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Crystal Plasticity Modeling of Fully Lamellar Titanium Aluminide
Alloys
Jan Eike Schnabel

Abstract

In the present thesis, a thermomechanically coupled, defect density based crystal plasticity
model is presented. This model accounts for the evolution of dislocation densities and twinned
volume fractions on different slip and twinning systems during plastic deformation and ther-
mal recovery. Considering the evolution of dislocation densities and twinned volume fractions
allows a physics based formulation of the work hardening model and enables a physically
meaningful representation of dissipation and stored energy of cold work in the applied ther-
momechanical framework. In the course of this thesis, the presented crystal plasticity model
was applied to investigate several aspects of the plastic deformation behavior of fully lamellar
titanium aluminide alloys. After calibrating the work hardening model to fit experimental
results, it was successfully used to relate specifics of the macroscopic stress-strain response of
fully lamellar titanium aluminides to the work hardening interactions on the microscale. By
combining numerical studies and experimental findings from literature, it was further possible
to identify and consequently model the relative contribution of the different coexisting mi-
crostructural interfaces to the macroscopic yield strength. With this microstructure sensitive
model formulation, the influence of the microstructural parameters on the inhomogeneous
microplasticity of fully lamellar titanium aluminides was studied. Due to its defect density
based formulation, the model enabled trends in the static recovery behavior to be investi-
gated. Finally, the model was extended in order to account for the anomalous dependence of
the yield strength of fully lamellar titanium aluminides on temperature.



Kristallplastizitätsmodellierung lamellarer Titanaluminidlegierungen
Jan Eike Schnabel

Zusammenfassung

In der vorliegenden Arbeit wird ein thermomechanisch gekoppeltes, defektdichtebasiertes
Kristallplastizitätsmodell vorgestellt. Dieses Modell berücksichtigt die Entwicklung von Ver-
setzungsdichten und Zwillingsvolumenfraktionen auf verschiedenen Gleit- und Zwillingssys-
temen in Folge von plastischer Verformung und Erholungsvorgängen. Die Berücksichtigung
von Versetzungsdichten und Zwillingsvolumenfraktionen erlaubt eine physikalisch motivierte
Modellierung des Verfestigungsverhaltens und ermöglicht eine physikalisch sinnvolle Darstel-
lung der Dissipation und der in Form von Defekten im Kristallgitter gespeicherten Energie
im Rahmen der hier angewandten thermomechanischen Modellierung. Im Rahmen dieser
Arbeit wurde das vorgestellte Kristallplastizitätsmodell angewendet um verschiedene As-
pekte des plastischen Verformungsverhaltens lamellarer Titanaluminidlegierungen zu unter-
suchen. Nach der Kalibrierung des Verfestigungsmodells gegen experimentelle Ergebnisse
wurde dieses erfolgreich angewendet um charakteristische Merkmale der makroskopischen
Spannungs-Dehnungsantwort lamellarer Titanaluminide mit den Verfestigungsinteraktionen
auf der Mikroskala in Beziehung zu setzen. Durch die Kombination numerischer Studien
und experimenteller Ergebnisse aus der Literatur war es außerdem möglich den relativen
Beitrag der verschiedenen koexistierenden mikrostrukturellen Grenzflächen zur makroskopis-
chen Fließspannung zu identifizieren und folglich zu modellieren. Mit dieser mikrostruk-
tursensitiven Modellformulierung wurde der Einfluss der mikrostrukturellen Parameter auf
die inhomogene Mikroplastizität von lamellaren Titanaluminiden untersucht. Aufgrund der
defektdichtebasierten Formulierung ermöglichte das Modell die Untersuchung von Trends im
statischen Erholungsverhalten. Schließlich wurde das Modell um die Temperaturanomalie des
Fließpunkts lamellar Titanaluminidlegierungen erweitert.
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1 Introduction and research objectives

The search for new lightweight structural materials for advanced high temperature applica-
tions strongly promoted research on intermetallic aluminide alloys over the last decades [5].
These alloys consist of one or more of the intermetallic phases (hence the attribute inter-
metallic) that occur in the Ni–Al, Ti–Al or Fe–Al phase diagrams for high aluminum contents
of several 10% (hence the name aluminides) [6]. Although nickel aluminides, titanium alu-
minides and iron aluminides each have their own specific properties [5, 6], all intermetallic
aluminide alloys share some common features like, e.g., their beneficial combination of a low
density and promising thermomechanical properties which renders them interesting for high
temperature lightweight applications [5, 7]. On the other hand, intermetallic aluminide al-
loys usually suffer from their inherent brittleness which causes challenges in manufacturing
and thus complicates their implementation to industrial applications [5]. Among the most
prominent intermetallic aluminide material systems – i.e. the mentioned nickel aluminides,
iron aluminides and titanium aluminides – so far only titanium aluminide alloys reached a
sufficient state of development for large scale industrial applications [5–10].

1.1 General introduction to γ based titanium aluminides

Most technically relevant titanium aluminides are two phase alloys that mainly consist of the
intermetallic γ phase (TiAl) but also contain a minor volume fraction of the intermetallic α2
phase (Ti3Al) [11]. These γ based titanium aluminide alloys – in the following simply referred
to as γ TiAl alloys – exhibit compositions in the range of

Ti− (42− 49)Al− (0− 10)X(at.%), (1.1)

where X are ternary alloying elements like, e.g., Cr, Nb, V, Mn, Ta, Mo, W, Si, C and B [11].
Their high aluminum content results in a low density (3.8-4.2 g/cm3) and a good oxidation
resistance [5, 6, 9, 12, 13]. Further, γ TiAl alloys are characterized by a high melting point,
high specific strengths and Young’s modulus, and a (compared to conventional Ti alloys) good
resistance to titanium fire [5, 9, 12]. Figure 1.1 illustrates the specific yield strength of TiAl
alloys over temperature compared to competing structural materials.

1.1.1 Industrial application potential

Due to their comparatively low density paired with good thermomechanical properties, γ TiAl
alloys were early on identified as potential materials to replace titanium (≈ 4.4 g/cm3) and
nickel based alloys (8-8.5 g/cm3) in high temperature lightweight applications, e.g., in turbo
and aero engines. The 1st generation alloys (Ti-48Al-1V-(0.1C) [15]) and 2nd generation alloys
(Ti-(45-48)Al-(1-3)X-(2-5)Y-(<1)Z where X=Cr, Mn, V; Y=Nb, Ta, W, Mo; Z= Si, B, C [9])
were, however, limited to service temperatures of 650◦C–750◦C due to issues with oxidation
[5] and limited creep resistance [9]. With the development of the 3rd generation (i.e. 5-10%
Nb containing) γ TiAl alloys, the service temperature range was further increased, ultimately
paving the way for applications with temperatures of up to 750◦C–850◦C [5, 7, 9, 10, 13].

1



1 Introduction and research objectives

Figure 1.1. Density normalized yield strength of different structural metallic materials as a
function of temperature. Reproduced with permission from [14]. Copyright ©2013 Wiley-VCH
Verlag GmbH & Co. KGaA.

While the recent implementation as structural materials for turbine blades in aircraft engines
probably is the most prominent example of their industrial use1, γ TiAl alloys are suitable for
a variety of other high temperature applications like, e.g., exhaust valves and turbo charger
wheels in combustion engines [6, 8–10, 15, 16] or blade disks and casings in compressors and
turbines of aircraft engines [8].
Compared to conventional materials, γ TiAl alloys have the potential to reduce the weight
of such components by 20–50% [5]. Reducing the weight of components with high rotational
velocities (e.g. turbine blades or turbo charger wheels) or high accelerations (e.g. exhaust
valves) further opens up possibilities for secondary weight reduction in the supporting struc-
ture. Thus, the effective weight saving potential by the implementation of γ TiAl alloys in
such applications is even higher.

1.1.2 Microstructures in γ TiAl alloys

Two phase γ TiAl alloys can be processed to different microstructures which all have their
own mechanical characteristics [11, 17]. Following [17], the possible microstructures can be
categorized into near γ, duplex, nearly lamellar and fully lamellar microstructures. Figure
1.2 shows the mid-section of the binary Ti–Al phase diagram and indicates the temperature
regions from which the respective microstructures can be obtained by quenching.
Among the possible microstructures in γ TiAl alloys, duplex and (nearly/fully) lamellar mi-
crostructures have the highest technical relevance [12] and are thus most commonly inves-
tigated. While duplex microstructures show an improved ductility as compared to lamellar
microstructures, they suffer from a low fracture toughness and a low creep resistance [9, 17].
Although exhibiting a poor ductility, TiAl alloys with fully lamellar microstructures are su-
perior when it comes to creep or fatigue resistance and fracture toughness [6, 9, 12, 13, 17, 18]
and, thus, are in the focus of current research and this thesis.

1Aircraft engines with γ TiAl low pressure turbine blades: General electrics – GEnxTM; Pratt & Whitney –
PW1000GTM; CFM International – LEAPTM [10]
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1.1 General introduction to γ based titanium aluminides

Figure 1.2. Mid-section of the Ti–Al phase diagram with different microstructures that can be
obtained in two phase γ TiAl alloys. The microstructures are categorized into near γ (equiaxed
γ grains with a small volume fraction of α2 grains), duplex (globular γ grains and lamellar (α2 +
γ) colonies), nearly lamellar (lamellar (α2 + γ) colonies and a small volume fraction of γ grains)
and fully lamellar (only lamellar (α2 + γ) colonies). The left parts of the microstructural images
are light-optical microscope images, whereas the right halfs are scanning electron microscopy
(SEM) images in which the γ phase appears dark and the α2 phase shows a light contrast.
Reproduced with permission from [14]. Copyright ©2013 Wiley-VCH Verlag GmbH & Co.
KGaA.

Due to their promising combination of properties for the intended applications, fully lamel-
lar TiAl alloys attract considerable research attention in the fields of alloy development and
process optimization as a result of which their formability and processability is continuously
improved (see, e.g., [9, 10, 15, 19, 20]). Further, the strong effect of the dense arrangement
of microstructural interfaces in fully lamellar TiAl alloys on their macroscopic properties like,
e.g., their yield strength, their creep and fatigue behavior or their fracture mechanics was
studied extensively2. These studies aimed to better understand the complex micromechanics
of fully lamellar TiAl in order to ultimately identify combinations of microstructural parame-
ters that yield the most balanced properties for certain applications. In order to support the
understanding of the various micromechanical interactions in fully lamellar TiAl and their
influence on the macroscopic material’s behavior, numerical simulations – especially in the
field of crystal plasticity – proved helpful in the past (see Chapter 3 for details).

2As the experimental studies are too numerous to be discussed here, the reader is referred to [11] for a
comprehensive evaluation of the available experimental studies and the corresponding findings.
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1 Introduction and research objectives

1.2 Research objectives
Despite the advances in understanding and modeling the (micro)mechanics of fully lamel-
lar TiAl alloys, there are still unresolved issues especially when it comes to predicting the
macroscopic mechanical behavior from microstructural parameters (e.g. colony size or lamella
thickness, see Figure 1.2). The present thesis is dedicated to address some of these issues by
providing a computational model of the deformation behavior of fully lamellar TiAl alloys.
This model is supposed to capture

• the microstructure sensitive yield strength between room and operating temperature,

• the work hardening behavior with particular emphasis on the interactions between slip
and twinning systems and

• the recovery of work hardening during annealing at elevated temperatures.

These objectives cover different topics of engineering interest. First of all, the yield strength
is the most important property for dimensioning structural components. In fully lamellar
TiAl, the yield strength is dominated by the dense arrangement of microstructural interfaces.
Thus, determining the yield strength of fully lamellar TiAl as a function of microstructural
parameters and temperature is by no means trivial.
The work hardening behavior, on the other hand, is of significant importance in all technical
applications and processes that incorporate considerable plastic deformation. Generally two
types of respective applications can be distinguished: the ones that aim to benefit from the
introduced work hardening (e.g. surface treatments like shot peening [21]) and the ones that
are negatively affected by work hardening (e.g. forming). For both types of applications,
the recovery behavior (i.e. the reduction of the introduced work hardening due to annealing
processes at elevated temperatures) is of particular interest. In applications in which it is
intended to benefit from the introduced work hardening, recovery due to heat input during
processing or in operation is obviously unfavorable whereas in applications that are negatively
affected by work hardening, systematic heat treatment can be applied to reduce necessary
forming forces.
A well-designed micromechanical model enables to predict the respective material’s behavior
for a given load/annealing history. Consequently, such models can be used to identify the
most beneficial combination of microstructural parameters for an intended application and
enable to optimize the load/annealing path. Further, micromechanical models enable to
study aspects of the respective micromechanics which can not be separately investigated in
experiments.
These modeling objectives all have their own particular challenges some of which are related
to the constitutive modeling itself while others arise from lacking experimental data.

1.2.1 Challenges in micromechanical modeling of fully lamellar TiAl
Modeling the microstructure sensitive yield strength is complicated by the fact that the finite
element method (FEM), as the preferred numerical solution technique, does not explicitly
involve length scales. Thus, a way has to be found to incorporate effects like e.g. Hall-
Petch strengthening which explicitly depend on microstructural lengths. Further, the highly
different length scales that coexist in fully lamellar microstructures raise questions regarding
their spatial discretization.
Challenges in modeling the work hardening of fully lamellar TiAl arise from the high number
of simultaneously activated deformation systems and their work hardening interactions. In
this, the interactions between slip and twinning systems are of special interest.
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The aim to account for the recovery of work hardening imposes certain restrictions on the
work hardening model. Since the recovery of work hardening results from the reduction of
defects in the material, the work hardening model has to be formulated in dependence of the
current defect density in the material which evolves with deformation and temperature.

1.2.2 Challenges due to lacking experimental data
The reported experimental studies pursue research objectives that do not necessarily coincide
with the above sketched objectives of this thesis. Consequently, the reported data are often
incomplete with respect to the research objectives addressed here. A typical example is the
microstructural characterization of tested specimens. While the microstructural parameters
(lamella thickness, colony size etc.) are required for microstructure sensitive modeling, they
are often not (or at least incompletely) reported in studies that do not explicitly intend to
investigate their influence on the material’s behavior.
Further, it is not straight forward and sometimes not even possible to experimentally separate
certain simultaneously acting micromechanical effects in fully lamellar TiAl alloys. Thus, the
corresponding parameters of the micromechanical model that will be presented in the course
of this thesis have to be derived indirectly from experimental results by an iterative calibration
procedure.

1.3 Outline of this thesis
In Chapter 2, a brief introduction to the specifics of fully lamellar microstructures in γ TiAl
alloys is given. As a necessary foundation for crystal plasticity modeling, the crystallography
and correspondingly the deformation mechanisms of fully lamellar TiAl alloys are described.
Chapter 3 gives an overview of the state of the art in micromechanical modeling of fully
lamellar TiAl before a defect density based, thermomechanically coupled crystal plasticity
model and its implementation into finite elements is presented. Parts of this Chapter were
previously published in [1–4].
In Chapter 4, the work hardening part of this crystal plasticity model is detailed in terms
of hardening interactions between slip and twinning systems. This hardening model is then
calibrated against experimental results from literature. Subsequently, the calibrated material
model is applied to gain deeper insight into the anisotropic work hardening behavior of fully
lamellar TiAl. Parts of this Chapter were previously published in [2, 3].
In Chapter 5, the dominant effect of the different coexisting microstructural interfaces on the
macroscopic strength of fully lamellar TiAl is described. The respective part of the crystal
plasticity model is detailed and a procedure is shown which enables to separate the relative
contributions of different types of microstructural interfaces to the macroscopic strength by
a combination of simulations and experiments from literature. Parts of this Chapter were
previously published in [1, 2].
In Chapter 6, the calibrated crystal plasticity model is applied to study the typical inhomo-
geneous microplasticity in polycrystals of fully lamellar TiAl and its sensitivity to changes in
microstructure. Parts of this Chapter were previously published in [3].
Chapter 7 deals with the static recovery behavior. The respective part of the crystal plasticity
model is calibrated against experiments and subsequently applied to study the characteristics
of the static recovery behavior of fully lamellar TiAl alloys. Parts of this Chapter were
previously published in [3].
In Chapter 8, the model is extended about the temperature dependent yield strength. In this,
the yield stress temperature anomaly that is typically observed in intermetallic alloys is taken
into account in a phenomenological way by making the Hall-Petch parameters a function of
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1 Introduction and research objectives

temperature. The extended model reproduces well the temperature dependent yield strength
of fully lamellar TiAl alloys and allows to rationalize discrepancies in the findings of different
experimental studies. Parts of this Chapter were previously published in [1].
Finally, Chapter 9 summarizes the findings of this thesis and gives a brief outlook on possible
future work.
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2 Crystallography and micromechanics of fully
lamellar TiAl alloys

In this chapter, the characteristics of fully lamellar microstructures are briefly explained.
Further, the crystallography and correspondingly the available deformation systems of fully
lamellar TiAl alloys are introduced.

2.1 Fully lamellar microstructures
As shown in Figure 2.1, fully lamellar microstructures consist of grain-shaped lamellar colonies.
These colonies are formed by numerous parallel γ lamellae with a minor fraction of dis-
persed α2 lamellae. In analogy to conventional polycrystalline materials, neighboring colonies
(grains) are separated by colony boundaries (grain boundaries) and have a different orien-
tation of their lamella plane (crystal orientation). Typical colony sizes λC range from some
10 µm to more than 1000 µm whereas the lamella thickness λL is adjustable between a few
10 nm and some µm by alloying and processing [11, 12, 22, 23].

Figure 2.1. Scanning electron microscopy (SEM) image of a fully lamellar microstructure in
a Ti-42Al-8.5Nb alloy. The microstructure consists of lamellar (α2 + γ) colonies which are
distinguished by the orientations of their lamella planes. Picture courtesy of Dr. M.W. Rackel,
Institute of Materials Research, Materials Physics, Helmholtz-Zentrum Geesthacht

As illustrated schematically in Figure 2.2, the γ lamellae are further subdivided into ordered
domains (see e.g. [24] for details) with typical domain sizes λD of a few 10 µm [23, 24], that
is, the aspect ratio of the lamellae is much higher than sketched in Figure 2.2.

2.1.1 Polysynthetically twinned crystals
By remelting rods of fully lamellar TiAl in an optical floating zone furnace, it is possible to
produce samples with unidirectionally solidified microstructures that are formed by γ and
α2 lamellae of only one specific orientation [25, 26]. Since these so called polysynthetically
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α2 (Ti3Al)

γ (TiAl)

λC

λL

λD

polycolony
microstructure

single colony/
polysynthetically
twinned crystal

Figure 2.2. Schematic illustration of a fully lamellar microstructure. λC : colony size; λL:
lamella thickness; λD: domain size.

twinned crystals do not contain any colony boundaries, they were frequently used to gain
insight into the complex micromechanics of a single colony without the disturbing influence
of neighboring colonies. Consequently, a polysynthetically twinned crystal is to a polycolony
microstructure what a single crystal is to a conventional polycrystalline material. The terms
polysynthetically twinned crystal and polycolony microstructure are thus used in the following
to distinguish these two types of lamellar microstructures.

2.2 Crystallography

2.2.1 Lattices

The intermetallic γ phase (TiAl) exhibits the tetragonal L10 lattice depicted in Figure 2.3
which is basically an FCC lattice with alternating layers of Ti and Al atoms [11]. Due to the
alternating Ti and Al layers, the unit cell’s height c is slightly bigger than its base length a.
For a better readability, the c

a ratio is, however, neglected in the description of deformation
systems and the standard Miller index notation for cubic lattices is used (see Appendix A.1).
Like in FCC lattices, plastic deformation of the γ phase is accomplished by slip and twinning
on the {111} planes. In contrast to FCC structures, slip systems with a non-zero c component
are, however, not crystallographically equivalent to those without a c component. In order
to make these so called super slip systems distinguishable from the ordinary slip systems
(i.e. those that do not involve a c component), a modified Miller index notation with a
mixed parenthesis is usually applied (see, e.g., [11]). In this, 〈uvw] denotes the subset of
crystallographically equivalent directions that all have the same c component (i.e. the same
index w). Making use of this modified notation, lattice restoring super slip can be described by
〈101] translations (cf. Figure 2.3). These translations may, e.g., be achieved by two identical
superpartial dislocations 1/2〈101] between which a disordered surface – a so called antiphase
boundary – emerges [11]. Once both partial dislocations passed, the lattice is restored.
In total, four ordinary slip systems with Burgers vectors b = 1

2〈110] and eight super slip
systems with Burgers vectors b = 〈101] can be identified [11]. Further, there exist four
twinning systems in the {111} planes of the γ phase with Burgers vectors b = 1

6〈112] of the
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2.2 Crystallography

[001]

[010]

[1
00
]

1
2 〈110]

〈101]

1
6 〈112]

Ti

Al

a

c

Figure 2.3. Tetragonal L10 lattice of the γ phase (TiAl) with slip and twinning systems in
the {111} planes. The lattice exhibits four ordinary slip systems: b = 1

2 〈110]; eight super slip
systems: b = 〈101] and four twinning systems: b = 1

6 〈112].

twinning partial dislocations [11].
The intermetallic α2 phase (Ti3Al) exhibits the hexagonal D019 lattice depicted in Figure
2.4 [11]. Although the c

a ratio of this unit cell is close to 0.8, standard Miller-Bravais index
notation (see Appendix A.2) is used for better readability. In this hexagonal lattice, plastic
deformation can be accomplished by slip with Burgers vectors b = 1/3〈1120〉 on prismatic
{1100} planes, by slip with Burgers vectors b = 1/3〈1126〉 on pyramidal {1121} planes and
by slip with Burgers vectors b = 1/3〈1120〉 on the basal (0001) plane [11, 27].

Al
Ti

[0001]

〈1120〉
〈1126〉

c

a

Figure 2.4. Hexagonal D019 lattice of the α2 phase (Ti3Al) with prismatic 1/3〈1120〉{1100},
pyramidal 1/3〈1126〉{1121} and basal 1/3〈1120〉(0001) slip systems.

2.2.2 Orientation relation between the γ and the α2 phase

The specific alignment of the γ and the α2 phase into parallel lamellae results from the
eutectoid phase transformation shown in Figure 1.2 (see [11] for details on the α→ α+ γ →
α2 + γ phase formation sequence). As a result of the formation process, there is a strict
orientation relation between both phases within each colony that can be described by

{111}γ ‖ (0001)α2 and 〈110]γ ‖ 〈1120〉α2 (2.1)

where ‖ denotes co-planar or parallel respectively [11, 24]. This means, the close-packed
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2 Crystallography and micromechanics of fully lamellar TiAl alloys

planes of both phases (i.e. the {111}γ planes in the γ lamellae and the (0001)α2 plane in the
α2 lamellae) align co-planar during formation while the close-packed directions in these planes
align parallel. The interface between the close-packed planes forms the lamella boundary.
The dense arrangement of crystallographic interfaces within each colony (see Figure 2.2) does,
however, not only involve interfaces between the γ and the α2 phase (γ/α2 lamella boundaries)
but also contains interfaces between neighboring γ lamellae (γ/γ lamella boundaries) and
between domains within each γ lamella (γ/γ domain boundaries). These γ/γ interfaces result
from the fact, that six different γ orientation variants exist which fulfill the orientation relation
given in (2.1) [24]. These different γ orientation variants can be described in terms of rotations
of the γ lattice by a multiple of 60◦ about the [111]γ/[0001]α2 direction as it is depicted in
Figure 2.5.

Al
Ti

60◦

0◦

120◦

180◦

240◦

300◦

[1120]

γI
M

[121
0]

γII
M

γIII
M

γI
T

γII
T

γIII
T

α2

[110]

[110]

[110
]

[110
]

[110]

[110]

[0001][111]

1

Figure 2.5. Orientation relation between the hexagonal lattice of the α2 phase and the tetrag-
onal lattice of the γ phase in lamellar colonies. γI−III

M : matrix orientations; γI−III
T : twin orien-

tations. Following Butzke & Bargmann [1].

Three of these γ orientation variants are so called matrix orientations that can be expressed
in terms of the orientation relation between their [110]γ direction and the 〈1120〉α2 directions
in the basal plane of the α2 phase as follows [24]:

γI
M : [110]γ ↑↑ [1120]α2 ,

γII
M : [110]γ ↑↑ [1210]α2 ,

γIII
M : [110]γ ↑↑ [2110]α2 .
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Here, ↑↑ denotes parallel directions. The three remaining γ orientation variants denote the
corresponding twin orientations which are described in terms of the orientation relation be-
tween their [110]γ direction and the 〈1120〉α2 directions in the basal plane of the α2 phase as
follows [24]:

γI
T : [110]γ ↑↓ [1120]α2 ,

γII
T : [110]γ ↑↓ [1210]α2 ,

γIII
T : [110]γ ↑↓ [2110]α2 .

In this, ↑↓ denotes anti-parallel directions. Thus, each twin orientation is described by a
180◦ rotation of the corresponding matrix orientation about the [111]γ/[0001]α2 direction
[24]. Since it has been found that all domains within a single γ lamella are either of matrix
or of twin type [6, 11, 24], a lamella is called matrix or twin lamella correspondingly.

2.2.3 Morphological classification of deformation systems
So far, the deformation systems of the single phases were described either in groups of crystal-
lographically equivalent slip planes (e.g. basal, prismatic and pyramidal slip in the α2 phase)
or grouped by deformation mechanisms (e.g. ordinary slip, super slip and twinning in the γ
phase). However, since the (111)γ plane of all γ domains and the (0001)α2 plane of all α2
lamellae within a single colony are always strictly co-planar to the lamella interfaces, the de-
formation systems of both phases can alternatively be classified according to their orientation
with respect to the lamella plane as introduced in [28]. With the slip/twinning direction s
and the slip/twinning plane normal n, all deformation systems in lamellar microstructures
can be uniquely categorized to be either

• longitudinal (s ‖ lamella plane; n ⊥ lamella plane),

• mixed (s ‖ lamella plane; n 6⊥ lamella plane) or

• transversal (s ∦ lamella plane; n 6⊥ lamella plane)

where ‖ and ∦ refer to parallel and non-parallel respectively whereas ⊥ and 6⊥ refer to per-
pendicular and non-perpendicular. These different morphological deformation modes are
illustrated in Figure 2.6.

Gamma

Gamma

longitudinal mixed transversal

λD

λL

1

Figure 2.6. Schematic illustration of the morphological deformation modes of the lamellae.
The morphological classification was introduced in [28]. λL: lamella thickness; λD: domain size.
Following [29].

Table 2.1 gathers all deformation systems of the γ and the α2 phase with their mechanism
based and their morphological classification.

11



2 Crystallography and micromechanics of fully lamellar TiAl alloys

Table 2.1. Slip and twinning systems in the tetragonal γ and hexagonal α2 phase with mor-
phological classification according to [28]. Although both phases exhibit a c

a ratio 6= 1, standard
Miller index respectively Miller-Bravais index notation is used for a better readability. Through-
out this thesis, the index α is used for slip systems whereas the index β is used for twinning
systems.

γ phase
system mechanism morphology index

1/2[110](111) ordinary slip longitudinal 1


α

[011](111) super slip longitudinal 2
[101](111) super slip longitudinal 3

1/2[110](111) ordinary slip mixed 4
[011](111) super slip mixed 5
[101](111) super slip mixed 6

1/2[110](111) ordinary slip transversal 7
1/2[110](111) ordinary slip transversal 8

[011](111) super slip transversal 9
[101](111) super slip transversal 10
[011](111) super slip transversal 11
[101](111) super slip transversal 12

1/6[112](111) twinning longitudinal 1
β

1/6[112](111) twinning transversal 2
1/6[112](111) twinning transversal 3
1/6[112](111) twinning transversal 4

α2 phase
system mechanism morphology index

1/3〈1120〉(0001) basal slip longitudinal 1-3
α1/3〈1120〉{1100} prismatic slip mixed 4-6

1/3〈1126〉{1121} pyramidal slip transversal 7-12

2.3 Plastic anisotropy

Crystalline phases generally behave anisotropic during both elastic and plastic deformation
[30]. As long as a polycrystalline material does not exhibit a pronounced texture, the
anisotropy of its crystalline phases is, however, not visible in its macroscopic mechanical
response. The micromechanics of polycrystalline materials is still strongly affected by the
anisotropy of the single phases as it is the case for fully lamellar TiAl alloys. In the context
of crystal plasticity, the plastic anisotropy on the microscale is thus of major interest and is
briefly described in the following for the single α2 and γ phase as well as for the lamellar
colonies.

2.3.1 Plastic anisotropy of single phases

Most crystals exhibit certain symmetries which are characteristic for their lattice structure.
Thus, their distinct plastic anisotropy can usually be described in terms of crystallographically
equivalent slip and twinning planes [30]. Besides the kinematic restriction to deform by shear
on these crystallographic planes, the plastic anisotropy of a crystal is mainly determined by
the critical resolved shear stresses and the hardening behavior of its available deformation
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2.3 Plastic anisotropy

systems acting along these planes.
Crystallographically equivalent deformation systems are generally believed to exhibit the same
critical resolved shear stress. This means that, e.g., all prismatic slip systems in the α2 phase
share the same critical resolved shear stress. Further groups of deformation systems with
the same critical resolved shear stresses are pyramidal and basal slip in the α2 phase and
twinning, ordinary slip and super slip in the γ phase.
Experimentally, the anisotropy of crystalline phases is naturally best investigated in single
crystal specimens. Consequently, the anisotropy of the γ and the α2 phase was frequently
investigated by tests with γ and α2 single crystals. These single crystal studies allowed to
determine the elastic constants of both phases (see, e.g., [31, 32]) as well as the critical resolved
shear stresses of their different plastic deformation systems (see, e.g., [27, 33–36]). However,
such single crystals can only be grown for compositions that deviate significantly from the
composition of (α2 + γ) two phase alloys [11]. While γ single crystals are obtained for Al-
rich compositions (e.g. Ti-56 at. % Al in [33]) , α2 single crystals are obtained for Al-lean
compositions (e.g. Ti-24.4 at. % Al in [27]).
Since it has been found that the strengths of the plastic deformation systems in both phases
strongly dependent on the Al content [11, 12, 37, 38], the available single crystal results are,
however, only of limited help to understand and describe the plastic deformation of two phase
γ TiAl alloys. This is best illustrated by comparing the relative strength of deformation
systems in the γ phase as it was determined in single crystal experiments [33] to the findings
from two phase alloys [37]. Tests with Al-rich γ single crystals revealed that their plastic
deformation is favorably accommodated by super slip for most crystal orientations indicating
that the critical resolved shear stresses of the ordinary slip and the twinning systems were
higher than those of the super slip systems [11, 33, 39]. In contrast, the γ phase in two phase
alloys was found to mainly deform by ordinary slip and twinning while super slip systems
are less preferably activated [11, 37, 39]. Thus, in two phase alloys the critical resolved shear
stresses τtwin of twinning systems and τordinary of ordinary slip systems in the γ phase are
generally believed to be lower than the critical resolved shear stresses τsuper of the super slip
systems [11, 37].
The critical resolved shear stresses of the slip systems in the α2 phase were also found to be
highly composition dependent. There is, however, evidence that the critical resolved shear
stresses of prismatic slip systems are generally lowest, followed by basal and pyramidal slip,
i.e. τprismatic < τbasal < τpyramidal [27, 35, 36].
In spite of the observed trends in the relative strengths of the different deformation systems
in two-phases alloys, their critical resolved shear stresses could not be quantified uniquely so
far. While micromechanical testing, e.g., micropillar compression or nanoindentation has the
potential to finally determine the strengths of deformation systems of the single phases within
two phase alloys, it creates its own challenges with specimen preparation and interpretation
of the obtained results especially in fully lamellar microstructures [40, 41].

2.3.2 Plastic anisotropy of single colonies/polysynthetically twinned crystals

There is general agreement that the microstructural interfaces in fully lamellar TiAl – namely
lamella, domain and colony boundaries – are strong barriers for dislocation motion and twin
propagation and thus all give rise to Hall-Petch strengthening, i.e. the yield strength increases
with decreasing lamella thickness λL, domain size λD and colony size λC [11, 18, 23, 42–49].
Consequently, the inherent plastic anisotropy of the γ and the α2 phase is superimposed by
the severe strengthening effect of these microstructural interfaces as it will be discussed in
more detail in Chapter 5. The effective anisotropy of the lamellar colonies was thus frequently
investigated by experiments with differently oriented polysynthetically twinned crystals (see
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2 Crystallography and micromechanics of fully lamellar TiAl alloys

e.g. [25, 26, 50–52]) and more recently by micropillar compression of single colonies within
actual polycolony microstructures [40, 53]. Figure 2.7 shows the anisotropic yield strength of
polysynthetically twinned crystals as obtained from different experimental studies.

1

Figure 2.7. Yield stress of differently oriented polysynthetically twinned crystals under uniaxial
loading. The loading angle ϕ is defined between the uniaxial load and the lamella plane (i.e.
ϕ=0◦: loading parallel to lamella plane and ϕ=90◦: loading perpendicular to lamella plane).
Experimental results taken from [25, 26, 50–52]

In Figure 2.7, the yield strength of polysynthetically twinned crystals tested in the strongest
orientation (90◦ between lamella plane and uniaxial load) is ≈ 5–7 times higher than in the
weakest orientation (45◦ between lamella plane and uniaxial load). The actual difference
between the yield strength in the strongest and the weakest orientation depends on the ratio
between lamella thickness λL and domain size λD as it will be discussed in more detail in
Chapter 5. In general, the experiments with differently oriented polysynthetically twinned
crystals/single colonies allow to identify two principal deformation modes [25, 40, 52, 54, 55]:

• the hard deformation mode which requires activation of deformation systems on crys-
tallographic planes that cross the lamella interfaces (mixed and transversal systems)
and

• the soft deformation mode which requires activation of deformation systems on crystal-
lographic planes that are parallel to the lamella interfaces (longitudinal systems).

As it will be discussed in more detail in Chapter 4, hard mode deformation was mainly
found near 0◦ and 90◦ orientations whereas soft mode deformation dominates for intermediate
loading angles between 15◦ and 75◦.
As shown in [25], the yield stress of polysynthetically twinned crystals also varies between
specimens that are loaded parallel to the lamella plane (i.e. ϕ=0◦) but are rotated around
the [111]γ/[0001]α2 direction. However, due to the rotational symmetries that result from the
coexistence of the six γ orientation variants (cf. Figure 2.5), the variation of the yield stress of
ϕ=0◦ specimens with the angle between the [110]γI

M
and the loading direction is insignificant

especially in comparison to the strong anisotropy that is caused by the lamella interfaces
(cf. Figure 2.7). Thus, most experimental studies which are reported in the literature – and
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2.3 Plastic anisotropy

consequently the corresponding simulations which will be presented in the course of this thesis
– have been carried out with the [110]γI

M
direction fixed either parallel or perpendicular to

the loading direction (for ϕ=0◦) while varying ϕ.
As a result of the strong plastic anisotropy of the single colonies, there is a pronounced local-
ization of plastic deformation within weakly oriented colonies of polycolony microstructures
as it will be discussed in Chapter 6.
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3 Modeling framework

3.1 State of the art

In the following, the state of the art in crystal plasticity modeling of fully lamellar TiAl and
the generation of representative volume elements (RVEs) of lamellar microstructures is briefly
reviewed.

3.1.1 Crystal plasticity models of fully lamellar TiAl

With the continuous progress in alloy development and the increasing application potential
of fully lamellar TiAl alloys, modeling their deformation behavior soon became of interest.
Since the macroscopic mechanical behavior of fully lamellar TiAl alloys is strongly affected
by their intricate microstructure and crystallography [11], a respective constitutive model has
to take into account the underlying anisotropic micromechanics. On continuum scale, the
anisotropic micromechanics of crystalline materials is frequently described by crystal plastic-
ity models. Since crystal plasticity models explicitly consider the kinematics of a crystal’s
plastic deformation in terms of shear on individual crystallographic planes, they have been
successfully applied to a variety of problems in the field of crystal mechanics [56]. In combina-
tion with the finite element method (FEM) as a common solution technique, the abbreviation
CPFEM (crystal plasticity finite element method/modeling) is frequently used. In the follow-
ing, the reported crystal plasticity models for fully lamellar TiAl alloys are briefly reviewed
in chronological order.
The first successful applications of the crystal plasticity framework to fully (and nearly)
lamellar TiAl have been reported between 1995 and 1997 by Kad, Dao & Asaro [57–59]
and Kad & Asaro [60]. In these works, a 2D CPFEM formulation was presented which
describes the complex crystallography of the lamellar colonies by a homogenized single crystal
model (i.e. without explicitly considering the lamellae). This was done by replacing the
deformation systems of the numerous γ and α2 lamellae by a set of only three slip systems
that reflect the principal deformation modes of the lamellar colonies, namely the soft mode
deformation (parallel to lamella interfaces) and the hard mode deformation (across the lamella
interfaces). The soft mode deformation was described by a 2D projection of the [110](111)
slip system of the γ phase whereas two hard mode deformation systems were introduced by
2D projections of two of the pyramidal 〈1126〉{1121} slip systems in the α2 phase. The work
hardening behavior was modeled by a linear hardening law whereas latent hardening was
neglected. Since this 2D single-phase model does not require an explicit spatial discretization
of the lamellae and takes into account only three slip systems, it is computationally highly
efficient. Thus, it was successfully applied to investigate how the anisotropy of the single
colonies affect the micro strain fields and the macroscopic stress strain response of polycolony
microstructures. However, describing the kinematics of the lamellar colonies by a single phase
crystal plasticity model with only three slip systems does not allow detailed modeling of work
hardening interactions. Further, such a model naturally prevents investigation of details in
the microstrain fields that may arise within the single colonies.
Almost at the same time, a CPFEM model of a polysynthetically twinned crystal was devel-
oped by Parteder, Siegmund, Fischer & Schlögl [61] and Schlögl & Fischer [62–64] in which
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the γ and the α2 lamellae were explicitly considered. The initial 2D CPFEM formulation,
presented in [61], incorporated all slip systems of the γ phase and explicitly considered the 6
γ orientation variants. At this stage, the model did, however, not incorporate twinning of the
γ lamellae and treated the α2 lamellae as purely elastic. Thus, the model was extended to
a 3D CPFEM formulation [62–64] which incorporated the twinning systems of the γ lamel-
lae as well as basal, prismatic and pyramidal slip in the α2 lamellae. Deformation of the
γ lamellae by super slip was, however, not considered anymore. The critical resolved shear
stresses for the γ phase were determined following Hall-Petch arguments. This model was
able to precisely reproduce the anisotropic strength of polysynthetically twinned crystals and
consequently allowed investigation of the respective yield loci. However, the parameters of
the applied hypersecans hardening law were chosen without validation due to a lack of ex-
perimental data on the hardening behavior of polysynthetically twinned crystals. Further, no
hardening was assumed for the twinning systems and hardening interactions were considered
between slip systems only.
In the work of Lebensohn, Uhlenhut, Hartig &Mecking [28], Lebensohn [65] and Uhlenhut [52],
the plastic deformation of polysynthetically twinned crystals was modeled by a visco-plastic
self-consistent (VPSC) crystal plasticity formulation (cf. [66]). In this work, the morpho-
logical classification, described in Section 2.2.3, was introduced and the relative strength of
deformation systems of different morphological classes was investigated. By assuming that all
deformation systems of a morphological class have the same strength, i.e. by neglecting poten-
tial differences in strength that result from the crystallography of the single phase, this model
reproduced the anisotropic yield strength of polysynthetically twinned crystals as well as their
relative transversal strains very well. While the different γ orientation variants were explicitly
considered in this model, the α2 phase, as the minority phase, was neglected completely.
Grujicic & Zhang [67] presented a 2D CPFEM model that closely followed the ideas of Kad
et al. [57–60] and that was later used by Grujicic & Cao [68] in combination with a cohesive
zone model to investigate fracture in fully lamellar microstructures. The idea of Kad et al.
[57–60] to model the plastic deformation behavior of the lamellar colonies by a homogenized
single phase model was then transferred to a 3D CPFEM formulation by Grujicic & Batchu
[69] which was subsequently applied in [70] again together with a cohesive zone approach to
analyze the fracture behavior of polycolony microstructures. In this 3D CPFEM model, the
strength and hardening behavior of the deformation systems that were chosen to represent
the lamellar colonies in the homogenized single phase model were for the most part taken to
be identical to the values that were previously determined from γ and α2 single crystal sim-
ulations. These single crystal simulations were calibrated against single crystal experiments
via a numerical optimization algorithm. After adjusting the strength of hard (mixed and
transversal) deformation modes against experiments with polysynthetically twinned crystals
by numerical optimization, the homogenized single phase model reproduced their plastic de-
formation behavior well. However, since the critical resolved shear stresses of the deformation
systems of both phases strongly change with composition (cf. Section 2.3.1), taking the pa-
rameters of the soft mode (longitudinal) deformation systems from single crystal experiments,
is somewhat questionable.
Another 3D CPFEM approach that described the deformation of the lamellar colonies in a
homogenized way was reported by Brockmann [71]. The homogenized single phase model of
Brockmann [71] was set up in terms of small deformations and rotations. The anisotropic
deformation of the lamellar colonies was represented by a set of 4 groups of deformation
systems – namely ordinary slip systems of the γ phase, prismatic and pyramidal slip systems
of the α2 phase and an interlamellar deformation mode that was assumed to act in the basal
plane of the α2 phase. The critical resolved shear stresses of the considered slip systems were
assigned according to findings from γ and α2 single crystals and the strengthening effect of
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the lamella interfaces was considered in terms of a Hall-Petch type correction. Further, linear
work hardening was assumed. With this single phase model it was possible to efficiently
analyze the arising micro strain fields in a 3D duplex microstructure with more than hundred
lamellar colonies.
The modeling activities of Werwer & Cornec [72, 73] and Werwer [29] aimed on analyzing
the deformation behavior of polysynthetically twinned crystals for higher plastic strains (not
only near the yield point). Therefore, the authors developed a 3D CPFEM model which
explicitly considered all slip and twinning systems of the γ and the α2 phase in separate
lamellae. With the experimental results on the hardening behavior of differently oriented
polysynthetically twinned crystals, reported by Uhlenhut [52], the applied linear hardening
law was calibrated. In this calibration process it was assumed that deformation systems of
the same morphological class do not only have the same strength (as stated by Lebensohn
et al. [28]) but may also be described by the same set of hardening parameters. With this
assumption, not only the anisotropic yield strength (as in most previous studies) but also the
anisotropic work hardening behavior of differently oriented polysynthetically twinned crystals
was reproduced sufficiently well. However, certain specifics of the experimental stress strain
curves – especially at higher strains – did not appear in the simulations due to the simplicity
of the applied hardening law. By considering all deformation systems in the γ lamellae, it was
possible to investigate the specific role of the strength of super slip systems on the deformation
behavior of polysynthetically twinned crystals [73].
What is particularly interesting about the work of Werwer & Cornec [29, 72, 73] is the way in
which the authors realized to model the rotation of the representative volume element (RVE)
of the polysynthetically twinned crystal with respect to the uniaxial load as it is necessary
when its anisotropy shall be analyzed. Instead of changing the loading direction or altering
the lamella orientation of the RVE, the authors implemented the whole RVE within a single
finite element – a so-called dummy element – and introduced a rotational relation between
the averaged nodal displacements of this dummy element and the deformation of the RVE
(see Section 3.6.2 for details). This allows to change the angle between the uniaxial loading
(applied to the dummy element) and the lamella plane of the RVE without changing the
geometrical set up. In [29], this FE2-like idea was extended to model polycolony microstruc-
tures. In these calculations, the colonies were represented by hexahedral finite elements in
each of which a complete, randomly oriented RVE of a polysynthetically twinned crystal was
implemented using the described rotational relation between the nodal displacements of the
dummy elements and the embedded RVEs. This two scale modeling approach was later suc-
cessfully applied by Kabir [74], Kabir, Chernova & Bartsch [75] and Cornec, Kabir & Huber
[76] to reproduce and study the macroscopic stress strain response of duplex and fully lamellar
microstructures.
In the work of Roos, Chaboche, Gélébart & Crépin [77], a multi scale crystal plasticity model
of TiAl alloys with potentially different microstructures is reported. In this model, three
scales exist: the macro (i.e. the structural) scale, the meso scale of the lamellar colonies and
if applicable the γ and α2 grains, and the micro scale of the lamellae within the colonies. The
crystal plasticity formulation is solved on the meso scale for the globular γ and α2 grains and
on the micro scale for the lamellar colonies. The respective results are passed to the next
higher scale. On the micro scale all 6 γ orientation variants and the α2 phase with all their
deformation systems were explicitly considered.
Further, the crystal plasticity model of Kowalczyk-Gajewska [78] is worth mentioning here
as it was the first crystal plasticity model of γ TiAl which accounts for the work hardening
of slip and twinning systems due to evolving twins in a more physical way than the afore
mentioned models. While this contribution to work hardening was commonly modeled by a
linear hardening interaction law, in [78] a Hall-Petch type relation was introduced based on

19



3 Modeling framework

ideas from [79].
In the work of Zambaldi [41] and Zambaldi, Roters & Raabe [80] a 3D CPFEM model was
presented which models the plastic deformation of the lamellar colonies by a homogenized
single phase model with 18 effective deformation systems (instead of the 108 deformation
systems in the 6 γ variants + the α2 phase). Like in the models of Kad et al. [57–60],
Grujicic et al. [67–70] and Brockmann [71], these 18 deformation systems are chosen in such
a way that they represent the principal deformation modes of the lamellar colonies. This
set of deformation systems involves 3 effective longitudinal slip systems and 3 effective longi-
tudinal twinning systems in the (111)γ plane, 6 effective transversal pyramidal slip systems
of the α2 phase and 6 effective mixed slip systems of the γ phase. With the same critical
resolved shear stresses assigned to all systems of the same morphological class, the model was
able to sufficiently reproduce the anisotropic yield strength and relative transversal strain of
polysynthetically twinned crystals/single colonies and was successfully applied to model the
macroscopic stress strain behavior of polycolony microstructures. However, the strength of
the different deformation systems was not modeled in a microstructure sensitive way plus the
hardening law of the model was not calibrated against experiments.
Finally, Ilyas & Kabir [81] only recently presented a temperature sensitive CPFEM model
of fully lamellar TiAl. In order to capture the (anomalous) temperature dependence of the
yield strength (see Chapter 8 for details), the authors made the strain rate sensitivity ex-
ponent of the applied classical flow rule a function of temperature. This model was then
calibrated to successfully reproduce the temperature dependent yield strength of differently
oriented polysynthetically twinned crystals reported in [37]. As it has been experimentally
observed in [46], the temperature dependent yield strength of polysynthetically twinned crys-
tals is, however, strongly influenced by the spacing of the different microstructural interfaces
(see Chapter 8 for details). Although showing promising results, the model from [81] is not
formulated in a microstructure sensitive way and is thus not (yet) capturing the experimen-
tally observed effect of the different microstructural interfaces on the temperature dependent
yield strength of differently oriented polysynthetically twinned crystals. A comparison to the
respective experimental results from [46] was thus not given in [81].
Further reviews of crystal plasticity (and other) modeling approaches for TiAl alloys can be
found in [41] and [82].
Reviewing the reported crystal plasticity models, it appears that there are basically two
modeling strategies:

1. describing the plastic deformation of the lamellar colonies by explicitly considering the
complete crystallography of the α2 phase and the 6 γ orientation variants in separate
lamellae [28, 29, 52, 61–65, 72–77, 81] or

2. describing the plastic deformation of the lamellar colonies in a homogenized single phase
model by only considering deformation systems that reflect their principal deformation
modes (i.e. without explicitly considering the lamellae) [41, 57–60, 67–71, 80].

The comparison of the reported crystal plasticity models allows to formulate the following
common questions:

Crystallography:

• Is it necessary to separately model the α2 phase and the six orientation variants of the
γ phase or is it sufficient to set up a homogenized single phase model?

• Which deformation systems are relevant and thus have to be considered?
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Yield strength:

• How can the strengthening effect by lamella, domain and colony boundaries be modeled?

• What are the relative strengths of deformation systems in the γ phase (ordinary/super
slip, twinning) and in the α2 phase (prismatic, basal and pyramidal slip)?

Work hardening:

• How can the self hardening behavior of different deformation mechanisms (slip and
twinning) be described?

• How can the work hardening interactions between deformation systems, i.e. slip/slip,
slip/twin and twin/twin interactions be described?

While most of these questions can naturally not be answered unambiguously since the answer
strongly depends on the pursued modeling strategy and the intended accuracy of the model
predictions, some of them are apparently harder to tackle than others. One of the most promi-
nent issues with modeling fully lamellar TiAl is the strengthening effect by lamella, domain
and colony boundaries. While being discussed in many numerical as well as experimental
contributions, the relative effect of these three types of microstructural interfaces is not yet
clarified, consequently inhibiting a microstructure sensitive prediction of the yield point. An-
other issue appears to be the work hardening behavior which has not been modeled in detail
so far since most studies were mainly interested in predicting the yield point. Further, it is
striking that the vast majority of the reported models are either limited to room temperature
or isothermal conditions and are thus obviously inadequate to describe the material’s behav-
ior at service temperature or for thermal cycling. To the best of the author’s knowledge, so
far only a single study was published that explicitly dealt with crystal plasticity modeling of
fully lamellar TiAl at elevated temperatures, i.e. [81]. Apart from this, the high tempera-
ture behavior of γ TiAl alloys was so far only addressed by modeling their creep deformation
behavior [83–85], however, in a quite phenomenological way.

3.1.2 Generating representative volume elements of lamellar microstructures
Besides a constitutive model of the plastic deformation behavior, a geometrical representation
and derived from that a discretization of a representative part of the lamellar microstructure
is needed in order to solve the boundary value problem by FEM. The aim of this section is
thus to review the state of the art in generating respective geometries for FEM analyses.
Lamellar microstructures are not exclusively found in TiAl alloys but can be obtained in
various alloy systems like e.g. Pb–Sn, Fe–C, Al–Cu or Cu–Ag for eutectic or eutectoid compo-
sitions. Besides TiAl alloys, the most prominent examples of commercial structural materials
with lamellar microstructures are probably pearlitic steels and two-phase titanium alloys like
Ti-6Al-4V. While the parallel arrangement of the lamellae into regions of different lamella
orientations, i.e. into colonies, is a common feature of lamellar microstructures, additional,
material specific features may occur, like e.g. the domain structure of the γ lamellae in TiAl or
the waviness of the cementite lamellae in pearlite colonies. However, the techniques that can
be used to generate RVEs of lamellar microstructures are in most cases not material specific.
Thus, differences in the crystallography or in the geometrical details of lamellar microstruc-
tures from different alloy systems do not prevent these methods from being applied.
Following [4], the methods for RVE generation may be grouped into

• experimental methods that aim to create a digital representation of the microstructure
from imaging techniques like, e.g., SEM,
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• physics based methods that aim to generate RVEs of a microstructure based on the
physical processes that caused its formation and

• geometry based methods that solely aim to capture relevant geometrical features of
the microstructure (usually in an idealized way), neglecting irregularities of the real
microstructures as they would be captured by experimental methods and ignoring the
formation process as it would be considered in physics based methods.

Microstructure reconstruction from experimental data

The most common technique for the 3D reconstruction of microstructures is the so called
serial sectioning technique. In serial sectioning techniques, thin layers of the material are
sequentially removed by grinding or by a focused ion beam (FIB). After removing a layer of
material, the exposed surface is scanned using, e.g., SEM. From the series of scans, a layered
reconstruction of the 3D microstructure can be obtained. A review of the details of serial
sectioning techniques can be found in [4].
3D reconstructions of lamellar microstructures by serial sectioning were to date only reported
for pearlite colonies in pearlitic steels [86–89] and arrangements of several α laths in Ti-6Al-
4V [90, 91]. While these studies enabled investigation of microstructural details like e.g. the
waviness of the cementite lamellae in pearlite colonies, they also revealed the difficulties in
capturing the intricate details of lamellar microstructures by serial sectioning techniques.
In [86], the authors reported problems with aligning the scans of the 2D sections in the
reconstruction process. These problems resulted from pronounced changes in the morphology
of the investigated pearlite colonies along the thickness of the successively removed material
layers. As a result, many interconnections of the branched cementite lamellae were lost in the
reconstruction process. When aiming to capture intricate microstructural features like, e.g.,
the lamellae in fully lamellar TiAl (often with a thickness λL < 100 nm) or the mentioned
branching of the cementite lamellae in pearlite colonies by serial sectioning techniques, the
thickness of the removed material layers has to be in the range of a few 10 nm (instead of
the often reported > 100 nm). While such small slice thicknesses are achievable by suitable
milling techniques (e.g. FIB), the number of sections that are needed to resolve a complete
colony (with a diameter of some 10µm to several 100 µm) increases accordingly. Storing and
processing the corresponding big amount of data is a formidable task which creates its own
challenges.
While the described problems result from the inevitable information loss due to the successive
removal of material layers of finite thickness, i.e. the serial sectioning process itself, capturing
all microstructural details within a single 2D section may also cause certain difficulties. Due
to the significantly different length scales that coexist in lamellar microstructures, an extreme
resolution would be necessary to capture a representative number of colonies while still being
able to resolve their lamellar substructure. Thus, capturing all microstructural features in a
single scan is often impeded (see e.g. Fig. 2.1), consequently further increasing the amount
of data that have to be stored and processed.
In summary it can be stated that experimental reconstruction of lamellar microstructures
(especially for submicron lamella thicknesses) remains challenging but has the potential to
grant unique insight into their intricate 3D details.

Physics based microstructure generation

Due to the complexity of the eutectic respectively eutectoid phase transformations that lead
to the creation of lamellar microstructures, a physics based generation of the corresponding
RVEs is not yet state of the art. A first, even though still two dimensional, RVE of single
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ferrite-pearlite colonies was generated by a phase-field modeling approach in [92]. The results
of the phase-field simulation subsequently served as input for FEM calculations.
More recently, 3D large scale phase-field simulations of eutectic solidification of ternary Al–
Ag–Cu alloys were reported [93, 94]. These simulations were able to precisely reproduce
the intricate cobblestone microstructure that is characteristic for these alloys. Consequently,
such phase-field simulations might also help to better understand the eutectic respectively
eutectoid formation process of lamellar microstructures and could ultimately be used for a
physics based RVE generation.

Geometrical methods

Due to the high aspect ratio of the lamellae (in TiAl often λC
λL

>500), a one to one discretiza-
tion of a representative set of colonies would require a very high number of finite elements. In
combination with the computationally expensive micromechanical constitutive models, this
would result in unpleasantly high computational costs. Thus, neither experimental nor physics
based methods – which per definition yield a one to one representation of the microstructure
– are widely used for the generation of RVEs for FEM based modeling of lamellar microstruc-
tures. In fact, most reported RVEs of lamellar microstructures are based on purely geometrical
considerations and include some kind of geometric simplification or multi-scale approach to
reasonably limit the computational costs.
As it became clear in the review of the reported crystal plasticity models for fully lamellar
TiAl (see Section 3.1.1), these models are usually set up and calibrated in two steps, beginning
with the constitutive behavior of a single colony and subsequently transferring the results to
the micromechanics of a polycolony microstructure. Accordingly, two types of RVEs can be
distinguished for lamellar microstructures:

• RVEs of single colonies that consist of a representative number of lamellae and

• RVEs of polycolony microstructures that consist of a representative set of differently
oriented colonies.

The specific appearance of the reported RVEs is, however, directly related to the pursued
modeling strategy, i.e. whether or not it is intended to explicitly model the constitutive be-
havior of the individual lamellae (cf. Section 3.1.1). While constitutive models that explicitly
consider the micromechanics of the different lamellae obviously require lamellar RVEs, there
is no need for an explicit geometrical representation of the lamellae in RVEs for homogenized
single phase models. Moreover, some authors aim to set up RVEs that reproduce the mi-
crostructural details as realistic as possible, while others decide to create structured RVEs of
reduced complexity. Thus, the reported geometry based RVEs can be categorized to be

• lamellar or homogeneous and

• realistic or structured.

Table 3.1 illustrates this categorization scheme and summarizes literature in which respective
kinds of RVEs were presented.
As mentioned above, micromechanical modeling of materials with lamellar microstructures
usually starts with modeling the manageable constitutive behavior of the single colonies.
However, the corresponding RVEs of single colonies are not only needed for model calibration
but were also used to study their micromechanics (like e.g. their plastic anisotropy) and play
a role in the context of multi scale modeling. The geometry of such single colony RVEs is
usually quite simple and thus generally enables structured meshing.
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Table 3.1. Schematic illustration of different types of reported RVEs of lamellar microstructures
categorized by level of detail. Homogeneous and lamellar refer to whether or not the lamellae are
explicitly considered in the RVE (and correspondingly in the constitutive model). The categories
realistic and structured indicate whether it is intended to represent the microstructural details
as realistic as possible or in a simplified (i.e. structured) way. Figures taken from Bargmann et
al.[4].

single lamellar colonies
realistic structured

la
m
el
la
r modeled details

domains in TiAl (3D: [1,
29, 62, 63, 72, 78, 83, 95];
2D: [61])

resolved phases
TiAl (α2 + 6 γ orien-
tations [29, 77, 78]; α2
+ 2 homogenized γ ma-
trix and twin variants
[29, 75]);
pearlitic steel (ferrite +
cementite [96–98]);
Ti-6242 (α + β [99])

ho
m
og

en
eo
us

not applicable

calibration of homog-
enized constitutive
model
TiAl [71, 80]

polycolony microstructures
realistic structured

la
m
el
la
r

colony geometry
Voronoi-based [100]

colony geometry
hexagonal (2D) [83, 101,
102]

ho
m
og

en
eo
us

colony geometry
Voronoi-based [97, 103,
104]

colony geometry
truncated rhombic do-
decahedral [71];
hexahedral [29, 72, 75,
105, 106];
hexagonal (2D) [57, 67,
68];
rhombo hexagonal do-
decahedral [80]

RVEs of polycolony microstructures are naturally more complex and thus need more sophis-
ticated tools to be created. In general, the single colonies have a similar shape as the grains
in conventional polycrystalline materials. In the case of fully lamellar TiAl, the shape of the
colonies is in fact determined by the shape of the parent α phase grains in which the lamellae
form during the eutectoid phase transformation (cf. Figure 1.2). Thus, the geometry of the
colonies can basically be obtained by the same techniques that are used to create RVEs of
conventional polycrystalline materials (e.g. Voronoi tessellation). Most reported polycolony
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RVEs are, however, created using more or less complex, space-filling geometries like sim-
ple hexahedra, hexagonal prisms or truncated rhombic dodecahedra to represent the colony
boundaries. As it becomes clear from Table 3.1, only a few of the reported polycolony RVEs
explicitly incorporated the lamellae. In all of the respective studies, the number of lamellae
per colony was drastically reduced as compared with real microstructures in order to limit
the number of elements that are needed for their discretization.
In summary it can be stated that the significantly different length scales that coexist in
lamellar microstructures (lamella thickness� colony size) currently impede the use of realistic
RVEs for FEM simulations. As a result, most reported constitutive models treat the lamellar
colonies in a homogenized way or apply some kind of multiscale approach.

3.2 Crystal plasticity
Crystal plasticity models aim to reproduce the plastic anisotropy of crystalline materials by
explicitly considering the kinematics of their crystallographic lattices and their work hardening
characteristics. A review of the reported crystal plasticity models can be found in [56]. In
the following section, the crystal plasticity framework that is used throughout this thesis is
presented.

3.2.1 Kinematics
The crystal plasticity model presented here is formulated in terms of finite strain theory, i.e.
for large deformations. In this, the motion of a material point from its initial position X in
the undeformed, stress-free reference configuration of a solid body to its current position x in
the deformed (current) configuration at time t is described by

ϕ(X, t) := x. (3.1)

With the function of motion ϕ of the material points of a solid body between its reference
and its current configuration, the deformation of infinitesimal line elements in that body is
described by the deformation gradient F

F := Gradϕ(X, t), i.e. Fij = ∂ϕi
∂Xj

for i, j = 1, 2, 3 (3.2)

where Grad is the gradient with respect to reference configuration. In the context of large
strain plasticity, the deformation gradient F is commonly assumed to be decomposable into
two parts (see, e.g., [107])

F = FE · F P . (3.3)

Here, F P represents the deformation of a crystal due to inelastic shear on its crystallographic
planes whereas FE represents the elastic deformation of the lattice and its rigid body rota-
tions.
As illustrated in Figure 3.1, the multiplicative split of the deformation gradient introduces an
intermediate configuration which is described by a transformation of the reference configura-
tion by F P . Since it is usually assumed that the inelastic shear on crystallographic planes
does not alter the appearance of the lattice, the intermediate configuration is assumed to
be isoclinic, i.e. the shear direction s and the shear plane normal n do not change between
reference and intermediate configuration.
With the multiplicative split of the deformation gradient F , i.e. Equation (3.3), the right
Cauchy-Green tensor can be defined in the reference configuration, reading
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Figure 3.1. Decomposition of the deformation gradient F into an elastic part FE and a plastic
part F P . The decomposition introduces an intermediate configuration which is assumed to be
isoclinic, i.e. the shear direction s and the shear plane normal n do not change between reference
and intermediate configuration. Following [41].

C := F T · F (3.4)

as well as in the intermediate configuration, indicated by the subscript E

CE := F T
E · FE . (3.5)

The evolution Ḟ of the deformation gradient F is given by

L = Ḟ · F−1 (3.6)

where L is the velocity gradient. With the multiplicative split of the deformation gradient F
given in Equation (3.3), its evolution reads Ḟ = ḞE · F P + FE · Ḟ P . The inverse of F reads
F−1 = F−1

P · F
−1
E . Inserting this into Equation (3.6) yields

L =
[
ḞE · F P + FE · Ḟ P

]
· F−1

P · F
−1
E

= ḞE · F−1
E︸ ︷︷ ︸

LE

+FE · Ḟ P · F−1
P︸ ︷︷ ︸

LP

·F−1
E (3.7)

with LE and LP being the elastic and the plastic part of the velocity gradient. With this,
the evolution of the plastic deformation gradient is given by

Ḟ P = LP · F P . (3.8)

In order to capture the kinematics of a crystal’s plastic deformation, the plastic velocity
gradient LP is defined in terms of shear rates on individual crystallographic planes in crystal
plasticity models. Based on the definition from [107] which was extended in [108] to account
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for twinning, the plastic velocity gradient is defined as

LP = Ḟ P · F−1
P =

1−
Ntw∑
β

fβ

 Nsl∑
α

να [sα ⊗ nα]︸ ︷︷ ︸
slip

+
Ntw∑
β

γT gβ [sβ ⊗ nβ]
︸ ︷︷ ︸

twinning

. (3.9)

In this, the shear rate on slip system α and the twinning rate on twinning system β are
denoted by να and gβ, fβ denotes the twinned volume fraction of twinning system β and
γT denotes the material specific twinning shear (γT = 1/

√
2 in TiAl [11]). The product of

twinning rate gβ and twinning shear γT yields the shear rate on twinning system β. N sl and
N tw denote the number of slip systems and the number of twinning systems respectively. The
sum of the twinned volume fractions fβ has to be limited to ∑Ntw

β fβ ≤ 1 as this means that
the volume is twinned completely.
In the present definition of LP (Equation (3.9)), the reorientation of the crystal lattice due
to twinning and subsequent slip or twinning within twinned regions is not considered. This
assumption is reasonable since twins in fully lamellar TiAl alloys are generally very thin, see,
e.g., [55].

3.2.2 Stress measures

As an important stress measure, the second Piola-Kirchhoff stress S in the reference config-
uration is defined by

S := JF−1 · σ · F−T (3.10)

where J = detF > 0 is the Jacobian and σ denotes the Cauchy stress tensor.
As a result of the decomposition of the deformation gradient, i.e. Equation (3.3), the second
Piola-Kirchhoff stress can also be defined with respect to the intermediate configuration, again
indicated by the subscript E reading

SE := JEF
−1
E · σ · F

−T
E (3.11)

with JE = detFE > 0. Correspondingly, the Mandel stress defined in the intermediate
configuration is given by

ME = CE · SE . (3.12)

The resolved shear stress τ that acts on a slip or twinning system can now be determined by
the following representation of Schmid’s law3

τ := s ·ME · n. (3.13)

Once the resolved shear stress τ on any slip or twinning system reaches levels close to its
strength, plastic deformation starts. This has to be modeled by an appropriate flow respec-
tively twinning rule.

3The slip/twinning direction s and the slip/twinning plane normal n are defined as unit vectors in cartesian
coordinates. Thus, the Miller-Bravais notation for hexagonal lattices have to be transformed according to
Appendix A.2.
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3 Modeling framework

3.2.3 Flow rule

The arising slip shear rate να on a slip system α depends on the ratio between the resolved
shear stress τα (see Equation (3.13)) and its current strength τYα . The slip shear rates να are
thus described via the viscoplastic powerlaw [109]

να = ν0

∣∣∣∣ τατYα
∣∣∣∣n sign(τα). (3.14)

The parameters, ν0 and n are the reference shear rate and the strain rate sensitivity exponent.
For high values of n, this formulation asymptotically approaches the rate independent case.
Since Equation (3.14) defines the slip shear rate να to be positive or negative depending on
the sign of the resolved shear stress τα, the accumulated slip shear γα on slip system α is
defined by

γα =
∫
|να| dt. (3.15)

The parameters that were used for Equation 3.14 are not varied throughout this thesis. Their
values are given in Table 3.2.

Table 3.2. Model parameters for flow and twinning rule, i.e. equations (3.14) and (3.16)
symbol value unit
ν0 0.001 [1

s ]
n 50 [−]

Choosing the strain rate sensitivity exponent n as high as 50, makes Equation (3.14) relatively
insensitive to the applied strain rate.

3.2.4 Twinning rule

From a continuum point of view, the shear of a crystal lattice due to evolving twins can be
described in the same way as for slip systems, except that twinning shear can only act in one
direction which is the twinning direction. To ensure that twinning is unidirectional and that
the total twinned volume fraction does not exceed the limit of f = ∑Ntw

β fβ ≤ 1.0 (as it is
required by Equation (3.9)), the relation of resolved shear stress τβ and twinning rate gβ is
modeled via (cf. [108])

gβ =


ν0
γT

[
τβ
τT
β

]n
for τβ > 0 and f < 1.0

0 else
. (3.16)

Herein, τTβ denotes the current twinning resistance of twinning system β and the reference
twinning rate is determined by dividing the reference shear rate ν0 by twinning shear γT
[63, 108]. The corresponding parameters that were used throughout this thesis are given in
Table 3.2.
The accumulated twinning shear γβ on twinning system β is determined by the time integra-
tion of the twinning shear rate which is given by the product between twinning shear γT and
twinning rate gβ and thus reads

γβ =
∫
γT gβdt. (3.17)
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3.2 Crystal plasticity

3.2.5 Defect density evolution

On the atomic scale, the plastic deformation of crystalline materials is accomplished by the
discrete motion and propagation of defects like dislocations or twins. In crystal plasticity –
as a continuum model – the plastic deformation of a crystal’s lattice is, however, represented
by continuous shear on its crystallographic planes, i.e. single dislocations or twins are not
explicitly considered. Since the density of defects in a deformed volume is a direct measure for
the stored energy of cold work and is closely related to work hardening and recovery processes,
an additional set of internal variables for the defect densities and the corresponding evolution
equations is introduced in the following.
The twinned volume fractions fβ on systems β and the total twinned volume fraction f =∑Ntw
β fβ defined earlier, directly reflect the density of twins in the deformed volume. Analogi-

cally, the dislocation densities ρdis
α on systems α as well as the corresponding total dislocation

density ρdis = ∑Nsl
α ρdis

α are introduced in the following.

Dislocation density evolution The evolution of dislocation densities ρdis
α on slip systems α

is modeled by a generation/recovery formulation proposed in [110–112]

ρ̇dis
α = Aα

(
ρdis
α

)
|να| −Rα

(
ρdis
α , θ

)
with ρdis

α |t=0 = ρdis
α,0. (3.18)

The first term on the right hand side of Equation (3.18) represents the dislocation accumu-
lation due to shear on slip system α (|να| > 0) whereas the second term describes thermal
recovery processes. Herein, Aα ≥ 0 is described by (cf. [110, 111])

Aα = Aα,0

[
1−

[
ρdis
α

ρdis
α,sat

]pα]
, (3.19)

where Aα,0 ≥ 0 is the reference accumulation coefficient, ρdis
α,sat is the saturation value for the

dislocation density and pα > 0 is a constant. In [111], the reference accumulation coefficient
Aα,0 was declared to be temperature dependent which is, however, neglected here for the sake
of simplicity.
Equation (3.19) represents the competition between dislocation accumulation and (athermal)
annihilation which – in case no thermal recovery occurs (i.e. Rα = 0) – will eventually lead
to a steady state value of the dislocation density as ρdis

α approaches a certain saturation value
ρdis
α,sat [113–115]. In this case, Aα approaches zero and plastic flow leads to no further increase

in the dislocation density ρdis
α .

The thermal recovery term in Equation (3.18) is described by an Arrhenius type law (cf.
[39, 111, 115])

Rα = Rα,0 exp
(
− QR
kBθ

)〈
ρdis
α − ρdis

α,min
ρdis

ref

〉qα
(3.20)

where Rα,0 denotes the reference recovery rate, QR is the activation energy for static recovery,
kB denotes the Boltzmann constant, ρdis

α,min is the minimum dislocation density for recovery
to take place, ρdis

ref is a reference dislocation density and the exponent qα > 0 is a constant.
The parenthesis 〈x〉 denotes a function which is 0 for x < 0 and x for x ≥ 0 and thus ensures
that recovery only takes place if ρdis

α ≥ ρdis
α,min.

Evolution of twinned volume fraction The twinned volume fractions fβ evolve directly with
the corresponding twinning rates, i.e.
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3 Modeling framework

ḟβ = gβ. (3.21)

While it has been observed in [83] that twins in the γ phase are relatively stable under
annealing at temperatures close to the service conditions of TiAl alloys, it has been claimed
in [11] that twins can easily recover at elevated temperatures. Due to the contradictory
statements from [83] and [11], a potential reduction of the twinned volume fractions due to
thermal recovery is for the moment neglected in the model.

3.2.6 Critical resolved shear stress

The critical resolved shear stresses, i.e. the strengths, of slip and twinning systems are the
most important state variables of crystal plasticity models since they denote the onset of
plastic deformation and evolve with work hardening. In a general form, the slip and twinning
system strengths τYα and τTβ in equations (3.14) and (3.16) can be written as follows:

τYα = τYα,0 + ∆τYα , (3.22)
τTβ = τTβ,0 + ∆τTβ . (3.23)

Herein, τYα,0 and τTβ,0 denote the initial slip and twinning system strengths while the terms
∆τYα and ∆τTβ denote their incremental increase with plastic deformation, i.e. represent work
hardening. The dependence of the initial slip and twinning system strengths τYα,0 and τTβ,0
on microstructural lengths (Hall-Petch strengthening) is modeled in Chapter 5. In Chapter
4, ∆τYα and ∆τTβ are detailed as functions of dislocation densities ρdis

α and twinned volume
fractions fβ in order to account for work hardening interactions between slip and twinning
systems.

3.3 Thermomechanics and temperature evolution

In the present modeling approach, it is intended to consider the coupling between thermal
and mechanical fields as it, e.g., appears in the form of thermal stresses or dissipative heat
from plastic deformation. Thus, the thermomechanical coupling as it follows from continuum
thermodynamics is presented in the following.

3.3.1 Continuum thermodynamics

The procedure of thermomechanical coupling closely follows the line of arguments presented
in, e.g., [116–118] and is thus just briefly recalled here. By assuming conservation of mass
and taking into account the balance of momentum, the first law of thermodynamics – i.e. the
balance of total energy – reduces to the balance of internal energy ε which reads

ρ0ε̇ = −DivQ+ 1
2S : Ċ + ρ0r. (3.24)

In Equation (3.24), ρ0 is the density in reference configuration, Q is the heat flux vector
(described by Fourier’s law, i.e. Q = −κGrad θ with thermal conductivity κ and temperature
θ) and r is the external heat supply per unit mass. The operator Div denotes the divergence
with respect to the reference configuration, i.e. DivQ = ∑3

i=1
∂Qi
∂Xi

.
The second balance equation that is relevant for the thermomechanical coupling is the balance
of entropy η which reads
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3.3 Thermomechanics and temperature evolution

ρ0η̇ = −Div
(
Q

θ

)
+ ρ0

[
r

θ
+ ξ

]
. (3.25)

In this, ξ denotes the internal entropy production. With the second law of thermodynamics,
i.e. ξ ≥ 0, Equation (3.25) is rewritten as

ρ0η̇ + Div
(
Q

θ

)
− ρ0

r

θ
≥ 0 (3.26)

typically referred to as the Clausius–Duhem inequality. As link between the internal energy
ε and the entropy η, the Helmholtz free energy ψ is introduced in its common form ψ =
ε− ηθ. Multiplying the Clausius–Duhem inequality (Equation (3.26)) by θ and inserting the
Helmholtz free energy and subsequently the balance of internal energy (Equation (3.24)) leads
to

ρ0θη̇ + θDiv
(
Q

θ

)
− ρ0r ≥ 0 with ψ̇ = ε̇− η̇θ − ηθ̇

ρ0
[
ε̇− ψ̇ − ηθ̇

]
+ θDiv

(
Q

θ

)
− ρ0r ≥ 0 with (3.24)

ρ0
[
−ψ̇ − ηθ̇

]
+ θDiv

(
Q

θ

)
−DivQ+ 1

2S : Ċ ≥ 0 exploit DivQ = Q

θ
·Grad θ + θDiv

(
Q

θ

)
ρ0
[
−ψ̇ − ηθ̇

]
− Q
θ
·Grad θ + 1

2S : Ċ ≥ 0. (3.27)

As a result of the multiplicative split of the deformation gradient, the stress power 1
2S : Ċ

can be decomposed into an elastic and a plastic part by 1
2S : Ċ = 1

2SE : ĊE +ME : LP as,
e.g., shown in [119]. This leads to

ρ0
[
−ψ̇ − ηθ̇

]
− Q
θ
·Grad θ + 1

2SE : ĊE +ME : LP ≥ 0. (3.28)

For the present thermo-elasto-plastic problem, the Helmholtz free energy is additively split
into a thermo-elastic and a thermo-plastic part, reading

ψ(CE , θ, qn) = ψE(CE , θ) + ψP (θ, qn) (3.29)

where the thermo-elastic part ψE is assumed to be a function of CE and absolute temperature
θ and the thermo-plastic part ψP is assumed to depend on θ and – in the moment not further
detailed – plastic internal variables qn. The corresponding time derivative reads

ψ̇ = ∂ψ

∂CE
: ĊE + ∂ψ

∂θ
θ̇ +

∑
n

∂ψ

∂qn
q̇n. (3.30)

Inserting this time derivative into Equation (3.28) yields

[1
2SE − ρ0

∂ψ

∂CE

]
: ĊE − ρ0

[
∂ψ

∂θ
+ η

]
θ̇+ME : LP − ρ0

∑
n

∂ψ

∂qn
q̇n−

Q

θ
·Grad θ ≥ 0. (3.31)

Since Equation (3.31) must hold for any choice of ĊE and θ̇, 1
2SE−ρ0

∂ψ
∂CE

= 0 and ∂ψ
∂θ +η = 0

must hold [120]. From this, it follows
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3 Modeling framework

SE = 2ρ0
∂ψ

∂CE
and (3.32)

η = −∂ψ
∂θ
. (3.33)

As a remainder of Equation (3.31)), the reduced dissipation inequality is obtained to be

D = ME : LP − ρ0
∑
n

∂ψ

∂qn
q̇n︸ ︷︷ ︸

Dmech

− Q
θ
·Grad θ︸ ︷︷ ︸
Dtherm

≥ 0 (3.34)

where Dmech and Dtherm are the mechanical and the thermal part of dissipation D.

3.3.2 Temperature evolution

Since mechanical dissipation (see Equation (3.34)) leads to an increase in temperature, a ther-
momechanically coupled formulation of the temperature evolution is derived in the following.
The Helmholtz free energy ψ was defined earlier to be a function of the elastic right Cauchy-
Green tensor CE , the absolute temperature θ and the plastic internal variables qn. Following
the principle of equipresence, the entropy η a priori is also a function of these quantities and
its time derivative reads

η̇ = ∂η

∂CE
: ĊE + ∂η

∂θ
θ̇ +

∑
n

∂η

∂qn
q̇n with (3.33)

⇒ η̇ = − ∂2ψ

∂CE∂θ
: ĊE −

∂2ψ

∂θ2 θ̇ −
∑
n

∂2ψ

∂qn∂θ
q̇n. (3.35)

Inserting the Helmholtz free energy ψ into the balance of internal energy, Equation (3.24),
and making use of Equations (3.30), (3.32), (3.33) and (3.35) yields

ρ0ε̇ =−DivQ+
1
2
S : Ċ + ρ0r with ψ̇ = ε̇− η̇θ − ηθ̇

⇒ ρ0
[
ψ̇ + η̇θ + ηθ̇

]
=−DivQ+

1
2
S : Ċ + ρ0r with (3.30)

⇒ ρ0

[
∂ψ

∂CE
: ĊE +

∂ψ

∂θ
θ̇ +
∑
n

∂ψ

∂qn
q̇n + η̇θ + ηθ̇

]
=−DivQ+

1
2
S : Ċ + ρ0r with (3.33)

⇒ ρ0

[
∂ψ

∂CE
: ĊE +

∑
n

∂ψ

∂qn
q̇n + η̇θ

]
=−DivQ+

1
2
S : Ċ + ρ0r with (3.32)

⇒
1
2
SE : ĊE + ρ0

[∑
n

∂ψ

∂qn
q̇n + η̇θ

]
=−DivQ+

1
2
S : Ċ + ρ0r with

1
2
S : Ċ =

1
2
SE : ĊE +ME : LP

⇒ ρ0

[∑
n

∂ψ

∂qn
q̇n + η̇θ

]
=−DivQ+ME : LP + ρ0r with (3.35) and again (3.32)

⇒ ρ0

[∑
n

∂ψ

∂qn
q̇n +

[
−
∂2ψ

∂θ2 θ̇ −
∑
n

∂2ψ

∂qn∂θ
q̇n

]
θ

]
=−DivQ+ME : LP +

1
2
θ
∂SE

∂θ
: ĊE + ρ0r rearrange

⇔ −ρ0θ
∂2ψ

∂θ2 θ̇ =−DivQ+ME : LP − ρ0
∑
n

∂ψ

∂qn
q̇n +

1
2
θ
∂SE

∂θ
: ĊE + ρ0r
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3.3 Thermomechanics and temperature evolution

+ ρ0θ
∑
n

∂2ψ

∂qn∂θ
q̇n. (3.36)

Defining the heat capacity as cp = −θ ∂2ψ
∂θ2 finally yields the equation for the temperature

evolution

ρ0cpθ̇ = −DivQ+ME : LP − ρ0
∑
n

∂ψ

∂qn
q̇n︸ ︷︷ ︸

Dmech

+1
2θ
∂SE
∂θ

: ĊE + ρ0r + ρ0θ
∑
n

∂2ψ

∂qn∂θ
q̇n. (3.37)

3.3.3 Helmholtz free energy

In the previous sections, the Helmholtz free energy ψ was assumed to be a function of the
elastic Cauchy-Green strain tensor CE , the absolute temperature θ and the so far not further
specified plastic internal variables qn. Assuming ∂ψ

∂qn
> 0 (see [111]), it becomes clear from

Equations (3.34) and (3.37) that an increase of the plastic internal variables qn (i.e. q̇n > 0)
reduces the part of the plastic stress power ME : LP which is dissipated to heat. Conse-
quently, the plastic internal variables are related to the stored energy of cold work. Since the
defect densities within a plastically deformed volume are directly related to the stored energy
of cold work, they are a natural choice for the plastic internal variables, enabling a physically
meaningful representation of mechanical dissipation and temperature evolution.
While the contribution of dislocations to the stored energy of cold work is directly proportional
to the dislocation densities ρdis

α , the contribution of twins to the stored energy of cold work is
given by the fixed energy per twin/matrix interface [11]. Since twin growth is accomplished by
propagation of the twin/matrix interface, the respective energy per twin does not change with
its size. Thus, the contribution of twin/matrix interfaces to the stored energy of cold work
can only be assessed if the discrete number of twins is known. However, in the presented
model twins are considered in terms of twinned volume fractions fβ and their number is
thus not known. Therefore, the contribution of twins to the stored energy of cold work is
neglected in the following by assuming that the Helmholtz energy is no function of the twinned
volume fraction. With the dislocation densities ρdis

α as the only plastic internal variables, the
Helmholtz free energy from equation (3.29) is rewritten as

ρ0ψ := ρ0ψE(CE , θ) + ρ0ψP (ρdis
α , θ). (3.38)

The thermo-elastic part of the Helmholtz free energy ρ0ψE is assumed to follow a Neo-Hookean
type behavior4 [118, 121]

ρ0ψE =µ

2 [trCE − 3] + λ

2 ln2 JE − µ ln JE − 3αtK[θ − θ0] ln JE
JE

(3.39)

+ ρ0cp

[
θ − θ0 − θ ln

[
θ

θ0

]]
− [θ − θ0]S0,

where αt denotes the (temperature dependent) thermal expansion coefficient. The Lamé
constants µ = E

2(1+ν) and λ = νE
(1+ν)(1−2ν) and the bulk modulusK = E

3−6ν are herein defined in
terms of the (temperature dependent) Young’s modulus E and the (temperature dependent)

4In this, the elastic anisotropy of the single phases as it was determined, e.g., in [31, 32] is neglected since
the elastic deformation remains small as compared to the plastic deformation.
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Poisson’s ratio ν. Finally, θ0 and S0 denote the reference temperature and the reference
entropy density.
Following [110, 111], the thermo-plastic part of the Helmholtz free energy ρ0ψP reads

ρ0ψP = aG
Nsl∑
α

b2
αρ

dis
α . (3.40)

Herein, G = E
2[1+ν] denotes the (temperature dependent) shear modulus and bα is the (tem-

perature dependent) magnitude of the Burgers vector of slip system α. The material specific
constant is chosen to a ≈ 0.5 which is typical for TiAl alloys [11].
With this thermomechanical definition of the Helmholtz free energy and the relations (3.32)
and (3.37), the governing equations – i.e. the balance of linear momentum and the temperature
evolution equation – read

0 = Div
(
FE

[
µ[I −C−1

E ] +
[
λ ln JE −

3αtK
JE

[θ − θ0][1− ln JE ]
]
C−1
E

]
︸ ︷︷ ︸

SE

)
+ ρ0b (3.41)

ρ0cpθ̇ =−DivQ+ME : LP − a
Nsl∑
α

[
G− θdG

dθ

]
b2
αρ̇

dis
α + ρ0r + 1

2θ
∂SE
∂θ

: ĊE (3.42)

where b are the body forces per unit mass. In this, the temperature dependence of the
magnitude of the Burgers vector is neglected.

3.3.4 Temperature dependent model parameters

The temperature dependent model parameters that are used throughout this thesis are sum-
marized in Table 3.3. The parameters in Table 3.3 were obtained by linear interpolation of
experimental data from literature. If no single phase parameters were reported, the corre-
sponding parameters of two phase alloys were used.

3.4 Implementation into FEM

In this section, the implementation of the presented defect density based, thermomechanically
coupled crystal plasticity model into the commercial FE software ABAQUS is presented.

3.4.1 Algorithmic formulation

The evolution of state variables in the crystal plasticity model introduced above is defined
in terms of rates which have to be transformed into an algorithmic formulation before being
implemented into FEM. Therefore, the temporal evolution of the state variables is discretized
in time intervals

∆t = tn+1 − tn (3.43)

between state n and state n + 1. With this time discretization, the shear rates να on slip
systems α and the twinning rates gβ on twinning systems β are described in terms of shear
increments

∆γ = γn+1 − γn (3.44)
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Table 3.3. Temperature dependent model parameters that were used throughout this thesis.
The reported experiments were carried out in the indicated temperature range. If no parameters
for the single phases are available, the parameters of two phase alloys were used instead.

γ phase
symbol value temp. range [◦C] composition ref.
E 173.59GPa− 0.0342[T − T0] GPa

◦C T0 = 25 < T < 935 Ti-50Al [122]
ν 0.234 + 6.7 · 10−6[T − T0] 1

◦C T0 = 25 < T < 847 Ti-50Al [122]
c
a 1.00356 + 7.2 · 10−6[T − T0] 1

◦C T0 = 20 < T < 1450 Ti-46Al-1.9Cr-3Nb [123]
a 0.3997 nm [11]

α2 phase
symbol value temp. range [◦C] composition ref.
E 147.05GPa− 0.0525[T − T0] GPa

◦C T0 = 25 < T < 954 Ti-27.6Al [122]
ν 0.295− 5.9 · 10−5[T − T0] 1

◦C T0 = 25 < T < 954 Ti-27.6Al [122]
c
a 0.804 ≈ const. T0 = 20 < T < 1450 Ti-46Al-1.9Cr-3Nb [123]
a 0.5765 nm [11]

γ/α2 phase combined
symbol value temp. range [◦C] composition ref.
ρ0 4.219 g

cm3 − 1.579 · 10−4[T − T0] g
cm3 ◦C T0 = 25 < T < 1150 Ti-45.5Al-8Nb [124]

cp 0.6207 J
g ◦C + 1.5897 · 10−4[T − T0] J

g[◦C]2 T0 = 20 < T < 900 Ti-45.5Al-8Nb [125]
κ 15.35 W

m ◦C + 1.364 · 10−2[T − T0] W
m[◦C]2 T0 = 100 < T < 900 Ti-47Al-4(Nb,W,B) [125]

αt 8.936 · 10−6 1
◦C + 3.4 · 10−9[T − T0] 1

[◦C]2 T0 = 100 < T < 900 Ti-47Al-4(Nb,W,B) [125]

and read

να = ∆γα
∆t and (3.45)

gβ = 1
γT

∆γβ
∆t . (3.46)

Analogically, the evolution of dislocation densities ρdis
α and twinned volume fractions fβ are

defined by the discrete form

ρ̇dis
α =

ρdis
α,n+1 − ρdis

α,n

∆t and (3.47)

ḟβ = fβ,n+1 − fβ,n
∆t . (3.48)

With this, a forward Euler form is obtained from Equations (3.18) and (3.21) which reads

ρdis
α,n+1 = ρdis

α,n +Aα,0

[
1−

[
ρdis
α,n

ρdis
α,sat

]pα]
|∆γα| −Rα,0 exp

(
− QR
kBθn+1

)〈
ρdis
α,n − ρdis

α,min
ρdis

ref

〉qα
∆t and

(3.49)

fβ,n+1 = fβ,n + 1
γT

∆γβ. (3.50)

In order to derive an algorithmic representation of the evolution equation for the plastic
deformation gradient F P from Equation (3.9), the discrete form
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Ḟ P = F P,n+1 − F P,n

∆t (3.51)

is introduced. With Equation (3.51), a forward Euler form of Equation (3.9) is derived which
analogous to [126] reads

F P,n+1 = uni

I +

1−
Ntw∑
β

fβ,n+1

 Nsl∑
α

∆γα [sα ⊗ nα] +
Ntw∑
β

∆γβ [sβ ⊗ nβ]

 · F P,n. (3.52)

In this, the unimodular part (uni(A) = A/det(A)1/3 for any second-order tensorA) was taken
of both sides while requiring det(F P ) = 1 in order to enforce the plastic incompressibilty (see
[126]).

3.4.2 Implementation as user material subroutine
In the presented algorithmic form, the model was implemented into the commercial FE-
code ABAQUS via an UMAT user material subroutine. In every time step, ABAQUS hands
over the deformation gradient and the temperature and requests the user to return the corre-
sponding Cauchy stress tensor (STRESS) and the volumetric heat generation (RPL). Further,
ABAQUS requires the stress tangents with respect to strain (DDSDDE) and temperature
(DDSDDT) as well as the tangents of the volumetric heat generation with strain (DRPLDE)
and temperature (DRPLDT).
In order to identify the internal state variables – namely the accumulated shears γα,n+1 and
γβ,n+1, dislocation densities ρdis

α,n+1, twinned volume fractions fβ,n+1 and the plastic deforma-
tion gradient F P,n+1 – at the end of the current time step, the algorithmic formulation of
the evolution equations as it was derived in the previous section has to be solved iteratively
as shown in Figure 3.2. Once this iterative procedure converged, the Cauchy stress tensor is
calculated and handed over to ABAQUS via the STRESS array. In the implemented UMAT
subroutine, the derivatives that are necessary to determine the volumetric heat generation
(RPL) and the required tangents (DDSDDE,DDSDDT,DRPLDE and DRPLDT) are set up
numerically in terms of a finite difference approximation. Therefore, the iterative procedure
in Figure 3.2 has to be solved again multiple times for systematic perturbations of the defor-
mation gradient and the temperature. In this, the number of necessary iteration loops was
reduced by applying the scheme reported in [127] which allows to determine the tangents with
respect to strain by only 6 systematic perturbations of the deformation gradient F (instead
of individually perturbing each of its 9 components).
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3.4 Implementation into FEM
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Figure 3.2. Flow chart for iteratively determining the state variables of the crystal plasticity
model
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3 Modeling framework

3.5 Representative volume elements and discretization

The constitutive model presented in the previous section incorporates all features that are
relevant to describe the crystal mechanics of the γ as well as the α2 phase. However, the
model was formulated in a single crystal plasticity framework. Thus, the crystal plasticity
model has to be applied to an appropriate geometrical representation, namely an RVE, of
the lamellar microstructure in order to capture the kinematic constraints that arise between
neighboring lamellae and between neighboring colonies.
In the following, two periodic RVEs are set up to serve as geometrical input for the intended
FE analyses – one of a polysynthetically twinned crystal and one of a polycolony fully lamellar
microstructure.

3.5.1 Representative volume element of a polysynthetically twinned crystal

As shown in [73] by comparing simulation results with different RVEs, it is sufficient to model
only seven lamellae, namely one α2 lamella and one lamella for each γ orientation variant,
to capture the influence of the crystallography of a polysynthetically twinned crystal on its
deformation behavior. In the present thesis, a periodic RVE of a polysynthetically twinned
crystal is set up in terms of a single α2 lamella and an alternating sequence of 3 γ matrix
and 3 γ twin lamellae each subdivided into domains to account for the different matrix and
twin orientations that occur along the γ lamellae. The volume fraction Vα2 of the α2 phase
is considered by adjusting the thickness of the α2 lamella accordingly. The remaining volume
(Vγ = 1− Vα2) is assumed to be divided equally between the 6 γ orientation variants so that
the γ lamellae all have the same thickness. This set up is schematically shown in Figure 3.3.
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γIIM
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γIT

γIIT

γIIIM

γIIM

γIIIM

γIIIT

γIIT

γIIIT
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γIT
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ϕ
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z

1

Figure 3.3. RVE of polysynthetically twinned crystal. ϕ: angle between uniaxial load and
lamella plane; γI−IIIM/T : six orientation variants of γ phase according to Figure 2.5 (three matrix
and three twin orientations). Figure taken from Schnabel & Bargmann [2].

The RVE was discretized using linear hexahedral elements with a temperature degree of
freedom (C3D8T) and was subjected to periodic boundary conditions (see Section 3.6.1).
The orientation of the RVE with respect to the applied uniaxial load (angle ϕ in Figure 3.3)
was realized as described in Section 3.6.2.
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3.5 Representative volume elements and discretization

3.5.2 Representative volume element of a polycolony microstructure

The periodic RVE of a polycolony microstructure that is used throughout this thesis is based
on a 2D Voronoi tesselation where the Voronoi cells are supposed to represent the outlines of
the lamellar colonies. In order to avoid the formation of degenerated Voronoi cells as they
frequently occur for completely random sets of seed points, the seeds were initially chosen
such that the Voronoi cells are hexagonal. However, 2D Voronoi diagrams are usually not
periodic due to irregularities that occur at their boundaries (e.g. cells that are not closed). In
order to still obtain a periodic RVE from a Voronoi tesselation, the seeds of the actual RVE
are usually duplicated with an offset of ±w in x and ±h in y direction where w and h denote
the width and the height of the RVE. This is illustrated in Figure 3.4 for an examplary set of
4 seeds.

h

w

Figure 3.4. 2D Voronoi tesselation for a set of 4 regularly spaced seeds (red dots) that were
duplicated in a 3 by 3 pattern to obtain periodic cells in the center region.

In order to obtain less regular shaped colonies while still avoiding degenerated cells, the initial
seeds were randomly displaced within a circular region around their initial positions. The
duplicated seeds were displaced according to their parent seeds to ensure that the periodicity
of the Voronoi diagrams center region (i.e. of the actual RVE) is maintained. The radius
of the region in which the seeds are displaced is r = ζri where ri is the inner radius of the
hexagonal Voronoi cells and 0 ≤ ζ ≤ 1 is a constant. This randomization is illustrated in
Figures 3.5(a) and (b) for the center region of the Voronoi diagram from Figure 3.4.
For the RVE used here, this process was carried out for a set of 36 seeds, representing 36
colonies. The parameter ζ was set to 0.9. The resulting Voronoi cells were then imported
as x, y sketches to ABAQUS and extruded in z direction. By boolean intersection of the
single colonies and a set of coplanar planes, the lamellae were introduced. The orientation
of the lamella plane in each colony is uniquely defined by only one angle ϕi rotating around
the z-axis, i.e. the normal vectors of the lamella planes of all colonies are assumed to lie
within the x, y plane. To minimize the influence of texture, the orientations of the colonies
are evenly distributed between ϕi = 0◦ and ϕi = 360◦ (i.e. ϕi = i360◦

ncol
for i = 1, 2, ..., ncol). As

reviewed in Section 3.1.2, it is unfavorable to set up a one to one discretization of a polycolony
microstructure for FEM calculations. Thus, only a reduced number of 15 lamellae with all
the same thickness was considered in each colony. Each lamella was assigned to be either
of the α2 phase or of one of the 6 orientation variants of the γ phase while attention was
paid to correctly reproduce the corresponding volume fractions in each colony. The different
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3 Modeling framework

ζri

h

w

ri

(a) (b)

Figure 3.5. Randomization of the initially regular hexagonal Voronoi diagram. (a): The red
circle indicates the region in which the initially regular spaced seeds are randomly displaced.
The radius of the circle is determined by ζri where ri is the inner radius of the hexagonal
Voronoi cells and 0 ≤ ζ ≤ 1 is a constant (b): Voronoi diagram after displacing the initial seeds.
The initial seeds are marked in red, blue dots mark the location off the displaced seeds

γ orientation variants were all assumed to occur with the same volume fraction. It was
found that the 15 lamellae per colony are sufficient to reproduce most of the common volume
fractions to a good accuracy. The created RVE is shown in Figure 3.6 for an assigned α2
volume fraction of 10%.
This RVE was subjected to periodic boundary conditions (see Section 3.6.1) and meshed using
linear wedge elements with a temperature degree of freedom (C3D6T).

3.6 Boundary conditions

In the context of micromechanical modeling of periodic unit cells, the applied boundary con-
ditions are of particular interest. Thus, the here used boundary conditions will be presented
in the following.

3.6.1 Periodic boundary conditions

The idea of periodic RVEs is that they yield a space filling continuous representation of
the microstructure when being repeated in a tile pattern. For the undeformed state this
is easily fulfilled if the geometry of the RVE is set up periodically. However, the opposing
faces of the RVE have to fit into each other for any deformation state. This is achieved by
applying periodic boundary conditions which constrain the deformation of the RVEs opposing
boundaries accordingly as illustrated for an exemplary 2D unit cell in Figure 3.7.
In the context of FEM, these constraints are prescribed in terms of the displacements of
nodes that lie on opposing faces of the unit cell. With x+ and x− denoting opposing faces of
the unit cell with normal vectors of the undeformed face in x direction, the coupling of the
displacements u of the ith pair of opposite nodes is described by

ux
+
i − ux

−
i = uMx − u0 (3.53)

uy
+

i − u
y−

i = uMy − u0 (3.54)
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Figure 3.6. RVE of polycolony fully lamellar microstructure consisting of 36 lamellar colonies.
Separate depiction of the α2 phase and the 6 orientation variants of the γ phase (γI−IIIM/T according
to Figure 2.5) shows their distribution within the colonies. Figure taken from Schnabel &
Bargmann [2].

which reduces to

ux
+
i = ux

−
i + uMx (3.55)

uy
+

i = uy
−

i + uMy (3.56)

when fixing node 0 in order to prevent rigid body translations. From this definition, it follows

uNxy = uMx + uMy (3.57)

for the node Nxy.
The nodes Mx and My are called master nodes since the deformation of all faces is cou-
pled to their displacement. Consequently, the displacements of the master nodes are usually
prescribed to load the RVE.

41



3 Modeling framework
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Figure 3.7. Exemplary 2D unit cell subjected to periodic boundary conditions.

The temperature boundary conditions are treated analogically and thus read 5

θx
+
i − θx

−
i = θMx − θ0 (3.58)

θy
+

i − θ
y−

i = θMy − θ0. (3.59)

The periodic boundary conditions for 3D RVEs are set up analogically to the 2D case by
introducing a third master node Mz and corresponding equations for the displacements and
temperature

uz
+
i = uz

−
i + uMz (3.60)

θz
+
i − θz

−
i = θMz − θ0. (3.61)

3.6.2 Rotation of load on representative volume element of a polysynthetically
twinned crystal

In the course of this thesis, several aspects of the plastic anisotropy of polysynthetically
twinned crystals/single colonies ought to be investigated. Thus, the angle between the uniaxial
load and the lamella plane of the corresponding RVE (see Section 3.5.1) has to be adjustable.
This is achieved by adopting the approach that was presented in [72]. In this approach,
the RVE of a polysynthetically twinned crystal is subjected to periodic boundary conditons
and then embedded into a single finite element with the same size as the RVE. This dummy
element is defined here as a linear hexahedral element with reduced integration (C3D8R) –
i.e. only contains one integration point – and has a negligible stiffness of 0.01MPa assigned
to it. Figure 3.8 shows the nodes of the dummy element. The dummy element is subjected
to periodic boundary conditions and its rigid body translations and rotations are suppressed

5It has to be noted that periodic boundary conditions are somewhat ill-defined for heat conduction problems.
The idea of hypothetically repeating the periodic RVE in a tile pattern to represent the microstructure
introduces a paradox for the temperatures. While this concept requires the temperatures of opposite
nodes on opposing faces to be identical in order to yield a continous temperature field, the absence of a
temperature gradient normal to the RVEs surface inhibits heat conduction over the RVEs boundaries. In
contrary, assuming the temperature gradient to be equal between all opposite nodes of opposing faces – as
it is done in Equations (3.58) and (3.59) – results in a periodic heat flux but introduces discontinuities in
the temperature field [128].
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3.6 Boundary conditions

by setting ux1 = uy1 = uz1 = ux2 = uz2 = uz4 = 0 while uniaxial loading is prescribed in terms of
the displacement uz5 of the master node of its z+ surface.
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Figure 3.8. Nodes and displacements of the dummy element. Following [29].

The deformation of the dummy element from Figure 3.8 is calculated by averaging the dis-
placements of each of its faces and then determining the difference between the averaged
displacements of opposing faces. With the nomenclature from Figure 3.8, the averaged dis-
placements of the dummy element are defined as (cf. [29, 72])

ux = ux
+ − ux− = [u3 + u4 + u7 + u8]/4− [u1 + u2 + u5 + u6]/4 (3.62)

uy = uy
+ − uy− = [u2 + u3 + u6 + u7]/4− [u1 + u4 + u5 + u8]/4 (3.63)

uz = uz
+ − uz− = [u5 + u6 + u7 + u8]/4− [u1 + u2 + u3 + u4]/4. (3.64)

By implementing a rotational relation between the averaged displacements ux, uy and uz of
the dummy element and the displacements uMx, uMy and uMz of the RVE’s master nodes,
it is possible to simulate uniaxial loading of the rotated RVE without having to change the
simulation set up. In the course of this thesis, the RVE presented in Figure 3.3 is solely
rotated within the x,z plane, i.e. around its y axis. Following [29, 72], the corresponding
rotational relation reads

URVE = RT
y ·Udummy ·Ry (3.65)

where URVE = (uMx,uMy,uMz)T is the matrix of the displacements of the RVE’s master
nodes, Ry is the rotation matrix about the y axis (cf. Figure 3.3) and Udummy = (ux,uy,uz)T
is the matrix of the averaged displacements of the dummy element.
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4 Work hardening
The work hardening behavior of fully lamellar TiAl has been investigated in comparatively
few experimental studies which can largely be explained by its limited (tensile) ductility at
room temperature [39, 129, 130]. Nevertheless, the work hardening behavior of fully lamellar
TiAl can be investigated in compression tests in which considerable plastic strains can be
achieved. Due to the pronounced plastic anisotropy of the single lamellar colonies (cf. Figure
2.7) polycolony microstructures show a highly inhomogeneous microplasticity, i.e. the plastic
deformation is mainly accomplished by weakly oriented colonies which in consequence expe-
rience considerable plastic strains (and thus work hardening) even prior to macroscopic yield
(see, e.g., digital image correlation (DIC) results in [131–133]). Due to this phenomenon –
which will be investigated in Chapter 6 and is referred to as microyield in the following –
it is crucial to model the anisotropic work hardening behavior of the lamellar colonies up to
several % plastic strain when aiming to accurately predict the plastic deformation behavior
of a polycolony microstructure.
In the crystal plasticity framework introduced above, work hardening was simply described as
the – so far not further specified – increment of the critical resolved shear stresses due to plastic
deformation (cf. Equations (3.22) and (3.23)). In this chapter, the work hardening terms in
Equations (3.22) and (3.23) will be specified with respect to the evolving defect densities in
the deformed volume. The presented work hardening model will then be calibrated against
macroscopic stress strain curves obtained from experiments with polysynthetically twinned
crystals reported in [52]. In order to supplement the somewhat fragmented experimental
data available, the calibrated model will subsequently be used to investigate the post yield
behavior of polysynthetically twinned crystals/single colonies in terms of the relative activity
of deformation systems as it results from their work hardening interactions.

4.1 Modeling
As it becomes evident by reviewing the reported crystal plasticity models of fully lamellar
TiAl (cf. Section 3.1.1), most numerical studies did not aim to investigate the deformation
behavior beyond the yield point, i.e. for higher plastic strains. While some of the reported
numerical studies showed that the applied linear or saturation work hardening relations were
generally suitable to reproduce the stress-strain response of differently oriented polysynthet-
ically twinned crystals [29], polycolony microstructures [75, 80] or nanoindentation tests [41]
for higher plastic strains, a detailed discussion of the active deformation systems and work
hardening interactions was, apparently, not in the focus of these contributions. Further, the
work hardening relations that have been applied in the respective numerical studies were for-
mulated in terms of the accumulated plastic shear γ (cf. Equations (3.15) and (3.17)) on the
respective slip and twinning systems as it is common for classical crystal plasticity models
[56]. Keeping in mind the earlier formulated aim to model recovery of work hardening (see
Section 1.2), the accumulated shears γ are, however, unsuitable variables for the work hard-
ening model in this thesis since they can only increase per definition (see Equations (3.15)
and (3.17)). A decrease of the critical resolved shear stresses due to annealing at elevated
temperatures thus requires the work hardening model to be formulated in terms of a different
set of internal variables (see, e.g., [134]). Therefore, the dislocation densities ρdis

α and the
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4 Work hardening

twinned volume fractions fβ were introduced in Section (3.2.5) as additional internal vari-
ables which increase with accumulating shear γ (cf. Equations (3.18) and (3.21)) while the
dislocation densities may also decrease as a function of temperature and time (cf. Equation
(3.18)). Thus, the work hardening model is set up in terms of the current dislocation densities
ρdis
α on slip systems α and the current twinned volume fractions fβ of twinning systems β.

Besides interactions between dislocations on both coplanar and non-coplanar slip systems, the
latent hardening due to evolving twins in the γ lamellae is of particular interest for the overall
work hardening behavior of fully lamellar TiAl since the evolving twin boundaries further
reduce the anyway restricted free path length of the deformation systems [11, 39, 130]. Thus,
in the following a work hardening model is presented which accounts for the respective work
hardening interactions in more detail.

Evolution of slip system strength Once plastic deformation started (i.e. the resolved shear
stress on any deformation system exceeded its initial critical resolved shear stress), the
strength τYα of slip system α increases due to the emerging slip and/or twinning activity.
Thus, the hardening term ∆τYα of slip system α (cf. Equation (3.22)) is defined by

∆τYα = ∆τYα,s|s + ∆τYα,s|t (4.1)

where ∆τYα,s|s denotes strengthening due to dislocation interactions and ∆τYα,s|t denotes strength-
ening by twin activity.
The slip–slip interaction ∆τYα,s|s is described by the well-known relation [111, 134]6

∆τYα,s|s = aGbα

√
ρdis. (4.2)

As defined before, G denotes the shear modulus, bα is the magnitude of the Burgers vector of
slip system α and a ≈ 0.5 [11] is a material specific constant.
The twin/matrix interfaces of evolving twins on a twinning system β are strong barriers for
dislocation motion (cf. e.g. [79, 136–138]) effectively reducing the free path lengths of all non-
coplanar (ncp) slip systems α (i.e. systems with slip plane normals nα ∦ nβ). The resultant
(Hall-Petch type) strengthening was modeled by several authors (not only in the context of
crystal plasticity) [79, 114, 136, 139, 140]. However, explicitly modeling this strengthening
effect requires knowledge of the spacing of parallel twins since it denotes the free path length
of the non-coplanar slip systems. In the present crystal plasticity formulation, twins are rep-
resented by their volume fractions fβ which neither provides information about their number
nor their thickness and consequently does not allow to determine their spacing. Thus, the
work hardening effect by evolving twins can not be modeled as an explicit function of their
spacing as it was e.g. done in [79, 114, 139]. Based on the formulation from [140], the hard-
ening term ∆τYα,s|t was thus set up in terms of the twinned volume fractions fβ instead and
reads

∆τYα,s|t =
∑ncp
β hαβfβ

1.0−∑ncp
β fβ

. (4.3)

In this, hαβ denotes a coefficient for hardening of slip system α due to twinning on the
non-coplanar twinning system β.

6A more general description of this hardening term would read ∆τYα,s|s = aGbα
√∑

qαα′ρdis
α′ where qαα′ > 0

is the hardening interaction coefficient that describes the effect of dislocations on slip system α′ on the
strength of slip system α (see, e.g., [114, 135]). In Equation (4.2), it was assumed that qαα′ = 1 for all slip
systems.
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Evolution of twinning system strength While there is effectively no self hardening of twin-
ning systems β, they nevertheless experience work hardening from nucleation of twins on
non-coplanar systems β′ (i.e. twinning plane normals nβ ∦ nβ′) and from interactions of the
twinning dislocations with the slip dislocation network [114, 138, 140]. In a general form the
corresponding hardening term of twinning systems β (cf. Equation (3.23)) can be written as

∆τTβ = ∆τTβ,t|t + ∆τTβ,t|s, (4.4)

introducing ∆τTβ,t|t as the strengthening due to nucleation of non-coplanar twins and ∆τTβ,t|s
to account for interactions of twinning dislocations with the slip dislocation network.
The strengthening effect by non-coplanar twins is modeled analogically to Equation (4.3) and
reads

∆τTβ,t|t =
∑ncp
β′ hββ′fβ′

1.0−∑ncp
β′ fβ′

. (4.5)

Herein, hββ′ is again a hardening interaction coefficient which describes the strengthening
effect of twins on the non-coplanar twinning systems β′ on twinning system β.
As described in [114], twinning dislocations may interact with the slip dislocation network.
Since this effect is probably more subtle than the other strengthening mechanisms, it is,
however, often neglected [78]. In the present hardening model, the hardening interactions be-
tween twinning and slip dislocations are nevertheless incorporated by adopting the respective
formulation from [114] which reads

∆τTβ,t|s = Gbβ

Nsl∑
α

Cβαbαρ
dis
α . (4.6)

In this, Cβα denotes the hardening interaction coefficient between twinning system β and slip
system α.
Figure 4.1 qualitatively shows the evolution of slip/twinning system strengths as it is described
by Equations (4.2), (4.3), (4.5) and (4.6).
In the context of thermomechanical modeling it is worth mentioning that the introduced
hardening relations (Equations (4.2), (4.3), (4.5) and (4.6)) do not explicitly depend on tem-
perature, which is reasonable for the modeled defect structures, as they can not easily be
overcome by thermal activation [11]. However, there still is a slight temperature dependence
in Equations (4.2) and (4.6) that results from considering the temperature dependence of
the shear modulus G (see the temperature dependent formulation of Young’s modulus and
Poisson’s ratio in Table 3.3).

4.2 Parameter identification

Experimental investigation of work hardening interactions between specific deformation sys-
tems requires these systems to be activated selectively. Even though this can be achieved for
certain experimental set ups, it is not clear how to derive quantitative parameters for contin-
uum models from the observed hardening interactions. Thus, the work hardening parameters
of crystal plasticity models are usually determined by calibration against (macroscopic) exper-
imental stress strain curves. Naturally, the work hardening part of a crystal plasticity model
is best calibrated against experiments with single crystals of the crystalline phase that ought
to be modeled. However, due to the strong effect of composition on their mechanical behavior,
experiments with γ and α2 single crystals are not suitable for the calibration process as it was
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Figure 4.1. Qualitative illustration of hardening laws as defined by Equations (4.2), (4.3),
(4.5) and (4.6). (a): Evolution of strengths τYα and τTβ of slip systems α (red line) and twinning
systems β (blue lines) normalized to their initial strengths τYα,0 and τTβ,0 with the total dislocation
density ρdis; the different blue lines illustrate the influence of the interaction coefficient Cβα.
(b): Evolution of strengths τYα and τTβ of slip systems α and twinning systems β with volume
fraction fβ′ of twins on non-coplanar twinning systems β′ normalized to their initial strengths
τYα,0 and τTβ,0; the different lines illustrate the effect of hardening coefficients hαβ resp. hββ′ .

briefly discussed in Section 2.3.1. Alternatively, the introduced defect density-based harden-
ing model may be calibrated against experiments with polysynthetically twinned crystals or
micropillar compression tests since both allow to investigate the anisotropic micromechanical
behavior of single lamellar colonies. Although micropillar compression has the clear advan-
tage that it allows to analyze single colonies within actual microstructures [40, 53, 141], at the
moment significantly more data is available on the plastic deformation of polysynthetically
twinned crystals.
In [52], the plastic deformation of polysynthetically twinned crystals was studied for eight
different loading angles ϕ between 0◦ (loading in the plane of the lamella interfaces) and 90◦
(loading perpendicular to the lamella interfaces) for plastic strains of up to 15%, yielding a
good data base for the here intended model calibration.

4.2.1 Constitutive assumptions

The high number of parameters in crystal plasticity models renders their identification a
formidable task. Therefore, certain constitutive assumptions are usually established that
facilitate to identify the missing model parameters by, e.g., identifying groups of deformation
systems that can be described by the same parameter set or by narrowing down the range of
values certain parameters may take.

Morphological classification

As it was stated in [28] and frequently confirmed by other authors (see, e.g., [72, 75, 80]), as-
signing the same set of model parameters to each slip and twinning system of a morphological
class (see Table 2.1) allows to reproduce the plastic anisotropy of polysynthetically twinned
crystals/single colonies very well. While in [28] only the initial critical resolved shear stresses
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were assumed to be the same for all deformation systems of a morphological class, this idea
was generalized in [29, 72] to also assigning the same work hardening parameters to all de-
formation systems of a morphological class. This assumption drastically reduces the number
of model parameters that have do be identified7. Modeling all deformation systems solely ac-
cording to their morphological classification does, however, neglect differences as they result
from the crystallography of the single phases like, e.g., the potentially different strengths of
ordinary slip, super slip and twinning in the γ phase that was discussed earlier (see Section
2.3.1).
Consequently, the initial critical resolved shear stresses from Equations (3.22) and (3.23) are
defined as

τlong,0 = τYα,0 = τTβ,0 for (α = 1− 3) and (β = 1), (4.7)
τmix,0 = τYα,0 for (α = 4− 6), (4.8)
τtrans,0 = τYα,0 = τTβ,0 for (α = 7− 12) and (β = 2− 4) (4.9)

with the indices α and β from Table 2.1. The model parameters that remain to be identified
are summarized in Table 4.1.

Table 4.1. Model parameters that remain to be identified when assuming that all deformation
systems of a morphological class can be described by the same parameters. ls: longitudinal slip,
ms: mixed slip, ts: transversal slip, lt: longitudinal twinning, tt: transversal twinning, n.a.: not
applicable. Indices α and β of the individual deformation systems according to Table 2.1.

γ and α2 phase (evolution of dislocation density)
parameter equation ls (α = 1-3) ms (α = 4-6) ts (α = 7-12)
Aα,0 (3.19) Als,0 Ams,0 Ats,0
ρdis
α,sat (3.19) ρdis

ls,sat ρdis
ms,sat ρdis

ts,sat
pα (3.19) pls pms pts
Rα,0 (3.20) Rls,0 Rms,0 Rts,0
ρdis
α,min (3.20) ρdis

ls,min ρdis
ms,min ρdis

ts,min
qα (3.20) qls qms qts

γ phase (slip–twin interaction)
parameter equation ls (α = 1-3) ms (α = 4-6) ts (α = 7-12) interaction

hαβ (4.3) n.a. hms|lt hts|lt lt (β = 1)
hls|tt hms|tt hts|tt tt (β = 2− 4)
γ phase (twin–twin interaction)

parameter equation lt (β = 1) tt (β = 2-4) interaction

hββ′ (4.5) n.a. htt|lt lt (β′ = 1)
hlt|tt htt|tt tt (β′ = 2− 4)

γ phase (twin–slip interaction)
parameter equation lt (β = 1) tt (β = 2-4) interaction

Cβα (4.6)
Clt|ls Ctt|ls ls (α = 1− 3)
Clt|ms Ctt|ms ms (α = 4− 6)
Clt|ts Ctt|ts ts (α = 7− 12)

7Instead of a complete parameter set for each deformation systems in the γ and the α2 phase, only a total of
three parameter sets (one for each morphological class) have to be identified.
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Strengthening by evolving twins in the γ phase

As stated in Section 2.2, all twinning systems of the γ phase are crystallographically equiva-
lent and should thus have the same effect on non-coplanar deformation systems. However, the
extent to which evolving twins strengthen the non-coplanar deformation systems still differs
depending on their morphological classification. As it was observed in, e.g., [17], transver-
sal twinning activity leads to the formation of a high number of equaly spaced thin twins.
Thus, transversal twinning activity strongly reduces the free path lengths of longitudinal and
potentially of mixed deformation systems. However, due to the small lamella thickness, non-
coplanar tranvsersal twins do not necessarily have to cross each other and thus presumably
have a lower strengthening interaction. The same holds for transversal slip systems that
do not necessarily have to cross the boundaries of non-coplanar transversal twins. This is
schematically illustrated in Figure 4.2.

longitudinal twinning
(possibility 2)

longitudinal twinning
(possibility 1)

α2 (Ti3Al)

γ (TiAl)

developing transversal
twin

developing
longitudinal twin

transversal twinning

Figure 4.2. Schematic illustration of possible ways in which longitudinal and transversal twins
may evolve in the γ lamellae. While longitudinal deformation systems have to interact with
transversal twins, transversal deformation systems do not necessarily have to cross each other
resulting in a lower hardening interaction. Figure taken from Schnabel & Bargmann [2].

Experimental investigation of the evolution of longitudinal twins is challenging since they can
not always be easily distinguished from pre-existing lamellae. In principle, longitudinal twins
can be thought to evolve in two ways: as many parallel thin twins that subdivide the lamellae
or as single twins that nucleate from lamella boundaries and grow until the lamella is twinned
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4.2 Parameter identification

completely. This is schematically illustrated in Figure 4.2. In fact, both forms of longitudinal
twinning have been observed experimentally. In [55], longitudinal twinning was found to form
many very thin twins subdividing the lamellae of polysynthetically twinned crystals while
in recent investigations [133, 141] longitudinal twins were found to nucleate from lamella
boundaries and to grow until the complete lamella is twinned. While the former case results
in a further reduction of the anyway small free path length (and thus in high strengthening)
of transversal deformation systems, longitudinal twins that grow from one lamella boundary
to the other initially reduce the free path length but end up having the same thickness as the
initial lamella. Although it is not yet clear what causes the different observed behaviors [141],
the author is inclined to believe that it is energetically more favorable for longitudinal twins to
nucleate from lamella boundaries instead of evolving as many thin twins within the lamellae.
This would result in a negligible contribution of longitudinal twinning to work hardening.
However, in lamella orientations that favor the activation of longitudinal twinning (as a soft
deformation mode), mixed and transversal deformation (i.e. the hard deformation modes) will
not likely be activated so that the work hardening by longitudinal twinning either way plays
a minor role from the modeling perspective.
With these preliminary thoughts, the following assumptions are made for the parameters for
slip–twin and twin–twin hardening interaction in the γ phase as they were defined in Table
4.1

hls|tt > hts|tt, (4.10)
hms|tt > hts|tt, (4.11)
hlt|tt > htt|tt. (4.12)

Modeling super slip in the γ phase

As briefly mentioned in Sections 2.3.1, it has been frequently observed experimentally that
super slip systems are less preferably activated in the γ phase of two phase alloys than ordinary
slip or twinning systems. This was frequently modeled by assuming that super slip systems
have a higher initial critical resolved shear stress [73, 75, 76] or by neglecting them completely
[63]. However, in domains that are oriented such that ordinary slip and twinning are both
not possible, super slip systems have to be activated in order to ensure a compatible co-
deformation of neighboring lamellae/domains and are thus not neglected in this work. Since
the plastic anisotropy of polysynthetically twinned crystals/single colonies is dominated by
the microstructural interfaces (see Section 2.3.2), potential differences between deformation
systems that solely stem from the crystallography of the single phases are not considered
throughout this thesis, i.e. the initial critical resolved shear stress of a deformation system is
assumed to be determined solely by its morphological classification (cf. Table 4.1).
Although their initial strength was assumed to be the same, there is still a difference in the
deformation behavior of super and ordinary slip systems as it is modeled here. Since the
magnitude bα of the Burgers vectors of super slip systems is approximately two times larger
than the one of ordinary slip systems (cf. Figure 2.3), the work hardening of super slip systems
due to slip–slip interaction as described by Equation (4.2) is approximately twice as high as
for ordinary slip systems. This nicely represents the fact that two superpartial dislocations
that form the perfect super dislocation (cf. Section 2.2) are bound by the antiphase boundary
between them and thus both have to cross the forest of dislocations to propagate further.
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Modeling the plastic deformation behavior of the α2 phase

In common two phase alloys, the volume fraction of the α2 phase is usually rather low.
Consequently, the (direct) effect of the plastic deformation behavior of the α2 phase on the
overall deformation of two phase alloys is assumed to be low as well. Due to the small volume
fraction of the α2 phase it is, furthermore, questionable whether two separate parameter sets
for both phases can be derived from the experiments with polysynthetically twinned crystals
against which the model will be calibrated. Thus, some simplifications were introduced in the
description of the deformation behavior of the α2 phase.
First of all, basal slip systems are not considered throughout this work since in lamella orien-
tations which favor their activation, the deformation is primarily carried by the much weaker
slip and twinning systems of the soft deformation mode in the γ lamellae [35, 37, 47].
Despite the concerns discussed in Section 2.3.1, the initial critical resolved shear stresses τα2

mix,0
and τα2

trans,0 of the prismatic (mixed) and the pyramidal (transversal) slip systems were taken
from α2 single crystal experiments [27] with a composition of Ti-24.4Al at.% and read

τα2
mix,0 = 67 MPa (4.13)

τα2
trans,0 = 450 MPa. (4.14)

In reality, these critical resolved shear stresses would be even higher due to the strengthening
effect of the lamella boundaries (cf. Chapter 5). Further, it was assumed that dislocation
accumulation on prismatic (mixed) slip systems in the α2 phase and mixed slip systems in
the γ phase can be described by the same parameters Ams,0, ρdis

ms,sat and pms. The same is
assumed for the pyramidal (transversal) slip systems in the α2 phase and the transversal slip
systems in the γ phase sharing the parameters Ats,0, ρdis

ts,sat and pts.

Initial defect densities

Even in an undeformed state, crystalline materials always contain a certain dislocations den-
sity. In the presented model, this is represented by the initial dislocation density ρdis

α |t=0 =
ρdis
α,0 > 0 (see Equation (3.18)). In [11] and [142] it has been stated that at the beginning

of deformation the total dislocation density ρdis in TiAl alloys is typically in the range of
106 1

mm2 < ρdis < 107 1
mm2 . Therefore, the initial dislocation density is set to ρdis

α,0 = 1×105 1
mm2

on all slip systems α in the γ and the α2 phase.
The initial twinned volume fraction is, however, set to be fβ = 0 on all twinning systems β.

Thermal recovery

For the moment, only the (temperature independent) work hardening behavior is of inter-
est. Hence, all terms in equations (3.18) and (3.20) that are related to thermal recovery
are neglected in this chapter. The thermal recovery behavior and the corresponding model
parameters are discussed in Chapter 7.

4.2.2 Calibration

In order to calibrate the model against the experimental stress-strain curves from [52], simula-
tions were carried out using the RVE from Section 3.5.1 together with the rotational boundary
conditions described in Section 3.6.2. As in [52], a compressive strain rate of ε̇ = 10−4s−1

was applied for all simulations. Since it was not reported in [52], the α2 volume fraction was
assumed to be as low as 2%.
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4.2 Parameter identification

With the above introduced constitutive assumptions, the parameters from Table 4.1 were
identified by successively adjusting them until the simulated stress-strain curves sufficiently
matched the experimental results for the differently oriented polysynthetically twinned crys-
tals tested in [52]. Figure 4.3 shows the stress-strain curves obtained by the calibrated model
in comparison to the experimental results from [52].
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Figure 4.3. Results of the calibration of the work hardening model against experimentally
determined stress-strain curves of differently oriented polysynthetically twinned crystals. Ex-
perimental data taken from [52].

Given the high number of deformation systems that determine the plastic deformation behav-
ior of polysynthetically twinned crystals (6 γ orientation variants with 12 slip systems and 4
twinning systems each + 9 considered slip systems for the α2 phase), the agreement between
simulation and experiment is assessed as very good.
Plotting the yield stress as it is obtained from the calibrated simulations over the loading
angle ϕ (i.e. the angle between uniaxial load and the plane of the lamella interfaces), shows
that its anisotropy is well reproduced by the model, see Figure 4.4.

4.2.3 Model parameters

This section summarizes the model parameters that were identified from the calibration pro-
cess. In the calibration process, the initial yield point (not to be confused with the 0.2% yield
point) of the experimental results from [52] was found to be reproduced well for all loading
angles by choosing the initial critical resolved shear stresses

τγlong,0 = 38 MPa, (4.15)
τγmix,0 = 139 MPa, (4.16)
τγtrans,0 = 139 MPa (4.17)
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Figure 4.4. Yield stress of polsysnthetically twinned crystals over loading angle (i.e. angle
between uniaxial load and lamella plane) as obtained from the calibrated work hardening model
compared to experimental results from [52].

for the deformation systems of the three morphological classes in the γ phase. However, the
initial critical resolved shear stresses depend on temperature, composition and microstruc-
tural lengths and are thus no fixed model parameters. Consequently, the critical resolved
shear stresses identified here are only valid for room temperature and the investigated set of
experiments. In Chapters 5 and 8, these parameters will be defined in a more general way
taking into account their microstructure and temperature dependence.
The work hardening behavior is, however, independent of microstructural parameters and
temperature [11, 39] so that the identified work hardening parameters that are summarized
in Table 4.2 can be applied to other sets of experiments as well.

4.3 Relative activity of deformation systems in polysynthetically
twinned crystals/single colonies

In the previous section, the crystal plasticity model was calibrated to match the macroscopic
stress-strain curves of differently oriented polysynthetically twinned crystals. The qualitative
features of these stress-strain curves (like e.g. changes in work hardening rate) were reproduced
well by the calibrated model (see Figure 4.3). Thus, it is suitable to be used in the following
to investigate which deformation systems dominate the plasticity of polysynthetically twinned
crystals for different lamella orientations. Further, it will be analyzed in which way the work
hardening interactions between the deformation systems are correlated to the specifics of the
macroscopic stress-strain response of differently oriented polysynthetically twinned crystals.
In order to allow a direct comparison between simulation results and the experimental inves-
tigations of active deformation systems in [52], the simulation set up, the model parameters
and the constitutive assumptions were taken to be the same as in Section 4.2. In order to
validate the model predictions, they were compared to findings of other experimental studies.

4.3.1 Numerical results

In order to visualize which slip and twinning systems contribute to the plastic deformation at
a certain deformation stage, their relative activities were extracted from the crystal plasticity
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Table 4.2. Identified parameters for the work hardening model. ls: longitudinal slip, ms:
mixed slip, ts: transversal slip, lt: longitudinal twinning, tt: transversal twinning, n.a.: not
applicable, n.n.: not needed

γ and α2 phase (evolution of dislocation density)
parameter unit ls (α = 1-3) ms (α = 4-6) ts (α = 7-12)
Aα,0 [ 1

mm2 ] 2× 108 2× 108 4× 108

ρdis
α,sat [ 1

mm2 ] 1× 109 1× 109 1× 109

pα [–] 1 1 1
γ phase (slip–twin interaction)

parameter unit ls (α = 1-3) ms (α = 4-6) ts (α = 7-12) interaction

hαβ [MPa] n.a. n.n. n.n. lt (β = 1)
1500 1500 100 tt (β = 2− 4)

γ phase (twin–twin interaction)
parameter unit lt (β = 1) tt (β = 2-4) interaction

hββ′ [MPa] n.a. n.n. lt (β′ = 1)
5000 100 tt (β′ = 2− 4)

γ phase (twin–slip interaction)
parameter unit lt (β = 1) tt (β = 2-4) interaction

Cβα [–]
700 n.n. ls (α = 1− 3)
700 n.n. ms (α = 4− 6)
700 n.n. ts (α = 7− 12)

simulations. In this, the cumulative relative activity and the instantaneous relative activity
are distinguished. While the cumulative relative activity illustrates which deformation sys-
tems contributed to the plastic deformation up to the investigated deformation stage, the
instantaneous relative activity shows which deformation systems are currently contributing
to the plastic deformation. In order to make slip and twinning activity comparable, the rela-
tive activities were expressed in terms of the plastic shear γ on the respective systems. The
cumulative relative activity of a slip or twinning system i was defined by dividing its accumu-
lated plastic shear γi (see Equations (3.15) and (3.17)) by the total accumulated plastic shear
γ = ∑

i γi of all systems. The instantaneous relative activity of a slip or twinning system i
was defined by dividing its current shear rate γ̇i (i.e. να for slip systems and γT gβ for twinning
systems) by the total shear rate γ̇ = ∑

i γ̇i on all systems.
The relative activity of deformation systems in the interface dominated plasticity of fully
lamellar TiAl is best illustrated by grouping them according to the morphological classification
introduced in Section 4.2.1. In Figure 4.5, the relative activity of deformation modes in
differently oriented polysynthetically twinned crystals is illustrated as it was predicted by the
crystal plasticity model.
Displaying the relative activities of slip and twinning systems grouped by their morphological
classes does not only allow to identify active deformation modes at one glance but also enables
a straightforward identification of transitions between predominant deformation modes. It is
thus easily seen from Figure 4.5 that different groups of slip and twinning systems accomplish
the plastic deformation for different loading angles. For the investigated range of loading
angles 0◦ ≤ ϕ ≤ 90◦, three principal deformation characteristics can be identified:

• ϕ near 0◦: predominant deformation by mixed slip (ms) with considerable contributions
of transversal slip (ts) and twinning (tt),

• 15◦ < ϕ < 75◦: predominant deformation by longitudinal slip (ls) with parallel activity
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Figure 4.5. Simulated (a) instantaneous and (b) cumulative relative activity of deformation
systems in the γ lamellae of differently oriented polysynthetically twinned crystals grouped by
morphological class (ls: longitudinal slip; ms: mixed slip; ts: transversal slip; lt: longitudinal
twinning; tt: transversal twinning). Simulated (solid lines) and experimental (dashed lines)
stress strain curves are added in order to allow attribution of changes in relative activity to
specifics of the macroscopic stress strain response. The experimental stress-strain curves are
taken from [52]. The simulation set up, the model parameters and the constitutive assumptions
were taken to be the same as in Section 4.2.
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of longitudinal twinning (lt) and

• ϕ near 90◦: predominant deformation by transversal slip (ts) with considerable contri-
butions of transversal twinning (tt).

For loading angles between 0◦ and 45◦ and between 45◦ and 90◦ respectively, a gradual
transition between these predominant deformation modes occurs.
The predominant activity of slip and twinning systems of only one or two morphological classes
as well as the transitions between these principal deformation modes are also reflected in the
macroscopic deformation behavior of polysynthetically twinned crystals. Figure 4.6 illustrates
the macroscopic deformation of differently oriented polysynthetically twinned crystals in terms
of the lateral strains as they were determined in [52]. In [52], the lateral strains εx and εy
in x and y direction (according to the coordinate system introduced in Figure 3.3), were
identified at the end of deformation and normalized to the corresponding compression strain
εz which ranged between 0.10 and 0.15. If both relative transversal strains take values of -0.5,
the deformation is isotropic. If one relative transversal strain does, however, take a value of
-1 while the other is 0, a plane strain deformation is present. Illustrating the macroscopic
deformation of polysynthetically twinned crystals in terms of the transversal strains helps to
quantify what was qualitatively observed on the deformed specimens in [55].
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Figure 4.6. Relative transversal strains of polysynthetically twinned crystals as function of
loading angle ϕ. Experimental data are taken from [52]. The relative transversal strains are
defined with respect to the coordinate system introduced in Figure 3.3.

For loading angles ϕ between 0◦ and 45◦,the simulated relative transversal strains match
well the experimental findings including the switch from plane strain deformation in the yz
plane to plane strain deformation in the xz plane that occurs for 10◦< ϕ <15◦. However,
the applied model fails to capture the details in the relative transversal strains for loading
angles of 75◦ < ϕ < 90◦. Instead of the experimentally observed trend towards an isotropic
deformation, the model predicts a plane strain deformation in the xz plane. This behavior has
been observed in previous modeling approaches [28, 72] and has been identified to result from
modeling the deformation system strengths according to their morphological instead of their
mechanism based classification [28]. For a loading angle of exactly 90◦, the model predicts
a plane strain deformation in the yz plane rather than the experimentally observed nearly
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isotropic deformation. Since the Schmid factors for loading perpendicular to the lamella
boundaries (90◦) are the same on several transversal slip and twinning systems on oblique
shear planes (see, e.g., [55]), this lamella orientation is particularly prone to misalignment
in experiments and to the choice of the strength of the different deformation mechanisms
and their mutual work hardening interaction parameters in modeling. The observed behavior
interestingly also occurred in a previously reported crystal plasticity model [72] and indicates
that despite the symmetry in the Schmid factors, the model favors plastic deformation on a
single shear plane.

4.3.2 Literature experimental findings

Since the shear rates on individual slip and twinning systems are the main state variables of
crystal plasticity models, the relative activity of deformation systems is an inherent result of
crystal plasticity simulations. Investigating the activity of deformation systems experimen-
tally, is however much more demanding.
While deformation markings on the surface of polysynthetically twinned crystals [25, 37, 47]
or micro compression specimens of single colonies [40, 53, 141] allow a qualitative in situ
identification of active deformation modes (parallel or across the lamella interfaces) by scan-
ning electron or even optical microscopy, a detailed investigation of the activated deformation
systems within the thin lamellae usually requires destructive sample preparation for, e.g.,
transmission electron microscopy (TEM)[40, 55]. Consequently, these studies are limited
to investigate which deformation systems were activated up to the given deformation state.
Thus, the order in which the deformation systems are activated can only be studied by a
series of experiments with different final deformation states. Since the preparation of the test
specimens and the samples for the subsequent microscopy studies as well as the data analysis
are time-consuming, it is extremely laborious to identify the order in which the deformation
systems are activated for a certain lamella orientation.
In the so far only reported attempt to in situ investigate in which order the deformation sys-
tems are activated, the authors of [52, 54] analyzed the evolution of pole figures of polysyn-
thetically twinned crystals with plastic deformation. Two lamella orientations were tested
in [52, 54], 0◦ and 90◦. The inherently strong texture of polysynthetically twinned crys-
tals enabled to analyze whether or not the individual γ orientation variants experience any
rotations with plastic deformation which in turn allow conclusions to be drawn about the
activity of certain deformation systems. While the activation of transversal twinning systems
was directly observable as newly occuring intensities in the measured pole figures, longitudnal
twinning activity could not be identified since longitudinal twins reproduce preexisting crystal
orientations [54].
Thus, a complete picture of the activated slip and twinning systems in differently oriented
polysynthetically twinned crystals/single colonies can only be achieved by summarizing results
of different experimental studies as it is done in Table 4.3 for the most commonly studied
lamella orientations. In fact, experimental data on the active deformation systems for lamella
orientations other than the ones listet in Table 4.3 are scarce.
Despite being obtained by different experimental techniques, the results of the different studies
summarized in Table 4.3 yield a consistent picture of the deformation systems that accomplish
the plastic deformation for the most commonly studied lamella orientations of 0◦ (loading in
the plane of the lamella interfaces), 31◦, 45◦ and 90◦ (loading perpendicular to the lamella
interfaces). However, there are still remaining questions concerning the order in which de-
formation systems are activated even for the most commonly studied lamella orientations.
Further, an assessment of the relative activity of deformation systems is not possible with
either of these experimental techniques.
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Table 4.3. Experimentally determined deformation systems that are active in characteristic
orientations of polysynthetically twinned crystals/single colonies under uniaxial loading.

orientation active deformation modes ref.

0◦
qualitatively across lamella interfaces [25, 26, 37, 47]

explicitly
mixed slip [40, 52, 54, 55]
transversal slip [55]
transversal twinning [52, 54, 55]

31◦
qualitatively parallel to lamella interfaces [25, 26, 37]

explicitly longitudinal slip [55]
longitudinal twinning [55]

45◦
qualitatively parallel to lamella interfaces [25, 26, 47]

explicitly longitudinal slip [40, 52]
longitudinal twinning [40]

90◦
qualitatively across lamella interfaces [25, 26, 37, 47]

explicitly transversal slip [52, 55]
transversal twinning [52, 55]

4.3.3 Discussion

Comparing the relative activities shown in Figure 4.5 to the experimentally observed active
deformation systems in Table 4.3 shows that the deformation modes which were predicted
by the simulations to be active for loading angles of 0◦, 45◦ and 90◦ match the experimental
findings. For these characteristic lamella orientations, activity on certain deformation systems
can, however, largely be explained by comparing their Schmid factors while considering that
mixed and transversal slip and twinning systems are stronger than longitudinal slip and
twinning systems (cf. Section 2.3.2).
For a loading angle of 45◦, longitudinal slip and twinning systems have the highest Schmid
factors. Thus, it is obvious that the considerably stronger mixed and transversal slip and
twinning systems are not activated for this lamella orientation. If the load acts in the plane
of the lamella interfaces, i.e. for a loading angle of 0◦, the Schmid factors of longitudinal
deformation systems are zero since their deformation plane is parallel to the load (cf. Figure
2.6). Thus, for a loading angle of 0◦ the plastic deformation has to be accomplished by mixed
and/or transversal deformation systems. For a loading angle of 90◦ (load perpendicular to
the lamella interfaces), the Schmid factor is zero on all longitudinal and mixed deformation
systems since for this lamella orientation the deformation planes and directions of longitudinal
systems as well as the deformation directions of mixed systems are perpendicular to the load
(cf. Figure 2.6). Consequently, for a loading angle of 90◦ only transversal deformation systems
can be activated.
Due to the high strength of mixed and transversal deformation systems, the plastic defor-
mation of polysynthetically twinned crystals/single colonies was found to be dominated by
longitudinal slip and twinning for a wide range of intermediate loading angles around the
ideal 45◦ orientation (cf. 31◦ in Table 4.3). This explains the low yield stresses that have been
observed for intermediate loading angles (cf. Figure 2.7). However, the Schmid factors on
the longitudinal deformation systems gradually decrease between their maximum at a load-
ing angle of 45◦ and their minimum of 0 at loading angles of 0◦ or 90◦. Consequently, the
initial flow stress increases towards lamella orientations of 0◦ and 90◦. Finally, near 0◦ and
90◦ the stresses reach sufficient levels to activate mixed and transversal deformation systems.
However, the plastic deformation for loading angles at which this transition from a purely

59



4 Work hardening

longitudinal deformation to a deformation by mixed and transversal systems occurs is not
investigated well experimentally and can not be assessed by simple Schmid factor comparison
anymore. Thus, the transition between the principal deformation modes near loading angles
of 0◦ and 90◦ will be investigated in the following by having a closer look at the simulation
results for loading angles of 15◦ and 75◦ (see Figure 4.5).
Both the experimental and the simulated stress-strain curves for loading angles of 15◦ and
75◦ show distinct changes in work hardening rate with deformation (cf. Figure 4.5). Such
changes in work hardening rate were not observed for the other tested orientations and were
thus suspected in [52] to be correlated to the transition between principal deformation modes.
While the initial yield stress is rather low and nearly the same in both orientations, their post
yield behavior is substantially different. The stress-strain response for the 75◦ orientation
initially shows a very high work hardening rate which leads to stress levels that are even higher
than the ones observed for the initially way stronger 90◦ orientation. After a few percent of
plastic strain, the work hardening rate for the 75◦ orientation decreases to a much lower value.
In contrast, the stress-strain response for a lamella orientation of 15◦ is characterized by a
moderate initial work hardening rate that slightly decreases with plastic deformation and
finally increases again. These consecutive changes in the macroscopic work hardening rate
are most likely related to the onset of slip and/or twinning activity on additional deformation
systems and their strengthening effect on the initially active systems.
The simulated relative activities reveal that longitudinal systems initially contribute signifi-
cantly to the plastic deformation in both orientations which explains the comparatively low
yield point. However, for the 75◦ orientation the stress rapidly reaches levels high enough
to activate the hard deformation modes of the ideal 90◦ orientation. With the onset of
transversal slip and twinning activity, longitudinal deformation dies out completely causing
the pronounced change in hardening rate. Since transversal twins significantly reduce the
free path length of longitudinal deformation systems, this strong reduction of longitudinal
slip and twinning activity is clearly attributed to the increasing transversal twinning activity.
As suspected in [52], the experimentally observed increase of the work hardening in the 15◦
orientation tests after ≈ 0.1 plastic strain might be related to a similar process. However,
as for this lamella orientation the stress-strain response is underestimated by the model, the
simulations do, unfortunately, not provide insight into potential causes for the experimentally
observed sudden increase in the work hardening rate.
The closer to the ideal 0◦ or 90◦ orientation the load angle is chosen, the less longitudinal
slip and twinning activity occurs before the stresses are sufficient to activate the deformation
modes that are characteristic for these ideal lamella orientations (cf. Figure 4.5 for 10◦ and
80◦). A comparison of the instantaneous to the cumulative relative activities does, however,
show that a deformation mode which is only active at the beginning of plastic deformation
(e.g. longitudinal twinning) may still contribute a significant part of the overall accumulated
plastic shear.
The range of loading angles between which the transition from predominant deformation
by longitudinal systems to predominant deformation by transversal/mixed systems occurs is
related to the relative strength of the corresponding deformation systems which is in turn
determined by the microstructural parameters (for polysynthetically twinned crystals/single
colonies: domain size λD and lamella thickness λL) as discussed in more detail in Chapter 5.
This means, the higher the ratio between the strength of the hard mode deformation systems
(mixed and transversal) and the strength of soft mode deformation systems (longitudinal),
the closer to the ideal orientations of 0◦ and 90◦ longitudinal slip and twinning activity will
be observed.
By carefully evaluating the effective shear deformation of the different γ domains in case of
(simultaneous) activation of specific slip and twinning systems, it was possible in the past
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to relate the experimentally observed activity of deformation systems to the macroscopic
deformation of polysynthetically twinned crystals [11, 52, 55]. These – mostly analytical –
considerations allowed to explain the observed deformation behavior in the three loading angle
regimes, i.e. 0◦ < ϕ < 10◦, 15◦ < ϕ < 75◦ and 75◦ < ϕ < 90◦.
The plane strain deformation which is observable for intermediate loading angles between
15◦ and 75◦ as well as the nearly isotropic deformation that occurs close to a loading angle
of 90◦ (cf, Figure 4.6) coincide well with the predominant deformation by longitudinal and
transversal deformation systems respectively [11, 52, 55]. The macroscopic deformation of
polysynthetically twinned crystals under loading angles between 0◦ and 10◦ seems, however,
not to be in line with the deformation systems that have been observed to be active. For such
orientations near 0◦, polysynthetically twinned crystals show almost no strain perpendicular
to the lamella boundaries (cf. Figure 4.6). While a respective shear deformation parallel
to the lamellae is naturally accomplished by the predominant deformation by mixed slip
systems (cf. Figure 4.5), the simultaneously activated transversal deformation systems – per
definition – lead to a shear across the lamella boundaries and should thus yield a non-zero
strain perpendicular to the lamellar boundaries. However, as it has been elaborately discussed
in [11, 52, 55, 143] the transversal deformation systems that have been found to be active
for loading angles near 0◦ act in such a way that their net shear lies parallel to the lamella
boundaries, i.e. their shear components perpendicular to the lamella boundaries cancel out
each other [11, 52, 55, 143].

4.3.4 Summary
By comparing the numerical results presented in this section to experimental findings [25, 26,
37, 40, 47, 52, 54, 55], it was shown that the calibrated crystal plasticity model is not only able
to reproduce the work hardening behavior of differently oriented polysynthetically twinned
crystals/single colonies (see Figure 4.3) but also correctly predicts which deformation systems
are activated during deformation of the most commonly investigated lamella orientations
(i.e. 0◦, 45◦ and 90◦). Further, the model was used to investigate details of the transition
between predominant deformation by longitudinal slip and twinning at intermediate loading
angles and predominant deformation by mixed/transversal deformation systems at loading
angles of 0◦ and 90◦. In this it was possible to attribute specifics of the experimentally
observed macroscopic stress-strain curves to work hardening interactions between slip and
twinning systems of different morphological classes. The respective findings support some
presumptions reported in previous experimental work [52].
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5 Microstructure sensitive yield strength

As frequently mentioned in the previous chapters, the yield strength of fully lamellar TiAl
alloys is very sensitive to changes in the microstructural parameters. A well-designed con-
stitutive model of fully lamellar TiAl alloys thus has to take into account the corresponding
micromechanical effects in order to enable an accurate prediction of the yield strength for
different combinations of microstructural parameters. In the following, the presented crystal
plasticity model from Chapter 3 is extended accordingly. In the present chapter, the mi-
crostructure sensitive yield strength is modeled for room temperature only. A model for the
temperature dependence of the yield strength is, however, proposed in Chapter 8.

5.1 Influence of microstructural interfaces on the yield strength

Microstructural interfaces like grain boundaries represent strong barriers for dislocation mo-
tion and twin propagation, i.e. dislocations pile up at such interfaces while twins abruptly
stop at them. Once the stress that is caused by the pile-up of defects against a microstruc-
tural interface reaches a certain level, the interface can be overcome and the deformation is
transmitted to the next crystal. This effect delays the onset of plastic deformation and con-
sequently increases the yield strength. Thus, the yield strength of a polycrystalline material
increases with the number of microstructural interfaces, i.e. with decreasing grain size D.
The dependence of the yield stress σ0.2 of a conventional polycrystalline material on its grain
size D, i.e. the (average) spacing of the grain boundaries, was found to follow the relation
[144, 145]

σ0.2 = σR + K√
D

(5.1)

which is frequently referred to as Hall-Petch equation. In this, σR denotes the material’s
(theoretical) yield stress for grain size D →∞ (i.e. without the influence of grain boundaries)
and K is the Hall-Petch strengthening coefficient.
In fact, lamella, domain and colony boundaries all have been found to be strong obstacles for
dislocations and twins (see, e.g., [146] for an image of the observed pile up of dislocations and
twins against a lamella boundary) and are thus generally believed to give rise to Hall-Petch
strengthening [11, 18, 23, 42–49]. Besides the lamella thickness λL8, the γ domain size λD
and the colony size λC , the spacing λα2 of the α2 lamellae is an additional microstructural
parameter (cf. Figure 5.1) that contributes to Hall-Petch strengthening since γ/α2 lamella
boundaries have been found to be stronger obstacles for dislocations and twins than the
interfaces between neighboring γ lamellae [12, 47].
Thus, the microstructure sensitive yield strength of fully lamellar TiAl alloys can generally be
described as a function of four Hall-Petch coefficients and the corresponding microstructural
lengths (cf. Figure 5.1):

8For a better readability, throughout this thesis λL is used for the lamella thickness in general. If the thickness
of the α2 and the γ lamellae (which is usually different) ought to be addressed explicitly, λα2

L and λγL are
used respectively.
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λα2

λD λC

λγL

λα2
L

α2 (Ti3Al)

γ (TiAl)

Figure 5.1. Schematic illustration of microstructural interfaces that contribute to Hall-Petch
strengthening in fully lamellar TiAl. The spacing of the interfaces is denoted by λC : colony
size, λD: γ domain size, λγL: thickness of γ lamellae, λα2

L : thickness of α2 lamellae, λα2 : spacing
of α2 lamellae.

σTiAl
0.2 = f

(
KC√
λC

,
KD√
λD

,
KL√
λL
,
Kα2√
λα2

)
. (5.2)

However, since λα2 was not reported in most experimental studies and the corresponding
strengthening effect has not been comprehensively investigated yet, this source of Hall-Petch
strengthening is not explicitly considered in the following.
In conventional polycrystalline materials the Hall-Petch coefficient K in Equation (5.1) can
be determined from a series of experiments with altered grain size D [144, 145]. Separating
the strengthening effect of the different coexisting microstructural interfaces in fully lamellar
TiAl is, however, much more demanding since it is difficult to independently vary only one
microstructural parameter while keeping the others unchanged [11]. While the strengthen-
ing by lamella and domain boundaries can be separately investigated in polysynthetically
twinned crystals/single colonies with certain orientations, the strengthening effect of the
colony boundaries can naturally only be studied in polycolony specimens in which all types
of microstructural interfaces coexist and is thus not quantified easily. Therefore, as a first
step the microstructure sensitive yield strength of polysynthetically twinned crystals/single
colonies will be modeled. Subsequently, a procedure will be shown which allows to iden-
tify the strengthening effect of the colony boundaries by combining experimental results and
numerical simulations.

5.2 Modeling
In general, gradient extended crystal plasticity models (see, e.g., [113, 118, 126]) allow to
intrinsically capture size effects like Hall-Petch strengthening. In order to do so, it is, however,
necessary to set up a one to one discretization of the microstructure that is to be investigated.
Due to the highly different coexisting length scales, a one to one discretization of a fully
lamellar microstructure would lead to an extremely high number of finite elements and with
this to unreasonable computational costs (cf. discussion in Section 3.1.2). In order to allow
the geometrically simplified RVEs of the fully lamellar microstructure (cf. Section 3.5) to
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be used, a local (i.e. not gradient extended) crystal plasticity formulation was presented in
Chapter 3. In a local formulation of crystal plasticity models (i.e. in a formulation on Gauss
point level), size effects like Hall-Petch strengthening are not captured intrinsically and thus
have to be incorporated into the constitutive formulation of the model.
In local crystal plasticity models, all effects that influence the strain independent part of a
material’s strength are usually combined in the initial critical resolved shear stresses. Thus,
the Hall-Petch strengthening by the different types of microstructural interfaces is incorpo-
rated into the model by formulating the initial critical resolved shear stresses τYα,0 and τTβ,0 of
slip systems α and twinning systems β (see Equations (3.22) and (3.23)) analogically to the
macroscopic Hall-Petch relation Equation (5.1) to read

τYα,0 = τα,R +
∑
i

ki√
λi

(5.3)

τTβ,0 = τβ,R +
∑
i

ki√
λi
. (5.4)

In this, τα,R and τβ,R denote the lattice resistance (Peierl’s barrier) to slip and twinning
which generally is a function of composition and temperature and may have different values
for different deformation mechanisms like e.g. ordinary slip, super slip and twinning in the
γ phase. The Hall-Petch coefficients ki describe the strengthening effect by microstructural
interfaces of type i with average spacing λi.
In the present form, Equations (5.3) and (5.4) contain several simplifications. First of all,
it was assumed that there is only one Hall-Petch coefficients ki that describes the strength-
ening effect of interfaces of type i on all affected deformation systems. However, the actual
strengthening effect of a microstructural interface on a specific slip or twinning system de-
pends on many factors like, e.g., the corresponding misorientation angles so that individual
Hall-Petch coefficients would have to be defined for all possible γ/γ or γ/α2 interfaces. This
would lead to a very high number of additional parameters to be identified and thus would
counteract the simplicity of the empirical Hall-Petch relation. Further, it is questionable
that these subtle differences are relevant for the intended modeling purpose. As a second
simplification it was assumed in Equations (5.3) and (5.4) that the microstructural length
which determines the Hall-Petch strengthening by interfaces of type i coincides with their
average spacing λi. Actually, the strengthening effect of interfaces of type i on a specific
deformation system is determined by its free path length di with respect to these interfaces,
i.e. the maximum distance a slip or twinning dislocation can move before encountering an
interface of respective type. For equiaxed colonies, the free path length of all deformation
systems with respect the colony boundaries coincides well with the colony size, i.e. di ≈ λi
(for i = C). Which microstructural interfaces further contribute to the strength of a specific
deformation system strongly depends on its orientation with respect to the lamellae, i.e. on
its morphological classification (cf. Section 2.2.3). Since longitudinal deformation systems act
parallel to the lamellae (see Figure 2.6), they are not strengthened by the lamella interfaces.
Longitudinal deformation systems in γ lamellae are, however, strengthened by the domain
boundaries (see Figure 2.6) with a free path length that corresponds well to the domain size,
i.e. the assumption of di = λi is met well (for i = D). Transversal deformation systems have
to cross the lamella interfaces and are thus strengthened by them (see Figure 2.6). Their free
path length with respect to the lamella boundaries is, however, generally di > λi (for i = L)
since their shear planes are inclined with respect to the lamella interfaces. Since the lamella
thickness is usually at least one order of magnitude smaller than the γ domain size and even
two orders of magnitude smaller than the colony size λC , it is still assumed that di = λi
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5 Microstructure sensitive yield strength

(for i = L) for the sake of simplicity. Which microstructural interfaces affect the strength
of mixed deformation systems is, however, not as obvious. Although the free path length of
mixed deformation systems corresponds to the γ domain size (respectively the colony size
in the α2 lamellae), their shear plane crosses the lamella interfaces potentially making the
lamella thickness the relevant microstructural parameter for their strength (see Figure 2.6).
Experiments with polysynthetically twinned crystals under a loading angle of 0◦ showed that
for this lamella orientation the yield strength is determined by the lamella thickness [47].
Since up to the yield point (plastic strain of 0.2%) polysynthetically twinned crystals with
0◦ orientation solely deform by mixed slip (cf. Figure 4.5), it can thus be concluded that the
strength of mixed deformation systems is determined by the spacing of the lamella boundaries
[37, 47].
Consequently, the following definitions for the initial critical resolved shear stresses in Equa-
tions (3.22) and (3.23) are introduced:

slip systems in the γ phase

τYα,0 = τα,R + kD√
λD

+ kC√
λC

for α = 1− 3 (5.5)

τYα,0 = τα,R + kL√
λγL

+ kC√
λC

for α = 4− 12 (5.6)

twinning systems in the γ phase

τTβ,0 = τβ,R + kD√
λD

+ kC√
λC

for β = 1 (5.7)

τTβ,0 = τβ,R + kL√
λγL

+ kC√
λC

for β = 2− 4 (5.8)

slip systems in the α2 phase

τYα,0 = τα,R + kC√
λC

for α = 1− 3 (5.9)

τYα,0 = τα,R + kL√
λα2
L

+ kC√
λC

for α = 4− 12 (5.10)

The indices α and β correspond to the definition in Table 2.1.

5.2.1 Constitutive assumptions

Like before in Section 4.2.1, some constitutive assumption will be introduced in the following
in order to facilitate the identification of the model parameters that were newly introduced
by Equations (5.5)-(5.10).

Modeling the plastic deformation behavior of the α2 phase

Due to the reasons discussed before, basal slip systems (α = 1−3) are not considered here (see
Section 4.2.1). In addition to the constitutive assumptions from Section 4.2.1, the Hall-Petch
strengthening by lamella boundaries – i.e. the term kL/

√
λα2
L in Equation (5.10) – is neglected

in the following and the lattice resistances τα,R are defined to be the same for all slip systems
of the same morphological classification. Thus the initial critical resolved shear stresses in the
α2 lamellae reduce to
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5.3 Lamella and domain boundary strengthening

τα2
mix,0 =τYα,0 = τα2

mix,R + kC√
λC

for α = 4− 6 (5.11)

τα2
trans,0 =τYα,0 = τα2

trans,R + kC√
λC

for α = 7− 12 (5.12)

with the lattice resistances

τα2
mix,R = 67 MPa for α = 4− 6 (5.13)
τα2

trans,R = 450 MPa for α = 7− 12. (5.14)

which again correspond to the single crystal findings from [27] (cf. Section 4.2.1).

Lattice resistance to slip and twinning in the γ phase

As mentioned above, the lattice resistance to slip and twinning τα,R and τβ,R is generally
different for different deformation mechanisms (i.e. ordinary slip, super slip and twinning).
Since the respective differences were assumed to be negligible in the γ phase (which – according
to [37]) – appears to be reasonable in two phase alloys), the corresponding lattice resistance
is modeled to be the same for all deformation systems, i.e.

τα,R = τβ,R = τR for α = 1− 12 and β = 1− 4. (5.15)

Thus, the microstructure sensitive initial critical resolved shear stresses of the γ phase (Equa-
tions (5.5)-(5.8)) can again be written according to their morphological classification:

τγlong,0 = τYα,0 = τTβ,0 = τR + kD√
λD

+ kC√
λC

for α = 1− 3 and β = 1 (5.16)

τγmix,0 = τYα,0 = τR + kL√
λγL

+ kC√
λC

for α = 4− 6 (5.17)

τγtrans,0 = τYα,0 = τTβ,0 = τR + kL√
λγL

+ kC√
λC

for α = 7− 12 and β = 2− 4. (5.18)

Work hardening

The work hardening behavior was described using the parameters from Table 4.2 in Chapter
4.

5.3 Lamella and domain boundary strengthening

The strengthening by lamella and domain boundaries is best investigated in polysyntheti-
cally twinned crystals/single colonies, i.e. in the absence of colony boundaries. Thus, the
terms in Equations (5.11), (5.12) and (5.16)-(5.18) that correspond to the colony boundary
strengthening – namely kC/

√
λC – are neglected in this section. The remaining parameters for

lamella and domain boundary strengthening will be calibrated against experimental results
with polysynthetically twinned crystals/single colonies.
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5.3.1 Model parameters

With the introduced constitutive assumptions, only the lattice resistance τR and the Hall-
Petch coefficients kD and kL for the γ phase remain to be identified. These parameters can
be determined from experimental studies in which polysynthetically twinned crystals with
systematically altered lamella and domain size were tested [44, 47]. Since under a loading angle
of 45◦ the plastic deformation of polysynthetically twinned crystals is solely accomplished by
longitudinal deformation systems (see Figure 4.5 and Table 4.3), the yield strength for this
lamella orientation is determined by the γ domain size λD and can be written in analogy to
Equation (5.1)

σPST,45◦
0.2 = σR + KD√

λD
. (5.19)

By varying λD, the corresponding Hall-Petch coefficient KD can be determined from interpo-
lation of the resultant yield stresses. Extrapolating the results to λD →∞, further yields σR.
Analogically, experiments with polysynthetically twinned crystals under loading angles of 0◦
or 90◦ have a yield stress that can be described by

σ
PST,0◦/90◦
0.2 = σR + KL√

λL
(5.20)

since for these orientations only mixed respectively transversal deformation systems are active
up to the yield point (see Figure 4.5 and Table 4.3) and the yield strength is thus determined
by the lamella thickness λL. From experimental results with different lamella thicknesses λL,
the corresponding Hall-Petch coefficient KL can be derived and extrapolation to λL → ∞
yields σR. In Table 5.1, some Hall-Petch coefficients KL and KD are summarized that were
determined this way.

Table 5.1. Experimentally obtained Hall-Petch coefficients K for differently oriented polysyn-
thetically twinned crystals.

loading angle ϕ K [MPa
√

m] ref.
σ0.2=f(λL) 0◦ KL = 0.41 [47]
σ0.2=f(λD) 45◦ KD = 0.27 [47]
σ0.2=f(λL) 90◦ KL = 0.5 [47]

However, the Hall-Petch coefficients kD and kL in Equations (5.16), (5.17) and (5.18) are not
directly comparable to experimentally determined, macroscopic Hall-Petch coefficients KD

and KL. A rough estimate for the lamella and domain boundary strengthening cofficients
kL and kD may still be obtained by multiplying the experimentally determined Hall-Petch
coefficients KL and KD from Table 5.1 by the highest Schmid factor that occurs in the
respective lamella orientations [44, 63] as the corresponding deformation system(s) will most
likely dominate the plastic deformation. With maximum Schmid factors of fSF = 0.41 for
0◦ orientation, fSF = 0.43 for 45◦ orientation and fSF = 0.27 for 90◦ orientation [55, 63],
the experimentally determined Hall-Petch coefficients KD and KL from Table 5.1 yield kD =
0.1161MPa

√
m for 45◦ and kL = 0.135MPa

√
m for 90◦ respectively kL = 0.1681MPa

√
m

for 0◦. In [44], the Hall-Petch coefficients kL and kD were determined similarly but were
reported to be the same for strengthening by lamella and domain boundaries with kL = kD =
0.1MPa

√
m. In view of these experimental results, the Hall-Petch coefficients kD and kL in

Equations (5.16), (5.17) and (5.18) are chosen to be
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5.3 Lamella and domain boundary strengthening

kL = kD = 0.125 MPa
√

m (5.21)

in the following.
As the plastic deformation is mainly accomplished by the γ lamellae, the (approximate)
lattice resistance τR of the γ phase in Equations (5.16), (5.17) and (5.18) can in principal
be obtained the same way – i.e. by multiplying the extrapolated stress σR by the highest
occurring Schmid factor in the γ lamellae of the tested orientations of the polysynthetically
twinned crystal – and has been reported to be ≈ 30MPa for the experimental results from
[47] and [44]. However, determining the lattice resistance by extrapolation of experimental
results includes a variety of uncertainties. First of all, the extrapolation is inherently prone
to the – sometimes significant – scatter in the experimental data. Further, the yield strength
includes some work hardening already as it is – per definition – determined after a plastic
strain of 0.2%. However, even when ignoring the rather small plastic deformation prior to the
yield point, the strengthening effect of the dislocation density in the undeformed specimen is
still remaining. As this initial dislocation density was determined to be as high as 106 1

mm2 to
107 1

mm2 (cf. Section 4.2.1 and [11, 142]), this effect may account for 10MPa to 30MPa (cf.
Equation (4.2)) of the apparent lattice resistance. Thus, the de facto lattice resistance is most
likely lower than expected by the extrapolation of experimental results. Another important
influence on the lattice resistance is the alloy chemistry, i.e. the composition and potential
impurities of the tested alloy. All in all, the lattice resistance can, thus, unfortunately not be
determined uniquely from the experimental studies at hand. From the described extrapolation
of experimental results, the (apparent) lattice resistance was frequently reported to lie in the
range of 30MPa≤ τR ≤50MPa [23, 44, 46] (including the mentioned uncertainties) but has
been assumed to be as high as 65MPa in [147]. Consequently, the applied lattice resistance in
the γ phase is always given when discussing simulation results throughout the present work.

5.3.2 Model validation

In order to check whether the model is able to reproduce the microstructure sensitive yield
strength of polysynthetically twinned crystals with the chosen Hall-Petch coefficients kL and
kD (Equation (5.21)), simulations were carried out using the microstructural parameters of
the polysynthetically twinned crystals tested in [47]. These microstructural parameters are
summarized in table 5.2 together with the corresponding initial critical resolved shear stresses
τγlong,0, τ

γ
mix,0 and τγtrans,0 as they result from Equations (5.16), (5.17) and (5.18) with the

choice of kD and kL given in Equation (5.21) and a lattice resistance of τR=20MPa. In [47],
the average lamella thickness was given without distinguishing between the thickness of the
α2 or the γ lamellae. Since the γ phase is the majority phase, the lamella thickness λγL in the
model was assumed to coincide with the reported lamella thickness λL summarized in Table
5.2.
The simulations were carried out by again using the RVE from Section 3.5.1 and applying
the rotational boundary conditions from Section 3.6.2 to it. A compressive strain rate of
ε̇ = 1.2×10−4s−1 was chosen according to the experiments [47]. The corresponding simulation
results are shown in Figure 5.29.
While Figure 5.2 shows a good agreement between the simulated and the experimentally
determined yield stresses for loading angles of 45◦ and 90◦, the results for a loading angle
of 0◦ require some discussion. Although the Hall-Petch coefficient of kL = 0.125 MPa

√
m

that was chosen for the simulations is lower than the value of kL = 0.1681MPa
√

m that was
9As the microstructural parameters were not reported for all tested specimens in [47], some experimental
data points in Figure 5.2 miss a simulated counterpart.
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Table 5.2. Microstructural parameters of polysynthetically twinned crystals tested in [47] and
corresponding initial critical resolved shear stresses for the simulations obtained by Equations
(5.16), (5.17) and (5.18) with kD = kL = 0.125 MPa

√
m and τR =20MPa

experimental study simulation input
Composition α2 volume fraction λD λL τγlong,0 τγmix,0 τγtrans,0
Ti-48.1at%Al 15Vol% 7µm 0.37 µm 67 MPa 225 MPa
Ti-48.1at%Al 15Vol% 22 µm 0.53 µm 47 MPa 192 MPa
Ti-49.1at%Al 8Vol% 24 µm 0.75 µm 46 MPa 164 MPa
Ti-49.1at%Al 8Vol% 20 µm 0.57 µm 48 MPa 186 MPa
Ti-50.8at%Al 2Vol% 64 µm 1.13 µm 36 MPa 138 MPa
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Figure 5.2. Comparison of simulated and experimentally obtained yield stress of differently
oriented polysynthetically twinned crystals for different combinations of γ domain size λD and
lamella thickness λL. Simulations were obtained for the microstructural parameter sets sum-
marized in Table 5.2. The corresponding experimental results are taken from [47].

determined above from the experiments, the simulations still overestimate the corresponding
experimental yield stresses under loading angles of 0◦. Having a closer look at the experimental
results for this orientation, it appears that linear extrapolation of the only 3 experimental
points to λL → ∞ and thus λ−0.5

L → 0 does, however, yield a negative value for σR in the
corresponding Equation (5.20) which is unphysical. The respective Hall-Petch coeffcient that
was reported in [47] thus is inconsistent with the Hall-Petch relation. Since at the yield point
of polysynthetically twinned crystals under a loading angle of 0◦ only mixed slip systems
are active (see Figure 4.5 and Table 4.3), the overestimated yield stress is correlated to the
formulation of their initial critical resolved shear stress. While the experimental results still
suggest that the strength of mixed slip systems is determined by the lamella thickness, the
way mixed slip systems interact with the lamella interfaces does not agree with the Hall-Petch
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5.3 Lamella and domain boundary strengthening

effect. Since mixed slip acts on shear planes that cross the plane of the lamella interfaces (see
Figure 2.6), respective dislocations do not pile-up against the lamella interfaces but rather bow
out between them indicating that their propagation is still hindered by the lamella interfaces
[52]. In [52], it was thus suggested that the strength of mixed slip systems might be described
by the inverse of the lamella thickness 1

λL
instead of its inverse square root 1√

λL
. However,

the initial yield stresses of the experiments from [52] were very well met for both 0◦ and 90◦
(see Figures 4.3 and 4.5) by assigning the same initial critical resolved shear stresses to mixed
and transversal deformation systems in the simulations (cf. Equations (4.16) and (4.17)).
Thus, a modification of the initial critical resolved shear stress of mixed slip systems, i.e of
Equation (5.17) would impair the respective results. With the chosen values for kL = kD =
0.125 MPa

√
m and Equations (5.17) and (5.18), the initial critical resolved shear stresses

from Equations (4.15)-(4.17) that allowed to reproduce the experimental results from [52],
correspond to a lamella thickness of λL = 1.1 µm and a γ domain size of λD = 50 µm for τR =
20MPa which seems a reasonable combination of microstructural parameters as compared to
the micrographs given in [52]10. Further it is possible to reproduce the anisotropic yield stress
of the polysynthetically twinned crystals tested in [26] by using the present formulation of the
initial critical resolved shear stresses (i.e. Equations (5.16)-(5.18)) for an α2 volume fraction of
5%, a lamella thickness of λL = 2 µm, a γ domain size λD = 100 µm11 and a lattice resistance
of τR = 20MPa as shown in Figure 5.3. As in the experiments, a compressive strain rate of
ε̇ = 2× 10−4 s−1 was applied.
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Figure 5.3. Comparison of the anisotropic yield strength of differently oriented polysyntheti-
cally twinned crystals as obtained by simulation and experiment. The microstructural parame-
ters were chosen to be α2 volume fraction=5%, λL = 2 µm, λD = 100 µm and τR = 20MPa for
the simulations. The experimental results were taken from [26].

Thus, it can be stated, that with the formulated initial critical resolved shear stresses (Equa-
tions (5.16)-(5.18))) and a choice of kL = kD = 0.125 MPa

√
m, the microstructure sensi-

tive yield strength of polysynthetically twinned crystals can be reproduced reasonably well.
However, additional experimental data were required to ultimately reveal the functional de-
10In [52], the microstructural parameters were unfortunately not given explicitly.
11These microstructural parameters agree reasonably well with the ones reported in another publication of the

group in the same year [24]
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5 Microstructure sensitive yield strength

pendence of the initial critical resolved shear stresses of mixed slip systems on the lamella
thickness.

5.4 Colony boundary strengthening

While the Hall-Petch strengthening effect by lamella and domain boundaries can be sepa-
rately investigated by experiments with polysynthetically twinned crystals, colony boundary
strengthening can naturally only be investigated in polycolony specimens in which all types
of microstructural interfaces coexist. Determining the corresponding colony boundary Hall-
Petch strengthening coefficient KC experimentally thus requires a series of experiments with
specimens that all have the same γ domain size λD and lamella thickness λL but systemat-
ically altered colony sizes λC . Since it is difficult to independently vary the microstructural
parameters [11], conducting a respective series of experiments is challenging. Consequently,
most of the reported KC values [18, 23, 42, 43, 45, 48, 49] were determined from experiments
in which not only the colony size was altered but also the lamella thickness and γ domain
size varied12. However, the reported colony boundary strengthening coefficients KC differ
significantly even between studies in which KC was determined from experiments with – at
least nearly – constant lamella thickness λL (and thus constant domain size λD) [23, 42, 48].
Thus, it was suggested in [22] that the strengthening effect of the colony boundaries might be
a function of the anisotropy of the lamellar colonies, i.e. of the relative strength of hard mode
(mixed and transversal) and soft mode (longitudinal) deformation systems. Since KC repre-
sents the colony boundary strength, i.e. the stress of the dislocation pile-up against a colony
boundary that has to be reached in order to activate deformation systems in the neighboring
colony, it is in fact evident that KC is a function of the strengths of the respective slip and
twinning systems to be activated. This is illustrated in Figure 5.4.
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Figure 5.4. Illustration of the dislocation pile-up against a colony boundary that is necessary
to activate slip/twinning systems in the adjacent colony. For λIIC = λIC but λIIL < λIL and
λIID < λID the strength of respective systems in the right image will be higher than in the
left one, consequently requiring a higher pile-up stress to be activated and thus making colony
boundary strengthening a function of λL and λD. Figure taken from Schnabel & Bargmann[2].

12Actually, the γ domain size λD was reported in neither of the cited references [18, 23, 42, 43, 45, 48, 49].
However, λD was suspected in [22, 148] to be correlated to the lamella thickness λL. Thus, specimens with
a similar lamella thickness λL may be assumed to have a similar domain size λD as well.
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5.4 Colony boundary strengthening

This statement implies that

• the colony boundary strengthening coefficient KC has to be a function of the lamella
thickness λL and the domain size λD, since lamella and domain boundary strengthening
determine the strength of the deformation systems in the neighboring colony and in
consequence

• the experimentally determined coefficientsKC are valid only for the specific combination
of λL and λD for which they were determined.

The second statement rationalizes the differences in the reported colony boundary strength-
ening coefficients KC since they were in fact identified for different combinations of λL and
λD in the different studies.
Given the difficulties in microstructure control, identifying the functional relation KC =
f(λL, λD) experimentally is, however, unreasonably labor intensive. Unlike experiments, nu-
merical studies are not restricted regarding the choice of microstructural parameters, conse-
quently enabling to investigate any combination of lamella thickness, domain size and colony
size. Thus, the presented crystal plasticity model can help to identify KC = f(λL, λD) which
then ultimately allows to predict the microstructure sensitive yield strength of fully lamellar
TiAl alloys. In the following, a procedure will be shown that allows to identifyKC = f(λL, λD)
by a combination of simulations and experimental data.

5.4.1 Calculation scheme

In order to predict the yield stress σ0.2 of a conventional polycrystalline material from its grain
size D by the use of the classical Hall-Petch relation, i.e. Equation (5.1), σR and the Hall-
Petch coefficient K have to be known. As mentioned earlier, σR represents the (theoretical)
yield stress of a polycrystalline material with grain size D →∞, i.e. without grain boundary
strengthening. In the context of colony boundary strengthening of fully lamellar TiAl alloys
the respective Hall-Petch relation would read

σ0.2 = σR + KC√
λC

(5.22)

where σR consequently represents the (theoretical) yield stress of an alloy with a colony size
λC → ∞, i.e. in the absence of colony boundary strengthening. Although a polycolony
microstructure with infinitely large colonies is obviously a paradox, it is still possible to set
up a model representation of such a hypothetical material by setting the colony boundary
strengthening terms kC/

√
λC in the initial critical resolved shear stresses (Equations (5.11),

(5.12) and (5.16)-(5.18)) to 0, and applying the resultant model to the polycolony RVE from
Section 3.5.2. The simulated yield strength of this model set up in fact represents σR in
Equation (5.22). Due to the lamella and domain boundary strengthening effect that – in the
absence of colony boundaries – determines the strength of the lamellar colonies (cf. Section
5.3), σR and thus the simulated σSIM

R depend on lamella thickness λL and domain size λD.
Adapting the lamella and domain boundary strengthening coefficients kL and kD as well as
the constitutive assumptions from the previous section (Section 5.3), σSIM

R can be determined
for any combination of lamella thickness λL13 and domain size λD. For any yield stress σEXP

0.2
which was experimentally determined for a specific combination of λiL, λiD and λiC , it is thus
possible to determine the corresponding σSIM

R . Knowing the yield strength σEXP
0.2

(
λiL, λ

i
D, λ

i
C

)
13or more precisely λγL since in Section 5.3 the strengthening of the α2 lamellae by lamella boundaries was

neglected.
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and σSIM
R

(
λiL, λ

i
D

)
for a specific combination of λiL, λiD and λiC , the corresponding Hall-Petch

coefficient KC

(
λiL, λ

i
D

)
for this specific combination of microstructural parameters can be

determined by rearranging Equation (5.22) to

KC

(
λiL, λ

i
D

)
= σEXP

0.2
(
λiL, λ

i
D, λ

i
C

)
− σSIM

R

(
λiL, λ

i
D

)
λi
−0.5
C

. (5.23)

Equation (5.23) allows to determine KC

(
λiL, λ

i
D

)
for a specific combination of λiL and λiD

from only one experimentally determined yield stress instead of the regularly required series
of experiments with systematically altered colony size λC and constant λL and λD. This
interpolation scheme is illustrated in Figure 5.5.
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Figure 5.5. Illustration of the presented interpolation scheme which allows to determine
KC(λiL, λiD) by combining simulation and experimental results. By applying the crystal plas-
ticity model of a polysynthetically twinned crystal/single colony (i.e. without colony boundary
strengthening) to the polycolony RVE from Section 3.5.2, σSIM

R (λiL, λiD, λC =∞) can be deter-
mined for any given combination of λiL and λiD. With the corresponding experimental results,
the relation KC(λiL, λiD) = σEXP

0.2 (λiL,λ
i
D,λ

i
C)−σSIM

R (λiL,λ
i
D)

λi
−0.5
C

is evaluated which was obtained by re-
arranging the Hall-Petch relation (5.22).

Repeating this for a sufficient number of experimental data points, finally reveals KC =
f (λL, λD). Further, this procedure does not impose any restrictions on the combination of
microstructural parameters that have to be tested in the respective experiments.

5.4.2 Determining the colony boundary strengthening coefficient KC

With the presented interpolation scheme it is possible to determine the functional dependence
of the colony boundary Hall-Petch coefficientKC on the lamella thickness λL and the γ domain
size λD by combining simulation results with the experimental results reported in [18, 23, 42].
The microstructural parameters of the tested samples in respective studies are summarized
in Table 5.3.
Unfortunately, the γ domain size is reported in neither of the cited studies. Since the γ domain
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5.4 Colony boundary strengthening

Table 5.3. Microstructural parameters of fully lamellar TiAl alloys tested in [18, 23, 42].
Compressive and tensile strain rates are denoted by (C) and (T) respectively. ∗: not reported.
If the α2 content was not reported, it was assumed to be 10 Vol.-%. Since the γ domain size
was reported in neither of the studies, it was assumed to be λD = 50× λL. ∗∗: from this study
only results for alloys with a maximum α2 content of 32% were considered.

composition α2 [Vol.-%] λC [µm] λD [µm] λL [µm] σEXP
0.2 [MPa] ε̇ ref.

Ti-45.3Al-2.1Cr-2Nb 20 75 4.4∗ 0.088 714 5× 10−4s−1 (C) [23]∗∗
Ti-45.3Al-2.1Cr-2Nb 29 78 2.9∗ 0.058 835 5× 10−4s−1 (C) [23]∗∗
Ti-45.3Al-2.1Cr-2Nb 32 56 1.75∗ 0.035 968 5× 10−4s−1 (C) [23]∗∗
Ti-45.5Al-2Cr-1.5Nb-1V 10∗ 260 8∗ 0.16 515 2× 10−4s−1 (C) [42]
Ti-45.5Al-2Cr-1.5Nb-1V 10∗ 390 8∗ 0.16 546/491 2× 10−4s−1 (C) [42]
Ti-45.5Al-2Cr-1.5Nb-1V 10∗ 690 8∗ 0.16 469 2× 10−4s−1 (C) [42]
Ti-45.5Al-2Cr-1.5Nb-1V 10∗ 920 8.5∗ 0.17 454 2× 10−4s−1 (C) [42]
Ti-45.5Al-2Cr-1.5Nb-1V 10∗ 370 0.75∗ 0.015 823 2× 10−4s−1 (C) [42]
Ti-45.5Al-2Cr-1.5Nb-1V 10∗ 360 4.75∗ 0.095 584 2× 10−4s−1 (C) [42]
Ti-45.5Al-2Cr-1.5Nb-1V 10∗ 380 25∗ 0.5 466 2× 10−4s−1 (C) [42]
Ti-47Al-2Cr-2Nb 10∗ 65 5∗ 0.1 969 4.4× 10−3s−1 (T) [18]
Ti-47Al-2Cr-2Nb 10∗ 62 19.5∗ 0.39 646 4.4× 10−3s−1 (T) [18]
Ti-47Al-2Cr-2Nb-0.15B 10∗ 33 22∗ 0.44 492 4.4× 10−3s−1 (T) [18]
Ti-47Al-2Cr-1.8Nb-0.2W-0.15B 10∗ 31 15∗ 0.3 549 4.4× 10−3s−1 (T) [18]
Ti-47Al-2Cr-1.8Nb-0.2W-0.15B 10∗ 25 7.05∗ 0.141 756 4.4× 10−3s−1 (T) [18]
Ti-46Al-2Cr-1.8Nb-0.2W-0.15B 10∗ 26 5.25∗ 0.105 895 4.4× 10−3s−1 (T) [18]
Ti-47Al-2Cr-1Nb-1Ta 10∗ 60 4.3∗ 0.086 938 4.4× 10−3s−1 (T) [18]

size is, however, suspected to be proportional to the lamella thickness [22, 148], it was assumed
to be λD = 50×λL which seems reasonable when comparing the reported lamella and domain
sizes of polysynthetically twinned crystals summarized in Table 5.2. For the simulations the
lattice resistance τR was set to 30MPa in the γ phase. The RVE of a polycolony microstructure
from Section 3.5.2 was used for the simulations. The RVE was subjected to periodic boundary
conditions (cf. Section 3.6.1) and the strain rate for the simulations was set according to the
reported values ε̇ (see Table 5.3). The work hardening as well as the lamella and domain
boundary strengthening were modeled by applying the model parameters and constitutive
assumptions from Chapter 4 and Section 5.3 respectively.
For every experimentally investigated combination of microstructural parameters in Table
5.3, one simulation was carried out to determine the corresponding σSIM

R . With the results
of this simulation and the experimentally determined yield stress σEXP

0.2 , the KC value that
corresponds to the respective combination of λL and λD was determined by Equation (5.23).
In Figure 5.6(a), the respectively calculated colony boundary Hall-Petch coefficients KC are
plotted together with the experimentally determined KC values.
Although the correlation of the calculated KC values in Figure 5.6(a) is compromised by the
incompletely reported microstructural parameters (see Table 5.3) which in consequence had
to be estimated, the dependence of KC on the lamella thickness λL is apparent. Thus, the
simulation results successfully demonstrate that the colony boundary strengthening coefficient
KC is in fact a function of the lamella thickness and the γ domain size14 as suggested in [22].
In order to finally implement the colony boundary strengthening effect into the initial critical
resolved shear stresses of the deformation systems, i.e. into Equations (5.11), (5.12) and
(5.16)-(5.18), KC has to be defined as an explicit function of λL and λD. As mentioned
earlier, it was suspected in [22], that KC depends on λL and λD via the relative strength
of the hard (mixed and transversal) and the soft (longitudinal) deformation systems of the
lamellar colonies. These strengths are themselves determined by the inverse square root of

14As in the present results the γ domain size was assumed to be λD = 50 × λL, the dependence of KC on λD
is, however, distorted here.
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Figure 5.6. (a): Colony boundary Hall-Petch coefficient KC plotted over the lamella thickness
λL. Full symbols: determined via the interpolation scheme illustrated in Figure 5.5; open sym-
bols: experimentally determined KC values from [22, 23, 42, 48]. In [23], KC was determined
from experiments with the indicated range of lamella thicknesses; solid line: interpolation of
calculated Hall-Petch coefficients by KC(λL) = KC,0 + KC,λL

1√
λL

; (b) and (c): Comparison
of experimentally determined σEXP

0.2 (λL, λD, λC) from [18, 23, 42] to simulated yield stresses
σSIM

0.2 (λL, λD, λC). In the simulations, colony boundary strengthening was considered by in-
troducing the functional relation KC = f (λL, λD) determined from Figure 5.6(a) to the initial
critical resolved shear stresses of all deformation systems in both phases like shown in Equations
(5.11), (5.12) and (5.16)-(5.18).

λL and λD (cf. Section 5.3) so that KC = f
(

1√
λL
, 1√

λD

)
is assumed in the following. Since

λL � λD, the term 1√
λD

is much smaller than 1√
λL

and the sensitivity of KC to changes in λL
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is assessed to be much higher than to changes in λD. Therefore, KC is defined as a function
of the inverse square root of λL only

KC(λL) = KC,0 +KC,λL

1√
λL
. (5.24)

For an infinite lamella thickness, i.e. λL → ∞, Equation (5.24) has to approach the colony
boundary strengthening coefficient of a near-γ microstructure which mainly consists of glob-
ular γ grains (cf. Figure 1.2). The corresponding Hall-Petch coefficient was stated to be
≈ 1 MPa

√
m [22] so that KC,0 is chosen to be 1 MPa

√
m. With this assumption, KC,λL in

Equation (5.24) was determined to be KC,λL = 4.3165× 10−4 MPa[
√

m]2 by interpolating the
calculated KC values in Figure 5.6(a). The resultant function for KC(λL) has been added to
Figure 5.6(a).
In order to incorporate the determined function for the macroscopic colony boundary Hall-
Petch coefficient KC into the initial critical resolved shear stresses, Equation (5.24) has to
be resolved to the slip and twinning systems. This is done by multiplying it by a factor of
0.3[23] so that the colony boundary strengthening coefficient kC in Equations (5.11), (5.12)
and (5.16)-(5.18) reads

kC(λL) = kC,0 + kC,λL
1√
λL

= 0.3MPa
√

m + 1.295× 10−4MPa[
√

m]2 1√
λL
. (5.25)

With the determined functional relation of the Hall-Petch coefficient kC on the lamella thick-
ness λL given by Equation (5.25), it can be checked whether the model is able to reproduce
the experimentally determined yield stresses for the microstructural parameters in Table 5.3.
As depicted in Figure 5.6 (b) and (c), including kC(λL) into the initial critical resolved shear
stresses of both phases and rerunning the simulations reproduces the experimentally deter-
mined yield stresses reasonably well for most combinations of microstructural parameters in
Table 5.3.

5.5 Summary
In the present Chapter, the crystal plasticity model from Section 3.2 was extended to take
into account the strengthening effect of the different coexisting microstructural interfaces in
fully lamellar TiAl alloys. The corresponding Hall-Petch strengthening was incorporated into
the initial critical resolved shear stresses. It was shown that the microstructure sensitive
yield strength of differently oriented polysynthetically twinned crystals could be reproduced
with the extended model. Subsequently, a procedure was shown that allowed to identify the
colony boundary Hall-Petch strengthening coefficient as a function of the other microstructural
parameters which was to date not possible by experiments.
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6 Micro yield in polycolony microstructures
As briefly mentioned in the introduction to Chapter 4, polycolony microstructures exhibit a
distinct micro yield behavior which results from the strong plastic anisotropy of the lamellar
colonies. While the anisotropy of the lamellar colonies does not directly appear in the macro-
scopic yield stress15 of polycolony microstructures, it still has a pronounced effect on their
plastic deformation behavior. This manifests in two ways:

1. in a very inhomogeneous microplasticity since plastic deformation concentrates in weakly
oriented colonies and correspondingly

2. in a transient onset of yield since the plastic deformation starts in the colonies that
are in weakest orientation while colonies in stronger orientations are only successively
activated at higher stresses, i.e. at later deformation stages.

While the transient onset of yield is visible in macroscopic stress-strain curves (see e.g.
[22, 23, 131, 149]), the localization of plasticity in weakly oriented colonies was recently
observed by DIC analyses of polycolony microstructures [131–133]. The strong gradients
that occur in the local plastic strains of polycolony microstructures were frequently suspected
to promote pre-yield cracking (see e.g. [132, 149, 150]) so that it is of technical interest to
better understand the micro yield behavior in order to ultimately identify combinations of
microstructural parameters that reduce the tendency to form pre-yield cracks. Investigating
the influence of different combinations of microstructural parameters on the microplasticity
of several interacting colonies by experiments is, however, challenging. Compared with the
experimental effort that is necessary to investigate the local plastic strain fields in polycolony
microstructures and to draw conclusions on how the different microstructural parameters af-
fect the micro yield behavior, it is comparatively easy to assess these issues by the presented
crystal plasticity model. In fact, the influence of the relative strength of hard (transversal
and mixed) and soft mode (longitudinal) deformation systems on the micro yield behavior
was already investigated in the very first, yet still 2D, numerical studies on lamellar TiAl
[57, 58]. More recently, the micro stress and strain fields that arise from the strong plastic
anisotropy of the differently oriented colonies in polycolony microstructures were investigated
by crystal plasticity studies on 3D polycolony RVEs [71, 80]. However, like the 2D numerical
studies before [57, 58], these 3D numerical investigations of the microyield in fully lamellar
TiAl [71, 80] were based on a homogenized single phase model of the lamellar colonies that
does not explicitly incorporate the Hall-Petch strengthening effect (cf. Section 3.1.1). There-
fore, the numerical studies presented in [57, 58, 71, 80] enabled a qualitative assessment of the
influence of relative strength of hard (transversal/mixed) and soft (longitudinal) deformation
systems on the micro yield behavior but do not allow to explicitly relate the findings to the
choice of microstructural parameters as it will be done in the following.

6.1 Numerical study
With the work hardening formulation introduced in Chapter 4 and the microstructure sen-
sitive formulation of the initial critical resolved shear stresses introduced in Chapter 5, the
15provided there is no pronounced texture
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6 Micro yield in polycolony microstructures

presented crystal plasticity model allows to investigate the micro yield behavior of polycolony
microstructures as it will be shown in the following. In contrast to experimental investigations,
numerical studies allow to directly relate the deformation within the lamellae of the single
colonies (i.e. on the micro scale) to the microplasticity of several interacting colonies (i.e. on
the meso scale) and finally to the macroscopic stress-strain response. Thus, conclusions can
be drawn on how specific combinations of microstructural parameters affect the micro yield
behavior.

6.1.1 Numerical results

The subsequently presented simulations were carried out using the RVE of a polcolony mi-
crostructure from Section 3.5.2. Periodic boundary conditions were applied (see Section 3.6.1)
and the RVE was loaded uniaxially with a compressive strain rate of ε̇ = 1 × 10−4s−1. The
work hardening behavior was modeled according to Chapter 4 and the microstructure sensitive
initial critical resolved shear stresses were modeled according to Chapter 5.
In order to investigate the relative activity of deformation systems in polycolony microstruc-
tures, a simulation was set up with an exemplary microstructure that is characterized by an
α2 volume fraction of 10%, a colony size of λC=250 µm, a domain size of λD=25µm and a
lamella thickness of λL=0.5 µm. The instantaneous as well as the cumulative relative activity
of deformation systems in the γ lamellae as obtained by the respective simulation is shown
together with the corresponding macroscopic stress-strain curve in Figure 6.1(a) and (b). The
relative activities were determined as described in Section 4.3.
The simulated stress-strain curve in Figures 6.1(a) and (b) nicely illustrate the transient onset
of yield in fully lamellar TiAl. The relatively low initial yield stress is followed by a high
(apparent) work hardening rate which gradually decreases with ongoing plastic deformation
until ultimately an approximately constant work hardening rate is reached. The instantaneous
relative activity in Figure 6.1(a) indicates that at the very beginning of plastic deformation
only longitudinal slip and twinning systems are active. However, directly after beginning
plasticity, activity on transversal slip and twinning systems is observed which rapidly increases
with ongoing plastic deformation until finally the activity on tranvsersal systems is even higher
than on longitudinal systems. Mixed deformation systems show only a moderate activity,
obviously playing a subordinate role in the plastic deformation of polycolony microstructures.
As mentioned above, plastic deformation of polycolony microstructures starts in weakly ori-
ented colonies while colonies that are less favorably oriented for plastic deformation start to
plasticize only at later deformation stages. The strong concentration of plastic deformation
in the weakly oriented colonies is nicely visible in the simulation results as shown in Figure
6.1(c), (d) and (e) by plotting the total plastic shear γ for different deformation stages.
As the lamella thickness λL, the γ domain size λD and the colony size λC , determine the
strengths of the deformation systems of different morphological classes (see Chapter 5), it
is evident that the micro yield behavior is influenced by the combination of microstructural
parameters. By systematically varying λL, λD and λC in the simulations (while keeping the
α2 volume fraction constant at 10%), it is possible to explicitly investigate the influence of
the different microstructural parameters on the microplasticity. For this parameter study,
the above used set of exemplary microstructural parameters (λC=250 µm, λD=25µm and
λL=0.5 µm) was taken as a reference. Three additional simulations were carried out in each
of which another microstructural parameter was reduced by a factor 5 while keeping the others
unchanged. The corresponding simulated stress-strain curves are given in Figure 6.2 together
with the stress-strain curve of the reference microstructure (black line).
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Figure 6.1. Simulation results for of a polycolony microstructure. The simulation was carried
out with an α2 volume fraction of 10%, a colony size λC=250 µm, a domain size λD=25 µm,
a lamella thickness λL=0.5 µm and a lattice resistance of τR =30MPa. (a), (b): Simulated
macroscopic stress strain curve (solid line) and relative activity of deformation systems in the γ
lamellae (colored background areas). ls: longitudinal slip, ms: mixed slip, ts: transversal slip,
lt: longitudinal twinning, tt: transversal twinning; (c), (d), (e): Contour plots of total plastic
shear γ. Red areas correspond to γ > 0.4; blue areas indicate γ < 0.05.

6.1.2 Discussion

In the following, the presented numerical results are discussed in order to identify trends in
the micro yield behavior.

Relative activity of deformation systems

As it was discussed in Section 4.3, the plastic deformation of differently oriented polysynthet-
ically twinned crystals/single colonies under uniaxial load is accomplished by different groups
of deformation systems depending on the loading angle. Due to the selective activity of differ-
ent groups of deformation systems, it was possible to directly relate changes in their relative
activity to their work hardening interactions and to specifics of the corresponding macroscopic
stress-strain curves. Since the macroscopic stress-strain response of polycolony microstruc-
tures is the result of the co-deformation of numerous interacting colonies with different lamella
orientations, the relative activity of deformation systems within a single colony can not di-
rectly be related to features of the macroscopic stress-strain curve. Unlike in polysynthetically
twinned crystals/single colonies, the change in work hardening rate that was observed for the
first ≈1.5% plastic strain in Figure 6.1(a) and (b), is thus not related to specific work harden-
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Figure 6.2. Simulated stress-strain response of a polycolony microstructure for systemat-
ically altered microstructural lengths. The black line indicates the reference microstructure
(λC=250 µm, λL=0.5 µm, λD=25µm). Microstructural parameters: λC : colony size; λL:
lamella thickness; λD: domain size. left: Stress-strain response up to 7.5% plastic strain;
right: Magnification of the response for the first 0.75% plastic strain.

ing interactions but is the result of the transient onset of yield in polycolony microstructures.
Thus, the relative activity of deformation systems of different morphological classes given in
Figure 6.1 provides information to which extent the plastic deformation is accomplished by
weakly oriented colonies (in which preferably longitudinal deformation systems will be acti-
vated) and at which deformation stage the colonies of stronger orientation start to deform
plastically (indicated by activity of mixed and transversal deformation systems) instead.

As expected, the plastic deformation starts in colonies that have sufficiently high Schmid
factors on the longitudinal (i.e. the weakest) deformation systems (see Figure 6.1(a) and (b)).
However, as long as no fracture occurs, the colonies are forced to undergo a compatible co-
deformation. Due to this kinematic constraints between neighboring colonies and the arising
constraint stresses it is not surprising that the plastic deformation is not solely accomplished
by longitudinal deformation systems in weakly oriented colonies. This explains why shortly
after onset of yield, also transversal slip and twinning activity is visible in Figure 6.1(a)
and (b). The low activity of mixed slip systems in polycolony microstructures can, however,
largely be explained by the fact that they can only be activated for a very narrow range of
orientation angles as it was found for polysynthetically twinned crystals (cf. Figure 4.5).

With ongoing plasticity, the relative activity of transversal deformation systems increases
which nicely illustrates that the increasing stress levels consecutively trigger plasticity in
colonies that are less favorable oriented for plastic deformation. The stress relief by this
successive onset of plastic deformation in different colonies causes the gradual decrease of the
slope of the macroscopic stress-strain response over the first ≈ 1.5% plastic strain (cf. [39]).
After this ≈1.5% plastic strain, the slope of the macroscopic stress-strain response (i.e. the
macroscopic hardening rate) is relatively constant, indicating that all colonies have started to
deform plastically.
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6.1 Numerical study

Influence of microstructural parameters

As discussed in Chapter 5, the coexisting microstructural interfaces in fully lamellar TiAl have
a strong influence on the relative strength of deformation systems. Consequently, changes in
microstructural parameters unquestionably will have an influence on the micro yield behavior
which is dominated by the relative strength of soft (longitudinal) and hard mode (mixed and
transversal) deformation systems.
Thus, the changes in micro yield behavior for systematically altered microstructural parame-
ters as it shown by the simulation results in Figure 6.2 are best understood by combining the
Hall-Petch arguments from Chapter 5 with the simulated relative activities obtained for the
exemplary reference microstructure (see Figure 6.1(a) and (b)).

Influence of the γ domain size The γ domain size λD determines the strength of the
longitudinal deformation systems and thus of the weakly oriented colonies in polycolony mi-
crostructures. Consequently, a reduced domain size leads to an increase of the initial yield
stress as compared with the reference microstructure (see the blue line in Figure 6.2). The
characteristics of the transient onset of yield seems, however, not to be influenced by the
domain size as the stress-strain curve of the simulations with altered λD are approximately
parallel to the stress-strain response of the reference microstructure.

Influence of colony size As discussed in Chapter 5, the colony size λC equally affects the
strength of all deformation systems. Thus, decreasing λC equally strengthens longitudinal
deformation systems (and consequently the weakly oriented colonies) and mixed/transversal
deformation systems (and consequently the colonies that are less favorably oriented for plastic
deformation). Compared to the reference microstructure, the increased strength of weakly
oriented colonies leads to a higher initial yield stress (see the green line in Figure 6.2). The
increased strength of the colonies that are less favorably oriented for plastic deformation
results in a slightly higher initial slope of the macroscopic stress-strain response as higher
stress levels are required to trigger plasticity in these colonies (cf. Figure 6.2). After 1.5%
plastic strain, i.e. in the strain regime in which presumably all colonies have started to deform
plastically, the macroscopic hardening rate of the simulation with altered colony size matches
again the hardening rate obtained for the reference microstructure.

Influence of lamella thickness The spacing of the lamella interfaces directly determines the
strength of mixed and transversal deformation systems but also has a secondary influence on
the strength of all deformation systems since the colony boundary strengthening coefficient kC
depends on the lamella thickness λL as discussed in Section 5.4. Consequently, reducing λL
results in a slight increase of the initial yield stress through the strengthening of longitudinal
deformation systems and thus weakly oriented colonies (see the red line in Figure 6.2). The
strengthening of the mixed and transversal deformation systems leads to a strong increase
of the initial slope of the macroscopic stress strain curve as compared with the reference
microstructure. Further, the constant hardening rate, i.e. the hardening rate that indicates
that all colonies have started to deform plastically, is reached at higher stress levels and
for a slightly higher macroscopic plastic strain. Therefore, decreasing the lamella thickness
prolongs the transient onset of yield.

Strain localization

As mentioned earlier, the micro yield of fully lamellar TiAl is accompanied by a strong
localization of the plastic strains in weakly oriented colonies. This strain localization has
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6 Micro yield in polycolony microstructures

been observed by DIC analysis [131–133] and in previously reported numerical simulations
[57, 58, 71, 80].
Since the RVE of a polycolony microstructure that was used for the current simulations (see
Figure 3.6) only models a reduced number of lamellae per colony, the obtained micro strain
field can obviously only be a rough estimate of the micro strain field in a real microstructure.
However, the effect of the kinematic constraints between the colonies on the microplasticity
can still be assessed at least qualitatively from contour plots of the total plastic shear γ (see
Figure 6.1 (c), (d) and (e)). The respective contour plot at 7.5% plastic strain (Figure 6.1
(e)) is shown again in Figure 6.3 together with the orientations of colonies on the undeformed
RVE.
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Figure 6.3. (a): orientation angles of the colonies in the used RVE with respect to the loading
direction, i.e. the y axis; (b): contour plot of total plastic shear γ for a macroscopic plastic
strain of 7.5%. Red areas correspond to γ > 0.4; blue areas indicate γ < 0.05.

From this contour plot, the following characteristics of the inhomogeneous microplasticity can
be identified:

• Due to the kinematic constraints in the microstructure, the weakly oriented colonies
are not simply identified by the angle between their lamella plane and the macroscopic
loading direction alone.

• The total plastic shear γ in weakly oriented colonies is several times higher than in
colonies that are less favorably oriented for plastic deformation.

• Some colonies show a homogeneous plastic deformation, i.e. all lamellae deform plasti-
cally.

• Some colonies contain α2 lamellae that are nearly undeformed although the other lamel-
lae deform plastically.

• α2 lamellae that do not deform plastically may locally impede plastic deformation in
neighboring colonies.

• The plastic deformation may be channeled through regions with only strong colonies.
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6.2 Summary

Combining such simulations with experimental investigations, would potentially allow to re-
late the sites at which (pre-yield) cracks typically occur to specifics in the micro strain field.

6.2 Summary
In the present Chapter, the micro yield behavior of polycolony microstructures was investi-
gated using the work hardening formulations and the microstructure sensitive model extension
introduced in the previous chapters. This allowed to analyze the influence of the microstruc-
tural parameters (λL, λD and λC) on the specifics of micro yield. The results of this numerical
study correspond well to findings of previous numerical studies [57, 58, 71, 80] but in contrast
allowed to specifically attribute the observed phenomena to the microstructural length scale.
Furthermore, the localization of plastic strains in weakly oriented colonies of polycolony mi-
crostructures was investigated and some characteristics of the micro strain field that result
from the kinematic constraints in the microstructure were identified.
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7 Static recovery

7.1 Introduction
Work hardening obviously has a significant effect on basically all technical applications and
processes that involve plastic deformation. Since it is well-known that work hardening can
be recovered by annealing at elevated temperatures, it is, however, possible to control its – in
most cases detrimental – effect on respective applications and processes by systematic heat
treatment. In forming processes such heat treatments are, e.g., commonly used to limit the
forming forces and correspondingly the tool wear. Processes like, e.g., shot peening on the
other hand aim to benefit from systematically introduced work hardening (and compressive
residual stresses) in the surface layer of a component, see e.g. [151]. The surface hardening
that is introduced by shot peening significantly increases the component’s mechanical perfor-
mance in terms of, .e.g, fatigue life as investigated for lamellar γ TiAl in [21]. For shot peened
γ TiAl components under service conditions (i.e. at elevated temperature), potential recovery
of the introduced surface hardening is, thus, disadvantageous since it counteracts the intended
improvement of the mechanical performance. Being able to predict the static recovery behav-
ior would consequently help to optimize the load/annealing path in forming applications and
would further allow to assess the potential of improving the mechanical performance of TiAl
components by systematic work hardening.
Thus, in the following the recovery part of the crystal plasticity model from Section 3.2 (i.e.
Equation (3.20)) will be calibrated against experiments and subsequently be applied to inves-
tigate basic trends in the static recovery behavior of polysynthetically twinned crystals/single
colonies and polycolony microstructures.

7.2 Parameter identification
To date, the recovery behavior of γ TiAl alloys was investigated in only few studies [21, 39,
83, 129, 152, 153]. Therefore, the available data to calibrate the recovery part of the crystal
plasticity model from Section 3.2 (i.e. Equation (3.20)) are scarce. In order to model the
recovery behavior of slip systems α by Equation (3.20), the reference recovery rate Rα,0, the
activation energy for static recovery QR, the minimum dislocation density for recovery ρdis

α,min,
the reference dislocation density ρdis

ref and the exponent qα have to be identified.
The activation energy for static recovery QR has been found to correlate reasonably well with
the activation energy for self diffusion QSD in γ TiAl [39] . Together with the Boltzmann
constant kB, the temperature dependent part of Equation (3.20), i.e. exp

(
− QR
kBθ

)
, is thus

known. The reference dislocation density ρdis
ref serves for normalization purposes only and is

thus set to 1mm−2. For the sake of simplicity, ρdis
α,min is set to zero for all slip systems. As

proposed in previous modeling approaches for recovery [56, 111], the exponents qα are set to
2, i.e. the recovery rates of all slip systems α are assumed to increase with

(
ρdis
α

)2
. With this,

only the reference recovery rates Rα,0 remain to be identified.
Due to their different initial strength and hardening behavior, it is likely that the evolving
dislocation densities vary significantly between slip systems of different morphological clas-
sification. Since a higher dislocation density results in a higher recovery rate for a given
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temperature, the effective recovery rate presumably also differs between systems of different
morphological classification. However, there is no reason to assume that the functional re-
lation between the current dislocation density and the recovery rate, i.e. the actual recovery
behavior, is significantly different for systems of different morphological classification. There-
fore, it is assumed in the following that the recovery on all slip systems α in the γ and the α2
phase can be described by the same Rα,0 irrespective of their mechanistic (super or ordinary
slip) and their morphological classification.

7.2.1 Calibration
In order to obtain a data base for the model calibration, static recovery experiments with
polysynthetically twinned crystals were carried out by Jonathan D.H. Paul (department of
Materials Physics at the Helmholtz-Zentrum Geesthacht). Polysynthetically twinned crystals
with the three characteristic lamella orientations of 0◦, 45◦ and 90◦ were deformed at room
temperature with a compressive strain rate of 2.38 × 10−5s−1 to a plastic strain of 5%. The
deformed specimens were then annealed at 650◦C for either 4 or 8 hours. After annealing, the
specimens were retested at room temperature to an additional 1% plastic strain in order to
determine how much of the introduced work hardening has been recovered. Further details
on the experimental set up can be found in [3]. The microstructural parameters of the tested
polysynthetically twinned crystals are summarized in Table 7.1.

Table 7.1. Microstructural parameters of the tested polysynthetically twinned crystals. The 0◦
and 45◦ specimens were prepared from a different parent crystal than the 90◦ specimens. ∗: α2
volume fraction used in the simulations. The microstructural parameters were kindly provided
by Michael Oehring (department of Materials Physics at the Helmholtz-Zentrum Geesthacht)

composition γ α2 α2 content [Vol.-%]
EDX λγL [µm] λD [µm] λα2

L [µm] image analysis XRD∗
0◦/45◦ Ti-49 at.% Al 2.3±0.4 26.8 0.66±0.12 6.6±2.40 4.6
90◦ Ti-48.5 at.% Al 1.7±0.3 29.4 0.37±0.19 2.6±0.38 1.5

The calibration simulations were carried out again using the RVE of a polysynthetically
twinned crystal presented in Section 3.5.1. The RVE was subjected to the rotational boundary
conditions from Section 3.6.2. The work hardening behavior and the microstructure sensitive
initial critical resolved shear stresses were modeled as described in Chapters 4 and 5 with
the respective constitutive assumptions and model parameters. As described in Chapter 5,
the lattice resistance τR is the only remaining model parameter that can not be identified
uniquely as it, a.o., depends on composition and impurities of the tested specimens. In the
current simulations the lattice resistance in the γ phase had to be set to τR = 55MPa for
the 0◦ and 45◦ tests and to τR = 65MPa for the 90◦ tests respectively in order to match the
experimentally determined yield stresses.
Figure 7.1 shows the results of the static recovery experiments compared to the simulations
that were obtained for the microstructural parameters from Table 7.1 and the chosen lattice
resistance τR.
For a better assessment of the results, Figures 7.2(a) and (b) show the simulated and ex-
perimentally determined yield stresses and the stresses that were reached at the end of the
predeformation, i.e. after 5% plastic strain. Figure 7.2(c) shows the comparison of the exper-
imental and simulated yield stresses after annealing.
Overall, the simulated stress strain curves in Figure 7.1 correspond well to the experimental
results for both the predeformation and the retest after annealing. The yield stress as well
as the post yield behavior are reproduced well within the experimental error for 0◦ and 45◦
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Figure 7.1. Comparison of the experimental results for room temperature compression of
polysynthetically twinned crystals under loading angles of 0◦, 45◦ and 90◦ to the results obtained
by the calibrated simulations. The specimens were compressed to a plastic strain of 5% and
subsequently annealed at 650◦C for (a) 4 hours and (b) 8 hours. The annealed specimens
were retested at room temperature to an additional 1% plastic strain. The microstructural
parameters of the tested specimens are summarized in Table 7.1. The experimental data were
kindly provided by Jonathan D.H. Paul (Department of Materials Physics at the Helmholtz-
Zentrum Geesthacht).

orientations (see Figures 7.1 and 7.2(a)). For a loading angle of 90◦, the initial hardening
rate and thus the yield stress are, however, underestimated by the model. The stress after
5% plastic strain is again met well for all investigated orientations (see Figure 7.2(b)).

7.2.2 Model parameters

The parameters of the recovery model that were applied to obtain the simulation results
presented in Figures 7.1 and 7.2 are summarized in Table 7.2.

Table 7.2. Parameters of the recovery model. The same parameters were applied for all slip
systems α in the γ as well as in the α2 phase.

phase parameter value unit ref.

γ/α2

kB 8.617× 10−5
[

eV
K

]
QR 3.0 [eV] [39]
Rα,0 0.5× 105

[
1

mm2s

]
this work

ρdis
α,min 0

[
1

mm2

]
this work

ρdis
ref 1

[
1

mm2

]
this work

qα 2 [–] this work

89



7 Static recovery

0 15 30 45 60 75 90

orientation angle [◦]

0

100

200

300

400

500

600

700

800

900

yi
el

d
st

re
ss

[M
P

a]

EXP 0◦

EXP 45◦

EXP 90◦

SIM 0◦

SIM 45◦

SIM 90◦

(a)

0 15 30 45 60 75 90

orientation angle [◦]

0

100

200

300

400

500

600

700

800

900

st
re

ss
af

te
r

5%
p

la
st

ic
st

ra
in

[M
P

a]

EXP 0◦

EXP 45◦

EXP 90◦

SIM 0◦

SIM 45◦

SIM 90◦

(b)

0 1 2 3 4 5 6 7 8

annealing time [h]

0

100

200

300

400

500

600

700

800

900

yi
el

d
st

re
ss

af
te

r
re

co
ve

ry
@

65
0◦

C
[M

P
a]

EXP 0◦

EXP 45◦

EXP 90◦

SIM 0◦

SIM 45◦

SIM 90◦

(c)

Figure 7.2. Experimental and simulated results of static recovery experiments with polysyn-
thetically twinned crystals under loading angles of 0◦, 45◦ and 90◦. (a): yield stresses; (b):
stresses at the end of predeformation to 5% plastic strain; (c): yield stress over recovery time
for annealing at 650◦C. The microstructural parameters of the tested polysynthetically twinned
crystals can be found in Table 7.1. The experimental data were kindly provided by Jonathan
D.H. Paul (Department of Materials Physics at the Helmholtz-Zentrum Geesthacht).

7.3 Recovery in polysynthetically twinned crystals/single colonies

With the calibrated recovery model it is now possible to investigate basic trends in the static
recovery behavior of polysynthetically twinned crystals. Due to the defect density based
formulation of the work hardening/recovery model, the simulation results allow to evaluate
the evolution of the dislocation density with deformation and annealing time. In Figure 7.3,
the simulated evolution of the dislocation density in differently oriented polysynthetically
twinned crystals is shown for a predeformation to 5% plastic strain followed by annealing
at 650◦C for different times and a subsequent room temperature re-test to an additional 1%
plastic strain.
Further, the model allows to investigate the recovery behavior for different annealing tem-
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Figure 7.3. Evolution of dislocation density with deformation and annealing time in polysyn-
thetically twinned crystals under loading angles of 0◦, 45◦ and 90◦ as it was predicted by the
model. The simulations were carried out with the microstructural parameters from Table 7.1
and the model parameters from Table 7.2. The test sequence was: room temperature predefor-
mation to 5% plastic strain followed by annealing at 650◦C and room temperature retest to an
additional 1% plastic strain.

peratures. Figure 7.4 shows the yield stress of differently oriented polysynthetically twinned
crystals over annealing time as it was predicted by the model for different annealing tem-
peratures up to 900◦C. The simulations were carried out again using the microstructural
parameters from Table 7.1.

7.3.1 Discussion
As shown in Figure 7.2(c), the simulated yield stress after recovery agrees well with the
experimental results for all three tested lamella orientations. The results in Figure 7.2(c)
further show that the effective recovery rate, i.e. the rate at which the yield stress decreases
with annealing time, is highest for a lamella orientation of 90◦ and lowest for 45◦. Since
the effective recovery rate is a function of the current dislocation density in the material,
this indicates that specimens of the different tested lamella orientations exhibited different
dislocation densities at the beginning of the heat treatment, i.e. after the predeformation to
5% plastic strain. The model predicts the dislocation density to be in the order of 107 1

mm2

for all investigated lamella orientations (see Figure 7.3) which matches the findings in [142].
As illustrated in Figure 7.3, the estimated total dislocation density after predeformation (i.e.
at the peak of the depicted curves) is in fact different for different loading angles, i.e. the
estimated dislocation density for the 90◦ orientation is ≈3 times higher than the estimated
dislocation density for 45◦. This corresponds well to the observed differences in the effective
recovery rates depicted in Figure 7.2(c).
Although the effective recovery rate differs with lamella orientation (i.e. is anisotropic), it
was successfully modeled by assigning the same recovery model parameters (see Table 7.2)
to the recovery Equation (3.20) for all slip systems irrespective of their mechanism based or
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Figure 7.4. Simulated yield stress of differently oriented polysynthetically twinned crystals
after recovery at different temperatures over annealing time. The simulations were carried out
with the microstructural parameters from Table 7.1 and the model parameters from Table 7.2.
The test sequence was: room temperature predeformation to 5% plastic strain followed by
annealing and subsequent room temperature retest to determine the yield stress after recovery.

morphological classification. Thus, the prior assumption that the functional relation between
the recovery rate and the current dislocation density does not differ between deformation
systems appears to be justifiable.
The simulation results shown in Figure 7.4 illustrate nicely how the recovery of work hardening
is accelerated with increasing annealing temperature. For typical service temperatures of γ
TiAl alloys of 700◦C to 750◦C, most of the introduced work hardening is predicted to be
recovered after a few hours already. This matches the qualitative observations that were
reported in [21].

7.4 Recovery in polycolony microstructures

The recovery of work hardening in polycolony microstructures can generally be investigated
by the experimental procedures shown in [39, 129, 152]. While respective experiments allow
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to investigate how the (macroscopic) work hardening is recovered for different annealing tem-
peratures and times, they do not allow statements on how the dislocation density evolves at
the meso scale. Due to the strongly inhomogeneous microplasticity in polycolony microstruc-
tures (cf. Chapter 6), it is likely that the recovery behavior on the meso scale is also highly
inhomogeneous. While an in situ experimental investigation of the recovery behavior on the
meso scale is impeded by the destructive nature of the necessary imaging techniques, it can
be studied by the presented crystal plasticity model as it will be shown in the following.
The static recovery simulation that will be shown in the following starts from the simulated de-
formation state that was obtained from room temperature compression of the exemplary poly-
colony microstructure investigated earlier (α2 volume fraction 10%, λC=250µm, λD=25µm,
λL=0.5µm, τR=30MPa) to 10% plastic strain. Based on this deformation state, annealing
was simulated for 8 hours at 700◦C. Then, the RVE is compressed to an additional 1% plas-
tic strain at room temperature. The results of this simulation are depicted in Figure 7.5 in
terms of the evolving total dislocation density and the accumulated plastic shear. Further,
contour plots are shown in Figure 7.5 that illustrate the inhomogeneous distribution of the
accumulated plastic shear and the dislocation density within the polycolony microstructure
for different stages of the numerical experiment.
In order to illustrate trends in the recovery of work hardening with annealing temperature
and annealing time, additional recovery simulations were carried out for temperatures up to
900◦C, see Figure 7.6.

7.4.1 Discussion

Figure 7.5 nicely illustrates how both the accumulated plastic shear and the dislocation den-
sity increase during predeformation. As expected, the accumulated plastic shear remains
constant during annealing while the dislocation density decreases (see Figure7.5(a)). The
contour plots of the accumulated plastic shear (see Figure 7.5(b)-(f)) again show the inhomo-
geneous microplasticity, i.e. the localization of plastic shear, investigated in Chapter 6. The
contour plots in Figures 7.5(g)-(k), show the corresponding inhomogeneous distribution of
the dislocation density in the microstructure. As the recovery rate is directly related to the
dislocation density, it is to be expected that the recovery behavior also strongly differs locally.
Thus, it is generally possible that after annealing other regions of the microstructure are the
weakest and the plasticity localizes in a different pattern than in the predeformation. How-
ever, the contour plots of the dislocation density at the end of the re-test (i.e. Figures 7.5(f)
and (k)) suggest that the microplasticity localizes in the same regions of the microstructure
as during predeformation (i.e. Figures 7.5(b) and (g)).
As in the case of polysynthetically twinned crystals, the simulations predict that most of
the work hardening in polycolony colony microstructures is recovered after several hours at
typical operating temperatures of TiAl components, see Figure 7.6.

7.5 Summary

In this chapter, the recovery behavior of polysynthetically twinned crystals/single colonies
and polycolony microstructures was investigated. Based on static recovery experiments with
polysynthetically twinned crystals, the recovery part of the crystal plasticity model was cal-
ibrated. In this, it has been shown that the anisotropic effective recovery rate of polysyn-
thetically twinned crystals can be reproduced reasonably well by assigning the same model
parameters to all slip systems in both phases irrespective of their mechanism based or mor-
phological classification.
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Figure 7.5. Simulated evolution of the total dislocation density and the accumulated plastic
shear in an exemplary polycolony microstructure (α2 volume fraction 10%, λC=250 µm, λD=25
µm, λL=0.5 µm, τR=30MPa). The polycolony RVE was compressed at room temperature to
a plastic strain of 10%. Annealing was simulated at 700◦C for 8 hours. The room temperature
retest was done to an additional 1% plastic strain. (a): Evolution of the volume averaged total
dislocation density and the volume averaged accumulated plastic shear in the polycolony RVE
over time. (b)-(f): accumulated plastic shear (red: γ > 0.4, blue: γ < 0.05). (g)-(k): total
dislocation density (red: ρdis > 8× 107 1

mm2 , blue: ρdis < 1× 106 1
mm2 )

Numerical studies with the calibrated model allowed to investigate basic trends in the static
recovery behavior of polysynthetically twinned crystals/single colonies and polycolony mi-
crostructures. These simulations predicted that at typical operating temperatures for TiAl
alloys most of the work hardening is recovered within a few hours.
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Figure 7.6. Simulated yield stress of an exemplary polycolony microstructure (α2 volume
fraction 10%, λC=250 µm, λD=25 µm, λL=0.5 µm, τR=30MPa) for different annealing tem-
peratures and times after room temperature predeformation to a plastic strain of 10%.
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8 Temperature sensitive yield strength

As TiAl alloys are generally deployed at elevated temperatures, a comprehensive constitutive
model should be able to predict their mechanical behavior not only at room temperature
but also at the temperatures TiAl components typically encounter in service. As mentioned
in Section 3.1.1, except for a single other study [81] all proposed crystal plasticity models
for lamellar TiAl alloys did so far not take into account the temperature dependence of the
material’s behavior and are hence only valid near a certain temperature, i.e. the temperature
for which the models were calibrated. As a first step to overcome this limitation to isothermal
conditions, the presented crystal plasticity model is extended in the following in order to
account for the temperature dependence of the yield strength of fully lamellar TiAl between
room temperature and 900◦C.

8.1 Yield stress anomaly
It has been observed experimentally, that the yield strength of most intermetallic alloys ex-
hibits an anomalous dependence on temperature [154]. While the yield strength of conven-
tional metallic materials usually decreases monotonically with increasing temperature, the
yield strength of intermetallic alloys has frequently been found to exhibit a temperature
range in which the yield strength anomalously increases with increasing temperature up to
a certain peak strength. For temperatures above the corresponding peak temperature the
yield strength is decreasing again. This behavior is qualitatively depicted in Figure 8.1 for
the temperature range in which the anomaly occurs.
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Figure 8.1. Qualitative illustration of the yield stress anomaly that has frequently been
observed in intermetallic alloys. In the indicated temperature range, the yield strength is
anomalously increasing with increasing temperature. This trend continues up to a certain peak
strength. Above the corresponding peak temperature, the yield strength decreases again.

The specific appearance of the anomaly (e.g. the peak strength and/or peak temperature)
depends on the intermetallic system at hand and is usually a function of the crystal orien-
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8 Temperature sensitive yield strength

tation [154]. In some intermetallics, the anomaly is, e.g., attributed to specific deformation
systems only (e.g. pyramidal slip systems in Ti3Al, i.e. the α2 phase [27, 36]) so that crystal
orientations exist in which no anomalous peak occurs.

8.1.1 Yield stress anomaly in single phases

It has been found that single crystals of both the γ and the α2 phase exhibit a yield stress
anomaly [27, 33, 34, 36, 155]. However, the specific appearance of the anomaly differs signif-
icantly between both phases.

γ single crystals

In experiments with Al-rich γ single crystals a distinct yield stress anomaly occurred in all
tested crystal orientations [11, 33, 34, 155]. Thus, the anomaly can not be attributed to
a specific deformation system [11]. Depending on the crystal orientation and composition,
the anomalous peak was observed at temperatures between 700◦C and 1000◦C. An extensive
discussion of the different mechanisms that were proposed to cause the yield stress anomaly
in γ single crystals can, e.g., be found in [11, 154].

α2 single crystals

In α2 single crystals, an anomalous increase of the yield strength was only observed for crystal
orientations which favor the activation of pyramidal slip systems [27, 36]. The anomalous
peak that was observed for the respective crystal orientations was located around 500◦C to
600◦C [11, 27, 36] (see Figure 8.2(b)). For all other tested crystal orientations, the yield
strength – and thus the strength of the activated basal and prismatic slip systems – decreases
monotonically with increasing temperature [11, 27, 36] (see Figure 8.2(a)). According to [11],
the mechanisms that cause the observed yield stress anomaly of the pyramidal slip systems
in the α2 phase are, however, not yet fully understood.

8.1.2 Yield stress anomaly in lamellar two phase alloys

The temperature dependence of the yield strength of fully lamellar TiAl alloys interestingly
deviates from the behavior that was observed for γ and α2 single crystals. While this can
partly be explained by compositional effects16, there is evidence that the fully lamellar mi-
crostructure, i.e. the dense arrangement of crystallographic interfaces, has a severe influence
on the temperature dependence of the yield strength.

Polysynthetically twinned crystals

The temperature dependence of the yield strength of polysynthetically twinned crystals was
experimentally investigated for different loading angles ϕ in [37, 46]. In [46], different sets of
microstructural parameters (i.e. lamella thicknesses λL and domain sizes λD) were tested in
order to investigate the potential influence of the microstructural interfaces on the temperature
dependent yield strength.
In both studies, polysynthetically twinned crystals in weak orientations (30◦ in [37] and 45◦
in [46]) showed no distinct yield stress anomaly. Instead, the yield strength has been observed
to remain relatively constant over the temperature range investigated and – if at all – only
16Some of the mechanisms that were discussed to cause the yield stress anomaly in Al-rich γ single crystals

like, e.g., the presence of Al5Ti3 precipitates [155] are particularly linked to their high aluminum content
and are thus not present in near-stoichiometric two phase alloys [11].
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showed a very small anomalous peak at around 700◦C to 800◦C (see Figures 8.3 and 8.6).
As discussed in Section 4.3, polysynthetically twinned crystals in weak orientation exclusively
deform by shear parallel to the lamellae, i.e. by longitudinal deformation systems. Since the
longitudinal (basal) slip systems in the α2 phase are much stronger than the longitudinal
systems in the γ phase, the plastic deformation is mainly accomplished by the γ lamellae for
this lamella orientation [35, 37, 47]. Thus, it was concluded in [37, 46] that the γ phase in
polysynthetically twinned crystals unlike γ single crystals does not exhibit a distinct yield
stress anomaly.
However, for loading angles of 0◦ and 90◦, i.e. in the hard orientations, a yield stress anomaly
was still observed [37, 46]. As discussed in Section 4.3, in hard orientations the plastic
deformation has to act across the lamella boundaries. Since the γ phase apparently does not
exhibit a yield stress anomaly in near-stoichiometric two phase alloys (see line of arguments
above), the observed peak in yield strength has thus been assumed in [37, 46] to be related
to the deformation mechanisms of the α2 phase or directly to the existence of the lamella
interfaces.
For loading perpendicular to the lamella boundaries, i.e. a loading angle of 90◦, the reported
studies [37, 46] – at least at first glance – yield contradictory results. While in [46] a distinct
yield stress anomaly has been observed for all tested combinations of microstructural param-
eters and α2 volume fractions, the results from [37] show a plateau rather than an anomalous
increase of the yield strength. The anomalous peak as well as the plateau are located around
500◦C to 600◦C (see Figures 8.3 and 8.6).
For loading perpendicular to the lamella boundaries, the α2 lamellae can only deform by
the very strong pyramidal (transversal) slip systems (loading parallel to the c axis). As
the anomalous peak that has been observed in α2 single crystals for orientations that favor
deformation by pyramidal slip is also located around 500◦C [27, 36] (see Figure 8.2(b)), it has
been proposed in [46] that the yield stress anomaly of the pyramidal slip systems may cause
the observed peak in the yield strength of polysynthetically twinned crystals under a loading
angle of 90◦. This idea is in line with the arguments from Section 5.4 as with an increase
of the strength of the pyramidal slip systems the Hall-Petch strengthening effect of the γ/α2
lamella interfaces increases as well. Assuming that the temperature dependent strengthening
effect of the γ/α2 lamella interfaces causes the observed yield stress anomaly, the peak should
be more pronounced if their spacing λα2 is reduced. In fact, the peak was found to be more
pronounced in specimens with higher α2 volume fraction and thus – assuming that the α2
lamella thickness is not altered – a reduced distance of the γ/α2 lamella interfaces [46]. The
α2 volume fraction is inversely related to the Al content of the alloy, that is, decreasing the
Al content leads to an increase in α2 volume fraction (see Figure 1.2). However, the lamella
thickness is also changing when altering the Al content, i.e. a reduction in the Al content leads
to a reduced lamella thickness [51]. Thus, the anomaly is also apparent when plotting the the
yield strengths of 90◦ specimens at different temperatures against the inverse square root of
the lamella thickness, i.e. in a Hall-Petch plot17 [46] (see Figure 8.4(b)). In this representation
of the results (yield strength against inverse square root of lamella thickness), the anomaly
manifests in terms of a temperature dependence of the Hall-Petch slope [46]. Beginning from
the room temperature value (see Section 5.3), the Hall-Petch slope increases to a peak at ≈
500◦C and then reduces to a very low value at 900◦C [46]. Thus, the anomalous peak appeared
to be less pronounced for higher lamella thicknesses in [46]. This observation might rationalize
the discrepancies between the experimental results from [46] and [37]. As the lamella thickness
in the experimental results from [37] was ≈ 2µm, i.e. twice the biggest lamella thickness that

17In [46] the lamella thickness is given without differentiating γ and α2 lamellae. Due to the high γ volume
fraction, the average thickness of the γ lamellae should, however, be close to the reported lamella thickness.
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8 Temperature sensitive yield strength

was investigated in [46] (cf. Table 5.2), the absence of a distinct anomalous peak in the result
from [37] seems reasonable.
While the observed yield stress anomaly of polysynthetically twinned crystals under a loading
angle of 90◦ can – at least – potentially be explained by the temperature dependence of the
pyramidal slip systems in the α2 lamellae, no explanation is at hand for the anomaly that has
been observed for loading parallel to the lamella boundaries (0◦) [37, 46]. Under a loading
angle of 0◦, the anomalous peak in the yield strength occurred at temperatures that correspond
to the peak temperature of γ single crystals, i.e. around 700◦C to 800◦C [37, 46] (see Figures
8.3 and 8.6). As discussed above, the γ phase in polysynthetically twinned crystals does
not exhibit a yield stress anomaly and can thus not cause the observed anomalous peak.
However, for loading parallel to the lamella boundaries the plastic deformation is not solely
accomplished by the γ lamellae but also by prismatic (mixed) slip systems in the α2 lamellae
[37]. As it has been found in α2 single crystal experiments [27, 36] that the prismatic slip
systems do not exhibit a yield stress anomaly either, the observed peak can, however, not
be attributed to the deformation of the α2 lamellae. Therefore, it was concluded in [37, 46]
that the observed yield stress anomaly in polysynthetically twinned crystals under a loading
angle of 0◦ has to be directly related to the existence of the lamella interfaces. Thus, the
anomalous peak should be more pronounced for smaller lamella thicknesses as observed for a
loading angle of 90◦. Unfortunately, in [37] respectively [46] the temperature dependent yield
strength of polysynthetically twinned crystals under a loading angle of 0◦ have been reported
for a single lamella thickness only.

Polycolony microstructures

In contrast to polysynthetically twinned crystals and γ respectively α2 single crystals, poly-
colony microstructures do not show an anomalous peak of the yield strength [11, 18, 20,
82, 146]. Instead, the yield strength is essentially constant between room temperature and
700◦C to 800◦C. Above this temperature, the yield strength decreases rapidly. This behavior
can potentially be explained by combining the yield stress - temperature profiles that have
been observed for the three characteristic lamella orientations of polysynthetically twinned
crystals (i.e. 0◦, 45◦ and 90◦) with the microyield behavior investigated in Chapter 6. As
discussed in Chapter 6, up to the macroscopic yield point the plastic deformation is nearly
exclusively accomplished by weakly oriented colonies. As polysynthetically twinned crystals
in weak orientation have been found to exhibit no yield stress anomaly [37, 46], the predomi-
nant deformation by weakly oriented colonies can be expected to show no anomalous behavior
either. However, as the anomalous peaks in the hard orientations of polysynthetically twinned
crystals are located at different temperatures (500◦C in 90◦ orientation and 700◦C in 0◦ ori-
entation, cf. Figures 8.3 and 8.6), limited deformation in strong colonies may macroscopically
still yield a plateau in the yield stress below 800◦C, a hypothesis which might be tested by
numerical simulation.

8.2 Modeling

At the moment, there is no comprehensive theory at hand which explicitly allows to relate
the yield stress anomaly of lamellar TiAl alloys to the different pinning mechanisms that were
observed in the single phases [11]. In particular the observed influence of the microstructural
interfaces on the temperature dependent yield strength of fully lamellar TiAl alloys seems not
yet to be understood well. Given the current level of knowledge, the yield stress anomaly of
fully lamellar TiAl can, thus, not be modeled in terms of, e.g., detailed dislocation pinning
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mechanisms as it has been successfully done for single phase γTiAl alloys [156, 157] and Ni3Al
single crystals [158].
Despite the lacking knowledge on the details that cause the observed temperature dependence
of the yield strength of fully lamellar TiAl alloys, it may still be modeled in a phenomenological
way as it will be shown in the following. As discussed in Chapter 5 in terms of the Hall-Petch
strengthening effect, the mechanisms that cause the yield stress anomaly impede the onset of
dislocation motion and twin nucleation in the indicated temperature range which results in
an increase of the yield strength. Thus, this effect is best included into the initial slip and
twinning system strengths τYα,0 and τTβ,0 (see Equations (3.22) and (3.23)). In the temperature
range of interest, i.e. between room temperature and 900◦C, the yield stress anomaly can be
phenomenologically described by the following sinusoidal powerlaw

f(θ) = f0 + sin(Aθ)
[
B θC

]
(8.1)

in which f0 is a temperature independent term and A, B and C are constants.

8.2.1 Constitutive assumptions

Morphological classification

As throughout this entire thesis, the deformation systems are modeled grouped by their
morphological classification, i.e. by assigning the same initial critical resolved shear stresses,
the same work hardening and the same recovery behavior to all deformation systems of a
morphological class.

Modeling the plastic deformation behavior of the α2 phase

As in previous chapters, the deformation behavior of the α2 phase is modeled according to
the findings from single crystal experiments [27]. Due to the reasons discussed before, basal
slip is not modeled explicitly.

Work hardening and recovery

The work hardening and recovery behavior is modeled using the relations, constitutive as-
sumptions and model parameters that have been introduced in the respective chapters of this
thesis (see Chapter 4 and 7).

8.2.2 Temperature dependent critical resolved shear stresses of the α2 phase

The temperature dependence of the initial critical resolved shear stresses in the α2 lamellae
is modeled according to the single crystal experimental findings reported in [27]. This is done
by making the lattice resistance τα2

mix,R of the prismatic (mixed) slip systems and the lattice
resistance τα2

trans,R of the pyramidal (transversal) slip systems in Equations (5.11) and (5.12)
a function of temperature. The colony boundary Hall-Petch strengthening term remains
unaffected in the respective equations.
The monotonic decrease of the initial critical resolved shear stresses of the prismatic (mixed)
slip systems with increasing temperature is captured by a polynomial fit, while the anomalous
temperature dependence of the pyramidal (transversal) slip systems is fitted using Equation
(8.1). This yields

τα2
mix,R = 67MPa− 0.059 θ MPa

◦C − 27.83 θ2 Pa
[◦C]2 + 0.0575 θ3 Pa

[◦C]3 (8.2)
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and

τα2
trans,R = 450MPa + sin

(
0.00453 θ 1

◦C

)[
0.1196 θ1.21 MPa

[◦C]1.21

]
. (8.3)

The obtained fits for the temperature dependent lattice resistances τα2
mix,R and τα2

trans,R (i.e.
Equations (8.2) and (8.3)) are plotted in Figure 8.2.
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Figure 8.2. Temperature dependent lattice resistance of (a) prismatic (mixed) and (b) pyra-
midal (transversal) slip systems in α2 single crystals as experimentally determined in [27] and
fitted by Equations (8.2) and (8.3).

8.2.3 Temperature dependent critical resolved shear stresses of the γ phase
As discussed in Section 8.1.2, the experiments with differently oriented polysynthetically
twinned crystals at different testing temperatures [37, 46] yielded two main results:

1. in orientations in which the plastic deformation is solely accomplished by longitudinal
deformation systems in the γ lamellae, no distinct (or only a very small) anomalous
peak occurred in the yield strength and

2. the anomalous peaks that have been observed in the hard orientations (0◦ and 90◦) seem
to be directly related to the lamella boundaries.

These findings have clear implications for modeling the temperature dependent initial critical
resolved shear stress of the γ lamellae. As in the absence of microstructural interface (or
more precisely in the presence of the widely spaced domain boundaries), the γ phase shows
no distinct yield stress anomaly, the lattice resistance τR in Equations (5.16), (5.17) and
(5.18) is assumed to be temperature independent. The assumed influence of the lamella (and
potentially domain) boundaries on the yield stress anomaly is modeled by making the respec-
tive Hall-Petch strengthening coefficients in Equations (5.16), (5.17) and (5.18) a function of
temperature with the general form proposed in Equation (8.1) thus reading

kD(θ) = kD,0 + sin(AD θ)
[
BD θ

CD
]

(8.4)
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kmix
L (θ) = kL,0 + sin(Amix

L θ)
[
Bmix
L θC

mix
L

]
(8.5)

ktrans
L (θ) = kL,0 + sin(Atrans

L θ)
[
Btrans
L θC

trans
L

]
. (8.6)

In this, the superscripts mix and trans indicate that the influence of the lamella boundaries on
the temperature dependent initial critical resolved shear stress of the mixed and the transversal
deformation systems is most likely not the same as the respective yield stress peaks have
been found to occur at different temperatures for lamella orientations of 0◦ respectively 90◦,
i.e. for loading angles under which mixed respectively transversal deformation systems are
predominantly activated (see Figure 8.3). The colony boundary strengthening coefficient kC
is assumed to be temperature independent.

8.3 Polysynthetically twinned crystals

Firstly, the temperature dependent model is applied to differently oriented polysynthetically
twinned crystals before its transferability to polycolony microstructures is investigated.

8.3.1 Parameter identification

In the following, the above presented model for the yield stress temperature anomaly is
calibrated against the experimental results reported in [46]. In [46], uniaxial compression tests
with differently oriented polysynthetically twinned crystals were carried out for temperatures
between 0◦C and 900◦C. As for the room temperature simulations in the Chapters 4 and 5.3,
the lattice resistance to slip and twinning in the γ lamellae was set to τR = 20MPa. The
temperature independent parts kD,0 and kL,0 of the Hall-Petch coefficients kD(θ), kmix

L (θ) and
ktrans
L (θ) in Equations (8.4)-(8.6) were set to coincide with the room temperature Hall-Petch

coefficients, identified in Section 5.3 (see Equation (5.21)).
With the identified parameters in Table 8.1, the model reproduces the experimentally de-
termined temperature dependent yield stress well for loading angles of 0◦, 45◦ and 90◦, see
Figure 8.3.
Further, the introduced temperature dependence of the Hall-Petch coefficients for lamella and
domain boundaries allows to sufficiently reproduce the change in the Hall-Petch slope with
temperature that has been experimentally observed in [46] for loading angles of 90◦ and 45◦,
see Figure 8.4.
Figure 8.5 shows the identified temperature dependent Hall-Petch coefficients, i.e. Equation
(8.4) and (8.6) evaluated for the model parameters from Table 8.1.
From Figure 8.5 it can be seen that two different temperature characteristics were identified,
one for the Hall-Petch coefficient of the transversal deformation systems with a peak at ≈
500◦C and one for the Hall-Petch coefficients of the deformation systems of the longitudinal
and mixed morphological class with a peak at ≈ 700◦C. The locations of these peaks were to
be expected as they coincide to the temperatures at which the anomalous peaks occurred in
tests with the characteristic lamella orientations of 0◦, 45◦ and 90◦.

8.3.2 Discussion

The results from the calibration process show that the presented modeling approach – despite
being of purely phenomenological nature – allows to sufficiently reproduce the experimental
results from [46, 47] for the investigated range of temperatures and microstructural parame-
ters. The calibrated model can thus potentially help to rationalize the qualitative differences
that have been observed between the experimental results from [46] and [37].
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Figure 8.3. Calibration results against the temperature dependent yield strength of polysyn-
thetically twinned crystals under a loading angle of 0◦, 45◦ and 90◦, tested in [46] between
room temperature and 900◦C. The microstructure parameters were taken to be λL = 0.53 µm,
λD = 22 µm and α2 volume fraction = 15Vol% as reported in [46] (cf. Table 5.2). The lattice
resistance was chosen to be τR = 20MPa.
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Figure 8.4. Yield strength of polysynthetically twinned crystals under a loading angle of
(a) 45◦ and (b) 90◦, tested in [46] for different temperatures between room temperature and
900◦C. The microstructural parameters of the specimens tested in [46] are summarized in Table
5.2. The dashed lines indicate the linear interpolation of the experimental results. The lattice
resistance was chosen to be τR = 20MPa.
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Figure 8.5. Temperature dependent Hall-Petch coefficients for lamella and domain boundary
strengthening as obtained by calibrating Equations (8.4) and (8.6) against the experimental
results from [46].

Table 8.1. Parameters for the temperature dependent formulation of the Hall-Petch coefficients
for lamella and domain boundary strengthening, i.e. Equations (8.4) and (8.6).

kD(θ) kmix
L (θ) ktrans

L (θ)
symbol value symbol value symbol value
kD,0 0.125MPa

√
m kL,0 0.125MPa

√
m kL,0 0.125MPa

√
m

AD 0.00395 1
◦C Amix

L 0.00395 1
◦C Atrans

L 0.00462 1
◦C

BD 2.41 ×10−6 Pa
√

m
[◦C]CD Bmix

L 2.41 ×10−6 Pa
√

m
[◦C]C

mix
L

Btrans
L 2.64 Pa

√
m

[◦C]C
trans
L

CD 3.61 Cmix
L 3.61 Ctrans

L 1.54

As mentioned earlier, in contrast to the experimental results the model was calibrated against,
in [37] the temperature dependent yield strength of polysynthetically twinned crystals under a
loading angle of 90◦ showed a plateau rather than an anomalous peak. As the polysynthetically
twinned crystals that have been tested in [37] exhibited relatively broad lamellae of ≈ 2 µm
thickness and correspondingly domain sizes of up to 100 µm, it might be expected that the
yield stress anomaly is predicted by the model to be less pronounced. Simulations with an
α2 volume fraction of 5%, λL = 2 µm, λD = 100 µm and τR = 20 MPa do, in fact, show that
the calibrated model reproduces the experimental findings from [37] to a certain degree (see
Figure 8.6).
The magnitude of the predicted yield strength fits the experimental observations for the
three tested orientations. For the weak orientation (loading angle of 31◦), the simulation
results reproduce well the yield stress – temperature profile. For loading parallel to the
lamella boundaries (loading angle of 0◦), the strength of the anomalous peak is, however,
underestimated by the model and occurs at a lower temperature than in the experiments.
Despite the high lamella thickness, the model predicts a slight anomalous peak under a loading
angle of 90◦. While the magnitude of the anomalous peak in the 90◦ simulations lies within
the experimental scatter, it is still too pronounced to unambiguously explain the differences
between the experimental results from [46] and [37] solely based of the different microstructural
parameters investigated. Despite the models ability to sufficiently reproduce the temperature
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Figure 8.6. Yield strength of differently oriented polysynthetically twinned crystals tested in
[37] between room temperature and 900◦C. The simulations were carried out with α2=5Vol%,
λL = 2 µm, λD = 100 µm and τR = 20 MPa.

and microstructure dependent experimental results from [46], obviously further – particularly
experimental – work is needed to reveal in detail the influence of the microstructure on the
yield stress anomaly of polysynthetically twinned crystals.

8.4 Polycolony microstructures
Although the details that cause the yield stress anomaly in certain orientations of polysynthet-
ically twinned crystals are not fully understood yet, the presented model sufficiently captures
their microstructure and temperature dependent yield strength on a phenomenological basis.
Thus, it will be applied to study the temperature dependent yield strength of polycolony
microstructures in the following.
While the general characteristics of the temperature dependence of polycolony microstructures
(constant yield strength up to ≈ 700◦C to 800◦C) has been reported in various works (see,
e.g., [11, 18, 20, 82, 146]), reports of systematic studies on how the microstructural parameters
influence the high temperature yield strength are rare. Also, the microstructural parameters
are often not or only incompletely reported in these studies. In [18], the yield strength of
polycolony microstructures was investigated at 800◦C for different combinations of lamella
thickness and colony size. By plotting the determined yield stresses against the lamella
thickness, it has been shown in [18] that the (apparent) Hall-Petch coefficient is lower at
800◦C than at room temperature.
Presuming that the colony boundaries do not influence the temperature dependence of the
yield strength (i.e. assuming the colony boundary strengthening Hall-Petch coefficent kC
to be temperature independent), the model can directly be applied to the polycolony RVE
shown in Section 3.5.2. With the microstructural parameters from 5.3 (the ones from [18])
and a lattice resistance of τR = 30MPa (cf. Section 5.4), the model in fact predicts yield
stresses comparable to the experimental findings from [18] for both, room temperature (see
also Figure 5.6) and 800◦C (see Figure 8.7).

106



8.4 Polycolony microstructures

0 1500 3000 4500
λ−0.5
L [ m−0.5]

0

200

400

600

800

1000

1200
yi

el
d

st
re

ss
[M

P
a]

SIM Liu 1998

(a)

0 1500 3000 4500
λ−0.5
L [ m−0.5]

0

200

400

600

800

1000

1200

yi
el

d
st

re
ss

[M
P

a]

SIM Liu 1998

(b)

Figure 8.7. Yield strength of polycolony microstructures with different sets of microstructural
parameters (see Table 5.3) tested at (a) room temperature and (b) 800 ◦C in [18]. For the
simulations a lattice resistance of τR = 30MPa was chosen.

However, these results show the microstructure sensitive yield strength at only two different
temperatures and do thus only grant limited insight into its temperature dependence. There-
fore, the simulated temperature dependent yield stress of a polycolony microstructure is shown
in Figure 8.8. The simulations were carried out with a lattice resistance of τR = 20MPa, an
α2 volume fraction of 10Vol%, λC = 330 µm, λL = 1 µm and λD = 50 µm. The experimental
results for a nearly lamellar microstructure with 0.05 µm < λL < 1 µm and λC = 330 µm from
[146] are shown for a qualitative comparison.
The model shows a similar behavior as the experimental results, i.e. the predicted yield
strength remains relatively constant up to 700 ◦C and above this temperature decreases
rapidly.

8.4.1 Discussion

As mentioned earlier, the influence of the microstructural interfaces in fully lamellar TiAl
on the temperature dependent yield strength is not yet fully understood. Thus, the simu-
lation results obtained by applying the phenomenological model of the microstructure and
temperature dependent yield strength of polysynthetically twinned crystals to a polycolony
microstructure while assuming the colony boundary strengthening to remain temperature
independent have some implications for future investigations.
First of all, the model allowed to sufficiently reproduce the experimentally determined yield
strengths at room temperature and 800◦C for the different combinations of microstructural
parameters tested in [18]. This indicates that the colony boundary strengthening might in
fact be temperature independent.
Secondly, the simulated yield strengths of polycolony microstructures do not exhibit any
pronounced yield stress anomaly but instead show a nearly constant yield strength up to
temperatures of 700◦C similar to experimental findings (see Figure 8.8). This observation
is of particular interest since in the model mixed and transversal deformation systems in
the γ phase exhibit a distinct yield stress anomaly at 700◦C respectively 500◦C (cf. Section
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Figure 8.8. Yield strength of polycolony microstructures as function of temperature. Experi-
mental results taken from [146] for a nearly lamellar microstructure with 0.05 µm < λL < 1 µm
and λC = 330 µm. The simulations were carried out with a lattice resistance of τR = 20MPa,
an α2 volume fraction of 10Vol%, λC = 330 µm, λL = 1 µm and λD = 50 µm.

8.3). This finding is most likely explained by the fact that at the onset of yield the plastic
deformation is nearly exclusively accomplished by longitudinal deformation systems in weakly
oriented colonies which both experimentally and in the model do not exhibit a pronounced
yield stress anomaly (cf. Section 8.3). Thus, the differences between the experimental findings
on the temperature dependent yield strength of polysynthetically twinned crystals [37, 46] and
polycolony microstructures may be rationalized.

8.5 Summary
At the moment, there is no theory at hand which comprehensively explains the distinct
features in the temperature dependence of the yield strength of fully lamellar TiAl alloys. Es-
pecially the influence of the microstructural interfaces on the yield stress anomaly of polysyn-
thetically twinned crystals remains unclear. While the presented modeling approach allowed
to reproduce experimental results on the microstructure and temperature dependent yield
strength of differently oriented polysynthetically twinned crystals, it is of phenomenological
nature and thus has limited predictive capabilities. However, the presented phenomenological
model still allowed to rationalize some of the observed differences in the temperature depen-
dent yield strength of polysynthetically twinned crystals and polycolony microstructures and
allowed to identify starting points for further investigations of the underlying micromechanical
phenomena.
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In the present thesis, a microstructure sensitive, defect density based, thermomechanically
coupled crystal plasticity model for γ based fully lamellar TiAl alloys was presented. In
this crystal plasticity model, the evolution of crystallographic defects – namely dislocations
and twins – with deformation and thermal recovery is accounted for through internal state
variables as proposed in [110, 111]. These internal state variables (i.e. the dislocation densities
and twinned volume fractions) allowed to set up a physics based work hardening model and
enabled a physically meaningful representation of the dissipation and the stored energy of cold
work in the applied thermomechanical framework. The dominant effect of the microstructural
interfaces on the mechanical behavior of fully lamellar TiAl was considered throughout all
stages of the modeling process.

9.1 Work hardening

In the presented work hardening model, dislocation interactions are accounted for through
a classical Taylor hardening formulation. The reduction of the free path length of slip and
twinning systems due to evolving twin-matrix interfaces on non-coplanar twinning systems
is incorporated into the hardening model via a Hall-Petch type relation based on the ideas
from [78]. Further, the hardening interaction of twinning dislocations with the slip dislocation
network is accounted for as proposed in [114].
With this defect density based crystal plasticity model it is possible to reproduce the specifics
of the stress-strain response of polysynthetically twinned crystals to a degree that was not
reached by previously reported models. Detailed comparison of simulation results for differ-
ently oriented polysynthetically twinned crystals to literature experimental findings showed a
very good agreement. Especially the deformation systems that were predicted by the model to
be active in polysynthetically twinned crystals under different loading angles matched well the
experimental findings, indicating that the introduced defect density based hardening model
represents a noticeable improvement as compared to formerly applied phenomenological work
hardening formulations. In contrast to experiments, the simulations further allowed detailed
investigation of the transition between predominant deformation modes for specific lamella
orientations which were attributed to their work hardening interactions.
Further details of the work hardening behavior may be introduced into the model by, e.g., ac-
counting for different types of dislocation interactions through suitable interaction coefficients
(see, e.g., [113, 115, 135]) or by distinguishing different dislocation based defect populations
(see,e.g., [114, 115]), however, by the cost of an increasing number of model parameters that
have to be identified.

9.2 Microstructure sensitive yield strength

The influence of the different coexisting microstructural interfaces on the yield strength of fully
lamellar TiAl alloys was incorporated into the model via three distinct Hall-Petch relations.
The Hall-Petch strengthening coefficients of lamella and domain boundaries were extracted
from reported experiments with differently oriented polysynthetically twinned crystals and
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enabled the model to reproduce the corresponding microstructure sensitive yield strengths
reasonably well.
Due to the limitations in systematically varying the microstructural parameters of fully lamel-
lar TiAl, quantifying the Hall-Petch coefficient for colony boundary strengthening – which
itself is a function of the lamella thickness and domain size [22] – was so far not possible by
experiments (see, e.g., [23, 42]). By applying the microstructure sensitive model of a polysyn-
thetically twinned crystal to an RVE of a polycolony microstructure and combining respective
simulation results with experimental findings on the microstructure sensitive yield strength
of polycolony fully lamellar TiAl, it was possible to extract the Hall-Petch strengthening
coefficient for the colony boundaries as a function of the other microstructural parameters.
While the model proved its ability to reproduce the microstructure sensitive yield strength of
fully lamellar TiAl alloys sufficiently well, there are still some open questions remaining. First
of all, it is still unclear how the lattice resistance τR in the γ phase depends on composition
and impurities. Although most experimental results were reproduced well with the presented
microstructure sensitive model by choosing the lattice resistance to be in the range of 20MPa<
τR <30MPa, τR had to be chosen as high as 65MPa in order to reproduce the experimental
results shown in Chapter 7. While the applied values for the lattice resistance lie within the
reported range (cf. Section 5.3), the uncertainties in the choice of τR lead to a certain span
in the predicted yield strength. This counteracts the aim of precisely predicting the yield
strength only based on microstructural parameters.
Further, the model does not explicitly incorporate the Hall-Petch strengthening effect by
the γ/α2 lamella interfaces so far. From a modeling perspective, the strengthening effect of
the relatively strong (but widely spaced) γ/α2 lamella interfaces might be accounted for in
the same manner as the strengthening effect of the other microstructural interfaces, i.e. by
Equations (5.3) and (5.4). However, an enhanced experimental data base would be needed to
isolate the subtle effect of the γ/α2 interfaces.
Finally, additional experiments with polysynthetically twinned crystals/single colonies under
a loading angle of 0◦ would be helpful in order to ultimately identify the relation between the
strength of mixed deformation systems and the lamella thickness.

9.3 Micro yield in polycolony microstructures

With the calibrated work hardening model and the microstructure sensitive formulation of
the initial slip and twinning systems strengths at hand, is was possible to analyze the typical
microyield behavior of polycolony microstructures. As opposed to previous numerical studies
of the microyield behavior [41, 57, 58, 71, 80], the microstructure sensitive description of the
yield strength shown here allowed to distinctly analyze the influence of the microstructural pa-
rameters on the microyield behavior. Since the employed RVE of a polycolony microstructure
explicitly considers the lamellar structure of the colonies, it was further possible to (qualita-
tively) identify certain specifics in the highly localized plastic deformation that occurs on the
micro scale.
Here, a comparison to experimental results on the microstrain fields (e.g. DIC analyses) would
be interesting to validate the simulation results and to study how many lamellae per colony
have to be discretized in order to capture the details in the meso scale deformation sufficiently
well. Further, a more realistic RVE of a polycolony microstructure – as e.g. the one presented
in [100] – would allow a more detailed analysis of the three dimensional microstrain fields
than the pseudo 3D (or 2.5D) approach applied here.
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9.4 Static recovery

9.4 Static recovery

In order to consider the elevated temperatures that TiAl components encounter in service, the
recovery of the introduced work hardening was modeled. Therefore, the evolution equation
for the dislocation density was extended according to [110, 111] in order to account for dislo-
cation removal during annealing. The recovery model was calibrated against static recovery
experiments with differently oriented polysynthetically twinned crystals and was subsequently
applied to investigate basic trends in the static recovery behavior of polysynthetically twinned
crystals as well as polycolony microstructures, a topic that to date has not been addressed in
crystal plasticity modeling of fully lamellar TiAl.
From a thermodynamic point of view, a consequent next step would be to incorporate the
contribution of the evolving twin-matrix interfaces to the stored energy of cold work. It is,
however, unclear whether it is possible to model this contribution to the stored energy of cold
work by simply formulating the Helmholtz free energy as a function of the twinned volume
fractions since they are no direct measure for the energy stored in the form of twin-matrix
interfaces. Here, a modeling approach that explicitly accounts for the number of twins (and
their thickness) similar to the ones presented in [79, 114, 139, 159] could be useful, as the
energy stored in terms of twin-matrix interfaces is directly related to their number.

9.5 Temperature sensitive yield strength

In an attempt to overcome the limitation of previously reported crystal plasticity models to
isothermal conditions, the here presented model was extended in order to account for the
(anomalous) temperature dependence of the yield strength of fully lamellar TiAl. In accor-
dance to literature experimental findings on the microstructure and temperature dependent
yield strength of differently oriented polysynthetically twinned crystals, this was done in a
phenomenological way by making the Hall-Petch coefficients for lamella and domain bound-
ary strengthening a function of temperature. In this, the experimentally observed yield stress
anomaly was considered in terms of a sinusoidal powerlaw. This model did not only enable
to reproduce the temperature (and microstructure) sensitive yield strength of differently ori-
ented polysynthetically twinned crystals but also allowed to rationalize, to a certain degree,
the observed discrepancies between different experimental studies.
In an attempt to explain why there is no yield stress anomaly observed in experiments
with polycolony microstructures, the model for the temperature dependent yield strength
of polysynthetically twinned crystals was applied to an RVE of a polycolony microstructure.
In this, the colony boundary strengthening was assumed to be temperature independent.
The model showed the typical characteristics of the temperature dependent yield strength
of polycolony microstructures. This is particularly interesting as the strengths of the hard
deformation modes were modeled to exhibit distinct yield stress anomalies as observed in
polysynthetically twinned crystals. Since at the onset of yield, polycolony microstructures
deform mainly by weakly oriented colonies (i.e. by deformation systems that do not show
a stress anomaly), the simulation results potentially allow to rationalize the apparently con-
tradicting experimental findings on the temperature dependence of the yield strengths of
polysynthetically twinned crystals and polycolony microstructures.
More than the other micromechanical phenomena examined in this thesis, setting up a physics
based model of the temperature dependent yield strength of fully lamellar TiAl alloys would
benefit from further experimental investigations. High temperature micromechanical tests
could, e.g., show whether or not single colonies in hard orientations (0◦ or 90◦) show the
same yield stress anomaly that has been observed in polysynthetically twinned crystals in the
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same orientations. Further, such experiments could potentially reveal the micromechanisms
behind the observed anomaly. Based on a respective series of experiments, it would likely be
possible to model the temperature dependent yield strength of fully lamellar TiAl in more
detail, ideally based on experimentally identifiable material parameters only.

9.6 Prospective applications
From a theoretical point of view, modeling the evolution of crystallographic defect densities is
desirable since it enables a physics based formulation of the work hardening/recovery model
and allows a physically meaningful assessment of the stored energy of cold work and the
corresponding dissipative processes [111]. However, the presented defect density based crystal
plasticity model for fully lamellar TiAl can also be of some practical use.
Numerical investigation of polycolony microstructures using the presented crystal plasticity
model can greatly contribute to the understanding of their microplasticity. While it is proba-
bly not reasonable to model complete components of TiAl by explicitly discretizing the colonies
and lamellae, localized plastic deformation as it might, e.g., appear due to surface treatments
can be investigated by a detailed microstructural representation. Since the presented crystal
plasticity model proved its ability to precisely capture the work hardening behavior of the
lamellar colonies, it also allows to investigate localized deformation effects like, e.g., kinking of
the lamellae [21]. Due to the incorporated recovery model, respective simulations may further
help to optimize load-annealing paths in forming applications and allow to assess whether
or not it is suitable to systematically introduce work hardening to improve a component’s
mechanical behavior at a certain operating temperature.
As the onset of recrystallization is closely related to the stored energy of cold work, the
presented defect density based model – although not explicitly capturing recrystallization
processes – may be useful to relate the local evolution of the defect density due to deformation
and recovery to the experimentally observed tendency for recrystallization.
Although not incorporating damage evolution so far, the presented crystal plasticity model
may further help to understand the causes for the frequently observed pre yield cracking
[132, 149, 150] by, e.g., investigating the strong gradients in the simulated microstrain fields
near microstructural sites at which pre yield cracks were experimentally observed to occur.
In conclusion, it might thus be stated that the presented defect density based crystal plasticity
model opens up many new possibilities to support the understanding of experimental findings
on the microplasticity in fully lamellar TiAl and further allows to relate the respective findings
to the macroscopic material’s behavior.
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A Appendix

A.1 Miller index notation for cubic lattices
Crystallographic planes and directions in cubic crystal lattices (e.g. FCC or BCC) are com-
monly described in terms of so-called Miller indices [30]. In this Miller index notation, crystal-
lographic planes are denoted by (hkl), i.e. using round brackets, whereas for crystallographic
directions square brackets are used, i.e. [uvw]. Whenever a family of crystallograpically equiv-
alent planes is supposed to be adressed, the notation {hkl} is used. Correspondingly, 〈uvw〉
denotes a family of crystallographically equivalent directions.
Generally, the Miller indices are determined in the cubic unit cell (edge length = 1) depicted
in Figure A.1.

e3

e2

e1

1

Figure A.1. Cubic unit cell (edge length = 1) with cartesian coordinate system (axes e1, e2
and e3)

The indices for a specific crystallographic plane (hkl) are found by the following procedure
[30]

1. determine the intersections of the plane with the e1, e2 and e3 axes,

2. take the reciprocals of the found values and

3. find the lowest set of integers with the same ratio.

This procedure is exemplarily shown in the following for the plane that is drawn in Figure
A.1:

1. intersections of the plane with the axes e1, e2 and e3: ∞, 1 and 1

2. reciprocals of the found values: 1
∞ = 0, 1

1 = 1 and 1
1 = 1

3. lowest set of integers with the same ratio: 0, 1 and 1.
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Consequently, the plane in Figure A.1 is denoted by (011). It is noteworthy that the Miller
index notation of a plane coincides with its normal vector. The family of planes that are
crystallographically equivalent to (011), i.e. {011}, is obtained by perturbation of the Miller
indices and reads:

{011} =̂ (011), (011), (101), (101), (110) and (110) (A.1)

where per convention 1 = −1. Here, only half of the possible perturbations are listed since
the negative of a planes index notation denotes the same plane (i.e. (011)=̂(011) etc.).
The crystallographic directions are determined directly by the lowest set of integers of their
vectorial components in the e1, e2 and e3 base. The direction that is shown in Figure A.1 is
consequently described by [011]. The crystallographically equivalent directions, i.e. 〈011〉, are
given by

〈011〉 =̂ [011], [011], [011], [011],
[101], [101], [101], [101],
[110], [110], [110] and [110].

While the Miller index notation gives a clear and unified description of crystallographic planes
and directions, it has to be kept in mind, that it is dimensionless. Thus, the lattice parameters
have to be considered to apply the Miller index notation to a specific crystal. With a being the
unit cell base length for a specific lattice and c/a being its potential tetragonality, directions
read [ua va wc] and plane normals read (h/a k/a l/c).

A.2 Miller-Bravais index notation for hexagonal lattices

Crystallographic planes and directions in hexagonal lattices are commonly described by use
of the four digit Miller–Bravais notation [30] described in the following. For this, a four axes
coordinate system is defined, see Figure A.2.

c

a2

a1

a3

Figure A.2. Hexagonal unit cell with four axes coordinate system (axes a1, a2, a3 and c). The
a1, the a2 and the a3 axes lie in the basal plane of the hexagonal unit cell and are 120◦ apart.
The c axis is perpendicular to the a1, a2 and a3 axes.

The unit cell that is depicted in Figure A.2 has an edge length of 1. A plane in this hexagonal
unit cell is written as (hkil) and a family of crystallographically equivalent planes is written
as {hkil} respectively. Further, a crystallographic direction is denoted by [uvtw] whereas a
family of crystallographically equivalent directions is denoted by 〈uvtw〉.
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A.2 Miller-Bravais index notation for hexagonal lattices

Determining the four Miller–Bravais indices that describe a crystallographic plane follows the
same three steps as in the Miller index notation for cubic lattices (see Section A.1), i.e.

1. determine the intersections of the plane with the a1, a2, a3 and c axes,

2. take the reciprocals of the found values and

3. find the lowest set of integers with the same ratio.

The index notation of the plane that is drawn in Figure A.2 is thus derived by:

1. intersections of the plane with the axes a1, a2, a3 and c: 1, −1, ∞, ∞

2. reciprocals of the found values: 1
1 = 1, 1

−1 = −1, 1
∞ = 0 and 1

∞ = 0

3. lowest set of integers with the same ratio: 1, -1, 0 and 0

and consequently reads (1100). The corresponding group of crystallographically equivalent
planes {1100} (i.e. the prismatic planes) reads

{1100} =̂ (1100), (1010) and (0110).

Since the three axes in the basal plane, i.e. a1, a2 and a3, are not linearly independent, it
is not straightforward to write down the Miller-Bravais index notation of a crystallographic
direction in a hexagonal lattice. In a first step, the translations U , V and W parallel to the
axes a1, a2 and c that produce the given direction are determined. From U , V and W , the
Miller–Bravais indices u, v, t and w of the direction [uvtw] can be derived [30] by

u = (2U − V )/3, v = (2V − U)/3, t = −(u+ v) and w = W.

The direction given in Figure A.2, can be described by translations U = −1, V = −1 and
W = 0 along axes a1, a2 and c. Thus, the Miller-Bravais indices read

u = (−2 + 1)/3 = −1/3, v = (−2 + 1)/3 = −1/3, t = −(u+ v) = 2/3 and w = W = 0,

i.e. the direction is described by 1/3[1120]. The group of crystallographically equivalent
directions 1/3〈1120〉 reads

1/3〈1120〉 =̂ 1/3[1120], 1/3[1210] and 1/3[2110]. (A.2)

While the four digit Miller–Bravais notation enables a comprehensible description of crystal
symmetries, most practical applications require the crystallographic planes and directions to
be written in terms of cartesian coordinates. Figure A.3 shows the hexagonal coordinate
system of the Miller–Bravais notation together with a cartesian coordinate system. In this,
the a1 axis is defined to be parallel to the e1 axis and the c axis is defined to be parallel to
the e3 axis.
With this alignment of the coordinate systems, the crystallographic directions [uvtw] and
planes (hkil) in a hexagonal lattice can be transformed to cartesian coordinates by the rela-
tions in Table A.1 that were obtained by basic trigonometry.
All here shown notations of crystallographic planes and directions in a hexagonal unit cell
are dimensionless per definition. To incorporate the length scale of a specific lattice, the
respective lattice parameters have to be considered. With a being again the base length of
the unit cell of a specific lattice and c being its height, directions read [ua va ta wc] and
planes read (h/a k/a i/a l/c).
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Figure A.3. Overlayed depiction of the hexagonal coordinate system (a1, a2, a3 and c) and a
cartesian coordinate system (e1, e2 and e3). View from positive c/e1 direction.

Table A.1. Transformation relations from Miller-Bravais notation to cartesian coordinates.
Directions:

e1 = 3
2u

e2 =
√

3
2 (u+ 2v)

e3 = w

Planes:
e1 = h

e2 = 1√
3

(h+ 2k)

e3 = l
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