly visible in a wavelength plot over time. If we detect a nearly non-dispersive wave
group which can be matched to a uniform wave group distorted according to equation (6.10)
(or its ’shaped’ versions according to chapters 5, 6.2, 6.3), we can not only predict a rogue
wave in the short-term but also forecast the temporal and spatial position of the upcoming
nonlinear Breather freak wave. If we even measure the local wavelengths of that wave group in
two spatial positions, we could determine whether the wavelengths evolute like predicted by the
Peregrine distortion term and the experiments of section 5.4 and therefore will most likely lead
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to an extreme wave. Alternatively, a spectral transportation equation according to the theories
of [GCV56, GCV57, GC53] may forecast the spectral changes of the sea waves. In addition,
the ’best fit (shaped) Peregrine model’ and (GPU computing real-time) HOS simulations with
integrated spectral analysis may support this forecast process as shown in this section.

Since chapter 5 and this chapter prove that the Breather is shapeable, a database of all possible
local wavelength evolutions in time and space leading to Breather freak waves would have to
be built. Then a measured wave could be counter-checked against the database by a cross-
correlation just-in-time leading to a prediction of freak waves and their temporal and spatial
emerge. Buoy data of real rogue waves would help to build up this database and analyze the
reliability of this process. Unfortunately, there are just a few existing time series of such steep
wave events and none of them have a spatial resolution. But the more and more improved
satellites may deliver these data sets soon.
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7 Further Possibilities of Injecting Breather
Dynamics in an Irregular Wave Field

After having presented a way to inject a localized steep wave event and compared it to a real
occurred rogue wave in chapter 6, we will now discuss further possibilities of causing a Breather
dynamic in an irregular wave field briefly.

In section 7.1 we will recap and classify some ways of causing extreme waves in an irregular
wave field of different researchers. In addition, we will present a further way to inject a Breather
dynamic to a directed irregular wave field by the Peregrine distortion term in sections 7.2 and
7.3 which does not require a uniformed wavelength / phase area in the initial carrier wave like
in section 6.4. We will discuss the dynamics and relating spectra of the wave fields.

7.1 Current State of Research

Perturbation to regular carrier wave of Breather wave train

[ADA09], [CHB+13], and [DT99] analyzed the robustness of the Peregrine model driven
Breather wave field η(x, t) = Re

{
qp(x, t)ei(k0x−ω0t)

}
(with qp(x, t) according to equation (2.9))

to initial small perturbations and forcing wind. The results show the persistence of the Breather
evolution dynamics. Of course, by this, the initial uniform carrier wave changes to a slightly ir-
regular wave field. Especially, the wind perturbed Peregrine wave looks like a Breather dynamic
on an arbitrary directed wave field. [CHB+13] even proved the persistence of the characteristic
Peregrine spectrum.

Modifying the JONSWAP spectrum to cause rogue waves most likely

In addition, [OOS02] and [OOSB01] showed that by increasing the enhancement factor γ and
Phillips constant α in the JONSWAP spectrum increases the probability of a freak wave evo-
lution in a related directed wave field. The enhancement factor γ reduces the bandwidth of
the JONSWAP spectrum and by that ’regularizes’ the directed wave field and increases the
mean steepness and Benjamin-Feir index IBF . The Phillips constant α controls the overall
energy in the spectrum and is related to wind speed and fetch length. It is not surprising that
a narrow spectrum with an almost uniformed wave field with some sideband modulations and
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much overall energy may lead to a rogue wave. This is the inherent idea of the Benjamin-Feir
index (5.2) and Benjamin-Feir side-band modulations (see section 2.1). However, this extreme
wave evolution is not locally or temporally predictable and the high values for enhancement
factor (γ > 3.3) and Phillips constant are exceptions to the default values of an oceanic wave
field.

Replacing a part of a JONSWAP generated wave field with a Peregrine Breather wave

[Cha16] replaced a main peak of a JONSWAP generated wave field by a standard Peregrine
Breather η(x, t) = Re

{
qp(x, t)ei(k0x−ω0t)

}
(qp(x, t) according to (2.9)) ten wavelengths before its

maximal peak. Peregrine Breather and JONSWAP had the same frequency and peak frequency,
respectively. Therefore, the wave groups move in the same averaged group velocity. Hence, the
JONSWAP wave field will not propagate into the Peregrine distortion area in the first instance.
But even if, the Breather dynamic is robust against small changes of propagating waves of
the JONSWAP wave field as shown in [ADA09], especially if the Breather instability has been
highly developed already, i.e. has much energy.

Figure 7.1 presents a wave tank experiment of cutting in a Peregrine Breather into a JONSWAP
wave field run in the Hamburg Ship Model Basin. We see that the Breather dynamic occurs
and that the Peregrine driven extreme wave is almost not disturbed. The freak index in the
maximal peak is AI = 2.85. Of course, if we take different group velocities or if we reduce the
time width which belongs to the ’pure Peregrine model’, i.e. taking less uniform waves in front
and behind the maximal distortion of the cut in Peregrine Breather wave, the evolution of the
Peregrine Breather will be more disturbed. In this case, we would need a higher developed
Peregrine in the sense of η(xflap = −some wavelengths, t) as cut in driving time series so that
the Breather is able to ’survive’. For further analysis, we refer to [Cha16].

7.2 Multiplying the Breather Phase Distortion to each
Superposed Wave of the JONSWAP Wave Field

As the JONSWAP wave field (see section 6.4.1, here in order 1)

ηJONSWAP(x, t) = Re
{∑

l

(
Ale

i(klx−ωlt−θl)
)}

, with Al =
√
Sl ∗ 2dω (7.1)

is a wave field created by superposing uniform waves, we question whether it is possible to
provoke a Breather dynamic by disturbing every single wave by the Peregrine distortion term.
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Figure 7.1: JONSWAP wave with Cut In Peregrine Breather (blue solid line) and related
JONSWAP Wave (red dashed line) in Different Locations
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7 Further Possibilities of Injecting Breather Dynamics in an Irregular Wave Field

To keep the modification small we decide to disturb by the pure phase modification according
to section 5.4 first:

ηphasedist(x, t) = Re
{∑

l

(
Ale

i(klx−ωlt−θl)
(

dist(kl, ωl, Al, x, t)
|dist(kl, ωl, Al, x, t)|

))}

, with dist(kl, ωl, Al, x, t) = 1− 4(1− ik2
lA

2
l ωlt)

1 + [2
√

2k2
lAl(x− ωl

2kl
t)]2 + k4

lA
4
l ω

2
l t

2

(7.2)

With this formula we form a Breather wave according to section 5.4 for every considered
spectrum frequency and superpose these single waves to one wave field (here: 256 waves).
Furthermore, we do not have to uniform the wavelengths in the distortion area as done in
section 6.4 but we can use an arbitrary irregular directed wave field right away for injecting
a growing instability modulation. We just need the decomposed wave field into its uniform
spectral waves.

Hint: [KPS09b] shows that the case of interacting breathers which may be called ’multi-
breathers’ ’is sensitive with respect to any kind of perturbation’ and will ’result in chaotic
behavior of the wave modulations’ within the Nonlinear Schroedinger equation. So high or-
der simulations or wave experiments have to be performed to analyze the dynamics of these
disturbed wave fields.

Figure 7.2 presents the driving time series and the measurements of the phase disturbed JON-
SWAP ηphasedist(x, t) and the related JONSWAP wave ηJONSWAP(x, t) in different spatial posi-
tions. The Benjamin-Feir index (calculated according to subsection 6.4.3) of the driving time
series is increased from IBF = 0.4211 to IBF = 0.5310 by the perturbation. However, both
values do not forecast a freak wave.

Already after 5m a focusing in the distortion area (marked by the two vertical red lines) is
seen. Nevertheless, this focusing is different to the Breather dynamics in the previous chapters.
We do not see one dominating wave, but an amplitude increased wave group. This wave group
splits into two at x = 13.645m where we measure the maximal peak of the wave field. The
first amplitude increased wave group stays moderate while the second wave group develops two
high waves with a freak index of AI = 2.83 for its maximal wave. After the maximal peak,
the two wave groups diverge more and more. They will dissolve in the background JONSWAP
wave field, later.

However, we see that the distortion area does not stay localized until the maximal peak of the
Breather dynamic. Dispersive effects extend the distortion area from the start. Interpreting
the wave field as linear superposed phase distorted Breathers of 256 different wavelengths, this
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Figure 7.2: ηphasedist (right pictures) and related JONSWAP Wave ηJONSWAP (left pictures)
in Different Locations. Red Vertical Lines Indicate Distortion Area.
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may not be surprising and explain why the 256 phase distorted Breathers do not superpose to a
giant super freak wave. However, nonlinear effects do not only take place in the 256 superposed
Breathers, but also between the waves as the dynamic evolves two amplitude increased wave
groups. It looks like the injected Breathers focus in two instabilities over time (which is in
agreement with the studies of [Osb10b]).

These two amplitude increased wave groups may be interpreted as a higher-order Breather
according to [LYLG+15], though a second order rational Breather would also develop a third
wave group behind the maximal peak similar to the first wave group. Therefore, in figure 7.3
we picture the wave spectra for the same spatial positions as in figure 7.2 to understand the
dynamics better (determination of the wave spectra: see subsection 6.4.3).

Figure 7.3: Spectra of Driving Time Series of ηphasedist and ηJONSWAP (left upper picture)
and Evolution of Spectra of ηphasedist in Different Locations
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Already in the spectrum of the driving time series we can see two extra spectral peaks if we
compare it to the spectrum of the not perturbed JONSWAP wave field. The 256 superposed
Breathers add up in a way that two wave frequencies are emphasized. The number of extra
spectral peaks depends on the spectrum of the driving time series of the not perturbed JON-
SWAP wave field ηJONSWAP(xflap, t): The small already existing spectral ’hooks’ are increased
by the distortion according to equation (7.2). This depends on the randomly chosen phase off-
sets θl in equation (7.1). First experiments showed that these ’hooks’ also control the number
of amplified wave groups. However, this has to be further analyzed in proceeding studies. Yet,
two additional spectral peaks seem to be the most frequent case.

5m further, the two additional spectral peaks ’gained’ energy due to nonlinear effects. Fur-
thermore, a third spectral peak occurs. In the maximal peak of the ηphasedist spatial evolution
the main spectral peak is increased and has ’absorbed’ (focused energy) the first extra spectral
peak. The two still existing additional spectral peaks get closer to the main spectral frequency
and to each other starting to coalesce. [Osb10b] interprets this coalescing as a focusing and
merging of instabilities, while the lowest instability frequency is always able to focus the most
of the energy on itself. 14.08m behind the location of the maximal peak the additional spectral
peaks have coalesced and moved closer to the main peak. The amplitude amplified wave groups
start to dissolve in the background JONSWAP wave field.

Hence, we may interpret the spectrum evolution as competing growing modulation instabilities
if we compare it to the spectrum evolution of section 6.4.3. This would explain the two ampli-
tude increased wave groups and the big changes of the frequency positions of the two smaller
spectral peaks. This is also investigated in the following section 7.3.

It should be mentioned that the spectra of ηphasedist(x∗ = 5m, t) and ηphasedist(x∗ = 13.645m, t)
are artificially dissipation-exempt by multiplying surface below Spectrum of ηphasedist(xflap,t)

surface below Spectrum of ηphasedist(x∗,t)
. Actually,

the spectrum ’loses’ energy by dissipation which is also seen by the spatial evolution in figure 7.2.
Nevertheless, the perturbation seems to stabilize the wave field in the distortion area. Therefore,
in the lower right picture the spectrum of the related not disturbed JONSWAP ηJONSWAP at
x = 27.725 is presented as well as the not dissipation-exempt spectrum of ηphasedist(27.725m, t).
We see that the overall dissipation had been damped in the breathing JONSWAP.

In the left upper picture of figure 7.3 we also compare the additionally activated wave frequencies
in the driving times series due to the phase distortion: The plotted spectrum is averaged over
ten consecutively wave frequencies. Some of these wave frequencies have a spectral density of
S(w) = 0 or S(w) ≈ 0. These wave frequencies are not activated in the sense that their related
Fourier decomposed amplitude is (almost) zero. The phase distortion leads to additionally
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activated wave frequencies, i.e. wave frequencies whose related amplitudes are not zero anymore.
Some of these additionally activated wave frequencies may act like sideband perturbations
according to Benjamin and Feir (see [BF67, BF72]). This is also discussed in [Osb10b] and
may explain the growing Breathers dynamic and also the segregation of the wave groups into
a series of pulsating wave groups. However, this has to be analyzed further still.

7.3 Multiplying the Breather Distortion to each Superposed
Wave of the JONSWAP Wave Field

We question whether the Breather dynamic changes, if we - in contrast to equation (7.2) -
multiply the full Peregrine distortion to each superposed wave of the JONSWAP wave field, i.e.

ηdist(x, t) = Re
∑

l

Alei(klx−ωlt−θl)

1− 4(1− ik2
lA

2
l ωlt)

1 + [2
√

2k2
lAl(x− ωl

2kl
t)]2 + k4

lA
4
l ω

2
l t

2

 (7.3)

Like this, we superpose phase offset Peregrine Breather waves according to equation (2.9) and
their resulting surface elevation of order one η(x, t) = Re

{
qp(x, t)ei(k0x−ω0t)

}
of different wave

numbers, wave frequencies, and amplitudes.

Figure 7.4 presents the driving time series compared to the related not disturbed JONSWAP
wave as well as their spectra in the upper pictures. We see that the distortion with included
amplitude amplification increased the energy of the spectrum in contrast to the perturbation
(7.2). Furthermore, not the already existing slight hooks of the pure JONSWAP spectrum are
emphasized, but the main peak is increased and split into two peaks. By this, the distortion
increases the wave amplitudes beside the phase changes in the perturbation area. Furthermore,
the Benjamin-Feir index (calculated according to subsection 6.4.3) of the driving time series
is increased from IBF = 0.4211 to IBF = 0.5397 by the perturbation which is slightly higher
than the index of the pure phase disturbed wave field. However, as bandwidth and mean wave
steepness (due to the amplitude amplification) are increased, the values do not differ that much.
Either way, none of the values does forecast a freak wave. Moreover, the additionally activated
wave frequencies as explained in section 7.2 are presented, i.e. wave frequencies whose related
Fourier decomposed wave amplitudes are not zero anymore.
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Figure 7.4: Surface Elevation and Spectra of Driving Time Series of ηdist and ηJONSWAP (up-
per pictures) and Evolution of Surface Elevation and Spectra of ηdist in Different
Locations
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Below the upper pictures of figure 7.4 the evolution of the surface elevation as well as
the wave spectra is shown. These spectra are artificially dissipation-exempt by multiplying
surface below Spectrum of ηdist(xflap,t)
surface below Spectrum of ηdist(x∗,t)

. The surface elevations are measured in separately experiments
so that the time line of the pictures do not correlate to each other.

After 5m we conjecture two focusing wave groups around 80s already. The related spectrum
has two main peaks with almost the same spectral density. A third peak arises which will
move more and more to the second main peak wave frequency and is almost coalesced with it
at x = 12.65m in agreement with [Osb10b] who describes the focusing of instabilities in few
remaining ones during the evolution of freak waves. In this spatial location, the wave field has
its highest peak with a freak index of AI = 3.0229. Compared to the pure phase distortion of
section 7.2 the maximal peak occurs one meter earlier and is higher due to the extra amplitude
amplifying perturbation. The second amplitude increased wave group is clearly separated now
and stays moderate in its elevation.

At x = 27.725m the two coalesced spectral peaks are almost gone and the remaining spectrum
evolutes to an almost standard JONSWAP spectrum beside some small high-frequency peaks.
This is also seen in the surface elevation plot. The two amplitude increased wave groups diverge
more and more and will dissolve in the background wave later.

As in the pure phase modulated version, this may be interpreted as two competing growing
modulation instabilities, of which the one with the lowest frequency will be able to focus the
most energy leading to a extreme wave in the wave field. This ’winning’ low-frequency instability
is in agreement with [Osb10b] who describes the focusing of competing instabilities by inverse
scattering transform analysis. The shift of the energy to the low-frequency spectral peak which
has initially a smaller spectral density than the second peak is striking.

The evolution of the related JONSWAP wave field is not presented here. However, it can be
mentioned that the dispersive effects start right from the beginning as also seen with the pure
phase distortion in section 7.2.

We see that the qualitative behavior of the surface evolution of pure phase distorted JONSWAP
wave field and the full distortion according to the Peregrine Breather wave is similar. Both wave
fields evolute two amplitude amplified wave groups of which one develops a high rogue wave
peak, though none of them has a Benjamin-Feir index forecasting this behavior. Furthermore,
both wave fields raise two persisting additional spectral peaks (again similar to the Draupner
wave spectrum of section 6.4). The low-frequency spectral peak (longer wavelength) focuses
the most energy on itself - even if it has not the highest spectral density initially - causing
an extreme wave and the two other spectral peaks coalesce right behind the maximal peak of
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the wave field. After that, an almost standard JONSWAP spectrum with some small high-
frequency spectral hooks develops. Dissipation and dispersive effects take place right from the
start.

These methods deliver a possibility to inject a Breather dynamic into an arbitrary directed
(JONSWAP) wave field (gained by the decomposition of the wave field into its uniform spectral
waves). Nevertheless, the two amplitude increased wave groups look unusual for naturally
occurring rogue waves. However, beside the more realistic appearing freak wave of section 6.4.2
another Breather dynamic causing perturbation is found showing the importance of nonlinear
effects in explaining the many extreme waves on the world oceans.
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8.1 Summary and Conclusion

This thesis is dedicated to analyzing nonlinear, analytical Breather solutions of the Nonlinear
Schroedinger equation (NLS) to be used to induce spatially and temporally predetermined
rogue waves with realistic properties like shape, height, and steepness occurring in regular and
irregular sea states. To this end, we like to modify the distortion term as well as the carrier
wave of a promising analytical NLS solution to force the targeted rogue wave in an arbitrary
directed sea state. Furthermore, we question if the injection of a Breather dynamic can be
performed ’undiscoverable’ and ’energy conservatively’. This knowledge should even provide a
way to reverse engineer known, real occurred extreme waves and depict a forecast model for
nonlinear steep wave events.

We identified the Peregrine Breather solution to be a promising prototype for nonlinear rogue
waves. After presenting various wave equations and their (graphics processing unit) simulations
we analyzed the limits and by that the use cases of each wave evolution model. These numerical
tools in combination with some depicted analyzing software as well as the reviewed wave tank
facilities at the Hamburg Ship Model Basin provided all needed means to study our objectives.

We modified the Peregrine Breather distortion term to get predefined rogue wave shapes. The
parameter Γ defining the theoretical maximal absolute distortion value delivered an option
to modify the freak index and the maximal steepness of the extreme wave. In addition, we
recapped that the steepness ε0 of the Peregrine Breather model will change the number of
waves in the steep wave event. Therefore, several reported freak wave shapes can be achieved.
Furthermore, we identified the wave number of the perturbation term for relocating the maximal
wave peak of an extreme wave in the times series. By this, we were able to relocate the maximal
peak and to reduce or even cancel the amplitude reduced waves in front or behind the freak
wave peak. All these parameter studies have been quantified and its limits determined for
several carrier waves.

Also, we experimentally showed and reasoned by the higher order dispersion relation and the
NLS summands that the phase modulation of the Peregrine Breather model is the crucial mod-
ulation to cause a nonlinear growing modulation instability. We excluded dispersive effects as
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the reason for the growing Breather dynamic by analyzing the evolution of the local wavelengths
and by comparing nonlinear with linear wave simulations. We saw that the nonlinear effects
of the Peregrine model phase modulation do not only suppress the dispersive effects but also
raise the ’dispersive potential’ until the maximal peak of the growing modulation instability.
Just after the maximal peak the dispersive effects start and may even prolong the extreme
wave event durability. Hence, the rogue wave caused due to pure phase distortion may be more
persevering than the standard Peregrine distortion with amplitude modulation, and it provides
a way to induce a Breather dynamic ’energy conservatively’ and ’undiscoverable’.

After this experimental study on the distortion term of the Peregrine Breather model, we an-
alyzed the robustness of the extreme wave event evolution to changes in the carrier wave. In
agreement with the identification and reasoning of the Peregrine phase modulation as the crucial
perturbation to cause growing Breather instabilities, a temporal phase shift in the distortion
area will lead directly to dispersive effects which destroy the Breather dynamics. However, a
temporal amplitude shift in the distortion will preserve the non-dispersive perturbation area
and will lead to a Breather dynamic. Whereas, a combination of a temporal phase and ampli-
tude shift straight according to the Peregrine distortion term will preserve the non-dispersive
perturbation area and will not destroy the rogue dynamics. The phase shift is balanced by the
amplitude shift. In this case, we recognized a shape and frequency persistence accordingly to
the inherently combined standard Peregrine models.

This gathered knowledge enabled us to inject a Breather dynamic by the Peregrine distortion
term into an arbitrary, directed sea state built by a JONSWAP ocean spectrum. The procedure
is explained and a high order simulation has been presented to show the dynamics of this
induced rogue wave. Again, we saw that the temporal distortion area width was constant until
the maximal peak of the freak wave. After that, the dispersive effects started and the Breather
dissolved in the background irregular wave field.

This new way of inducing a Breather dynamic in an irregular sea state was then compared to
a real occurred rogue wave: the Draupner wave. It was shown that this new Breather injection
could explain the recognized surface elevation properties and spectra evolution. This led us to a
depiction of the reverse engineering of real nonlinear rogue waves in simulations and wave tank
experiments to enable scientists to perform targeted nonlinear wave-structure-experiments and
studies on the extreme wave dynamics. Furthermore, we deduced a possible forecast model for
these nonlinear freak waves and sketched the implementation of such a tool.

As the above described Breather injection needs an area of artificially or randomly gained
regular wavelengths (which is not so unusual due to dispersion and according to some presented
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references), we also presented further possibilities of inducing Breather dynamics to irregular
wave fields. Beside the current state of research, we found the Breather causing distortion
due to multiplying the Peregrine distortion term to every single uniform wave of the spectral
decomposition. This will lead to breathing wave groups of which one develops a freak wave
peak. We compared the Breather evolution to the related not modified irregular wave field and
identified nonlinear as well as linear dispersive effects during the whole wave group evolution.

Therefore, we analyzed the spectral evolution of the disturbed breathing wave field and iden-
tified additional focusing and coalescing spectral peaks as well as an amplification of the main
wave frequency peak. However, in the rogue wave evolution the most energy is focused in
the spectral peak with the lowest frequency even if it has not the highest spectral density ini-
tially. As an explanation of the dynamics, competing growing modulation instabilities as well as
Breathers of higher order and additionally activated wave frequencies behaving like Benjamin-
Feir sideband modulations have been discussed. This Breather injection has been performed
for the pure phase modulation as well as the ’full’ perturbation according to the Peregrine
distortion term. Both modifications have been compared and resulted in qualitatively similar
behaviors in the surface elevation as well as the spectral evolution.

By all this, we were able to achieve our objectives. This improves the analytical, physical
understanding of the nonlinear dynamics of rogue waves and proves that nonlinear effects have
to be taken into account to understand the appearance of rogue waves in the world oceans
and seas, especially to explain the high frequency of extreme surface waves. But most of all it
provides scientists with a box of bricks to reverse engineer known, real steep wave events and
their nonlinear impacts as well as to cause targeted space- and time-located nonlinear breathing
freak wave events in any predefined or random directed sea state. The inducing of a rogue wave
can be done ’undiscoverable’ and ’energy conservatively’ by the pure phase modulation and has
never delivered a wave field with a Benjamin-Feir index bigger than 1, i.e. has never revealed its
rogue wave modulation by the standard freak wave probability index. All these results will help
to investigate the dynamics and potential impacts in experimental, simulative, and analytical
studies and will hopefully lead to improved marine structure designs and a forecast model for
rogue waves.
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8.2 Directions for Future Work

Directly Connected Proceeding Studies

Beside the already in the chapters mentioned limit and quantification studies, also the combi-
nation of Breather shaping (chapter 5) with the injection in irregular wave fields according to
section 6.4 and chapter 7 should be further investigated. Exemplary, we present a JONSWAP
wave field distorted in every single superposed wave according to section 7.3 with an amplified
distortion term according to section 5.1. The resulting measured rogue wave in its maximal
peak is presented in figure 8.1. It has a freak index of AI = 5.76 and breathes in several wave
groups like a high order Breather.

75 80 85 90 95 100 105 110 115

−0.04

−0.02

0

0.02

0.04

0.06

time [s]

su
rf

ac
e 

el
ev

at
io

n 
[m

]

 

 
JONSWAP Wave with H

s
=0.02m Disturbed by Peregrine

Distortion Term with Γ=5.5 in Every Superposed Wave

Figure 8.1: JONSWAP Wave Field with Hs = 0.02m Disturbed by Peregrine Distrotion
Term with Γ = 5.5 in Every Superposed Wave; Freak Index AI = 5.76

Additionally, it should be checked whether it is possible to use the wave number of the distortion
term to enable the propagation of the Breather on smooth water as the relating ’group velocity
of the modulation’ is increased. Furthermore, the additional activated frequencies presented
in chapter 7 should be tracked and analyzed whether they explain the occurring Breather
dynamics. Also to be studied is if all uniform waves of the spectral decomposition of the
wave field have to be disturbed or if less superposed Peregrine waves or even just the spectral
harmonics would be sufficient to cause Breather dynamics. The reverse engineering of a real
rogue wave according to section 6.4 as well as the forecast model should be performed and
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confirmed. Then, with a minimal invasive change of the phases, we even may be able to
suppress evolving rogue waves.

Moreover, a longer durability of the extreme wave event has been noticed for white walls with
white-capping. Furthermore, recursive behavior of the growing modulation instability has been
noticed if the rogue wave broke before reaching its maximal peak. The wave seems to go
back to an earlier state of the growing modulation and raise a high peak again and again. In
numerical simulations, this behavior was even noticed for not breaking waves as if it would
be a time-periodic Kuznetsov-Ma-Breather (see [Ma79, Kuz77]). This should be investigated
further.

All rogue wave injections should also be checked for (highly) directional spread and not directed
sea states as well as for crossing seas known to allow higher wave steepnesses than usually
possible due to wave breaking, and which form localized wave packets due to energy exchange
that are more likely to be unstable to modulations (see [AT14]).

Of course, further analyzing tools like the Hilbert spectrum, auto- and cross-correlation, kurtosis
value, inverse scattering transform analysis, etcetera may provide an improved comprehension
of the underlying dynamics.

But in the end, the alignment of real rogue waves and the theories (see section 1.2) of linear
effects, crossing seas, and nonlinear effects like the Breather injection due to subsection 6.4.2 can
be performed only, if we get the measured time series of a steep wave event like the Draupner
wave in more spatial positions in and perpendicular to the wave propagation direction added
by local ocean conditions, current strengths, and angular and spectral spread of the sea state.
This has not been available yet, though the improved satellites with their Synthetic Aperture
Radar (SAR) systems may deliver more data as good as in situ measurements soon, hopefully.

Transfer to Other Use Cases

Beside the obvious use cases of the results of this thesis, it should also be checked whether the
studies can be used to reduce white signal noise by amplifying the information signal peaks
and reducing the preceding and following signal waves. In this sense, the inducing of Breathers
in an arbitrary directed wave signal could also be used to encode signals as the high peaks are
temporally and spatially localized. Furthermore, the energy focusing of the Breather dynamic
could be used in an energy harvesting setup.

As the NLS is not only limited to gravity deep water waves only but is also a governing equation
in nonlinear optics, quantum mechanics, electrostatic, and electromagnetic physics, it should
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be analyzed whether the improved understanding of nonlinear extreme water waves can be
transfered to other (dispersive and non-dispersive) physical domains, too.

Outlook: Propagation of Modulation Instabilities into Neighboring Wave Domains

Some first studies of wave domains with induced Breather dynamic next to wave domains
without growing modulation instabilities showed the possibility of transferring the Breather
dynamics into the neighboring wave fields. To this end, some wave flaps drove the wave field
with modulation instability, and some drove the related standard wave field or totally different
sea states like smooth water, uniform waves, or different JONSWAP wave fields.

It was determined that the phase difference of the two wave domains defines if and how the
modulation instability can ’infiltrate’ the neighboring wave field. If the wave domain with
Breather dynamic is in phase with the neighboring, not breathing waves, the Breather dynamic
will induce a growing modulation instability and a time-delayed rogue wave occurs. The delay
is proportional to the distance to the wave field with modulation instability. Furthermore, the
maximal peak reduces to the modulation instability with pure phase modulation. This time
delayed Breathers with diagonal arranged maximal peaks leads visually to a ’Kaventsmann’: a
fast, bulky, individual wave which does not follow the mean propagation direction. The higher
the phase difference of the two neighboring wave domains the more peak height reduction and
increased time delays are recognized.

These phenomena could directly relate to the crossing seas theories which may be explained
by the directional propagation of the modulation instability perpendicular to the main wave
propagation. Also colliding Breathers building a Multibreather similar to section 7.2 and 7.3
and in [KPS09b] may occur. In addition, it explains how a ’wall of water’ could occur without
being induced in the wave field along the whole wave crest. So far, this dynamic perpendicular
to the mean wave propagation is rather interpreted as crossing seas with (more than) 90◦ angle
difference.

On the other hand, a phase difference of π will block the propagation of the modulation in-
stability into neighboring wave domains and result in domain walls as described in [TGCH17].
Therefore, we can support or prevent the directional transfer (of the nonlinear modulation in-
stability), i.e. wedge the (Breather) wave group in or even direct it. Nevertheless, all this has
to be analyzed and studied in future works still.
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