
COMPEL - The international journal for computation and mathematics
in electrical and electronic engineering
Adaptation in coupled problems
Christos Vokas, Manfred Kasper,

Article information:
To cite this document:
Christos Vokas, Manfred Kasper, (2010) "Adaptation in coupled problems", COMPEL - The international
journal for computation and mathematics in electrical and electronic engineering, Vol. 29 Issue: 6,
pp.1626-1641, https://doi.org/10.1108/03321641011078698
Permanent link to this document:
https://doi.org/10.1108/03321641011078698

Downloaded on: 07 February 2018, At: 02:45 (PT)
References: this document contains references to 25 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 200 times since 2010*

Users who downloaded this article also downloaded:
(2005),"Commodity Frontier as Contested Periphery: The Fur Trade in Iroquoia, New York and Canada,
1664–1754", Research in Rural Sociology and Development, Vol. 10 pp. 231-252

Access to this document was granted through an Emerald subscription provided by emerald-srm:438847 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald for
Authors service information about how to choose which publication to write for and submission guidelines
are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as
providing an extensive range of online products and additional customer resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee
on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive
preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 H

am
bu

rg
 U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y 

A
t 0

2:
45

 0
7 

Fe
br

ua
ry

 2
01

8 
(P

T
)

https://doi.org/10.1108/03321641011078698
https://doi.org/10.1108/03321641011078698


Adaptation in coupled
problems

Christos Vokas and Manfred Kasper
Institute of Micro System Technology,

Hamburg University of Technology, Hamburg, Germany

Abstract

Purpose – The purpose of this paper is to address the formulation, implementation, and adaptation of
closely coupled multi-physics problems with h- and p-adaptive finite element methods. A general
formulation is chosen allowing for coupled problems of various types. Adaptation algorithms for h- and
p-refinement are given.

Design/methodology/approach – A generic system of second-order differential equations is used,
where the field of each individual problem is represented as an entry in the list of field variables.
Specific problems are implemented by mapping material coefficients to the coefficients of the generic
form. An example with four natures is investigated with close coupling between electric, mechanical
and thermal fields. h- and p-refinement using a single mesh is considered, where the element order may
differ for individual fields.

Findings – In coupled problems, the error in each single field is affected by approximation properties
of all other field quantities. In order to allow for optimal convergence order in the number of degrees of
freedom, the error contributions of all fields have to be considered. Separate error estimation in each
field is needed especially in h-adaptation on a single mesh. Energy coupling coefficients were
introduced to derive an adaptation criterion. Convergence analysis of h- and p-adaptation proves the
feasibility of the approach.

Originality/value – Piezopyroelectricity considers thermal effects in high-frequency piezoelectric
materials, which is a coupled problem of four natures. The paper introduces an adaptation criterion for
such complicated coupled problems and proves feasibility.

Keywords Physics, Meshes, Problem solving, Finite element analysis, Error analysis

Paper type Research paper

Introduction
Coupled, multi-physics problems are ubiquitous in engineering applications and a wide
variety of problems has been considered. Exemplarily, we mention fluid-structure
interaction (Bathe and Zhang, 2009), coupling between magnetic field, mechanical
deformation, and acoustic radiation (van Riesen and Hameyer, 2006), magnetic and
thermal fields (Driesen et al., 2002) or the coupling between electrostatic potential, charge
carrier concentrations and carrier temperatures in highly nonlinear semiconductor
devices (Chen and Liu, 2003). These examples show that problem formulation and
numerical treatment are commonly problem specific. Publications on general and
common principles in the numerical treatment of coupled problems are rare. In
Michopoulos et al. (2005), modeling and simulation of multi-physics problems has been
considered by distinguishing multi-field, multi-domain and multi-scale procedures,
however with little emphasis on numerical or finite element aspects. Generally, weak and
strong coupling have to be differentiated, thus leading to either a staggered or iterative
solution procedure, or the requirement of simultaneous solution. Cross et al. (2007)
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consider the modeling approach of closely coupled multi-physics problems using a
generic model and a unified computational procedure, which allows for various physical
phenomena like fluid flow, heat transfer, chemical reaction and electro-magnetics with
special emphasis on multi-scale problems.

We here are interested in error control and adaptive methods in the case of
strong coupling. While error estimation and mesh adaptation (Mackerle, 2001) is well
established for single problems, only a few attempts have been made towards adaptive
methods for coupled field problems. In most cases where adaptation is considered for
multi-physics problems, the mesh is adapted to requirements of only one of the
considered fields (Bathe and Zhang, 2009) and error indicators are derived in a heuristic
way on the basis of field gradients (Chen and Liu, 2003).

Solin et al. (2010b) consider multi-mesh adaptation of the linear thermoelastic
problem, where the thermal problem is independent of the mechanical stress
distribution, i.e. the problem can be solved as a staggered problem. In their approach,
individual meshes for the two displacements and the temperature are used and residuals
are computed in the energy norm. We here consider h- and p-adaptation on a single mesh,
i.e. h-refinement affects all fields simultaneously; however, the polynomial order may
differ between the coupled field quantities.

One main idea behind our work is to create a mathematical framework that allows
for the fast implementation of new coupled physics modes without having to do further
extensive coding each time (Vokas and Kasper, 2008). For this reason, the general
coupled-field partial differential equation (PDE) (equation (1)) was implemented in
PolyDE (Kasper et al., 2010):

Xm
j¼1

27 nij7uj þ gijuj
� �

þ bij7uj þ aijuj
� �
¼ f i þ 7gi i [ ½1; 2; . . . ;m�

ð1Þ

In equation (1), each nature (or field quantity) is described by one PDE and in
every PDE all the coupling effects resulting from the interaction with the other
field quantities can be included. We kept the formulation in equation (1) as general
as possible and map specific coupled problems by appropriately equating the
coefficients a, b, g, n to the corresponding material coefficients. In this respect, the
approach differs from implementations for solving specific problems. This paper
presents algorithms for a coupled p-adaptation and a coupled h-adaptation
technique. Both of these algorithms are applied on the same test problem and the
adaptation results are presented later on in the text.

Piezoelectricity and piezopyroelectricity
Equation (1) can theoretically allow for an unlimited number of natures. We consider a
physics mode called piezopyroelectricity which combines piezoelectricity and thermal
effects. The four scalar field quantities are the mechanical displacements, one in x- and
one in y-direction, electrostatics and temperature.

Piezoelectricity is formulated as in equation (2). There are three equations, the first
two for the x- and y-mechanical displacements (ux and uy) and the third for the electric
potential (F):
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2 div
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C16 C66
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5grad ux

0
@
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A

2 div
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5grad uy
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@

1
A

2 div
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5grad F

0
@
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5grad ux
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@
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A

2 div
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5grad uy
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@
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2 div
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e21 e22
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5grad F

0
@

1
A ¼ 0

2 div
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@
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2 div
e61 e21

e62 e22

2
4

3
5grad uy
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A

2 div 10

1r;11 1r;12

1r;21 1r;22

2
4

3
5grad F

0
@

1
A ¼ 0

ð2Þ

where:

C are the entries of the rank-4 elasticity tensor.

e are the entries of the rank-3 piezoelectric tensor.

1 are the entries of the rank-2 permittivity tensor.

In some piezoelectric crystal classes of materials, an electric field on the xy-plane
produces a stress in the z-direction. For this reason, simulating a 2D piezoelectric
problem is not straightforward. The full 3D material property tensors have to be
considered first and after performing a transformation (Nye, 1985) on them depending
on the slice of the geometry that has to be simulated, the tensor entries that correspond
to the z-direction can be dropped. In other words, the plane from the 3D geometry that
has to be simulated is mapped onto a 2D xy-plane.
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The piezopyroelectric physics mode is formulated as in equation (3):
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A2 jvTref
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h i
ux

2 jvTref
M21 M22

h i
uy þ jvTref

P1 P2

h i
Fþ jvrcrT ¼ 0

ð3Þ

where:

M are the entries of the rank-2 stress-temperature tensor.

P are the entries of the rank-1 pyroelectric tensor.

l are the entries of the rank-2 thermal conductivity tensor.

r is the density.

v is the angular frequency.

cp is the specific heat.

The number of equations in equation (3) is four. The fourth equation corresponds to the
temperature field (T). Compared to equation (2), it can be seen that in the first equation
of equation (3), there is a component linking the x-displacement to the temperature via
the stress-temperature tensor M. The equation for the y-displacement also contains this
same extra component. The third equation contains a term that links the electric
potential to the temperature via the pyroelectric tensor P. The last (temperature)
equation in equation (3) contains the reverse thermoelastic and pyroelectric effects,
which come together with the time-harmonic term jv.
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Error estimation
An error estimator gives an estimate for the error in a solution quantity and serves as a
criterion for acceptance of the solution. An error indicator is used in the adaptive refinement
and it should provide sufficient local information to control the adaptation process
(Ainsworth and Oden, 2000). A major requirement is that the computation of an a-posteriori
estimator should have reasonable cost. This is the main reason why we concentrate on
explicit residual error indicators (Babuška and Strouboulis, 2001; Verfürth, 2005). The
indicator serves to identify regions of the computational domain with insufficient precision.

Error estimators and indicators have been intensively studied in the case of uncoupled
problems. Explicit element-wise residual estimators are especially simple to compute. In
Petzoldt (2002), the Poisson equation in two and three dimensions with discontinuous
coefficients is considered. The estimator is reliable and efficient. A similar result is reported
in Bernardi and Verfürth (2000), which also extends to the case wheren is a tensor. The case
of the reaction-diffusion or convection-diffusion equation requires some modification;
however, the estimator is of similar type (Verfürth, 1998; Verfürth, 2005). For the Poisson
equation and higher order elements inhp-adaptation, an error indicator is derived in Melenk
and Wohlmuth (2001). The estimator in this case is reliable, i.e. it provides – up to a
constant which is independent of the mesh size and polynomial degree – an upper bound of
the error. In contrast to first-order elements, the lower bound however is p-dependent.

It is well known (Babuška and Strouboulis, 2001; Oden et al., 2005) that the finite
element method (FEM) in the case of the wave equations (a , 0, n . 0) suffers from
pollution error. In the presence of pollution, the finite element solution oscillates around
a shifted solution, because wavelength is not correctly represented. With the pollution,
an additional error term appears, which is independent of the interpolation error, thus
it cannot be estimated by a residual error estimator. Despite the lack of a rigorous
proof, explicit and implicit residual estimators are used in Oden et al. (2005), which is
reasonable under a restriction of mesh size.

In the case of coupled problems, error estimation and adaptation highly increases in
complexity and publications on this topic are rare. Although residuals can be computed
for each of the field quantities separately, a generalization of explicit estimators in a
straightforward manner is not possible. Liszka et al. (1997) suggest to use an implicit
error estimator based on a generalization of Bank and Weiser (1985). An embedded pair
of FEM solutions with different orders ( p þ 1) and mesh size (h/2) is used in Solin et al.
(2010a). This approach is quite safe, however largely increases the number of degrees of
freedom. In order to capture coupling effects in the error estimation, we suggest a
refinement indicator based on residuals and in the style of explicit estimators by use of
coupling coefficients derived on the basis of element energies.

We start by computing the residual for each of the elements in each of the natures.
This is done for the internal residual (4) of the element and for the external residual
(5)-(7). Index i stands for the nature, index j runs from 1 up to the number of natures m
so that the coupling effects are considered in the calculation of the residuals:

rin;iðTÞ ¼
Xm
j¼1

27ðnij7uj þ gijujÞ þ bij7uj þ aijuj
� �

2 f i 2 7gi i [ ½1; 2; . . . ;m� ð4Þ

rex;iðTÞ ¼
Xm
j¼1

½½nij7uj þ gijuj��
� �

þ ½½gi�� ›T � ›V i [ ½1; 2; . . . ;m� ð5Þ
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rex;iðTÞ ¼
Xm
j¼1

nij7ujþgijuj
� �

·nþ gi ·n2 pi þ qiuið Þ ›T , ›V2 i[ ½1;2; . . . ;m� ð6Þ

rex;iðTÞ ¼ 0 ›T , ›V1 i [ ½1; 2; . . . ;m� ð7Þ

In equation (5), the external residual evaluates the difference of normal flux density
from both sides of the interface. The square brackets denote the operation:
½½u�� ¼ ðuT 2 uT0 Þ ·n, where T, T0 refer to adjacent triangles. We use equation (5) for
the edges of the element where a neighboring element exists except at boundary
segments. This is indicated with: ›T � ›V. For general Neumann boundary
conditions, we use equation (6) and for Dirichlet boundary conditions the equation (7).
The element-wise error estimator is calculated for element T and nature i by taking:

h2
T;i ¼ W in;i rin;i

�� ��2
L2ðTÞ

þW ex;i rex;i

�� ��2
L2ð›T�›VÞ

þW b;i rex;i

�� ��2
L2ð›T,›V2Þ

ð8Þ

In equation (8), we take the L2 norm of the internal and external residuals and multiply
with the appropriate weights. The weights depend on triangle shape and area as well
as the material coefficients.

Adaptation
Equation (8) works well with the p-adaptation algorithm that is described below;
however, it does not work well with our coupled h-adaptation algorithm. The reason is
that in p-adaptation the element order is adapted independently in each nature. On the
other hand, in h-adaptation, only one mesh is used for all natures. There are no multiple
meshes. Therefore, the decision on mesh refinement has to take into account the error
of all natures simultaneously.

In p-adaptation, there are no problems arising from the fact that the energy-norm in
different natures is measured in different units. In h-adaptation, this turned out to be a
problem. When the energy-norm in one nature is arithmetically (without taking the
units into account) much larger than the energy-norms in the other natures, then it
dominates the adaptation process, since the elements are refined mostly according to
the residual error estimates in the dominating nature.

To treat this problem, we introduce a refinement indicator given in equation (9), which
replaces the error estimator (equation (8)) during the h-adaptation process. It corresponds
to one element and one nature and is denoted by e. To the original error estimator h, the
contributions of the element error estimators coming from all other natures are added.
Every time, h is multiplied by a factor which normalizes the energy norm and reflects the
coupling between different natures (index E indicates the use of energy norm). There is a
distinction between non-coupling energies (not arising from the coupling effects) and
coupling energies. A coupling energy is denoted with unequal i and j indices. The new
normalized element refinement indicator can now serve as a criterion in deciding on which
elements to refine (split into sub-elements) during the h-adaptation process:

e2
T;i ¼ h2

T;i þ
Xm

j¼1; j–i

h2
T;j

uj j
2
E;ijðTÞ

uj j
2
E;jjðTÞ

 !( )
1

uj j
2
E;ii

ð9Þ
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The implemented coupled p-adaptation algorithm is described here:

(1) Do from 1 up to the number of adaptation steps:
. do from 1 up to the number of natures:

– sort residual vector (each entry corresponds to the residual of 1 element);

– raise polynomial order of the worst (e.g. 5 percent) elements by 1;

– raise polynomial order of a further <25 percent of the elements if their
residual is above some critical limit set in maxres;

– check if polynomial orders in neighboring elements differ by more than 1.
If YES, increase the order in the lower order element so that the difference
is not greater than 1; and

– check if polynomial orders of the same element but different natures differ
by more than 2. If YES, increase the order in all natures except the one
with the highest order so that the difference is not greater than 2.

. end of natures loop;

. calculate the multi-nature error. This is the highest value of all nature errors;
The individual nature error is calculated by taking:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sumresðnatureÞ=sumref ðnatureÞ
p

· 100%; and
. if the desired adaptation error is smaller than the multi-nature error, exit the

adaptation loop.

(2) end of adaptation steps loop.

The coupled h-adaptation algorithm is described in the following:
. Calculate the refinement indicator e for all elements and natures.
. For each element and since e is normalized, sum e over all natures.
. Now, there is only one refinement indicator vector where each entry corresponds

to one element, sort this vector, place the most problematic elements first.
. Find errmax, the largest individual element error and errmin. The value in

errmin is either equal to one tenth of errmax or equal to the error of the element
with index given by (number of elements/18 þ 1) in the sorted vector. The
smallest of these two values is assigned to errmin.

. Look for the elements whose error value falls between errmax and errmin and
refine them.

Results
A surface acoustic wave (SAW) sensor is a device whose operation is based on the
piezoelectric effect. A sinusoidal alternating voltage is applied to one or more sets of
electrodes and an acoustic wave is produced in the substrate of the device. The acoustic
waves that propagate on the surface of the substrate are called SAWs. The geometry
and electric field of the SAW model is shown in Figure 1. For this simulation, the width
of the substrate is 200mm whereas the height is 30mm. The corresponding dimensions
for the electrodes are 10 and 2mm.

A sinusoidal voltage of 10 V in amplitude is applied at two of the electrodes
whereas the other two are grounded. The frequency of the alternating input voltage is
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190 MHz. The substrate material is Lithium Niobate (LiNbO3) and the electrode
material is aluminium. The LiNbO3 plane that is simulated is the YX-plane and
according to Wong (2002) the propagation velocity of the surface waves along this
plane is approximately 3,800 m/s. In Figures 2 and 3, the x- and y-displacement field
plots are shown.

It can be seen from Figures 2 and 3 that the wavelength of the surface waves is
20mm. Owing to the fact that in this type of problem wave reflections result at the
boundaries of the geometry, Perfectly matched layers (PMLs) have been implemented
in PolyDE in order to minimize these reflections (Mayer et al., 2007; Michler et al., 2007).
There are three rectangular PML regions in the geometry. The first one damps the
acoustic waves in the þx direction, the second in the 2x and the third in the 2y
direction. The damping is implemented in terms of the material parameters by making
them complex inside the PML region.

The four-nature piezopyroelectric physics mode that is presented in this paper
allows for the investigation of damping by thermoelastic dissipation simultaneously
with the piezoelectric effect. The acoustic waves that are triggered by the alternating
electrode voltage result in a temperature gradient. This temperature gradient is shown
in Figure 4. It can be seen that at the regions of greater mechanical displacement – this
is the surface of the substrate where the surface waves propagate – the temperature
gradient is higher.

Figure 3.
Y-displacement field plot

of the SAW sensor
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–2×10–5 0 2×10–5 4×10–5
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0

Note: Solution obtained with the piezopyroelectric physics mode

Figure 2.
X-displacement field plot

of the SAW sensor
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Note: Solution obtained with the piezopyroelectric physics mode

Figure 1.
Electric potential field plot

of the SAW sensor
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Note: Solution obtained with the piezopyroelectric physics mode
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The h-adaptation algorithm presented in the paper has been tested on the
piezopyroelectric physics mode. We start with the coarse mesh shown in Figure 5.
The element order is uniformly set to order 1, 2 or 3 and this means that it is not
adapted during the h-adaptation process.

Figure 6 shows the resulting mesh after six h-adaptation steps. It is clear from
Figure 6 that apart from the mesh refinement that is seen at the electrode corners due to
the presence of singularities there, the PML regions become highly refined at internal
boundaries. This can be due to the fact that damping in the PML region is not
performed in a progressive manner but in an immediate manner. This means that at
the interface between the LiNbO3 substrate and the LiNbO3-PML the material
parameters change to complex values. Additionally, there is a refinement on the
surface of the LiNbO3 substrate where the SAWs propagate.

The results from the application of the h-adaptation algorithm on this problem are
shown in Figures 7-10. The plotted error indicator in these three graphs is given by
equation (10):

Ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Th

2
T;iPm

j¼1kuk
2
E;ij

vuut ð10Þ

In equation (10), the sum of the error estimators for all elements in nature i, is
normalized with respect to the energy content in the same nature. This is done because
in a wave-propagation problem, the energy content changes when the mesh is changed
during the adaptation process. If the error estimator is not normalized with respect to
the energy then it will appear that there is no reduction in error during some adaptation
steps and this is not true.

Figure 5.
Starting coarse mesh for
the h-adaptation process
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Figure 4.
Temperature field plot of
the SAW sensor
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Note: Solution obtained with the piezopyroelectric physics mode

Figure 6.
Resulting mesh after six
h-adaptation steps

10–5

–10–5

–2×10–5

–2×10–5 0 2×10–5 4×10–5 6×10–5 8×10–5 10–4 1.2×10–4 1.4×10–4 1.6×10–4 1.8×10–4 2×10–4

0

COMPEL
29,6

1634

D
ow

nl
oa

de
d 

by
 H

am
bu

rg
 U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y 

A
t 0

2:
45

 0
7 

Fe
br

ua
ry

 2
01

8 
(P

T
)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/03321641011078698&iName=master.img-004.jpg&w=311&h=46
http://www.emeraldinsight.com/action/showImage?doi=10.1108/03321641011078698&iName=master.img-006.jpg&w=311&h=45


The p-adaptation algorithm has also been tested on this problem. The results are
shown in Figures 11-13. Both the element-wise error estimator given by equation (8)
and the refinement indicator (primarily, designed for the h-adaptation process)
given by equation (9) were used as the adaptation criterion during the process.

Figure 7.
X-displacement error

indicator given by
equation (10), plotted

against number of degrees
of freedom, with

h-adaptation and for
uniform element orders

of 1, 2 and 3
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Figure 8.
Y-displacement error

indicator given by
equation (10), plotted

against number of degrees
of freedom, with

h-adaptation and for
uniform element orders

of 1, 2 and 3
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It is visible that the results obtained with equation (8) are slightly better. After
approximately 30,000 DOF, the p-adaptation process enters a saturation phase and
this is due to singularities in the problem.

Figures 14-17 show the resulting element order after ten adaptation steps for all
natures of the piezopyroelectric problem in the following order (X-displacement,

Figure 9.
Electric potential error
indicator given by
equation (10), plotted
against number of degrees
of freedom, with
h-adaptation and for
uniform element orders
of 1, 2 and 3 1,000 10,000 100,000

10

100

h-adaptation
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Order 2

Order 3
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or
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Figure 10.
Temperature error
indicator given by
equation (10), plotted
against number of degrees
of freedom, with
h-adaptation and for
uniform element orders
of 1, 2 and 3
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Y-displacement, electric potential, temperature). These plot were obtained using
equation (9) as the adaptation criterion.

Figures 18-21 show the same plots as Figures 14-17 do, but this time using
equation (8). We see a high element order at the corners of the electrodes and as well at

Figure 12.
Electric potential error

indicator plotted against
number of degrees of

freedom, with
p-adaptation and by using

both the refinement
indicator (equation (9)) and

the error estimator
(equation (8))
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Figure 11.
X- and Y-displacement
error indicators plotted

against number of degrees
of freedom, with

p-adaptation and by using
both the refinement

indicator (equation (9)) and
the error estimator

(equation (8))
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Figure 14.
Resulting element order
for the X-displacement
nature after ten
p-adaptation steps using
the refinement indicator of
equation (9)

10–5

–10–5

–2×10–5

–2×10–5 2×10–5 4×10–5 6×10–5 8×10–5 10–4 1.2×10–4 1.4×10–4 1.6×10–4 1.8×10–4 2×10–40

0 2 3 4 5 6 7 8 9 10 111

0

Figure 15.
Resulting element order
for the Y-displacement
nature after ten
p-adaptation steps using
the refinement indicator of
equation (9)
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Figure 16.
Resulting element order
for the electric potential
after 10 p-adaptation steps
using the refinement
indicator of equation (9)
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Figure 13.
Temperature error
indicator plotted against
number of degrees of
freedom, with
p-adaptation and by using
both the refinement
indicator (equation (9)) and
the error estimator
(equation (8))
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the PML boundaries. The error at the PML boundaries seems to be dominating the
adaptation process in both cases with equations (9) and (8).

Conclusion
Convergence curves reflect the expected behavior and expected convergence rate, with
slight deviations at higher order elements. Results indicate that adaptation of coupled
problems with optimal convergence rate is possible using simple explicit error estimators.

Figure 18.
Resulting element order
for the X-displacement

nature after ten
p-adaptation steps using

the error estimator of
equation (8)
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Figure 19.
Resulting element order
for the Y-displacement

nature after ten
p-adaptation steps using

the error estimator of
equation (8)
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Figure 20.
Resulting element order
for the electric potential

after ten p-adaptation
steps using the error

estimator of equation (8)
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Figure 17.
Resulting element order

for the temperature after
ten p-adaptation steps

using the refinement
indicator of equation (9)
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Figure 21.
Resulting element order

for the temperature after
ten p-adaptation steps

using the error estimator
of equation (8)

10–5

–10–5

–2×10–5

–2×10–5 2×10–5 4×10–5 6×10–5 8×10–5 10–4 1.2×10–4 1.4×10–4 1.6×10–4 1.8×10–4 2×10–40

0 2 3 4 5 6 7 8 9 10 111

0

Adaptation
in coupled
problems

1639

D
ow

nl
oa

de
d 

by
 H

am
bu

rg
 U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y 

A
t 0

2:
45

 0
7 

Fe
br

ua
ry

 2
01

8 
(P

T
)



In hp-adaptation, additionally the decision about the refinement type has to be made. In
this paper, the four-nature piezopyroelectric physics mode has been presented.
Multi-nature h- and p-adaptation algorithms have been tested on this problem with
comparable results. Self-adaptivity is a mandatory characteristic of reliable and efficient
modern discretization methods.
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